Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v3.1
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include "hw.h"
  18#include "hw-ops.h"
  19#include "../regd.h"
  20#include "ar9002_phy.h"
  21
  22/* All code below is for AR5008, AR9001, AR9002 */
  23
  24static const int firstep_table[] =
  25/* level:  0   1   2   3   4   5   6   7   8  */
  26	{ -4, -2,  0,  2,  4,  6,  8, 10, 12 }; /* lvl 0-8, default 2 */
  27
  28static const int cycpwrThr1_table[] =
  29/* level:  0   1   2   3   4   5   6   7   8  */
  30	{ -6, -4, -2,  0,  2,  4,  6,  8 };     /* lvl 0-7, default 3 */
 
 
 
 
 
 
 
  31
  32/*
  33 * register values to turn OFDM weak signal detection OFF
  34 */
  35static const int m1ThreshLow_off = 127;
  36static const int m2ThreshLow_off = 127;
  37static const int m1Thresh_off = 127;
  38static const int m2Thresh_off = 127;
  39static const int m2CountThr_off =  31;
  40static const int m2CountThrLow_off =  63;
  41static const int m1ThreshLowExt_off = 127;
  42static const int m2ThreshLowExt_off = 127;
  43static const int m1ThreshExt_off = 127;
  44static const int m2ThreshExt_off = 127;
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47static void ar5008_rf_bank_setup(u32 *bank, struct ar5416IniArray *array,
  48				 int col)
  49{
  50	int i;
  51
  52	for (i = 0; i < array->ia_rows; i++)
  53		bank[i] = INI_RA(array, i, col);
  54}
  55
  56
  57#define REG_WRITE_RF_ARRAY(iniarray, regData, regWr) \
  58	ar5008_write_rf_array(ah, iniarray, regData, &(regWr))
  59
  60static void ar5008_write_rf_array(struct ath_hw *ah, struct ar5416IniArray *array,
  61				  u32 *data, unsigned int *writecnt)
  62{
 
 
  63	int r;
  64
  65	ENABLE_REGWRITE_BUFFER(ah);
  66
  67	for (r = 0; r < array->ia_rows; r++) {
  68		REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
  69		DO_DELAY(*writecnt);
  70	}
  71
  72	REGWRITE_BUFFER_FLUSH(ah);
  73}
  74
  75/**
  76 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
  77 * @rfbuf:
  78 * @reg32:
  79 * @numBits:
  80 * @firstBit:
  81 * @column:
  82 *
  83 * Performs analog "swizzling" of parameters into their location.
  84 * Used on external AR2133/AR5133 radios.
  85 */
  86static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
  87					   u32 numBits, u32 firstBit,
  88					   u32 column)
  89{
  90	u32 tmp32, mask, arrayEntry, lastBit;
  91	int32_t bitPosition, bitsLeft;
  92
  93	tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
  94	arrayEntry = (firstBit - 1) / 8;
  95	bitPosition = (firstBit - 1) % 8;
  96	bitsLeft = numBits;
  97	while (bitsLeft > 0) {
  98		lastBit = (bitPosition + bitsLeft > 8) ?
  99		    8 : bitPosition + bitsLeft;
 100		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
 101		    (column * 8);
 102		rfBuf[arrayEntry] &= ~mask;
 103		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
 104				      (column * 8)) & mask;
 105		bitsLeft -= 8 - bitPosition;
 106		tmp32 = tmp32 >> (8 - bitPosition);
 107		bitPosition = 0;
 108		arrayEntry++;
 109	}
 110}
 111
 112/*
 113 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
 114 * rf_pwd_icsyndiv.
 115 *
 116 * Theoretical Rules:
 117 *   if 2 GHz band
 118 *      if forceBiasAuto
 119 *         if synth_freq < 2412
 120 *            bias = 0
 121 *         else if 2412 <= synth_freq <= 2422
 122 *            bias = 1
 123 *         else // synth_freq > 2422
 124 *            bias = 2
 125 *      else if forceBias > 0
 126 *         bias = forceBias & 7
 127 *      else
 128 *         no change, use value from ini file
 129 *   else
 130 *      no change, invalid band
 131 *
 132 *  1st Mod:
 133 *    2422 also uses value of 2
 134 *    <approved>
 135 *
 136 *  2nd Mod:
 137 *    Less than 2412 uses value of 0, 2412 and above uses value of 2
 138 */
 139static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
 140{
 141	struct ath_common *common = ath9k_hw_common(ah);
 142	u32 tmp_reg;
 143	int reg_writes = 0;
 144	u32 new_bias = 0;
 145
 146	if (!AR_SREV_5416(ah) || synth_freq >= 3000)
 147		return;
 148
 149	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
 150
 151	if (synth_freq < 2412)
 152		new_bias = 0;
 153	else if (synth_freq < 2422)
 154		new_bias = 1;
 155	else
 156		new_bias = 2;
 157
 158	/* pre-reverse this field */
 159	tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
 160
 161	ath_dbg(common, ATH_DBG_CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
 162		new_bias, synth_freq);
 163
 164	/* swizzle rf_pwd_icsyndiv */
 165	ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
 166
 167	/* write Bank 6 with new params */
 168	REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
 169}
 170
 171/**
 172 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
 173 * @ah: atheros hardware structure
 174 * @chan:
 175 *
 176 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
 177 * the channel value. Assumes writes enabled to analog bus and bank6 register
 178 * cache in ah->analogBank6Data.
 179 */
 180static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
 181{
 182	struct ath_common *common = ath9k_hw_common(ah);
 183	u32 channelSel = 0;
 184	u32 bModeSynth = 0;
 185	u32 aModeRefSel = 0;
 186	u32 reg32 = 0;
 187	u16 freq;
 188	struct chan_centers centers;
 189
 190	ath9k_hw_get_channel_centers(ah, chan, &centers);
 191	freq = centers.synth_center;
 192
 193	if (freq < 4800) {
 194		u32 txctl;
 195
 196		if (((freq - 2192) % 5) == 0) {
 197			channelSel = ((freq - 672) * 2 - 3040) / 10;
 198			bModeSynth = 0;
 199		} else if (((freq - 2224) % 5) == 0) {
 200			channelSel = ((freq - 704) * 2 - 3040) / 10;
 201			bModeSynth = 1;
 202		} else {
 203			ath_err(common, "Invalid channel %u MHz\n", freq);
 204			return -EINVAL;
 205		}
 206
 207		channelSel = (channelSel << 2) & 0xff;
 208		channelSel = ath9k_hw_reverse_bits(channelSel, 8);
 209
 210		txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
 211		if (freq == 2484) {
 212
 213			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
 214				  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
 215		} else {
 216			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
 217				  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
 218		}
 219
 220	} else if ((freq % 20) == 0 && freq >= 5120) {
 221		channelSel =
 222		    ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
 223		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
 224	} else if ((freq % 10) == 0) {
 225		channelSel =
 226		    ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
 227		if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
 228			aModeRefSel = ath9k_hw_reverse_bits(2, 2);
 229		else
 230			aModeRefSel = ath9k_hw_reverse_bits(1, 2);
 231	} else if ((freq % 5) == 0) {
 232		channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
 233		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
 234	} else {
 235		ath_err(common, "Invalid channel %u MHz\n", freq);
 236		return -EINVAL;
 237	}
 238
 239	ar5008_hw_force_bias(ah, freq);
 240
 241	reg32 =
 242	    (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
 243	    (1 << 5) | 0x1;
 244
 245	REG_WRITE(ah, AR_PHY(0x37), reg32);
 246
 247	ah->curchan = chan;
 248	ah->curchan_rad_index = -1;
 249
 250	return 0;
 251}
 252
 253/**
 254 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
 255 * @ah: atheros hardware structure
 256 * @chan:
 257 *
 258 * For non single-chip solutions. Converts to baseband spur frequency given the
 259 * input channel frequency and compute register settings below.
 260 */
 261static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
 262				    struct ath9k_channel *chan)
 263{
 264	int bb_spur = AR_NO_SPUR;
 265	int bin, cur_bin;
 266	int spur_freq_sd;
 267	int spur_delta_phase;
 268	int denominator;
 269	int upper, lower, cur_vit_mask;
 270	int tmp, new;
 271	int i;
 272	static int pilot_mask_reg[4] = {
 
 
 
 
 273		AR_PHY_TIMING7, AR_PHY_TIMING8,
 274		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
 275	};
 276	static int chan_mask_reg[4] = {
 277		AR_PHY_TIMING9, AR_PHY_TIMING10,
 278		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
 279	};
 280	static int inc[4] = { 0, 100, 0, 0 };
 281
 282	int8_t mask_m[123];
 283	int8_t mask_p[123];
 284	int8_t mask_amt;
 285	int tmp_mask;
 286	int cur_bb_spur;
 287	bool is2GHz = IS_CHAN_2GHZ(chan);
 288
 289	memset(&mask_m, 0, sizeof(int8_t) * 123);
 290	memset(&mask_p, 0, sizeof(int8_t) * 123);
 291
 292	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 293		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
 294		if (AR_NO_SPUR == cur_bb_spur)
 295			break;
 296		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
 297		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
 298			bb_spur = cur_bb_spur;
 299			break;
 300		}
 301	}
 302
 303	if (AR_NO_SPUR == bb_spur)
 304		return;
 305
 306	bin = bb_spur * 32;
 307
 308	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
 309	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
 310		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
 311		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
 312		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
 313
 314	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
 315
 316	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
 317	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
 318	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
 319	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
 320	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
 321	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
 322
 323	spur_delta_phase = ((bb_spur * 524288) / 100) &
 324		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
 325
 326	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
 327	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
 328
 329	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
 330	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
 331	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
 332	REG_WRITE(ah, AR_PHY_TIMING11, new);
 333
 334	cur_bin = -6000;
 335	upper = bin + 100;
 336	lower = bin - 100;
 337
 338	for (i = 0; i < 4; i++) {
 339		int pilot_mask = 0;
 340		int chan_mask = 0;
 341		int bp = 0;
 
