Loading...
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include "hw-ops.h"
19#include "../regd.h"
20#include "ar9002_phy.h"
21
22/* All code below is for AR5008, AR9001, AR9002 */
23
24static const int firstep_table[] =
25/* level: 0 1 2 3 4 5 6 7 8 */
26 { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
27
28static const int cycpwrThr1_table[] =
29/* level: 0 1 2 3 4 5 6 7 8 */
30 { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
31
32/*
33 * register values to turn OFDM weak signal detection OFF
34 */
35static const int m1ThreshLow_off = 127;
36static const int m2ThreshLow_off = 127;
37static const int m1Thresh_off = 127;
38static const int m2Thresh_off = 127;
39static const int m2CountThr_off = 31;
40static const int m2CountThrLow_off = 63;
41static const int m1ThreshLowExt_off = 127;
42static const int m2ThreshLowExt_off = 127;
43static const int m1ThreshExt_off = 127;
44static const int m2ThreshExt_off = 127;
45
46
47static void ar5008_rf_bank_setup(u32 *bank, struct ar5416IniArray *array,
48 int col)
49{
50 int i;
51
52 for (i = 0; i < array->ia_rows; i++)
53 bank[i] = INI_RA(array, i, col);
54}
55
56
57#define REG_WRITE_RF_ARRAY(iniarray, regData, regWr) \
58 ar5008_write_rf_array(ah, iniarray, regData, &(regWr))
59
60static void ar5008_write_rf_array(struct ath_hw *ah, struct ar5416IniArray *array,
61 u32 *data, unsigned int *writecnt)
62{
63 int r;
64
65 ENABLE_REGWRITE_BUFFER(ah);
66
67 for (r = 0; r < array->ia_rows; r++) {
68 REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
69 DO_DELAY(*writecnt);
70 }
71
72 REGWRITE_BUFFER_FLUSH(ah);
73}
74
75/**
76 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
77 * @rfbuf:
78 * @reg32:
79 * @numBits:
80 * @firstBit:
81 * @column:
82 *
83 * Performs analog "swizzling" of parameters into their location.
84 * Used on external AR2133/AR5133 radios.
85 */
86static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
87 u32 numBits, u32 firstBit,
88 u32 column)
89{
90 u32 tmp32, mask, arrayEntry, lastBit;
91 int32_t bitPosition, bitsLeft;
92
93 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
94 arrayEntry = (firstBit - 1) / 8;
95 bitPosition = (firstBit - 1) % 8;
96 bitsLeft = numBits;
97 while (bitsLeft > 0) {
98 lastBit = (bitPosition + bitsLeft > 8) ?
99 8 : bitPosition + bitsLeft;
100 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
101 (column * 8);
102 rfBuf[arrayEntry] &= ~mask;
103 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
104 (column * 8)) & mask;
105 bitsLeft -= 8 - bitPosition;
106 tmp32 = tmp32 >> (8 - bitPosition);
107 bitPosition = 0;
108 arrayEntry++;
109 }
110}
111
112/*
113 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
114 * rf_pwd_icsyndiv.
115 *
116 * Theoretical Rules:
117 * if 2 GHz band
118 * if forceBiasAuto
119 * if synth_freq < 2412
120 * bias = 0
121 * else if 2412 <= synth_freq <= 2422
122 * bias = 1
123 * else // synth_freq > 2422
124 * bias = 2
125 * else if forceBias > 0
126 * bias = forceBias & 7
127 * else
128 * no change, use value from ini file
129 * else
130 * no change, invalid band
131 *
132 * 1st Mod:
133 * 2422 also uses value of 2
134 * <approved>
135 *
136 * 2nd Mod:
137 * Less than 2412 uses value of 0, 2412 and above uses value of 2
138 */
139static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
140{
141 struct ath_common *common = ath9k_hw_common(ah);
142 u32 tmp_reg;
143 int reg_writes = 0;
144 u32 new_bias = 0;
145
146 if (!AR_SREV_5416(ah) || synth_freq >= 3000)
147 return;
148
149 BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
150
151 if (synth_freq < 2412)
152 new_bias = 0;
153 else if (synth_freq < 2422)
154 new_bias = 1;
155 else
156 new_bias = 2;
157
158 /* pre-reverse this field */
159 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
160
161 ath_dbg(common, ATH_DBG_CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
162 new_bias, synth_freq);
163
164 /* swizzle rf_pwd_icsyndiv */
165 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
166
167 /* write Bank 6 with new params */
168 REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
169}
170
171/**
172 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
173 * @ah: atheros hardware structure
174 * @chan:
175 *
176 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
177 * the channel value. Assumes writes enabled to analog bus and bank6 register
178 * cache in ah->analogBank6Data.
179 */
180static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
181{
182 struct ath_common *common = ath9k_hw_common(ah);
183 u32 channelSel = 0;
184 u32 bModeSynth = 0;
185 u32 aModeRefSel = 0;
186 u32 reg32 = 0;
187 u16 freq;
188 struct chan_centers centers;
189
190 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
191 freq = centers.synth_center;
192
193 if (freq < 4800) {
194 u32 txctl;
195
196 if (((freq - 2192) % 5) == 0) {
197 channelSel = ((freq - 672) * 2 - 3040) / 10;
198 bModeSynth = 0;
199 } else if (((freq - 2224) % 5) == 0) {
200 channelSel = ((freq - 704) * 2 - 3040) / 10;
201 bModeSynth = 1;
202 } else {
203 ath_err(common, "Invalid channel %u MHz\n", freq);
204 return -EINVAL;
205 }
206
207 channelSel = (channelSel << 2) & 0xff;
208 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
209
210 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
211 if (freq == 2484) {
212
213 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
214 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
215 } else {
216 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
217 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
218 }
219
220 } else if ((freq % 20) == 0 && freq >= 5120) {
221 channelSel =
222 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
223 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
224 } else if ((freq % 10) == 0) {
225 channelSel =
226 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
227 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
228 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
229 else
230 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
231 } else if ((freq % 5) == 0) {
232 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
233 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
234 } else {
235 ath_err(common, "Invalid channel %u MHz\n", freq);
236 return -EINVAL;
237 }
238
239 ar5008_hw_force_bias(ah, freq);
240
241 reg32 =
242 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
243 (1 << 5) | 0x1;
244
245 REG_WRITE(ah, AR_PHY(0x37), reg32);
246
247 ah->curchan = chan;
248 ah->curchan_rad_index = -1;
249
250 return 0;
251}
252
253/**
254 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
255 * @ah: atheros hardware structure
256 * @chan:
257 *
258 * For non single-chip solutions. Converts to baseband spur frequency given the
259 * input channel frequency and compute register settings below.
260 */
261static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
262 struct ath9k_channel *chan)
263{
264 int bb_spur = AR_NO_SPUR;
265 int bin, cur_bin;
266 int spur_freq_sd;
267 int spur_delta_phase;
268 int denominator;
269 int upper, lower, cur_vit_mask;
270 int tmp, new;
271 int i;
272 static int pilot_mask_reg[4] = {
273 AR_PHY_TIMING7, AR_PHY_TIMING8,
274 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
275 };
276 static int chan_mask_reg[4] = {
277 AR_PHY_TIMING9, AR_PHY_TIMING10,
278 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
279 };
280 static int inc[4] = { 0, 100, 0, 0 };
281
282 int8_t mask_m[123];
283 int8_t mask_p[123];
284 int8_t mask_amt;
285 int tmp_mask;
286 int cur_bb_spur;
287 bool is2GHz = IS_CHAN_2GHZ(chan);
288
289 memset(&mask_m, 0, sizeof(int8_t) * 123);
290 memset(&mask_p, 0, sizeof(int8_t) * 123);
291
292 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
293 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
294 if (AR_NO_SPUR == cur_bb_spur)
295 break;
296 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
297 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
298 bb_spur = cur_bb_spur;
299 break;
300 }
301 }
302
303 if (AR_NO_SPUR == bb_spur)
304 return;
305
306 bin = bb_spur * 32;
307
308 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
309 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
310 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
311 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
312 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
313
314 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
315
316 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
317 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
318 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
319 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
320 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
321 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
322
323 spur_delta_phase = ((bb_spur * 524288) / 100) &
324 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
325
326 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
327 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
328
329 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
330 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
331 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
332 REG_WRITE(ah, AR_PHY_TIMING11, new);
333
334 cur_bin = -6000;
335 upper = bin + 100;
336 lower = bin - 100;
337
338 for (i = 0; i < 4; i++) {
339 int pilot_mask = 0;
340 int chan_mask = 0;
341 int bp = 0;
342 for (bp = 0; bp < 30; bp++) {
343 if ((cur_bin > lower) && (cur_bin < upper)) {
344 pilot_mask = pilot_mask | 0x1 << bp;
345 chan_mask = chan_mask | 0x1 << bp;
346 }
347 cur_bin += 100;
348 }
349 cur_bin += inc[i];
350 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
351 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
352 }
353
354 cur_vit_mask = 6100;
355 upper = bin + 120;
356 lower = bin - 120;
357
358 for (i = 0; i < 123; i++) {
359 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
360
361 /* workaround for gcc bug #37014 */
362 volatile int tmp_v = abs(cur_vit_mask - bin);
363
364 if (tmp_v < 75)
365 mask_amt = 1;
366 else
367 mask_amt = 0;
368 if (cur_vit_mask < 0)
369 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
370 else
371 mask_p[cur_vit_mask / 100] = mask_amt;
372 }
373 cur_vit_mask -= 100;
374 }
375
376 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
377 | (mask_m[48] << 26) | (mask_m[49] << 24)
378 | (mask_m[50] << 22) | (mask_m[51] << 20)
379 | (mask_m[52] << 18) | (mask_m[53] << 16)
380 | (mask_m[54] << 14) | (mask_m[55] << 12)
381 | (mask_m[56] << 10) | (mask_m[57] << 8)
382 | (mask_m[58] << 6) | (mask_m[59] << 4)
383 | (mask_m[60] << 2) | (mask_m[61] << 0);
384 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
385 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
386
387 tmp_mask = (mask_m[31] << 28)
