Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Functions for working with the Flattened Device Tree data format
  3 *
  4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
  5 * benh@kernel.crashing.org
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * version 2 as published by the Free Software Foundation.
 10 */
 11
 
 
 
 12#include <linux/kernel.h>
 13#include <linux/initrd.h>
 14#include <linux/module.h>
 
 15#include <linux/of.h>
 16#include <linux/of_fdt.h>
 
 
 17#include <linux/string.h>
 18#include <linux/errno.h>
 19#include <linux/slab.h>
 
 
 
 
 20
 21#ifdef CONFIG_PPC
 22#include <asm/machdep.h>
 23#endif /* CONFIG_PPC */
 24
 25#include <asm/page.h>
 26
 27char *of_fdt_get_string(struct boot_param_header *blob, u32 offset)
 28{
 29	return ((char *)blob) +
 30		be32_to_cpu(blob->off_dt_strings) + offset;
 31}
 32
 33/**
 34 * of_fdt_get_property - Given a node in the given flat blob, return
 35 * the property ptr
 36 */
 37void *of_fdt_get_property(struct boot_param_header *blob,
 38		       unsigned long node, const char *name,
 39		       unsigned long *size)
 40{
 41	unsigned long p = node;
 42
 43	do {
 44		u32 tag = be32_to_cpup((__be32 *)p);
 45		u32 sz, noff;
 46		const char *nstr;
 
 
 
 47
 48		p += 4;
 49		if (tag == OF_DT_NOP)
 50			continue;
 51		if (tag != OF_DT_PROP)
 52			return NULL;
 53
 54		sz = be32_to_cpup((__be32 *)p);
 55		noff = be32_to_cpup((__be32 *)(p + 4));
 56		p += 8;
 57		if (be32_to_cpu(blob->version) < 0x10)
 58			p = ALIGN(p, sz >= 8 ? 8 : 4);
 59
 60		nstr = of_fdt_get_string(blob, noff);
 61		if (nstr == NULL) {
 62			pr_warning("Can't find property index name !\n");
 63			return NULL;
 64		}
 65		if (strcmp(name, nstr) == 0) {
 66			if (size)
 67				*size = sz;
 68			return (void *)p;
 69		}
 70		p += sz;
 71		p = ALIGN(p, 4);
 72	} while (1);
 
 
 
 73}
 74
 75/**
 76 * of_fdt_is_compatible - Return true if given node from the given blob has
 77 * compat in its compatible list
 78 * @blob: A device tree blob
 79 * @node: node to test
 80 * @compat: compatible string to compare with compatible list.
 81 *
 82 * On match, returns a non-zero value with smaller values returned for more
 83 * specific compatible values.
 84 */
 85int of_fdt_is_compatible(struct boot_param_header *blob,
 86		      unsigned long node, const char *compat)
 87{
 88	const char *cp;
 89	unsigned long cplen, l, score = 0;
 
 90
 91	cp = of_fdt_get_property(blob, node, "compatible", &cplen);
 92	if (cp == NULL)
 93		return 0;
 94	while (cplen > 0) {
 95		score++;
 96		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 97			return score;
 98		l = strlen(cp) + 1;
 99		cp += l;
100		cplen -= l;
101	}
102
103	return 0;
104}
105
106/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107 * of_fdt_match - Return true if node matches a list of compatible values
108 */
109int of_fdt_match(struct boot_param_header *blob, unsigned long node,
110                 const char **compat)
111{
112	unsigned int tmp, score = 0;
113
114	if (!compat)
115		return 0;
116
117	while (*compat) {
118		tmp = of_fdt_is_compatible(blob, node, *compat);
119		if (tmp && (score == 0 || (tmp < score)))
120			score = tmp;
121		compat++;
122	}
123
124	return score;
125}
126
127static void *unflatten_dt_alloc(unsigned long *mem, unsigned long size,
128				       unsigned long align)
129{
130	void *res;
131
132	*mem = ALIGN(*mem, align);
133	res = (void *)*mem;
134	*mem += size;
135
136	return res;
137}
138
139/**
140 * unflatten_dt_node - Alloc and populate a device_node from the flat tree
141 * @blob: The parent device tree blob
142 * @mem: Memory chunk to use for allocating device nodes and properties
143 * @p: pointer to node in flat tree
144 * @dad: Parent struct device_node
145 * @allnextpp: pointer to ->allnext from last allocated device_node
146 * @fpsize: Size of the node path up at the current depth.
147 */
148static unsigned long unflatten_dt_node(struct boot_param_header *blob,
149				unsigned long mem,
150				unsigned long *p,
151				struct device_node *dad,
152				struct device_node ***allnextpp,
153				unsigned long fpsize)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154{
155	struct device_node *np;
156	struct property *pp, **prev_pp = NULL;
157	char *pathp;
158	u32 tag;
159	unsigned int l, allocl;
160	int has_name = 0;
161	int new_format = 0;
162
163	tag = be32_to_cpup((__be32 *)(*p));
164	if (tag != OF_DT_BEGIN_NODE) {
165		pr_err("Weird tag at start of node: %x\n", tag);
166		return mem;
167	}
168	*p += 4;
169	pathp = (char *)*p;
170	l = allocl = strlen(pathp) + 1;
171	*p = ALIGN(*p + l, 4);
172
173	/* version 0x10 has a more compact unit name here instead of the full
174	 * path. we accumulate the full path size using "fpsize", we'll rebuild
175	 * it later. We detect this because the first character of the name is
176	 * not '/'.
177	 */
178	if ((*pathp) != '/') {
179		new_format = 1;
180		if (fpsize == 0) {
181			/* root node: special case. fpsize accounts for path
182			 * plus terminating zero. root node only has '/', so
183			 * fpsize should be 2, but we want to avoid the first
184			 * level nodes to have two '/' so we use fpsize 1 here
185			 */
186			fpsize = 1;
187			allocl = 2;
 
 
188		} else {
189			/* account for '/' and path size minus terminal 0
190			 * already in 'l'
191			 */
192			fpsize += l;
193			allocl = fpsize;
194		}
195	}
196
197	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
198				__alignof__(struct device_node));
199	if (allnextpp) {
200		memset(np, 0, sizeof(*np));
201		np->full_name = ((char *)np) + sizeof(struct device_node);
 