 342		for (bp = 0; bp < 30; bp++) {
 343			if ((cur_bin > lower) && (cur_bin < upper)) {
 344				pilot_mask = pilot_mask | 0x1 << bp;
 345				chan_mask = chan_mask | 0x1 << bp;
 346			}
 347			cur_bin += 100;
 348		}
 349		cur_bin += inc[i];
 350		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
 351		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
 352	}
 353
 354	cur_vit_mask = 6100;
 355	upper = bin + 120;
 356	lower = bin - 120;
 357
 358	for (i = 0; i < 123; i++) {
 359		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
 360
 361			/* workaround for gcc bug #37014 */
 362			volatile int tmp_v = abs(cur_vit_mask - bin);
 363
 364			if (tmp_v < 75)
 365				mask_amt = 1;
 366			else
 367				mask_amt = 0;
 368			if (cur_vit_mask < 0)
 369				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
 370			else
 371				mask_p[cur_vit_mask / 100] = mask_amt;
 372		}
 373		cur_vit_mask -= 100;
 374	}
 375
 376	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
 377		| (mask_m[48] << 26) | (mask_m[49] << 24)
 378		| (mask_m[50] << 22) | (mask_m[51] << 20)
 379		| (mask_m[52] << 18) | (mask_m[53] << 16)
 380		| (mask_m[54] << 14) | (mask_m[55] << 12)
 381		| (mask_m[56] << 10) | (mask_m[57] << 8)
 382		| (mask_m[58] << 6) | (mask_m[59] << 4)
 383		| (mask_m[60] << 2) | (mask_m[61] << 0);
 384	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
 385	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
 386
 387	tmp_mask = (mask_m[31] << 28)
 388		| (mask_m[32] << 26) | (mask_m[33] << 24)
 389		| (mask_m[34] << 22) | (mask_m[35] << 20)
 390		| (mask_m[36] << 18) | (mask_m[37] << 16)
 391		| (mask_m[48] << 14) | (mask_m[39] << 12)
 392		| (mask_m[40] << 10) | (mask_m[41] << 8)
 393		| (mask_m[42] << 6) | (mask_m[43] << 4)
 394		| (mask_m[44] << 2) | (mask_m[45] << 0);
 395	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
 396	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
 397
 398	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
 399		| (mask_m[18] << 26) | (mask_m[18] << 24)
 400		| (mask_m[20] << 22) | (mask_m[20] << 20)
 401		| (mask_m[22] << 18) | (mask_m[22] << 16)
 402		| (mask_m[24] << 14) | (mask_m[24] << 12)
 403		| (mask_m[25] << 10) | (mask_m[26] << 8)
 404		| (mask_m[27] << 6) | (mask_m[28] << 4)
 405		| (mask_m[29] << 2) | (mask_m[30] << 0);
 406	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
 407	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
 408
 409	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
 410		| (mask_m[2] << 26) | (mask_m[3] << 24)
 411		| (mask_m[4] << 22) | (mask_m[5] << 20)
 412		| (mask_m[6] << 18) | (mask_m[7] << 16)
 413		| (mask_m[8] << 14) | (mask_m[9] << 12)
 414		| (mask_m[10] << 10) | (mask_m[11] << 8)
 415		| (mask_m[12] << 6) | (mask_m[13] << 4)
 416		| (mask_m[14] << 2) | (mask_m[15] << 0);
 417	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
 418	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
 419
 420	tmp_mask = (mask_p[15] << 28)
 421		| (mask_p[14] << 26) | (mask_p[13] << 24)
 422		| (mask_p[12] << 22) | (mask_p[11] << 20)
 423		| (mask_p[10] << 18) | (mask_p[9] << 16)
 424		| (mask_p[8] << 14) | (mask_p[7] << 12)
 425		| (mask_p[6] << 10) | (mask_p[5] << 8)
 426		| (mask_p[4] << 6) | (mask_p[3] << 4)
 427		| (mask_p[2] << 2) | (mask_p[1] << 0);
 428	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
 429	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
 430
 431	tmp_mask = (mask_p[30] << 28)
 432		| (mask_p[29] << 26) | (mask_p[28] << 24)
 433		| (mask_p[27] << 22) | (mask_p[26] << 20)
 434		| (mask_p[25] << 18) | (mask_p[24] << 16)
 435		| (mask_p[23] << 14) | (mask_p[22] << 12)
 436		| (mask_p[21] << 10) | (mask_p[20] << 8)
 437		| (mask_p[19] << 6) | (mask_p[18] << 4)
 438		| (mask_p[17] << 2) | (mask_p[16] << 0);
 439	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
 440	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
 441
 442	tmp_mask = (mask_p[45] << 28)
 443		| (mask_p[44] << 26) | (mask_p[43] << 24)
 444		| (mask_p[42] << 22) | (mask_p[41] << 20)
 445		| (mask_p[40] << 18) | (mask_p[39] << 16)
 446		| (mask_p[38] << 14) | (mask_p[37] << 12)
 447		| (mask_p[36] << 10) | (mask_p[35] << 8)
 448		| (mask_p[34] << 6) | (mask_p[33] << 4)
 449		| (mask_p[32] << 2) | (mask_p[31] << 0);
 450	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
 451	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
 452
 453	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
 454		| (mask_p[59] << 26) | (mask_p[58] << 24)
 455		| (mask_p[57] << 22) | (mask_p[56] << 20)
 456		| (mask_p[55] << 18) | (mask_p[54] << 16)
 457		| (mask_p[53] << 14) | (mask_p[52] << 12)
 458		| (mask_p[51] << 10) | (mask_p[50] << 8)
 459		| (mask_p[49] << 6) | (mask_p[48] << 4)
 460		| (mask_p[47] << 2) | (mask_p[46] << 0);
 461	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
 462	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
 463}
 464
 465/**
 466 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
 467 * @ah: atheros hardware structure
 468 *
 469 * Only required for older devices with external AR2133/AR5133 radios.
 
 470 */
 471static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
 
 472{
 473#define ATH_ALLOC_BANK(bank, size) do { \
 474		bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
 475		if (!bank) { \
 476			ath_err(common, "Cannot allocate RF banks\n"); \
 477			return -ENOMEM; \
 478		} \
 479	} while (0);
 480
 481	struct ath_common *common = ath9k_hw_common(ah);
 
 482
 483	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
 
 
 
 
 
 
 
 
 
 484
 485	ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
 486	ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
 487	ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
 488	ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
 489	ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
 490	ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
 491	ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
 492	ATH_ALLOC_BANK(ah->addac5416_21,
 493		       ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
 494	ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
 495
 496	return 0;
 497#undef ATH_ALLOC_BANK
 498}
 499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500
 501/**
 502 * ar5008_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
 503 * @ah: atheros hardware struture
 504 * For the external AR2133/AR5133 radios banks.
 
 505 */
 506static void ar5008_hw_rf_free_ext_banks(struct ath_hw *ah)
 507{
 508#define ATH_FREE_BANK(bank) do { \
 509		kfree(bank); \
 510		bank = NULL; \
 511	} while (0);
 512
 513	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
 
 514
 515	ATH_FREE_BANK(ah->analogBank0Data);
 516	ATH_FREE_BANK(ah->analogBank1Data);
 517	ATH_FREE_BANK(ah->analogBank2Data);
 518	ATH_FREE_BANK(ah->analogBank3Data);
 519	ATH_FREE_BANK(ah->analogBank6Data);
 520	ATH_FREE_BANK(ah->analogBank6TPCData);
 521	ATH_FREE_BANK(ah->analogBank7Data);
 522	ATH_FREE_BANK(ah->addac5416_21);
 523	ATH_FREE_BANK(ah->bank6Temp);
 524
 525#undef ATH_FREE_BANK
 526}
 527
 
 528/* *
 529 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
 530 * @ah: atheros hardware structure
 531 * @chan:
 532 * @modesIndex:
 533 *
 534 * Used for the external AR2133/AR5133 radios.
 535 *
 536 * Reads the EEPROM header info from the device structure and programs
 537 * all rf registers. This routine requires access to the analog
 538 * rf device. This is not required for single-chip devices.
 539 */
 540static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
 541				  struct ath9k_channel *chan,
 542				  u16 modesIndex)
 543{
 544	u32 eepMinorRev;
 545	u32 ob5GHz = 0, db5GHz = 0;
 546	u32 ob2GHz = 0, db2GHz = 0;
 547	int regWrites = 0;
 
 548
 549	/*
 550	 * Software does not need to program bank data
 551	 * for single chip devices, that is AR9280 or anything
 552	 * after that.
 553	 */
 554	if (AR_SREV_9280_20_OR_LATER(ah))
 555		return true;
 556
 557	/* Setup rf parameters */
 558	eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
 559
 560	/* Setup Bank 0 Write */
 561	ar5008_rf_bank_setup(ah->analogBank0Data, &ah->iniBank0, 1);
 562
 563	/* Setup Bank 1 Write */
 564	ar5008_rf_bank_setup(ah->analogBank1Data, &ah->iniBank1, 1);
 565
 566	/* Setup Bank 2 Write */
 567	ar5008_rf_bank_setup(ah->analogBank2Data, &ah->iniBank2, 1);
 568
 569	/* Setup Bank 6 Write */
 570	ar5008_rf_bank_setup(ah->analogBank3Data, &ah->iniBank3,
 571		      modesIndex);
 572	{
 573		int i;
 574		for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
 575			ah->analogBank6Data[i] =
 576			    INI_RA(&ah->iniBank6TPC, i, modesIndex);
 577		}
 578	}
 579
 580	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
 581	if (eepMinorRev >= 2) {
 582		if (IS_CHAN_2GHZ(chan)) {
 583			ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
 584			db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
 585			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
 586						       ob2GHz, 3, 197, 0);
 587			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
 588						       db2GHz, 3, 194, 0);
 589		} else {
 590			ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
 591			db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
 592			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
 593						       ob5GHz, 3, 203, 0);
 594			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
 595						       db5GHz, 3, 200, 0);
 596		}
 597	}
 598
 599	/* Setup Bank 7 Setup */
 600	ar5008_rf_bank_setup(ah->analogBank7Data, &ah->iniBank7, 1);
 601
 602	/* Write Analog registers */
 603	REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
 604			   regWrites);
 605	REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
 606			   regWrites);
 607	REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
 608			   regWrites);
 609	REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
 610			   regWrites);
 611	REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
 612			   regWrites);
 613	REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
 614			   regWrites);
 615
 616	return true;
 617}
 618
 619static void ar5008_hw_init_bb(struct ath_hw *ah,
 620			      struct ath9k_channel *chan)
 621{
 622	u32 synthDelay;
 623
 624	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
 625	if (IS_CHAN_B(chan))
 626		synthDelay = (4 * synthDelay) / 22;
 627	else
 628		synthDelay /= 10;
 629
 630	if (IS_CHAN_HALF_RATE(chan))
 631		synthDelay *= 2;
 632	else if (IS_CHAN_QUARTER_RATE(chan))
 633		synthDelay *= 4;
 634
 635	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
 636
 637	udelay(synthDelay + BASE_ACTIVATE_DELAY);
 638}
 639
 640static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
 641{
 642	int rx_chainmask, tx_chainmask;
 643
 644	rx_chainmask = ah->rxchainmask;
 645	tx_chainmask = ah->txchainmask;
 646
 647
 648	switch (rx_chainmask) {
 649	case 0x5:
 650		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
 651			    AR_PHY_SWAP_ALT_CHAIN);
 
 652	case 0x3:
 653		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
 654			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
 655			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
 656			break;
 657		}
 
 658	case 0x1:
 659	case 0x2:
 660	case 0x7:
 661		ENABLE_REGWRITE_BUFFER(ah);
 662		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
 663		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
 664		break;
 665	default:
 666		ENABLE_REGWRITE_BUFFER(ah);
 667		break;
 668	}
 669
 670	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
 671
 672	REGWRITE_BUFFER_FLUSH(ah);
 673
 674	if (tx_chainmask == 0x5) {
 675		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
 676			    AR_PHY_SWAP_ALT_CHAIN);
 677	}
 678	if (AR_SREV_9100(ah))
 679		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
 680			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
 681}
 682
 683static void ar5008_hw_override_ini(struct ath_hw *ah,
 684				   struct ath9k_channel *chan)
 685{
 686	u32 val;
 687
 688	/*
 689	 * Set the RX_ABORT and RX_DIS and clear if off only after
 690	 * RXE is set for MAC. This prevents frames with corrupted
 691	 * descriptor status.
 692	 */
 693	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
 694
 695	if (AR_SREV_9280_20_OR_LATER(ah)) {
 696		val = REG_READ(ah, AR_PCU_MISC_MODE2);
 
 
 
 
 
 
 
 
 697
 698		if (!AR_SREV_9271(ah))
 699			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
 700
 701		if (AR_SREV_9287_11_OR_LATER(ah))
 702			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
 703
 
 
 704		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
 705	}
 706
 707	if (!AR_SREV_5416_20_OR_LATER(ah) ||
 708	    AR_SREV_9280_20_OR_LATER(ah))
 709		return;
 710	/*
 711	 * Disable BB clock gating
 712	 * Necessary to avoid issues on AR5416 2.0
 713	 */
 714	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
 715
 716	/*
 717	 * Disable RIFS search on some chips to avoid baseband
 718	 * hang issues.
 719	 */
 720	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
 721		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
 722		val &= ~AR_PHY_RIFS_INIT_DELAY;
 723		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
 724	}
 725}
 726
 727static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
 728				       struct ath9k_channel *chan)
 729{
 730	u32 phymode;
 731	u32 enableDacFifo = 0;
 732
 733	if (AR_SREV_9285_12_OR_LATER(ah))
 734		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
 735					 AR_PHY_FC_ENABLE_DAC_FIFO);
 736
 737	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
 738		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
 739
 740	if (IS_CHAN_HT40(chan)) {
 741		phymode |= AR_PHY_FC_DYN2040_EN;
 742
 743		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
 744		    (chan->chanmode == CHANNEL_G_HT40PLUS))
 745			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
 746
 747	}
 