388 | (mask_m[32] << 26) | (mask_m[33] << 24)
389 | (mask_m[34] << 22) | (mask_m[35] << 20)
390 | (mask_m[36] << 18) | (mask_m[37] << 16)
391 | (mask_m[48] << 14) | (mask_m[39] << 12)
392 | (mask_m[40] << 10) | (mask_m[41] << 8)
393 | (mask_m[42] << 6) | (mask_m[43] << 4)
394 | (mask_m[44] << 2) | (mask_m[45] << 0);
395 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
396 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
397
398 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
399 | (mask_m[18] << 26) | (mask_m[18] << 24)
400 | (mask_m[20] << 22) | (mask_m[20] << 20)
401 | (mask_m[22] << 18) | (mask_m[22] << 16)
402 | (mask_m[24] << 14) | (mask_m[24] << 12)
403 | (mask_m[25] << 10) | (mask_m[26] << 8)
404 | (mask_m[27] << 6) | (mask_m[28] << 4)
405 | (mask_m[29] << 2) | (mask_m[30] << 0);
406 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
407 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
408
409 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
410 | (mask_m[2] << 26) | (mask_m[3] << 24)
411 | (mask_m[4] << 22) | (mask_m[5] << 20)
412 | (mask_m[6] << 18) | (mask_m[7] << 16)
413 | (mask_m[8] << 14) | (mask_m[9] << 12)
414 | (mask_m[10] << 10) | (mask_m[11] << 8)
415 | (mask_m[12] << 6) | (mask_m[13] << 4)
416 | (mask_m[14] << 2) | (mask_m[15] << 0);
417 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
418 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
419
420 tmp_mask = (mask_p[15] << 28)
421 | (mask_p[14] << 26) | (mask_p[13] << 24)
422 | (mask_p[12] << 22) | (mask_p[11] << 20)
423 | (mask_p[10] << 18) | (mask_p[9] << 16)
424 | (mask_p[8] << 14) | (mask_p[7] << 12)
425 | (mask_p[6] << 10) | (mask_p[5] << 8)
426 | (mask_p[4] << 6) | (mask_p[3] << 4)
427 | (mask_p[2] << 2) | (mask_p[1] << 0);
428 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
429 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
430
431 tmp_mask = (mask_p[30] << 28)
432 | (mask_p[29] << 26) | (mask_p[28] << 24)
433 | (mask_p[27] << 22) | (mask_p[26] << 20)
434 | (mask_p[25] << 18) | (mask_p[24] << 16)
435 | (mask_p[23] << 14) | (mask_p[22] << 12)
436 | (mask_p[21] << 10) | (mask_p[20] << 8)
437 | (mask_p[19] << 6) | (mask_p[18] << 4)
438 | (mask_p[17] << 2) | (mask_p[16] << 0);
439 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
440 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
441
442 tmp_mask = (mask_p[45] << 28)
443 | (mask_p[44] << 26) | (mask_p[43] << 24)
444 | (mask_p[42] << 22) | (mask_p[41] << 20)
445 | (mask_p[40] << 18) | (mask_p[39] << 16)
446 | (mask_p[38] << 14) | (mask_p[37] << 12)
447 | (mask_p[36] << 10) | (mask_p[35] << 8)
448 | (mask_p[34] << 6) | (mask_p[33] << 4)
449 | (mask_p[32] << 2) | (mask_p[31] << 0);
450 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
451 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
452
453 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
454 | (mask_p[59] << 26) | (mask_p[58] << 24)
455 | (mask_p[57] << 22) | (mask_p[56] << 20)
456 | (mask_p[55] << 18) | (mask_p[54] << 16)
457 | (mask_p[53] << 14) | (mask_p[52] << 12)
458 | (mask_p[51] << 10) | (mask_p[50] << 8)
459 | (mask_p[49] << 6) | (mask_p[48] << 4)
460 | (mask_p[47] << 2) | (mask_p[46] << 0);
461 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
462 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
463}
464
465/**
466 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
467 * @ah: atheros hardware structure
468 *
469 * Only required for older devices with external AR2133/AR5133 radios.
470 */
471static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
472{
473#define ATH_ALLOC_BANK(bank, size) do { \
474 bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
475 if (!bank) { \
476 ath_err(common, "Cannot allocate RF banks\n"); \
477 return -ENOMEM; \
478 } \
479 } while (0);
480
481 struct ath_common *common = ath9k_hw_common(ah);
482
483 BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
484
485 ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
486 ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
487 ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
488 ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
489 ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
490 ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
491 ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
492 ATH_ALLOC_BANK(ah->addac5416_21,
493 ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
494 ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
495
496 return 0;
497#undef ATH_ALLOC_BANK
498}
499
500
501/**
502 * ar5008_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
503 * @ah: atheros hardware struture
504 * For the external AR2133/AR5133 radios banks.
505 */
506static void ar5008_hw_rf_free_ext_banks(struct ath_hw *ah)
507{
508#define ATH_FREE_BANK(bank) do { \
509 kfree(bank); \
510 bank = NULL; \
511 } while (0);
512
513 BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
514
515 ATH_FREE_BANK(ah->analogBank0Data);
516 ATH_FREE_BANK(ah->analogBank1Data);
517 ATH_FREE_BANK(ah->analogBank2Data);
518 ATH_FREE_BANK(ah->analogBank3Data);
519 ATH_FREE_BANK(ah->analogBank6Data);
520 ATH_FREE_BANK(ah->analogBank6TPCData);
521 ATH_FREE_BANK(ah->analogBank7Data);
522 ATH_FREE_BANK(ah->addac5416_21);
523 ATH_FREE_BANK(ah->bank6Temp);
524
525#undef ATH_FREE_BANK
526}
527
528/* *
529 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
530 * @ah: atheros hardware structure
531 * @chan:
532 * @modesIndex:
533 *
534 * Used for the external AR2133/AR5133 radios.
535 *
536 * Reads the EEPROM header info from the device structure and programs
537 * all rf registers. This routine requires access to the analog
538 * rf device. This is not required for single-chip devices.
539 */
540static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
541 struct ath9k_channel *chan,
542 u16 modesIndex)
543{
544 u32 eepMinorRev;
545 u32 ob5GHz = 0, db5GHz = 0;
546 u32 ob2GHz = 0, db2GHz = 0;
547 int regWrites = 0;
548
549 /*
550 * Software does not need to program bank data
551 * for single chip devices, that is AR9280 or anything
552 * after that.
553 */
554 if (AR_SREV_9280_20_OR_LATER(ah))
555 return true;
556
557 /* Setup rf parameters */
558 eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
559
560 /* Setup Bank 0 Write */
561 ar5008_rf_bank_setup(ah->analogBank0Data, &ah->iniBank0, 1);
562
563 /* Setup Bank 1 Write */
564 ar5008_rf_bank_setup(ah->analogBank1Data, &ah->iniBank1, 1);
565
566 /* Setup Bank 2 Write */
567 ar5008_rf_bank_setup(ah->analogBank2Data, &ah->iniBank2, 1);
568
569 /* Setup Bank 6 Write */
570 ar5008_rf_bank_setup(ah->analogBank3Data, &ah->iniBank3,
571 modesIndex);
572 {
573 int i;
574 for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
575 ah->analogBank6Data[i] =
576 INI_RA(&ah->iniBank6TPC, i, modesIndex);
577 }
578 }
579
580 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
581 if (eepMinorRev >= 2) {
582 if (IS_CHAN_2GHZ(chan)) {
583 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
584 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
585 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
586 ob2GHz, 3, 197, 0);
587 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
588 db2GHz, 3, 194, 0);
589 } else {
590 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
591 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
592 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
593 ob5GHz, 3, 203, 0);
594 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
595 db5GHz, 3, 200, 0);
596 }
597 }
598
599 /* Setup Bank 7 Setup */
600 ar5008_rf_bank_setup(ah->analogBank7Data, &ah->iniBank7, 1);
601
602 /* Write Analog registers */
603 REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
604 regWrites);
605 REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
606 regWrites);
607 REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
608 regWrites);
609 REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
610 regWrites);
611 REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
612 regWrites);
613 REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
614 regWrites);
615
616 return true;
617}
618
619static void ar5008_hw_init_bb(struct ath_hw *ah,
620 struct ath9k_channel *chan)
621{
622 u32 synthDelay;
623
624 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
625 if (IS_CHAN_B(chan))
626 synthDelay = (4 * synthDelay) / 22;
627 else
628 synthDelay /= 10;
629
630 if (IS_CHAN_HALF_RATE(chan))
631 synthDelay *= 2;
632 else if (IS_CHAN_QUARTER_RATE(chan))
633 synthDelay *= 4;
634
635 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
636
637 udelay(synthDelay + BASE_ACTIVATE_DELAY);
638}
639
640static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
641{
642 int rx_chainmask, tx_chainmask;
643
644 rx_chainmask = ah->rxchainmask;
645 tx_chainmask = ah->txchainmask;
646
647
648 switch (rx_chainmask) {
649 case 0x5:
650 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
651 AR_PHY_SWAP_ALT_CHAIN);
652 case 0x3:
653 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
654 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
655 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
656 break;
657 }
658 case 0x1:
659 case 0x2:
660 case 0x7:
661 ENABLE_REGWRITE_BUFFER(ah);
662 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
663 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
664 break;
665 default:
666 ENABLE_REGWRITE_BUFFER(ah);
667 break;
668 }
669
670 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
671
672 REGWRITE_BUFFER_FLUSH(ah);
673
674 if (tx_chainmask == 0x5) {
675 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
676 AR_PHY_SWAP_ALT_CHAIN);
677 }
678 if (AR_SREV_9100(ah))
679 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
680 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
681}
682
683static void ar5008_hw_override_ini(struct ath_hw *ah,
684 struct ath9k_channel *chan)
685{
686 u32 val;
687
688 /*
689 * Set the RX_ABORT and RX_DIS and clear if off only after
690 * RXE is set for MAC. This prevents frames with corrupted
691 * descriptor status.
692 */
693 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
694
695 if (AR_SREV_9280_20_OR_LATER(ah)) {
696 val = REG_READ(ah, AR_PCU_MISC_MODE2);
697
698 if (!AR_SREV_9271(ah))
699 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
700
701 if (AR_SREV_9287_11_OR_LATER(ah))
702 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
703
704 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
705 }
706
707 if (!AR_SREV_5416_20_OR_LATER(ah) ||
708 AR_SREV_9280_20_OR_LATER(ah))
709 return;
710 /*
711 * Disable BB clock gating
712 * Necessary to avoid issues on AR5416 2.0
713 */
714 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
715
716 /*
717 * Disable RIFS search on some chips to avoid baseband
718 * hang issues.
