Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Functions for working with the Flattened Device Tree data format
  3 *
  4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
  5 * benh@kernel.crashing.org
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * version 2 as published by the Free Software Foundation.
 10 */
 11
 
 
 
 
 
 12#include <linux/kernel.h>
 13#include <linux/initrd.h>
 14#include <linux/module.h>
 
 15#include <linux/of.h>
 16#include <linux/of_fdt.h>
 
 17#include <linux/string.h>
 18#include <linux/errno.h>
 19#include <linux/slab.h>
 
 
 
 
 
 20
 21#ifdef CONFIG_PPC
 22#include <asm/machdep.h>
 23#endif /* CONFIG_PPC */
 24
 25#include <asm/page.h>
 26
 27char *of_fdt_get_string(struct boot_param_header *blob, u32 offset)
 28{
 29	return ((char *)blob) +
 30		be32_to_cpu(blob->off_dt_strings) + offset;
 31}
 32
 33/**
 34 * of_fdt_get_property - Given a node in the given flat blob, return
 35 * the property ptr
 36 */
 37void *of_fdt_get_property(struct boot_param_header *blob,
 38		       unsigned long node, const char *name,
 39		       unsigned long *size)
 40{
 41	unsigned long p = node;
 42
 43	do {
 44		u32 tag = be32_to_cpup((__be32 *)p);
 45		u32 sz, noff;
 46		const char *nstr;
 47
 48		p += 4;
 49		if (tag == OF_DT_NOP)
 50			continue;
 51		if (tag != OF_DT_PROP)
 52			return NULL;
 53
 54		sz = be32_to_cpup((__be32 *)p);
 55		noff = be32_to_cpup((__be32 *)(p + 4));
 56		p += 8;
 57		if (be32_to_cpu(blob->version) < 0x10)
 58			p = ALIGN(p, sz >= 8 ? 8 : 4);
 59
 60		nstr = of_fdt_get_string(blob, noff);
 61		if (nstr == NULL) {
 62			pr_warning("Can't find property index name !\n");
 63			return NULL;
 64		}
 65		if (strcmp(name, nstr) == 0) {
 66			if (size)
 67				*size = sz;
 68			return (void *)p;
 69		}
 70		p += sz;
 71		p = ALIGN(p, 4);
 72	} while (1);
 73}
 74
 75/**
 76 * of_fdt_is_compatible - Return true if given node from the given blob has
 77 * compat in its compatible list
 78 * @blob: A device tree blob
 79 * @node: node to test
 80 * @compat: compatible string to compare with compatible list.
 81 *
 82 * On match, returns a non-zero value with smaller values returned for more
 83 * specific compatible values.
 
 84 */
 85int of_fdt_is_compatible(struct boot_param_header *blob,
 86		      unsigned long node, const char *compat)
 87{
 88	const char *cp;
 89	unsigned long cplen, l, score = 0;
 
 
 
 
 
 
 
 90
 91	cp = of_fdt_get_property(blob, node, "compatible", &cplen);
 92	if (cp == NULL)
 93		return 0;
 94	while (cplen > 0) {
 95		score++;
 96		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 97			return score;
 98		l = strlen(cp) + 1;
 99		cp += l;
100		cplen -= l;
101	}
102
103	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104}
105
106/**
107 * of_fdt_match - Return true if node matches a list of compatible values
108 */
109int of_fdt_match(struct boot_param_header *blob, unsigned long node,
110                 const char **compat)
111{
112	unsigned int tmp, score = 0;
113
114	if (!compat)
115		return 0;
116
117	while (*compat) {
118		tmp = of_fdt_is_compatible(blob, node, *compat);
119		if (tmp && (score == 0 || (tmp < score)))
120			score = tmp;
121		compat++;
122	}
123
124	return score;
125}
126
127static void *unflatten_dt_alloc(unsigned long *mem, unsigned long size,
128				       unsigned long align)
129{
130	void *res;
131
132	*mem = ALIGN(*mem, align);
133	res = (void *)*mem;
134	*mem += size;
135
136	return res;
137}
138
139/**
140 * unflatten_dt_node - Alloc and populate a device_node from the flat tree
141 * @blob: The parent device tree blob
142 * @mem: Memory chunk to use for allocating device nodes and properties
143 * @p: pointer to node in flat tree
144 * @dad: Parent struct device_node
145 * @allnextpp: pointer to ->allnext from last allocated device_node
146 * @fpsize: Size of the node path up at the current depth.
147 */
148static unsigned long unflatten_dt_node(struct boot_param_header *blob,
149				unsigned long mem,
150				unsigned long *p,
151				struct device_node *dad,
152				struct device_node ***allnextpp,
153				unsigned long fpsize)
154{
155	struct device_node *np;
156	struct property *pp, **prev_pp = NULL;
157	char *pathp;
158	u32 tag;
159	unsigned int l, allocl;
160	int has_name = 0;
161	int new_format = 0;
162
163	tag = be32_to_cpup((__be32 *)(*p));
164	if (tag != OF_DT_BEGIN_NODE) {
165		pr_err("Weird tag at start of node: %x\n", tag);
166		return mem;
167	}
168	*p += 4;
169	pathp = (char *)*p;
170	l = allocl = strlen(pathp) + 1;
171	*p = ALIGN(*p + l, 4);
172
173	/* version 0x10 has a more compact unit name here instead of the full
174	 * path. we accumulate the full path size using "fpsize", we'll rebuild
175	 * it later. We detect this because the first character of the name is
176	 * not '/'.
177	 */
178	if ((*pathp) != '/') {
179		new_format = 1;
180		if (fpsize == 0) {
181			/* root node: special case. fpsize accounts for path
182			 * plus terminating zero. root node only has '/', so
183			 * fpsize should be 2, but we want to avoid the first
184			 * level nodes to have two '/' so we use fpsize 1 here
185			 */
186			fpsize = 1;
187			allocl = 2;
188		} else {
189			/* account for '/' and path size minus terminal 0
190			 * already in 'l'
191			 */
192			fpsize += l;
193			allocl = fpsize;
194		}
195	}
196
197	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
198				__alignof__(struct device_node));
199	if (allnextpp) {
200		memset(np, 0, sizeof(*np));
201		np->full_name = ((char *)np) + sizeof(struct device_node);
202		if (new_format) {
203			char *fn = np->full_name;
204			/* rebuild full path for new format */
205			if (dad && dad->parent) {
206				strcpy(fn, dad->full_name);
207#ifdef DEBUG
208				if ((strlen(fn) + l + 1) != allocl) {
209					pr_debug("%s: p: %d, l: %d, a: %d\n",
210						pathp, (int)strlen(fn),
211						l, allocl);
212				}
213#endif
214				fn += strlen(fn);
215			}
216			*(fn++) = '/';
217			memcpy(fn, pathp, l);
218		} else
219			memcpy(np->full_name, pathp, l);
220		prev_pp = &np->properties;
221		**allnextpp = np;
222		*allnextpp = &np->allnext;
223		if (dad != NULL) {
224			np->parent = dad;
225			/* we temporarily use the next field as `last_child'*/
226			if (dad->next == NULL)
227				dad->child = np;
228			else
229				dad->next->sibling = np;
230			dad->next = np;
231		}
232		kref_init(&np->kref);
233	}
234	/* process properties */
235	while (1) {
236		u32 sz, noff;
237		char *pname;
238
239		tag = be32_to_cpup((__be32 *)(*p));
240		if (tag == OF_DT_NOP) {
241			*p += 4;
242			continue;
243		}
244		if (tag != OF_DT_PROP)
245			break;
246		*p += 4;
247		sz = be32_to_cpup((__be32 *)(*p));
248		noff = be32_to_cpup((__be32 *)((*p) + 4));
249		*p += 8;
250		if (be32_to_cpu(blob->version) < 0x10)
251			*p = ALIGN(*p, sz >= 8 ? 8 : 4);
252
253		pname = of_fdt_get_string(blob, noff);
254		if (pname == NULL) {
255			pr_info("Can't find property name in list !\n");
256			break;
257		}
258		if (strcmp(pname, "name") == 0)
259			has_name = 1;
260		l = strlen(pname) + 1;
261		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
262					__alignof__(struct property));
263		if (allnextpp) {
264			/* We accept flattened tree phandles either in
265			 * ePAPR-style "phandle" properties, or the
266			 * legacy "linux,phandle" properties.  If both
267			 * appear and have different values, things
268			 * will get weird.  Don't do that. */
269			if ((strcmp(pname, "phandle") == 0) ||
270			    (strcmp(pname, "linux,phandle") == 0)) {
271				if (np->phandle == 0)
272					np->phandle = be32_to_cpup((__be32*)*p);
273			}
274			/* And we process the "ibm,phandle" property
275			 * used in pSeries dynamic device tree
276			 * stuff */
277			if (strcmp(pname, "ibm,phandle") == 0)
278				np->phandle = be32_to_cpup((__be32 *)*p);
279			pp->name = pname;
280			pp->length = sz;
281			pp->value = (void *)*p;
282			*prev_pp = pp;
283			prev_pp = &pp->next;
284		}
285		*p = ALIGN((*p) + sz, 4);
 