 748	REG_WRITE(ah, AR_PHY_TURBO, phymode);
 749
 750	ath9k_hw_set11nmac2040(ah);
 751
 752	ENABLE_REGWRITE_BUFFER(ah);
 753
 754	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
 755	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
 756
 757	REGWRITE_BUFFER_FLUSH(ah);
 758}
 759
 760
 761static int ar5008_hw_process_ini(struct ath_hw *ah,
 762				 struct ath9k_channel *chan)
 763{
 764	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 765	struct ath_common *common = ath9k_hw_common(ah);
 766	int i, regWrites = 0;
 767	struct ieee80211_channel *channel = chan->chan;
 768	u32 modesIndex, freqIndex;
 769
 770	switch (chan->chanmode) {
 771	case CHANNEL_A:
 772	case CHANNEL_A_HT20:
 773		modesIndex = 1;
 774		freqIndex = 1;
 775		break;
 776	case CHANNEL_A_HT40PLUS:
 777	case CHANNEL_A_HT40MINUS:
 778		modesIndex = 2;
 779		freqIndex = 1;
 780		break;
 781	case CHANNEL_G:
 782	case CHANNEL_G_HT20:
 783	case CHANNEL_B:
 784		modesIndex = 4;
 785		freqIndex = 2;
 786		break;
 787	case CHANNEL_G_HT40PLUS:
 788	case CHANNEL_G_HT40MINUS:
 789		modesIndex = 3;
 790		freqIndex = 2;
 791		break;
 792
 793	default:
 794		return -EINVAL;
 795	}
 796
 797	/*
 798	 * Set correct baseband to analog shift setting to
 799	 * access analog chips.
 800	 */
 801	REG_WRITE(ah, AR_PHY(0), 0x00000007);
 802
 803	/* Write ADDAC shifts */
 804	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
 805	ah->eep_ops->set_addac(ah, chan);
 806
 807	if (AR_SREV_5416_22_OR_LATER(ah)) {
 808		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
 809	} else {
 810		struct ar5416IniArray temp;
 811		u32 addacSize =
 812			sizeof(u32) * ah->iniAddac.ia_rows *
 813			ah->iniAddac.ia_columns;
 814
 815		/* For AR5416 2.0/2.1 */
 816		memcpy(ah->addac5416_21,
 817		       ah->iniAddac.ia_array, addacSize);
 818
 819		/* override CLKDRV value at [row, column] = [31, 1] */
 820		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
 821
 822		temp.ia_array = ah->addac5416_21;
 823		temp.ia_columns = ah->iniAddac.ia_columns;
 824		temp.ia_rows = ah->iniAddac.ia_rows;
 825		REG_WRITE_ARRAY(&temp, 1, regWrites);
 826	}
 827
 
 828	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
 829
 830	ENABLE_REGWRITE_BUFFER(ah);
 831
 832	for (i = 0; i < ah->iniModes.ia_rows; i++) {
 833		u32 reg = INI_RA(&ah->iniModes, i, 0);
 834		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
 835
 836		if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
 837			val &= ~AR_AN_TOP2_PWDCLKIND;
 838
 839		REG_WRITE(ah, reg, val);
 840
 841		if (reg >= 0x7800 && reg < 0x78a0
 842		    && ah->config.analog_shiftreg
 843		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
 844			udelay(100);
 845		}
 846
 847		DO_DELAY(regWrites);
 848	}
 849
 850	REGWRITE_BUFFER_FLUSH(ah);
 851
 852	if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
 853		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
 854
 855	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
 856	    AR_SREV_9287_11_OR_LATER(ah))
 857		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
 858
 859	if (AR_SREV_9271_10(ah))
 860		REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
 861				modesIndex, regWrites);
 
 862
 863	ENABLE_REGWRITE_BUFFER(ah);
 864
 865	/* Write common array parameters */
 866	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
 867		u32 reg = INI_RA(&ah->iniCommon, i, 0);
 868		u32 val = INI_RA(&ah->iniCommon, i, 1);
 869
 870		REG_WRITE(ah, reg, val);
 871
 872		if (reg >= 0x7800 && reg < 0x78a0
 873		    && ah->config.analog_shiftreg
 874		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
 875			udelay(100);
 876		}
 877
 878		DO_DELAY(regWrites);
 879	}
 880
 881	REGWRITE_BUFFER_FLUSH(ah);
 882
 883	if (AR_SREV_9271(ah)) {
 884		if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
 885			REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
 886					modesIndex, regWrites);
 887		else
 888			REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
 889					modesIndex, regWrites);
 890	}
 891
 892	REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
 893
 894	if (IS_CHAN_A_FAST_CLOCK(ah, chan)) {
 895		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
 896				regWrites);
 897	}
 898
 899	ar5008_hw_override_ini(ah, chan);
 900	ar5008_hw_set_channel_regs(ah, chan);
 901	ar5008_hw_init_chain_masks(ah);
 902	ath9k_olc_init(ah);
 903
 904	/* Set TX power */
 905	ah->eep_ops->set_txpower(ah, chan,
 906				 ath9k_regd_get_ctl(regulatory, chan),
 907				 channel->max_antenna_gain * 2,
 908				 channel->max_power * 2,
 909				 min((u32) MAX_RATE_POWER,
 910				 (u32) regulatory->power_limit), false);
 911
 912	/* Write analog registers */
 913	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
 914		ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
 915		return -EIO;
 916	}
 917
 918	return 0;
 919}
 920
 921static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
 922{
 923	u32 rfMode = 0;
 924
 925	if (chan == NULL)
 926		return;
 927
 928	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
 929		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
 
