Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Core registration and callback routines for MTD
  3 * drivers and users.
  4 *
  5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
  6 * Copyright © 2006      Red Hat UK Limited 
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/kernel.h>
 26#include <linux/ptrace.h>
 27#include <linux/seq_file.h>
 28#include <linux/string.h>
 29#include <linux/timer.h>
 30#include <linux/major.h>
 31#include <linux/fs.h>
 32#include <linux/err.h>
 33#include <linux/ioctl.h>
 34#include <linux/init.h>
 
 35#include <linux/proc_fs.h>
 36#include <linux/idr.h>
 37#include <linux/backing-dev.h>
 38#include <linux/gfp.h>
 
 
 
 
 
 
 
 
 39
 40#include <linux/mtd/mtd.h>
 41#include <linux/mtd/partitions.h>
 42
 43#include "mtdcore.h"
 44/*
 45 * backing device capabilities for non-mappable devices (such as NAND flash)
 46 * - permits private mappings, copies are taken of the data
 47 */
 48static struct backing_dev_info mtd_bdi_unmappable = {
 49	.capabilities	= BDI_CAP_MAP_COPY,
 50};
 51
 52/*
 53 * backing device capabilities for R/O mappable devices (such as ROM)
 54 * - permits private mappings, copies are taken of the data
 55 * - permits non-writable shared mappings
 56 */
 57static struct backing_dev_info mtd_bdi_ro_mappable = {
 58	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
 59			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
 60};
 61
 62/*
 63 * backing device capabilities for writable mappable devices (such as RAM)
 64 * - permits private mappings, copies are taken of the data
 65 * - permits non-writable shared mappings
 66 */
 67static struct backing_dev_info mtd_bdi_rw_mappable = {
 68	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
 69			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
 70			   BDI_CAP_WRITE_MAP),
 71};
 
 
 
 
 
 
 
 72
 73static int mtd_cls_suspend(struct device *dev, pm_message_t state);
 74static int mtd_cls_resume(struct device *dev);
 
 
 
 75
 76static struct class mtd_class = {
 77	.name = "mtd",
 78	.owner = THIS_MODULE,
 79	.suspend = mtd_cls_suspend,
 80	.resume = mtd_cls_resume,
 81};
 82
 83static DEFINE_IDR(mtd_idr);
 84
 85/* These are exported solely for the purpose of mtd_blkdevs.c. You
 86   should not use them for _anything_ else */
 87DEFINE_MUTEX(mtd_table_mutex);
 88EXPORT_SYMBOL_GPL(mtd_table_mutex);
 89
 90struct mtd_info *__mtd_next_device(int i)
 91{
 92	return idr_get_next(&mtd_idr, &i);
 93}
 94EXPORT_SYMBOL_GPL(__mtd_next_device);
 95
 96static LIST_HEAD(mtd_notifiers);
 97
 98
 99#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101#else
102#define MTD_DEVT(index) 0
103#endif
104
105/* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
108static void mtd_release(struct device *dev)
109{
110	dev_t index = MTD_DEVT(dev_to_mtd(dev)->index);
 
111
112	/* remove /dev/mtdXro node if needed */
113	if (index)
114		device_destroy(&mtd_class, index + 1);
115}
116
117static int mtd_cls_suspend(struct device *dev, pm_message_t state)
118{
119	struct mtd_info *mtd = dev_to_mtd(dev);
120
121	if (mtd && mtd->suspend)
122		return mtd->suspend(mtd);
123	else
124		return 0;
125}
126
127static int mtd_cls_resume(struct device *dev)
128{
129	struct mtd_info *mtd = dev_to_mtd(dev);
130	
131	if (mtd && mtd->resume)
132		mtd->resume(mtd);
133	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134}
135
 
 
 
 
 
 
136static ssize_t mtd_type_show(struct device *dev,
137		struct device_attribute *attr, char *buf)
138{
139	struct mtd_info *mtd = dev_to_mtd(dev);
140	char *type;
141
142	switch (mtd->type) {
143	case MTD_ABSENT:
144		type = "absent";
145		break;
146	case MTD_RAM:
147		type = "ram";
148		break;
149	case MTD_ROM:
150		type = "rom";
151		break;
152	case MTD_NORFLASH:
153		type = "nor";
154		break;
155	case MTD_NANDFLASH:
156		type = "nand";
157		break;
158	case MTD_DATAFLASH:
159		type = "dataflash";
160		break;
161	case MTD_UBIVOLUME:
162		type = "ubi";
163		break;
 
 
 
164	default:
165		type = "unknown";
166	}
167
168	return snprintf(buf, PAGE_SIZE, "%s\n", type);
169}
170static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
171
172static ssize_t mtd_flags_show(struct device *dev,
173		struct device_attribute *attr, char *buf)
174{
175	struct mtd_info *mtd = dev_to_mtd(dev);
176
177	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
178
 
179}
180static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
181
182static ssize_t mtd_size_show(struct device *dev,
183		struct device_attribute *attr, char *buf)
184{
185	struct mtd_info *mtd = dev_to_mtd(dev);
186
187	return snprintf(buf, PAGE_SIZE, "%llu\n",
188		(unsigned long long)mtd->size);
189
 
190}
191static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
192
193static ssize_t mtd_erasesize_show(struct device *dev,
194		struct device_attribute *attr, char *buf)
195{
196	struct mtd_info *mtd = dev_to_mtd(dev);
197
198	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
199
 