 
 
 
 
 
 
 
 
 
 
 
286	}
287	/* with version 0x10 we may not have the name property, recreate
288	 * it here from the unit name if absent
 
289	 */
290	if (!has_name) {
291		char *p1 = pathp, *ps = pathp, *pa = NULL;
292		int sz;
293
294		while (*p1) {
295			if ((*p1) == '@')
296				pa = p1;
297			if ((*p1) == '/')
298				ps = p1 + 1;
299			p1++;
300		}
 
301		if (pa < ps)
302			pa = p1;
303		sz = (pa - ps) + 1;
304		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
305					__alignof__(struct property));
306		if (allnextpp) {
307			pp->name = "name";
308			pp->length = sz;
309			pp->value = pp + 1;
310			*prev_pp = pp;
311			prev_pp = &pp->next;
312			memcpy(pp->value, ps, sz - 1);
313			((char *)pp->value)[sz - 1] = 0;
314			pr_debug("fixed up name for %s -> %s\n", pathp,
315				(char *)pp->value);
316		}
317	}
318	if (allnextpp) {
319		*prev_pp = NULL;
320		np->name = of_get_property(np, "name", NULL);
321		np->type = of_get_property(np, "device_type", NULL);
322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323		if (!np->name)
324			np->name = "<NULL>";
325		if (!np->type)
326			np->type = "<NULL>";
327	}
328	while (tag == OF_DT_BEGIN_NODE || tag == OF_DT_NOP) {
329		if (tag == OF_DT_NOP)
330			*p += 4;
331		else
332			mem = unflatten_dt_node(blob, mem, p, np, allnextpp,
333						fpsize);
334		tag = be32_to_cpup((__be32 *)(*p));
335	}
336	if (tag != OF_DT_END_NODE) {
337		pr_err("Weird tag at end of node: %x\n", tag);
338		return mem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339	}
340	*p += 4;
341	return mem;
342}
343
344/**
345 * __unflatten_device_tree - create tree of device_nodes from flat blob
 
 
 
 
346 *
347 * unflattens a device-tree, creating the
348 * tree of struct device_node. It also fills the "name" and "type"
349 * pointers of the nodes so the normal device-tree walking functions
350 * can be used.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351 * @blob: The blob to expand
 
352 * @mynodes: The device_node tree created by the call
353 * @dt_alloc: An allocator that provides a virtual address to memory
354 * for the resulting tree
 
 
 
 
 
 
 
 
355 */
356static void __unflatten_device_tree(struct boot_param_header *blob,
357			     struct device_node **mynodes,
358			     void * (*dt_alloc)(u64 size, u64 align))
359{
360	unsigned long start, mem, size;
361	struct device_node **allnextp = mynodes;
 
 
 
 
 
 
362
363	pr_debug(" -> unflatten_device_tree()\n");
364
365	if (!blob) {
366		pr_debug("No device tree pointer\n");
367		return;
368	}
369
370	pr_debug("Unflattening device tree:\n");
371	pr_debug("magic: %08x\n", be32_to_cpu(blob->magic));
372	pr_debug("size: %08x\n", be32_to_cpu(blob->totalsize));
373	pr_debug("version: %08x\n", be32_to_cpu(blob->version));
374
375	if (be32_to_cpu(blob->magic) != OF_DT_HEADER) {
376		pr_err("Invalid device tree blob header\n");
377		return;
378	}
379
380	/* First pass, scan for size */
381	start = ((unsigned long)blob) +
382		be32_to_cpu(blob->off_dt_struct);
383	size = unflatten_dt_node(blob, 0, &start, NULL, NULL, 0);
384	size = (size | 3) + 1;
385
386	pr_debug("  size is %lx, allocating...\n", size);
 
387
388	/* Allocate memory for the expanded device tree */
389	mem = (unsigned long)
390		dt_alloc(size + 4, __alignof__(struct device_node));
 
391
392	((__be32 *)mem)[size / 4] = cpu_to_be32(0xdeadbeef);
393
394	pr_debug("  unflattening %lx...\n", mem);
 
 
395
396	/* Second pass, do actual unflattening */
397	start = ((unsigned long)blob) +
398		be32_to_cpu(blob->off_dt_struct);
399	unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);
400	if (be32_to_cpup((__be32 *)start) != OF_DT_END)
401		pr_warning("Weird tag at end of tree: %08x\n", *((u32 *)start));
402	if (be32_to_cpu(((__be32 *)mem)[size / 4]) != 0xdeadbeef)
403		pr_warning("End of tree marker overwritten: %08x\n",
404			   be32_to_cpu(((__be32 *)mem)[size / 4]));
405	*allnextp = NULL;
 
 
 
 
406
407	pr_debug(" <- unflatten_device_tree()\n");
 
408}
409
410static void *kernel_tree_alloc(u64 size, u64 align)
411{
412	return kzalloc(size, GFP_KERNEL);
413}
414
 
 
415/**
416 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 
 
 
417 *
418 * unflattens the device-tree passed by the firmware, creating the
419 * tree of struct device_node. It also fills the "name" and "type"
420 * pointers of the nodes so the normal device-tree walking functions
421 * can be used.
 