202		if (new_format) {
203			char *fn = np->full_name;
204			/* rebuild full path for new format */
205			if (dad && dad->parent) {
206				strcpy(fn, dad->full_name);
207#ifdef DEBUG
208				if ((strlen(fn) + l + 1) != allocl) {
209					pr_debug("%s: p: %d, l: %d, a: %d\n",
210						pathp, (int)strlen(fn),
211						l, allocl);
212				}
213#endif
214				fn += strlen(fn);
215			}
216			*(fn++) = '/';
217			memcpy(fn, pathp, l);
218		} else
219			memcpy(np->full_name, pathp, l);
220		prev_pp = &np->properties;
221		**allnextpp = np;
222		*allnextpp = &np->allnext;
223		if (dad != NULL) {
224			np->parent = dad;
225			/* we temporarily use the next field as `last_child'*/
226			if (dad->next == NULL)
227				dad->child = np;
228			else
229				dad->next->sibling = np;
230			dad->next = np;
231		}
232		kref_init(&np->kref);
233	}
234	/* process properties */
235	while (1) {
236		u32 sz, noff;
237		char *pname;
238
239		tag = be32_to_cpup((__be32 *)(*p));
240		if (tag == OF_DT_NOP) {
241			*p += 4;
242			continue;
243		}
244		if (tag != OF_DT_PROP)
245			break;
246		*p += 4;
247		sz = be32_to_cpup((__be32 *)(*p));
248		noff = be32_to_cpup((__be32 *)((*p) + 4));
249		*p += 8;
250		if (be32_to_cpu(blob->version) < 0x10)
251			*p = ALIGN(*p, sz >= 8 ? 8 : 4);
252
253		pname = of_fdt_get_string(blob, noff);
254		if (pname == NULL) {
255			pr_info("Can't find property name in list !\n");
256			break;
257		}
258		if (strcmp(pname, "name") == 0)
259			has_name = 1;
260		l = strlen(pname) + 1;
261		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
262					__alignof__(struct property));
263		if (allnextpp) {
264			/* We accept flattened tree phandles either in
265			 * ePAPR-style "phandle" properties, or the
266			 * legacy "linux,phandle" properties.  If both
267			 * appear and have different values, things
268			 * will get weird.  Don't do that. */
269			if ((strcmp(pname, "phandle") == 0) ||
270			    (strcmp(pname, "linux,phandle") == 0)) {
271				if (np->phandle == 0)
272					np->phandle = be32_to_cpup((__be32*)*p);
273			}
274			/* And we process the "ibm,phandle" property
275			 * used in pSeries dynamic device tree
276			 * stuff */
277			if (strcmp(pname, "ibm,phandle") == 0)
278				np->phandle = be32_to_cpup((__be32 *)*p);
279			pp->name = pname;
280			pp->length = sz;
281			pp->value = (void *)*p;
282			*prev_pp = pp;
283			prev_pp = &pp->next;
284		}
285		*p = ALIGN((*p) + sz, 4);
286	}
287	/* with version 0x10 we may not have the name property, recreate
288	 * it here from the unit name if absent
289	 */
290	if (!has_name) {
291		char *p1 = pathp, *ps = pathp, *pa = NULL;
292		int sz;
293
294		while (*p1) {
295			if ((*p1) == '@')
296				pa = p1;
297			if ((*p1) == '/')
298				ps = p1 + 1;
299			p1++;
300		}
301		if (pa < ps)
302			pa = p1;
303		sz = (pa - ps) + 1;
304		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
305					__alignof__(struct property));
306		if (allnextpp) {
307			pp->name = "name";
308			pp->length = sz;
309			pp->value = pp + 1;
310			*prev_pp = pp;
311			prev_pp = &pp->next;
312			memcpy(pp->value, ps, sz - 1);
313			((char *)pp->value)[sz - 1] = 0;
314			pr_debug("fixed up name for %s -> %s\n", pathp,
315				(char *)pp->value);
316		}
317	}
318	if (allnextpp) {
319		*prev_pp = NULL;
320		np->name = of_get_property(np, "name", NULL);
321		np->type = of_get_property(np, "device_type", NULL);
322
323		if (!np->name)
324			np->name = "<NULL>";
325		if (!np->type)
326			np->type = "<NULL>";
327	}
328	while (tag == OF_DT_BEGIN_NODE || tag == OF_DT_NOP) {
329		if (tag == OF_DT_NOP)
330			*p += 4;
331		else
332			mem = unflatten_dt_node(blob, mem, p, np, allnextpp,
333						fpsize);
334		tag = be32_to_cpup((__be32 *)(*p));
335	}
336	if (tag != OF_DT_END_NODE) {
337		pr_err("Weird tag at end of node: %x\n", tag);
338		return mem;
 
 
 
 
339	}
340	*p += 4;
341	return mem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342}
343
344/**
345 * __unflatten_device_tree - create tree of device_nodes from flat blob
346 *
347 * unflattens a device-tree, creating the
348 * tree of struct device_node. It also fills the "name" and "type"
349 * pointers of the nodes so the normal device-tree walking functions
350 * can be used.
351 * @blob: The blob to expand
 
352 * @mynodes: The device_node tree created by the call
353 * @dt_alloc: An allocator that provides a virtual address to memory
354 * for the resulting tree
 
 
 
355 */
356static void __unflatten_device_tree(struct boot_param_header *blob,
357			     struct device_node **mynodes,
358			     void * (*dt_alloc)(u64 size, u64 align))
 
 
359{
360	unsigned long start, mem, size;
361	struct device_node **allnextp = mynodes;
362
363	pr_debug(" -> unflatten_device_tree()\n");
364
365	if (!blob) {
366		pr_debug("No device tree pointer\n");
367		return;
368	}
369
370	pr_debug("Unflattening device tree:\n");
371	pr_debug("magic: %08x\n", be32_to_cpu(blob->magic));
372	pr_debug("size: %08x\n", be32_to_cpu(blob->totalsize));
373	pr_debug("version: %08x\n", be32_to_cpu(blob->version));
374
375	if (be32_to_cpu(blob->magic) != OF_DT_HEADER) {
376		pr_err("Invalid device tree blob header\n");
377		return;
378	}
379
380	/* First pass, scan for size */
381	start = ((unsigned long)blob) +
382		be32_to_cpu(blob->off_dt_struct);
383	size = unflatten_dt_node(blob, 0, &start, NULL, NULL, 0);
384	size = (size | 3) + 1;
385
386	pr_debug("  size is %lx, allocating...\n", size);
 
387
388	/* Allocate memory for the expanded device tree */
389	mem = (unsigned long)
390		dt_alloc(size + 4, __alignof__(struct device_node));
391
392	((__be32 *)mem)[size / 4] = cpu_to_be32(0xdeadbeef);
393
394	pr_debug("  unflattening %lx...\n", mem);
395
396	/* Second pass, do actual unflattening */
397	start = ((unsigned long)blob) +
398		be32_to_cpu(blob->off_dt_struct);
399	unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);
400	if (be32_to_cpup((__be32 *)start) != OF_DT_END)
401		pr_warning("Weird tag at end of tree: %08x\n", *((u32 *)start));
402	if (be32_to_cpu(((__be32 *)mem)[size / 4]) != 0xdeadbeef)
403		pr_warning("End of tree marker overwritten: %08x\n",
404			   be32_to_cpu(((__be32 *)mem)[size / 4]));
405	*allnextp = NULL;
 
 
 
 
406
407	pr_debug(" <- unflatten_device_tree()\n");
 
408}
409
410static void *kernel_tree_alloc(u64 size, u64 align)
411{
412	return kzalloc(size, GFP_KERNEL);
413}
414
 
 
415/**
416 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 
 
 
417 *
418 * unflattens the device-tree passed by the firmware, creating the
419 * tree of struct device_node. It also fills the "name" and "type"
420 * pointers of the nodes so the normal device-tree walking functions
421 * can be used.
 