200}
201static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
202
203static ssize_t mtd_writesize_show(struct device *dev,
204		struct device_attribute *attr, char *buf)
205{
206	struct mtd_info *mtd = dev_to_mtd(dev);
207
208	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
209
 
210}
211static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
212
213static ssize_t mtd_subpagesize_show(struct device *dev,
214		struct device_attribute *attr, char *buf)
215{
216	struct mtd_info *mtd = dev_to_mtd(dev);
217	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
218
219	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
220
221}
222static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
223
224static ssize_t mtd_oobsize_show(struct device *dev,
225		struct device_attribute *attr, char *buf)
226{
227	struct mtd_info *mtd = dev_to_mtd(dev);
228
229	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 
 
230
 
 
 
 
 
 
231}
232static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
233
234static ssize_t mtd_numeraseregions_show(struct device *dev,
235		struct device_attribute *attr, char *buf)
236{
237	struct mtd_info *mtd = dev_to_mtd(dev);
238
239	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
240
 
241}
242static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
243	NULL);
244
245static ssize_t mtd_name_show(struct device *dev,
246		struct device_attribute *attr, char *buf)
247{
248	struct mtd_info *mtd = dev_to_mtd(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
250	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 
 
 
 
251
 
252}
253static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 
 
 
 
 
 
 
 
 
 
254
255static struct attribute *mtd_attrs[] = {
256	&dev_attr_type.attr,
257	&dev_attr_flags.attr,
258	&dev_attr_size.attr,
259	&dev_attr_erasesize.attr,
260	&dev_attr_writesize.attr,
261	&dev_attr_subpagesize.attr,
262	&dev_attr_oobsize.attr,
 
263	&dev_attr_numeraseregions.attr,
264	&dev_attr_name.attr,
 
 
 
 
 
 
 
265	NULL,
266};
 
267
268static struct attribute_group mtd_group = {
269	.attrs		= mtd_attrs,
270};
271
272static const struct attribute_group *mtd_groups[] = {
273	&mtd_group,
274	NULL,
275};
276
277static struct device_type mtd_devtype = {
278	.name		= "mtd",
279	.groups		= mtd_groups,
280	.release	= mtd_release,
281};
282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283/**
284 *	add_mtd_device - register an MTD device
285 *	@mtd: pointer to new MTD device info structure
286 *
287 *	Add a device to the list of MTD devices present in the system, and
288 *	notify each currently active MTD 'user' of its arrival. Returns
289 *	zero on success or 1 on failure, which currently will only happen
290 *	if there is insufficient memory or a sysfs error.
291 */
292
293int add_mtd_device(struct mtd_info *mtd)
294{
 
 
295	struct mtd_notifier *not;
296	int i, error;
297
298	if (!mtd->backing_dev_info) {
299		switch (mtd->type) {
300		case MTD_RAM:
301			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
302			break;
303		case MTD_ROM:
304			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
305			break;
306		default:
307			mtd->backing_dev_info = &mtd_bdi_unmappable;
308			break;
309		}
310	}
311
312	BUG_ON(mtd->writesize == 0);
313	mutex_lock(&mtd_table_mutex);
314
315	do {
316		if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
317			goto fail_locked;
318		error = idr_get_new(&mtd_idr, mtd, &i);
319	} while (error == -EAGAIN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
321	if (error)
 
 
 
 
 
 
 
 
322		goto fail_locked;
 
323
324	mtd->index = i;
325	mtd->usecount = 0;
 
 
 
 
 
 
 
 
 
 
 
 
326
327	if (is_power_of_2(mtd->erasesize))
328		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
329	else
330		mtd->erasesize_shift = 0;
331
332	if (is_power_of_2(mtd->writesize))
333		mtd->writesize_shift = ffs(mtd->writesize) - 1;
334	else
335		mtd->writesize_shift = 0;
336
337	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
338	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
339
340	/* Some chips always power up locked. Unlock them now */
341	if ((mtd->flags & MTD_WRITEABLE)
342	    && (mtd->flags & MTD_POWERUP_LOCK) && mtd->unlock) {
343		if (mtd->unlock(mtd, 0, mtd->size))
344			printk(KERN_WARNING
345			       "%s: unlock failed, writes may not work\n",
346			       mtd->name);
 
 
347	}
348
349	/* Caller should have set dev.parent to match the
350	 * physical device.
351	 */
352	mtd->dev.type = &mtd_devtype;
353	mtd->dev.class = &mtd_class;
354	mtd->dev.devt = MTD_DEVT(i);
355	dev_set_name(&mtd->dev, "mtd%d", i);
356	dev_set_drvdata(&mtd->dev, mtd);
357	if (device_register(&mtd->dev) != 0)
 
 
 
 
358		goto fail_added;
 
 
 
 
 
 
 
 
359
360	if (MTD_DEVT(i))
361		device_create(&mtd_class, mtd->dev.parent,
362			      MTD_DEVT(i) + 1,
363			      NULL, "mtd%dro", i);
364
365	DEBUG(0, "mtd: Giving out device %d to %s\n", i, mtd->name);
366	/* No need to get a refcount on the module containing
367	   the notifier, since we hold the mtd_table_mutex */
368	list_for_each_entry(not, &mtd_notifiers, list)
369		not->add(mtd);
370
371	mutex_unlock(&mtd_table_mutex);
 
 
 
 
 
 
 
 
 
 
 