 
 
422 */
423void of_fdt_unflatten_tree(unsigned long *blob,
424			struct device_node **mynodes)
425{
426	struct boot_param_header *device_tree =
427		(struct boot_param_header *)blob;
428	__unflatten_device_tree(device_tree, mynodes, &kernel_tree_alloc);
 
 
 
 
 
 
429}
430EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
431
432/* Everything below here references initial_boot_params directly. */
433int __initdata dt_root_addr_cells;
434int __initdata dt_root_size_cells;
435
436struct boot_param_header *initial_boot_params;
437
438#ifdef CONFIG_OF_EARLY_FLATTREE
439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440/**
441 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
442 * @it: callback function
443 * @data: context data pointer
444 *
445 * This function is used to scan the flattened device-tree, it is
446 * used to extract the memory information at boot before we can
447 * unflatten the tree
448 */
449int __init of_scan_flat_dt(int (*it)(unsigned long node,
450				     const char *uname, int depth,
451				     void *data),
452			   void *data)
453{
454	unsigned long p = ((unsigned long)initial_boot_params) +
455		be32_to_cpu(initial_boot_params->off_dt_struct);
456	int rc = 0;
457	int depth = -1;
458
459	do {
460		u32 tag = be32_to_cpup((__be32 *)p);
461		char *pathp;
462
463		p += 4;
464		if (tag == OF_DT_END_NODE) {
465			depth--;
466			continue;
467		}
468		if (tag == OF_DT_NOP)
469			continue;
470		if (tag == OF_DT_END)
471			break;
472		if (tag == OF_DT_PROP) {
473			u32 sz = be32_to_cpup((__be32 *)p);
474			p += 8;
475			if (be32_to_cpu(initial_boot_params->version) < 0x10)
476				p = ALIGN(p, sz >= 8 ? 8 : 4);
477			p += sz;
478			p = ALIGN(p, 4);
479			continue;
480		}
481		if (tag != OF_DT_BEGIN_NODE) {
482			pr_err("Invalid tag %x in flat device tree!\n", tag);
483			return -EINVAL;
484		}
485		depth++;
486		pathp = (char *)p;
487		p = ALIGN(p + strlen(pathp) + 1, 4);
488		if ((*pathp) == '/') {
489			char *lp, *np;
490			for (lp = NULL, np = pathp; *np; np++)
491				if ((*np) == '/')
492					lp = np+1;
493			if (lp != NULL)
494				pathp = lp;
495		}
496		rc = it(p, pathp, depth, data);
497		if (rc != 0)
498			break;
499	} while (1);
500
 
 
 
 
 
 
 
 
 
 
501	return rc;
502}
503
504/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505 * of_get_flat_dt_root - find the root node in the flat blob
506 */
507unsigned long __init of_get_flat_dt_root(void)
508{
509	unsigned long p = ((unsigned long)initial_boot_params) +
510		be32_to_cpu(initial_boot_params->off_dt_struct);
511
512	while (be32_to_cpup((__be32 *)p) == OF_DT_NOP)
513		p += 4;
514	BUG_ON(be32_to_cpup((__be32 *)p) != OF_DT_BEGIN_NODE);
515	p += 4;
516	return ALIGN(p + strlen((char *)p) + 1, 4);
517}
518
519/**
520 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
521 *
522 * This function can be used within scan_flattened_dt callback to get
523 * access to properties
524 */
525void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
526				 unsigned long *size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527{
528	return of_fdt_get_property(initial_boot_params, node, name, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529}
530
531/**
532 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
533 * @node: node to test
534 * @compat: compatible string to compare with compatible list.
535 */
536int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
537{
538	return of_fdt_is_compatible(initial_boot_params, node, compat);
539}
540
541/**
542 * of_flat_dt_match - Return true if node matches a list of compatible values
543 */
544int __init of_flat_dt_match(unsigned long node, const char **compat)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545{
546	return of_fdt_match(initial_boot_params, node, compat);
 
 
 
 
 
 
 
 
 
 
547}
548
549#ifdef CONFIG_BLK_DEV_INITRD
550/**
551 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
552 * @node: reference to node containing initrd location ('chosen')
553 */
554void __init early_init_dt_check_for_initrd(unsigned long node)
555{
556	unsigned long start, end, len;
557	__be32 *prop;
 
 
 
 
558
559	pr_debug("Looking for initrd properties... ");
560
561	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
562	if (!prop)
563		return;
564	start = of_read_ulong(prop, len/4);
565
566	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
567	if (!prop)
568		return;
569	end = of_read_ulong(prop, len/4);
 
 
570
571	early_init_dt_setup_initrd_arch(start, end);
572	pr_debug("initrd_start=0x%lx  initrd_end=0x%lx\n", start, end);
 
 
 
573}
574#else
575inline void early_init_dt_check_for_initrd(unsigned long node)
 
 
 
 
 
576{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577}
578#endif /* CONFIG_BLK_DEV_INITRD */
 
 
 
 
 
 
 
 
 
 
579
580/**
581 * early_init_dt_scan_root - fetch the top level address and size cells
 
582 */
583int __init early_init_dt_scan_root(unsigned long node, const char *uname,
584				   int depth, void *data)
585{
586	__be32 *prop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587
588	if (depth != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590
591	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
592	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
593
594	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
595	if (prop)
596		dt_root_size_cells = be32_to_cpup(prop);
597	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
598
599	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
600	if (prop)
601		dt_root_addr_cells = be32_to_cpup(prop);
602	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
603
604	/* break now */
605	return 1;
606}
607
608u64 __init dt_mem_next_cell(int s, __be32 **cellp)
609{
610	__be32 *p = *cellp;
611
612	*cellp = p + s;
613	return of_read_number(p, s);
614}
615
616/**
617 * early_init_dt_scan_memory - Look for an parse memory nodes
618 */
619int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
620				     int depth, void *data)
621{
622	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
623	__be32 *reg, *endp;
624	unsigned long l;
625
626	/* We are scanning "memory" nodes only */
627	if (type == NULL) {
628		/*
629		 * The longtrail doesn't have a device_type on the
630		 * /memory node, so look for the node called /memory@0.
631		 */
632		if (depth != 1 || strcmp(uname, "memory@0") != 0)
633			return 0;
634	} else if (strcmp(type, "memory") != 0)
635		return 0;
636
637	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
638	if (reg == NULL)
639		reg = of_get_flat_dt_prop(node, "reg", &l);
640	if (reg == NULL)
641		return 0;
642
643	endp = reg + (l / sizeof(__be32));
 
 
644
645	pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
646	    uname, l, reg[0], reg[1], reg[2], reg[3]);
647
648	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
649		u64 base, size;
 
 
 
650
651		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
652		size = dt_mem_next_cell(dt_root_size_cells, &reg);
653
654		if (size == 0)
655			continue;
656		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
657		    (unsigned long long)size);
658
659		early_init_dt_add_memory_arch(base, size);
660	}
661
662	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663}
664
665int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
666				     int depth, void *data)
667{
668	unsigned long l;
669	char *p;
 
 
670
671	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
 
 
 
 
 
672
673	if (depth != 1 || !data ||
674	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
675		return 0;
676
677	early_init_dt_check_for_initrd(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
678
679	/* Retrieve command line */
680	p = of_get_flat_dt_prop(node, "bootargs", &l);
681	if (p != NULL && l > 0)
682		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
683
 
 
 
 
 
 
684#ifdef CONFIG_CMDLINE
685#ifndef CONFIG_CMDLINE_FORCE
686	if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
 
 
 
 
 
 
 
