Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/writeback.h>
  23#include <linux/pagemap.h>
  24#include <linux/blkdev.h>
 
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "inode-map.h"
 
 
 
 
 
  31
  32#define BTRFS_ROOT_TRANS_TAG 0
  33
  34static noinline void put_transaction(struct btrfs_transaction *transaction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35{
  36	WARN_ON(atomic_read(&transaction->use_count) == 0);
  37	if (atomic_dec_and_test(&transaction->use_count)) {
  38		BUG_ON(!list_empty(&transaction->list));
  39		memset(transaction, 0, sizeof(*transaction));
  40		kmem_cache_free(btrfs_transaction_cachep, transaction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41	}
  42}
  43
  44static noinline void switch_commit_root(struct btrfs_root *root)
  45{
  46	free_extent_buffer(root->commit_root);
  47	root->commit_root = btrfs_root_node(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48}
  49
  50/*
  51 * either allocate a new transaction or hop into the existing one
  52 */
  53static noinline int join_transaction(struct btrfs_root *root, int nofail)
 
  54{
  55	struct btrfs_transaction *cur_trans;
  56
  57	spin_lock(&root->fs_info->trans_lock);
  58	if (root->fs_info->trans_no_join) {
  59		if (!nofail) {
  60			spin_unlock(&root->fs_info->trans_lock);
  61			return -EBUSY;
  62		}
  63	}
  64
  65	cur_trans = root->fs_info->running_transaction;
  66	if (cur_trans) {
  67		atomic_inc(&cur_trans->use_count);
 
 
 
 
 
 
 
 
  68		atomic_inc(&cur_trans->num_writers);
  69		cur_trans->num_joined++;
  70		spin_unlock(&root->fs_info->trans_lock);
  71		return 0;
  72	}
  73	spin_unlock(&root->fs_info->trans_lock);
  74
  75	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
  76	if (!cur_trans)
  77		return -ENOMEM;
  78	spin_lock(&root->fs_info->trans_lock);
  79	if (root->fs_info->running_transaction) {
  80		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  81		cur_trans = root->fs_info->running_transaction;
  82		atomic_inc(&cur_trans->use_count);
  83		atomic_inc(&cur_trans->num_writers);
  84		cur_trans->num_joined++;
  85		spin_unlock(&root->fs_info->trans_lock);
  86		return 0;
 
 
 
 
  87	}
 
 
 
 
  88	atomic_set(&cur_trans->num_writers, 1);
  89	cur_trans->num_joined = 0;
  90	init_waitqueue_head(&cur_trans->writer_wait);
  91	init_waitqueue_head(&cur_trans->commit_wait);
  92	cur_trans->in_commit = 0;
  93	cur_trans->blocked = 0;
  94	/*
  95	 * One for this trans handle, one so it will live on until we
  96	 * commit the transaction.
  97	 */
  98	atomic_set(&cur_trans->use_count, 2);
  99	cur_trans->commit_done = 0;
 100	cur_trans->start_time = get_seconds();
 101
 102	cur_trans->delayed_refs.root = RB_ROOT;
 103	cur_trans->delayed_refs.num_entries = 0;
 104	cur_trans->delayed_refs.num_heads_ready = 0;
 105	cur_trans->delayed_refs.num_heads = 0;
 106	cur_trans->delayed_refs.flushing = 0;
 107	cur_trans->delayed_refs.run_delayed_start = 0;
 108	spin_lock_init(&cur_trans->commit_lock);
 
 
 
 
 
 
 
 
 
 
 109	spin_lock_init(&cur_trans->delayed_refs.lock);
 110
 111	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 112	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
 113	extent_io_tree_init(&cur_trans->dirty_pages,
 114			     root->fs_info->btree_inode->i_mapping);
 115	root->fs_info->generation++;
 116	cur_trans->transid = root->fs_info->generation;
 117	root->fs_info->running_transaction = cur_trans;
 118	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119
 120	return 0;
 121}
 122
 123/*
 124 * this does all the record keeping required to make sure that a reference
 125 * counted root is properly recorded in a given transaction.  This is required
 126 * to make sure the old root from before we joined the transaction is deleted
 127 * when the transaction commits
 128 */
 129static int record_root_in_trans(struct btrfs_trans_handle *trans,
 130			       struct btrfs_root *root)
 
 131{
 132	if (root->ref_cows && root->last_trans < trans->transid) {
 133		WARN_ON(root == root->fs_info->extent_root);
 134		WARN_ON(root->commit_root != root->node);
 
 
 
 
 135
 136		/*
 137		 * see below for in_trans_setup usage rules
 138		 * we have the reloc mutex held now, so there
 139		 * is only one writer in this function
 140		 */
 141		root->in_trans_setup = 1;
 142
 143		/* make sure readers find in_trans_setup before
 144		 * they find our root->last_trans update
 145		 */
 146		smp_wmb();
 147
 148		spin_lock(&root->fs_info->fs_roots_radix_lock);
 149		if (root->last_trans == trans->transid) {
 150			spin_unlock(&root->fs_info->fs_roots_radix_lock);
 151			return 0;
 152		}
 153		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
 154			   (unsigned long)root->root_key.objectid,
 155			   BTRFS_ROOT_TRANS_TAG);
 156		spin_unlock(&root->fs_info->fs_roots_radix_lock);
 157		root->last_trans = trans->transid;
 158
 159		/* this is pretty tricky.  We don't want to
 160		 * take the relocation lock in btrfs_record_root_in_trans
 161		 * unless we're really doing the first setup for this root in
 162		 * this transaction.
 163		 *
 164		 * Normally we'd use root->last_trans as a flag to decide
 165		 * if we want to take the expensive mutex.
 166		 *
 167		 * But, we have to set root->last_trans before we
 168		 * init the relocation root, otherwise, we trip over warnings
 169		 * in ctree.c.  The solution used here is to flag ourselves
 170		 * with root->in_trans_setup.  When this is 1, we're still
 171		 * fixing up the reloc trees and everyone must wait.
 172		 *
 173		 * When this is zero, they can trust root->last_trans and fly
 174		 * through btrfs_record_root_in_trans without having to take the
 175		 * lock.  smp_wmb() makes sure that all the writes above are
 176		 * done before we pop in the zero below
 177		 */
 178		btrfs_init_reloc_root(trans, root);
 179		smp_wmb();
 180		root->in_trans_setup = 0;
 181	}
 182	return 0;
 183}
 184
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 187			       struct btrfs_root *root)
 188{
 189	if (!root->ref_cows)
 
 
 
 190		return 0;
 191
 192	/*
 193	 * see record_root_in_trans for comments about in_trans_setup usage
 194	 * and barriers
 195	 */
 196	smp_rmb();
 197	if (root->last_trans == trans->transid &&
 198	    !root->in_trans_setup)
 199		return 0;
 200
 201	mutex_lock(&root->fs_info->reloc_mutex);
 202	record_root_in_trans(trans, root);
 203	mutex_unlock(&root->fs_info->reloc_mutex);
 204
 205	return 0;
 
 
 
 
 
 
 
 206}
 207
 208/* wait for commit against the current transaction to become unblocked
 209 * when this is done, it is safe to start a new transaction, but the current
 210 * transaction might not be fully on disk.
 211 */
 212static void wait_current_trans(struct btrfs_root *root)
 213{
 214	struct btrfs_transaction *cur_trans;
 215
 216	spin_lock(&root->fs_info->trans_lock);
 217	cur_trans = root->fs_info->running_transaction;
 218	if (cur_trans && cur_trans->blocked) {
 219		atomic_inc(&cur_trans->use_count);
 220		spin_unlock(&root->fs_info->trans_lock);
 221
 222		wait_event(root->fs_info->transaction_wait,
 223			   !cur_trans->blocked);
 224		put_transaction(cur_trans);
 
 225	} else {
 226		spin_unlock(&root->fs_info->trans_lock);
 227	}
 228}
 229
 230enum btrfs_trans_type {
 231	TRANS_START,
 232	TRANS_JOIN,
 233	TRANS_USERSPACE,
 234	TRANS_JOIN_NOLOCK,
 235};
 236
 237static int may_wait_transaction(struct btrfs_root *root, int type)
 238{
 239	if (root->fs_info->log_root_recovering)
 240		return 0;
 241
 242	if (type == TRANS_USERSPACE)
 243		return 1;
 244
 245	if (type == TRANS_START &&
 246	    !atomic_read(&root->fs_info->open_ioctl_trans))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
 253						    u64 num_items, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254{
 
 
 255	struct btrfs_trans_handle *h;
 256	struct btrfs_transaction *cur_trans;
 257	u64 num_bytes = 0;
 
 
 
 258	int ret;
 259
 260	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
 261		return ERR_PTR(-EROFS);
 262
 263	if (current->journal_info) {
 264		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
 265		h = current->journal_info;
 266		h->use_count++;
 
 267		h->orig_rsv = h->block_rsv;
 268		h->block_rsv = NULL;
 269		goto got_it;
 270	}
 271
 272	/*
 273	 * Do the reservation before we join the transaction so we can do all
 274	 * the appropriate flushing if need be.
 275	 */
 276	if (num_items > 0 && root != root->fs_info->chunk_root) {
 277		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
 278		ret = btrfs_block_rsv_add(NULL, root,
 279					  &root->fs_info->trans_block_rsv,
 280					  num_bytes);
 
 
 281		if (ret)
 282			return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283	}
 284again:
 285	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
 286	if (!h)
 287		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288
 289	if (may_wait_transaction(root, type))
 290		wait_current_trans(root);
 291
 292	do {
 293		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
 294		if (ret == -EBUSY)
 295			wait_current_trans(root);
 
 
 
 
 296	} while (ret == -EBUSY);
 297
 298	if (ret < 0) {
 299		kmem_cache_free(btrfs_trans_handle_cachep, h);
 300		return ERR_PTR(ret);
 301	}
 302
 303	cur_trans = root->fs_info->running_transaction;
 304
 305	h->transid = cur_trans->transid;
 306	h->transaction = cur_trans;
 307	h->blocks_used = 0;
 308	h->bytes_reserved = 0;
 309	h->delayed_ref_updates = 0;
 310	h->use_count = 1;
 311	h->block_rsv = NULL;
 312	h->orig_rsv = NULL;
 313
 314	smp_mb();
 315	if (cur_trans->blocked && may_wait_transaction(root, type)) {
 316		btrfs_commit_transaction(h, root);
 
 
 317		goto again;
 318	}
 319
 320	if (num_bytes) {
 321		h->block_rsv = &root->fs_info->trans_block_rsv;
 
 
 322		h->bytes_reserved = num_bytes;
 
 323	}
 324
 325got_it:
 326	btrfs_record_root_in_trans(h, root);
 327
 328	if (!current->journal_info && type != TRANS_USERSPACE)
 329		current->journal_info = h;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330	return h;
 
 
 
 
 
 
 
 
 
 
 
 
 331}
 332
 333struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 334						   int num_items)
 335{
 336	return start_transaction(root, num_items, TRANS_START);
 
 337}
 
 
 
 
 
 
 
 
 
 338struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 339{
 340	return start_transaction(root, 0, TRANS_JOIN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341}
 342
 343struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 344{
 345	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
 
 346}
 347
 348struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 349{
 350	return start_transaction(root, 0, TRANS_USERSPACE);
 
 
 
 
 
 
 
 351}
 352
 353/* wait for a transaction commit to be fully complete */
 354static noinline void wait_for_commit(struct btrfs_root *root,
 355				    struct btrfs_transaction *commit)
 356{
 357	wait_event(commit->commit_wait, commit->commit_done);
 358}
 359
 360int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
 361{
 362	struct btrfs_transaction *cur_trans = NULL, *t;
 363	int ret;
 364
 365	ret = 0;
 366	if (transid) {
 367		if (transid <= root->fs_info->last_trans_committed)
 368			goto out;
 369
 370		/* find specified transaction */
 371		spin_lock(&root->fs_info->trans_lock);
 372		list_for_each_entry(t, &root->fs_info->trans_list, list) {
 373			if (t->transid == transid) {
 374				cur_trans = t;
 375				atomic_inc(&cur_trans->use_count);
 
 376				break;
 377			}
 378			if (t->transid > transid)
 
 379				break;
 
 
 
 
 
 
 
 
 
 
 
 
 380		}
 381		spin_unlock(&root->fs_info->trans_lock);
 382		ret = -EINVAL;
 383		if (!cur_trans)
 384			goto out;  /* bad transid */
 385	} else {
 386		/* find newest transaction that is committing | committed */
 387		spin_lock(&root->fs_info->trans_lock);
 388		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
 389					    list) {
 390			if (t->in_commit) {
 391				if (t->commit_done)
 392					break;
 393				cur_trans = t;
 394				atomic_inc(&cur_trans->use_count);
 395				break;
 396			}
 397		}
 398		spin_unlock(&root->fs_info->trans_lock);
 399		if (!cur_trans)
 400			goto out;  /* nothing committing|committed */
 401	}
 402
 403	wait_for_commit(root, cur_trans);
 404
 405	put_transaction(cur_trans);
 406	ret = 0;
 407out:
 408	return ret;
 409}
 410
 411void btrfs_throttle(struct btrfs_root *root)
 412{
 413	if (!atomic_read(&root->fs_info->open_ioctl_trans))
 414		wait_current_trans(root);
 415}
 416
 417static int should_end_transaction(struct btrfs_trans_handle *trans,
 418				  struct btrfs_root *root)
 419{
 420	int ret;
 421	ret = btrfs_block_rsv_check(trans, root,
 422				    &root->fs_info->global_block_rsv, 0, 5);
 423	return ret ? 1 : 0;
 
 
 424}
 425
 426int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
 427				 struct btrfs_root *root)
 428{
 429	struct btrfs_transaction *cur_trans = trans->transaction;
 430	int updates;
 431
 432	smp_mb();
 433	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
 434		return 1;
 
 
 
 435
 436	updates = trans->delayed_ref_updates;
 437	trans->delayed_ref_updates = 0;
 438	if (updates)
 439		btrfs_run_delayed_refs(trans, root, updates);
 440
 441	return should_end_transaction(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 442}
 443
 444static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 445			  struct btrfs_root *root, int throttle, int lock)
 446{
 
 447	struct btrfs_transaction *cur_trans = trans->transaction;
 448	struct btrfs_fs_info *info = root->fs_info;
 449	int count = 0;
 450
 451	if (--trans->use_count) {
 
 452		trans->block_rsv = trans->orig_rsv;
 453		return 0;
 454	}
 455
 456	while (count < 4) {
 457		unsigned long cur = trans->delayed_ref_updates;
 458		trans->delayed_ref_updates = 0;
 459		if (cur &&
 460		    trans->transaction->delayed_refs.num_heads_ready > 64) {
 461			trans->delayed_ref_updates = 0;
 462
 463			/*
 464			 * do a full flush if the transaction is trying
 465			 * to close
 466			 */
 467			if (trans->transaction->delayed_refs.flushing)
 468				cur = 0;
 469			btrfs_run_delayed_refs(trans, root, cur);
 470		} else {
 471			break;
 472		}
 473		count++;
 474	}
 475
 476	btrfs_trans_release_metadata(trans, root);
 477
 478	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
 479	    should_end_transaction(trans, root)) {
 480		trans->transaction->blocked = 1;
 481		smp_wmb();
 482	}
 483
 484	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
 485		if (throttle) {
 486			/*
 487			 * We may race with somebody else here so end up having
 488			 * to call end_transaction on ourselves again, so inc
 489			 * our use_count.
 490			 */
 491			trans->use_count++;
 492			return btrfs_commit_transaction(trans, root);
 493		} else {
 494			wake_up_process(info->transaction_kthread);
 495		}
 496	}
 497
 498	WARN_ON(cur_trans != info->running_transaction);
 499	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 500	atomic_dec(&cur_trans->num_writers);
 