372	/* We _know_ we aren't being removed, because
373	   our caller is still holding us here. So none
374	   of this try_ nonsense, and no bitching about it
375	   either. :) */
376	__module_get(THIS_MODULE);
377	return 0;
378
 
 
379fail_added:
 
380	idr_remove(&mtd_idr, i);
381fail_locked:
382	mutex_unlock(&mtd_table_mutex);
383	return 1;
384}
385
386/**
387 *	del_mtd_device - unregister an MTD device
388 *	@mtd: pointer to MTD device info structure
389 *
390 *	Remove a device from the list of MTD devices present in the system,
391 *	and notify each currently active MTD 'user' of its departure.
392 *	Returns zero on success or 1 on failure, which currently will happen
393 *	if the requested device does not appear to be present in the list.
394 */
395
396int del_mtd_device(struct mtd_info *mtd)
397{
398	int ret;
399	struct mtd_notifier *not;
400
401	mutex_lock(&mtd_table_mutex);
402
403	if (idr_find(&mtd_idr, mtd->index) != mtd) {
404		ret = -ENODEV;
405		goto out_error;
406	}
407
408	/* No need to get a refcount on the module containing
409		the notifier, since we hold the mtd_table_mutex */
410	list_for_each_entry(not, &mtd_notifiers, list)
411		not->remove(mtd);
412
413	if (mtd->usecount) {
414		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
415		       mtd->index, mtd->name, mtd->usecount);
416		ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417	} else {
418		device_unregister(&mtd->dev);
 
419
420		idr_remove(&mtd_idr, mtd->index);
 
 
 
421
422		module_put(THIS_MODULE);
423		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424	}
425
426out_error:
427	mutex_unlock(&mtd_table_mutex);
428	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429}
430
431/**
432 * mtd_device_register - register an MTD device.
 
 
 
 
 
 
 
 
 
 
 
 
 
433 *
434 * @master: the MTD device to register
435 * @parts: the partitions to register - only valid if nr_parts > 0
436 * @nr_parts: the number of partitions in parts.  If zero then the full MTD
437 *            device is registered
438 *
439 * Register an MTD device with the system and optionally, a number of
440 * partitions.  If nr_parts is 0 then the whole device is registered, otherwise
441 * only the partitions are registered.  To register both the full device *and*
442 * the partitions, call mtd_device_register() twice, once with nr_parts == 0
443 * and once equal to the number of partitions.
444 */
445int mtd_device_register(struct mtd_info *master,
446			const struct mtd_partition *parts,
447			int nr_parts)
 
 
448{
449	return parts ? add_mtd_partitions(master, parts, nr_parts) :
450		add_mtd_device(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451}
452EXPORT_SYMBOL_GPL(mtd_device_register);
453
454/**
455 * mtd_device_unregister - unregister an existing MTD device.
456 *
457 * @master: the MTD device to unregister.  This will unregister both the master
458 *          and any partitions if registered.
459 */
460int mtd_device_unregister(struct mtd_info *master)
461{
462	int err;
463
 
 
 
 
 
 
 
 
464	err = del_mtd_partitions(master);
465	if (err)
466		return err;
467
468	if (!device_is_registered(&master->dev))
469		return 0;
470
471	return del_mtd_device(master);
472}
473EXPORT_SYMBOL_GPL(mtd_device_unregister);
474
475/**
476 *	register_mtd_user - register a 'user' of MTD devices.
477 *	@new: pointer to notifier info structure
478 *
479 *	Registers a pair of callbacks function to be called upon addition
480 *	or removal of MTD devices. Causes the 'add' callback to be immediately
481 *	invoked for each MTD device currently present in the system.
482 */
483
484void register_mtd_user (struct mtd_notifier *new)
485{
486	struct mtd_info *mtd;
487
488	mutex_lock(&mtd_table_mutex);
489
490	list_add(&new->list, &mtd_notifiers);
491
492	__module_get(THIS_MODULE);
493
494	mtd_for_each_device(mtd)
495		new->add(mtd);
496
497	mutex_unlock(&mtd_table_mutex);
498}
 
499
500/**
501 *	unregister_mtd_user - unregister a 'user' of MTD devices.
502 *	@old: pointer to notifier info structure
503 *
504 *	Removes a callback function pair from the list of 'users' to be
505 *	notified upon addition or removal of MTD devices. Causes the
506 *	'remove' callback to be immediately invoked for each MTD device
507 *	currently present in the system.
508 */
509
510int unregister_mtd_user (struct mtd_notifier *old)
511{
512	struct mtd_info *mtd;
513
514	mutex_lock(&mtd_table_mutex);
515
516	module_put(THIS_MODULE);
517
518	mtd_for_each_device(mtd)
519		old->remove(mtd);
520
521	list_del(&old->list);
522	mutex_unlock(&mtd_table_mutex);
523	return 0;
524}
525
526
527/**
528 *	get_mtd_device - obtain a validated handle for an MTD device
529 *	@mtd: last known address of the required MTD device
530 *	@num: internal device number of the required MTD device
531 *
532 *	Given a number and NULL address, return the num'th entry in the device
533 *	table, if any.	Given an address and num == -1, search the device table
534 *	for a device with that address and return if it's still present. Given
535 *	both, return the num'th driver only if its address matches. Return
536 *	error code if not.
537 */
538
539struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
540{
541	struct mtd_info *ret = NULL, *other;
542	int err = -ENODEV;
543
544	mutex_lock(&mtd_table_mutex);
545
546	if (num == -1) {
547		mtd_for_each_device(other) {
548			if (other == mtd) {
549				ret = mtd;
550				break;
551			}
552		}
553	} else if (num >= 0) {
554		ret = idr_find(&mtd_idr, num);
555		if (mtd && mtd != ret)
556			ret = NULL;
557	}
558
559	if (!ret) {
560		ret = ERR_PTR(err);
561		goto out;
562	}
563
564	err = __get_mtd_device(ret);
565	if (err)
566		ret = ERR_PTR(err);
567out:
568	mutex_unlock(&mtd_table_mutex);
569	return ret;
570}
 