687#endif
688		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
689#endif /* CONFIG_CMDLINE */
690
691	pr_debug("Command line is: %s\n", (char*)data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692
693	/* break now */
694	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695}
696
697/**
698 * unflatten_device_tree - create tree of device_nodes from flat blob
699 *
700 * unflattens the device-tree passed by the firmware, creating the
701 * tree of struct device_node. It also fills the "name" and "type"
702 * pointers of the nodes so the normal device-tree walking functions
703 * can be used.
704 */
705void __init unflatten_device_tree(void)
706{
707	__unflatten_device_tree(initial_boot_params, &allnodes,
708				early_init_dt_alloc_memory_arch);
709
710	/* Get pointer to OF "/chosen" node for use everywhere */
711	of_chosen = of_find_node_by_path("/chosen");
712	if (of_chosen == NULL)
713		of_chosen = of_find_node_by_path("/chosen@0");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715
716#endif /* CONFIG_OF_EARLY_FLATTREE */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
  11#include <linux/acpi.h>
  12#include <linux/crash_dump.h>
  13#include <linux/crc32.h>
  14#include <linux/kernel.h>
  15#include <linux/initrd.h>
  16#include <linux/memblock.h>
  17#include <linux/mutex.h>
  18#include <linux/of.h>
  19#include <linux/of_fdt.h>
  20#include <linux/sizes.h>
  21#include <linux/string.h>
  22#include <linux/errno.h>
  23#include <linux/slab.h>
  24#include <linux/libfdt.h>
  25#include <linux/debugfs.h>
  26#include <linux/serial_core.h>
  27#include <linux/sysfs.h>
  28#include <linux/random.h>
  29
  30#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
 
 
 
  31#include <asm/page.h>
  32
  33#include "of_private.h"
 
 
 
 
  34
  35/*
  36 * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by
  37 * cmd_dt_S_dtb in scripts/Makefile.lib
  38 */
  39extern uint8_t __dtb_empty_root_begin[];
  40extern uint8_t __dtb_empty_root_end[];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41
  42/*
  43 * of_fdt_limit_memory - limit the number of regions in the /memory node
  44 * @limit: maximum entries
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45 *
  46 * Adjust the flattened device tree to have at most 'limit' number of
  47 * memory entries in the /memory node. This function may be called
  48 * any time after initial_boot_param is set.
  49 */
  50void __init of_fdt_limit_memory(int limit)
 
  51{
  52	int memory;
  53	int len;
  54	const void *val;
  55	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  56	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  57	const __be32 *addr_prop;
  58	const __be32 *size_prop;
  59	int root_offset;
  60	int cell_size;
  61
  62	root_offset = fdt_path_offset(initial_boot_params, "/");
  63	if (root_offset < 0)
  64		return;
 
 
 
 
 
 
 
 
  65
  66	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  67				"#address-cells", NULL);
  68	if (addr_prop)
  69		nr_address_cells = fdt32_to_cpu(*addr_prop);
  70
  71	size_prop = fdt_getprop(initial_boot_params, root_offset,
  72				"#size-cells", NULL);
  73	if (size_prop)
  74		nr_size_cells = fdt32_to_cpu(*size_prop);
  75
  76	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  77
  78	memory = fdt_path_offset(initial_boot_params, "/memory");
  79	if (memory > 0) {
  80		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  81		if (len > limit*cell_size) {
  82			len = limit*cell_size;
  83			pr_debug("Limiting number of entries to %d\n", limit);
  84			fdt_setprop(initial_boot_params, memory, "reg", val,
  85					len);
  86		}
  87	}
  88}
  89
  90bool of_fdt_device_is_available(const void *blob, unsigned long node)
 
 
 
 
  91{
  92	const char *status = fdt_getprop(blob, node, "status", NULL);
  93
  94	if (!status)
  95		return true;
  96
  97	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
  98		return true;
 
 
 
 
  99
 100	return false;
 101}
 102
 103static void *unflatten_dt_alloc(void **mem, unsigned long size,
 104				       unsigned long align)
 105{
 106	void *res;
 107
 108	*mem = PTR_ALIGN(*mem, align);
 109	res = *mem;
 110	*mem += size;
 111
 112	return res;
 113}
 114
 115static void populate_properties(const void *blob,
 116				int offset,
 117				void **mem,
 118				struct device_node *np,
 119				const char *nodename,
 120				bool dryrun)
 121{
 122	struct property *pp, **pprev = NULL;
 123	int cur;
 124	bool has_name = false;
 125
 126	pprev = &np->properties;
 127	for (cur = fdt_first_property_offset(blob, offset);
 128	     cur >= 0;
 129	     cur = fdt_next_property_offset(blob, cur)) {
 130		const __be32 *val;
 131		const char *pname;
 132		u32 sz;
 133
 134		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 135		if (!val) {
 136			pr_warn("Cannot locate property at 0x%x\n", cur);
 137			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138		}
 
 139
 140		if (!pname) {
 141			pr_warn("Cannot find property name at 0x%x\n", cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142			continue;
 143		}
 144
 145		if (!strcmp(pname, "name"))
 146			has_name = true;
 147
 148		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 
 
 
 
 
 
 
 
 
 
 
 
 
 149					__alignof__(struct property));
 150		if (dryrun)
 151			continue;
 152
 153		/* We accept flattened tree phandles either in
 154		 * ePAPR-style "phandle" properties, or the
 155		 * legacy "linux,phandle" properties.  If both
 156		 * appear and have different values, things
 157		 * will get weird. Don't do that.
 158		 */
 159		if (!strcmp(pname, "phandle") ||
 160		    !strcmp(pname, "linux,phandle")) {
 161			if (!np->phandle)
 162				np->phandle = be32_to_cpup(val);
 
 
 
 
 
 
 
 
 163		}
 164
 165		/* And we process the "ibm,phandle" property
 166		 * used in pSeries dynamic device tree
 167		 * stuff
 168		 */
 169		if (!strcmp(pname, "ibm,phandle"))
 170			np->phandle = be32_to_cpup(val);
 171
 172		pp->name   = (char *)pname;
 173		pp->length = sz;
 174		pp->value  = (__be32 *)val;
 175		*pprev     = pp;
 176		pprev      = &pp->next;
 177	}
 178
 179	/* With version 0x10 we may not have the name property,
 180	 * recreate it here from the unit name if absent
 181	 */
 182	if (!has_name) {
 183		const char *p = nodename, *ps = p, *pa = NULL;
 184		int len;
 185
 186		while (*p) {
 187			if ((*p) == '@')
 188				pa = p;
 189			else if ((*p) == '/')
 190				ps = p + 1;
 191			p++;
 192		}
 193
 194		if (pa < ps)
 195			pa = p;
 196		len = (pa - ps) + 1;
 197		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 198					__alignof__(struct property));
 199		if (!dryrun) {
 200			pp->name   = "name";
 201			pp->length = len;
 202			pp->value  = pp + 1;
 203			*pprev     = pp;
 204			memcpy(pp->value, ps, len - 1);
 205			((char *)pp->value)[len - 1] = 0;
 206			pr_debug("fixed up name for %s -> %s\n",
 207				 nodename, (char *)pp->value);
 
 208		}
 209	}
 210}
 
 
 
 211
 212static int populate_node(const void *blob,
 213			  int offset,
 214			  void **mem,
 215			  struct device_node *dad,
 216			  struct device_node **pnp,
 217			  bool dryrun)
 218{
 219	struct device_node *np;
 220	const char *pathp;
 221	int len;
 222
 223	pathp = fdt_get_name(blob, offset, &len);
 224	if (!pathp) {
 225		*pnp = NULL;
 226		return len;
 227	}
 228
 229	len++;
 230
 231	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
 232				__alignof__(struct device_node));
 233	if (!dryrun) {
 234		char *fn;
 235		of_node_init(np);
 236		np->full_name = fn = ((char *)np) + sizeof(*np);
 237
 238		memcpy(fn, pathp, len);
 239
 240		if (dad != NULL) {
 241			np->parent = dad;
 242			np->sibling = dad->child;
 243			dad->child = np;
 244		}
 245	}
 246
 247	populate_properties(blob, offset, mem, np, pathp, dryrun);
 248	if (!dryrun) {
 249		np->name = of_get_property(np, "name", NULL);
 250		if (!np->name)
 251			np->name = "<NULL>";
 