 501
 502	smp_mb();
 503	if (waitqueue_active(&cur_trans->writer_wait))
 504		wake_up(&cur_trans->writer_wait);
 505	put_transaction(cur_trans);
 506
 507	if (current->journal_info == trans)
 508		current->journal_info = NULL;
 509	memset(trans, 0, sizeof(*trans));
 510	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 511
 512	if (throttle)
 513		btrfs_run_delayed_iputs(root);
 514
 515	return 0;
 516}
 517
 518int btrfs_end_transaction(struct btrfs_trans_handle *trans,
 519			  struct btrfs_root *root)
 520{
 521	int ret;
 522
 523	ret = __btrfs_end_transaction(trans, root, 0, 1);
 524	if (ret)
 525		return ret;
 526	return 0;
 527}
 528
 529int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
 530				   struct btrfs_root *root)
 531{
 532	int ret;
 
 
 
 
 533
 534	ret = __btrfs_end_transaction(trans, root, 1, 1);
 535	if (ret)
 536		return ret;
 537	return 0;
 538}
 539
 540int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
 541				 struct btrfs_root *root)
 542{
 543	int ret;
 544
 545	ret = __btrfs_end_transaction(trans, root, 0, 0);
 546	if (ret)
 547		return ret;
 548	return 0;
 549}
 550
 551int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
 552				struct btrfs_root *root)
 553{
 554	return __btrfs_end_transaction(trans, root, 1, 1);
 555}
 556
 557/*
 558 * when btree blocks are allocated, they have some corresponding bits set for
 559 * them in one of two extent_io trees.  This is used to make sure all of
 560 * those extents are sent to disk but does not wait on them
 561 */
 562int btrfs_write_marked_extents(struct btrfs_root *root,
 563			       struct extent_io_tree *dirty_pages, int mark)
 564{
 565	int ret;
 566	int err = 0;
 567	int werr = 0;
 568	struct page *page;
 569	struct inode *btree_inode = root->fs_info->btree_inode;
 570	u64 start = 0;
 571	u64 end;
 572	unsigned long index;
 573
 574	while (1) {
 575		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
 576					    mark);
 577		if (ret)
 578			break;
 579		while (start <= end) {
 580			cond_resched();
 581
 582			index = start >> PAGE_CACHE_SHIFT;
 583			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
 584			page = find_get_page(btree_inode->i_mapping, index);
 585			if (!page)
 586				continue;
 587
 588			btree_lock_page_hook(page);
 589			if (!page->mapping) {
 590				unlock_page(page);
 591				page_cache_release(page);
 592				continue;
 593			}
 594
 595			if (PageWriteback(page)) {
 596				if (PageDirty(page))
 597					wait_on_page_writeback(page);
 598				else {
 599					unlock_page(page);
 600					page_cache_release(page);
 601					continue;
 602				}
 603			}
 604			err = write_one_page(page, 0);
 605			if (err)
 606				werr = err;
 607			page_cache_release(page);
 608		}
 
 
 
 
 
 
 
 
 
 
 609	}
 610	if (err)
 611		werr = err;
 612	return werr;
 613}
 614
 615/*
 616 * when btree blocks are allocated, they have some corresponding bits set for
 617 * them in one of two extent_io trees.  This is used to make sure all of
 618 * those extents are on disk for transaction or log commit.  We wait
 619 * on all the pages and clear them from the dirty pages state tree
 620 */
 621int btrfs_wait_marked_extents(struct btrfs_root *root,
 622			      struct extent_io_tree *dirty_pages, int mark)
 623{
 624	int ret;
 625	int err = 0;
 626	int werr = 0;
 627	struct page *page;
 628	struct inode *btree_inode = root->fs_info->btree_inode;
 629	u64 start = 0;
 630	u64 end;
 631	unsigned long index;
 632
 633	while (1) {
 634		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
 635					    mark);
 636		if (ret)
 637			break;
 638
 639		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
 640		while (start <= end) {
 641			index = start >> PAGE_CACHE_SHIFT;
 642			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
 643			page = find_get_page(btree_inode->i_mapping, index);
 644			if (!page)
 645				continue;
 646			if (PageDirty(page)) {
 647				btree_lock_page_hook(page);
 648				wait_on_page_writeback(page);
 649				err = write_one_page(page, 0);
 650				if (err)
 651					werr = err;
 652			}
 653			wait_on_page_writeback(page);
 654			page_cache_release(page);
 655			cond_resched();
 656		}
 657	}
 658	if (err)
 659		werr = err;
 660	return werr;
 661}
 662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663/*
 664 * when btree blocks are allocated, they have some corresponding bits set for
 665 * them in one of two extent_io trees.  This is used to make sure all of
 666 * those extents are on disk for transaction or log commit
 
 
 667 */
 668int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
 669				struct extent_io_tree *dirty_pages, int mark)
 670{
 671	int ret;
 672	int ret2;
 
 
 
 
 
 
 
 
 673
 674	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
 675	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
 676	return ret || ret2;
 677}
 678
 679int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
 680				     struct btrfs_root *root)
 681{
 682	if (!trans || !trans->transaction) {
 683		struct inode *btree_inode;
 684		btree_inode = root->fs_info->btree_inode;
 685		return filemap_write_and_wait(btree_inode->i_mapping);
 686	}
 687	return btrfs_write_and_wait_marked_extents(root,
 688					   &trans->transaction->dirty_pages,
 689					   EXTENT_DIRTY);
 690}
 691
 692/*
 693 * this is used to update the root pointer in the tree of tree roots.
 694 *
 695 * But, in the case of the extent allocation tree, updating the root
 696 * pointer may allocate blocks which may change the root of the extent
 697 * allocation tree.
 698 *
 699 * So, this loops and repeats and makes sure the cowonly root didn't
 700 * change while the root pointer was being updated in the metadata.
 701 */
 702static int update_cowonly_root(struct btrfs_trans_handle *trans,
 703			       struct btrfs_root *root)
 704{
 705	int ret;
 706	u64 old_root_bytenr;
 707	u64 old_root_used;
 708	struct btrfs_root *tree_root = root->fs_info->tree_root;
 
 709
 710	old_root_used = btrfs_root_used(&root->root_item);
 711	btrfs_write_dirty_block_groups(trans, root);
 712
 713	while (1) {
 714		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
 715		if (old_root_bytenr == root->node->start &&
 716		    old_root_used == btrfs_root_used(&root->root_item))
 717			break;
 718
 719		btrfs_set_root_node(&root->root_item, root->node);
 720		ret = btrfs_update_root(trans, tree_root,
 721					&root->root_key,
 722					&root->root_item);
 723		BUG_ON(ret);
 
 724
 725		old_root_used = btrfs_root_used(&root->root_item);
 726		ret = btrfs_write_dirty_block_groups(trans, root);
 727		BUG_ON(ret);
 728	}
 729
 730	if (root != root->fs_info->extent_root)
 731		switch_commit_root(root);
 732
 733	return 0;
 734}
 735
 736/*
 737 * update all the cowonly tree roots on disk
 
 
 
 
 738 */
 739static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
 740					 struct btrfs_root *root)
 741{
 742	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 743	struct list_head *next;
 744	struct extent_buffer *eb;
 745	int ret;
 746
 747	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 748	BUG_ON(ret);
 749
 750	eb = btrfs_lock_root_node(fs_info->tree_root);
 751	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
 
 752	btrfs_tree_unlock(eb);
 753	free_extent_buffer(eb);
 754
 755	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 756	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757
 
 758	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
 
 759		next = fs_info->dirty_cowonly_roots.next;
 760		list_del_init(next);
 761		root = list_entry(next, struct btrfs_root, dirty_list);
 
 762
 763		update_cowonly_root(trans, root);
 
 
 
 
 
 764	}
 765
 766	down_write(&fs_info->extent_commit_sem);
 767	switch_commit_root(fs_info->extent_root);
 768	up_write(&fs_info->extent_commit_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769
 770	return 0;
 771}
 772
 773/*
 774 * dead roots are old snapshots that need to be deleted.  This allocates
 775 * a dirty root struct and adds it into the list of dead roots that need to
 776 * be deleted
 777 */
 778int btrfs_add_dead_root(struct btrfs_root *root)
 779{
 780	spin_lock(&root->fs_info->trans_lock);
 781	list_add(&root->root_list, &root->fs_info->dead_roots);
 782	spin_unlock(&root->fs_info->trans_lock);
 783	return 0;
 
 
 
 
 784}
 785
 786/*
 787 * update all the cowonly tree roots on disk
 788 */
 789static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
 790				    struct btrfs_root *root)
 791{
 
 792	struct btrfs_root *gang[8];
 793	struct btrfs_fs_info *fs_info = root->fs_info;
 794	int i;
 795	int ret;
 796	int err = 0;
 797
 798	spin_lock(&fs_info->fs_roots_radix_lock);
 799	while (1) {
 800		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
 801						 (void **)gang, 0,
 802						 ARRAY_SIZE(gang),
 803						 BTRFS_ROOT_TRANS_TAG);
 804		if (ret == 0)
 805			break;
 806		for (i = 0; i < ret; i++) {
 807			root = gang[i];
 
 
 808			radix_tree_tag_clear(&fs_info->fs_roots_radix,
 809					(unsigned long)root->root_key.objectid,
 810					BTRFS_ROOT_TRANS_TAG);
 811			spin_unlock(&fs_info->fs_roots_radix_lock);
 812
 813			btrfs_free_log(trans, root);
 814			btrfs_update_reloc_root(trans, root);
 815			btrfs_orphan_commit_root(trans, root);
 816
 817			btrfs_save_ino_cache(root, trans);
 
 
 
 818
 819			if (root->commit_root != root->node) {
 820				mutex_lock(&root->fs_commit_mutex);
 821				switch_commit_root(root);
 822				btrfs_unpin_free_ino(root);
 823				mutex_unlock(&root->fs_commit_mutex);
 824
 825				btrfs_set_root_node(&root->root_item,
 826						    root->node);
 827			}
 828
 829			err = btrfs_update_root(trans, fs_info->tree_root,
 830						&root->root_key,
 831						&root->root_item);
 
 
 832			spin_lock(&fs_info->fs_roots_radix_lock);
 833			if (err)
 834				break;
 835		}
 836	}
 837	spin_unlock(&fs_info->fs_roots_radix_lock);
 838	return err;
 839}
 840
 841/*
 842 * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
 843 * otherwise every leaf in the btree is read and defragged.
 844 */
 845int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
 846{
 847	struct btrfs_fs_info *info = root->fs_info;
 848	struct btrfs_trans_handle *trans;
 849	int ret;
 850	unsigned long nr;
 851
 852	if (xchg(&root->defrag_running, 1))
 853		return 0;
 854
 855	while (1) {
 856		trans = btrfs_start_transaction(root, 0);
 857		if (IS_ERR(trans))
 858			return PTR_ERR(trans);
 
 
 859
 860		ret = btrfs_defrag_leaves(trans, root, cacheonly);
 861
 862		nr = trans->blocks_used;
 863		btrfs_end_transaction(trans, root);
 864		btrfs_btree_balance_dirty(info->tree_root, nr);
 865		cond_resched();
 866
 867		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
 868			break;
 
 
 
 
 
 
 869	}
 870	root->defrag_running = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871	return ret;
 872}
 873
 874/*
 875 * new snapshots need to be created at a very specific time in the
 876 * transaction commit.  This does the actual creation
 
 
 
 
 
 877 */
 878static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
 879				   struct btrfs_fs_info *fs_info,
 880				   struct btrfs_pending_snapshot *pending)
 881{
 
 
 882	struct btrfs_key key;
 883	struct btrfs_root_item *new_root_item;
 884	struct btrfs_root *tree_root = fs_info->tree_root;
 885	struct btrfs_root *root = pending->root;
 886	struct btrfs_root *parent_root;
 887	struct btrfs_block_rsv *rsv;
 888	struct inode *parent_inode;
 889	struct dentry *parent;
 
 890	struct dentry *dentry;
 891	struct extent_buffer *tmp;
 892	struct extent_buffer *old;
 893	int ret;
 
 894	u64 to_reserve = 0;
 895	u64 index = 0;
 896	u64 objectid;
 897	u64 root_flags;
 898
 899	rsv = trans->block_rsv;
 
 900
 901	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
 902	if (!new_root_item) {
 903		pending->error = -ENOMEM;
 904		goto fail;
 905	}
 906
 907	ret = btrfs_find_free_objectid(tree_root, &objectid);
 908	if (ret) {
 909		pending->error = ret;
 910		goto fail;
 911	}
 912
 913	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
 914	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
 
 
 
 
 
 915
 916	if (to_reserve > 0) {
 917		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
 918					  to_reserve);
 919		if (ret) {
 920			pending->error = ret;
 921			goto fail;
 922		}
 923	}
 924
 925	key.objectid = objectid;
 926	key.offset = (u64)-1;
 927	key.type = BTRFS_ROOT_ITEM_KEY;
 928
 
 929	trans->block_rsv = &pending->block_rsv;
 930
 
 
 
 931	dentry = pending->dentry;
 932	parent = dget_parent(dentry);
 933	parent_inode = parent->d_inode;
 934	parent_root = BTRFS_I(parent_inode)->root;
 935	record_root_in_trans(trans, parent_root);
 
 
 
 936
 937	/*
 938	 * insert the directory item
 939	 */
 940	ret = btrfs_set_inode_index(parent_inode, &index);
 941	BUG_ON(ret);
 942	ret = btrfs_insert_dir_item(trans, parent_root,
 943				dentry->d_name.name, dentry->d_name.len,
 944				parent_inode, &key,
 945				BTRFS_FT_DIR, index);
 946	BUG_ON(ret);
 947
 948	btrfs_i_size_write(parent_inode, parent_inode->i_size +
 949					 dentry->d_name.len * 2);
 950	ret = btrfs_update_inode(trans, parent_root, parent_inode);
 951	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 952
 953	/*
 954	 * pull in the delayed directory update
 955	 * and the delayed inode item
 956	 * otherwise we corrupt the FS during
 957	 * snapshot
 958	 */
 959	ret = btrfs_run_delayed_items(trans, root);
 960	BUG_ON(ret);
 
 
 
 961
 962	record_root_in_trans(trans, root);
 
 
 
 
 963	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
 964	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
 965	btrfs_check_and_init_root_item(new_root_item);
 966
 967	root_flags = btrfs_root_flags(new_root_item);
 968	if (pending->readonly)
 969		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
 970	else
 971		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
 972	btrfs_set_root_flags(new_root_item, root_flags);
 973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	old = btrfs_lock_root_node(root);
 975	btrfs_cow_block(trans, root, old, NULL, 0, &old);
 976	btrfs_set_lock_blocking(old);
 
 
 
 
 
 
 977
 978	btrfs_copy_root(trans, root, old, &tmp, objectid);
 
 979	btrfs_tree_unlock(old);
 980	free_extent_buffer(old);
 
 
 
 
 
 
 
 981
 982	btrfs_set_root_node(new_root_item, tmp);
 983	/* record when the snapshot was created in key.offset */
 984	key.offset = trans->transid;
 985	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
 986	btrfs_tree_unlock(tmp);
 987	free_extent_buffer(tmp);
 988	BUG_ON(ret);
 
 
 
 989
 990	/*
 991	 * insert root back/forward references
 992	 */
 993	ret = btrfs_add_root_ref(trans, tree_root, objectid,
 994				 parent_root->root_key.objectid,
 995				 btrfs_ino(parent_inode), index,
 996				 dentry->d_name.name, dentry->d_name.len);
 997	BUG_ON(ret);
 998	dput(parent);
 
 
 999
1000	key.offset = (u64)-1;
1001	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1002	BUG_ON(IS_ERR(pending->snap));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003
1004	btrfs_reloc_post_snapshot(trans, pending);
1005	btrfs_orphan_post_snapshot(trans, pending);
1006fail:
1007	kfree(new_root_item);
 