719 */
720 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
721 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
722 val &= ~AR_PHY_RIFS_INIT_DELAY;
723 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
724 }
725}
726
727static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
728 struct ath9k_channel *chan)
729{
730 u32 phymode;
731 u32 enableDacFifo = 0;
732
733 if (AR_SREV_9285_12_OR_LATER(ah))
734 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
735 AR_PHY_FC_ENABLE_DAC_FIFO);
736
737 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
738 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
739
740 if (IS_CHAN_HT40(chan)) {
741 phymode |= AR_PHY_FC_DYN2040_EN;
742
743 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
744 (chan->chanmode == CHANNEL_G_HT40PLUS))
745 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
746
747 }
748 REG_WRITE(ah, AR_PHY_TURBO, phymode);
749
750 ath9k_hw_set11nmac2040(ah);
751
752 ENABLE_REGWRITE_BUFFER(ah);
753
754 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
755 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
756
757 REGWRITE_BUFFER_FLUSH(ah);
758}
759
760
761static int ar5008_hw_process_ini(struct ath_hw *ah,
762 struct ath9k_channel *chan)
763{
764 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
765 struct ath_common *common = ath9k_hw_common(ah);
766 int i, regWrites = 0;
767 struct ieee80211_channel *channel = chan->chan;
768 u32 modesIndex, freqIndex;
769
770 switch (chan->chanmode) {
771 case CHANNEL_A:
772 case CHANNEL_A_HT20:
773 modesIndex = 1;
774 freqIndex = 1;
775 break;
776 case CHANNEL_A_HT40PLUS:
777 case CHANNEL_A_HT40MINUS:
778 modesIndex = 2;
779 freqIndex = 1;
780 break;
781 case CHANNEL_G:
782 case CHANNEL_G_HT20:
783 case CHANNEL_B:
784 modesIndex = 4;
785 freqIndex = 2;
786 break;
787 case CHANNEL_G_HT40PLUS:
788 case CHANNEL_G_HT40MINUS:
789 modesIndex = 3;
790 freqIndex = 2;
791 break;
792
793 default:
794 return -EINVAL;
795 }
796
797 /*
798 * Set correct baseband to analog shift setting to
799 * access analog chips.
800 */
801 REG_WRITE(ah, AR_PHY(0), 0x00000007);
802
803 /* Write ADDAC shifts */
804 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
805 ah->eep_ops->set_addac(ah, chan);
806
807 if (AR_SREV_5416_22_OR_LATER(ah)) {
808 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
809 } else {
810 struct ar5416IniArray temp;
811 u32 addacSize =
812 sizeof(u32) * ah->iniAddac.ia_rows *
813 ah->iniAddac.ia_columns;
814
815 /* For AR5416 2.0/2.1 */
816 memcpy(ah->addac5416_21,
817 ah->iniAddac.ia_array, addacSize);
818
819 /* override CLKDRV value at [row, column] = [31, 1] */
820 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
821
822 temp.ia_array = ah->addac5416_21;
823 temp.ia_columns = ah->iniAddac.ia_columns;
824 temp.ia_rows = ah->iniAddac.ia_rows;
825 REG_WRITE_ARRAY(&temp, 1, regWrites);
826 }
827
828 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
829
830 ENABLE_REGWRITE_BUFFER(ah);
831
832 for (i = 0; i < ah->iniModes.ia_rows; i++) {
833 u32 reg = INI_RA(&ah->iniModes, i, 0);
834 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
835
836 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
837 val &= ~AR_AN_TOP2_PWDCLKIND;
838
839 REG_WRITE(ah, reg, val);
840
841 if (reg >= 0x7800 && reg < 0x78a0
842 && ah->config.analog_shiftreg
843 && (common->bus_ops->ath_bus_type != ATH_USB)) {
844 udelay(100);
845 }
846
847 DO_DELAY(regWrites);
848 }
849
850 REGWRITE_BUFFER_FLUSH(ah);
851
852 if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
853 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
854
855 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
856 AR_SREV_9287_11_OR_LATER(ah))
857 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
858
859 if (AR_SREV_9271_10(ah))
860 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
861 modesIndex, regWrites);
862
863 ENABLE_REGWRITE_BUFFER(ah);
864
865 /* Write common array parameters */
866 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
867 u32 reg = INI_RA(&ah->iniCommon, i, 0);
868 u32 val = INI_RA(&ah->iniCommon, i, 1);
869
870 REG_WRITE(ah, reg, val);
871
872 if (reg >= 0x7800 && reg < 0x78a0
873 && ah->config.analog_shiftreg
874 && (common->bus_ops->ath_bus_type != ATH_USB)) {
875 udelay(100);
876 }
877
878 DO_DELAY(regWrites);
879 }
880
881 REGWRITE_BUFFER_FLUSH(ah);
882
883 if (AR_SREV_9271(ah)) {
884 if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
885 REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
886 modesIndex, regWrites);
887 else
888 REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
889 modesIndex, regWrites);
890 }
891
892 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
893
894 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) {
895 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
896 regWrites);
897 }
898
899 ar5008_hw_override_ini(ah, chan);
900 ar5008_hw_set_channel_regs(ah, chan);
901 ar5008_hw_init_chain_masks(ah);
902 ath9k_olc_init(ah);
903
904 /* Set TX power */
905 ah->eep_ops->set_txpower(ah, chan,
906 ath9k_regd_get_ctl(regulatory, chan),
907 channel->max_antenna_gain * 2,
908 channel->max_power * 2,
909 min((u32) MAX_RATE_POWER,
910 (u32) regulatory->power_limit), false);
911
912 /* Write analog registers */
913 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
914 ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
915 return -EIO;
916 }
917
918 return 0;
919}
920
921static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
922{
923 u32 rfMode = 0;
924
925 if (chan == NULL)
926 return;
927
928 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
929 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
930
931 if (!AR_SREV_9280_20_OR_LATER(ah))
932 rfMode |= (IS_CHAN_5GHZ(chan)) ?
933 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
934
935 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
936 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
937
938 REG_WRITE(ah, AR_PHY_MODE, rfMode);
939}
940
941static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
942{
943 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
944}
945
946static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
947 struct ath9k_channel *chan)
948{
949 u32 coef_scaled, ds_coef_exp, ds_coef_man;
950 u32 clockMhzScaled = 0x64000000;
951 struct chan_centers centers;
952
953 if (IS_CHAN_HALF_RATE(chan))
954 clockMhzScaled = clockMhzScaled >> 1;
955 else if (IS_CHAN_QUARTER_RATE(chan))
956 clockMhzScaled = clockMhzScaled >> 2;
957
958 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
959 coef_scaled = clockMhzScaled / centers.synth_center;
960
961 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
962 &ds_coef_exp);
963
964 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
965 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
966 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
967 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
968
969 coef_scaled = (9 * coef_scaled) / 10;
970
971 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
972 &ds_coef_exp);
973
974 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
975 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
976 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
977 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
978}
979
980static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
981{
982 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
983 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
984 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
985}
986
987static void ar5008_hw_rfbus_done(struct ath_hw *ah)
988{
989 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
990 if (IS_CHAN_B(ah->curchan))
991 synthDelay = (4 * synthDelay) / 22;
992 else
993 synthDelay /= 10;
994
995 udelay(synthDelay + BASE_ACTIVATE_DELAY);
996
997 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
998}
999
1000static void ar5008_restore_chainmask(struct ath_hw *ah)
1001{
1002 int rx_chainmask = ah->rxchainmask;
1003
1004 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
1005 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1006 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1007 }
1008}
1009
1010static void ar5008_set_diversity(struct ath_hw *ah, bool value)
1011{
1012 u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
1013 if (value)
1014 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1015 else
1016 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1017 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1018}
1019
1020static u32 ar9100_hw_compute_pll_control(struct ath_hw *ah,
1021 struct ath9k_channel *chan)
1022{
1023 if (chan && IS_CHAN_5GHZ(chan))
1024 return 0x1450;
1025 return 0x1458;
1026}
1027
1028static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
1029 struct ath9k_channel *chan)
1030{
1031 u32 pll;
1032
1033 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1034
1035 if (chan && IS_CHAN_HALF_RATE(chan))
1036 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1037 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1038 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1039
1040 if (chan && IS_CHAN_5GHZ(chan))
1041 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1042 else
1043 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1044
1045 return pll;
1046}
1047
1048static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
1049 struct ath9k_channel *chan)
1050{
1051 u32 pll;
1052
1053 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1054
1055 if (chan && IS_CHAN_HALF_RATE(chan))
1056 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1057 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1058 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1059
1060 if (chan && IS_CHAN_5GHZ(chan))
1061 pll |= SM(0xa, AR_RTC_PLL_DIV);
1062 else
1063 pll |= SM(0xb, AR_RTC_PLL_DIV);
1064
1065 return pll;
1066}
1067
1068static bool ar5008_hw_ani_control_old(struct ath_hw *ah,
1069 enum ath9k_ani_cmd cmd,
1070 int param)
1071{
1072 struct ar5416AniState *aniState = &ah->curchan->ani;
1073 struct ath_common *common = ath9k_hw_common(ah);
1074
1075 switch (cmd & ah->ani_function) {
1076 case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
1077 u32 level = param;
1078
1079 if (level >= ARRAY_SIZE(ah->totalSizeDesired)) {
1080 ath_dbg(common, ATH_DBG_ANI,
1081 "level out of range (%u > %zu)\n",
1082 level, ARRAY_SIZE(ah->totalSizeDesired));
1083 return false;
1084 }
1085
1086 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1087 AR_PHY_DESIRED_SZ_TOT_DES,
1088 ah->totalSizeDesired[level]);
1089 REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
1090 AR_PHY_AGC_CTL1_COARSE_LOW,
1091 ah->coarse_low[level]);
1092 REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
1093 AR_PHY_AGC_CTL1_COARSE_HIGH,
1094 ah->coarse_high[level]);
1095 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1096 AR_PHY_FIND_SIG_FIRPWR,
1097 ah->firpwr[level]);
1098
1099 if (level > aniState->noiseImmunityLevel)
1100 ah->stats.ast_ani_niup++;
1101 else if (level < aniState->noiseImmunityLevel)
1102 ah->stats.ast_ani_nidown++;
1103 aniState->noiseImmunityLevel = level;
1104 break;
1105 }
1106 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
1107 static const int m1ThreshLow[] = { 127, 50 };
1108 static const int m2ThreshLow[] = { 127, 40 };
1109 static const int m1Thresh[] = { 127, 0x4d };
1110 static const int m2Thresh[] = { 127, 0x40 };
1111 static const int m2CountThr[] = { 31, 16 };
1112 static const int m2CountThrLow[] = { 63, 48 };
1113 u32 on = param ? 1 : 0;
1114
1115 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1116 AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
1117 m1ThreshLow[on]);
1118 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1119 AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
1120 m2ThreshLow[on]);
1121 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1122 AR_PHY_SFCORR_M1_THRESH,
1123 m1Thresh[on]);
1124 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1125 AR_PHY_SFCORR_M2_THRESH,