 
 
422 */
423void of_fdt_unflatten_tree(unsigned long *blob,
424			struct device_node **mynodes)
425{
426	struct boot_param_header *device_tree =
427		(struct boot_param_header *)blob;
428	__unflatten_device_tree(device_tree, mynodes, &kernel_tree_alloc);
 
 
 
 
 
 
429}
430EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
431
432/* Everything below here references initial_boot_params directly. */
433int __initdata dt_root_addr_cells;
434int __initdata dt_root_size_cells;
435
436struct boot_param_header *initial_boot_params;
437
438#ifdef CONFIG_OF_EARLY_FLATTREE
439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440/**
441 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
442 * @it: callback function
443 * @data: context data pointer
444 *
445 * This function is used to scan the flattened device-tree, it is
446 * used to extract the memory information at boot before we can
447 * unflatten the tree
448 */
449int __init of_scan_flat_dt(int (*it)(unsigned long node,
450				     const char *uname, int depth,
451				     void *data),
452			   void *data)
453{
454	unsigned long p = ((unsigned long)initial_boot_params) +
455		be32_to_cpu(initial_boot_params->off_dt_struct);
456	int rc = 0;
457	int depth = -1;
458
459	do {
460		u32 tag = be32_to_cpup((__be32 *)p);
461		char *pathp;
462
463		p += 4;
464		if (tag == OF_DT_END_NODE) {
465			depth--;
466			continue;
467		}
468		if (tag == OF_DT_NOP)
469			continue;
470		if (tag == OF_DT_END)
471			break;
472		if (tag == OF_DT_PROP) {
473			u32 sz = be32_to_cpup((__be32 *)p);
474			p += 8;
475			if (be32_to_cpu(initial_boot_params->version) < 0x10)
476				p = ALIGN(p, sz >= 8 ? 8 : 4);
477			p += sz;
478			p = ALIGN(p, 4);
479			continue;
480		}
481		if (tag != OF_DT_BEGIN_NODE) {
482			pr_err("Invalid tag %x in flat device tree!\n", tag);
483			return -EINVAL;
484		}
485		depth++;
486		pathp = (char *)p;
487		p = ALIGN(p + strlen(pathp) + 1, 4);
488		if ((*pathp) == '/') {
489			char *lp, *np;
490			for (lp = NULL, np = pathp; *np; np++)
491				if ((*np) == '/')
492					lp = np+1;
493			if (lp != NULL)
494				pathp = lp;
495		}
496		rc = it(p, pathp, depth, data);
497		if (rc != 0)
498			break;
499	} while (1);
500
501	return rc;
502}
503
504/**
 
 
 
 
 
 
 
 
 
 
 
 
 
505 * of_get_flat_dt_root - find the root node in the flat blob
506 */
507unsigned long __init of_get_flat_dt_root(void)
508{
509	unsigned long p = ((unsigned long)initial_boot_params) +
510		be32_to_cpu(initial_boot_params->off_dt_struct);
511
512	while (be32_to_cpup((__be32 *)p) == OF_DT_NOP)
513		p += 4;
514	BUG_ON(be32_to_cpup((__be32 *)p) != OF_DT_BEGIN_NODE);
515	p += 4;
516	return ALIGN(p + strlen((char *)p) + 1, 4);
 
517}
518
519/**
520 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
521 *
522 * This function can be used within scan_flattened_dt callback to get
523 * access to properties
524 */
525void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
526				 unsigned long *size)
527{
528	return of_fdt_get_property(initial_boot_params, node, name, size);
529}
530
531/**
532 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
533 * @node: node to test
534 * @compat: compatible string to compare with compatible list.
535 */
536int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
537{
538	return of_fdt_is_compatible(initial_boot_params, node, compat);
539}
540
541/**
542 * of_flat_dt_match - Return true if node matches a list of compatible values
543 */
544int __init of_flat_dt_match(unsigned long node, const char **compat)
545{
546	return of_fdt_match(initial_boot_params, node, compat);
547}
548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549#ifdef CONFIG_BLK_DEV_INITRD
 
 
 
 
 
 
 
 
 
 
550/**
551 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
552 * @node: reference to node containing initrd location ('chosen')
553 */
554void __init early_init_dt_check_for_initrd(unsigned long node)
555{
556	unsigned long start, end, len;
557	__be32 *prop;
 
558
559	pr_debug("Looking for initrd properties... ");
560
561	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
562	if (!prop)
563		return;
564	start = of_read_ulong(prop, len/4);
565
566	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
567	if (!prop)
568		return;
569	end = of_read_ulong(prop, len/4);
570
571	early_init_dt_setup_initrd_arch(start, end);
572	pr_debug("initrd_start=0x%lx  initrd_end=0x%lx\n", start, end);
 
 
573}
574#else
575inline void early_init_dt_check_for_initrd(unsigned long node)
576{
577}
578#endif /* CONFIG_BLK_DEV_INITRD */
579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580/**
581 * early_init_dt_scan_root - fetch the top level address and size cells
582 */
583int __init early_init_dt_scan_root(unsigned long node, const char *uname,
584				   int depth, void *data)
585{
586	__be32 *prop;
587
588	if (depth != 0)
589		return 0;
590
591	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
592	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
593
594	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
595	if (prop)
596		dt_root_size_cells = be32_to_cpup(prop);
597	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
598
599	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
600	if (prop)
601		dt_root_addr_cells = be32_to_cpup(prop);
602	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
603
604	/* break now */
605	return 1;
606}
607
608u64 __init dt_mem_next_cell(int s, __be32 **cellp)
609{
610	__be32 *p = *cellp;
611
612	*cellp = p + s;
613	return of_read_number(p, s);
614}
615
616/**
617 * early_init_dt_scan_memory - Look for an parse memory nodes
618 */
619int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
620				     int depth, void *data)
621{
622	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
623	__be32 *reg, *endp;
624	unsigned long l;
 
625
626	/* We are scanning "memory" nodes only */
627	if (type == NULL) {
628		/*
629		 * The longtrail doesn't have a device_type on the
630		 * /memory node, so look for the node called /memory@0.
631		 */
632		if (depth != 1 || strcmp(uname, "memory@0") != 0)
633			return 0;
634	} else if (strcmp(type, "memory") != 0)
635		return 0;
636
637	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
638	if (reg == NULL)
639		reg = of_get_flat_dt_prop(node, "reg", &l);
640	if (reg == NULL)
641		return 0;
642
643	endp = reg + (l / sizeof(__be32));
 
644
645	pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
646	    uname, l, reg[0], reg[1], reg[2], reg[3]);
647
648	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
649		u64 base, size;
650
651		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
652		size = dt_mem_next_cell(dt_root_size_cells, &reg);
653
654		if (size == 0)
655			continue;
656		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
657		    (unsigned long long)size);
658
659		early_init_dt_add_memory_arch(base, size);
 
 
 
 
 
 
 
660	}
661
662	return 0;
663}
664
665int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
666				     int depth, void *data)
667{
668	unsigned long l;
669	char *p;
670
671	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
672
673	if (depth != 1 || !data ||
674	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
675		return 0;
676
677	early_init_dt_check_for_initrd(node);
678
679	/* Retrieve command line */
680	p = of_get_flat_dt_prop(node, "bootargs", &l);
681	if (p != NULL && l > 0)
682		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
683
 
 
 
 
 
684#ifdef CONFIG_CMDLINE
685#ifndef CONFIG_CMDLINE_FORCE
686	if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
687#endif
 
 
 
 
 