1008	trans->block_rsv = rsv;
1009	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1010	return 0;
 
 
 
 
 
 
 
 
1011}
1012
1013/*
1014 * create all the snapshots we've scheduled for creation
1015 */
1016static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1017					     struct btrfs_fs_info *fs_info)
1018{
1019	struct btrfs_pending_snapshot *pending;
1020	struct list_head *head = &trans->transaction->pending_snapshots;
1021	int ret;
1022
1023	list_for_each_entry(pending, head, list) {
1024		ret = create_pending_snapshot(trans, fs_info, pending);
1025		BUG_ON(ret);
 
 
1026	}
1027	return 0;
1028}
1029
1030static void update_super_roots(struct btrfs_root *root)
1031{
1032	struct btrfs_root_item *root_item;
1033	struct btrfs_super_block *super;
1034
1035	super = &root->fs_info->super_copy;
1036
1037	root_item = &root->fs_info->chunk_root->root_item;
1038	super->chunk_root = root_item->bytenr;
1039	super->chunk_root_generation = root_item->generation;
1040	super->chunk_root_level = root_item->level;
1041
1042	root_item = &root->fs_info->tree_root->root_item;
1043	super->root = root_item->bytenr;
1044	super->generation = root_item->generation;
1045	super->root_level = root_item->level;
1046	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1047		super->cache_generation = root_item->generation;
 
 
 
 
1048}
1049
1050int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1051{
 
1052	int ret = 0;
 
1053	spin_lock(&info->trans_lock);
1054	if (info->running_transaction)
1055		ret = info->running_transaction->in_commit;
 
1056	spin_unlock(&info->trans_lock);
1057	return ret;
1058}
1059
1060int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1061{
 
1062	int ret = 0;
 
1063	spin_lock(&info->trans_lock);
1064	if (info->running_transaction)
1065		ret = info->running_transaction->blocked;
 
1066	spin_unlock(&info->trans_lock);
1067	return ret;
1068}
1069
1070/*
1071 * wait for the current transaction commit to start and block subsequent
1072 * transaction joins
1073 */
1074static void wait_current_trans_commit_start(struct btrfs_root *root,
1075					    struct btrfs_transaction *trans)
1076{
1077	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1078}
1079
1080/*
1081 * wait for the current transaction to start and then become unblocked.
1082 * caller holds ref.
1083 */
1084static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1085					 struct btrfs_transaction *trans)
1086{
1087	wait_event(root->fs_info->transaction_wait,
1088		   trans->commit_done || (trans->in_commit && !trans->blocked));
1089}
1090
1091/*
1092 * commit transactions asynchronously. once btrfs_commit_transaction_async
1093 * returns, any subsequent transaction will not be allowed to join.
1094 */
1095struct btrfs_async_commit {
1096	struct btrfs_trans_handle *newtrans;
1097	struct btrfs_root *root;
1098	struct delayed_work work;
1099};
1100
1101static void do_async_commit(struct work_struct *work)
1102{
1103	struct btrfs_async_commit *ac =
1104		container_of(work, struct btrfs_async_commit, work.work);
 
 
 
 
 
 
 
1105
1106	btrfs_commit_transaction(ac->newtrans, ac->root);
 
 
1107	kfree(ac);
1108}
1109
1110int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1111				   struct btrfs_root *root,
1112				   int wait_for_unblock)
1113{
 
1114	struct btrfs_async_commit *ac;
1115	struct btrfs_transaction *cur_trans;
1116
1117	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1118	if (!ac)
1119		return -ENOMEM;
1120
1121	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1122	ac->root = root;
1123	ac->newtrans = btrfs_join_transaction(root);
1124	if (IS_ERR(ac->newtrans)) {
1125		int err = PTR_ERR(ac->newtrans);
1126		kfree(ac);
1127		return err;
1128	}
1129
1130	/* take transaction reference */
1131	cur_trans = trans->transaction;
1132	atomic_inc(&cur_trans->use_count);
1133
1134	btrfs_end_transaction(trans, root);
1135	schedule_delayed_work(&ac->work, 0);
1136
1137	/* wait for transaction to start and unblock */
1138	if (wait_for_unblock)
1139		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1140	else
1141		wait_current_trans_commit_start(root, cur_trans);
 
1142
 
 
 
 
 
 
 
 
1143	if (current->journal_info == trans)
1144		current->journal_info = NULL;
1145
1146	put_transaction(cur_trans);
1147	return 0;
1148}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150/*
1151 * btrfs_transaction state sequence:
1152 *    in_commit = 0, blocked = 0  (initial)
1153 *    in_commit = 1, blocked = 1
1154 *    blocked = 0
1155 *    commit_done = 1
1156 */
1157int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1158			     struct btrfs_root *root)
1159{
1160	unsigned long joined = 0;
1161	struct btrfs_transaction *cur_trans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162	struct btrfs_transaction *prev_trans = NULL;
1163	DEFINE_WAIT(wait);
1164	int ret;
1165	int should_grow = 0;
1166	unsigned long now = get_seconds();
1167	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1168
1169	btrfs_run_ordered_operations(root, 0);
1170
1171	/* make a pass through all the delayed refs we have so far
1172	 * any runnings procs may add more while we are here
1173	 */
1174	ret = btrfs_run_delayed_refs(trans, root, 0);
1175	BUG_ON(ret);
 
1176
1177	btrfs_trans_release_metadata(trans, root);
 
1178
1179	cur_trans = trans->transaction;
1180	/*
1181	 * set the flushing flag so procs in this transaction have to
1182	 * start sending their work down.
1183	 */
1184	cur_trans->delayed_refs.flushing = 1;
 
 
 
 
 
 
 
 
 
 
 
1185
1186	ret = btrfs_run_delayed_refs(trans, root, 0);
1187	BUG_ON(ret);
1188
1189	spin_lock(&cur_trans->commit_lock);
1190	if (cur_trans->in_commit) {
1191		spin_unlock(&cur_trans->commit_lock);
1192		atomic_inc(&cur_trans->use_count);
1193		btrfs_end_transaction(trans, root);
1194
1195		wait_for_commit(root, cur_trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196
1197		put_transaction(cur_trans);
 
 
1198
1199		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1200	}
1201
1202	trans->transaction->in_commit = 1;
1203	trans->transaction->blocked = 1;
1204	spin_unlock(&cur_trans->commit_lock);
1205	wake_up(&root->fs_info->transaction_blocked_wait);
 
 
 
 
1206
1207	spin_lock(&root->fs_info->trans_lock);
1208	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1209		prev_trans = list_entry(cur_trans->list.prev,
1210					struct btrfs_transaction, list);
1211		if (!prev_trans->commit_done) {
1212			atomic_inc(&prev_trans->use_count);
1213			spin_unlock(&root->fs_info->trans_lock);
 
 
1214
1215			wait_for_commit(root, prev_trans);
1216
1217			put_transaction(prev_trans);
 
 
1218		} else {
1219			spin_unlock(&root->fs_info->trans_lock);
1220		}
1221	} else {
1222		spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
 
1223	}
1224
1225	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1226		should_grow = 1;
1227
1228	do {
1229		int snap_pending = 0;
1230
1231		joined = cur_trans->num_joined;
1232		if (!list_empty(&trans->transaction->pending_snapshots))
1233			snap_pending = 1;
1234
1235		WARN_ON(cur_trans != trans->transaction);
1236
1237		if (flush_on_commit || snap_pending) {
1238			btrfs_start_delalloc_inodes(root, 1);
1239			ret = btrfs_wait_ordered_extents(root, 0, 1);
1240			BUG_ON(ret);
1241		}
1242
1243		ret = btrfs_run_delayed_items(trans, root);
1244		BUG_ON(ret);
1245
1246		/*
1247		 * rename don't use btrfs_join_transaction, so, once we
1248		 * set the transaction to blocked above, we aren't going
1249		 * to get any new ordered operations.  We can safely run
1250		 * it here and no for sure that nothing new will be added
1251		 * to the list
1252		 */
1253		btrfs_run_ordered_operations(root, 1);
1254
1255		prepare_to_wait(&cur_trans->writer_wait, &wait,
1256				TASK_UNINTERRUPTIBLE);
1257
1258		if (atomic_read(&cur_trans->num_writers) > 1)
1259			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1260		else if (should_grow)
1261			schedule_timeout(1);
1262
1263		finish_wait(&cur_trans->writer_wait, &wait);
1264	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1265		 (should_grow && cur_trans->num_joined != joined));
1266
 
1267	/*
1268	 * Ok now we need to make sure to block out any other joins while we
1269	 * commit the transaction.  We could have started a join before setting
1270	 * no_join so make sure to wait for num_writers to == 1 again.
1271	 */
1272	spin_lock(&root->fs_info->trans_lock);
1273	root->fs_info->trans_no_join = 1;
1274	spin_unlock(&root->fs_info->trans_lock);
1275	wait_event(cur_trans->writer_wait,
1276		   atomic_read(&cur_trans->num_writers) == 1);
1277
 
 
 
 
1278	/*
1279	 * the reloc mutex makes sure that we stop
1280	 * the balancing code from coming in and moving
1281	 * extents around in the middle of the commit
1282	 */
1283	mutex_lock(&root->fs_info->reloc_mutex);
1284
1285	ret = btrfs_run_delayed_items(trans, root);
1286	BUG_ON(ret);
 
 
 
 
 
 
1287
1288	ret = create_pending_snapshots(trans, root->fs_info);
1289	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
1290
1291	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1292	BUG_ON(ret);
 
1293
1294	/*
1295	 * make sure none of the code above managed to slip in a
1296	 * delayed item
1297	 */
1298	btrfs_assert_delayed_root_empty(root);
1299
1300	WARN_ON(cur_trans != trans->transaction);
1301
1302	btrfs_scrub_pause(root);
1303	/* btrfs_commit_tree_roots is responsible for getting the
1304	 * various roots consistent with each other.  Every pointer
1305	 * in the tree of tree roots has to point to the most up to date
1306	 * root for every subvolume and other tree.  So, we have to keep
1307	 * the tree logging code from jumping in and changing any
1308	 * of the trees.
1309	 *
1310	 * At this point in the commit, there can't be any tree-log
1311	 * writers, but a little lower down we drop the trans mutex
1312	 * and let new people in.  By holding the tree_log_mutex
1313	 * from now until after the super is written, we avoid races
1314	 * with the tree-log code.
1315	 */
1316	mutex_lock(&root->fs_info->tree_log_mutex);
 
 
 
 
1317
1318	ret = commit_fs_roots(trans, root);
1319	BUG_ON(ret);
 
 
 
1320
1321	/* commit_fs_roots gets rid of all the tree log roots, it is now
1322	 * safe to free the root of tree log roots
1323	 */
1324	btrfs_free_log_root_tree(trans, root->fs_info);
1325
1326	ret = commit_cowonly_roots(trans, root);
1327	BUG_ON(ret);
 
 
 
 
 
1328
1329	btrfs_prepare_extent_commit(trans, root);
 
 
1330
1331	cur_trans = root->fs_info->running_transaction;
 
 
 
 
 
 
 
1332
1333	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1334			    root->fs_info->tree_root->node);
1335	switch_commit_root(root->fs_info->tree_root);
1336
1337	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1338			    root->fs_info->chunk_root->node);
1339	switch_commit_root(root->fs_info->chunk_root);
 
1340
1341	update_super_roots(root);
 
 
 
1342
1343	if (!root->fs_info->log_root_recovering) {
1344		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1345		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1346	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1347
1348	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1349	       sizeof(root->fs_info->super_copy));
 
 
 
1350
1351	trans->transaction->blocked = 0;
1352	spin_lock(&root->fs_info->trans_lock);
1353	root->fs_info->running_transaction = NULL;
1354	root->fs_info->trans_no_join = 0;
1355	spin_unlock(&root->fs_info->trans_lock);
1356	mutex_unlock(&root->fs_info->reloc_mutex);
1357
1358	wake_up(&root->fs_info->transaction_wait);
 
 
 
 
 
 
 
 
 
 
1359
1360	ret = btrfs_write_and_wait_transaction(trans, root);
1361	BUG_ON(ret);
1362	write_ctree_super(trans, root, 0);
 
 
 
1363
 
1364	/*
1365	 * the super is written, we can safely allow the tree-loggers
1366	 * to go about their business
1367	 */
1368	mutex_unlock(&root->fs_info->tree_log_mutex);
 
 
1369
1370	btrfs_finish_extent_commit(trans, root);
 
 
 
 
 
1371
1372	cur_trans->commit_done = 1;
1373
1374	root->fs_info->last_trans_committed = cur_trans->transid;
 
1375
 
 
 
 
 
 
1376	wake_up(&cur_trans->commit_wait);
1377
1378	spin_lock(&root->fs_info->trans_lock);
1379	list_del_init(&cur_trans->list);
1380	spin_unlock(&root->fs_info->trans_lock);
 
 
 
1381
1382	put_transaction(cur_trans);
1383	put_transaction(cur_trans);
1384
1385	trace_btrfs_transaction_commit(root);
1386
1387	btrfs_scrub_continue(root);
1388
1389	if (current->journal_info == trans)
1390		current->journal_info = NULL;
1391
1392	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1393
1394	if (current != root->fs_info->transaction_kthread)
1395		btrfs_run_delayed_iputs(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396
1397	return ret;
1398}
1399
1400/*
1401 * interface function to delete all the snapshots we have scheduled for deletion
 
 
 
 
 
 
 
1402 */
1403int btrfs_clean_old_snapshots(struct btrfs_root *root)
1404{
1405	LIST_HEAD(list);
1406	struct btrfs_fs_info *fs_info = root->fs_info;
1407
1408	spin_lock(&fs_info->trans_lock);
1409	list_splice_init(&fs_info->dead_roots, &list);
 
 
 
 
 