 
 252	}
 253
 254	*pnp = np;
 255	return 0;
 256}
 257
 258static void reverse_nodes(struct device_node *parent)
 259{
 260	struct device_node *child, *next;
 261
 262	/* In-depth first */
 263	child = parent->child;
 264	while (child) {
 265		reverse_nodes(child);
 266
 267		child = child->sibling;
 268	}
 269
 270	/* Reverse the nodes in the child list */
 271	child = parent->child;
 272	parent->child = NULL;
 273	while (child) {
 274		next = child->sibling;
 275
 276		child->sibling = parent->child;
 277		parent->child = child;
 278		child = next;
 279	}
 
 
 280}
 281
 282/**
 283 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 284 * @blob: The parent device tree blob
 285 * @mem: Memory chunk to use for allocating device nodes and properties
 286 * @dad: Parent struct device_node
 287 * @nodepp: The device_node tree created by the call
 288 *
 289 * Return: The size of unflattened device tree or error code
 290 */
 291static int unflatten_dt_nodes(const void *blob,
 292			      void *mem,
 293			      struct device_node *dad,
 294			      struct device_node **nodepp)
 295{
 296	struct device_node *root;
 297	int offset = 0, depth = 0, initial_depth = 0;
 298#define FDT_MAX_DEPTH	64
 299	struct device_node *nps[FDT_MAX_DEPTH];
 300	void *base = mem;
 301	bool dryrun = !base;
 302	int ret;
 303
 304	if (nodepp)
 305		*nodepp = NULL;
 306
 307	/*
 308	 * We're unflattening device sub-tree if @dad is valid. There are
 309	 * possibly multiple nodes in the first level of depth. We need
 310	 * set @depth to 1 to make fdt_next_node() happy as it bails
 311	 * immediately when negative @depth is found. Otherwise, the device
 312	 * nodes except the first one won't be unflattened successfully.
 313	 */
 314	if (dad)
 315		depth = initial_depth = 1;
 316
 317	root = dad;
 318	nps[depth] = dad;
 319
 320	for (offset = 0;
 321	     offset >= 0 && depth >= initial_depth;
 322	     offset = fdt_next_node(blob, offset, &depth)) {
 323		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
 324			continue;
 325
 326		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 327		    !of_fdt_device_is_available(blob, offset))
 328			continue;
 329
 330		ret = populate_node(blob, offset, &mem, nps[depth],
 331				   &nps[depth+1], dryrun);
 332		if (ret < 0)
 333			return ret;
 334
 335		if (!dryrun && nodepp && !*nodepp)
 336			*nodepp = nps[depth+1];
 337		if (!dryrun && !root)
 338			root = nps[depth+1];
 339	}
 340
 341	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 342		pr_err("Error %d processing FDT\n", offset);
 343		return -EINVAL;
 344	}
 345
 346	/*
 347	 * Reverse the child list. Some drivers assumes node order matches .dts
 348	 * node order
 349	 */
 350	if (!dryrun)
 351		reverse_nodes(root);
 352
 353	return mem - base;
 354}
 355
 356/**
 357 * __unflatten_device_tree - create tree of device_nodes from flat blob
 358 * @blob: The blob to expand
 359 * @dad: Parent device node
 360 * @mynodes: The device_node tree created by the call
 361 * @dt_alloc: An allocator that provides a virtual address to memory
 362 * for the resulting tree
 363 * @detached: if true set OF_DETACHED on @mynodes
 364 *
 365 * unflattens a device-tree, creating the tree of struct device_node. It also
 366 * fills the "name" and "type" pointers of the nodes so the normal device-tree
 367 * walking functions can be used.
 368 *
 369 * Return: NULL on failure or the memory chunk containing the unflattened
 370 * device tree on success.
 371 */
 372void *__unflatten_device_tree(const void *blob,
 373			      struct device_node *dad,
 374			      struct device_node **mynodes,
 375			      void *(*dt_alloc)(u64 size, u64 align),
 376			      bool detached)
 377{
 378	int size;
 379	void *mem;
 380	int ret;
 381
 382	if (mynodes)
 383		*mynodes = NULL;
 384
 385	pr_debug(" -> unflatten_device_tree()\n");
 386
 387	if (!blob) {
 388		pr_debug("No device tree pointer\n");
 389		return NULL;
 390	}
 391
 392	pr_debug("Unflattening device tree:\n");
 393	pr_debug("magic: %08x\n", fdt_magic(blob));
 394	pr_debug("size: %08x\n", fdt_totalsize(blob));
 395	pr_debug("version: %08x\n", fdt_version(blob));
 396
 397	if (fdt_check_header(blob)) {
 398		pr_err("Invalid device tree blob header\n");
 399		return NULL;
 400	}
 401
 402	/* First pass, scan for size */
 403	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 404	if (size <= 0)
 405		return NULL;
 