 
 930
 931	if (!AR_SREV_9280_20_OR_LATER(ah))
 932		rfMode |= (IS_CHAN_5GHZ(chan)) ?
 933			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
 934
 935	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 936		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
 937
 938	REG_WRITE(ah, AR_PHY_MODE, rfMode);
 939}
 940
 941static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
 942{
 943	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
 944}
 945
 946static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
 947				      struct ath9k_channel *chan)
 948{
 949	u32 coef_scaled, ds_coef_exp, ds_coef_man;
 950	u32 clockMhzScaled = 0x64000000;
 951	struct chan_centers centers;
 952
 953	if (IS_CHAN_HALF_RATE(chan))
 954		clockMhzScaled = clockMhzScaled >> 1;
 955	else if (IS_CHAN_QUARTER_RATE(chan))
 956		clockMhzScaled = clockMhzScaled >> 2;
 957
 958	ath9k_hw_get_channel_centers(ah, chan, &centers);
 959	coef_scaled = clockMhzScaled / centers.synth_center;
 960
 961	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
 962				      &ds_coef_exp);
 963
 964	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
 965		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
 966	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
 967		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
 968
 969	coef_scaled = (9 * coef_scaled) / 10;
 970
 971	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
 972				      &ds_coef_exp);
 973
 974	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
 975		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
 976	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
 977		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
 978}
 979
 980static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
 981{
 982	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
 983	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
 984			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
 985}
 986
 987static void ar5008_hw_rfbus_done(struct ath_hw *ah)
 988{
 989	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
 990	if (IS_CHAN_B(ah->curchan))
 991		synthDelay = (4 * synthDelay) / 22;
 992	else
 993		synthDelay /= 10;
 994
 995	udelay(synthDelay + BASE_ACTIVATE_DELAY);
 996
 997	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
 998}
 999
1000static void ar5008_restore_chainmask(struct ath_hw *ah)
1001{
1002	int rx_chainmask = ah->rxchainmask;
1003
1004	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
1005		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1006		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1007	}
1008}
1009
1010static void ar5008_set_diversity(struct ath_hw *ah, bool value)
1011{
1012	u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
1013	if (value)
1014		v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1015	else
1016		v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1017	REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1018}
1019
1020static u32 ar9100_hw_compute_pll_control(struct ath_hw *ah,
1021					 struct ath9k_channel *chan)
1022{
1023	if (chan && IS_CHAN_5GHZ(chan))
1024		return 0x1450;
1025	return 0x1458;
1026}
1027
1028static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
1029					 struct ath9k_channel *chan)
1030{
1031	u32 pll;
1032
1033	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1034
1035	if (chan && IS_CHAN_HALF_RATE(chan))
1036		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1037	else if (chan && IS_CHAN_QUARTER_RATE(chan))
1038		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1039
1040	if (chan && IS_CHAN_5GHZ(chan))
1041		pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1042	else
1043		pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1044
1045	return pll;
1046}
1047
1048static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
1049					 struct ath9k_channel *chan)
1050{
1051	u32 pll;
1052
1053	pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1054
1055	if (chan && IS_CHAN_HALF_RATE(chan))
1056		pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1057	else if (chan && IS_CHAN_QUARTER_RATE(chan))
1058		pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1059
1060	if (chan && IS_CHAN_5GHZ(chan))
1061		pll |= SM(0xa, AR_RTC_PLL_DIV);
1062	else
1063		pll |= SM(0xb, AR_RTC_PLL_DIV);
1064
1065	return pll;
1066}
1067
1068static bool ar5008_hw_ani_control_old(struct ath_hw *ah,
1069				      enum ath9k_ani_cmd cmd,
1070				      int param)
1071{
1072	struct ar5416AniState *aniState = &ah->curchan->ani;
1073	struct ath_common *common = ath9k_hw_common(ah);
1074
1075	switch (cmd & ah->ani_function) {
1076	case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
1077		u32 level = param;
1078
1079		if (level >= ARRAY_SIZE(ah->totalSizeDesired)) {
1080			ath_dbg(common, ATH_DBG_ANI,
1081				"level out of range (%u > %zu)\n",
1082				level, ARRAY_SIZE(ah->totalSizeDesired));
1083			return false;
1084		}
1085
1086		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1087			      AR_PHY_DESIRED_SZ_TOT_DES,
1088			      ah->totalSizeDesired[level]);
1089		REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
1090			      AR_PHY_AGC_CTL1_COARSE_LOW,
1091			      ah->coarse_low[level]);
1092		REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
1093			      AR_PHY_AGC_CTL1_COARSE_HIGH,
1094			      ah->coarse_high[level]);
1095		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1096			      AR_PHY_FIND_SIG_FIRPWR,
1097			      ah->firpwr[level]);
1098
1099		if (level > aniState->noiseImmunityLevel)
1100			ah->stats.ast_ani_niup++;
1101		else if (level < aniState->noiseImmunityLevel)
1102			ah->stats.ast_ani_nidown++;
1103		aniState->noiseImmunityLevel = level;
1104		break;
1105	}
1106	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
1107		static const int m1ThreshLow[] = { 127, 50 };
1108		static const int m2ThreshLow[] = { 127, 40 };
1109		static const int m1Thresh[] = { 127, 0x4d };
1110		static const int m2Thresh[] = { 127, 0x40 };
1111		static const int m2CountThr[] = { 31, 16 };
1112		static const int m2CountThrLow[] = { 63, 48 };
1113		u32 on = param ? 1 : 0;
1114
1115		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1116			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
1117			      m1ThreshLow[on]);
1118		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1119			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
1120			      m2ThreshLow[on]);
1121		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1122			      AR_PHY_SFCORR_M1_THRESH,
1123			      m1Thresh[on]);
1124		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1125			      AR_PHY_SFCORR_M2_THRESH,
1126			      m2Thresh[on]);
1127		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1128			      AR_PHY_SFCORR_M2COUNT_THR,
1129			      m2CountThr[on]);
1130		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1131			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
1132			      m2CountThrLow[on]);
1133
1134		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1135			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
1136			      m1ThreshLow[on]);
1137		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1138			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
1139			      m2ThreshLow[on]);
1140		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1141			      AR_PHY_SFCORR_EXT_M1_THRESH,
1142			      m1Thresh[on]);
1143		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1144			      AR_PHY_SFCORR_EXT_M2_THRESH,
1145			      m2Thresh[on]);
1146
1147		if (on)
1148			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1149				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1150		else
1151			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1152				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1153
1154		if (!on != aniState->ofdmWeakSigDetectOff) {
1155			if (on)
1156				ah->stats.ast_ani_ofdmon++;
1157			else
1158				ah->stats.ast_ani_ofdmoff++;
1159			aniState->ofdmWeakSigDetectOff = !on;
1160		}
1161		break;
1162	}
1163	case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
1164		static const int weakSigThrCck[] = { 8, 6 };
1165		u32 high = param ? 1 : 0;
1166
1167		REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
1168			      AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
1169			      weakSigThrCck[high]);
1170		if (high != aniState->cckWeakSigThreshold) {
1171			if (high)
1172				ah->stats.ast_ani_cckhigh++;
1173			else
1174				ah->stats.ast_ani_ccklow++;
1175			aniState->cckWeakSigThreshold = high;
1176		}
1177		break;
1178	}
1179	case ATH9K_ANI_FIRSTEP_LEVEL:{
1180		static const int firstep[] = { 0, 4, 8 };
1181		u32 level = param;
1182
1183		if (level >= ARRAY_SIZE(firstep)) {
1184			ath_dbg(common, ATH_DBG_ANI,
1185				"level out of range (%u > %zu)\n",
1186				level, ARRAY_SIZE(firstep));
1187			return false;
1188		}
1189		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1190			      AR_PHY_FIND_SIG_FIRSTEP,
1191			      firstep[level]);
1192		if (level > aniState->firstepLevel)
1193			ah->stats.ast_ani_stepup++;
1194		else if (level < aniState->firstepLevel)
1195			ah->stats.ast_ani_stepdown++;
1196		aniState->firstepLevel = level;
1197		break;
1198	}
1199	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1200		static const int cycpwrThr1[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
1201		u32 level = param;
1202
1203		if (level >= ARRAY_SIZE(cycpwrThr1)) {
1204			ath_dbg(common, ATH_DBG_ANI,
1205				"level out of range (%u > %zu)\n",
1206				level, ARRAY_SIZE(cycpwrThr1));
1207			return false;
1208		}
1209		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1210			      AR_PHY_TIMING5_CYCPWR_THR1,
1211			      cycpwrThr1[level]);
1212		if (level > aniState->spurImmunityLevel)
1213			ah->stats.ast_ani_spurup++;
1214		else if (level < aniState->spurImmunityLevel)
1215			ah->stats.ast_ani_spurdown++;
1216		aniState->spurImmunityLevel = level;
1217		break;
1218	}
1219	case ATH9K_ANI_PRESENT:
1220		break;
1221	default:
1222		ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
1223		return false;
1224	}
1225
1226	ath_dbg(common, ATH_DBG_ANI, "ANI parameters:\n");
1227	ath_dbg(common, ATH_DBG_ANI,
1228		"noiseImmunityLevel=%d, spurImmunityLevel=%d, ofdmWeakSigDetectOff=%d\n",
1229		aniState->noiseImmunityLevel,
1230		aniState->spurImmunityLevel,
1231		!aniState->ofdmWeakSigDetectOff);
1232	ath_dbg(common, ATH_DBG_ANI,
1233		"cckWeakSigThreshold=%d, firstepLevel=%d, listenTime=%d\n",
1234		aniState->cckWeakSigThreshold,
1235		aniState->firstepLevel,
1236		aniState->listenTime);
1237	ath_dbg(common, ATH_DBG_ANI,
1238		"ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
1239		aniState->ofdmPhyErrCount,
1240		aniState->cckPhyErrCount);
1241
1242	return true;
1243}
1244
1245static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
1246				      enum ath9k_ani_cmd cmd,
1247				      int param)
1248{
1249	struct ath_common *common = ath9k_hw_common(ah);
1250	struct ath9k_channel *chan = ah->curchan;
1251	struct ar5416AniState *aniState = &chan->ani;
1252	s32 value, value2;
1253
1254	switch (cmd & ah->ani_function) {
1255	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
1256		/*
1257		 * on == 1 means ofdm weak signal detection is ON
1258		 * on == 1 is the default, for less noise immunity
1259		 *
1260		 * on == 0 means ofdm weak signal detection is OFF
1261		 * on == 0 means more noise imm
1262		 */
1263		u32 on = param ? 1 : 0;
1264		/*
1265		 * make register setting for default
1266		 * (weak sig detect ON) come from INI file
1267		 */
1268		int m1ThreshLow = on ?
1269			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
1270		int m2ThreshLow = on ?
1271			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
1272		int m1Thresh = on ?
1273			aniState->iniDef.m1Thresh : m1Thresh_off;
1274		int m2Thresh = on ?
1275			aniState->iniDef.m2Thresh : m2Thresh_off;
1276		int m2CountThr = on ?
1277			aniState->iniDef.m2CountThr : m2CountThr_off;
1278		int m2CountThrLow = on ?
1279			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
1280		int m1ThreshLowExt = on ?
1281			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
1282		int m2ThreshLowExt = on ?
1283			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
1284		int m1ThreshExt = on ?
1285			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
1286		int m2ThreshExt = on ?
1287			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
1288
1289		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1290			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
1291			      m1ThreshLow);
1292		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1293			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
1294			      m2ThreshLow);
1295		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1296			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
1297		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1298			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
1299		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1300			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
1301		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1302			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
1303			      m2CountThrLow);
1304
1305		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1306			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
1307		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1308			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
1309		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1310			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
1311		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1312			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1313
1314		if (on)
1315			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1316				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1317		else
1318			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1319				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1320
1321		if (!on != aniState->ofdmWeakSigDetectOff) {
1322			ath_dbg(common, ATH_DBG_ANI,
1323				"** ch %d: ofdm weak signal: %s=>%s\n",
1324				chan->channel,
1325				!aniState->ofdmWeakSigDetectOff ?
1326				"on" : "off",
1327				on ? "on" : "off");
1328			if (on)
1329				ah->stats.ast_ani_ofdmon++;
1330			else
1331				ah->stats.ast_ani_ofdmoff++;
1332			aniState->ofdmWeakSigDetectOff = !on;
1333		}
1334		break;
1335	}
1336	case ATH9K_ANI_FIRSTEP_LEVEL:{
1337		u32 level = param;
1338
1339		if (level >= ARRAY_SIZE(firstep_table)) {
1340			ath_dbg(common, ATH_DBG_ANI,
1341				"ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
1342				level, ARRAY_SIZE(firstep_table));
1343			return false;
1344		}
1345
1346		/*
1347		 * make register setting relative to default
1348		 * from INI file & cap value
1349		 */
1350		value = firstep_table[level] -
1351			firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
1352			aniState->iniDef.firstep;
1353		if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
1354			value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
1355		if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
1356			value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
1357		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1358			      AR_PHY_FIND_SIG_FIRSTEP,
1359			      value);
1360		/*
1361		 * we need to set first step low register too
1362		 * make register setting relative to default
1363		 * from INI file & cap value
1364		 */
1365		value2 = firstep_table[level] -
1366			 firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
1367			 aniState->iniDef.firstepLow;
1368		if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
1369			value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
1370		if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
1371			value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
1372
1373		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1374			      AR_PHY_FIND_SIG_FIRSTEP_LOW, value2);
1375
1376		if (level != aniState->firstepLevel) {
1377			ath_dbg(common, ATH_DBG_ANI,
1378				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1379				chan->channel,
1380				aniState->firstepLevel,
1381				level,
1382				ATH9K_ANI_FIRSTEP_LVL_NEW,
1383				value,
1384				aniState->iniDef.firstep);
1385			ath_dbg(common, ATH_DBG_ANI,
1386				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1387				chan->channel,
1388				aniState->firstepLevel,
1389				level,
1390				ATH9K_ANI_FIRSTEP_LVL_NEW,
1391				value2,
1392				aniState->iniDef.firstepLow);
1393			if (level > aniState->firstepLevel)
1394				ah->stats.ast_ani_stepup++;
1395			else if (level < aniState->firstepLevel)
1396				ah->stats.ast_ani_stepdown++;
1397			aniState->firstepLevel = level;
1398		}
1399		break;
1400	}
1401	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1402		u32 level = param;
1403
1404		if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
1405			ath_dbg(common, ATH_DBG_ANI,
1406				"ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
1407				level, ARRAY_SIZE(cycpwrThr1_table));
1408			return false;
1409		}
1410		/*
1411		 * make register setting relative to default
1412		 * from INI file & cap value
1413		 */
1414		value = cycpwrThr1_table[level] -
1415			cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
1416			aniState->iniDef.cycpwrThr1;
1417		if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
1418			value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
1419		if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
1420			value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
1421		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1422			      AR_PHY_TIMING5_CYCPWR_THR1,
1423			      value);
1424
1425		/*
1426		 * set AR_PHY_EXT_CCA for extension channel
1427		 * make register setting relative to default
1428		 * from INI file & cap value
1429		 */
1430		value2 = cycpwrThr1_table[level] -
1431			 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
1432			 aniState->iniDef.cycpwrThr1Ext;
1433		if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
1434			value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
1435		if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
1436			value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
1437		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1438			      AR_PHY_EXT_TIMING5_CYCPWR_THR1, value2);
1439
1440		if (level != aniState->spurImmunityLevel) {
1441			ath_dbg(common, ATH_DBG_ANI,
1442				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1443				chan->channel,
1444				aniState->spurImmunityLevel,
1445				level,
1446				ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
1447				value,
1448				aniState->iniDef.cycpwrThr1);
1449			ath_dbg(common, ATH_DBG_ANI,
1450				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1451				chan->channel,
1452				aniState->spurImmunityLevel,
1453				level,
1454				ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
1455				value2,
1456				aniState->iniDef.cycpwrThr1Ext);
1457			if (level > aniState->spurImmunityLevel)
1458				ah->stats.ast_ani_spurup++;
1459			else if (level < aniState->spurImmunityLevel)
1460				ah->stats.ast_ani_spurdown++;
1461			aniState->spurImmunityLevel = level;
1462		}
1463		break;
1464	}
1465	case ATH9K_ANI_MRC_CCK:
1466		/*
1467		 * You should not see this as AR5008, AR9001, AR9002
1468		 * does not have hardware support for MRC CCK.
1469		 */
1470		WARN_ON(1);
1471		break;
1472	case ATH9K_ANI_PRESENT:
1473		break;
1474	default:
1475		ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
1476		return false;
1477	}
1478
1479	ath_dbg(common, ATH_DBG_ANI,
1480		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1481		aniState->spurImmunityLevel,
1482		!aniState->ofdmWeakSigDetectOff ? "on" : "off",
1483		aniState->firstepLevel,
1484		!aniState->mrcCCKOff ? "on" : "off",
1485		aniState->listenTime,
1486		aniState->ofdmPhyErrCount,
1487		aniState->cckPhyErrCount);
1488	return true;
1489}
1490
1491static void ar5008_hw_do_getnf(struct ath_hw *ah,
1492			      int16_t nfarray[NUM_NF_READINGS])
1493{
1494	int16_t nf;
1495
1496	nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1497	nfarray[0] = sign_extend32(nf, 8);
1498
1499	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1500	nfarray[1] = sign_extend32(nf, 8);
1501
1502	nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1503	nfarray[2] = sign_extend32(nf, 8);
1504
1505	if (!IS_CHAN_HT40(ah->curchan))
1506		return;
1507
1508	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1509	nfarray[3] = sign_extend32(nf, 8);
1510
1511	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1512	nfarray[4] = sign_extend32(nf, 8);
1513
1514	nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1515	nfarray[5] = sign_extend32(nf, 8);
1516}
1517
1518/*
1519 * Initialize the ANI register values with default (ini) values.
1520 * This routine is called during a (full) hardware reset after
1521 * all the registers are initialised from the INI.
1522 */
1523static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1524{
1525	struct ath_common *common = ath9k_hw_common(ah);
1526	struct ath9k_channel *chan = ah->curchan;
1527	struct ar5416AniState *aniState = &chan->ani;
1528	struct ath9k_ani_default *iniDef;
1529	u32 val;
1530
1531	iniDef = &aniState->iniDef;
1532
1533	ath_dbg(common, ATH_DBG_ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
1534		ah->hw_version.macVersion,
1535		ah->hw_version.macRev,
1536		ah->opmode,
1537		chan->channel,
1538		chan->channelFlags);
1539
1540	val = REG_READ(ah, AR_PHY_SFCORR);
1541	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1542	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1543	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1544
1545	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1546	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1547	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1548	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1549
1550	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1551	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1552	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1553	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1554	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1555	iniDef->firstep = REG_READ_FIELD(ah,
1556					 AR_PHY_FIND_SIG,
1557					 AR_PHY_FIND_SIG_FIRSTEP);
1558	iniDef->firstepLow = REG_READ_FIELD(ah,
1559					    AR_PHY_FIND_SIG_LOW,
1560					    AR_PHY_FIND_SIG_FIRSTEP_LOW);
1561	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1562					    AR_PHY_TIMING5,
1563					    AR_PHY_TIMING5_CYCPWR_THR1);
1564	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1565					       AR_PHY_EXT_CCA,
1566					       AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1567
1568	/* these levels just got reset to defaults by the INI */
1569	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
1570	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
1571	aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
1572	aniState->mrcCCKOff = true; /* not available on pre AR9003 */
1573}
1574
1575static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1576{
1577	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1578	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1579	ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1580	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1581	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1582	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1583}
1584
1585static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1586				       struct ath_hw_radar_conf *conf)
1587{
1588	u32 radar_0 = 0, radar_1 = 0;
1589
1590	if (!conf) {
1591		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1592		return;
1593	}
1594
1595	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1596	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1597	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1598	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1599	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1600	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1601
 