688		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
 
689#endif /* CONFIG_CMDLINE */
690
691	pr_debug("Command line is: %s\n", (char*)data);
692
693	/* break now */
694	return 1;
695}
696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697/**
698 * unflatten_device_tree - create tree of device_nodes from flat blob
699 *
700 * unflattens the device-tree passed by the firmware, creating the
701 * tree of struct device_node. It also fills the "name" and "type"
702 * pointers of the nodes so the normal device-tree walking functions
703 * can be used.
704 */
705void __init unflatten_device_tree(void)
706{
707	__unflatten_device_tree(initial_boot_params, &allnodes,
708				early_init_dt_alloc_memory_arch);
709
710	/* Get pointer to OF "/chosen" node for use everywhere */
711	of_chosen = of_find_node_by_path("/chosen");
712	if (of_chosen == NULL)
713		of_chosen = of_find_node_by_path("/chosen@0");
714}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715
716#endif /* CONFIG_OF_EARLY_FLATTREE */
v4.10.11
   1/*
   2 * Functions for working with the Flattened Device Tree data format
   3 *
   4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   5 * benh@kernel.crashing.org
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 as published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt)	"OF: fdt:" fmt
  13
  14#include <linux/crc32.h>
  15#include <linux/kernel.h>
  16#include <linux/initrd.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/of.h>
  20#include <linux/of_fdt.h>
  21#include <linux/of_reserved_mem.h>
  22#include <linux/sizes.h>
  23#include <linux/string.h>
  24#include <linux/errno.h>
  25#include <linux/slab.h>
  26#include <linux/libfdt.h>
  27#include <linux/debugfs.h>
  28#include <linux/serial_core.h>
  29#include <linux/sysfs.h>
  30
  31#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
 
 
 
  32#include <asm/page.h>
  33
  34/*
  35 * of_fdt_limit_memory - limit the number of regions in the /memory node
  36 * @limit: maximum entries
  37 *
  38 * Adjust the flattened device tree to have at most 'limit' number of
  39 * memory entries in the /memory node. This function may be called
  40 * any time after initial_boot_param is set.
 
 
  41 */
  42void of_fdt_limit_memory(int limit)
 
 
  43{
  44	int memory;
  45	int len;
  46	const void *val;
  47	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  48	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  49	const uint32_t *addr_prop;
  50	const uint32_t *size_prop;
  51	int root_offset;
  52	int cell_size;
  53
  54	root_offset = fdt_path_offset(initial_boot_params, "/");
  55	if (root_offset < 0)
  56		return;
 
 
  57
  58	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  59				"#address-cells", NULL);
  60	if (addr_prop)
  61		nr_address_cells = fdt32_to_cpu(*addr_prop);
  62
  63	size_prop = fdt_getprop(initial_boot_params, root_offset,
  64				"#size-cells", NULL);
  65	if (size_prop)
  66		nr_size_cells = fdt32_to_cpu(*size_prop);
  67
  68	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  69
  70	memory = fdt_path_offset(initial_boot_params, "/memory");
  71	if (memory > 0) {
  72		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  73		if (len > limit*cell_size) {
  74			len = limit*cell_size;
  75			pr_debug("Limiting number of entries to %d\n", limit);
  76			fdt_setprop(initial_boot_params, memory, "reg", val,
  77					len);
  78		}
  79	}
  80}
  81
  82/**
  83 * of_fdt_is_compatible - Return true if given node from the given blob has
  84 * compat in its compatible list
  85 * @blob: A device tree blob
  86 * @node: node to test
  87 * @compat: compatible string to compare with compatible list.
  88 *
  89 * On match, returns a non-zero value with smaller values returned for more
  90 * specific compatible values.
  91 */
  92int of_fdt_is_compatible(const void *blob,
  93		      unsigned long node, const char *compat)
  94{
  95	const char *cp;
  96	int cplen;
  97	unsigned long l, score = 0;
  98
  99	cp = fdt_getprop(blob, node, "compatible", &cplen);
 100	if (cp == NULL)
 101		return 0;
 102	while (cplen > 0) {
 103		score++;
 104		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 105			return score;
 106		l = strlen(cp) + 1;
 107		cp += l;
 108		cplen -= l;
 109	}
 110
 111	return 0;
 112}
 113
 114/**
 115 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
 116 * @blob: A device tree blob
 117 * @node: node to test
 118 *
 119 * Returns true if the node has a "big-endian" property, or if the kernel
 120 * was compiled for BE *and* the node has a "native-endian" property.
 121 * Returns false otherwise.
 122 */
 123bool of_fdt_is_big_endian(const void *blob, unsigned long node)
 124{
 125	if (fdt_getprop(blob, node, "big-endian", NULL))
 126		return true;
 127	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 128	    fdt_getprop(blob, node, "native-endian", NULL))
 129		return true;
 130	return false;
 131}
 132
 133/**
 134 * of_fdt_match - Return true if node matches a list of compatible values
 135 */
 136int of_fdt_match(const void *blob, unsigned long node,
 137                 const char *const *compat)
 138{
 139	unsigned int tmp, score = 0;
 140
 141	if (!compat)
 142		return 0;
 143
 144	while (*compat) {
 145		tmp = of_fdt_is_compatible(blob, node, *compat);
 146		if (tmp && (score == 0 || (tmp < score)))
 147			score = tmp;
 148		compat++;
 149	}
 150
 151	return score;
 152}
 153
 154static void *unflatten_dt_alloc(void **mem, unsigned long size,
 155				       unsigned long align)
 156{
 157	void *res;
 158
 159	*mem = PTR_ALIGN(*mem, align);
 160	res = *mem;
 161	*mem += size;
 162
 163	return res;
 164}
 165
 166static void populate_properties(const void *blob,
 167				int offset,
 168				void **mem,
 169				struct device_node *np,
 170				const char *nodename,
 171				bool dryrun)
 172{
 173	struct property *pp, **pprev = NULL;
 174	int cur;
 175	bool has_name = false;
 176
 177	pprev = &np->properties;
 178	for (cur = fdt_first_property_offset(blob, offset);
 179	     cur >= 0;
 180	     cur = fdt_next_property_offset(blob, cur)) {
 181		const __be32 *val;
 182		const char *pname;
 183		u32 sz;
 184
 185		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 186		if (!val) {
 187			pr_warn("Cannot locate property at 0x%x\n", cur);
 188			continue;
 189		}
 190
 191		if (!pname) {
 192			pr_warn("Cannot find property name at 0x%x\n", cur);
 193			continue;
 194		}
 195
 196		if (!strcmp(pname, "name"))
 197			has_name = true;
 198
 199		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 200					__alignof__(struct property));
 201		if (dryrun)
 202			continue;
 203
 204		/* We accept flattened tree phandles either in
 205		 * ePAPR-style "phandle" properties, or the
 206		 * legacy "linux,phandle" properties.  If both
 207		 * appear and have different values, things
 208		 * will get weird. Don't do that.
 209		 */
 210		if (!strcmp(pname, "phandle") ||
 211		    !strcmp(pname, "linux,phandle")) {
 212			if (!np->phandle)
 213				np->phandle = be32_to_cpup(val);
 214		}
 215
 216		/* And we process the "ibm,phandle" property
 217		 * used in pSeries dynamic device tree
 218		 * stuff
 219		 */
 220		if (!strcmp(pname, "ibm,phandle"))
 221			np->phandle = be32_to_cpup(val);
 222
 223		pp->name   = (char *)pname;
 224		pp->length = sz;
 225		pp->value  = (__be32 *)val;
 226		*pprev     = pp;
 227		pprev      = &pp->next;
 228	}
 229
 230	/* With version 0x10 we may not have the name property,
 231	 * recreate it here from the unit name if absent
 232	 */
 233	if (!has_name) {
 234		const char *p = nodename, *ps = p, *pa = NULL;
 235		int len;
 236
 237		while (*p) {
 238			if ((*p) == '@')
 239				pa = p;
 240			else if ((*p) == '/')
 241				ps = p + 1;
 242			p++;
 243		}
 244
 245		if (pa < ps)
 246			pa = p;
 247		len = (pa - ps) + 1;
 248		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 249					__alignof__(struct property));
 250		if (!dryrun) {
 251			pp->name   = "name";
 252			pp->length = len;
 253			pp->value  = pp + 1;
 254			*pprev     = pp;
 255			pprev      = &pp->next;
 256			memcpy(pp->value, ps, len - 1);
 257			((char *)pp->value)[len - 1] = 0;
 258			pr_debug("fixed up name for %s -> %s\n",
 259				 nodename, (char *)pp->value);
 260		}
 261	}
 262
 263	if (!dryrun)
 264		*pprev = NULL;
 265}
 266
 267static unsigned int populate_node(const void *blob,
 268				  int offset,
 269				  void **mem,
 270				  struct device_node *dad,
 271				  unsigned int fpsize,
 272				  struct device_node **pnp,
 273				  bool dryrun)
 274{
 275	struct device_node *np;
 276	const char *pathp;
 