 406
 407	size = ALIGN(size, 4);
 408	pr_debug("  size is %d, allocating...\n", size);
 409
 410	/* Allocate memory for the expanded device tree */
 411	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 412	if (!mem)
 413		return NULL;
 414
 415	memset(mem, 0, size);
 416
 417	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 418
 419	pr_debug("  unflattening %p...\n", mem);
 420
 421	/* Second pass, do actual unflattening */
 422	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
 423
 424	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 425		pr_warn("End of tree marker overwritten: %08x\n",
 426			be32_to_cpup(mem + size));
 427
 428	if (ret <= 0)
 429		return NULL;
 430
 431	if (detached && mynodes && *mynodes) {
 432		of_node_set_flag(*mynodes, OF_DETACHED);
 433		pr_debug("unflattened tree is detached\n");
 434	}
 435
 436	pr_debug(" <- unflatten_device_tree()\n");
 437	return mem;
 438}
 439
 440static void *kernel_tree_alloc(u64 size, u64 align)
 441{
 442	return kzalloc(size, GFP_KERNEL);
 443}
 444
 445static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 446
 447/**
 448 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 449 * @blob: Flat device tree blob
 450 * @dad: Parent device node
 451 * @mynodes: The device tree created by the call
 452 *
 453 * unflattens the device-tree passed by the firmware, creating the
 454 * tree of struct device_node. It also fills the "name" and "type"
 455 * pointers of the nodes so the normal device-tree walking functions
 456 * can be used.
 457 *
 458 * Return: NULL on failure or the memory chunk containing the unflattened
 459 * device tree on success.
 460 */
 461void *of_fdt_unflatten_tree(const unsigned long *blob,
 462			    struct device_node *dad,
 463			    struct device_node **mynodes)
 464{
 465	void *mem;
 466
 467	mutex_lock(&of_fdt_unflatten_mutex);
 468	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 469				      true);
 470	mutex_unlock(&of_fdt_unflatten_mutex);
 471
 472	return mem;
 473}
 474EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 475
 476/* Everything below here references initial_boot_params directly. */
 477int __initdata dt_root_addr_cells;
 478int __initdata dt_root_size_cells;
 479
 480void *initial_boot_params __ro_after_init;
 481
 482#ifdef CONFIG_OF_EARLY_FLATTREE
 483
 484static u32 of_fdt_crc32;
 485
 486/*
 487 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
 488 *
 489 * This function reserves the memory occupied by an elf core header
 490 * described in the device tree. This region contains all the
 491 * information about primary kernel's core image and is used by a dump
 492 * capture kernel to access the system memory on primary kernel.
 493 */
 494static void __init fdt_reserve_elfcorehdr(void)
 495{
 496	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
 497		return;
 498
 499	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
 500		pr_warn("elfcorehdr is overlapped\n");
 501		return;
 502	}
 503
 504	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
 505
 506	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
 507		elfcorehdr_size >> 10, elfcorehdr_addr);
 508}
 509
 510/**
 511 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 512 *
 513 * This function grabs memory from early allocator for device exclusive use
 514 * defined in device tree structures. It should be called by arch specific code
 515 * once the early allocator (i.e. memblock) has been fully activated.
 516 */
 517void __init early_init_fdt_scan_reserved_mem(void)
 518{
 519	int n;
 520	u64 base, size;
 521
 522	if (!initial_boot_params)
 523		return;
 524
 525	fdt_scan_reserved_mem();
 526	fdt_reserve_elfcorehdr();
 527
 528	/* Process header /memreserve/ fields */
 529	for (n = 0; ; n++) {
 530		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 531		if (!size)
 532			break;
 533		memblock_reserve(base, size);
 534	}
 535
 536	fdt_init_reserved_mem();
 537}
 538
 539/**
 540 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 541 */
 542void __init early_init_fdt_reserve_self(void)
 543{
 544	if (!initial_boot_params)
 545		return;
 546
 547	/* Reserve the dtb region */
 548	memblock_reserve(__pa(initial_boot_params),
 549			 fdt_totalsize(initial_boot_params));
 550}
 551
 552/**
 553 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 554 * @it: callback function
 555 * @data: context data pointer
 556 *
 557 * This function is used to scan the flattened device-tree, it is
 558 * used to extract the memory information at boot before we can
 559 * unflatten the tree
 560 */
 561int __init of_scan_flat_dt(int (*it)(unsigned long node,
 562				     const char *uname, int depth,
 563				     void *data),
 564			   void *data)
 565{
 566	const void *blob = initial_boot_params;
 567	const char *pathp;
 568	int offset, rc = 0, depth = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569
 570	if (!blob)
 571		return 0;
 572
 573	for (offset = fdt_next_node(blob, -1, &depth);
 574	     offset >= 0 && depth >= 0 && !rc;
 575	     offset = fdt_next_node(blob, offset, &depth)) {
 576
 577		pathp = fdt_get_name(blob, offset, NULL);
 578		rc = it(offset, pathp, depth, data);
 579	}
 580	return rc;
 581}
 582
 583/**
 584 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 585 * @parent: parent node
 586 * @it: callback function
 587 * @data: context data pointer
 588 *
 589 * This function is used to scan sub-nodes of a node.
 590 */
 591int __init of_scan_flat_dt_subnodes(unsigned long parent,
 592				    int (*it)(unsigned long node,
 593					      const char *uname,
 594					      void *data),
 595				    void *data)
 596{
 597	const void *blob = initial_boot_params;
 598	int node;
 599
 600	fdt_for_each_subnode(node, blob, parent) {
 601		const char *pathp;
 602		int rc;
 603
 604		pathp = fdt_get_name(blob, node, NULL);
 605		rc = it(node, pathp, data);
 606		if (rc)
 607			return rc;
 608	}
 609	return 0;
 610}
 611
 612/**
 613 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 614 *
 615 * @node: the parent node
 616 * @uname: the name of subnode
 617 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 618 */
 619
 620int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 621{
 622	return fdt_subnode_offset(initial_boot_params, node, uname);
 623}
 624
 625/*
 626 * of_get_flat_dt_root - find the root node in the flat blob
 627 */
 628unsigned long __init of_get_flat_dt_root(void)
 629{
 630	return 0;
 
 
 
 
 
 
 
 631}
 632
 633/*
 634 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 635 *
 636 * This function can be used within scan_flattened_dt callback to get
 637 * access to properties
 638 */
 639const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 640				       int *size)
 641{
 642	return fdt_getprop(initial_boot_params, node, name, size);
 643}
 644
 645/**
 646 * of_fdt_is_compatible - Return true if given node from the given blob has
 647 * compat in its compatible list
 648 * @blob: A device tree blob
 649 * @node: node to test
 650 * @compat: compatible string to compare with compatible list.
 651 *
 652 * Return: a non-zero value on match with smaller values returned for more
 653 * specific compatible values.
 654 */
 655static int of_fdt_is_compatible(const void *blob,
 656		      unsigned long node, const char *compat)
 657{
 658	const char *cp;
 659	int cplen;
 660	unsigned long l, score = 0;
 661
 662	cp = fdt_getprop(blob, node, "compatible", &cplen);
 663	if (cp == NULL)
 664		return 0;
 665	while (cplen > 0) {
 666		score++;
 667		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 668			return score;
 669		l = strlen(cp) + 1;
 670		cp += l;
 671		cplen -= l;
 672	}
 673
 674	return 0;
 675}
 676
 677/**
 678 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 679 * @node: node to test
 680 * @compat: compatible string to compare with compatible list.
 681 */
 682int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 683{
 684	return of_fdt_is_compatible(initial_boot_params, node, compat);
 685}
 686
 687/*
 688 * of_flat_dt_match - Return true if node matches a list of compatible values
 689 */
 690static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 691{
 692	unsigned int tmp, score = 0;
 693
 694	if (!compat)
 695		return 0;
 696
 697	while (*compat) {
 698		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
 699		if (tmp && (score == 0 || (tmp < score)))
 700			score = tmp;
 701		compat++;
 702	}
 703
 704	return score;
 705}
 706
 707/*
 708 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
 709 */
 710uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 711{
 712	return fdt_get_phandle(initial_boot_params, node);
 713}
 714
 715const char * __init of_flat_dt_get_machine_name(void)
 716{
 717	const char *name;
 718	unsigned long dt_root = of_get_flat_dt_root();
 719
 720	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 721	if (!name)
 722		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 723	return name;
 724}
 725
 726/**
 727 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 728 *
 729 * @default_match: A machine specific ptr to return in case of no match.
 730 * @get_next_compat: callback function to return next compatible match table.
 731 *
 732 * Iterate through machine match tables to find the best match for the machine
 733 * compatible string in the FDT.
 734 */
 735const void * __init of_flat_dt_match_machine(const void *default_match,
 736		const void * (*get_next_compat)(const char * const**))
 737{
 738	const void *data = NULL;
 739	const void *best_data = default_match;
 740	const char *const *compat;
 741	unsigned long dt_root;
 742	unsigned int best_score = ~1, score = 0;
 743
 744	dt_root = of_get_flat_dt_root();
 745	while ((data = get_next_compat(&compat))) {
 746		score = of_flat_dt_match(dt_root, compat);
 747		if (score > 0 && score < best_score) {
 748			best_data = data;
 749			best_score = score;
 750		}
 751	}
 752	if (!best_data) {
 753		const char *prop;
 754		int size;
 755
 756		pr_err("\n unrecognized device tree list:\n[ ");
 757
 758		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 759		if (prop) {
 760			while (size > 0) {
 761				printk("'%s' ", prop);
 762				size -= strlen(prop) + 1;
 763				prop += strlen(prop) + 1;
 764			}
 765		}
 766		printk("]\n\n");
 767		return NULL;
 768	}
 769
 770	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 771
 772	return best_data;
 773}
 774
 775static void __early_init_dt_declare_initrd(unsigned long start,
 776					   unsigned long end)
 777{
 778	/*
 779	 * __va() is not yet available this early on some platforms. In that
 780	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
 781	 * and does the VA conversion itself.
 782	 */
 783	if (!IS_ENABLED(CONFIG_ARM64) &&
 784	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
 785		initrd_start = (unsigned long)__va(start);
 786		initrd_end = (unsigned long)__va(end);
 787		initrd_below_start_ok = 1;
 788	}
 789}
 790
 