571
572
573int __get_mtd_device(struct mtd_info *mtd)
574{
 
575	int err;
576
577	if (!try_module_get(mtd->owner))
 
 
 
 
 
 
 
 
578		return -ENODEV;
 
579
580	if (mtd->get_device) {
581		err = mtd->get_device(mtd);
 
 
 
582
583		if (err) {
584			module_put(mtd->owner);
585			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586		}
587	}
588	mtd->usecount++;
589	return 0;
 
 
590}
 
591
592/**
593 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
594 *	device name
595 *	@name: MTD device name to open
596 *
597 * 	This function returns MTD device description structure in case of
598 * 	success and an error code in case of failure.
599 */
600
601struct mtd_info *get_mtd_device_nm(const char *name)
602{
603	int err = -ENODEV;
604	struct mtd_info *mtd = NULL, *other;
605
606	mutex_lock(&mtd_table_mutex);
607
608	mtd_for_each_device(other) {
609		if (!strcmp(name, other->name)) {
610			mtd = other;
611			break;
612		}
613	}
614
615	if (!mtd)
616		goto out_unlock;
617
618	err = __get_mtd_device(mtd);
619	if (err)
620		goto out_unlock;
621
622	mutex_unlock(&mtd_table_mutex);
623	return mtd;
624
625out_unlock:
626	mutex_unlock(&mtd_table_mutex);
627	return ERR_PTR(err);
628}
 
629
630void put_mtd_device(struct mtd_info *mtd)
631{
632	mutex_lock(&mtd_table_mutex);
633	__put_mtd_device(mtd);
634	mutex_unlock(&mtd_table_mutex);
635
636}
 
637
638void __put_mtd_device(struct mtd_info *mtd)
639{
640	--mtd->usecount;
641	BUG_ON(mtd->usecount < 0);
642
643	if (mtd->put_device)
644		mtd->put_device(mtd);
 
 
 
 
 
 
 
 
 
 
 
645
646	module_put(mtd->owner);
 
 
647}
 
648
649/* default_mtd_writev - default mtd writev method for MTD devices that
650 *			don't implement their own
 
 
651 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652
653int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
654		       unsigned long count, loff_t to, size_t *retlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655{
656	unsigned long i;
657	size_t totlen = 0, thislen;
658	int ret = 0;
659
660	if(!mtd->write) {
661		ret = -EROFS;
662	} else {
663		for (i=0; i<count; i++) {
664			if (!vecs[i].iov_len)
665				continue;
666			ret = mtd->write(mtd, to, vecs[i].iov_len, &thislen, vecs[i].iov_base);
667			totlen += thislen;
668			if (ret || thislen != vecs[i].iov_len)
669				break;
670			to += vecs[i].iov_len;
671		}
672	}
673	if (retlen)
674		*retlen = totlen;
675	return ret;
676}
677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
678/**
679 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
680 * @size: A pointer to the ideal or maximum size of the allocation. Points
 
681 *        to the actual allocation size on success.
682 *
683 * This routine attempts to allocate a contiguous kernel buffer up to
684 * the specified size, backing off the size of the request exponentially
685 * until the request succeeds or until the allocation size falls below
686 * the system page size. This attempts to make sure it does not adversely
687 * impact system performance, so when allocating more than one page, we
688 * ask the memory allocator to avoid re-trying, swapping, writing back
689 * or performing I/O.
690 *
691 * Note, this function also makes sure that the allocated buffer is aligned to
692 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
693 *
694 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
695 * to handle smaller (i.e. degraded) buffer allocations under low- or
696 * fragmented-memory situations where such reduced allocations, from a
697 * requested ideal, are allowed.
698 *
699 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
700 */
701void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
702{
703	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
704		       __GFP_NORETRY | __GFP_NO_KSWAPD;
705	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
706	void *kbuf;
707
708	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
709
710	while (*size > min_alloc) {
711		kbuf = kmalloc(*size, flags);
712		if (kbuf)
713			return kbuf;
714
715		*size >>= 1;
716		*size = ALIGN(*size, mtd->writesize);
717	}
718
719	/*
720	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
721	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
722	 */
723	return kmalloc(*size, GFP_KERNEL);
724}
725
726EXPORT_SYMBOL_GPL(get_mtd_device);
727EXPORT_SYMBOL_GPL(get_mtd_device_nm);
728EXPORT_SYMBOL_GPL(__get_mtd_device);
729EXPORT_SYMBOL_GPL(put_mtd_device);
730EXPORT_SYMBOL_GPL(__put_mtd_device);
731EXPORT_SYMBOL_GPL(register_mtd_user);
732EXPORT_SYMBOL_GPL(unregister_mtd_user);
733EXPORT_SYMBOL_GPL(default_mtd_writev);
734EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
735
736#ifdef CONFIG_PROC_FS
737
738/*====================================================================*/
739/* Support for /proc/mtd */
740
741static struct proc_dir_entry *proc_mtd;
742
743static int mtd_proc_show(struct seq_file *m, void *v)
744{
745	struct mtd_info *mtd;
746
747	seq_puts(m, "dev:    size   erasesize  name\n");
748	mutex_lock(&mtd_table_mutex);
749	mtd_for_each_device(mtd) {
750		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
751			   mtd->index, (unsigned long long)mtd->size,
752			   mtd->erasesize, mtd->name);
753	}
754	mutex_unlock(&mtd_table_mutex);
755	return 0;
756}
757
758static int mtd_proc_open(struct inode *inode, struct file *file)
759{
760	return single_open(file, mtd_proc_show, NULL);
761}
762
763static const struct file_operations mtd_proc_ops = {
764	.open		= mtd_proc_open,
765	.read		= seq_read,
766	.llseek		= seq_lseek,
767	.release	= single_release,
768};
769#endif /* CONFIG_PROC_FS */
770
771/*====================================================================*/
772/* Init code */
773
774static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
775{
 