 
 
1602	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1603	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1604	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1605	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1606	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1607
1608	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1609	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1610	if (conf->ext_channel)
1611		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1612	else
1613		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1614}
1615
1616static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1617{
1618	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1619
1620	conf->fir_power = -33;
1621	conf->radar_rssi = 20;
1622	conf->pulse_height = 10;
1623	conf->pulse_rssi = 24;
1624	conf->pulse_inband = 15;
1625	conf->pulse_maxlen = 255;
1626	conf->pulse_inband_step = 12;
1627	conf->radar_inband = 8;
1628}
1629
1630void ar5008_hw_attach_phy_ops(struct ath_hw *ah)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631{
1632	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1633	static const u32 ar5416_cca_regs[6] = {
1634		AR_PHY_CCA,
1635		AR_PHY_CH1_CCA,
1636		AR_PHY_CH2_CCA,
1637		AR_PHY_EXT_CCA,
1638		AR_PHY_CH1_EXT_CCA,
1639		AR_PHY_CH2_EXT_CCA
1640	};
 
 
 
 
 
1641
1642	priv_ops->rf_set_freq = ar5008_hw_set_channel;
1643	priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1644
1645	priv_ops->rf_alloc_ext_banks = ar5008_hw_rf_alloc_ext_banks;
1646	priv_ops->rf_free_ext_banks = ar5008_hw_rf_free_ext_banks;
1647	priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1648	priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1649	priv_ops->init_bb = ar5008_hw_init_bb;
1650	priv_ops->process_ini = ar5008_hw_process_ini;
1651	priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1652	priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1653	priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1654	priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1655	priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1656	priv_ops->restore_chainmask = ar5008_restore_chainmask;
1657	priv_ops->set_diversity = ar5008_set_diversity;
1658	priv_ops->do_getnf = ar5008_hw_do_getnf;
1659	priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1660
1661	if (modparam_force_new_ani) {
1662		priv_ops->ani_control = ar5008_hw_ani_control_new;
1663		priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1664	} else
1665		priv_ops->ani_control = ar5008_hw_ani_control_old;
1666
1667	if (AR_SREV_9100(ah))
1668		priv_ops->compute_pll_control = ar9100_hw_compute_pll_control;
1669	else if (AR_SREV_9160_10_OR_LATER(ah))
1670		priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1671	else
1672		priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1673
1674	ar5008_hw_set_nf_limits(ah);
1675	ar5008_hw_set_radar_conf(ah);
1676	memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
 
1677}
v6.9.4
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include "hw.h"
  18#include "hw-ops.h"
  19#include "../regd.h"
  20#include "ar9002_phy.h"
  21
  22/* All code below is for AR5008, AR9001, AR9002 */
  23
  24#define AR5008_OFDM_RATES		8
  25#define AR5008_HT_SS_RATES		8
  26#define AR5008_HT_DS_RATES		8
  27
  28#define AR5008_HT20_SHIFT		16
  29#define AR5008_HT40_SHIFT		24
  30
  31#define AR5008_11NA_OFDM_SHIFT		0
  32#define AR5008_11NA_HT_SS_SHIFT		8
  33#define AR5008_11NA_HT_DS_SHIFT		16
  34
  35#define AR5008_11NG_OFDM_SHIFT		4
  36#define AR5008_11NG_HT_SS_SHIFT		12
  37#define AR5008_11NG_HT_DS_SHIFT		20
  38
  39/*
  40 * register values to turn OFDM weak signal detection OFF
  41 */
  42static const int m1ThreshLow_off = 127;
  43static const int m2ThreshLow_off = 127;
  44static const int m1Thresh_off = 127;
  45static const int m2Thresh_off = 127;
  46static const int m2CountThr_off =  31;
  47static const int m2CountThrLow_off =  63;
  48static const int m1ThreshLowExt_off = 127;
  49static const int m2ThreshLowExt_off = 127;
  50static const int m1ThreshExt_off = 127;
  51static const int m2ThreshExt_off = 127;
  52
  53static const u32 ar5416Bank0[][2] = {
  54	/* Addr      allmodes  */
  55	{0x000098b0, 0x1e5795e5},
  56	{0x000098e0, 0x02008020},
  57};
  58
  59static const u32 ar5416Bank1[][2] = {
  60	/* Addr      allmodes  */
  61	{0x000098b0, 0x02108421},
  62	{0x000098ec, 0x00000008},
  63};
  64
  65static const u32 ar5416Bank2[][2] = {
  66	/* Addr      allmodes  */
  67	{0x000098b0, 0x0e73ff17},
  68	{0x000098e0, 0x00000420},
  69};
  70
  71static const u32 ar5416Bank3[][3] = {
  72	/* Addr      5G          2G        */
  73	{0x000098f0, 0x01400018, 0x01c00018},
  74};
  75
  76static const u32 ar5416Bank7[][2] = {
  77	/* Addr      allmodes  */
  78	{0x0000989c, 0x00000500},
  79	{0x0000989c, 0x00000800},
  80	{0x000098cc, 0x0000000e},
  81};
  82
  83static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
  84static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
  85static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
  86static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
  87static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
  88
  89static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90{
  91	struct ar5416IniArray *array = &ah->iniBank6;
  92	u32 *data = ah->analogBank6Data;
  93	int r;
  94
  95	ENABLE_REGWRITE_BUFFER(ah);
  96
  97	for (r = 0; r < array->ia_rows; r++) {
  98		REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
  99		DO_DELAY(*writecnt);
 100	}
 101
 102	REGWRITE_BUFFER_FLUSH(ah);
 103}
 104
 105/*
 106 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
 
 
 
 
 
 107 *
 108 * Performs analog "swizzling" of parameters into their location.
 109 * Used on external AR2133/AR5133 radios.
 110 */
 111static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
 112					   u32 numBits, u32 firstBit,
 113					   u32 column)
 114{
 115	u32 tmp32, mask, arrayEntry, lastBit;
 116	int32_t bitPosition, bitsLeft;
 117
 118	tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
 119	arrayEntry = (firstBit - 1) / 8;
 120	bitPosition = (firstBit - 1) % 8;
 121	bitsLeft = numBits;
 122	while (bitsLeft > 0) {
 123		lastBit = (bitPosition + bitsLeft > 8) ?
 124		    8 : bitPosition + bitsLeft;
 125		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
 126		    (column * 8);
 127		rfBuf[arrayEntry] &= ~mask;
 128		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
 129				      (column * 8)) & mask;
 130		bitsLeft -= 8 - bitPosition;
 131		tmp32 = tmp32 >> (8 - bitPosition);
 132		bitPosition = 0;
 133		arrayEntry++;
 134	}
 135}
 136
 137/*
 138 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
 139 * rf_pwd_icsyndiv.
 140 *
 141 * Theoretical Rules:
 142 *   if 2 GHz band
 143 *      if forceBiasAuto
 144 *         if synth_freq < 2412
 145 *            bias = 0
 146 *         else if 2412 <= synth_freq <= 2422
 147 *            bias = 1
 148 *         else // synth_freq > 2422
 149 *            bias = 2
 150 *      else if forceBias > 0
 151 *         bias = forceBias & 7
 152 *      else
 153 *         no change, use value from ini file
 154 *   else
 155 *      no change, invalid band
 156 *
 157 *  1st Mod:
 158 *    2422 also uses value of 2
 159 *    <approved>
 160 *
 161 *  2nd Mod:
 162 *    Less than 2412 uses value of 0, 2412 and above uses value of 2
 163 */
 164static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
 165{
 166	struct ath_common *common = ath9k_hw_common(ah);
 167	u32 tmp_reg;
 168	int reg_writes = 0;
 169	u32 new_bias = 0;
 170
 171	if (!AR_SREV_5416(ah) || synth_freq >= 3000)
 172		return;
 173
 174	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
 175
 176	if (synth_freq < 2412)
 177		new_bias = 0;
 178	else if (synth_freq < 2422)
 179		new_bias = 1;
 180	else
 181		new_bias = 2;
 182
 183	/* pre-reverse this field */
 184	tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
 185
 186	ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
 187		new_bias, synth_freq);
 188
 189	/* swizzle rf_pwd_icsyndiv */
 190	ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
 191
 192	/* write Bank 6 with new params */
 193	ar5008_write_bank6(ah, &reg_writes);
 194}
 195
 196/*
 197 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
 