1126 m2Thresh[on]);
1127 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1128 AR_PHY_SFCORR_M2COUNT_THR,
1129 m2CountThr[on]);
1130 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1131 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
1132 m2CountThrLow[on]);
1133
1134 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1135 AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
1136 m1ThreshLow[on]);
1137 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1138 AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
1139 m2ThreshLow[on]);
1140 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1141 AR_PHY_SFCORR_EXT_M1_THRESH,
1142 m1Thresh[on]);
1143 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1144 AR_PHY_SFCORR_EXT_M2_THRESH,
1145 m2Thresh[on]);
1146
1147 if (on)
1148 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1149 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1150 else
1151 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1152 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1153
1154 if (!on != aniState->ofdmWeakSigDetectOff) {
1155 if (on)
1156 ah->stats.ast_ani_ofdmon++;
1157 else
1158 ah->stats.ast_ani_ofdmoff++;
1159 aniState->ofdmWeakSigDetectOff = !on;
1160 }
1161 break;
1162 }
1163 case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
1164 static const int weakSigThrCck[] = { 8, 6 };
1165 u32 high = param ? 1 : 0;
1166
1167 REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
1168 AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
1169 weakSigThrCck[high]);
1170 if (high != aniState->cckWeakSigThreshold) {
1171 if (high)
1172 ah->stats.ast_ani_cckhigh++;
1173 else
1174 ah->stats.ast_ani_ccklow++;
1175 aniState->cckWeakSigThreshold = high;
1176 }
1177 break;
1178 }
1179 case ATH9K_ANI_FIRSTEP_LEVEL:{
1180 static const int firstep[] = { 0, 4, 8 };
1181 u32 level = param;
1182
1183 if (level >= ARRAY_SIZE(firstep)) {
1184 ath_dbg(common, ATH_DBG_ANI,
1185 "level out of range (%u > %zu)\n",
1186 level, ARRAY_SIZE(firstep));
1187 return false;
1188 }
1189 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1190 AR_PHY_FIND_SIG_FIRSTEP,
1191 firstep[level]);
1192 if (level > aniState->firstepLevel)
1193 ah->stats.ast_ani_stepup++;
1194 else if (level < aniState->firstepLevel)
1195 ah->stats.ast_ani_stepdown++;
1196 aniState->firstepLevel = level;
1197 break;
1198 }
1199 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1200 static const int cycpwrThr1[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
1201 u32 level = param;
1202
1203 if (level >= ARRAY_SIZE(cycpwrThr1)) {
1204 ath_dbg(common, ATH_DBG_ANI,
1205 "level out of range (%u > %zu)\n",
1206 level, ARRAY_SIZE(cycpwrThr1));
1207 return false;
1208 }
1209 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1210 AR_PHY_TIMING5_CYCPWR_THR1,
1211 cycpwrThr1[level]);
1212 if (level > aniState->spurImmunityLevel)
1213 ah->stats.ast_ani_spurup++;
1214 else if (level < aniState->spurImmunityLevel)
1215 ah->stats.ast_ani_spurdown++;
1216 aniState->spurImmunityLevel = level;
1217 break;
1218 }
1219 case ATH9K_ANI_PRESENT:
1220 break;
1221 default:
1222 ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
1223 return false;
1224 }
1225
1226 ath_dbg(common, ATH_DBG_ANI, "ANI parameters:\n");
1227 ath_dbg(common, ATH_DBG_ANI,
1228 "noiseImmunityLevel=%d, spurImmunityLevel=%d, ofdmWeakSigDetectOff=%d\n",
1229 aniState->noiseImmunityLevel,
1230 aniState->spurImmunityLevel,
1231 !aniState->ofdmWeakSigDetectOff);
1232 ath_dbg(common, ATH_DBG_ANI,
1233 "cckWeakSigThreshold=%d, firstepLevel=%d, listenTime=%d\n",
1234 aniState->cckWeakSigThreshold,
1235 aniState->firstepLevel,
1236 aniState->listenTime);
1237 ath_dbg(common, ATH_DBG_ANI,
1238 "ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
1239 aniState->ofdmPhyErrCount,
1240 aniState->cckPhyErrCount);
1241
1242 return true;
1243}
1244
1245static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
1246 enum ath9k_ani_cmd cmd,
1247 int param)
1248{
1249 struct ath_common *common = ath9k_hw_common(ah);
1250 struct ath9k_channel *chan = ah->curchan;
1251 struct ar5416AniState *aniState = &chan->ani;
1252 s32 value, value2;
1253
1254 switch (cmd & ah->ani_function) {
1255 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
1256 /*
1257 * on == 1 means ofdm weak signal detection is ON
1258 * on == 1 is the default, for less noise immunity
1259 *
1260 * on == 0 means ofdm weak signal detection is OFF
1261 * on == 0 means more noise imm
1262 */
1263 u32 on = param ? 1 : 0;
1264 /*
1265 * make register setting for default
1266 * (weak sig detect ON) come from INI file
1267 */
1268 int m1ThreshLow = on ?
1269 aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
1270 int m2ThreshLow = on ?
1271 aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
1272 int m1Thresh = on ?
1273 aniState->iniDef.m1Thresh : m1Thresh_off;
1274 int m2Thresh = on ?
1275 aniState->iniDef.m2Thresh : m2Thresh_off;
1276 int m2CountThr = on ?
1277 aniState->iniDef.m2CountThr : m2CountThr_off;
1278 int m2CountThrLow = on ?
1279 aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
1280 int m1ThreshLowExt = on ?
1281 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
1282 int m2ThreshLowExt = on ?
1283 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
1284 int m1ThreshExt = on ?
1285 aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
1286 int m2ThreshExt = on ?
1287 aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
1288
1289 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1290 AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
1291 m1ThreshLow);
1292 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1293 AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
1294 m2ThreshLow);
1295 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1296 AR_PHY_SFCORR_M1_THRESH, m1Thresh);
1297 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1298 AR_PHY_SFCORR_M2_THRESH, m2Thresh);
1299 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1300 AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
1301 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1302 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
1303 m2CountThrLow);
1304
1305 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1306 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
1307 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1308 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
1309 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1310 AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
1311 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1312 AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1313
1314 if (on)
1315 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1316 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1317 else
1318 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1319 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1320
1321 if (!on != aniState->ofdmWeakSigDetectOff) {
1322 ath_dbg(common, ATH_DBG_ANI,
1323 "** ch %d: ofdm weak signal: %s=>%s\n",
1324 chan->channel,
1325 !aniState->ofdmWeakSigDetectOff ?
1326 "on" : "off",
1327 on ? "on" : "off");
1328 if (on)
1329 ah->stats.ast_ani_ofdmon++;
1330 else
1331 ah->stats.ast_ani_ofdmoff++;
1332 aniState->ofdmWeakSigDetectOff = !on;
1333 }
1334 break;
1335 }
1336 case ATH9K_ANI_FIRSTEP_LEVEL:{
1337 u32 level = param;
1338
1339 if (level >= ARRAY_SIZE(firstep_table)) {
1340 ath_dbg(common, ATH_DBG_ANI,
1341 "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
1342 level, ARRAY_SIZE(firstep_table));
1343 return false;
1344 }
1345
1346 /*
1347 * make register setting relative to default
1348 * from INI file & cap value
1349 */
1350 value = firstep_table[level] -
1351 firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
1352 aniState->iniDef.firstep;
1353 if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
1354 value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
1355 if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
1356 value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
1357 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1358 AR_PHY_FIND_SIG_FIRSTEP,
1359 value);
1360 /*
1361 * we need to set first step low register too
1362 * make register setting relative to default
1363 * from INI file & cap value
1364 */
1365 value2 = firstep_table[level] -
1366 firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
1367 aniState->iniDef.firstepLow;
1368 if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
1369 value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
1370 if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
1371 value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
1372
1373 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1374 AR_PHY_FIND_SIG_FIRSTEP_LOW, value2);
1375
1376 if (level != aniState->firstepLevel) {
1377 ath_dbg(common, ATH_DBG_ANI,
1378 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1379 chan->channel,
1380 aniState->firstepLevel,
1381 level,
1382 ATH9K_ANI_FIRSTEP_LVL_NEW,
1383 value,
1384 aniState->iniDef.firstep);
1385 ath_dbg(common, ATH_DBG_ANI,
1386 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1387 chan->channel,
1388 aniState->firstepLevel,
1389 level,
1390 ATH9K_ANI_FIRSTEP_LVL_NEW,
1391 value2,
1392 aniState->iniDef.firstepLow);
1393 if (level > aniState->firstepLevel)
1394 ah->stats.ast_ani_stepup++;
1395 else if (level < aniState->firstepLevel)
1396 ah->stats.ast_ani_stepdown++;
1397 aniState->firstepLevel = level;
1398 }
1399 break;
1400 }
1401 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1402 u32 level = param;
1403
1404 if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
1405 ath_dbg(common, ATH_DBG_ANI,
1406 "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
1407 level, ARRAY_SIZE(cycpwrThr1_table));
1408 return false;
1409 }
1410 /*
1411 * make register setting relative to default
1412 * from INI file & cap value
1413 */
1414 value = cycpwrThr1_table[level] -
1415 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
1416 aniState->iniDef.cycpwrThr1;
1417 if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
1418 value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
1419 if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
1420 value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
1421 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1422 AR_PHY_TIMING5_CYCPWR_THR1,
1423 value);
1424
1425 /*
1426 * set AR_PHY_EXT_CCA for extension channel
1427 * make register setting relative to default
1428 * from INI file & cap value
1429 */
1430 value2 = cycpwrThr1_table[level] -
1431 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
1432 aniState->iniDef.cycpwrThr1Ext;
1433 if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
1434 value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
1435 if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
1436 value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
1437 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1438 AR_PHY_EXT_TIMING5_CYCPWR_THR1, value2);
1439
1440 if (level != aniState->spurImmunityLevel) {
1441 ath_dbg(common, ATH_DBG_ANI,
1442 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1443 chan->channel,
1444 aniState->spurImmunityLevel,
1445 level,
1446 ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
1447 value,
1448 aniState->iniDef.cycpwrThr1);
1449 ath_dbg(common, ATH_DBG_ANI,
1450 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1451 chan->channel,
1452 aniState->spurImmunityLevel,
1453 level,
1454 ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
1455 value2,
1456 aniState->iniDef.cycpwrThr1Ext);
1457 if (level > aniState->spurImmunityLevel)
1458 ah->stats.ast_ani_spurup++;
1459 else if (level < aniState->spurImmunityLevel)
1460 ah->stats.ast_ani_spurdown++;
1461 aniState->spurImmunityLevel = level;
1462 }
1463 break;
1464 }
1465 case ATH9K_ANI_MRC_CCK:
1466 /*
1467 * You should not see this as AR5008, AR9001, AR9002
1468 * does not have hardware support for MRC CCK.