776	int ret;
777
778	ret = bdi_init(bdi);
779	if (!ret)
780		ret = bdi_register(bdi, NULL, name);
 
 
781
 
 
 
 
 
782	if (ret)
783		bdi_destroy(bdi);
784
785	return ret;
786}
787
 
 
788static int __init init_mtd(void)
789{
790	int ret;
791
792	ret = class_register(&mtd_class);
793	if (ret)
794		goto err_reg;
795
796	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
797	if (ret)
798		goto err_bdi1;
 
 
799
800	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
801	if (ret)
802		goto err_bdi2;
803
804	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
805	if (ret)
806		goto err_bdi3;
 
 
 
 
807
808#ifdef CONFIG_PROC_FS
809	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
810#endif /* CONFIG_PROC_FS */
811	return 0;
812
813err_bdi3:
814	bdi_destroy(&mtd_bdi_ro_mappable);
815err_bdi2:
816	bdi_destroy(&mtd_bdi_unmappable);
817err_bdi1:
 
818	class_unregister(&mtd_class);
819err_reg:
820	pr_err("Error registering mtd class or bdi: %d\n", ret);
821	return ret;
822}
823
824static void __exit cleanup_mtd(void)
825{
826#ifdef CONFIG_PROC_FS
 
827	if (proc_mtd)
828		remove_proc_entry( "mtd", NULL);
829#endif /* CONFIG_PROC_FS */
830	class_unregister(&mtd_class);
831	bdi_destroy(&mtd_bdi_unmappable);
832	bdi_destroy(&mtd_bdi_ro_mappable);
833	bdi_destroy(&mtd_bdi_rw_mappable);
834}
835
836module_init(init_mtd);
837module_exit(cleanup_mtd);
838
839MODULE_LICENSE("GPL");
840MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
841MODULE_DESCRIPTION("Core MTD registration and access routines");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core registration and callback routines for MTD
   4 * drivers and users.
   5 *
   6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   7 * Copyright © 2006      Red Hat UK Limited 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/timer.h>
  16#include <linux/major.h>
  17#include <linux/fs.h>
  18#include <linux/err.h>
  19#include <linux/ioctl.h>
  20#include <linux/init.h>
  21#include <linux/of.h>
  22#include <linux/proc_fs.h>
  23#include <linux/idr.h>
  24#include <linux/backing-dev.h>
  25#include <linux/gfp.h>
  26#include <linux/random.h>
  27#include <linux/slab.h>
  28#include <linux/reboot.h>
  29#include <linux/leds.h>
  30#include <linux/debugfs.h>
  31#include <linux/nvmem-provider.h>
  32#include <linux/root_dev.h>
  33#include <linux/error-injection.h>
  34
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/partitions.h>
  37
  38#include "mtdcore.h"
 
 
 
 
 
 
 
  39
  40struct backing_dev_info *mtd_bdi;
 
 
 
 
 
 
 
 
  41
  42#ifdef CONFIG_PM_SLEEP
  43
  44static int mtd_cls_suspend(struct device *dev)
  45{
  46	struct mtd_info *mtd = dev_get_drvdata(dev);
  47
  48	return mtd ? mtd_suspend(mtd) : 0;
  49}
  50
  51static int mtd_cls_resume(struct device *dev)
  52{
  53	struct mtd_info *mtd = dev_get_drvdata(dev);
  54
  55	if (mtd)
  56		mtd_resume(mtd);
  57	return 0;
  58}
  59
  60static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  61#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  62#else
  63#define MTD_CLS_PM_OPS NULL
  64#endif
  65
  66static struct class mtd_class = {
  67	.name = "mtd",
  68	.pm = MTD_CLS_PM_OPS,
 
 
  69};
  70
  71static DEFINE_IDR(mtd_idr);
  72
  73/* These are exported solely for the purpose of mtd_blkdevs.c. You
  74   should not use them for _anything_ else */
  75DEFINE_MUTEX(mtd_table_mutex);
  76EXPORT_SYMBOL_GPL(mtd_table_mutex);
  77
  78struct mtd_info *__mtd_next_device(int i)
  79{
  80	return idr_get_next(&mtd_idr, &i);
  81}
  82EXPORT_SYMBOL_GPL(__mtd_next_device);
  83
  84static LIST_HEAD(mtd_notifiers);
  85
  86
 
  87#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
 
 
 