 
1410	spin_unlock(&fs_info->trans_lock);
1411
1412	while (!list_empty(&list)) {
1413		root = list_entry(list.next, struct btrfs_root, root_list);
1414		list_del(&root->root_list);
1415
1416		btrfs_kill_all_delayed_nodes(root);
1417
1418		if (btrfs_header_backref_rev(root->node) <
1419		    BTRFS_MIXED_BACKREF_REV)
1420			btrfs_drop_snapshot(root, NULL, 0);
1421		else
1422			btrfs_drop_snapshot(root, NULL, 1);
1423	}
1424	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
   9#include <linux/writeback.h>
  10#include <linux/pagemap.h>
  11#include <linux/blkdev.h>
  12#include <linux/uuid.h>
  13#include "misc.h"
  14#include "ctree.h"
  15#include "disk-io.h"
  16#include "transaction.h"
  17#include "locking.h"
  18#include "tree-log.h"
  19#include "volumes.h"
  20#include "dev-replace.h"
  21#include "qgroup.h"
  22#include "block-group.h"
  23#include "space-info.h"
  24#include "zoned.h"
  25
  26#define BTRFS_ROOT_TRANS_TAG 0
  27
  28/*
  29 * Transaction states and transitions
  30 *
  31 * No running transaction (fs tree blocks are not modified)
  32 * |
  33 * | To next stage:
  34 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  35 * V
  36 * Transaction N [[TRANS_STATE_RUNNING]]
  37 * |
  38 * | New trans handles can be attached to transaction N by calling all
  39 * | start_transaction() variants.
  40 * |
  41 * | To next stage:
  42 * |  Call btrfs_commit_transaction() on any trans handle attached to
  43 * |  transaction N
  44 * V
  45 * Transaction N [[TRANS_STATE_COMMIT_START]]
  46 * |
  47 * | Will wait for previous running transaction to completely finish if there
  48 * | is one
  49 * |
  50 * | Then one of the following happes:
  51 * | - Wait for all other trans handle holders to release.
  52 * |   The btrfs_commit_transaction() caller will do the commit work.
  53 * | - Wait for current transaction to be committed by others.
  54 * |   Other btrfs_commit_transaction() caller will do the commit work.
  55 * |
  56 * | At this stage, only btrfs_join_transaction*() variants can attach
  57 * | to this running transaction.
  58 * | All other variants will wait for current one to finish and attach to
  59 * | transaction N+1.
  60 * |
  61 * | To next stage:
  62 * |  Caller is chosen to commit transaction N, and all other trans handle
  63 * |  haven been released.
  64 * V
  65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  66 * |
  67 * | The heavy lifting transaction work is started.
  68 * | From running delayed refs (modifying extent tree) to creating pending
  69 * | snapshots, running qgroups.
  70 * | In short, modify supporting trees to reflect modifications of subvolume
  71 * | trees.
  72 * |
  73 * | At this stage, all start_transaction() calls will wait for this
  74 * | transaction to finish and attach to transaction N+1.
  75 * |
  76 * | To next stage:
  77 * |  Until all supporting trees are updated.
  78 * V
  79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  80 * |						    Transaction N+1
  81 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  82 * | need to write them back to disk and update	    |
  83 * | super blocks.				    |
  84 * |						    |
  85 * | At this stage, new transaction is allowed to   |
  86 * | start.					    |
  87 * | All new start_transaction() calls will be	    |
  88 * | attached to transid N+1.			    |
  89 * |						    |
  90 * | To next stage:				    |
  91 * |  Until all tree blocks are super blocks are    |
  92 * |  written to block devices			    |
  93 * V						    |
  94 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
  95 *   All tree blocks and super blocks are written.  Transaction N+1
  96 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
  97 *   data structures will be cleaned up.	    | Life goes on
  98 */
  99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 100	[TRANS_STATE_RUNNING]		= 0U,
 101	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
 102	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
 103					   __TRANS_ATTACH |
 104					   __TRANS_JOIN |
 105					   __TRANS_JOIN_NOSTART),
 106	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
 107					   __TRANS_ATTACH |
 108					   __TRANS_JOIN |
 109					   __TRANS_JOIN_NOLOCK |
 110					   __TRANS_JOIN_NOSTART),
 111	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
 112					   __TRANS_ATTACH |
 113					   __TRANS_JOIN |
 114					   __TRANS_JOIN_NOLOCK |
 115					   __TRANS_JOIN_NOSTART),
 116	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
 117					   __TRANS_ATTACH |
 118					   __TRANS_JOIN |
 119					   __TRANS_JOIN_NOLOCK |
 120					   __TRANS_JOIN_NOSTART),
 121};
 122
 123void btrfs_put_transaction(struct btrfs_transaction *transaction)
 124{
 125	WARN_ON(refcount_read(&transaction->use_count) == 0);
 126	if (refcount_dec_and_test(&transaction->use_count)) {
 127		BUG_ON(!list_empty(&transaction->list));
 128		WARN_ON(!RB_EMPTY_ROOT(
 129				&transaction->delayed_refs.href_root.rb_root));
 130		WARN_ON(!RB_EMPTY_ROOT(
 131				&transaction->delayed_refs.dirty_extent_root));
 132		if (transaction->delayed_refs.pending_csums)
 133			btrfs_err(transaction->fs_info,
 134				  "pending csums is %llu",
 135				  transaction->delayed_refs.pending_csums);
 136		/*
 137		 * If any block groups are found in ->deleted_bgs then it's
 138		 * because the transaction was aborted and a commit did not
 139		 * happen (things failed before writing the new superblock
 140		 * and calling btrfs_finish_extent_commit()), so we can not
 141		 * discard the physical locations of the block groups.
 142		 */
 143		while (!list_empty(&transaction->deleted_bgs)) {
 144			struct btrfs_block_group *cache;
 145
 146			cache = list_first_entry(&transaction->deleted_bgs,
 147						 struct btrfs_block_group,
 148						 bg_list);
 149			list_del_init(&cache->bg_list);
 150			btrfs_unfreeze_block_group(cache);
 151			btrfs_put_block_group(cache);
 152		}
 153		WARN_ON(!list_empty(&transaction->dev_update_list));
 154		kfree(transaction);
 155	}
 156}
 157
 158static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 159{
 160	struct btrfs_transaction *cur_trans = trans->transaction;
 161	struct btrfs_fs_info *fs_info = trans->fs_info;
 162	struct btrfs_root *root, *tmp;
 163	struct btrfs_caching_control *caching_ctl, *next;
 164
 165	down_write(&fs_info->commit_root_sem);
 166	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 167				 dirty_list) {
 168		list_del_init(&root->dirty_list);
 169		free_extent_buffer(root->commit_root);
 170		root->commit_root = btrfs_root_node(root);
 171		extent_io_tree_release(&root->dirty_log_pages);
 172		btrfs_qgroup_clean_swapped_blocks(root);
 173	}
 174
 175	/* We can free old roots now. */
 176	spin_lock(&cur_trans->dropped_roots_lock);
 177	while (!list_empty(&cur_trans->dropped_roots)) {
 178		root = list_first_entry(&cur_trans->dropped_roots,
 179					struct btrfs_root, root_list);
 180		list_del_init(&root->root_list);
 181		spin_unlock(&cur_trans->dropped_roots_lock);
 182		btrfs_free_log(trans, root);
 183		btrfs_drop_and_free_fs_root(fs_info, root);
 184		spin_lock(&cur_trans->dropped_roots_lock);
 185	}
 186	spin_unlock(&cur_trans->dropped_roots_lock);
 187
 188	/*
 189	 * We have to update the last_byte_to_unpin under the commit_root_sem,
 190	 * at the same time we swap out the commit roots.
 191	 *
 192	 * This is because we must have a real view of the last spot the caching
 193	 * kthreads were while caching.  Consider the following views of the
 194	 * extent tree for a block group
 195	 *
 196	 * commit root
 197	 * +----+----+----+----+----+----+----+
 198	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
 199	 * +----+----+----+----+----+----+----+
 200	 * 0    1    2    3    4    5    6    7
 201	 *
 202	 * new commit root
 203	 * +----+----+----+----+----+----+----+
 204	 * |    |    |    |\\\\|    |    |\\\\|
 205	 * +----+----+----+----+----+----+----+
 206	 * 0    1    2    3    4    5    6    7
 207	 *
 208	 * If the cache_ctl->progress was at 3, then we are only allowed to
 209	 * unpin [0,1) and [2,3], because the caching thread has already
 210	 * processed those extents.  We are not allowed to unpin [5,6), because
 211	 * the caching thread will re-start it's search from 3, and thus find
 212	 * the hole from [4,6) to add to the free space cache.
 213	 */
 214	spin_lock(&fs_info->block_group_cache_lock);
 215	list_for_each_entry_safe(caching_ctl, next,
 216				 &fs_info->caching_block_groups, list) {
 217		struct btrfs_block_group *cache = caching_ctl->block_group;
 218
 219		if (btrfs_block_group_done(cache)) {
 220			cache->last_byte_to_unpin = (u64)-1;
 221			list_del_init(&caching_ctl->list);
 222			btrfs_put_caching_control(caching_ctl);
 223		} else {
 224			cache->last_byte_to_unpin = caching_ctl->progress;
 225		}
 226	}
 227	spin_unlock(&fs_info->block_group_cache_lock);
 228	up_write(&fs_info->commit_root_sem);
 229}
 230
 231static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 232					 unsigned int type)
 233{
 234	if (type & TRANS_EXTWRITERS)
 235		atomic_inc(&trans->num_extwriters);
 236}
 237
 238static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 239					 unsigned int type)
 240{
 241	if (type & TRANS_EXTWRITERS)
 242		atomic_dec(&trans->num_extwriters);
 243}
 244
 245static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 246					  unsigned int type)
 247{
 248	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 249}
 250
 251static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 252{
 253	return atomic_read(&trans->num_extwriters);
 254}
 255
 256/*
 257 * To be called after doing the chunk btree updates right after allocating a new
 258 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
 259 * chunk after all chunk btree updates and after finishing the second phase of
 260 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
 261 * group had its chunk item insertion delayed to the second phase.
 262 */
 263void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 264{
 265	struct btrfs_fs_info *fs_info = trans->fs_info;
 266
 267	if (!trans->chunk_bytes_reserved)
 268		return;
 269
 270	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 271				trans->chunk_bytes_reserved, NULL);
 272	trans->chunk_bytes_reserved = 0;
 273}
 274
 275/*
 276 * either allocate a new transaction or hop into the existing one
 277 */
 278static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 279				     unsigned int type)
 280{
 281	struct btrfs_transaction *cur_trans;
 282
 283	spin_lock(&fs_info->trans_lock);
 284loop:
 285	/* The file system has been taken offline. No new transactions. */
 286	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 287		spin_unlock(&fs_info->trans_lock);
 288		return -EROFS;
 289	}
 290
 291	cur_trans = fs_info->running_transaction;
 292	if (cur_trans) {
 293		if (TRANS_ABORTED(cur_trans)) {
 294			spin_unlock(&fs_info->trans_lock);
 295			return cur_trans->aborted;
 296		}
 297		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 298			spin_unlock(&fs_info->trans_lock);
 299			return -EBUSY;
 300		}
 301		refcount_inc(&cur_trans->use_count);
 302		atomic_inc(&cur_trans->num_writers);
 303		extwriter_counter_inc(cur_trans, type);
 304		spin_unlock(&fs_info->trans_lock);
 305		return 0;
 306	}
 307	spin_unlock(&fs_info->trans_lock);
 308
 309	/*
 310	 * If we are ATTACH, we just want to catch the current transaction,
 311	 * and commit it. If there is no transaction, just return ENOENT.
 312	 */
 313	if (type == TRANS_ATTACH)
 314		return -ENOENT;
 315
 316	/*
 317	 * JOIN_NOLOCK only happens during the transaction commit, so
 318	 * it is impossible that ->running_transaction is NULL
 319	 */
 320	BUG_ON(type == TRANS_JOIN_NOLOCK);
 321
 322	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 323	if (!cur_trans)
 324		return -ENOMEM;
 325
 326	spin_lock(&fs_info->trans_lock);
 327	if (fs_info->running_transaction) {
 328		/*
 329		 * someone started a transaction after we unlocked.  Make sure
 330		 * to redo the checks above
 331		 */
 332		kfree(cur_trans);
 333		goto loop;
 334	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 335		spin_unlock(&fs_info->trans_lock);
 336		kfree(cur_trans);
 337		return -EROFS;
 338	}
 339
 340	cur_trans->fs_info = fs_info;
 341	atomic_set(&cur_trans->pending_ordered, 0);
 342	init_waitqueue_head(&cur_trans->pending_wait);
 343	atomic_set(&cur_trans->num_writers, 1);
 344	extwriter_counter_init(cur_trans, type);
 345	init_waitqueue_head(&cur_trans->writer_wait);
 346	init_waitqueue_head(&cur_trans->commit_wait);
 347	cur_trans->state = TRANS_STATE_RUNNING;
 
 348	/*
 349	 * One for this trans handle, one so it will live on until we
 350	 * commit the transaction.
 351	 */
 352	refcount_set(&cur_trans->use_count, 2);
 353	cur_trans->flags = 0;
 354	cur_trans->start_time = ktime_get_seconds();
 355
 356	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 357
 358	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 359	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 360	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 361
 362	/*
 363	 * although the tree mod log is per file system and not per transaction,
 364	 * the log must never go across transaction boundaries.
 365	 */
 366	smp_mb();
 367	if (!list_empty(&fs_info->tree_mod_seq_list))
 368		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 369	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 370		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 371	atomic64_set(&fs_info->tree_mod_seq, 0);
 372
 373	spin_lock_init(&cur_trans->delayed_refs.lock);
 374
 375	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 376	INIT_LIST_HEAD(&cur_trans->dev_update_list);
 377	INIT_LIST_HEAD(&cur_trans->switch_commits);
 378	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 379	INIT_LIST_HEAD(&cur_trans->io_bgs);
 380	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 381	mutex_init(&cur_trans->cache_write_mutex);
 382	spin_lock_init(&cur_trans->dirty_bgs_lock);
 383	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 384	spin_lock_init(&cur_trans->dropped_roots_lock);
 385	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
 386	spin_lock_init(&cur_trans->releasing_ebs_lock);
 387	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 388	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 389			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
 390	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 391			IO_TREE_FS_PINNED_EXTENTS, NULL);
 392	fs_info->generation++;
 393	cur_trans->transid = fs_info->generation;
 394	fs_info->running_transaction = cur_trans;
 395	cur_trans->aborted = 0;
 396	spin_unlock(&fs_info->trans_lock);
 397
 398	return 0;
 399}
 400
 401/*
 402 * This does all the record keeping required to make sure that a shareable root
 403 * is properly recorded in a given transaction.  This is required to make sure
 404 * the old root from before we joined the transaction is deleted when the
 405 * transaction commits.
 406 */
 407static int record_root_in_trans(struct btrfs_trans_handle *trans,
 408			       struct btrfs_root *root,
 409			       int force)
 410{
 411	struct btrfs_fs_info *fs_info = root->fs_info;
 412	int ret = 0;
 413
 414	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 415	    root->last_trans < trans->transid) || force) {
 416		WARN_ON(root == fs_info->extent_root);
 417		WARN_ON(!force && root->commit_root != root->node);
 418
 419		/*
 420		 * see below for IN_TRANS_SETUP usage rules
 421		 * we have the reloc mutex held now, so there
 422		 * is only one writer in this function
 423		 */
 424		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 425
 426		/* make sure readers find IN_TRANS_SETUP before
 427		 * they find our root->last_trans update
 428		 */
 429		smp_wmb();
 430
 431		spin_lock(&fs_info->fs_roots_radix_lock);
 432		if (root->last_trans == trans->transid && !force) {
 433			spin_unlock(&fs_info->fs_roots_radix_lock);
 434			return 0;
 435		}
 436		radix_tree_tag_set(&fs_info->fs_roots_radix,
 437				   (unsigned long)root->root_key.objectid,
 438				   BTRFS_ROOT_TRANS_TAG);
 439		spin_unlock(&fs_info->fs_roots_radix_lock);
 440		root->last_trans = trans->transid;
 441
 442		/* this is pretty tricky.  We don't want to
 443		 * take the relocation lock in btrfs_record_root_in_trans
 444		 * unless we're really doing the first setup for this root in
 445		 * this transaction.
 446		 *
 447		 * Normally we'd use root->last_trans as a flag to decide
 448		 * if we want to take the expensive mutex.
 449		 *
 450		 * But, we have to set root->last_trans before we
 451		 * init the relocation root, otherwise, we trip over warnings
 452		 * in ctree.c.  The solution used here is to flag ourselves
 453		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 454		 * fixing up the reloc trees and everyone must wait.
 455		 *
 456		 * When this is zero, they can trust root->last_trans and fly
 457		 * through btrfs_record_root_in_trans without having to take the
 458		 * lock.  smp_wmb() makes sure that all the writes above are
 459		 * done before we pop in the zero below
 460		 */
 461		ret = btrfs_init_reloc_root(trans, root);
 462		smp_mb__before_atomic();
 463		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 464	}
 465	return ret;
 466}
 467
 468
 469void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 470			    struct btrfs_root *root)
 471{
 472	struct btrfs_fs_info *fs_info = root->fs_info;
 473	struct btrfs_transaction *cur_trans = trans->transaction;
 474
 475	/* Add ourselves to the transaction dropped list */
 476	spin_lock(&cur_trans->dropped_roots_lock);
 477	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 478	spin_unlock(&cur_trans->dropped_roots_lock);
 479
 480	/* Make sure we don't try to update the root at commit time */
 481	spin_lock(&fs_info->fs_roots_radix_lock);
 482	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 483			     (unsigned long)root->root_key.objectid,
 484			     BTRFS_ROOT_TRANS_TAG);
 485	spin_unlock(&fs_info->fs_roots_radix_lock);
 486}
 487
 488int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 489			       struct btrfs_root *root)
 490{
 491	struct btrfs_fs_info *fs_info = root->fs_info;
 492	int ret;
 493
 494	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 495		return 0;
 496
 497	/*
 498	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 499	 * and barriers
 500	 */
 501	smp_rmb();
 502	if (root->last_trans == trans->transid &&
 503	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 504		return 0;
 505
 506	mutex_lock(&fs_info->reloc_mutex);
 507	ret = record_root_in_trans(trans, root, 0);
 508	mutex_unlock(&fs_info->reloc_mutex);
 509
 510	return ret;
 511}
 512
 513static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 514{
 515	return (trans->state >= TRANS_STATE_COMMIT_START &&
 516		trans->state < TRANS_STATE_UNBLOCKED &&
 517		!TRANS_ABORTED(trans));
 518}
 519
 520/* wait for commit against the current transaction to become unblocked
 521 * when this is done, it is safe to start a new transaction, but the current
 522 * transaction might not be fully on disk.
 523 */
 524static void wait_current_trans(struct btrfs_fs_info *fs_info)
 525{
 526	struct btrfs_transaction *cur_trans;
 527
 528	spin_lock(&fs_info->trans_lock);
 529	cur_trans = fs_info->running_transaction;
 530	if (cur_trans && is_transaction_blocked(cur_trans)) {
 531		refcount_inc(&cur_trans->use_count);
 532		spin_unlock(&fs_info->trans_lock);
 533
 534		wait_event(fs_info->transaction_wait,
 535			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 536			   TRANS_ABORTED(cur_trans));
 537		btrfs_put_transaction(cur_trans);
 538	} else {
 539		spin_unlock(&fs_info->trans_lock);
 540	}
 541}
 542
 543static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 
 