1469 */
1470 WARN_ON(1);
1471 break;
1472 case ATH9K_ANI_PRESENT:
1473 break;
1474 default:
1475 ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
1476 return false;
1477 }
1478
1479 ath_dbg(common, ATH_DBG_ANI,
1480 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1481 aniState->spurImmunityLevel,
1482 !aniState->ofdmWeakSigDetectOff ? "on" : "off",
1483 aniState->firstepLevel,
1484 !aniState->mrcCCKOff ? "on" : "off",
1485 aniState->listenTime,
1486 aniState->ofdmPhyErrCount,
1487 aniState->cckPhyErrCount);
1488 return true;
1489}
1490
1491static void ar5008_hw_do_getnf(struct ath_hw *ah,
1492 int16_t nfarray[NUM_NF_READINGS])
1493{
1494 int16_t nf;
1495
1496 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1497 nfarray[0] = sign_extend32(nf, 8);
1498
1499 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1500 nfarray[1] = sign_extend32(nf, 8);
1501
1502 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1503 nfarray[2] = sign_extend32(nf, 8);
1504
1505 if (!IS_CHAN_HT40(ah->curchan))
1506 return;
1507
1508 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1509 nfarray[3] = sign_extend32(nf, 8);
1510
1511 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1512 nfarray[4] = sign_extend32(nf, 8);
1513
1514 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1515 nfarray[5] = sign_extend32(nf, 8);
1516}
1517
1518/*
1519 * Initialize the ANI register values with default (ini) values.
1520 * This routine is called during a (full) hardware reset after
1521 * all the registers are initialised from the INI.
1522 */
1523static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1524{
1525 struct ath_common *common = ath9k_hw_common(ah);
1526 struct ath9k_channel *chan = ah->curchan;
1527 struct ar5416AniState *aniState = &chan->ani;
1528 struct ath9k_ani_default *iniDef;
1529 u32 val;
1530
1531 iniDef = &aniState->iniDef;
1532
1533 ath_dbg(common, ATH_DBG_ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
1534 ah->hw_version.macVersion,
1535 ah->hw_version.macRev,
1536 ah->opmode,
1537 chan->channel,
1538 chan->channelFlags);
1539
1540 val = REG_READ(ah, AR_PHY_SFCORR);
1541 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1542 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1543 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1544
1545 val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1546 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1547 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1548 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1549
1550 val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1551 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1552 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1553 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1554 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1555 iniDef->firstep = REG_READ_FIELD(ah,
1556 AR_PHY_FIND_SIG,
1557 AR_PHY_FIND_SIG_FIRSTEP);
1558 iniDef->firstepLow = REG_READ_FIELD(ah,
1559 AR_PHY_FIND_SIG_LOW,
1560 AR_PHY_FIND_SIG_FIRSTEP_LOW);
1561 iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1562 AR_PHY_TIMING5,
1563 AR_PHY_TIMING5_CYCPWR_THR1);
1564 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1565 AR_PHY_EXT_CCA,
1566 AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1567
1568 /* these levels just got reset to defaults by the INI */
1569 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
1570 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
1571 aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
1572 aniState->mrcCCKOff = true; /* not available on pre AR9003 */
1573}
1574
1575static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1576{
1577 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1578 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1579 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1580 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1581 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1582 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1583}
1584
1585static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1586 struct ath_hw_radar_conf *conf)
1587{
1588 u32 radar_0 = 0, radar_1 = 0;
1589
1590 if (!conf) {
1591 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1592 return;
1593 }
1594
1595 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1596 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1597 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1598 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1599 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1600 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1601
1602 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1603 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1604 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1605 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1606 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1607
1608 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1609 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1610 if (conf->ext_channel)
1611 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1612 else
1613 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1614}
1615
1616static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1617{
1618 struct ath_hw_radar_conf *conf = &ah->radar_conf;
1619
1620 conf->fir_power = -33;
1621 conf->radar_rssi = 20;
1622 conf->pulse_height = 10;
1623 conf->pulse_rssi = 24;
1624 conf->pulse_inband = 15;
1625 conf->pulse_maxlen = 255;
1626 conf->pulse_inband_step = 12;
1627 conf->radar_inband = 8;
1628}
1629
1630void ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1631{
1632 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1633 static const u32 ar5416_cca_regs[6] = {
1634 AR_PHY_CCA,
1635 AR_PHY_CH1_CCA,
1636 AR_PHY_CH2_CCA,
1637 AR_PHY_EXT_CCA,
1638 AR_PHY_CH1_EXT_CCA,
1639 AR_PHY_CH2_EXT_CCA
1640 };
1641
1642 priv_ops->rf_set_freq = ar5008_hw_set_channel;
1643 priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1644
1645 priv_ops->rf_alloc_ext_banks = ar5008_hw_rf_alloc_ext_banks;
1646 priv_ops->rf_free_ext_banks = ar5008_hw_rf_free_ext_banks;
1647 priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1648 priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1649 priv_ops->init_bb = ar5008_hw_init_bb;
1650 priv_ops->process_ini = ar5008_hw_process_ini;
1651 priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1652 priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1653 priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1654 priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1655 priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1656 priv_ops->restore_chainmask = ar5008_restore_chainmask;
1657 priv_ops->set_diversity = ar5008_set_diversity;
1658 priv_ops->do_getnf = ar5008_hw_do_getnf;
1659 priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1660
1661 if (modparam_force_new_ani) {
1662 priv_ops->ani_control = ar5008_hw_ani_control_new;
1663 priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1664 } else
1665 priv_ops->ani_control = ar5008_hw_ani_control_old;
1666
1667 if (AR_SREV_9100(ah))
1668 priv_ops->compute_pll_control = ar9100_hw_compute_pll_control;
1669 else if (AR_SREV_9160_10_OR_LATER(ah))
1670 priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1671 else
1672 priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1673
1674 ar5008_hw_set_nf_limits(ah);
1675 ar5008_hw_set_radar_conf(ah);
1676 memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1677}
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include "hw-ops.h"
19#include "../regd.h"
20#include "ar9002_phy.h"
21#include "ar5008_initvals.h"
22
23/* All code below is for AR5008, AR9001, AR9002 */
24
25#define AR5008_OFDM_RATES 8
26#define AR5008_HT_SS_RATES 8
27#define AR5008_HT_DS_RATES 8
28
29#define AR5008_HT20_SHIFT 16
30#define AR5008_HT40_SHIFT 24
31
32#define AR5008_11NA_OFDM_SHIFT 0
33#define AR5008_11NA_HT_SS_SHIFT 8
34#define AR5008_11NA_HT_DS_SHIFT 16
35
36#define AR5008_11NG_OFDM_SHIFT 4
37#define AR5008_11NG_HT_SS_SHIFT 12
38#define AR5008_11NG_HT_DS_SHIFT 20
39
40static const int firstep_table[] =
41/* level: 0 1 2 3 4 5 6 7 8 */
42 { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
43
44/*
45 * register values to turn OFDM weak signal detection OFF
46 */
47static const int m1ThreshLow_off = 127;
48static const int m2ThreshLow_off = 127;
49static const int m1Thresh_off = 127;
50static const int m2Thresh_off = 127;
51static const int m2CountThr_off = 31;
52static const int m2CountThrLow_off = 63;
53static const int m1ThreshLowExt_off = 127;
54static const int m2ThreshLowExt_off = 127;
55static const int m1ThreshExt_off = 127;
56static const int m2ThreshExt_off = 127;
57
58static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
59static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
60static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
61static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
62static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
63
64static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
65{
66 struct ar5416IniArray *array = &ah->iniBank6;
67 u32 *data = ah->analogBank6Data;
68 int r;
69
70 ENABLE_REGWRITE_BUFFER(ah);
71
72 for (r = 0; r < array->ia_rows; r++) {
73 REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
74 DO_DELAY(*writecnt);
75 }
76
77 REGWRITE_BUFFER_FLUSH(ah);
78}
79
80/**
81 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
82 * @rfbuf:
83 * @reg32:
84 * @numBits:
85 * @firstBit:
86 * @column:
87 *
88 * Performs analog "swizzling" of parameters into their location.
89 * Used on external AR2133/AR5133 radios.
90 */
91static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
92 u32 numBits, u32 firstBit,
93 u32 column)
94{
95 u32 tmp32, mask, arrayEntry, lastBit;
96 int32_t bitPosition, bitsLeft;
97
98 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
99 arrayEntry = (firstBit - 1) / 8;
100 bitPosition = (firstBit - 1) % 8;
101 bitsLeft = numBits;
102 while (bitsLeft > 0) {
103 lastBit = (bitPosition + bitsLeft > 8) ?
104 8 : bitPosition + bitsLeft;
105 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
106 (column * 8);
107 rfBuf[arrayEntry] &= ~mask;
108 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
109 (column * 8)) & mask;
110 bitsLeft -= 8 - bitPosition;
111 tmp32 = tmp32 >> (8 - bitPosition);
112 bitPosition = 0;
113 arrayEntry++;
114 }
115}
116
117/*
118 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
119 * rf_pwd_icsyndiv.
120 *
121 * Theoretical Rules:
122 * if 2 GHz band
123 * if forceBiasAuto
124 * if synth_freq < 2412
125 * bias = 0
126 * else if 2412 <= synth_freq <= 2422
127 * bias = 1
128 * else // synth_freq > 2422
129 * bias = 2
130 * else if forceBias > 0
131 * bias = forceBias & 7
132 * else
133 * no change, use value from ini file
134 * else
135 * no change, invalid band
136 *
137 * 1st Mod:
138 * 2422 also uses value of 2
139 * <approved>
140 *
141 * 2nd Mod:
142 * Less than 2412 uses value of 0, 2412 and above uses value of 2
143 */
144static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
145{
146 struct ath_common *common = ath9k_hw_common(ah);
147 u32 tmp_reg;
148 int reg_writes = 0;
149 u32 new_bias = 0;
150
151 if (!AR_SREV_5416(ah) || synth_freq >= 3000)
152 return;
153
154 BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
155
156 if (synth_freq < 2412)
157 new_bias = 0;
158 else if (synth_freq < 2422)
159 new_bias = 1;
160 else
161 new_bias = 2;
162
163 /* pre-reverse this field */
164 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
165
166 ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
167 new_bias, synth_freq);
168
169 /* swizzle rf_pwd_icsyndiv */
170 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
171
172 /* write Bank 6 with new params */
173 ar5008_write_bank6(ah, ®_writes);
174}
175
176/**
177 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
178 * @ah: atheros hardware structure
179 * @chan:
180 *
181 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
182 * the channel value. Assumes writes enabled to analog bus and bank6 register
183 * cache in ah->analogBank6Data.