  88
  89/* REVISIT once MTD uses the driver model better, whoever allocates
  90 * the mtd_info will probably want to use the release() hook...
  91 */
  92static void mtd_release(struct device *dev)
  93{
  94	struct mtd_info *mtd = dev_get_drvdata(dev);
  95	dev_t index = MTD_DEVT(mtd->index);
  96
  97	idr_remove(&mtd_idr, mtd->index);
  98	of_node_put(mtd_get_of_node(mtd));
 
 
  99
 100	if (mtd_is_partition(mtd))
 101		release_mtd_partition(mtd);
 
 102
 103	/* remove /dev/mtdXro node */
 104	device_destroy(&mtd_class, index + 1);
 
 
 105}
 106
 107static void mtd_device_release(struct kref *kref)
 108{
 109	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
 110	bool is_partition = mtd_is_partition(mtd);
 111
 112	debugfs_remove_recursive(mtd->dbg.dfs_dir);
 113
 114	/* Try to remove the NVMEM provider */
 115	nvmem_unregister(mtd->nvmem);
 116
 117	device_unregister(&mtd->dev);
 118
 119	/*
 120	 *  Clear dev so mtd can be safely re-registered later if desired.
 121	 *  Should not be done for partition,
 122	 *  as it was already destroyed in device_unregister().
 123	 */
 124	if (!is_partition)
 125		memset(&mtd->dev, 0, sizeof(mtd->dev));
 126
 127	module_put(THIS_MODULE);
 128}
 129
 130#define MTD_DEVICE_ATTR_RO(name) \
 131static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
 132
 133#define MTD_DEVICE_ATTR_RW(name) \
 134static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
 135
 136static ssize_t mtd_type_show(struct device *dev,
 137		struct device_attribute *attr, char *buf)
 138{
 139	struct mtd_info *mtd = dev_get_drvdata(dev);
 140	char *type;
 141
 142	switch (mtd->type) {
 143	case MTD_ABSENT:
 144		type = "absent";
 145		break;
 146	case MTD_RAM:
 147		type = "ram";
 148		break;
 149	case MTD_ROM:
 150		type = "rom";
 151		break;
 152	case MTD_NORFLASH:
 153		type = "nor";
 154		break;
 155	case MTD_NANDFLASH:
 156		type = "nand";
 157		break;
 158	case MTD_DATAFLASH:
 159		type = "dataflash";
 160		break;
 161	case MTD_UBIVOLUME:
 162		type = "ubi";
 163		break;
 164	case MTD_MLCNANDFLASH:
 165		type = "mlc-nand";
 166		break;
 167	default:
 168		type = "unknown";
 169	}
 170
 171	return sysfs_emit(buf, "%s\n", type);
 172}
 173MTD_DEVICE_ATTR_RO(type);
 174
 175static ssize_t mtd_flags_show(struct device *dev,
 176		struct device_attribute *attr, char *buf)
 177{
 178	struct mtd_info *mtd = dev_get_drvdata(dev);
 
 
 179
 180	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
 181}
 182MTD_DEVICE_ATTR_RO(flags);
 183
 184static ssize_t mtd_size_show(struct device *dev,
 185		struct device_attribute *attr, char *buf)
 186{
 187	struct mtd_info *mtd = dev_get_drvdata(dev);
 
 
 
 188
 189	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
 190}
 191MTD_DEVICE_ATTR_RO(size);
 192
 193static ssize_t mtd_erasesize_show(struct device *dev,
 194		struct device_attribute *attr, char *buf)
 195{
 196	struct mtd_info *mtd = dev_get_drvdata(dev);
 
 
 197
 198	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
 199}
 200MTD_DEVICE_ATTR_RO(erasesize);
 201
 202static ssize_t mtd_writesize_show(struct device *dev,
 203		struct device_attribute *attr, char *buf)
 204{
 205	struct mtd_info *mtd = dev_get_drvdata(dev);
 
 
 206
 207	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
 208}
 209MTD_DEVICE_ATTR_RO(writesize);
 210
 211static ssize_t mtd_subpagesize_show(struct device *dev,
 212		struct device_attribute *attr, char *buf)
 213{
 214	struct mtd_info *mtd = dev_get_drvdata(dev);
 215	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 216
 217	return sysfs_emit(buf, "%u\n", subpagesize);
 
 218}
 219MTD_DEVICE_ATTR_RO(subpagesize);
 220
 221static ssize_t mtd_oobsize_show(struct device *dev,
 222		struct device_attribute *attr, char *buf)
 223{
 224	struct mtd_info *mtd = dev_get_drvdata(dev);
 225
 226	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
 227}
 228MTD_DEVICE_ATTR_RO(oobsize);
 229
 230static ssize_t mtd_oobavail_show(struct device *dev,
 231				 struct device_attribute *attr, char *buf)
 232{
 233	struct mtd_info *mtd = dev_get_drvdata(dev);
 234
 235	return sysfs_emit(buf, "%u\n", mtd->oobavail);
 236}
 237MTD_DEVICE_ATTR_RO(oobavail);
 238
 239static ssize_t mtd_numeraseregions_show(struct device *dev,
 240		struct device_attribute *attr, char *buf)
 241{
 242	struct mtd_info *mtd = dev_get_drvdata(dev);
 
 
 243
 244	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
 245}
 246MTD_DEVICE_ATTR_RO(numeraseregions);
 