 791/**
 792 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 793 * @node: reference to node containing initrd location ('chosen')
 794 */
 795static void __init early_init_dt_check_for_initrd(unsigned long node)
 796{
 797	u64 start, end;
 798	int len;
 799	const __be32 *prop;
 800
 801	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
 802		return;
 803
 804	pr_debug("Looking for initrd properties... ");
 805
 806	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 807	if (!prop)
 808		return;
 809	start = of_read_number(prop, len/4);
 810
 811	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 812	if (!prop)
 813		return;
 814	end = of_read_number(prop, len/4);
 815	if (start > end)
 816		return;
 817
 818	__early_init_dt_declare_initrd(start, end);
 819	phys_initrd_start = start;
 820	phys_initrd_size = end - start;
 821
 822	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
 823}
 824
 825/**
 826 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
 827 * tree
 828 * @node: reference to node containing elfcorehdr location ('chosen')
 829 */
 830static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
 831{
 832	const __be32 *prop;
 833	int len;
 834
 835	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 836		return;
 837
 838	pr_debug("Looking for elfcorehdr property... ");
 839
 840	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
 841	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
 842		return;
 843
 844	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
 845	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
 846
 847	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
 848		 elfcorehdr_addr, elfcorehdr_size);
 849}
 850
 851static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
 852
 853/*
 854 * The main usage of linux,usable-memory-range is for crash dump kernel.
 855 * Originally, the number of usable-memory regions is one. Now there may
 856 * be two regions, low region and high region.
 857 * To make compatibility with existing user-space and older kdump, the low
 858 * region is always the last range of linux,usable-memory-range if exist.
 859 */
 860#define MAX_USABLE_RANGES		2
 861
 862/**
 863 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
 864 * location from flat tree
 865 */
 866void __init early_init_dt_check_for_usable_mem_range(void)
 
 867{
 868	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
 869	const __be32 *prop, *endp;
 870	int len, i;
 871	unsigned long node = chosen_node_offset;
 872
 873	if ((long)node < 0)
 874		return;
 875
 876	pr_debug("Looking for usable-memory-range property... ");
 877
 878	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
 879	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
 880		return;
 881
 882	endp = prop + (len / sizeof(__be32));
 883	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
 884		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 885		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
 886
 887		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
 888			 i, &rgn[i].base, &rgn[i].size);
 889	}
 890
 891	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
 892	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
 893		memblock_add(rgn[i].base, rgn[i].size);
 894}
 895
 896#ifdef CONFIG_SERIAL_EARLYCON
 897
 898int __init early_init_dt_scan_chosen_stdout(void)
 899{
 900	int offset;
 901	const char *p, *q, *options = NULL;
 902	int l;
 903	const struct earlycon_id *match;
 904	const void *fdt = initial_boot_params;
 905	int ret;
 906
 907	offset = fdt_path_offset(fdt, "/chosen");
 908	if (offset < 0)
 909		offset = fdt_path_offset(fdt, "/chosen@0");
 910	if (offset < 0)
 911		return -ENOENT;
 912
 913	p = fdt_getprop(fdt, offset, "stdout-path", &l);
 914	if (!p)
 915		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 916	if (!p || !l)
 917		return -ENOENT;
 918
 919	q = strchrnul(p, ':');
 920	if (*q != '\0')
 921		options = q + 1;
 922	l = q - p;
 923
 924	/* Get the node specified by stdout-path */
 925	offset = fdt_path_offset_namelen(fdt, p, l);
 926	if (offset < 0) {
 927		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 928		return 0;
 929	}
 930
 931	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
 932		if (!match->compatible[0])
 933			continue;
 934
 935		if (fdt_node_check_compatible(fdt, offset, match->compatible))
 936			continue;
 937
 938		ret = of_setup_earlycon(match, offset, options);
 939		if (!ret || ret == -EALREADY)
 940			return 0;
 941	}
 942	return -ENODEV;
 943}
 944#endif
 945
 946/*
 947 * early_init_dt_scan_root - fetch the top level address and size cells
 948 */
 949int __init early_init_dt_scan_root(void)
 950{
 951	const __be32 *prop;
 952	const void *fdt = initial_boot_params;
 953	int node = fdt_path_offset(fdt, "/");
 954
 955	if (node < 0)
 956		return -ENODEV;
 957
 958	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 959	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 960
 961	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 962	if (prop)
 963		dt_root_size_cells = be32_to_cpup(prop);
 964	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
 965
 966	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 967	if (prop)
 968		dt_root_addr_cells = be32_to_cpup(prop);
 969	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
 970
 971	return 0;
 
 972}
 973
 974u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
 975{
 976	const __be32 *p = *cellp;
 977
 978	*cellp = p + s;
 979	return of_read_number(p, s);
 980}
 981
 982/*
 983 * early_init_dt_scan_memory - Look for and parse memory nodes
 984 */
 985int __init early_init_dt_scan_memory(void)
 
 986{
 987	int node, found_memory = 0;
 988	const void *fdt = initial_boot_params;
 
 
 
 
 
 
 
 
 
 
 
 
 989
 990	fdt_for_each_subnode(node, fdt, 0) {
 991		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 992		const __be32 *reg, *endp;
 993		int l;
 994		bool hotpluggable;
 995
 996		/* We are scanning "memory" nodes only */
 997		if (type == NULL || strcmp(type, "memory") != 0)
 998			continue;
 999
1000		if (!of_fdt_device_is_available(fdt, node))
1001			continue;
1002
1003		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1004		if (reg == NULL)
1005			reg = of_get_flat_dt_prop(node, "reg", &l);
1006		if (reg == NULL)
1007			continue;
1008
1009		endp = reg + (l / sizeof(__be32));
1010		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1011
1012		pr_debug("memory scan node %s, reg size %d,\n",
1013			 fdt_get_name(fdt, node, NULL), l);
 
 
1014
1015		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1016			u64 base, size;
1017
1018			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1019			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1020
1021			if (size == 0)
1022				continue;
1023			pr_debug(" - %llx, %llx\n", base, size);
1024
1025			early_init_dt_add_memory_arch(base, size);
1026
1027			found_memory = 1;
1028
1029			if (!hotpluggable)
1030				continue;
1031
1032			if (memblock_mark_hotplug(base, size))
1033				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1034					base, base + size);
1035		}
1036	}
1037	return found_memory;
1038}
1039
1040int __init early_init_dt_scan_chosen(char *cmdline)
 
1041{
1042	int l, node;
1043	const char *p;
1044	const void *rng_seed;
1045	const void *fdt = initial_boot_params;
1046
1047	node = fdt_path_offset(fdt, "/chosen");
1048	if (node < 0)
1049		node = fdt_path_offset(fdt, "/chosen@0");
1050	if (node < 0)
1051		/* Handle the cmdline config options even if no /chosen node */
1052		goto handle_cmdline;
1053
1054	chosen_node_offset = node;
 