 
 277	unsigned int l, allocl;
 
 278	int new_format = 0;
 279
 280	pathp = fdt_get_name(blob, offset, &l);
 281	if (!pathp) {
 282		*pnp = NULL;
 283		return 0;
 284	}
 285
 286	allocl = ++l;
 
 
 287
 288	/* version 0x10 has a more compact unit name here instead of the full
 289	 * path. we accumulate the full path size using "fpsize", we'll rebuild
 290	 * it later. We detect this because the first character of the name is
 291	 * not '/'.
 292	 */
 293	if ((*pathp) != '/') {
 294		new_format = 1;
 295		if (fpsize == 0) {
 296			/* root node: special case. fpsize accounts for path
 297			 * plus terminating zero. root node only has '/', so
 298			 * fpsize should be 2, but we want to avoid the first
 299			 * level nodes to have two '/' so we use fpsize 1 here
 300			 */
 301			fpsize = 1;
 302			allocl = 2;
 303			l = 1;
 304			pathp = "";
 305		} else {
 306			/* account for '/' and path size minus terminal 0
 307			 * already in 'l'
 308			 */
 309			fpsize += l;
 310			allocl = fpsize;
 311		}
 312	}
 313
 314	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
 315				__alignof__(struct device_node));
 316	if (!dryrun) {
 317		char *fn;
 318		of_node_init(np);
 319		np->full_name = fn = ((char *)np) + sizeof(*np);
 320		if (new_format) {
 
 321			/* rebuild full path for new format */
 322			if (dad && dad->parent) {
 323				strcpy(fn, dad->full_name);
 324#ifdef DEBUG
 325				if ((strlen(fn) + l + 1) != allocl) {
 326					pr_debug("%s: p: %d, l: %d, a: %d\n",
 327						pathp, (int)strlen(fn),
 328						l, allocl);
 329				}
 330#endif
 331				fn += strlen(fn);
 332			}
 333			*(fn++) = '/';
 334		}
 335		memcpy(fn, pathp, l);
 336
 
 
 
 337		if (dad != NULL) {
 338			np->parent = dad;
 339			np->sibling = dad->child;
 340			dad->child = np;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342	}
 
 
 
 
 
 
 343
 344	populate_properties(blob, offset, mem, np, pathp, dryrun);
 345	if (!dryrun) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346		np->name = of_get_property(np, "name", NULL);
 347		np->type = of_get_property(np, "device_type", NULL);
 348
 349		if (!np->name)
 350			np->name = "<NULL>";
 351		if (!np->type)
 352			np->type = "<NULL>";
 353	}
 354
 355	*pnp = np;
 356	return fpsize;
 357}
 358
 359static void reverse_nodes(struct device_node *parent)
 360{
 361	struct device_node *child, *next;
 362
 363	/* In-depth first */
 364	child = parent->child;
 365	while (child) {
 366		reverse_nodes(child);
 367
 368		child = child->sibling;
 369	}
 370
 371	/* Reverse the nodes in the child list */
 372	child = parent->child;
 373	parent->child = NULL;
 374	while (child) {
 375		next = child->sibling;
 376
 377		child->sibling = parent->child;
 378		parent->child = child;
 379		child = next;
 380	}
 381}
 382
 383/**
 384 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 385 * @blob: The parent device tree blob
 386 * @mem: Memory chunk to use for allocating device nodes and properties
 387 * @dad: Parent struct device_node
 388 * @nodepp: The device_node tree created by the call
 389 *
 390 * It returns the size of unflattened device tree or error code
 391 */
 392static int unflatten_dt_nodes(const void *blob,
 393			      void *mem,
 394			      struct device_node *dad,
 395			      struct device_node **nodepp)
 396{
 397	struct device_node *root;
 398	int offset = 0, depth = 0, initial_depth = 0;
 399#define FDT_MAX_DEPTH	64
 400	unsigned int fpsizes[FDT_MAX_DEPTH];
 401	struct device_node *nps[FDT_MAX_DEPTH];
 402	void *base = mem;
 403	bool dryrun = !base;
 404
 405	if (nodepp)
 406		*nodepp = NULL;
 407
 408	/*
 409	 * We're unflattening device sub-tree if @dad is valid. There are
 410	 * possibly multiple nodes in the first level of depth. We need
 411	 * set @depth to 1 to make fdt_next_node() happy as it bails
 412	 * immediately when negative @depth is found. Otherwise, the device
 413	 * nodes except the first one won't be unflattened successfully.
 414	 */
 415	if (dad)
 416		depth = initial_depth = 1;
 417
 418	root = dad;
 419	fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
 420	nps[depth] = dad;
 421
 422	for (offset = 0;
 423	     offset >= 0 && depth >= initial_depth;
 424	     offset = fdt_next_node(blob, offset, &depth)) {
 425		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
 426			continue;
 427
 428		fpsizes[depth+1] = populate_node(blob, offset, &mem,
 429						 nps[depth],
 430						 fpsizes[depth],
 431						 &nps[depth+1], dryrun);
 432		if (!fpsizes[depth+1])
 433			return mem - base;
 434
 435		if (!dryrun && nodepp && !*nodepp)
 436			*nodepp = nps[depth+1];
 437		if (!dryrun && !root)
 438			root = nps[depth+1];
 439	}
 440
 441	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 442		pr_err("Error %d processing FDT\n", offset);
 443		return -EINVAL;
 444	}
 445
 446	/*
 447	 * Reverse the child list. Some drivers assumes node order matches .dts
 448	 * node order
 449	 */
 450	if (!dryrun)
 451		reverse_nodes(root);
 452
 453	return mem - base;
 454}
 455
 456/**
 457 * __unflatten_device_tree - create tree of device_nodes from flat blob
 458 *
 459 * unflattens a device-tree, creating the
 460 * tree of struct device_node. It also fills the "name" and "type"
 461 * pointers of the nodes so the normal device-tree walking functions
 462 * can be used.
 463 * @blob: The blob to expand
 464 * @dad: Parent device node
 465 * @mynodes: The device_node tree created by the call
 466 * @dt_alloc: An allocator that provides a virtual address to memory
 467 * for the resulting tree
 468 *
 469 * Returns NULL on failure or the memory chunk containing the unflattened
 470 * device tree on success.
 471 */
 472static void *__unflatten_device_tree(const void *blob,
 473				     struct device_node *dad,
 474				     struct device_node **mynodes,
 475				     void *(*dt_alloc)(u64 size, u64 align),
 476				     bool detached)
 477{
 478	int size;
 479	void *mem;
 480
 481	pr_debug(" -> unflatten_device_tree()\n");
 482
 483	if (!blob) {
 484		pr_debug("No device tree pointer\n");
 485		return NULL;
 486	}
 487
 488	pr_debug("Unflattening device tree:\n");
 489	pr_debug("magic: %08x\n", fdt_magic(blob));
 490	pr_debug("size: %08x\n", fdt_totalsize(blob));
 491	pr_debug("version: %08x\n", fdt_version(blob));
 492
 493	if (fdt_check_header(blob)) {
 494		pr_err("Invalid device tree blob header\n");
 495		return NULL;
 496	}
 497
 498	/* First pass, scan for size */
 499	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 500	if (size < 0)
 501		return NULL;
 