 
 
 
 
 
 544{
 545	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 546		return 0;
 547
 548	if (type == TRANS_START)
 
 
 
 
 549		return 1;
 550
 551	return 0;
 552}
 553
 554static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 555{
 556	struct btrfs_fs_info *fs_info = root->fs_info;
 557
 558	if (!fs_info->reloc_ctl ||
 559	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 560	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 561	    root->reloc_root)
 562		return false;
 563
 564	return true;
 565}
 566
 567static struct btrfs_trans_handle *
 568start_transaction(struct btrfs_root *root, unsigned int num_items,
 569		  unsigned int type, enum btrfs_reserve_flush_enum flush,
 570		  bool enforce_qgroups)
 571{
 572	struct btrfs_fs_info *fs_info = root->fs_info;
 573	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 574	struct btrfs_trans_handle *h;
 575	struct btrfs_transaction *cur_trans;
 576	u64 num_bytes = 0;
 577	u64 qgroup_reserved = 0;
 578	bool reloc_reserved = false;
 579	bool do_chunk_alloc = false;
 580	int ret;
 581
 582	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 583		return ERR_PTR(-EROFS);
 584
 585	if (current->journal_info) {
 586		WARN_ON(type & TRANS_EXTWRITERS);
 587		h = current->journal_info;
 588		refcount_inc(&h->use_count);
 589		WARN_ON(refcount_read(&h->use_count) > 2);
 590		h->orig_rsv = h->block_rsv;
 591		h->block_rsv = NULL;
 592		goto got_it;
 593	}
 594
 595	/*
 596	 * Do the reservation before we join the transaction so we can do all
 597	 * the appropriate flushing if need be.
 598	 */
 599	if (num_items && root != fs_info->chunk_root) {
 600		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
 601		u64 delayed_refs_bytes = 0;
 602
 603		qgroup_reserved = num_items * fs_info->nodesize;
 604		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
 605				enforce_qgroups);
 606		if (ret)
 607			return ERR_PTR(ret);
 608
 609		/*
 610		 * We want to reserve all the bytes we may need all at once, so
 611		 * we only do 1 enospc flushing cycle per transaction start.  We
 612		 * accomplish this by simply assuming we'll do 2 x num_items
 613		 * worth of delayed refs updates in this trans handle, and
 614		 * refill that amount for whatever is missing in the reserve.
 615		 */
 616		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 617		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
 618		    delayed_refs_rsv->full == 0) {
 619			delayed_refs_bytes = num_bytes;
 620			num_bytes <<= 1;
 621		}
 622
 623		/*
 624		 * Do the reservation for the relocation root creation
 625		 */
 626		if (need_reserve_reloc_root(root)) {
 627			num_bytes += fs_info->nodesize;
 628			reloc_reserved = true;
 629		}
 630
 631		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
 632		if (ret)
 633			goto reserve_fail;
 634		if (delayed_refs_bytes) {
 635			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
 636							  delayed_refs_bytes);
 637			num_bytes -= delayed_refs_bytes;
 638		}
 639
 640		if (rsv->space_info->force_alloc)
 641			do_chunk_alloc = true;
 642	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 643		   !delayed_refs_rsv->full) {
 644		/*
 645		 * Some people call with btrfs_start_transaction(root, 0)
 646		 * because they can be throttled, but have some other mechanism
 647		 * for reserving space.  We still want these guys to refill the
 648		 * delayed block_rsv so just add 1 items worth of reservation
 649		 * here.
 650		 */
 651		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 652		if (ret)
 653			goto reserve_fail;
 654	}
 655again:
 656	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 657	if (!h) {
 658		ret = -ENOMEM;
 659		goto alloc_fail;
 660	}
 661
 662	/*
 663	 * If we are JOIN_NOLOCK we're already committing a transaction and
 664	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 665	 * because we're already holding a ref.  We need this because we could
 666	 * have raced in and did an fsync() on a file which can kick a commit
 667	 * and then we deadlock with somebody doing a freeze.
 668	 *
 669	 * If we are ATTACH, it means we just want to catch the current
 670	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 671	 */
 672	if (type & __TRANS_FREEZABLE)
 673		sb_start_intwrite(fs_info->sb);
 674
 675	if (may_wait_transaction(fs_info, type))
 676		wait_current_trans(fs_info);
 677
 678	do {
 679		ret = join_transaction(fs_info, type);
 680		if (ret == -EBUSY) {
 681			wait_current_trans(fs_info);
 682			if (unlikely(type == TRANS_ATTACH ||
 683				     type == TRANS_JOIN_NOSTART))
 684				ret = -ENOENT;
 685		}
 686	} while (ret == -EBUSY);
 687
 688	if (ret < 0)
 689		goto join_fail;
 
 
 690
 691	cur_trans = fs_info->running_transaction;
 692
 693	h->transid = cur_trans->transid;
 694	h->transaction = cur_trans;
 695	h->root = root;
 696	refcount_set(&h->use_count, 1);
 697	h->fs_info = root->fs_info;
 698
 699	h->type = type;
 700	INIT_LIST_HEAD(&h->new_bgs);
 701
 702	smp_mb();
 703	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 704	    may_wait_transaction(fs_info, type)) {
 705		current->journal_info = h;
 706		btrfs_commit_transaction(h);
 707		goto again;
 708	}
 709
 710	if (num_bytes) {
 711		trace_btrfs_space_reservation(fs_info, "transaction",
 712					      h->transid, num_bytes, 1);
 713		h->block_rsv = &fs_info->trans_block_rsv;
 714		h->bytes_reserved = num_bytes;
 715		h->reloc_reserved = reloc_reserved;
 716	}
 717
 718got_it:
 719	if (!current->journal_info)
 
 
 720		current->journal_info = h;
 721
 722	/*
 723	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 724	 * ALLOC_FORCE the first run through, and then we won't allocate for
 725	 * anybody else who races in later.  We don't care about the return
 726	 * value here.
 727	 */
 728	if (do_chunk_alloc && num_bytes) {
 729		u64 flags = h->block_rsv->space_info->flags;
 730
 731		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 732				  CHUNK_ALLOC_NO_FORCE);
 733	}
 734
 735	/*
 736	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
 737	 * call btrfs_join_transaction() while we're also starting a
 738	 * transaction.
 739	 *
 740	 * Thus it need to be called after current->journal_info initialized,
 741	 * or we can deadlock.
 742	 */
 743	ret = btrfs_record_root_in_trans(h, root);
 744	if (ret) {
 745		/*
 746		 * The transaction handle is fully initialized and linked with
 747		 * other structures so it needs to be ended in case of errors,
 748		 * not just freed.
 749		 */
 750		btrfs_end_transaction(h);
 751		return ERR_PTR(ret);
 752	}
 753
 754	return h;
 755
 756join_fail:
 757	if (type & __TRANS_FREEZABLE)
 758		sb_end_intwrite(fs_info->sb);
 759	kmem_cache_free(btrfs_trans_handle_cachep, h);
 760alloc_fail:
 761	if (num_bytes)
 762		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 763					num_bytes, NULL);
 764reserve_fail:
 765	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
 766	return ERR_PTR(ret);
 767}
 768
 769struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 770						   unsigned int num_items)
 771{
 772	return start_transaction(root, num_items, TRANS_START,
 773				 BTRFS_RESERVE_FLUSH_ALL, true);
 774}
 775
 776struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 777					struct btrfs_root *root,
 778					unsigned int num_items)
 779{
 780	return start_transaction(root, num_items, TRANS_START,
 781				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 782}
 783
 784struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 785{
 786	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 787				 true);
 788}
 789
 790struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 791{
 792	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 793				 BTRFS_RESERVE_NO_FLUSH, true);
 794}
 795
 796/*
 797 * Similar to regular join but it never starts a transaction when none is
 798 * running or after waiting for the current one to finish.
 799 */
 800struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 801{
 802	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 803				 BTRFS_RESERVE_NO_FLUSH, true);
 804}
 805
 806/*
 807 * btrfs_attach_transaction() - catch the running transaction
 808 *
 809 * It is used when we want to commit the current the transaction, but
 810 * don't want to start a new one.
 811 *
 812 * Note: If this function return -ENOENT, it just means there is no
 813 * running transaction. But it is possible that the inactive transaction
 814 * is still in the memory, not fully on disk. If you hope there is no
 815 * inactive transaction in the fs when -ENOENT is returned, you should
 816 * invoke
 817 *     btrfs_attach_transaction_barrier()
 818 */
 819struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 820{
 821	return start_transaction(root, 0, TRANS_ATTACH,
 822				 BTRFS_RESERVE_NO_FLUSH, true);
 823}
 824
 825/*
 826 * btrfs_attach_transaction_barrier() - catch the running transaction
 827 *
 828 * It is similar to the above function, the difference is this one
 829 * will wait for all the inactive transactions until they fully
 830 * complete.
 831 */
 832struct btrfs_trans_handle *
 833btrfs_attach_transaction_barrier(struct btrfs_root *root)
 834{
 835	struct btrfs_trans_handle *trans;
 836
 837	trans = start_transaction(root, 0, TRANS_ATTACH,
 838				  BTRFS_RESERVE_NO_FLUSH, true);
 839	if (trans == ERR_PTR(-ENOENT))
 840		btrfs_wait_for_commit(root->fs_info, 0);
 841
 842	return trans;
 843}
 844
 845/* Wait for a transaction commit to reach at least the given state. */
 846static noinline void wait_for_commit(struct btrfs_transaction *commit,
 847				     const enum btrfs_trans_state min_state)
 848{
 849	wait_event(commit->commit_wait, commit->state >= min_state);
 850}
 851
 852int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 853{
 854	struct btrfs_transaction *cur_trans = NULL, *t;
 855	int ret = 0;
 856
 
 857	if (transid) {
 858		if (transid <= fs_info->last_trans_committed)
 859			goto out;
 860
 861		/* find specified transaction */
 862		spin_lock(&fs_info->trans_lock);
 863		list_for_each_entry(t, &fs_info->trans_list, list) {
 864			if (t->transid == transid) {
 865				cur_trans = t;
 866				refcount_inc(&cur_trans->use_count);
 867				ret = 0;
 868				break;
 869			}
 870			if (t->transid > transid) {
 871				ret = 0;
 872				break;
 873			}
 874		}
 875		spin_unlock(&fs_info->trans_lock);
 876
 877		/*
 878		 * The specified transaction doesn't exist, or we
 879		 * raced with btrfs_commit_transaction
 880		 */
 881		if (!cur_trans) {
 882			if (transid > fs_info->last_trans_committed)
 883				ret = -EINVAL;
 884			goto out;
 885		}
 
 
 
 
 886	} else {
 887		/* find newest transaction that is committing | committed */
 888		spin_lock(&fs_info->trans_lock);
 889		list_for_each_entry_reverse(t, &fs_info->trans_list,
 890					    list) {
 891			if (t->state >= TRANS_STATE_COMMIT_START) {
 892				if (t->state == TRANS_STATE_COMPLETED)
 893					break;
 894				cur_trans = t;
 895				refcount_inc(&cur_trans->use_count);
 896				break;
 897			}
 898		}
 899		spin_unlock(&fs_info->trans_lock);
 900		if (!cur_trans)
 901			goto out;  /* nothing committing|committed */
 902	}
 903
 904	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
 905	btrfs_put_transaction(cur_trans);
 
 
 906out:
 907	return ret;
 908}
 909
 910void btrfs_throttle(struct btrfs_fs_info *fs_info)
 911{
 912	wait_current_trans(fs_info);
 
 913}
 914
 915static bool should_end_transaction(struct btrfs_trans_handle *trans)
 
 916{
 917	struct btrfs_fs_info *fs_info = trans->fs_info;
 918
 919	if (btrfs_check_space_for_delayed_refs(fs_info))
 920		return true;
 921
 922	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 923}
 924
 925bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 
 926{
 927	struct btrfs_transaction *cur_trans = trans->transaction;
 
 928
 929	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
 930	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
 931		return true;
 932
 933	return should_end_transaction(trans);
 934}
 935
 936static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
 937
 938{
 939	struct btrfs_fs_info *fs_info = trans->fs_info;
 940
 941	if (!trans->block_rsv) {
 942		ASSERT(!trans->bytes_reserved);
 943		return;
 944	}
 945
 946	if (!trans->bytes_reserved)
 947		return;
 948
 949	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
 950	trace_btrfs_space_reservation(fs_info, "transaction",
 951				      trans->transid, trans->bytes_reserved, 0);
 952	btrfs_block_rsv_release(fs_info, trans->block_rsv,
 953				trans->bytes_reserved, NULL);
 954	trans->bytes_reserved = 0;
 955}
 956
 957static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 958				   int throttle)
 959{
 960	struct btrfs_fs_info *info = trans->fs_info;
 961	struct btrfs_transaction *cur_trans = trans->transaction;
 962	int err = 0;
 
 963
 964	if (refcount_read(&trans->use_count) > 1) {
 965		refcount_dec(&trans->use_count);
 966		trans->block_rsv = trans->orig_rsv;
 967		return 0;
 968	}
 969
 970	btrfs_trans_release_metadata(trans);
 971	trans->block_rsv = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972
 973	btrfs_create_pending_block_groups(trans);
 974
 975	btrfs_trans_release_chunk_metadata(trans);
 
 
 
 
 976
 977	if (trans->type & __TRANS_FREEZABLE)
 978		sb_end_intwrite(info->sb);
 
 
 
 
 
 
 
 
 
 
 
 979
 980	WARN_ON(cur_trans != info->running_transaction);
 981	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 982	atomic_dec(&cur_trans->num_writers);
 983	extwriter_counter_dec(cur_trans, trans->type);
 984
 985	cond_wake_up(&cur_trans->writer_wait);
 986	btrfs_put_transaction(cur_trans);
 
 
 987
 988	if (current->journal_info == trans)
 989		current->journal_info = NULL;
 
 
 990
 991	if (throttle)
 992		btrfs_run_delayed_iputs(info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	if (TRANS_ABORTED(trans) ||
 995	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 996		wake_up_process(info->transaction_kthread);
 997		if (TRANS_ABORTED(trans))
 998			err = trans->aborted;
 999		else
1000			err = -EROFS;
1001	}
1002
1003	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1004	return err;
 