184 */
185static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
186{
187 struct ath_common *common = ath9k_hw_common(ah);
188 u32 channelSel = 0;
189 u32 bModeSynth = 0;
190 u32 aModeRefSel = 0;
191 u32 reg32 = 0;
192 u16 freq;
193 struct chan_centers centers;
194
195 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
196 freq = centers.synth_center;
197
198 if (freq < 4800) {
199 u32 txctl;
200
201 if (((freq - 2192) % 5) == 0) {
202 channelSel = ((freq - 672) * 2 - 3040) / 10;
203 bModeSynth = 0;
204 } else if (((freq - 2224) % 5) == 0) {
205 channelSel = ((freq - 704) * 2 - 3040) / 10;
206 bModeSynth = 1;
207 } else {
208 ath_err(common, "Invalid channel %u MHz\n", freq);
209 return -EINVAL;
210 }
211
212 channelSel = (channelSel << 2) & 0xff;
213 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
214
215 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
216 if (freq == 2484) {
217
218 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
219 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
220 } else {
221 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
222 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
223 }
224
225 } else if ((freq % 20) == 0 && freq >= 5120) {
226 channelSel =
227 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
228 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
229 } else if ((freq % 10) == 0) {
230 channelSel =
231 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
232 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
233 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
234 else
235 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
236 } else if ((freq % 5) == 0) {
237 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
238 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
239 } else {
240 ath_err(common, "Invalid channel %u MHz\n", freq);
241 return -EINVAL;
242 }
243
244 ar5008_hw_force_bias(ah, freq);
245
246 reg32 =
247 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
248 (1 << 5) | 0x1;
249
250 REG_WRITE(ah, AR_PHY(0x37), reg32);
251
252 ah->curchan = chan;
253
254 return 0;
255}
256
257void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah,
258 struct ath9k_channel *chan, int bin)
259{
260 int cur_bin;
261 int upper, lower, cur_vit_mask;
262 int i;
263 int8_t mask_m[123] = {0};
264 int8_t mask_p[123] = {0};
265 int8_t mask_amt;
266 int tmp_mask;
267 static const int pilot_mask_reg[4] = {
268 AR_PHY_TIMING7, AR_PHY_TIMING8,
269 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
270 };
271 static const int chan_mask_reg[4] = {
272 AR_PHY_TIMING9, AR_PHY_TIMING10,
273 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
274 };
275 static const int inc[4] = { 0, 100, 0, 0 };
276
277 cur_bin = -6000;
278 upper = bin + 100;
279 lower = bin - 100;
280
281 for (i = 0; i < 4; i++) {
282 int pilot_mask = 0;
283 int chan_mask = 0;
284 int bp = 0;
285
286 for (bp = 0; bp < 30; bp++) {
287 if ((cur_bin > lower) && (cur_bin < upper)) {
288 pilot_mask = pilot_mask | 0x1 << bp;
289 chan_mask = chan_mask | 0x1 << bp;
290 }
291 cur_bin += 100;
292 }
293 cur_bin += inc[i];
294 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
295 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
296 }
297
298 cur_vit_mask = 6100;
299 upper = bin + 120;
300 lower = bin - 120;
301
302 for (i = 0; i < ARRAY_SIZE(mask_m); i++) {
303 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
304 /* workaround for gcc bug #37014 */
305 volatile int tmp_v = abs(cur_vit_mask - bin);
306
307 if (tmp_v < 75)
308 mask_amt = 1;
309 else
310 mask_amt = 0;
311 if (cur_vit_mask < 0)
312 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
313 else
314 mask_p[cur_vit_mask / 100] = mask_amt;
315 }
316 cur_vit_mask -= 100;
317 }
318
319 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
320 | (mask_m[48] << 26) | (mask_m[49] << 24)
321 | (mask_m[50] << 22) | (mask_m[51] << 20)
322 | (mask_m[52] << 18) | (mask_m[53] << 16)
323 | (mask_m[54] << 14) | (mask_m[55] << 12)
324 | (mask_m[56] << 10) | (mask_m[57] << 8)
325 | (mask_m[58] << 6) | (mask_m[59] << 4)
326 | (mask_m[60] << 2) | (mask_m[61] << 0);
327 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
328 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
329
330 tmp_mask = (mask_m[31] << 28)
331 | (mask_m[32] << 26) | (mask_m[33] << 24)
332 | (mask_m[34] << 22) | (mask_m[35] << 20)
333 | (mask_m[36] << 18) | (mask_m[37] << 16)
334 | (mask_m[48] << 14) | (mask_m[39] << 12)
335 | (mask_m[40] << 10) | (mask_m[41] << 8)
336 | (mask_m[42] << 6) | (mask_m[43] << 4)
337 | (mask_m[44] << 2) | (mask_m[45] << 0);
338 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
339 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
340
341 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
342 | (mask_m[18] << 26) | (mask_m[18] << 24)
343 | (mask_m[20] << 22) | (mask_m[20] << 20)
344 | (mask_m[22] << 18) | (mask_m[22] << 16)
345 | (mask_m[24] << 14) | (mask_m[24] << 12)
346 | (mask_m[25] << 10) | (mask_m[26] << 8)
347 | (mask_m[27] << 6) | (mask_m[28] << 4)
348 | (mask_m[29] << 2) | (mask_m[30] << 0);
349 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
350 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
351
352 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
353 | (mask_m[2] << 26) | (mask_m[3] << 24)
354 | (mask_m[4] << 22) | (mask_m[5] << 20)
355 | (mask_m[6] << 18) | (mask_m[7] << 16)
356 | (mask_m[8] << 14) | (mask_m[9] << 12)
357 | (mask_m[10] << 10) | (mask_m[11] << 8)
358 | (mask_m[12] << 6) | (mask_m[13] << 4)
359 | (mask_m[14] << 2) | (mask_m[15] << 0);
360 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
361 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
362
363 tmp_mask = (mask_p[15] << 28)
364 | (mask_p[14] << 26) | (mask_p[13] << 24)
365 | (mask_p[12] << 22) | (mask_p[11] << 20)
366 | (mask_p[10] << 18) | (mask_p[9] << 16)
367 | (mask_p[8] << 14) | (mask_p[7] << 12)
368 | (mask_p[6] << 10) | (mask_p[5] << 8)
369 | (mask_p[4] << 6) | (mask_p[3] << 4)
370 | (mask_p[2] << 2) | (mask_p[1] << 0);
371 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
372 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
373
374 tmp_mask = (mask_p[30] << 28)
375 | (mask_p[29] << 26) | (mask_p[28] << 24)
376 | (mask_p[27] << 22) | (mask_p[26] << 20)
377 | (mask_p[25] << 18) | (mask_p[24] << 16)
378 | (mask_p[23] << 14) | (mask_p[22] << 12)
379 | (mask_p[21] << 10) | (mask_p[20] << 8)
380 | (mask_p[19] << 6) | (mask_p[18] << 4)
381 | (mask_p[17] << 2) | (mask_p[16] << 0);
382 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
383 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
384
385 tmp_mask = (mask_p[45] << 28)
386 | (mask_p[44] << 26) | (mask_p[43] << 24)
387 | (mask_p[42] << 22) | (mask_p[41] << 20)
388 | (mask_p[40] << 18) | (mask_p[39] << 16)
389 | (mask_p[38] << 14) | (mask_p[37] << 12)
390 | (mask_p[36] << 10) | (mask_p[35] << 8)
391 | (mask_p[34] << 6) | (mask_p[33] << 4)
392 | (mask_p[32] << 2) | (mask_p[31] << 0);
393 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
394 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
395
396 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
397 | (mask_p[59] << 26) | (mask_p[58] << 24)
398 | (mask_p[57] << 22) | (mask_p[56] << 20)
399 | (mask_p[55] << 18) | (mask_p[54] << 16)
400 | (mask_p[53] << 14) | (mask_p[52] << 12)
401 | (mask_p[51] << 10) | (mask_p[50] << 8)
402 | (mask_p[49] << 6) | (mask_p[48] << 4)
403 | (mask_p[47] << 2) | (mask_p[46] << 0);
404 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
405 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
406}
407
408/**
409 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
410 * @ah: atheros hardware structure
411 * @chan:
412 *
413 * For non single-chip solutions. Converts to baseband spur frequency given the
414 * input channel frequency and compute register settings below.
415 */
416static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
417 struct ath9k_channel *chan)
418{
419 int bb_spur = AR_NO_SPUR;
420 int bin;
421 int spur_freq_sd;
422 int spur_delta_phase;
423 int denominator;
424 int tmp, new;
425 int i;
426
427 int cur_bb_spur;
428 bool is2GHz = IS_CHAN_2GHZ(chan);
429
430 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
431 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
432 if (AR_NO_SPUR == cur_bb_spur)
433 break;
434 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
435 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
436 bb_spur = cur_bb_spur;
437 break;
438 }
439 }
440
441 if (AR_NO_SPUR == bb_spur)
442 return;
443
444 bin = bb_spur * 32;
445
446 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
447 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
448 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
449 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
450 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
451
452 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
453
454 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
455 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
456 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
457 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
458 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
459 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
460
461 spur_delta_phase = ((bb_spur * 524288) / 100) &
462 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
463
464 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
465 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
466
467 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
468 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
469 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
470 REG_WRITE(ah, AR_PHY_TIMING11, new);
471
472 ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
473}
474
475/**
476 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
477 * @ah: atheros hardware structure
478 *
479 * Only required for older devices with external AR2133/AR5133 radios.
480 */
481static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
482{
483 int size = ah->iniBank6.ia_rows * sizeof(u32);
484
485 if (AR_SREV_9280_20_OR_LATER(ah))
486 return 0;
487
488 ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
489 if (!ah->analogBank6Data)
490 return -ENOMEM;
491
492 return 0;
493}
494
495
496/* *
497 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
498 * @ah: atheros hardware structure
499 * @chan:
500 * @modesIndex:
501 *
502 * Used for the external AR2133/AR5133 radios.
503 *
504 * Reads the EEPROM header info from the device structure and programs
505 * all rf registers. This routine requires access to the analog
506 * rf device. This is not required for single-chip devices.
507 */
508static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
509 struct ath9k_channel *chan,
510 u16 modesIndex)
511{
512 u32 eepMinorRev;
513 u32 ob5GHz = 0, db5GHz = 0;
514 u32 ob2GHz = 0, db2GHz = 0;
515 int regWrites = 0;
516 int i;
517
518 /*
519 * Software does not need to program bank data
520 * for single chip devices, that is AR9280 or anything
521 * after that.