 502
 503	size = ALIGN(size, 4);
 504	pr_debug("  size is %d, allocating...\n", size);
 505
 506	/* Allocate memory for the expanded device tree */
 507	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 508	memset(mem, 0, size);
 509
 510	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 511
 512	pr_debug("  unflattening %p...\n", mem);
 513
 514	/* Second pass, do actual unflattening */
 515	unflatten_dt_nodes(blob, mem, dad, mynodes);
 516	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 
 
 
 
 517		pr_warning("End of tree marker overwritten: %08x\n",
 518			   be32_to_cpup(mem + size));
 519
 520	if (detached && mynodes) {
 521		of_node_set_flag(*mynodes, OF_DETACHED);
 522		pr_debug("unflattened tree is detached\n");
 523	}
 524
 525	pr_debug(" <- unflatten_device_tree()\n");
 526	return mem;
 527}
 528
 529static void *kernel_tree_alloc(u64 size, u64 align)
 530{
 531	return kzalloc(size, GFP_KERNEL);
 532}
 533
 534static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 535
 536/**
 537 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 538 * @blob: Flat device tree blob
 539 * @dad: Parent device node
 540 * @mynodes: The device tree created by the call
 541 *
 542 * unflattens the device-tree passed by the firmware, creating the
 543 * tree of struct device_node. It also fills the "name" and "type"
 544 * pointers of the nodes so the normal device-tree walking functions
 545 * can be used.
 546 *
 547 * Returns NULL on failure or the memory chunk containing the unflattened
 548 * device tree on success.
 549 */
 550void *of_fdt_unflatten_tree(const unsigned long *blob,
 551			    struct device_node *dad,
 552			    struct device_node **mynodes)
 553{
 554	void *mem;
 555
 556	mutex_lock(&of_fdt_unflatten_mutex);
 557	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 558				      true);
 559	mutex_unlock(&of_fdt_unflatten_mutex);
 560
 561	return mem;
 562}
 563EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 564
 565/* Everything below here references initial_boot_params directly. */
 566int __initdata dt_root_addr_cells;
 567int __initdata dt_root_size_cells;
 568
 569void *initial_boot_params;
 570
 571#ifdef CONFIG_OF_EARLY_FLATTREE
 572
 573static u32 of_fdt_crc32;
 574
 575/**
 576 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
 577 */
 578static int __init __reserved_mem_reserve_reg(unsigned long node,
 579					     const char *uname)
 580{
 581	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 582	phys_addr_t base, size;
 583	int len;
 584	const __be32 *prop;
 585	int nomap, first = 1;
 586
 587	prop = of_get_flat_dt_prop(node, "reg", &len);
 588	if (!prop)
 589		return -ENOENT;
 590
 591	if (len && len % t_len != 0) {
 592		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 593		       uname);
 594		return -EINVAL;
 595	}
 596
 597	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 598
 599	while (len >= t_len) {
 600		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 601		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 602
 603		if (size &&
 604		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
 605			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
 606				uname, &base, (unsigned long)size / SZ_1M);
 607		else
 608			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
 609				uname, &base, (unsigned long)size / SZ_1M);
 610
 611		len -= t_len;
 612		if (first) {
 613			fdt_reserved_mem_save_node(node, uname, base, size);
 614			first = 0;
 615		}
 616	}
 617	return 0;
 618}
 619
 620/**
 621 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 622 * in /reserved-memory matches the values supported by the current implementation,
 623 * also check if ranges property has been provided
 624 */
 625static int __init __reserved_mem_check_root(unsigned long node)
 626{
 627	const __be32 *prop;
 628
 629	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 630	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 631		return -EINVAL;
 632
 633	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 634	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 635		return -EINVAL;
 636
 637	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 638	if (!prop)
 639		return -EINVAL;
 640	return 0;
 641}
 642
 643/**
 644 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 645 */
 646static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
 647					  int depth, void *data)
 648{
 649	static int found;
 650	const char *status;
 651	int err;
 652
 653	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
 654		if (__reserved_mem_check_root(node) != 0) {
 655			pr_err("Reserved memory: unsupported node format, ignoring\n");
 656			/* break scan */
 657			return 1;
 658		}
 659		found = 1;
 660		/* scan next node */
 661		return 0;
 662	} else if (!found) {
 663		/* scan next node */
 664		return 0;
 665	} else if (found && depth < 2) {
 666		/* scanning of /reserved-memory has been finished */
 667		return 1;
 668	}
 669
 670	status = of_get_flat_dt_prop(node, "status", NULL);
 671	if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
 672		return 0;
 673
 674	err = __reserved_mem_reserve_reg(node, uname);
 675	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
 676		fdt_reserved_mem_save_node(node, uname, 0, 0);
 677
 678	/* scan next node */
 679	return 0;
 680}
 681
 682/**
 683 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 684 *
 685 * This function grabs memory from early allocator for device exclusive use
 686 * defined in device tree structures. It should be called by arch specific code
 687 * once the early allocator (i.e. memblock) has been fully activated.
 688 */
 689void __init early_init_fdt_scan_reserved_mem(void)
 690{
 691	int n;
 692	u64 base, size;
 693
 694	if (!initial_boot_params)
 695		return;
 696
 697	/* Process header /memreserve/ fields */
 698	for (n = 0; ; n++) {
 699		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 700		if (!size)
 701			break;
 702		early_init_dt_reserve_memory_arch(base, size, 0);
 703	}
 704
 705	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
 706	fdt_init_reserved_mem();
 707}
 708
 709/**
 710 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 711 */
 712void __init early_init_fdt_reserve_self(void)
 713{
 714	if (!initial_boot_params)
 715		return;
 716
 717	/* Reserve the dtb region */
 718	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
 719					  fdt_totalsize(initial_boot_params),
 720					  0);
 721}
 722
 723/**
 724 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 725 * @it: callback function
 726 * @data: context data pointer
 727 *
 728 * This function is used to scan the flattened device-tree, it is
 729 * used to extract the memory information at boot before we can
 730 * unflatten the tree
 731 */
 732int __init of_scan_flat_dt(int (*it)(unsigned long node,
 733				     const char *uname, int depth,
 734				     void *data),
 735			   void *data)
 736{
 737	const void *blob = initial_boot_params;
 738	const char *pathp;
 739	int offset, rc = 0, depth = -1;
 740
 741        for (offset = fdt_next_node(blob, -1, &depth);
 742             offset >= 0 && depth >= 0 && !rc;
 743             offset = fdt_next_node(blob, offset, &depth)) {
 744
 745		pathp = fdt_get_name(blob, offset, NULL);
 746		if (*pathp == '/')
 747			pathp = kbasename(pathp);
 748		rc = it(offset, pathp, depth, data);
 749	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750	return rc;
 751}
 752
 753/**
 754 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 755 *
 756 * @node: the parent node
 757 * @uname: the name of subnode
 758 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 759 */
 760
 761int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 762{