 
 198 *
 199 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
 200 * the channel value. Assumes writes enabled to analog bus and bank6 register
 201 * cache in ah->analogBank6Data.
 202 */
 203static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
 204{
 205	struct ath_common *common = ath9k_hw_common(ah);
 206	u32 channelSel = 0;
 207	u32 bModeSynth = 0;
 208	u32 aModeRefSel = 0;
 209	u32 reg32 = 0;
 210	u16 freq;
 211	struct chan_centers centers;
 212
 213	ath9k_hw_get_channel_centers(ah, chan, &centers);
 214	freq = centers.synth_center;
 215
 216	if (freq < 4800) {
 217		u32 txctl;
 218
 219		if (((freq - 2192) % 5) == 0) {
 220			channelSel = ((freq - 672) * 2 - 3040) / 10;
 221			bModeSynth = 0;
 222		} else if (((freq - 2224) % 5) == 0) {
 223			channelSel = ((freq - 704) * 2 - 3040) / 10;
 224			bModeSynth = 1;
 225		} else {
 226			ath_err(common, "Invalid channel %u MHz\n", freq);
 227			return -EINVAL;
 228		}
 229
 230		channelSel = (channelSel << 2) & 0xff;
 231		channelSel = ath9k_hw_reverse_bits(channelSel, 8);
 232
 233		txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
 234		if (freq == 2484) {
 235
 236			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
 237				  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
 238		} else {
 239			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
 240				  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
 241		}
 242
 243	} else if ((freq % 20) == 0 && freq >= 5120) {
 244		channelSel =
 245		    ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
 246		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
 247	} else if ((freq % 10) == 0) {
 248		channelSel =
 249		    ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
 250		if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
 251			aModeRefSel = ath9k_hw_reverse_bits(2, 2);
 252		else
 253			aModeRefSel = ath9k_hw_reverse_bits(1, 2);
 254	} else if ((freq % 5) == 0) {
 255		channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
 256		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
 257	} else {
 258		ath_err(common, "Invalid channel %u MHz\n", freq);
 259		return -EINVAL;
 260	}
 261
 262	ar5008_hw_force_bias(ah, freq);
 263
 264	reg32 =
 265	    (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
 266	    (1 << 5) | 0x1;
 267
 268	REG_WRITE(ah, AR_PHY(0x37), reg32);
 269
 270	ah->curchan = chan;
 
 271
 272	return 0;
 273}
 274
 275void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah,
 276			  struct ath9k_channel *chan, int bin)
 
 
 
 
 
 
 
 
 277{
 278	int cur_bin;
 
 
 
 
 279	int upper, lower, cur_vit_mask;
 
 280	int i;
 281	int8_t mask_m[123] = {0};
 282	int8_t mask_p[123] = {0};
 283	int8_t mask_amt;
 284	int tmp_mask;
 285	static const int pilot_mask_reg[4] = {
 286		AR_PHY_TIMING7, AR_PHY_TIMING8,
 287		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
 288	};
 289	static const int chan_mask_reg[4] = {
 290		AR_PHY_TIMING9, AR_PHY_TIMING10,
 291		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
 292	};
 293	static const int inc[4] = { 0, 100, 0, 0 };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294
 295	cur_bin = -6000;
 296	upper = bin + 100;
 297	lower = bin - 100;
 298
 299	for (i = 0; i < 4; i++) {
 300		int pilot_mask = 0;
 301		int chan_mask = 0;
 302		int bp = 0;
 303
 304		for (bp = 0; bp < 30; bp++) {
 305			if ((cur_bin > lower) && (cur_bin < upper)) {
 306				pilot_mask = pilot_mask | 0x1 << bp;
 307				chan_mask = chan_mask | 0x1 << bp;
 308			}
 309			cur_bin += 100;
 310		}
 311		cur_bin += inc[i];
 312		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
 313		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
 314	}
 315
 316	cur_vit_mask = 6100;
 317	upper = bin + 120;
 318	lower = bin - 120;
 319
 320	for (i = 0; i < ARRAY_SIZE(mask_m); i++) {
 321		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
 
 322			/* workaround for gcc bug #37014 */
 323			volatile int tmp_v = abs(cur_vit_mask - bin);
 324
 325			if (tmp_v < 75)
 326				mask_amt = 1;
 327			else
 328				mask_amt = 0;
 329			if (cur_vit_mask < 0)
 330				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
 331			else
 332				mask_p[cur_vit_mask / 100] = mask_amt;
 333		}
 334		cur_vit_mask -= 100;
 335	}
 336
 337	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
 338		| (mask_m[48] << 26) | (mask_m[49] << 24)
 339		| (mask_m[50] << 22) | (mask_m[51] << 20)
 340		| (mask_m[52] << 18) | (mask_m[53] << 16)
 341		| (mask_m[54] << 14) | (mask_m[55] << 12)
 342		| (mask_m[56] << 10) | (mask_m[57] << 8)
 343		| (mask_m[58] << 6) | (mask_m[59] << 4)
 344		| (mask_m[60] << 2) | (mask_m[61] << 0);
 345	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
 346	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
 347
 348	tmp_mask = (mask_m[31] << 28)
 349		| (mask_m[32] << 26) | (mask_m[33] << 24)
 350		| (mask_m[34] << 22) | (mask_m[35] << 20)
 351		| (mask_m[36] << 18) | (mask_m[37] << 16)
 352		| (mask_m[48] << 14) | (mask_m[39] << 12)
 353		| (mask_m[40] << 10) | (mask_m[41] << 8)
 354		| (mask_m[42] << 6) | (mask_m[43] << 4)
 355		| (mask_m[44] << 2) | (mask_m[45] << 0);
 356	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
 357	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
 358
 359	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
 360		| (mask_m[18] << 26) | (mask_m[18] << 24)
 361		| (mask_m[20] << 22) | (mask_m[20] << 20)
 362		| (mask_m[22] << 18) | (mask_m[22] << 16)
 363		| (mask_m[24] << 14) | (mask_m[24] << 12)
 364		| (mask_m[25] << 10) | (mask_m[26] << 8)
 365		| (mask_m[27] << 6) | (mask_m[28] << 4)
 366		| (mask_m[29] << 2) | (mask_m[30] << 0);
 367	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
 368	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
 369
 370	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
 371		| (mask_m[2] << 26) | (mask_m[3] << 24)
 372		| (mask_m[4] << 22) | (mask_m[5] << 20)
 373		| (mask_m[6] << 18) | (mask_m[7] << 16)
 374		| (mask_m[8] << 14) | (mask_m[9] << 12)
 375		| (mask_m[10] << 10) | (mask_m[11] << 8)
 376		| (mask_m[12] << 6) | (mask_m[13] << 4)
 377		| (mask_m[14] << 2) | (mask_m[15] << 0);
 378	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
 379	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
 380
 381	tmp_mask = (mask_p[15] << 28)
 382		| (mask_p[14] << 26) | (mask_p[13] << 24)
 383		| (mask_p[12] << 22) | (mask_p[11] << 20)
 384		| (mask_p[10] << 18) | (mask_p[9] << 16)
 385		| (mask_p[8] << 14) | (mask_p[7] << 12)
 386		| (mask_p[6] << 10) | (mask_p[5] << 8)
 387		| (mask_p[4] << 6) | (mask_p[3] << 4)
 388		| (mask_p[2] << 2) | (mask_p[1] << 0);
 389	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
 390	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
 391
 392	tmp_mask = (mask_p[30] << 28)
 393		| (mask_p[29] << 26) | (mask_p[28] << 24)
 394		| (mask_p[27] << 22) | (mask_p[26] << 20)
 395		| (mask_p[25] << 18) | (mask_p[24] << 16)
 396		| (mask_p[23] << 14) | (mask_p[22] << 12)
 397		| (mask_p[21] << 10) | (mask_p[20] << 8)
 398		| (mask_p[19] << 6) | (mask_p[18] << 4)
 399		| (mask_p[17] << 2) | (mask_p[16] << 0);
 400	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
 401	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
 402
 403	tmp_mask = (mask_p[45] << 28)
 404		| (mask_p[44] << 26) | (mask_p[43] << 24)
 405		| (mask_p[42] << 22) | (mask_p[41] << 20)
 406		| (mask_p[40] << 18) | (mask_p[39] << 16)
 407		| (mask_p[38] << 14) | (mask_p[37] << 12)
 408		| (mask_p[36] << 10) | (mask_p[35] << 8)
 409		| (mask_p[34] << 6) | (mask_p[33] << 4)
 410		| (mask_p[32] << 2) | (mask_p[31] << 0);
 411	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
 412	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
 413
 414	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
 415		| (mask_p[59] << 26) | (mask_p[58] << 24)
 416		| (mask_p[57] << 22) | (mask_p[56] << 20)
 417		| (mask_p[55] << 18) | (mask_p[54] << 16)
 418		| (mask_p[53] << 14) | (mask_p[52] << 12)
 419		| (mask_p[51] << 10) | (mask_p[50] << 8)
 420		| (mask_p[49] << 6) | (mask_p[48] << 4)
 421		| (mask_p[47] << 2) | (mask_p[46] << 0);
 422	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
 423	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
 424}
 425
 426/*
 427 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
 
 428 *
 429 * For non single-chip solutions. Converts to baseband spur frequency given the
 430 * input channel frequency and compute register settings below.
 431 */
 432static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
 433				    struct ath9k_channel *chan)
 434{
 435	int bb_spur = AR_NO_SPUR;
 436	int bin;
 437	int spur_freq_sd;
 438	int spur_delta_phase;
 439	int denominator;
 440	int tmp, new;
 441	int i;
 442
 443	int cur_bb_spur;
 444	bool is2GHz = IS_CHAN_2GHZ(chan);
 445
 446	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 447		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
 448		if (AR_NO_SPUR == cur_bb_spur)
 449			break;
 450		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
 451		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
 452			bb_spur = cur_bb_spur;
 453			break;
 454		}
 455	}
 456
 457	if (AR_NO_SPUR == bb_spur)
 458		return;
 
 
 
 
 
 
 
 
 459
 460	bin = bb_spur * 32;
 
 
 461
 462	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
 463	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
 464		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
 465		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
 466		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
 467
 468	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
 469
 470	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
 471	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
 472	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
 473	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
 474	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
 475	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
 476
 477	spur_delta_phase = ((bb_spur * 524288) / 100) &
 478		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
 479
 480	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
 481	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
 482
 483	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
 484	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
 485	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
 486	REG_WRITE(ah, AR_PHY_TIMING11, new);
 487
 488	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
 489}
 490
 491/**
 492 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
 493 * @ah: atheros hardware structure
 494 *
 495 * Only required for older devices with external AR2133/AR5133 radios.
 496 */
 497static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
 498{
 499	int size = ah->iniBank6.ia_rows * sizeof(u32);
 
 
 
 500
 501	if (AR_SREV_9280_20_OR_LATER(ah))
 502	    return 0;
 503
 504	ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
 505	if (!ah->analogBank6Data)
 506		return -ENOMEM;
 
 
 
 
 
 
 507
 508	return 0;
 509}
 510
 511
 512/* *
 513 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
 514 * @ah: atheros hardware structure
 515 * @chan:
 516 * @modesIndex:
 517 *
 518 * Used for the external AR2133/AR5133 radios.
 519 *
 520 * Reads the EEPROM header info from the device structure and programs
 521 * all rf registers. This routine requires access to the analog
 522 * rf device. This is not required for single-chip devices.
 523 */
 524static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
 525				  struct ath9k_channel *chan,
 526				  u16 modesIndex)
 527{
 528	u32 eepMinorRev;
 529	u32 ob5GHz = 0, db5GHz = 0;
 530	u32 ob2GHz = 0, db2GHz = 0;
 531	int regWrites = 0;
 532	int i;
 533
 534	/*
 535	 * Software does not need to program bank data
 536	 * for single chip devices, that is AR9280 or anything
 537	 * after that.
 538	 */
 539	if (AR_SREV_9280_20_OR_LATER(ah))
 540		return true;
 541
 542	/* Setup rf parameters */
 543	eepMinorRev = ah->eep_ops->get_eeprom_rev(ah);
 
 
 
 544
 545	for (i = 0; i < ah->iniBank6.ia_rows; i++)
 546		ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547
 548	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
 549	if (eepMinorRev >= 2) {
 550		if (IS_CHAN_2GHZ(chan)) {
 551			ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
 552			db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
 553			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
 554						       ob2GHz, 3, 197, 0);
 555			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
 556						       db2GHz, 3, 194, 0);
 557		} else {
 558			ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
 559			db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
 560			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
 561						       ob5GHz, 3, 203, 0);
 562			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
 563						       db5GHz, 3, 200, 0);
 564		}
 565	}
 566
 