 
1005}
1006
1007int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 
1008{
1009	return __btrfs_end_transaction(trans, 0);
 
 
 
 
 
1010}
1011
1012int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 
1013{
1014	return __btrfs_end_transaction(trans, 1);
1015}
1016
1017/*
1018 * when btree blocks are allocated, they have some corresponding bits set for
1019 * them in one of two extent_io trees.  This is used to make sure all of
1020 * those extents are sent to disk but does not wait on them
1021 */
1022int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1023			       struct extent_io_tree *dirty_pages, int mark)
1024{
 
1025	int err = 0;
1026	int werr = 0;
1027	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1028	struct extent_state *cached_state = NULL;
1029	u64 start = 0;
1030	u64 end;
 
1031
1032	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1033	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1034				      mark, &cached_state)) {
1035		bool wait_writeback = false;
1036
1037		err = convert_extent_bit(dirty_pages, start, end,
1038					 EXTENT_NEED_WAIT,
1039					 mark, &cached_state);
1040		/*
1041		 * convert_extent_bit can return -ENOMEM, which is most of the
1042		 * time a temporary error. So when it happens, ignore the error
1043		 * and wait for writeback of this range to finish - because we
1044		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1045		 * to __btrfs_wait_marked_extents() would not know that
1046		 * writeback for this range started and therefore wouldn't
1047		 * wait for it to finish - we don't want to commit a
1048		 * superblock that points to btree nodes/leafs for which
1049		 * writeback hasn't finished yet (and without errors).
1050		 * We cleanup any entries left in the io tree when committing
1051		 * the transaction (through extent_io_tree_release()).
1052		 */
1053		if (err == -ENOMEM) {
1054			err = 0;
1055			wait_writeback = true;
 
 
 
 
 
 
 
 
 
 
1056		}
1057		if (!err)
1058			err = filemap_fdatawrite_range(mapping, start, end);
1059		if (err)
1060			werr = err;
1061		else if (wait_writeback)
1062			werr = filemap_fdatawait_range(mapping, start, end);
1063		free_extent_state(cached_state);
1064		cached_state = NULL;
1065		cond_resched();
1066		start = end + 1;
1067	}
1068	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 
1069	return werr;
1070}
1071
1072/*
1073 * when btree blocks are allocated, they have some corresponding bits set for
1074 * them in one of two extent_io trees.  This is used to make sure all of
1075 * those extents are on disk for transaction or log commit.  We wait
1076 * on all the pages and clear them from the dirty pages state tree
1077 */
1078static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1079				       struct extent_io_tree *dirty_pages)
1080{
 
1081	int err = 0;
1082	int werr = 0;
1083	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1084	struct extent_state *cached_state = NULL;
1085	u64 start = 0;
1086	u64 end;
 
1087
1088	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1089				      EXTENT_NEED_WAIT, &cached_state)) {
1090		/*
1091		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1092		 * When committing the transaction, we'll remove any entries
1093		 * left in the io tree. For a log commit, we don't remove them
1094		 * after committing the log because the tree can be accessed
1095		 * concurrently - we do it only at transaction commit time when
1096		 * it's safe to do it (through extent_io_tree_release()).
1097		 */
1098		err = clear_extent_bit(dirty_pages, start, end,
1099				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1100		if (err == -ENOMEM)
1101			err = 0;
1102		if (!err)
1103			err = filemap_fdatawait_range(mapping, start, end);
1104		if (err)
1105			werr = err;
1106		free_extent_state(cached_state);
1107		cached_state = NULL;
1108		cond_resched();
1109		start = end + 1;
 
 
1110	}
1111	if (err)
1112		werr = err;
1113	return werr;
1114}
1115
1116static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1117		       struct extent_io_tree *dirty_pages)
1118{
1119	bool errors = false;
1120	int err;
1121
1122	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1123	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1124		errors = true;
1125
1126	if (errors && !err)
1127		err = -EIO;
1128	return err;
1129}
1130
1131int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1132{
1133	struct btrfs_fs_info *fs_info = log_root->fs_info;
1134	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1135	bool errors = false;
1136	int err;
1137
1138	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1139
1140	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1141	if ((mark & EXTENT_DIRTY) &&
1142	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1143		errors = true;
1144
1145	if ((mark & EXTENT_NEW) &&
1146	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1147		errors = true;
1148
1149	if (errors && !err)
1150		err = -EIO;
1151	return err;
1152}
1153
1154/*
1155 * When btree blocks are allocated the corresponding extents are marked dirty.
1156 * This function ensures such extents are persisted on disk for transaction or
1157 * log commit.
1158 *
1159 * @trans: transaction whose dirty pages we'd like to write
1160 */
1161static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
 
1162{
1163	int ret;
1164	int ret2;
1165	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1166	struct btrfs_fs_info *fs_info = trans->fs_info;
1167	struct blk_plug plug;
1168
1169	blk_start_plug(&plug);
1170	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1171	blk_finish_plug(&plug);
1172	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1173
1174	extent_io_tree_release(&trans->transaction->dirty_pages);
1175
1176	if (ret)
1177		return ret;
1178	else if (ret2)
1179		return ret2;
1180	else
1181		return 0;
 
 
 
 
 
 
 
 
1182}
1183
1184/*
1185 * this is used to update the root pointer in the tree of tree roots.
1186 *
1187 * But, in the case of the extent allocation tree, updating the root
1188 * pointer may allocate blocks which may change the root of the extent
1189 * allocation tree.
1190 *
1191 * So, this loops and repeats and makes sure the cowonly root didn't
1192 * change while the root pointer was being updated in the metadata.
1193 */
1194static int update_cowonly_root(struct btrfs_trans_handle *trans,
1195			       struct btrfs_root *root)
1196{
1197	int ret;
1198	u64 old_root_bytenr;
1199	u64 old_root_used;
1200	struct btrfs_fs_info *fs_info = root->fs_info;
1201	struct btrfs_root *tree_root = fs_info->tree_root;
1202
1203	old_root_used = btrfs_root_used(&root->root_item);
 
1204
1205	while (1) {
1206		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1207		if (old_root_bytenr == root->node->start &&
1208		    old_root_used == btrfs_root_used(&root->root_item))
1209			break;
1210
1211		btrfs_set_root_node(&root->root_item, root->node);
1212		ret = btrfs_update_root(trans, tree_root,
1213					&root->root_key,
1214					&root->root_item);
1215		if (ret)
1216			return ret;
1217
1218		old_root_used = btrfs_root_used(&root->root_item);
 
 
1219	}
1220
 
 
 
1221	return 0;
1222}
1223
1224/*
1225 * update all the cowonly tree roots on disk
1226 *
1227 * The error handling in this function may not be obvious. Any of the
1228 * failures will cause the file system to go offline. We still need
1229 * to clean up the delayed refs.
1230 */
1231static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
 
1232{
1233	struct btrfs_fs_info *fs_info = trans->fs_info;
1234	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1235	struct list_head *io_bgs = &trans->transaction->io_bgs;
1236	struct list_head *next;
1237	struct extent_buffer *eb;
1238	int ret;
1239
 
 
 
1240	eb = btrfs_lock_root_node(fs_info->tree_root);
1241	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1242			      0, &eb, BTRFS_NESTING_COW);
1243	btrfs_tree_unlock(eb);
1244	free_extent_buffer(eb);
1245
1246	if (ret)
1247		return ret;
1248
1249	ret = btrfs_run_dev_stats(trans);
1250	if (ret)
1251		return ret;
1252	ret = btrfs_run_dev_replace(trans);
1253	if (ret)
1254		return ret;
1255	ret = btrfs_run_qgroups(trans);
1256	if (ret)
1257		return ret;
1258
1259	ret = btrfs_setup_space_cache(trans);
1260	if (ret)
1261		return ret;
1262
1263again:
1264	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1265		struct btrfs_root *root;
1266		next = fs_info->dirty_cowonly_roots.next;
1267		list_del_init(next);
1268		root = list_entry(next, struct btrfs_root, dirty_list);
1269		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1270
1271		if (root != fs_info->extent_root)
1272			list_add_tail(&root->dirty_list,
1273				      &trans->transaction->switch_commits);
1274		ret = update_cowonly_root(trans, root);
1275		if (ret)
1276			return ret;
1277	}
1278
1279	/* Now flush any delayed refs generated by updating all of the roots */
1280	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1281	if (ret)
1282		return ret;
1283
1284	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1285		ret = btrfs_write_dirty_block_groups(trans);
1286		if (ret)
1287			return ret;
1288
1289		/*
1290		 * We're writing the dirty block groups, which could generate
1291		 * delayed refs, which could generate more dirty block groups,
1292		 * so we want to keep this flushing in this loop to make sure
1293		 * everything gets run.
1294		 */
1295		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1296		if (ret)
1297			return ret;
1298	}
1299
1300	if (!list_empty(&fs_info->dirty_cowonly_roots))
1301		goto again;
1302
1303	list_add_tail(&fs_info->extent_root->dirty_list,
1304		      &trans->transaction->switch_commits);
1305
1306	/* Update dev-replace pointer once everything is committed */
1307	fs_info->dev_replace.committed_cursor_left =
1308		fs_info->dev_replace.cursor_left_last_write_of_item;
1309
1310	return 0;
1311}
1312
1313/*
1314 * dead roots are old snapshots that need to be deleted.  This allocates
1315 * a dirty root struct and adds it into the list of dead roots that need to
1316 * be deleted
1317 */
1318void btrfs_add_dead_root(struct btrfs_root *root)
1319{
1320	struct btrfs_fs_info *fs_info = root->fs_info;
1321
1322	spin_lock(&fs_info->trans_lock);
1323	if (list_empty(&root->root_list)) {
1324		btrfs_grab_root(root);
1325		list_add_tail(&root->root_list, &fs_info->dead_roots);
1326	}
1327	spin_unlock(&fs_info->trans_lock);
1328}
1329
1330/*
1331 * update all the cowonly tree roots on disk
1332 */
1333static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
 
1334{
1335	struct btrfs_fs_info *fs_info = trans->fs_info;
1336	struct btrfs_root *gang[8];
 
1337	int i;
1338	int ret;
 
1339
1340	spin_lock(&fs_info->fs_roots_radix_lock);
1341	while (1) {
1342		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1343						 (void **)gang, 0,
1344						 ARRAY_SIZE(gang),
1345						 BTRFS_ROOT_TRANS_TAG);
1346		if (ret == 0)
1347			break;
1348		for (i = 0; i < ret; i++) {
1349			struct btrfs_root *root = gang[i];
1350			int ret2;
1351
1352			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1353					(unsigned long)root->root_key.objectid,
1354					BTRFS_ROOT_TRANS_TAG);
1355			spin_unlock(&fs_info->fs_roots_radix_lock);
1356
1357			btrfs_free_log(trans, root);
1358			ret2 = btrfs_update_reloc_root(trans, root);
1359			if (ret2)
1360				return ret2;
1361
1362			/* see comments in should_cow_block() */
1363			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1364			smp_mb__after_atomic();
1365
1366			if (root->commit_root != root->node) {
1367				list_add_tail(&root->dirty_list,
1368					&trans->transaction->switch_commits);
 
 
 
1369				btrfs_set_root_node(&root->root_item,
1370						    root->node);
1371			}
1372
1373			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1374						&root->root_key,
1375						&root->root_item);
1376			if (ret2)
1377				return ret2;
1378			spin_lock(&fs_info->fs_roots_radix_lock);
1379			btrfs_qgroup_free_meta_all_pertrans(root);
 
1380		}
1381	}
1382	spin_unlock(&fs_info->fs_roots_radix_lock);
1383	return 0;
1384}
1385
1386/*
1387 * defrag a given btree.
1388 * Every leaf in the btree is read and defragged.
1389 */
1390int btrfs_defrag_root(struct btrfs_root *root)
1391{
1392	struct btrfs_fs_info *info = root->fs_info;
1393	struct btrfs_trans_handle *trans;
1394	int ret;
 
1395
1396	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1397		return 0;
1398
1399	while (1) {
1400		trans = btrfs_start_transaction(root, 0);
1401		if (IS_ERR(trans)) {
1402			ret = PTR_ERR(trans);
1403			break;
1404		}
1405
1406		ret = btrfs_defrag_leaves(trans, root);
1407
1408		btrfs_end_transaction(trans);
1409		btrfs_btree_balance_dirty(info);
 
1410		cond_resched();
1411
1412		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1413			break;
1414
1415		if (btrfs_defrag_cancelled(info)) {
1416			btrfs_debug(info, "defrag_root cancelled");
1417			ret = -EAGAIN;
1418			break;
1419		}
1420	}
1421	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1422	return ret;
1423}
1424
1425/*
1426 * Do all special snapshot related qgroup dirty hack.
1427 *
1428 * Will do all needed qgroup inherit and dirty hack like switch commit
1429 * roots inside one transaction and write all btree into disk, to make
1430 * qgroup works.
1431 */
1432static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1433				   struct btrfs_root *src,
1434				   struct btrfs_root *parent,
1435				   struct btrfs_qgroup_inherit *inherit,
1436				   u64 dst_objectid)
1437{
1438	struct btrfs_fs_info *fs_info = src->fs_info;
1439	int ret;
1440
1441	/*
1442	 * Save some performance in the case that qgroups are not
1443	 * enabled. If this check races with the ioctl, rescan will
1444	 * kick in anyway.
1445	 */
1446	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1447		return 0;
1448
1449	/*
1450	 * Ensure dirty @src will be committed.  Or, after coming
1451	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1452	 * recorded root will never be updated again, causing an outdated root
1453	 * item.
1454	 */
1455	ret = record_root_in_trans(trans, src, 1);
1456	if (ret)
1457		return ret;
1458
1459	/*
1460	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1461	 * src root, so we must run the delayed refs here.
1462	 *
1463	 * However this isn't particularly fool proof, because there's no
1464	 * synchronization keeping us from changing the tree after this point
1465	 * before we do the qgroup_inherit, or even from making changes while
1466	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1467	 * for now flush the delayed refs to narrow the race window where the
1468	 * qgroup counters could end up wrong.
1469	 */
1470	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1471	if (ret) {
1472		btrfs_abort_transaction(trans, ret);
1473		return ret;
1474	}
1475
1476	/*
1477	 * We are going to commit transaction, see btrfs_commit_transaction()
1478	 * comment for reason locking tree_log_mutex
1479	 */
1480	mutex_lock(&fs_info->tree_log_mutex);
1481
1482	ret = commit_fs_roots(trans);
1483	if (ret)
1484		goto out;
1485	ret = btrfs_qgroup_account_extents(trans);
1486	if (ret < 0)
1487		goto out;
1488
1489	/* Now qgroup are all updated, we can inherit it to new qgroups */
1490	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1491				   inherit);
1492	if (ret < 0)
1493		goto out;
1494
1495	/*
1496	 * Now we do a simplified commit transaction, which will:
1497	 * 1) commit all subvolume and extent tree
1498	 *    To ensure all subvolume and extent tree have a valid
1499	 *    commit_root to accounting later insert_dir_item()
1500	 * 2) write all btree blocks onto disk
1501	 *    This is to make sure later btree modification will be cowed
1502	 *    Or commit_root can be populated and cause wrong qgroup numbers
1503	 * In this simplified commit, we don't really care about other trees
1504	 * like chunk and root tree, as they won't affect qgroup.
1505	 * And we don't write super to avoid half committed status.
1506	 */
1507	ret = commit_cowonly_roots(trans);
1508	if (ret)
1509		goto out;
1510	switch_commit_roots(trans);
1511	ret = btrfs_write_and_wait_transaction(trans);
1512	if (ret)
1513		btrfs_handle_fs_error(fs_info, ret,
1514			"Error while writing out transaction for qgroup");
1515
1516out:
1517	mutex_unlock(&fs_info->tree_log_mutex);
1518
1519	/*
1520	 * Force parent root to be updated, as we recorded it before so its
1521	 * last_trans == cur_transid.
1522	 * Or it won't be committed again onto disk after later
1523	 * insert_dir_item()
1524	 */
1525	if (!ret)
1526		ret = record_root_in_trans(trans, parent, 1);
1527	return ret;
1528}
1529
1530/*
1531 * new snapshots need to be created at a very specific time in the
1532 * transaction commit.  This does the actual creation.
1533 *
1534 * Note:
1535 * If the error which may affect the commitment of the current transaction
1536 * happens, we should return the error number. If the error which just affect
1537 * the creation of the pending snapshots, just return 0.
1538 */
1539static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
 