 763	return fdt_subnode_offset(initial_boot_params, node, uname);
 764}
 765
 766/**
 767 * of_get_flat_dt_root - find the root node in the flat blob
 768 */
 769unsigned long __init of_get_flat_dt_root(void)
 770{
 771	return 0;
 772}
 773
 774/**
 775 * of_get_flat_dt_size - Return the total size of the FDT
 776 */
 777int __init of_get_flat_dt_size(void)
 778{
 779	return fdt_totalsize(initial_boot_params);
 780}
 781
 782/**
 783 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 784 *
 785 * This function can be used within scan_flattened_dt callback to get
 786 * access to properties
 787 */
 788const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 789				       int *size)
 790{
 791	return fdt_getprop(initial_boot_params, node, name, size);
 792}
 793
 794/**
 795 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 796 * @node: node to test
 797 * @compat: compatible string to compare with compatible list.
 798 */
 799int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 800{
 801	return of_fdt_is_compatible(initial_boot_params, node, compat);
 802}
 803
 804/**
 805 * of_flat_dt_match - Return true if node matches a list of compatible values
 806 */
 807int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 808{
 809	return of_fdt_match(initial_boot_params, node, compat);
 810}
 811
 812struct fdt_scan_status {
 813	const char *name;
 814	int namelen;
 815	int depth;
 816	int found;
 817	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
 818	void *data;
 819};
 820
 821const char * __init of_flat_dt_get_machine_name(void)
 822{
 823	const char *name;
 824	unsigned long dt_root = of_get_flat_dt_root();
 825
 826	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 827	if (!name)
 828		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 829	return name;
 830}
 831
 832/**
 833 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 834 *
 835 * @default_match: A machine specific ptr to return in case of no match.
 836 * @get_next_compat: callback function to return next compatible match table.
 837 *
 838 * Iterate through machine match tables to find the best match for the machine
 839 * compatible string in the FDT.
 840 */
 841const void * __init of_flat_dt_match_machine(const void *default_match,
 842		const void * (*get_next_compat)(const char * const**))
 843{
 844	const void *data = NULL;
 845	const void *best_data = default_match;
 846	const char *const *compat;
 847	unsigned long dt_root;
 848	unsigned int best_score = ~1, score = 0;
 849
 850	dt_root = of_get_flat_dt_root();
 851	while ((data = get_next_compat(&compat))) {
 852		score = of_flat_dt_match(dt_root, compat);
 853		if (score > 0 && score < best_score) {
 854			best_data = data;
 855			best_score = score;
 856		}
 857	}
 858	if (!best_data) {
 859		const char *prop;
 860		int size;
 861
 862		pr_err("\n unrecognized device tree list:\n[ ");
 863
 864		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 865		if (prop) {
 866			while (size > 0) {
 867				printk("'%s' ", prop);
 868				size -= strlen(prop) + 1;
 869				prop += strlen(prop) + 1;
 870			}
 871		}
 872		printk("]\n\n");
 873		return NULL;
 874	}
 875
 876	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 877
 878	return best_data;
 879}
 880
 881#ifdef CONFIG_BLK_DEV_INITRD
 882#ifndef __early_init_dt_declare_initrd
 883static void __early_init_dt_declare_initrd(unsigned long start,
 884					   unsigned long end)
 885{
 886	initrd_start = (unsigned long)__va(start);
 887	initrd_end = (unsigned long)__va(end);
 888	initrd_below_start_ok = 1;
 889}
 890#endif
 891
 892/**
 893 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 894 * @node: reference to node containing initrd location ('chosen')
 895 */
 896static void __init early_init_dt_check_for_initrd(unsigned long node)
 897{
 898	u64 start, end;
 899	int len;
 900	const __be32 *prop;
 901
 902	pr_debug("Looking for initrd properties... ");
 903
 904	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 905	if (!prop)
 906		return;
 907	start = of_read_number(prop, len/4);
 908
 909	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 910	if (!prop)
 911		return;
 912	end = of_read_number(prop, len/4);
 913
 914	__early_init_dt_declare_initrd(start, end);
 915
 916	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
 917		 (unsigned long long)start, (unsigned long long)end);
 918}
 919#else
 920static inline void early_init_dt_check_for_initrd(unsigned long node)
 921{
 922}
 923#endif /* CONFIG_BLK_DEV_INITRD */
 924
 925#ifdef CONFIG_SERIAL_EARLYCON
 926
 927int __init early_init_dt_scan_chosen_stdout(void)
 928{
 929	int offset;
 930	const char *p, *q, *options = NULL;
 931	int l;
 932	const struct earlycon_id *match;
 933	const void *fdt = initial_boot_params;
 934
 935	offset = fdt_path_offset(fdt, "/chosen");
 936	if (offset < 0)
 937		offset = fdt_path_offset(fdt, "/chosen@0");
 938	if (offset < 0)
 939		return -ENOENT;
 940
 941	p = fdt_getprop(fdt, offset, "stdout-path", &l);
 942	if (!p)
 943		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 944	if (!p || !l)
 945		return -ENOENT;
 946
 947	q = strchrnul(p, ':');
 948	if (*q != '\0')
 949		options = q + 1;
 950	l = q - p;
 951
 952	/* Get the node specified by stdout-path */
 953	offset = fdt_path_offset_namelen(fdt, p, l);
 954	if (offset < 0) {
 955		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 956		return 0;
 957	}
 958
 959	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
 960		if (!match->compatible[0])
 961			continue;
 962
 963		if (fdt_node_check_compatible(fdt, offset, match->compatible))
 964			continue;
 965
 966		of_setup_earlycon(match, offset, options);
 967		return 0;
 968	}
 969	return -ENODEV;
 970}
 971#endif
 972
 973/**
 974 * early_init_dt_scan_root - fetch the top level address and size cells
 975 */
 976int __init early_init_dt_scan_root(unsigned long node, const char *uname,
 977				   int depth, void *data)
 978{
 979	const __be32 *prop;
 980
 981	if (depth != 0)
 982		return 0;
 983
 984	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 985	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 986
 987	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 988	if (prop)
 989		dt_root_size_cells = be32_to_cpup(prop);
 990	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
 991
 992	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 993	if (prop)
 994		dt_root_addr_cells = be32_to_cpup(prop);
 995	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
 996
 997	/* break now */
 998	return 1;
 999}
1000
1001u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1002{
1003	const __be32 *p = *cellp;
1004
1005	*cellp = p + s;
1006	return of_read_number(p, s);
1007}
1008
1009/**
1010 * early_init_dt_scan_memory - Look for an parse memory nodes
1011 */
1012int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1013				     int depth, void *data)
1014{
1015	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1016	const __be32 *reg, *endp;
1017	int l;
1018	bool hotpluggable;
1019
1020	/* We are scanning "memory" nodes only */
1021	if (type == NULL) {
1022		/*
1023		 * The longtrail doesn't have a device_type on the
1024		 * /memory node, so look for the node called /memory@0.
1025		 */
1026		if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1027			return 0;
1028	} else if (strcmp(type, "memory") != 0)
1029		return 0;
1030
1031	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1032	if (reg == NULL)
1033		reg = of_get_flat_dt_prop(node, "reg", &l);
1034	if (reg == NULL)
1035		return 0;
1036
1037	endp = reg + (l / sizeof(__be32));
1038	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1039
1040	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
 