522 */
523 if (AR_SREV_9280_20_OR_LATER(ah))
524 return true;
525
526 /* Setup rf parameters */
527 eepMinorRev = ah->eep_ops->get_eeprom_rev(ah);
528
529 for (i = 0; i < ah->iniBank6.ia_rows; i++)
530 ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
531
532 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
533 if (eepMinorRev >= 2) {
534 if (IS_CHAN_2GHZ(chan)) {
535 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
536 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
537 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
538 ob2GHz, 3, 197, 0);
539 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
540 db2GHz, 3, 194, 0);
541 } else {
542 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
543 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
544 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
545 ob5GHz, 3, 203, 0);
546 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
547 db5GHz, 3, 200, 0);
548 }
549 }
550
551 /* Write Analog registers */
552 REG_WRITE_ARRAY(&bank0, 1, regWrites);
553 REG_WRITE_ARRAY(&bank1, 1, regWrites);
554 REG_WRITE_ARRAY(&bank2, 1, regWrites);
555 REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
556 ar5008_write_bank6(ah, ®Writes);
557 REG_WRITE_ARRAY(&bank7, 1, regWrites);
558
559 return true;
560}
561
562static void ar5008_hw_init_bb(struct ath_hw *ah,
563 struct ath9k_channel *chan)
564{
565 u32 synthDelay;
566
567 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
568
569 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
570
571 ath9k_hw_synth_delay(ah, chan, synthDelay);
572}
573
574static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
575{
576 int rx_chainmask, tx_chainmask;
577
578 rx_chainmask = ah->rxchainmask;
579 tx_chainmask = ah->txchainmask;
580
581
582 switch (rx_chainmask) {
583 case 0x5:
584 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
585 AR_PHY_SWAP_ALT_CHAIN);
586 case 0x3:
587 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
588 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
589 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
590 break;
591 }
592 case 0x1:
593 case 0x2:
594 case 0x7:
595 ENABLE_REGWRITE_BUFFER(ah);
596 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
597 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
598 break;
599 default:
600 ENABLE_REGWRITE_BUFFER(ah);
601 break;
602 }
603
604 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
605
606 REGWRITE_BUFFER_FLUSH(ah);
607
608 if (tx_chainmask == 0x5) {
609 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
610 AR_PHY_SWAP_ALT_CHAIN);
611 }
612 if (AR_SREV_9100(ah))
613 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
614 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
615}
616
617static void ar5008_hw_override_ini(struct ath_hw *ah,
618 struct ath9k_channel *chan)
619{
620 u32 val;
621
622 /*
623 * Set the RX_ABORT and RX_DIS and clear if off only after
624 * RXE is set for MAC. This prevents frames with corrupted
625 * descriptor status.
626 */
627 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
628
629 if (AR_SREV_9280_20_OR_LATER(ah)) {
630 /*
631 * For AR9280 and above, there is a new feature that allows
632 * Multicast search based on both MAC Address and Key ID.
633 * By default, this feature is enabled. But since the driver
634 * is not using this feature, we switch it off; otherwise
635 * multicast search based on MAC addr only will fail.
636 */
637 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
638 (~AR_ADHOC_MCAST_KEYID_ENABLE);
639
640 if (!AR_SREV_9271(ah))
641 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
642
643 if (AR_SREV_9287_11_OR_LATER(ah))
644 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
645
646 val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
647
648 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
649 }
650
651 if (AR_SREV_9280_20_OR_LATER(ah))
652 return;
653 /*
654 * Disable BB clock gating
655 * Necessary to avoid issues on AR5416 2.0
656 */
657 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
658
659 /*
660 * Disable RIFS search on some chips to avoid baseband
661 * hang issues.
662 */
663 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
664 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
665 val &= ~AR_PHY_RIFS_INIT_DELAY;
666 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
667 }
668}
669
670static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
671 struct ath9k_channel *chan)
672{
673 u32 phymode;
674 u32 enableDacFifo = 0;
675
676 if (AR_SREV_9285_12_OR_LATER(ah))
677 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
678 AR_PHY_FC_ENABLE_DAC_FIFO);
679
680 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
681 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
682
683 if (IS_CHAN_HT40(chan)) {
684 phymode |= AR_PHY_FC_DYN2040_EN;
685
686 if (IS_CHAN_HT40PLUS(chan))
687 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
688
689 }
690 ENABLE_REGWRITE_BUFFER(ah);
691 REG_WRITE(ah, AR_PHY_TURBO, phymode);
692
693 /* This function do only REG_WRITE, so
694 * we can include it to REGWRITE_BUFFER. */
695 ath9k_hw_set11nmac2040(ah, chan);
696
697 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
698 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
699
700 REGWRITE_BUFFER_FLUSH(ah);
701}
702
703
704static int ar5008_hw_process_ini(struct ath_hw *ah,
705 struct ath9k_channel *chan)
706{
707 struct ath_common *common = ath9k_hw_common(ah);
708 int i, regWrites = 0;
709 u32 modesIndex, freqIndex;
710
711 if (IS_CHAN_5GHZ(chan)) {
712 freqIndex = 1;
713 modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
714 } else {
715 freqIndex = 2;
716 modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
717 }
718
719 /*
720 * Set correct baseband to analog shift setting to
721 * access analog chips.
722 */
723 REG_WRITE(ah, AR_PHY(0), 0x00000007);
724
725 /* Write ADDAC shifts */
726 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
727 if (ah->eep_ops->set_addac)
728 ah->eep_ops->set_addac(ah, chan);
729
730 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
731 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
732
733 ENABLE_REGWRITE_BUFFER(ah);
734
735 for (i = 0; i < ah->iniModes.ia_rows; i++) {
736 u32 reg = INI_RA(&ah->iniModes, i, 0);
737 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
738
739 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
740 val &= ~AR_AN_TOP2_PWDCLKIND;
741
742 REG_WRITE(ah, reg, val);
743
744 if (reg >= 0x7800 && reg < 0x78a0
745 && ah->config.analog_shiftreg
746 && (common->bus_ops->ath_bus_type != ATH_USB)) {
747 udelay(100);
748 }
749
750 DO_DELAY(regWrites);
751 }
752
753 REGWRITE_BUFFER_FLUSH(ah);
754
755 if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
756 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
757
758 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
759 AR_SREV_9287_11_OR_LATER(ah))
760 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
761
762 if (AR_SREV_9271_10(ah)) {
763 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
764 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
765 }
766
767 ENABLE_REGWRITE_BUFFER(ah);
768
769 /* Write common array parameters */
770 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
771 u32 reg = INI_RA(&ah->iniCommon, i, 0);
772 u32 val = INI_RA(&ah->iniCommon, i, 1);
773
774 REG_WRITE(ah, reg, val);
775
776 if (reg >= 0x7800 && reg < 0x78a0
777 && ah->config.analog_shiftreg
778 && (common->bus_ops->ath_bus_type != ATH_USB)) {
779 udelay(100);
780 }
781
782 DO_DELAY(regWrites);
783 }
784
785 REGWRITE_BUFFER_FLUSH(ah);
786
787 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
788
789 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
790 REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
791 regWrites);
792
793 ar5008_hw_override_ini(ah, chan);
794 ar5008_hw_set_channel_regs(ah, chan);
795 ar5008_hw_init_chain_masks(ah);
796 ath9k_olc_init(ah);
797 ath9k_hw_apply_txpower(ah, chan, false);
798
799 /* Write analog registers */
800 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
801 ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
802 return -EIO;
803 }
804
805 return 0;
806}
807
808static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
809{
810 u32 rfMode = 0;
811
812 if (chan == NULL)
813 return;
814
815 if (IS_CHAN_2GHZ(chan))
816 rfMode |= AR_PHY_MODE_DYNAMIC;
817 else
818 rfMode |= AR_PHY_MODE_OFDM;
819
820 if (!AR_SREV_9280_20_OR_LATER(ah))
821 rfMode |= (IS_CHAN_5GHZ(chan)) ?
822 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
823
824 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
825 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
826
827 REG_WRITE(ah, AR_PHY_MODE, rfMode);
828}
829
830static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
831{
832 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
833}
834
835static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
836 struct ath9k_channel *chan)
837{
838 u32 coef_scaled, ds_coef_exp, ds_coef_man;
839 u32 clockMhzScaled = 0x64000000;
840 struct chan_centers centers;
841
842 if (IS_CHAN_HALF_RATE(chan))
843 clockMhzScaled = clockMhzScaled >> 1;
844 else if (IS_CHAN_QUARTER_RATE(chan))
845 clockMhzScaled = clockMhzScaled >> 2;
846
847 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
848 coef_scaled = clockMhzScaled / centers.synth_center;
849
850 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
851 &ds_coef_exp);
852
853 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
854 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
855 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
856 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
857
858 coef_scaled = (9 * coef_scaled) / 10;
859
860 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
861 &ds_coef_exp);
862
863 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
864 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
865 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
866 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
867}
868
869static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
870{
871 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
872 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
873 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
874}
875
876static void ar5008_hw_rfbus_done(struct ath_hw *ah)
877{
878 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
879
880 ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
881
882 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
883}
884
885static void ar5008_restore_chainmask(struct ath_hw *ah)
886{
887 int rx_chainmask = ah->rxchainmask;
888
889 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
890 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
891 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
892 }
893}
894
895static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
896 struct ath9k_channel *chan)
897{
898 u32 pll;
899
900 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
901
902 if (chan && IS_CHAN_HALF_RATE(chan))
903 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
904 else if (chan && IS_CHAN_QUARTER_RATE(chan))
905 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
906
907 if (chan && IS_CHAN_5GHZ(chan))
908 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
909 else
910 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
911
912 return pll;
913}
914
915static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
916 struct ath9k_channel *chan)
917{
918 u32 pll;
919
920 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
921
922 if (chan && IS_CHAN_HALF_RATE(chan))
923 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
924 else if (chan && IS_CHAN_QUARTER_RATE(chan))
925 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
926
927 if (chan && IS_CHAN_5GHZ(chan))
928 pll |= SM(0xa, AR_RTC_PLL_DIV);
929 else
930 pll |= SM(0xb, AR_RTC_PLL_DIV);
931
932 return pll;
933}
934
935static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
936 enum ath9k_ani_cmd cmd,
937 int param)
938{
939 struct ath_common *common = ath9k_hw_common(ah);
940 struct ath9k_channel *chan = ah->curchan;
941 struct ar5416AniState *aniState = &ah->ani;
942 s32 value;
943
944 switch (cmd & ah->ani_function) {
945 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
946 /*
947 * on == 1 means ofdm weak signal detection is ON
948 * on == 1 is the default, for less noise immunity
949 *
950 * on == 0 means ofdm weak signal detection is OFF
951 * on == 0 means more noise imm
952 */
953 u32 on = param ? 1 : 0;
954 /*
955 * make register setting for default
956 * (weak sig detect ON) come from INI file
957 */
958 int m1ThreshLow = on ?
959 aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
960 int m2ThreshLow = on ?
961 aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
962 int m1Thresh = on ?
963 aniState->iniDef.m1Thresh : m1Thresh_off;
964 int m2Thresh = on ?
965 aniState->iniDef.m2Thresh : m2Thresh_off;
966 int m2CountThr = on ?
967 aniState->iniDef.m2CountThr : m2CountThr_off;
968 int m2CountThrLow = on ?
969 aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
970 int m1ThreshLowExt = on ?
971 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
972 int m2ThreshLowExt = on ?
973 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
974 int m1ThreshExt = on ?
975 aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
976 int m2ThreshExt = on ?