 
 
 567	/* Write Analog registers */
 568	REG_WRITE_ARRAY(&bank0, 1, regWrites);
 569	REG_WRITE_ARRAY(&bank1, 1, regWrites);
 570	REG_WRITE_ARRAY(&bank2, 1, regWrites);
 571	REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
 572	ar5008_write_bank6(ah, &regWrites);
 573	REG_WRITE_ARRAY(&bank7, 1, regWrites);
 
 
 
 
 
 
 574
 575	return true;
 576}
 577
 578static void ar5008_hw_init_bb(struct ath_hw *ah,
 579			      struct ath9k_channel *chan)
 580{
 581	u32 synthDelay;
 582
 583	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
 
 
 
 
 
 
 
 
 
 584
 585	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
 586
 587	ath9k_hw_synth_delay(ah, chan, synthDelay);
 588}
 589
 590static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
 591{
 592	int rx_chainmask, tx_chainmask;
 593
 594	rx_chainmask = ah->rxchainmask;
 595	tx_chainmask = ah->txchainmask;
 596
 597
 598	switch (rx_chainmask) {
 599	case 0x5:
 600		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
 601			    AR_PHY_SWAP_ALT_CHAIN);
 602		fallthrough;
 603	case 0x3:
 604		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
 605			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
 606			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
 607			break;
 608		}
 609		fallthrough;
 610	case 0x1:
 611	case 0x2:
 612	case 0x7:
 613		ENABLE_REGWRITE_BUFFER(ah);
 614		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
 615		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
 616		break;
 617	default:
 618		ENABLE_REGWRITE_BUFFER(ah);
 619		break;
 620	}
 621
 622	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
 623
 624	REGWRITE_BUFFER_FLUSH(ah);
 625
 626	if (tx_chainmask == 0x5) {
 627		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
 628			    AR_PHY_SWAP_ALT_CHAIN);
 629	}
 630	if (AR_SREV_9100(ah))
 631		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
 632			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
 633}
 634
 635static void ar5008_hw_override_ini(struct ath_hw *ah,
 636				   struct ath9k_channel *chan)
 637{
 638	u32 val;
 639
 640	/*
 641	 * Set the RX_ABORT and RX_DIS and clear if off only after
 642	 * RXE is set for MAC. This prevents frames with corrupted
 643	 * descriptor status.
 644	 */
 645	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
 646
 647	if (AR_SREV_9280_20_OR_LATER(ah)) {
 648		/*
 649		 * For AR9280 and above, there is a new feature that allows
 650		 * Multicast search based on both MAC Address and Key ID.
 651		 * By default, this feature is enabled. But since the driver
 652		 * is not using this feature, we switch it off; otherwise
 653		 * multicast search based on MAC addr only will fail.
 654		 */
 655		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
 656			(~AR_ADHOC_MCAST_KEYID_ENABLE);
 657
 658		if (!AR_SREV_9271(ah))
 659			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
 660
 661		if (AR_SREV_9287_11_OR_LATER(ah))
 662			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
 663
 664		val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
 665
 666		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
 667	}
 668
 669	if (AR_SREV_9280_20_OR_LATER(ah))
 
 670		return;
 671	/*
 672	 * Disable BB clock gating
 673	 * Necessary to avoid issues on AR5416 2.0
 674	 */
 675	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
 676
 677	/*
 678	 * Disable RIFS search on some chips to avoid baseband
 679	 * hang issues.
 680	 */
 681	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
 682		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
 683		val &= ~AR_PHY_RIFS_INIT_DELAY;
 684		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
 685	}
 686}
 687
 688static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
 689				       struct ath9k_channel *chan)
 690{
 691	u32 phymode;
 692	u32 enableDacFifo = 0;
 693
 694	if (AR_SREV_9285_12_OR_LATER(ah))
 695		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
 696					 AR_PHY_FC_ENABLE_DAC_FIFO);
 697
 698	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
 699		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
 700
 701	if (IS_CHAN_HT40(chan)) {
 702		phymode |= AR_PHY_FC_DYN2040_EN;
 703
 704		if (IS_CHAN_HT40PLUS(chan))
 
 705			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
 706
 707	}
 708	ENABLE_REGWRITE_BUFFER(ah);
 709	REG_WRITE(ah, AR_PHY_TURBO, phymode);
 710
 711	/* This function do only REG_WRITE, so
 712	 * we can include it to REGWRITE_BUFFER. */
 713	ath9k_hw_set11nmac2040(ah, chan);
 714
 715	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
 716	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
 717
 718	REGWRITE_BUFFER_FLUSH(ah);
 719}
 720
 721
 722static int ar5008_hw_process_ini(struct ath_hw *ah,
 723				 struct ath9k_channel *chan)
 724{
 
 725	struct ath_common *common = ath9k_hw_common(ah);
 726	int i, regWrites = 0;
 
 727	u32 modesIndex, freqIndex;
 728
 729	if (IS_CHAN_5GHZ(chan)) {
 
 
 
 
 
 
 
 
 730		freqIndex = 1;
 731		modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
 732	} else {
 
 
 
 
 
 
 
 
 733		freqIndex = 2;
 734		modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
 
 
 
 735	}
 736
 737	/*
 738	 * Set correct baseband to analog shift setting to
 739	 * access analog chips.
 740	 */
 741	REG_WRITE(ah, AR_PHY(0), 0x00000007);
 742
 743	/* Write ADDAC shifts */
 744	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
 745	if (ah->eep_ops->set_addac)
 746		ah->eep_ops->set_addac(ah, chan);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747
 748	REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
 749	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
 750
 751	ENABLE_REGWRITE_BUFFER(ah);
 752
 753	for (i = 0; i < ah->iniModes.ia_rows; i++) {
 754		u32 reg = INI_RA(&ah->iniModes, i, 0);
 755		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
 756
 757		if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
 758			val &= ~AR_AN_TOP2_PWDCLKIND;
 759
 760		REG_WRITE(ah, reg, val);
 761
 762		if (reg >= 0x7800 && reg < 0x78a0
 763		    && ah->config.analog_shiftreg
 764		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
 765			udelay(100);
 766		}
 767
 768		DO_DELAY(regWrites);
 769	}
 770
 771	REGWRITE_BUFFER_FLUSH(ah);
 772
 773	if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
 774		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
 775
 776	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
 777	    AR_SREV_9287_11_OR_LATER(ah))
 778		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
 779
 780	if (AR_SREV_9271_10(ah)) {
 781		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
 782		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
 783	}
 784
 785	ENABLE_REGWRITE_BUFFER(ah);
 786
 787	/* Write common array parameters */
 788	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
 789		u32 reg = INI_RA(&ah->iniCommon, i, 0);
 790		u32 val = INI_RA(&ah->iniCommon, i, 1);
 791
 792		REG_WRITE(ah, reg, val);
 793
 794		if (reg >= 0x7800 && reg < 0x78a0
 795		    && ah->config.analog_shiftreg
 796		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
 797			udelay(100);
 798		}
 799
 800		DO_DELAY(regWrites);
 801	}
 802
 803	REGWRITE_BUFFER_FLUSH(ah);
 804
 
 
 
 
 
 
 
 
 
 805	REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
 806
 807	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 808		REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
 809				regWrites);
 
 810
 811	ar5008_hw_override_ini(ah, chan);
 812	ar5008_hw_set_channel_regs(ah, chan);
 813	ar5008_hw_init_chain_masks(ah);
 814	ath9k_olc_init(ah);
 815	ath9k_hw_apply_txpower(ah, chan, false);
 
 
 
 
 
 
 
 816
 817	/* Write analog registers */
 818	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
 819		ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
 820		return -EIO;
 821	}
 822
 823	return 0;
 824}
 825
 826static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
 827{
 828	u32 rfMode = 0;
 829
 830	if (chan == NULL)
 831		return;
 832
 833	if (IS_CHAN_2GHZ(chan))
 834		rfMode |= AR_PHY_MODE_DYNAMIC;
 835	else
 836		rfMode |= AR_PHY_MODE_OFDM;
 837
 838	if (!AR_SREV_9280_20_OR_LATER(ah))
 839		rfMode |= (IS_CHAN_5GHZ(chan)) ?
 840			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
 841
 842	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 843		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
 844
 845	REG_WRITE(ah, AR_PHY_MODE, rfMode);
 846}
 847
 848static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
 849{
 850	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
 851}
 852
 853static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
 854				      struct ath9k_channel *chan)
 855{
 856	u32 coef_scaled, ds_coef_exp, ds_coef_man;
 857	u32 clockMhzScaled = 0x64000000;
 858	struct chan_centers centers;
 859
 860	if (IS_CHAN_HALF_RATE(chan))
 861		clockMhzScaled = clockMhzScaled >> 1;
 862	else if (IS_CHAN_QUARTER_RATE(chan))
 863		clockMhzScaled = clockMhzScaled >> 2;
 864
 865	ath9k_hw_get_channel_centers(ah, chan, &centers);
 866	coef_scaled = clockMhzScaled / centers.synth_center;
 867
 868	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
 869				      &ds_coef_exp);
 870
 871	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
 872		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
 873	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
 874		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
 875
 876	coef_scaled = (9 * coef_scaled) / 10;
 877
 878	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
 879				      &ds_coef_exp);
 880
 881	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
 882		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
 883	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
 884		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
 885}
 886
 887static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
 888{
 889	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
 890	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
 891			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
 892}
 893
 894static void ar5008_hw_rfbus_done(struct ath_hw *ah)
 895{
 896	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
 
 
 