1540				   struct btrfs_pending_snapshot *pending)
1541{
1542
1543	struct btrfs_fs_info *fs_info = trans->fs_info;
1544	struct btrfs_key key;
1545	struct btrfs_root_item *new_root_item;
1546	struct btrfs_root *tree_root = fs_info->tree_root;
1547	struct btrfs_root *root = pending->root;
1548	struct btrfs_root *parent_root;
1549	struct btrfs_block_rsv *rsv;
1550	struct inode *parent_inode;
1551	struct btrfs_path *path;
1552	struct btrfs_dir_item *dir_item;
1553	struct dentry *dentry;
1554	struct extent_buffer *tmp;
1555	struct extent_buffer *old;
1556	struct timespec64 cur_time;
1557	int ret = 0;
1558	u64 to_reserve = 0;
1559	u64 index = 0;
1560	u64 objectid;
1561	u64 root_flags;
1562
1563	ASSERT(pending->path);
1564	path = pending->path;
1565
1566	ASSERT(pending->root_item);
1567	new_root_item = pending->root_item;
 
 
 
1568
1569	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1570	if (pending->error)
1571		goto no_free_objectid;
 
 
1572
1573	/*
1574	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1575	 * accounted by later btrfs_qgroup_inherit().
1576	 */
1577	btrfs_set_skip_qgroup(trans, objectid);
1578
1579	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1580
1581	if (to_reserve > 0) {
1582		pending->error = btrfs_block_rsv_add(root,
1583						     &pending->block_rsv,
1584						     to_reserve,
1585						     BTRFS_RESERVE_NO_FLUSH);
1586		if (pending->error)
1587			goto clear_skip_qgroup;
1588	}
1589
1590	key.objectid = objectid;
1591	key.offset = (u64)-1;
1592	key.type = BTRFS_ROOT_ITEM_KEY;
1593
1594	rsv = trans->block_rsv;
1595	trans->block_rsv = &pending->block_rsv;
1596	trans->bytes_reserved = trans->block_rsv->reserved;
1597	trace_btrfs_space_reservation(fs_info, "transaction",
1598				      trans->transid,
1599				      trans->bytes_reserved, 1);
1600	dentry = pending->dentry;
1601	parent_inode = pending->dir;
 
1602	parent_root = BTRFS_I(parent_inode)->root;
1603	ret = record_root_in_trans(trans, parent_root, 0);
1604	if (ret)
1605		goto fail;
1606	cur_time = current_time(parent_inode);
1607
1608	/*
1609	 * insert the directory item
1610	 */
1611	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1612	BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
1613
1614	/* check if there is a file/dir which has the same name. */
1615	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1616					 btrfs_ino(BTRFS_I(parent_inode)),
1617					 dentry->d_name.name,
1618					 dentry->d_name.len, 0);
1619	if (dir_item != NULL && !IS_ERR(dir_item)) {
1620		pending->error = -EEXIST;
1621		goto dir_item_existed;
1622	} else if (IS_ERR(dir_item)) {
1623		ret = PTR_ERR(dir_item);
1624		btrfs_abort_transaction(trans, ret);
1625		goto fail;
1626	}
1627	btrfs_release_path(path);
1628
1629	/*
1630	 * pull in the delayed directory update
1631	 * and the delayed inode item
1632	 * otherwise we corrupt the FS during
1633	 * snapshot
1634	 */
1635	ret = btrfs_run_delayed_items(trans);
1636	if (ret) {	/* Transaction aborted */
1637		btrfs_abort_transaction(trans, ret);
1638		goto fail;
1639	}
1640
1641	ret = record_root_in_trans(trans, root, 0);
1642	if (ret) {
1643		btrfs_abort_transaction(trans, ret);
1644		goto fail;
1645	}
1646	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1647	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1648	btrfs_check_and_init_root_item(new_root_item);
1649
1650	root_flags = btrfs_root_flags(new_root_item);
1651	if (pending->readonly)
1652		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1653	else
1654		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1655	btrfs_set_root_flags(new_root_item, root_flags);
1656
1657	btrfs_set_root_generation_v2(new_root_item,
1658			trans->transid);
1659	generate_random_guid(new_root_item->uuid);
1660	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1661			BTRFS_UUID_SIZE);
1662	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1663		memset(new_root_item->received_uuid, 0,
1664		       sizeof(new_root_item->received_uuid));
1665		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1666		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1667		btrfs_set_root_stransid(new_root_item, 0);
1668		btrfs_set_root_rtransid(new_root_item, 0);
1669	}
1670	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1671	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1672	btrfs_set_root_otransid(new_root_item, trans->transid);
1673
1674	old = btrfs_lock_root_node(root);
1675	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1676			      BTRFS_NESTING_COW);
1677	if (ret) {
1678		btrfs_tree_unlock(old);
1679		free_extent_buffer(old);
1680		btrfs_abort_transaction(trans, ret);
1681		goto fail;
1682	}
1683
1684	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1685	/* clean up in any case */
1686	btrfs_tree_unlock(old);
1687	free_extent_buffer(old);
1688	if (ret) {
1689		btrfs_abort_transaction(trans, ret);
1690		goto fail;
1691	}
1692	/* see comments in should_cow_block() */
1693	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1694	smp_wmb();
1695
1696	btrfs_set_root_node(new_root_item, tmp);
1697	/* record when the snapshot was created in key.offset */
1698	key.offset = trans->transid;
1699	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1700	btrfs_tree_unlock(tmp);
1701	free_extent_buffer(tmp);
1702	if (ret) {
1703		btrfs_abort_transaction(trans, ret);
1704		goto fail;
1705	}
1706
1707	/*
1708	 * insert root back/forward references
1709	 */
1710	ret = btrfs_add_root_ref(trans, objectid,
1711				 parent_root->root_key.objectid,
1712				 btrfs_ino(BTRFS_I(parent_inode)), index,
1713				 dentry->d_name.name, dentry->d_name.len);
1714	if (ret) {
1715		btrfs_abort_transaction(trans, ret);
1716		goto fail;
1717	}
1718
1719	key.offset = (u64)-1;
1720	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1721	if (IS_ERR(pending->snap)) {
1722		ret = PTR_ERR(pending->snap);
1723		pending->snap = NULL;
1724		btrfs_abort_transaction(trans, ret);
1725		goto fail;
1726	}
1727
1728	ret = btrfs_reloc_post_snapshot(trans, pending);
1729	if (ret) {
1730		btrfs_abort_transaction(trans, ret);
1731		goto fail;
1732	}
1733
1734	/*
1735	 * Do special qgroup accounting for snapshot, as we do some qgroup
1736	 * snapshot hack to do fast snapshot.
1737	 * To co-operate with that hack, we do hack again.
1738	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1739	 */
1740	ret = qgroup_account_snapshot(trans, root, parent_root,
1741				      pending->inherit, objectid);
1742	if (ret < 0)
1743		goto fail;
1744
1745	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1746				    dentry->d_name.len, BTRFS_I(parent_inode),
1747				    &key, BTRFS_FT_DIR, index);
1748	/* We have check then name at the beginning, so it is impossible. */
1749	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1750	if (ret) {
1751		btrfs_abort_transaction(trans, ret);
1752		goto fail;
1753	}
1754
1755	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1756					 dentry->d_name.len * 2);
1757	parent_inode->i_mtime = parent_inode->i_ctime =
1758		current_time(parent_inode);
1759	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1760	if (ret) {
1761		btrfs_abort_transaction(trans, ret);
1762		goto fail;
1763	}
1764	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1765				  BTRFS_UUID_KEY_SUBVOL,
1766				  objectid);
1767	if (ret) {
1768		btrfs_abort_transaction(trans, ret);
1769		goto fail;
1770	}
1771	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1772		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1773					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1774					  objectid);
1775		if (ret && ret != -EEXIST) {
1776			btrfs_abort_transaction(trans, ret);
1777			goto fail;
1778		}
1779	}
1780
 
 
1781fail:
1782	pending->error = ret;
1783dir_item_existed:
1784	trans->block_rsv = rsv;
1785	trans->bytes_reserved = 0;
1786clear_skip_qgroup:
1787	btrfs_clear_skip_qgroup(trans);
1788no_free_objectid:
1789	kfree(new_root_item);
1790	pending->root_item = NULL;
1791	btrfs_free_path(path);
1792	pending->path = NULL;
1793
1794	return ret;
1795}
1796
1797/*
1798 * create all the snapshots we've scheduled for creation
1799 */
1800static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
 
1801{
1802	struct btrfs_pending_snapshot *pending, *next;
1803	struct list_head *head = &trans->transaction->pending_snapshots;
1804	int ret = 0;
1805
1806	list_for_each_entry_safe(pending, next, head, list) {
1807		list_del(&pending->list);
1808		ret = create_pending_snapshot(trans, pending);
1809		if (ret)
1810			break;
1811	}
1812	return ret;
1813}
1814
1815static void update_super_roots(struct btrfs_fs_info *fs_info)
1816{
1817	struct btrfs_root_item *root_item;
1818	struct btrfs_super_block *super;
1819
1820	super = fs_info->super_copy;
1821
1822	root_item = &fs_info->chunk_root->root_item;
1823	super->chunk_root = root_item->bytenr;
1824	super->chunk_root_generation = root_item->generation;
1825	super->chunk_root_level = root_item->level;
1826
1827	root_item = &fs_info->tree_root->root_item;
1828	super->root = root_item->bytenr;
1829	super->generation = root_item->generation;
1830	super->root_level = root_item->level;
1831	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1832		super->cache_generation = root_item->generation;
1833	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1834		super->cache_generation = 0;
1835	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1836		super->uuid_tree_generation = root_item->generation;
1837}
1838
1839int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1840{
1841	struct btrfs_transaction *trans;
1842	int ret = 0;
1843
1844	spin_lock(&info->trans_lock);
1845	trans = info->running_transaction;
1846	if (trans)
1847		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1848	spin_unlock(&info->trans_lock);
1849	return ret;
1850}
1851
1852int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1853{
1854	struct btrfs_transaction *trans;
1855	int ret = 0;
1856
1857	spin_lock(&info->trans_lock);
1858	trans = info->running_transaction;
1859	if (trans)
1860		ret = is_transaction_blocked(trans);
1861	spin_unlock(&info->trans_lock);
1862	return ret;
1863}
1864
1865/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866 * commit transactions asynchronously. once btrfs_commit_transaction_async
1867 * returns, any subsequent transaction will not be allowed to join.
1868 */
1869struct btrfs_async_commit {
1870	struct btrfs_trans_handle *newtrans;
1871	struct work_struct work;
 
1872};
1873
1874static void do_async_commit(struct work_struct *work)
1875{
1876	struct btrfs_async_commit *ac =
1877		container_of(work, struct btrfs_async_commit, work);
1878
1879	/*
1880	 * We've got freeze protection passed with the transaction.
1881	 * Tell lockdep about it.
1882	 */
1883	if (ac->newtrans->type & __TRANS_FREEZABLE)
1884		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1885
1886	current->journal_info = ac->newtrans;
1887
1888	btrfs_commit_transaction(ac->newtrans);
1889	kfree(ac);
1890}
1891
1892int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
 
 
1893{
1894	struct btrfs_fs_info *fs_info = trans->fs_info;
1895	struct btrfs_async_commit *ac;
1896	struct btrfs_transaction *cur_trans;
1897
1898	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1899	if (!ac)
1900		return -ENOMEM;
1901
1902	INIT_WORK(&ac->work, do_async_commit);
1903	ac->newtrans = btrfs_join_transaction(trans->root);
 
1904	if (IS_ERR(ac->newtrans)) {
1905		int err = PTR_ERR(ac->newtrans);
1906		kfree(ac);
1907		return err;
1908	}
1909
1910	/* take transaction reference */
1911	cur_trans = trans->transaction;
1912	refcount_inc(&cur_trans->use_count);
1913
1914	btrfs_end_transaction(trans);
 
1915
1916	/*
1917	 * Tell lockdep we've released the freeze rwsem, since the
1918	 * async commit thread will be the one to unlock it.
1919	 */
1920	if (ac->newtrans->type & __TRANS_FREEZABLE)
1921		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1922
1923	schedule_work(&ac->work);
1924	/*
1925	 * Wait for the current transaction commit to start and block
1926	 * subsequent transaction joins
1927	 */
1928	wait_event(fs_info->transaction_blocked_wait,
1929		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1930		   TRANS_ABORTED(cur_trans));
1931	if (current->journal_info == trans)
1932		current->journal_info = NULL;
1933
1934	btrfs_put_transaction(cur_trans);
1935	return 0;
1936}
1937
1938
1939static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1940{
1941	struct btrfs_fs_info *fs_info = trans->fs_info;
1942	struct btrfs_transaction *cur_trans = trans->transaction;
1943
1944	WARN_ON(refcount_read(&trans->use_count) > 1);
1945
1946	btrfs_abort_transaction(trans, err);
1947
1948	spin_lock(&fs_info->trans_lock);
1949
1950	/*
1951	 * If the transaction is removed from the list, it means this
1952	 * transaction has been committed successfully, so it is impossible
1953	 * to call the cleanup function.
1954	 */
1955	BUG_ON(list_empty(&cur_trans->list));
1956
1957	if (cur_trans == fs_info->running_transaction) {
1958		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1959		spin_unlock(&fs_info->trans_lock);
1960		wait_event(cur_trans->writer_wait,
1961			   atomic_read(&cur_trans->num_writers) == 1);
1962
1963		spin_lock(&fs_info->trans_lock);
1964	}
1965
1966	/*
1967	 * Now that we know no one else is still using the transaction we can
1968	 * remove the transaction from the list of transactions. This avoids
1969	 * the transaction kthread from cleaning up the transaction while some
1970	 * other task is still using it, which could result in a use-after-free
1971	 * on things like log trees, as it forces the transaction kthread to
1972	 * wait for this transaction to be cleaned up by us.
1973	 */
1974	list_del_init(&cur_trans->list);
1975
1976	spin_unlock(&fs_info->trans_lock);
1977
1978	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1979
1980	spin_lock(&fs_info->trans_lock);
1981	if (cur_trans == fs_info->running_transaction)
1982		fs_info->running_transaction = NULL;
1983	spin_unlock(&fs_info->trans_lock);
1984
1985	if (trans->type & __TRANS_FREEZABLE)
1986		sb_end_intwrite(fs_info->sb);
1987	btrfs_put_transaction(cur_trans);
1988	btrfs_put_transaction(cur_trans);
1989
1990	trace_btrfs_transaction_commit(trans->root);
1991
1992	if (current->journal_info == trans)
1993		current->journal_info = NULL;
1994	btrfs_scrub_cancel(fs_info);
1995
1996	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1997}
1998
1999/*
2000 * Release reserved delayed ref space of all pending block groups of the
2001 * transaction and remove them from the list
 
 
 