977 aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
978
979 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
980 AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
981 m1ThreshLow);
982 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
983 AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
984 m2ThreshLow);
985 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
986 AR_PHY_SFCORR_M1_THRESH, m1Thresh);
987 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
988 AR_PHY_SFCORR_M2_THRESH, m2Thresh);
989 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
990 AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
991 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
992 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
993 m2CountThrLow);
994
995 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
996 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
997 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
998 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
999 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1000 AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
1001 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1002 AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1003
1004 if (on)
1005 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1006 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1007 else
1008 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1009 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1010
1011 if (on != aniState->ofdmWeakSigDetect) {
1012 ath_dbg(common, ANI,
1013 "** ch %d: ofdm weak signal: %s=>%s\n",
1014 chan->channel,
1015 aniState->ofdmWeakSigDetect ?
1016 "on" : "off",
1017 on ? "on" : "off");
1018 if (on)
1019 ah->stats.ast_ani_ofdmon++;
1020 else
1021 ah->stats.ast_ani_ofdmoff++;
1022 aniState->ofdmWeakSigDetect = on;
1023 }
1024 break;
1025 }
1026 case ATH9K_ANI_FIRSTEP_LEVEL:{
1027 u32 level = param;
1028
1029 value = level * 2;
1030 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1031 AR_PHY_FIND_SIG_FIRSTEP, value);
1032 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1033 AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1034
1035 if (level != aniState->firstepLevel) {
1036 ath_dbg(common, ANI,
1037 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1038 chan->channel,
1039 aniState->firstepLevel,
1040 level,
1041 ATH9K_ANI_FIRSTEP_LVL,
1042 value,
1043 aniState->iniDef.firstep);
1044 ath_dbg(common, ANI,
1045 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1046 chan->channel,
1047 aniState->firstepLevel,
1048 level,
1049 ATH9K_ANI_FIRSTEP_LVL,
1050 value,
1051 aniState->iniDef.firstepLow);
1052 if (level > aniState->firstepLevel)
1053 ah->stats.ast_ani_stepup++;
1054 else if (level < aniState->firstepLevel)
1055 ah->stats.ast_ani_stepdown++;
1056 aniState->firstepLevel = level;
1057 }
1058 break;
1059 }
1060 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1061 u32 level = param;
1062
1063 value = (level + 1) * 2;
1064 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1065 AR_PHY_TIMING5_CYCPWR_THR1, value);
1066
1067 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1068 AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1069
1070 if (level != aniState->spurImmunityLevel) {
1071 ath_dbg(common, ANI,
1072 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1073 chan->channel,
1074 aniState->spurImmunityLevel,
1075 level,
1076 ATH9K_ANI_SPUR_IMMUNE_LVL,
1077 value,
1078 aniState->iniDef.cycpwrThr1);
1079 ath_dbg(common, ANI,
1080 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1081 chan->channel,
1082 aniState->spurImmunityLevel,
1083 level,
1084 ATH9K_ANI_SPUR_IMMUNE_LVL,
1085 value,
1086 aniState->iniDef.cycpwrThr1Ext);
1087 if (level > aniState->spurImmunityLevel)
1088 ah->stats.ast_ani_spurup++;
1089 else if (level < aniState->spurImmunityLevel)
1090 ah->stats.ast_ani_spurdown++;
1091 aniState->spurImmunityLevel = level;
1092 }
1093 break;
1094 }
1095 case ATH9K_ANI_MRC_CCK:
1096 /*
1097 * You should not see this as AR5008, AR9001, AR9002
1098 * does not have hardware support for MRC CCK.
1099 */
1100 WARN_ON(1);
1101 break;
1102 default:
1103 ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1104 return false;
1105 }
1106
1107 ath_dbg(common, ANI,
1108 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1109 aniState->spurImmunityLevel,
1110 aniState->ofdmWeakSigDetect ? "on" : "off",
1111 aniState->firstepLevel,
1112 aniState->mrcCCK ? "on" : "off",
1113 aniState->listenTime,
1114 aniState->ofdmPhyErrCount,
1115 aniState->cckPhyErrCount);
1116 return true;
1117}
1118
1119static void ar5008_hw_do_getnf(struct ath_hw *ah,
1120 int16_t nfarray[NUM_NF_READINGS])
1121{
1122 int16_t nf;
1123
1124 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1125 nfarray[0] = sign_extend32(nf, 8);
1126
1127 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1128 nfarray[1] = sign_extend32(nf, 8);
1129
1130 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1131 nfarray[2] = sign_extend32(nf, 8);
1132
1133 if (!IS_CHAN_HT40(ah->curchan))
1134 return;
1135
1136 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1137 nfarray[3] = sign_extend32(nf, 8);
1138
1139 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1140 nfarray[4] = sign_extend32(nf, 8);
1141
1142 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1143 nfarray[5] = sign_extend32(nf, 8);
1144}
1145
1146/*
1147 * Initialize the ANI register values with default (ini) values.
1148 * This routine is called during a (full) hardware reset after
1149 * all the registers are initialised from the INI.
1150 */
1151static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1152{
1153 struct ath_common *common = ath9k_hw_common(ah);
1154 struct ath9k_channel *chan = ah->curchan;
1155 struct ar5416AniState *aniState = &ah->ani;
1156 struct ath9k_ani_default *iniDef;
1157 u32 val;
1158
1159 iniDef = &aniState->iniDef;
1160
1161 ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1162 ah->hw_version.macVersion,
1163 ah->hw_version.macRev,
1164 ah->opmode,
1165 chan->channel);
1166
1167 val = REG_READ(ah, AR_PHY_SFCORR);
1168 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1169 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1170 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1171
1172 val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1173 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1174 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1175 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1176
1177 val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1178 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1179 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1180 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1181 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1182 iniDef->firstep = REG_READ_FIELD(ah,
1183 AR_PHY_FIND_SIG,
1184 AR_PHY_FIND_SIG_FIRSTEP);
1185 iniDef->firstepLow = REG_READ_FIELD(ah,
1186 AR_PHY_FIND_SIG_LOW,
1187 AR_PHY_FIND_SIG_FIRSTEP_LOW);
1188 iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1189 AR_PHY_TIMING5,
1190 AR_PHY_TIMING5_CYCPWR_THR1);
1191 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1192 AR_PHY_EXT_CCA,
1193 AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1194
1195 /* these levels just got reset to defaults by the INI */
1196 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1197 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1198 aniState->ofdmWeakSigDetect = true;
1199 aniState->mrcCCK = false; /* not available on pre AR9003 */
1200}
1201
1202static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1203{
1204 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1205 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1206 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1207 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1208 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1209 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1210}
1211
1212static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1213 struct ath_hw_radar_conf *conf)
1214{
1215 u32 radar_0 = 0, radar_1;
1216
1217 if (!conf) {
1218 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1219 return;
1220 }
1221
1222 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1223 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1224 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1225 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1226 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1227 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1228
1229 radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1230 radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1231 AR_PHY_RADAR_1_RELPWR_THRESH);
1232 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1233 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1234 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1235 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1236 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1237
1238 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1239 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1240 if (conf->ext_channel)
1241 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1242 else
1243 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1244}
1245
1246static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1247{
1248 struct ath_hw_radar_conf *conf = &ah->radar_conf;
1249
1250 conf->fir_power = -33;
1251 conf->radar_rssi = 20;
1252 conf->pulse_height = 10;
1253 conf->pulse_rssi = 15;
1254 conf->pulse_inband = 15;
1255 conf->pulse_maxlen = 255;
1256 conf->pulse_inband_step = 12;
1257 conf->radar_inband = 8;
1258}
1259
1260static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1261{
1262#define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x))
1263 ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]);
1264 ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l],
1265 rate_array[rate2s]));
1266 ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l],
1267 rate_array[rate5_5s]));
1268 ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l],
1269 rate_array[rate11s]));
1270#undef CCK_DELTA
1271}
1272
1273static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1274 int offset)
1275{
1276 int i, idx = 0;
1277
1278 for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1279 ah->tx_power[i] = rate_array[idx];
1280 idx++;
1281 }
1282}
1283
1284static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1285 int ss_offset, int ds_offset,
1286 bool is_40, int ht40_delta)
1287{
1288 int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1289
1290 for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1291 ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1292 mcs_idx++;
1293 }
1294 memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1295 AR5008_HT_SS_RATES);
1296}
1297
1298void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1299 struct ath9k_channel *chan, int ht40_delta)
1300{
1301 if (IS_CHAN_5GHZ(chan)) {
1302 ar5008_hw_init_txpower_ofdm(ah, rate_array,
1303 AR5008_11NA_OFDM_SHIFT);
1304 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1305 ar5008_hw_init_txpower_ht(ah, rate_array,
1306 AR5008_11NA_HT_SS_SHIFT,
1307 AR5008_11NA_HT_DS_SHIFT,
1308 IS_CHAN_HT40(chan),
1309 ht40_delta);
1310 }
1311 } else {
1312 ar5008_hw_init_txpower_cck(ah, rate_array);
1313 ar5008_hw_init_txpower_ofdm(ah, rate_array,
1314 AR5008_11NG_OFDM_SHIFT);
1315 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1316 ar5008_hw_init_txpower_ht(ah, rate_array,
1317 AR5008_11NG_HT_SS_SHIFT,
1318 AR5008_11NG_HT_DS_SHIFT,
1319 IS_CHAN_HT40(chan),
1320 ht40_delta);
1321 }
1322 }
1323}
1324
1325int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1326{
1327 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1328 static const u32 ar5416_cca_regs[6] = {
1329 AR_PHY_CCA,
1330 AR_PHY_CH1_CCA,
1331 AR_PHY_CH2_CCA,
1332 AR_PHY_EXT_CCA,
1333 AR_PHY_CH1_EXT_CCA,
1334 AR_PHY_CH2_EXT_CCA
1335 };
1336 int ret;
1337
1338 ret = ar5008_hw_rf_alloc_ext_banks(ah);
1339 if (ret)
1340 return ret;
1341
1342 priv_ops->rf_set_freq = ar5008_hw_set_channel;
1343 priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1344
1345 priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1346 priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1347 priv_ops->init_bb = ar5008_hw_init_bb;
1348 priv_ops->process_ini = ar5008_hw_process_ini;
1349 priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1350 priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1351 priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1352 priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1353 priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1354 priv_ops->restore_chainmask = ar5008_restore_chainmask;
1355 priv_ops->do_getnf = ar5008_hw_do_getnf;
1356 priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1357
1358 priv_ops->ani_control = ar5008_hw_ani_control_new;
1359 priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1360
1361 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1362 priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1363 else
1364 priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1365
1366 ar5008_hw_set_nf_limits(ah);
1367 ar5008_hw_set_radar_conf(ah);
1368 memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1369 return 0;
1370}