 247
 248static ssize_t mtd_name_show(struct device *dev,
 249		struct device_attribute *attr, char *buf)
 250{
 251	struct mtd_info *mtd = dev_get_drvdata(dev);
 252
 253	return sysfs_emit(buf, "%s\n", mtd->name);
 254}
 255MTD_DEVICE_ATTR_RO(name);
 256
 257static ssize_t mtd_ecc_strength_show(struct device *dev,
 258				     struct device_attribute *attr, char *buf)
 259{
 260	struct mtd_info *mtd = dev_get_drvdata(dev);
 261
 262	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
 263}
 264MTD_DEVICE_ATTR_RO(ecc_strength);
 265
 266static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 267					  struct device_attribute *attr,
 268					  char *buf)
 269{
 270	struct mtd_info *mtd = dev_get_drvdata(dev);
 271
 272	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
 273}
 274
 275static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 276					   struct device_attribute *attr,
 277					   const char *buf, size_t count)
 278{
 279	struct mtd_info *mtd = dev_get_drvdata(dev);
 280	unsigned int bitflip_threshold;
 281	int retval;
 282
 283	retval = kstrtouint(buf, 0, &bitflip_threshold);
 284	if (retval)
 285		return retval;
 286
 287	mtd->bitflip_threshold = bitflip_threshold;
 288	return count;
 289}
 290MTD_DEVICE_ATTR_RW(bitflip_threshold);
 291
 292static ssize_t mtd_ecc_step_size_show(struct device *dev,
 293		struct device_attribute *attr, char *buf)
 294{
 295	struct mtd_info *mtd = dev_get_drvdata(dev);
 296
 297	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
 298
 299}
 300MTD_DEVICE_ATTR_RO(ecc_step_size);
 301
 302static ssize_t mtd_corrected_bits_show(struct device *dev,
 303		struct device_attribute *attr, char *buf)
 304{
 305	struct mtd_info *mtd = dev_get_drvdata(dev);
 306	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 307
 308	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
 309}
 310MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
 311
 312static ssize_t mtd_ecc_failures_show(struct device *dev,
 313		struct device_attribute *attr, char *buf)
 314{
 315	struct mtd_info *mtd = dev_get_drvdata(dev);
 316	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 317
 318	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
 319}
 320MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
 321
 322static ssize_t mtd_bad_blocks_show(struct device *dev,
 323		struct device_attribute *attr, char *buf)
 324{
 325	struct mtd_info *mtd = dev_get_drvdata(dev);
 326	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 327
 328	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
 329}
 330MTD_DEVICE_ATTR_RO(bad_blocks);
 331
 332static ssize_t mtd_bbt_blocks_show(struct device *dev,
 333		struct device_attribute *attr, char *buf)
 334{
 335	struct mtd_info *mtd = dev_get_drvdata(dev);
 336	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 337
 338	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
 339}
 340MTD_DEVICE_ATTR_RO(bbt_blocks);
 341
 342static struct attribute *mtd_attrs[] = {
 343	&dev_attr_type.attr,
 344	&dev_attr_flags.attr,
 345	&dev_attr_size.attr,
 346	&dev_attr_erasesize.attr,
 347	&dev_attr_writesize.attr,
 348	&dev_attr_subpagesize.attr,
 349	&dev_attr_oobsize.attr,
 350	&dev_attr_oobavail.attr,
 351	&dev_attr_numeraseregions.attr,
 352	&dev_attr_name.attr,
 353	&dev_attr_ecc_strength.attr,
 354	&dev_attr_ecc_step_size.attr,
 355	&dev_attr_corrected_bits.attr,
 356	&dev_attr_ecc_failures.attr,
 357	&dev_attr_bad_blocks.attr,
 358	&dev_attr_bbt_blocks.attr,
 359	&dev_attr_bitflip_threshold.attr,
 360	NULL,
 361};
 362ATTRIBUTE_GROUPS(mtd);
 363
 364static const struct device_type mtd_devtype = {
 
 
 
 
 
 
 
 
 