2002 */
2003static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
 
2004{
2005       struct btrfs_fs_info *fs_info = trans->fs_info;
2006       struct btrfs_block_group *block_group, *tmp;
2007
2008       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2009               btrfs_delayed_refs_rsv_release(fs_info, 1);
2010               list_del_init(&block_group->bg_list);
2011       }
2012}
2013
2014static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2015{
2016	/*
2017	 * We use writeback_inodes_sb here because if we used
2018	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2019	 * Currently are holding the fs freeze lock, if we do an async flush
2020	 * we'll do btrfs_join_transaction() and deadlock because we need to
2021	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2022	 * from already being in a transaction and our join_transaction doesn't
2023	 * have to re-take the fs freeze lock.
2024	 */
2025	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2026		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2027	return 0;
2028}
2029
2030static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2031{
2032	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2033		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2034}
2035
2036int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2037{
2038	struct btrfs_fs_info *fs_info = trans->fs_info;
2039	struct btrfs_transaction *cur_trans = trans->transaction;
2040	struct btrfs_transaction *prev_trans = NULL;
 
2041	int ret;
 
 
 
2042
2043	ASSERT(refcount_read(&trans->use_count) == 1);
2044
2045	/* Stop the commit early if ->aborted is set */
2046	if (TRANS_ABORTED(cur_trans)) {
2047		ret = cur_trans->aborted;
2048		btrfs_end_transaction(trans);
2049		return ret;
2050	}
2051
2052	btrfs_trans_release_metadata(trans);
2053	trans->block_rsv = NULL;
2054
 
2055	/*
2056	 * We only want one transaction commit doing the flushing so we do not
2057	 * waste a bunch of time on lock contention on the extent root node.
2058	 */
2059	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2060			      &cur_trans->delayed_refs.flags)) {
2061		/*
2062		 * Make a pass through all the delayed refs we have so far.
2063		 * Any running threads may add more while we are here.
2064		 */
2065		ret = btrfs_run_delayed_refs(trans, 0);
2066		if (ret) {
2067			btrfs_end_transaction(trans);
2068			return ret;
2069		}
2070	}
2071
2072	btrfs_create_pending_block_groups(trans);
 
2073
2074	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2075		int run_it = 0;
 
 
 
2076
2077		/* this mutex is also taken before trying to set
2078		 * block groups readonly.  We need to make sure
2079		 * that nobody has set a block group readonly
2080		 * after a extents from that block group have been
2081		 * allocated for cache files.  btrfs_set_block_group_ro
2082		 * will wait for the transaction to commit if it
2083		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2084		 *
2085		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2086		 * only one process starts all the block group IO.  It wouldn't
2087		 * hurt to have more than one go through, but there's no
2088		 * real advantage to it either.
2089		 */
2090		mutex_lock(&fs_info->ro_block_group_mutex);
2091		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2092				      &cur_trans->flags))
2093			run_it = 1;
2094		mutex_unlock(&fs_info->ro_block_group_mutex);
2095
2096		if (run_it) {
2097			ret = btrfs_start_dirty_block_groups(trans);
2098			if (ret) {
2099				btrfs_end_transaction(trans);
2100				return ret;
2101			}
2102		}
2103	}
2104
2105	spin_lock(&fs_info->trans_lock);
2106	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2107		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2108
2109		spin_unlock(&fs_info->trans_lock);
2110		refcount_inc(&cur_trans->use_count);
2111
2112		if (trans->in_fsync)
2113			want_state = TRANS_STATE_SUPER_COMMITTED;
2114		ret = btrfs_end_transaction(trans);
2115		wait_for_commit(cur_trans, want_state);
2116
2117		if (TRANS_ABORTED(cur_trans))
2118			ret = cur_trans->aborted;
2119
2120		btrfs_put_transaction(cur_trans);
2121
2122		return ret;
2123	}
2124
2125	cur_trans->state = TRANS_STATE_COMMIT_START;
2126	wake_up(&fs_info->transaction_blocked_wait);
2127
2128	if (cur_trans->list.prev != &fs_info->trans_list) {
2129		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2130
2131		if (trans->in_fsync)
2132			want_state = TRANS_STATE_SUPER_COMMITTED;
2133
 
 
2134		prev_trans = list_entry(cur_trans->list.prev,
2135					struct btrfs_transaction, list);
2136		if (prev_trans->state < want_state) {
2137			refcount_inc(&prev_trans->use_count);
2138			spin_unlock(&fs_info->trans_lock);
2139
2140			wait_for_commit(prev_trans, want_state);
2141
2142			ret = READ_ONCE(prev_trans->aborted);
2143
2144			btrfs_put_transaction(prev_trans);
2145			if (ret)
2146				goto cleanup_transaction;
2147		} else {
2148			spin_unlock(&fs_info->trans_lock);
2149		}
2150	} else {
2151		spin_unlock(&fs_info->trans_lock);
2152		/*
2153		 * The previous transaction was aborted and was already removed
2154		 * from the list of transactions at fs_info->trans_list. So we
2155		 * abort to prevent writing a new superblock that reflects a
2156		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2157		 */
2158		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2159			ret = -EROFS;
2160			goto cleanup_transaction;
2161		}
2162	}
2163
2164	extwriter_counter_dec(cur_trans, trans->type);
 
2165
2166	ret = btrfs_start_delalloc_flush(fs_info);
2167	if (ret)
2168		goto cleanup_transaction;
 
 
 
 
 
2169
2170	ret = btrfs_run_delayed_items(trans);
2171	if (ret)
2172		goto cleanup_transaction;
 
 
2173
2174	wait_event(cur_trans->writer_wait,
2175		   extwriter_counter_read(cur_trans) == 0);
2176
2177	/* some pending stuffs might be added after the previous flush. */
2178	ret = btrfs_run_delayed_items(trans);
2179	if (ret)
2180		goto cleanup_transaction;
 
 
 
 
2181
2182	btrfs_wait_delalloc_flush(fs_info);
 
2183
2184	/*
2185	 * Wait for all ordered extents started by a fast fsync that joined this
2186	 * transaction. Otherwise if this transaction commits before the ordered
2187	 * extents complete we lose logged data after a power failure.
2188	 */
2189	wait_event(cur_trans->pending_wait,
2190		   atomic_read(&cur_trans->pending_ordered) == 0);
 
2191
2192	btrfs_scrub_pause(fs_info);
2193	/*
2194	 * Ok now we need to make sure to block out any other joins while we
2195	 * commit the transaction.  We could have started a join before setting
2196	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2197	 */
2198	spin_lock(&fs_info->trans_lock);
2199	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2200	spin_unlock(&fs_info->trans_lock);
2201	wait_event(cur_trans->writer_wait,
2202		   atomic_read(&cur_trans->num_writers) == 1);
2203
2204	if (TRANS_ABORTED(cur_trans)) {
2205		ret = cur_trans->aborted;
2206		goto scrub_continue;
2207	}
2208	/*
2209	 * the reloc mutex makes sure that we stop
2210	 * the balancing code from coming in and moving
2211	 * extents around in the middle of the commit
2212	 */
2213	mutex_lock(&fs_info->reloc_mutex);
2214
2215	/*
2216	 * We needn't worry about the delayed items because we will
2217	 * deal with them in create_pending_snapshot(), which is the
2218	 * core function of the snapshot creation.
2219	 */
2220	ret = create_pending_snapshots(trans);
2221	if (ret)
2222		goto unlock_reloc;
2223
2224	/*
2225	 * We insert the dir indexes of the snapshots and update the inode
2226	 * of the snapshots' parents after the snapshot creation, so there
2227	 * are some delayed items which are not dealt with. Now deal with
2228	 * them.
2229	 *
2230	 * We needn't worry that this operation will corrupt the snapshots,
2231	 * because all the tree which are snapshoted will be forced to COW
2232	 * the nodes and leaves.
2233	 */
2234	ret = btrfs_run_delayed_items(trans);
2235	if (ret)
2236		goto unlock_reloc;
2237
2238	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2239	if (ret)
2240		goto unlock_reloc;
2241
2242	/*
2243	 * make sure none of the code above managed to slip in a
2244	 * delayed item
2245	 */
2246	btrfs_assert_delayed_root_empty(fs_info);
2247
2248	WARN_ON(cur_trans != trans->transaction);
2249
 
2250	/* btrfs_commit_tree_roots is responsible for getting the
2251	 * various roots consistent with each other.  Every pointer
2252	 * in the tree of tree roots has to point to the most up to date
2253	 * root for every subvolume and other tree.  So, we have to keep
2254	 * the tree logging code from jumping in and changing any
2255	 * of the trees.
2256	 *
2257	 * At this point in the commit, there can't be any tree-log
2258	 * writers, but a little lower down we drop the trans mutex
2259	 * and let new people in.  By holding the tree_log_mutex
2260	 * from now until after the super is written, we avoid races
2261	 * with the tree-log code.
2262	 */
2263	mutex_lock(&fs_info->tree_log_mutex);
2264
2265	ret = commit_fs_roots(trans);
2266	if (ret)
2267		goto unlock_tree_log;
2268
2269	/*
2270	 * Since the transaction is done, we can apply the pending changes
2271	 * before the next transaction.
2272	 */
2273	btrfs_apply_pending_changes(fs_info);
2274
2275	/* commit_fs_roots gets rid of all the tree log roots, it is now
2276	 * safe to free the root of tree log roots
2277	 */
2278	btrfs_free_log_root_tree(trans, fs_info);
2279
2280	/*
2281	 * Since fs roots are all committed, we can get a quite accurate
2282	 * new_roots. So let's do quota accounting.
2283	 */
2284	ret = btrfs_qgroup_account_extents(trans);
2285	if (ret < 0)
2286		goto unlock_tree_log;
2287
2288	ret = commit_cowonly_roots(trans);
2289	if (ret)
2290		goto unlock_tree_log;
2291
2292	/*
2293	 * The tasks which save the space cache and inode cache may also
2294	 * update ->aborted, check it.
2295	 */
2296	if (TRANS_ABORTED(cur_trans)) {
2297		ret = cur_trans->aborted;
2298		goto unlock_tree_log;
2299	}
2300
2301	cur_trans = fs_info->running_transaction;
 
 
2302
2303	btrfs_set_root_node(&fs_info->tree_root->root_item,
2304			    fs_info->tree_root->node);
2305	list_add_tail(&fs_info->tree_root->dirty_list,
2306		      &cur_trans->switch_commits);
2307
2308	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2309			    fs_info->chunk_root->node);
2310	list_add_tail(&fs_info->chunk_root->dirty_list,
2311		      &cur_trans->switch_commits);
2312
2313	switch_commit_roots(trans);
2314
2315	ASSERT(list_empty(&cur_trans->dirty_bgs));
2316	ASSERT(list_empty(&cur_trans->io_bgs));
2317	update_super_roots(fs_info);
2318
2319	btrfs_set_super_log_root(fs_info->super_copy, 0);
2320	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2321	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2322	       sizeof(*fs_info->super_copy));
2323
2324	btrfs_commit_device_sizes(cur_trans);
2325
2326	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2327	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2328
2329	btrfs_trans_release_chunk_metadata(trans);
2330
2331	spin_lock(&fs_info->trans_lock);
2332	cur_trans->state = TRANS_STATE_UNBLOCKED;
2333	fs_info->running_transaction = NULL;
2334	spin_unlock(&fs_info->trans_lock);
2335	mutex_unlock(&fs_info->reloc_mutex);
2336
2337	wake_up(&fs_info->transaction_wait);
 
 
 
 
 
2338
2339	ret = btrfs_write_and_wait_transaction(trans);
2340	if (ret) {
2341		btrfs_handle_fs_error(fs_info, ret,
2342				      "Error while writing out transaction");
2343		/*
2344		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2345		 * but we can't jump to unlock_tree_log causing double unlock
2346		 */
2347		mutex_unlock(&fs_info->tree_log_mutex);
2348		goto scrub_continue;
2349	}
2350
2351	/*
2352	 * At this point, we should have written all the tree blocks allocated
2353	 * in this transaction. So it's now safe to free the redirtyied extent
2354	 * buffers.
2355	 */
2356	btrfs_free_redirty_list(cur_trans);
2357
2358	ret = write_all_supers(fs_info, 0);
2359	/*
2360	 * the super is written, we can safely allow the tree-loggers
2361	 * to go about their business
2362	 */
2363	mutex_unlock(&fs_info->tree_log_mutex);
2364	if (ret)
2365		goto scrub_continue;
2366
2367	/*
2368	 * We needn't acquire the lock here because there is no other task
2369	 * which can change it.
2370	 */
2371	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2372	wake_up(&cur_trans->commit_wait);
2373
2374	btrfs_finish_extent_commit(trans);
2375
2376	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2377		btrfs_clear_space_info_full(fs_info);
2378
2379	fs_info->last_trans_committed = cur_trans->transid;
2380	/*
2381	 * We needn't acquire the lock here because there is no other task
2382	 * which can change it.
2383	 */
2384	cur_trans->state = TRANS_STATE_COMPLETED;
2385	wake_up(&cur_trans->commit_wait);
2386
2387	spin_lock(&fs_info->trans_lock);
2388	list_del_init(&cur_trans->list);
2389	spin_unlock(&fs_info->trans_lock);
2390
2391	btrfs_put_transaction(cur_trans);
2392	btrfs_put_transaction(cur_trans);
2393
2394	if (trans->type & __TRANS_FREEZABLE)
2395		sb_end_intwrite(fs_info->sb);
2396
2397	trace_btrfs_transaction_commit(trans->root);
2398
2399	btrfs_scrub_continue(fs_info);
2400
2401	if (current->journal_info == trans)
2402		current->journal_info = NULL;
2403
2404	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2405
2406	return ret;
2407
2408unlock_tree_log:
2409	mutex_unlock(&fs_info->tree_log_mutex);
2410unlock_reloc:
2411	mutex_unlock(&fs_info->reloc_mutex);
2412scrub_continue:
2413	btrfs_scrub_continue(fs_info);
2414cleanup_transaction:
2415	btrfs_trans_release_metadata(trans);
2416	btrfs_cleanup_pending_block_groups(trans);
2417	btrfs_trans_release_chunk_metadata(trans);
2418	trans->block_rsv = NULL;
2419	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2420	if (current->journal_info == trans)
2421		current->journal_info = NULL;
2422	cleanup_transaction(trans, ret);
2423
2424	return ret;
2425}
2426
2427/*
2428 * return < 0 if error
2429 * 0 if there are no more dead_roots at the time of call
2430 * 1 there are more to be processed, call me again
2431 *
2432 * The return value indicates there are certainly more snapshots to delete, but
2433 * if there comes a new one during processing, it may return 0. We don't mind,
2434 * because btrfs_commit_super will poke cleaner thread and it will process it a
2435 * few seconds later.
2436 */
2437int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2438{
2439	int ret;
2440	struct btrfs_fs_info *fs_info = root->fs_info;
2441
2442	spin_lock(&fs_info->trans_lock);
2443	if (list_empty(&fs_info->dead_roots)) {
2444		spin_unlock(&fs_info->trans_lock);
2445		return 0;
2446	}
2447	root = list_first_entry(&fs_info->dead_roots,
2448			struct btrfs_root, root_list);
2449	list_del_init(&root->root_list);
2450	spin_unlock(&fs_info->trans_lock);
2451
2452	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2453
2454	btrfs_kill_all_delayed_nodes(root);
2455
2456	if (btrfs_header_backref_rev(root->node) <
2457			BTRFS_MIXED_BACKREF_REV)
2458		ret = btrfs_drop_snapshot(root, 0, 0);
2459	else
2460		ret = btrfs_drop_snapshot(root, 1, 0);
2461
2462	btrfs_put_root(root);
2463	return (ret < 0) ? 0 : 1;
2464}
2465
2466void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2467{
2468	unsigned long prev;
2469	unsigned long bit;
2470
2471	prev = xchg(&fs_info->pending_changes, 0);
2472	if (!prev)
2473		return;
2474
2475	bit = 1 << BTRFS_PENDING_COMMIT;
2476	if (prev & bit)
2477		btrfs_debug(fs_info, "pending commit done");
2478	prev &= ~bit;
2479
2480	if (prev)
2481		btrfs_warn(fs_info,
2482			"unknown pending changes left 0x%lx, ignoring", prev);
2483}