 
 897
 898	ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
 899
 900	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
 901}
 902
 903static void ar5008_restore_chainmask(struct ath_hw *ah)
 904{
 905	int rx_chainmask = ah->rxchainmask;
 906
 907	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
 908		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
 909		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
 910	}
 911}
 912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
 914					 struct ath9k_channel *chan)
 915{
 916	u32 pll;
 917
 918	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
 919
 920	if (chan && IS_CHAN_HALF_RATE(chan))
 921		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
 922	else if (chan && IS_CHAN_QUARTER_RATE(chan))
 923		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
 924
 925	if (chan && IS_CHAN_5GHZ(chan))
 926		pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
 927	else
 928		pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
 929
 930	return pll;
 931}
 932
 933static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
 934					 struct ath9k_channel *chan)
 935{
 936	u32 pll;
 937
 938	pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
 939
 940	if (chan && IS_CHAN_HALF_RATE(chan))
 941		pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
 942	else if (chan && IS_CHAN_QUARTER_RATE(chan))
 943		pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
 944
 945	if (chan && IS_CHAN_5GHZ(chan))
 946		pll |= SM(0xa, AR_RTC_PLL_DIV);
 947	else
 948		pll |= SM(0xb, AR_RTC_PLL_DIV);
 949
 950	return pll;
 951}
 952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
 954				      enum ath9k_ani_cmd cmd,
 955				      int param)
 956{
 957	struct ath_common *common = ath9k_hw_common(ah);
 958	struct ath9k_channel *chan = ah->curchan;
 959	struct ar5416AniState *aniState = &ah->ani;
 960	s32 value;
 961
 962	switch (cmd & ah->ani_function) {
 963	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
 964		/*
 965		 * on == 1 means ofdm weak signal detection is ON
 966		 * on == 1 is the default, for less noise immunity
 967		 *
 968		 * on == 0 means ofdm weak signal detection is OFF
 969		 * on == 0 means more noise imm
 970		 */
 971		u32 on = param ? 1 : 0;
 972		/*
 973		 * make register setting for default
 974		 * (weak sig detect ON) come from INI file
 975		 */
 976		int m1ThreshLow = on ?
 977			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
 978		int m2ThreshLow = on ?
 979			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
 980		int m1Thresh = on ?
 981			aniState->iniDef.m1Thresh : m1Thresh_off;
 982		int m2Thresh = on ?
 983			aniState->iniDef.m2Thresh : m2Thresh_off;
 984		int m2CountThr = on ?
 985			aniState->iniDef.m2CountThr : m2CountThr_off;
 986		int m2CountThrLow = on ?
 987			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
 988		int m1ThreshLowExt = on ?
 989			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
 990		int m2ThreshLowExt = on ?
 991			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
 992		int m1ThreshExt = on ?
 993			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
 994		int m2ThreshExt = on ?
 995			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
 996
 997		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
 998			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
 999			      m1ThreshLow);
1000		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1001			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
1002			      m2ThreshLow);
1003		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1004			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
1005		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1006			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
1007		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1008			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
1009		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1010			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
1011			      m2CountThrLow);
1012
1013		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1014			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
1015		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1016			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
1017		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1018			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
1019		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1020			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1021
1022		if (on)
1023			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1024				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1025		else
1026			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1027				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1028
1029		if (on != aniState->ofdmWeakSigDetect) {
1030			ath_dbg(common, ANI,
1031				"** ch %d: ofdm weak signal: %s=>%s\n",
1032				chan->channel,
1033				aniState->ofdmWeakSigDetect ?
1034				"on" : "off",
1035				on ? "on" : "off");
1036			if (on)
1037				ah->stats.ast_ani_ofdmon++;
1038			else
1039				ah->stats.ast_ani_ofdmoff++;
1040			aniState->ofdmWeakSigDetect = on;
1041		}
1042		break;
1043	}
1044	case ATH9K_ANI_FIRSTEP_LEVEL:{
1045		u32 level = param;
1046
1047		value = level * 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1049			      AR_PHY_FIND_SIG_FIRSTEP, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1051			      AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1052
1053		if (level != aniState->firstepLevel) {
1054			ath_dbg(common, ANI,
1055				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1056				chan->channel,
1057				aniState->firstepLevel,
1058				level,
1059				ATH9K_ANI_FIRSTEP_LVL,
1060				value,
1061				aniState->iniDef.firstep);
1062			ath_dbg(common, ANI,
1063				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1064				chan->channel,
1065				aniState->firstepLevel,
1066				level,
1067				ATH9K_ANI_FIRSTEP_LVL,
1068				value,
1069				aniState->iniDef.firstepLow);
1070			if (level > aniState->firstepLevel)
1071				ah->stats.ast_ani_stepup++;
1072			else if (level < aniState->firstepLevel)
1073				ah->stats.ast_ani_stepdown++;
1074			aniState->firstepLevel = level;
1075		}
1076		break;
1077	}
1078	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1079		u32 level = param;
1080
1081		value = (level + 1) * 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1083			      AR_PHY_TIMING5_CYCPWR_THR1, value);
 
1084
 
 
 
 
 
 
 
 
 
 
 
 
1085		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1086				  AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1087
1088		if (level != aniState->spurImmunityLevel) {
1089			ath_dbg(common, ANI,
1090				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1091				chan->channel,
1092				aniState->spurImmunityLevel,
1093				level,
1094				ATH9K_ANI_SPUR_IMMUNE_LVL,
1095				value,
1096				aniState->iniDef.cycpwrThr1);
1097			ath_dbg(common, ANI,
1098				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1099				chan->channel,
1100				aniState->spurImmunityLevel,
1101				level,
1102				ATH9K_ANI_SPUR_IMMUNE_LVL,
1103				value,
1104				aniState->iniDef.cycpwrThr1Ext);
1105			if (level > aniState->spurImmunityLevel)
1106				ah->stats.ast_ani_spurup++;
1107			else if (level < aniState->spurImmunityLevel)
1108				ah->stats.ast_ani_spurdown++;
1109			aniState->spurImmunityLevel = level;
1110		}
1111		break;
1112	}
1113	case ATH9K_ANI_MRC_CCK:
1114		/*
1115		 * You should not see this as AR5008, AR9001, AR9002
1116		 * does not have hardware support for MRC CCK.
1117		 */
1118		WARN_ON(1);
1119		break;
 
 
1120	default:
1121		ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1122		return false;
1123	}
1124
1125	ath_dbg(common, ANI,
1126		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1127		aniState->spurImmunityLevel,
1128		aniState->ofdmWeakSigDetect ? "on" : "off",
1129		aniState->firstepLevel,
1130		aniState->mrcCCK ? "on" : "off",
1131		aniState->listenTime,
1132		aniState->ofdmPhyErrCount,
1133		aniState->cckPhyErrCount);
1134	return true;
1135}
1136
1137static void ar5008_hw_do_getnf(struct ath_hw *ah,
1138			      int16_t nfarray[NUM_NF_READINGS])
1139{
1140	int16_t nf;
1141
1142	nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1143	nfarray[0] = sign_extend32(nf, 8);
1144
1145	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1146	nfarray[1] = sign_extend32(nf, 8);
1147
1148	nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1149	nfarray[2] = sign_extend32(nf, 8);
1150
1151	if (!IS_CHAN_HT40(ah->curchan))
1152		return;
1153
1154	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1155	nfarray[3] = sign_extend32(nf, 8);
1156
1157	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1158	nfarray[4] = sign_extend32(nf, 8);
1159
1160	nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1161	nfarray[5] = sign_extend32(nf, 8);
1162}
1163
1164/*
1165 * Initialize the ANI register values with default (ini) values.
1166 * This routine is called during a (full) hardware reset after
1167 * all the registers are initialised from the INI.
1168 */
1169static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1170{
1171	struct ath_common *common = ath9k_hw_common(ah);
1172	struct ath9k_channel *chan = ah->curchan;
1173	struct ar5416AniState *aniState = &ah->ani;
1174	struct ath9k_ani_default *iniDef;
1175	u32 val;
1176
1177	iniDef = &aniState->iniDef;
1178
1179	ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1180		ah->hw_version.macVersion,
1181		ah->hw_version.macRev,
1182		ah->opmode,
1183		chan->channel);
 
1184
1185	val = REG_READ(ah, AR_PHY_SFCORR);
1186	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1187	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1188	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1189
1190	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1191	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1192	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1193	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1194
1195	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1196	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1197	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1198	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1199	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1200	iniDef->firstep = REG_READ_FIELD(ah,
1201					 AR_PHY_FIND_SIG,
1202					 AR_PHY_FIND_SIG_FIRSTEP);
1203	iniDef->firstepLow = REG_READ_FIELD(ah,
1204					    AR_PHY_FIND_SIG_LOW,
1205					    AR_PHY_FIND_SIG_FIRSTEP_LOW);
1206	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1207					    AR_PHY_TIMING5,
1208					    AR_PHY_TIMING5_CYCPWR_THR1);
1209	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1210					       AR_PHY_EXT_CCA,
1211					       AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1212
1213	/* these levels just got reset to defaults by the INI */
1214	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1215	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1216	aniState->ofdmWeakSigDetect = true;
1217	aniState->mrcCCK = false; /* not available on pre AR9003 */
1218}
1219
1220static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1221{
1222	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1223	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1224	ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1225	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1226	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1227	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1228}
1229
1230static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1231				       struct ath_hw_radar_conf *conf)
1232{
1233	u32 radar_0 = 0, radar_1;
1234
1235	if (!conf) {
1236		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1237		return;
1238	}
1239
1240	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1241	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1242	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1243	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1244	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1245	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1246
1247	radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1248	radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1249		     AR_PHY_RADAR_1_RELPWR_THRESH);
1250	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1251	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1252	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1253	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1254	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1255
1256	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1257	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1258	if (conf->ext_channel)
1259		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1260	else
1261		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1262}
1263
1264static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1265{
1266	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1267
1268	conf->fir_power = -33;
1269	conf->radar_rssi = 20;
1270	conf->pulse_height = 10;
1271	conf->pulse_rssi = 15;
1272	conf->pulse_inband = 15;
1273	conf->pulse_maxlen = 255;
1274	conf->pulse_inband_step = 12;
1275	conf->radar_inband = 8;
1276}
1277
1278static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1279{
1280#define CCK_DELTA(_ah, x) ((OLC_FOR_AR9280_20_LATER(_ah)) ? max((x) - 2, 0) : (x))
1281	ah->tx_power[0] = CCK_DELTA(ah, rate_array[rate1l]);
1282	ah->tx_power[1] = CCK_DELTA(ah, min(rate_array[rate2l],
1283					rate_array[rate2s]));
1284	ah->tx_power[2] = CCK_DELTA(ah, min(rate_array[rate5_5l],
1285					rate_array[rate5_5s]));
1286	ah->tx_power[3] = CCK_DELTA(ah, min(rate_array[rate11l],
1287					rate_array[rate11s]));
1288#undef CCK_DELTA
1289}
1290
1291static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1292					int offset)
1293{
1294	int i, idx = 0;
1295
1296	for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1297		ah->tx_power[i] = rate_array[idx];
1298		idx++;
1299	}
1300}
1301
1302static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1303				      int ss_offset, int ds_offset,
1304				      bool is_40, int ht40_delta)
1305{
1306	int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1307
1308	for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1309		ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1310		mcs_idx++;
1311	}
1312	memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1313	       AR5008_HT_SS_RATES);
1314}
1315
1316void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1317				 struct ath9k_channel *chan, int ht40_delta)
1318{
1319	if (IS_CHAN_5GHZ(chan)) {
1320		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1321					    AR5008_11NA_OFDM_SHIFT);
1322		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1323			ar5008_hw_init_txpower_ht(ah, rate_array,
1324						  AR5008_11NA_HT_SS_SHIFT,
1325						  AR5008_11NA_HT_DS_SHIFT,
1326						  IS_CHAN_HT40(chan),
1327						  ht40_delta);
1328		}
1329	} else {
1330		ar5008_hw_init_txpower_cck(ah, rate_array);
1331		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1332					    AR5008_11NG_OFDM_SHIFT);
1333		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1334			ar5008_hw_init_txpower_ht(ah, rate_array,
1335						  AR5008_11NG_HT_SS_SHIFT,
1336						  AR5008_11NG_HT_DS_SHIFT,
1337						  IS_CHAN_HT40(chan),
1338						  ht40_delta);
1339		}
1340	}
1341}
1342
1343int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1344{
1345	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1346	static const u32 ar5416_cca_regs[6] = {
1347		AR_PHY_CCA,
1348		AR_PHY_CH1_CCA,
1349		AR_PHY_CH2_CCA,
1350		AR_PHY_EXT_CCA,
1351		AR_PHY_CH1_EXT_CCA,
1352		AR_PHY_CH2_EXT_CCA
1353	};
1354	int ret;
1355
1356	ret = ar5008_hw_rf_alloc_ext_banks(ah);
1357	if (ret)
1358	    return ret;
1359
1360	priv_ops->rf_set_freq = ar5008_hw_set_channel;
1361	priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1362
 
 
1363	priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1364	priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1365	priv_ops->init_bb = ar5008_hw_init_bb;
1366	priv_ops->process_ini = ar5008_hw_process_ini;
1367	priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1368	priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1369	priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1370	priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1371	priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1372	priv_ops->restore_chainmask = ar5008_restore_chainmask;
 
1373	priv_ops->do_getnf = ar5008_hw_do_getnf;
1374	priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1375
1376	priv_ops->ani_control = ar5008_hw_ani_control_new;
1377	priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
 
 
 
1378
1379	if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
 
 
1380		priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1381	else
1382		priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1383
1384	ar5008_hw_set_nf_limits(ah);
1385	ar5008_hw_set_radar_conf(ah);
1386	memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1387	return 0;
1388}