 
1055
1056	early_init_dt_check_for_initrd(node);
1057	early_init_dt_check_for_elfcorehdr(node);
1058
1059	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1060	if (rng_seed && l > 0) {
1061		add_bootloader_randomness(rng_seed, l);
1062
1063		/* try to clear seed so it won't be found. */
1064		fdt_nop_property(initial_boot_params, node, "rng-seed");
1065
1066		/* update CRC check value */
1067		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1068				fdt_totalsize(initial_boot_params));
1069	}
1070
1071	/* Retrieve command line */
1072	p = of_get_flat_dt_prop(node, "bootargs", &l);
1073	if (p != NULL && l > 0)
1074		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1075
1076handle_cmdline:
1077	/*
1078	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1079	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1080	 * is set in which case we override whatever was found earlier.
1081	 */
1082#ifdef CONFIG_CMDLINE
1083#if defined(CONFIG_CMDLINE_EXTEND)
1084	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1085	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1086#elif defined(CONFIG_CMDLINE_FORCE)
1087	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1088#else
1089	/* No arguments from boot loader, use kernel's  cmdl*/
1090	if (!((char *)cmdline)[0])
1091		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1092#endif
 
1093#endif /* CONFIG_CMDLINE */
1094
1095	pr_debug("Command line is: %s\n", (char *)cmdline);
1096
1097	return 0;
1098}
1099
1100#ifndef MIN_MEMBLOCK_ADDR
1101#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1102#endif
1103#ifndef MAX_MEMBLOCK_ADDR
1104#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1105#endif
1106
1107void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1108{
1109	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1110
1111	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1112		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1113			base, base + size);
1114		return;
1115	}
1116
1117	if (!PAGE_ALIGNED(base)) {
1118		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1119		base = PAGE_ALIGN(base);
1120	}
1121	size &= PAGE_MASK;
1122
1123	if (base > MAX_MEMBLOCK_ADDR) {
1124		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1125			base, base + size);
1126		return;
1127	}
1128
1129	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1130		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1131			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1132		size = MAX_MEMBLOCK_ADDR - base + 1;
1133	}
1134
1135	if (base + size < phys_offset) {
1136		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1137			base, base + size);
1138		return;
1139	}
1140	if (base < phys_offset) {
1141		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1142			base, phys_offset);
1143		size -= phys_offset - base;
1144		base = phys_offset;
1145	}
1146	memblock_add(base, size);
1147}
1148
1149static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1150{
1151	void *ptr = memblock_alloc(size, align);
1152
1153	if (!ptr)
1154		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1155		      __func__, size, align);
1156
1157	return ptr;
1158}
1159
1160bool __init early_init_dt_verify(void *params)
1161{
1162	if (!params)
1163		return false;
1164
1165	/* check device tree validity */
1166	if (fdt_check_header(params))
1167		return false;
1168
1169	/* Setup flat device-tree pointer */
1170	initial_boot_params = params;
1171	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1172				fdt_totalsize(initial_boot_params));
1173	return true;
1174}
1175
1176
1177void __init early_init_dt_scan_nodes(void)
1178{
1179	int rc;
1180
1181	/* Initialize {size,address}-cells info */
1182	early_init_dt_scan_root();
1183
1184	/* Retrieve various information from the /chosen node */
1185	rc = early_init_dt_scan_chosen(boot_command_line);
1186	if (rc)
1187		pr_warn("No chosen node found, continuing without\n");
1188
1189	/* Setup memory, calling early_init_dt_add_memory_arch */
1190	early_init_dt_scan_memory();
1191
1192	/* Handle linux,usable-memory-range property */
1193	early_init_dt_check_for_usable_mem_range();
1194}
1195
1196bool __init early_init_dt_scan(void *params)
1197{
1198	bool status;
1199
1200	status = early_init_dt_verify(params);
1201	if (!status)
1202		return false;
1203
1204	early_init_dt_scan_nodes();
1205	return true;
1206}
1207
1208static void *__init copy_device_tree(void *fdt)
1209{
1210	int size;
1211	void *dt;
1212
1213	size = fdt_totalsize(fdt);
1214	dt = early_init_dt_alloc_memory_arch(size,
1215					     roundup_pow_of_two(FDT_V17_SIZE));
1216
1217	if (dt)
1218		memcpy(dt, fdt, size);
1219
1220	return dt;
1221}
1222
1223/**
1224 * unflatten_device_tree - create tree of device_nodes from flat blob
1225 *
1226 * unflattens the device-tree passed by the firmware, creating the
1227 * tree of struct device_node. It also fills the "name" and "type"
1228 * pointers of the nodes so the normal device-tree walking functions
1229 * can be used.
1230 */
1231void __init unflatten_device_tree(void)
1232{
1233	void *fdt = initial_boot_params;
 
1234
1235	/* Don't use the bootloader provided DTB if ACPI is enabled */
1236	if (!acpi_disabled)
1237		fdt = NULL;
1238
1239	/*
1240	 * Populate an empty root node when ACPI is enabled or bootloader
1241	 * doesn't provide one.
1242	 */
1243	if (!fdt) {
1244		fdt = (void *) __dtb_empty_root_begin;
1245		/* fdt_totalsize() will be used for copy size */
1246		if (fdt_totalsize(fdt) >
1247		    __dtb_empty_root_end - __dtb_empty_root_begin) {
1248			pr_err("invalid size in dtb_empty_root\n");
1249			return;
1250		}
1251		of_fdt_crc32 = crc32_be(~0, fdt, fdt_totalsize(fdt));
1252		fdt = copy_device_tree(fdt);
1253	}
1254
1255	__unflatten_device_tree(fdt, NULL, &of_root,
1256				early_init_dt_alloc_memory_arch, false);
1257
1258	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1259	of_alias_scan(early_init_dt_alloc_memory_arch);
1260
1261	unittest_unflatten_overlay_base();
1262}
1263
1264/**
1265 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1266 *
1267 * Copies and unflattens the device-tree passed by the firmware, creating the
1268 * tree of struct device_node. It also fills the "name" and "type"
1269 * pointers of the nodes so the normal device-tree walking functions
1270 * can be used. This should only be used when the FDT memory has not been
1271 * reserved such is the case when the FDT is built-in to the kernel init
1272 * section. If the FDT memory is reserved already then unflatten_device_tree
1273 * should be used instead.
1274 */
1275void __init unflatten_and_copy_device_tree(void)
1276{
1277	if (initial_boot_params)
1278		initial_boot_params = copy_device_tree(initial_boot_params);
1279
1280	unflatten_device_tree();
1281}
1282
1283#ifdef CONFIG_SYSFS
1284static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1285			       struct bin_attribute *bin_attr,
1286			       char *buf, loff_t off, size_t count)
1287{
1288	memcpy(buf, initial_boot_params + off, count);
1289	return count;
1290}
1291
1292static int __init of_fdt_raw_init(void)
1293{
1294	static struct bin_attribute of_fdt_raw_attr =
1295		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1296
1297	if (!initial_boot_params)
1298		return 0;
1299
1300	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1301				     fdt_totalsize(initial_boot_params))) {
1302		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1303		return 0;
1304	}
1305	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1306	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1307}
1308late_initcall(of_fdt_raw_init);
1309#endif
1310
1311#endif /* CONFIG_OF_EARLY_FLATTREE */