1041
1042	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1043		u64 base, size;
1044
1045		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1046		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1047
1048		if (size == 0)
1049			continue;
1050		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1051		    (unsigned long long)size);
1052
1053		early_init_dt_add_memory_arch(base, size);
1054
1055		if (!hotpluggable)
1056			continue;
1057
1058		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1059			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1060				base, base + size);
1061	}
1062
1063	return 0;
1064}
1065
1066int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1067				     int depth, void *data)
1068{
1069	int l;
1070	const char *p;
1071
1072	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1073
1074	if (depth != 1 || !data ||
1075	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1076		return 0;
1077
1078	early_init_dt_check_for_initrd(node);
1079
1080	/* Retrieve command line */
1081	p = of_get_flat_dt_prop(node, "bootargs", &l);
1082	if (p != NULL && l > 0)
1083		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1084
1085	/*
1086	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1087	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1088	 * is set in which case we override whatever was found earlier.
1089	 */
1090#ifdef CONFIG_CMDLINE
1091#if defined(CONFIG_CMDLINE_EXTEND)
1092	strlcat(data, " ", COMMAND_LINE_SIZE);
1093	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1094#elif defined(CONFIG_CMDLINE_FORCE)
1095	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1096#else
1097	/* No arguments from boot loader, use kernel's  cmdl*/
1098	if (!((char *)data)[0])
1099		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1100#endif
1101#endif /* CONFIG_CMDLINE */
1102
1103	pr_debug("Command line is: %s\n", (char*)data);
1104
1105	/* break now */
1106	return 1;
1107}
1108
1109#ifdef CONFIG_HAVE_MEMBLOCK
1110#ifndef MIN_MEMBLOCK_ADDR
1111#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1112#endif
1113#ifndef MAX_MEMBLOCK_ADDR
1114#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1115#endif
1116
1117void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1118{
1119	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1120
1121	if (!PAGE_ALIGNED(base)) {
1122		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1123			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1124				base, base + size);
1125			return;
1126		}
1127		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1128		base = PAGE_ALIGN(base);
1129	}
1130	size &= PAGE_MASK;
1131
1132	if (base > MAX_MEMBLOCK_ADDR) {
1133		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1134				base, base + size);
1135		return;
1136	}
1137
1138	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1139		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1140				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1141		size = MAX_MEMBLOCK_ADDR - base + 1;
1142	}
1143
1144	if (base + size < phys_offset) {
1145		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1146			   base, base + size);
1147		return;
1148	}
1149	if (base < phys_offset) {
1150		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1151			   base, phys_offset);
1152		size -= phys_offset - base;
1153		base = phys_offset;
1154	}
1155	memblock_add(base, size);
1156}
1157
1158int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1159{
1160	return memblock_mark_hotplug(base, size);
1161}
1162
1163int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1164					phys_addr_t size, bool nomap)
1165{
1166	if (nomap)
1167		return memblock_remove(base, size);
1168	return memblock_reserve(base, size);
1169}
1170
1171/*
1172 * called from unflatten_device_tree() to bootstrap devicetree itself
1173 * Architectures can override this definition if memblock isn't used
1174 */
1175void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1176{
1177	return __va(memblock_alloc(size, align));
1178}
1179#else
1180void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1181{
1182	WARN_ON(1);
1183}
1184
1185int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1186{
1187	return -ENOSYS;
1188}
1189
1190int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1191					phys_addr_t size, bool nomap)
1192{
1193	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1194		  &base, &size, nomap ? " (nomap)" : "");
1195	return -ENOSYS;
1196}
1197
1198void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1199{
1200	WARN_ON(1);
1201	return NULL;
1202}
1203#endif
1204
1205bool __init early_init_dt_verify(void *params)
1206{
1207	if (!params)
1208		return false;
1209
1210	/* check device tree validity */
1211	if (fdt_check_header(params))
1212		return false;
1213
1214	/* Setup flat device-tree pointer */
1215	initial_boot_params = params;
1216	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1217				fdt_totalsize(initial_boot_params));
1218	return true;
1219}
1220
1221
1222void __init early_init_dt_scan_nodes(void)
1223{
1224	/* Retrieve various information from the /chosen node */
1225	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1226
1227	/* Initialize {size,address}-cells info */
1228	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1229
1230	/* Setup memory, calling early_init_dt_add_memory_arch */
1231	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1232}
1233
1234bool __init early_init_dt_scan(void *params)
1235{
1236	bool status;
1237
1238	status = early_init_dt_verify(params);
1239	if (!status)
1240		return false;
1241
1242	early_init_dt_scan_nodes();
1243	return true;
1244}
1245
1246/**
1247 * unflatten_device_tree - create tree of device_nodes from flat blob
1248 *
1249 * unflattens the device-tree passed by the firmware, creating the
1250 * tree of struct device_node. It also fills the "name" and "type"
1251 * pointers of the nodes so the normal device-tree walking functions
1252 * can be used.
1253 */
1254void __init unflatten_device_tree(void)
1255{
1256	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1257				early_init_dt_alloc_memory_arch, false);
1258
1259	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1260	of_alias_scan(early_init_dt_alloc_memory_arch);
 
 
1261}
1262
1263/**
1264 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1265 *
1266 * Copies and unflattens the device-tree passed by the firmware, creating the
1267 * tree of struct device_node. It also fills the "name" and "type"
1268 * pointers of the nodes so the normal device-tree walking functions
1269 * can be used. This should only be used when the FDT memory has not been
1270 * reserved such is the case when the FDT is built-in to the kernel init
1271 * section. If the FDT memory is reserved already then unflatten_device_tree
1272 * should be used instead.
1273 */
1274void __init unflatten_and_copy_device_tree(void)
1275{
1276	int size;
1277	void *dt;
1278
1279	if (!initial_boot_params) {
1280		pr_warn("No valid device tree found, continuing without\n");
1281		return;
1282	}
1283
1284	size = fdt_totalsize(initial_boot_params);
1285	dt = early_init_dt_alloc_memory_arch(size,
1286					     roundup_pow_of_two(FDT_V17_SIZE));
1287
1288	if (dt) {
1289		memcpy(dt, initial_boot_params, size);
1290		initial_boot_params = dt;
1291	}
1292	unflatten_device_tree();
1293}
1294
1295#ifdef CONFIG_SYSFS
1296static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1297			       struct bin_attribute *bin_attr,
1298			       char *buf, loff_t off, size_t count)
1299{
1300	memcpy(buf, initial_boot_params + off, count);
1301	return count;
1302}
1303
1304static int __init of_fdt_raw_init(void)
1305{
1306	static struct bin_attribute of_fdt_raw_attr =
1307		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1308
1309	if (!initial_boot_params)
1310		return 0;
1311
1312	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1313				     fdt_totalsize(initial_boot_params))) {
1314		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1315		return 0;
1316	}
1317	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1318	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1319}
1320late_initcall(of_fdt_raw_init);
1321#endif
1322
1323#endif /* CONFIG_OF_EARLY_FLATTREE */