 365	.name		= "mtd",
 366	.groups		= mtd_groups,
 367	.release	= mtd_release,
 368};
 369
 370static bool mtd_expert_analysis_mode;
 371
 372#ifdef CONFIG_DEBUG_FS
 373bool mtd_check_expert_analysis_mode(void)
 374{
 375	const char *mtd_expert_analysis_warning =
 376		"Bad block checks have been entirely disabled.\n"
 377		"This is only reserved for post-mortem forensics and debug purposes.\n"
 378		"Never enable this mode if you do not know what you are doing!\n";
 379
 380	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
 381}
 382EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
 383#endif
 384
 385static struct dentry *dfs_dir_mtd;
 386
 387static void mtd_debugfs_populate(struct mtd_info *mtd)
 388{
 389	struct device *dev = &mtd->dev;
 390
 391	if (IS_ERR_OR_NULL(dfs_dir_mtd))
 392		return;
 393
 394	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
 395}
 396
 397#ifndef CONFIG_MMU
 398unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 399{
 400	switch (mtd->type) {
 401	case MTD_RAM:
 402		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 403			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 404	case MTD_ROM:
 405		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 406			NOMMU_MAP_READ;
 407	default:
 408		return NOMMU_MAP_COPY;
 409	}
 410}
 411EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 412#endif
 413
 414static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 415			       void *cmd)
 416{
 417	struct mtd_info *mtd;
 418
 419	mtd = container_of(n, struct mtd_info, reboot_notifier);
 420	mtd->_reboot(mtd);
 421
 422	return NOTIFY_DONE;
 423}
 424
 425/**
 426 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 427 * @mtd: pointer to new MTD device info structure
 428 * @wunit: write unit we are interested in
 429 * @info: returned pairing information
 430 *
 431 * Retrieve pairing information associated to the wunit.
 432 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 433 * paired together, and where programming a page may influence the page it is
 434 * paired with.
 435 * The notion of page is replaced by the term wunit (write-unit) to stay
 436 * consistent with the ->writesize field.
 437 *
 438 * The @wunit argument can be extracted from an absolute offset using
 439 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 440 * to @wunit.
 441 *
 442 * From the pairing info the MTD user can find all the wunits paired with
 443 * @wunit using the following loop:
 444 *
 445 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 446 *	info.pair = i;
 447 *	mtd_pairing_info_to_wunit(mtd, &info);
 448 *	...
 449 * }
 450 */
 451int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 452			      struct mtd_pairing_info *info)
 453{
 454	struct mtd_info *master = mtd_get_master(mtd);
 455	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
 456
 457	if (wunit < 0 || wunit >= npairs)
 458		return -EINVAL;
 459
 460	if (master->pairing && master->pairing->get_info)
 461		return master->pairing->get_info(master, wunit, info);
 462
 463	info->group = 0;
 464	info->pair = wunit;
 465
 466	return 0;
 467}
 468EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 469
 470/**
 471 * mtd_pairing_info_to_wunit - get wunit from pairing information
 472 * @mtd: pointer to new MTD device info structure
 473 * @info: pairing information struct
 474 *
 475 * Returns a positive number representing the wunit associated to the info
 476 * struct, or a negative error code.
 477 *
 478 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 479 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 480 * doc).
 481 *
 482 * It can also be used to only program the first page of each pair (i.e.
 483 * page attached to group 0), which allows one to use an MLC NAND in
 484 * software-emulated SLC mode:
 485 *
 486 * info.group = 0;
 487 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 488 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 489 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
 490 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 491 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
 492 * }
 493 */
 494int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 495			      const struct mtd_pairing_info *info)
 496{
 497	struct mtd_info *master = mtd_get_master(mtd);
 498	int ngroups = mtd_pairing_groups(master);
 499	int npairs = mtd_wunit_per_eb(master) / ngroups;
 500
 501	if (!info || info->pair < 0 || info->pair >= npairs ||
 502	    info->group < 0 || info->group >= ngroups)
 503		return -EINVAL;
 504
 505	if (master->pairing && master->pairing->get_wunit)
 506		return mtd->pairing->get_wunit(master, info);
 507
 508	return info->pair;
 509}
 510EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
 511
 512/**
 513 * mtd_pairing_groups - get the number of pairing groups
 514 * @mtd: pointer to new MTD device info structure
 515 *
 516 * Returns the number of pairing groups.
 517 *
 518 * This number is usually equal to the number of bits exposed by a single
 519 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 520 * to iterate over all pages of a given pair.
 521 */
 522int mtd_pairing_groups(struct mtd_info *mtd)
 523{
 524	struct mtd_info *master = mtd_get_master(mtd);
 525
 526	if (!master->pairing || !master->pairing->ngroups)
 527		return 1;
 528
 529	return master->pairing->ngroups;
 530}
 531EXPORT_SYMBOL_GPL(mtd_pairing_groups);
 532
 533static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
 534			      void *val, size_t bytes)
 535{
 536	struct mtd_info *mtd = priv;
 537	size_t retlen;
 538	int err;
 539
 540	err = mtd_read(mtd, offset, bytes, &retlen, val);
 541	if (err && err != -EUCLEAN)
 542		return err;
 543
 544	return retlen == bytes ? 0 : -EIO;
 545}
 546
 547static int mtd_nvmem_add(struct mtd_info *mtd)
 548{
 549	struct device_node *node = mtd_get_of_node(mtd);
 550	struct nvmem_config config = {};
 551
 552	config.id = NVMEM_DEVID_NONE;
 553	config.dev = &mtd->dev;
 554	config.name = dev_name(&mtd->dev);
 555	config.owner = THIS_MODULE;
 556	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
 557	config.reg_read = mtd_nvmem_reg_read;
 558	config.size = mtd->size;
 559	config.word_size = 1;
 560	config.stride = 1;
 561	config.read_only = true;
 562	config.root_only = true;
 563	config.ignore_wp = true;
 564	config.priv = mtd;
 565
 566	mtd->nvmem = nvmem_register(&config);
 567	if (IS_ERR(mtd->nvmem)) {
 568		/* Just ignore if there is no NVMEM support in the kernel */
 569		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
 570			mtd->nvmem = NULL;
 571		else
 572			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
 573					     "Failed to register NVMEM device\n");
 574	}
 575
 576	return 0;
 577}
 578
 579static void mtd_check_of_node(struct mtd_info *mtd)
 580{
 581	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
 582	const char *pname, *prefix = "partition-";
 583	int plen, mtd_name_len, offset, prefix_len;
 584
 585	/* Check if MTD already has a device node */
 586	if (mtd_get_of_node(mtd))
 587		return;
 588
 589	if (!mtd_is_partition(mtd))
 590		return;
 591
 592	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
 593	if (!parent_dn)
 594		return;
 595
 596	if (mtd_is_partition(mtd->parent))
 597		partitions = of_node_get(parent_dn);
 598	else
 599		partitions = of_get_child_by_name(parent_dn, "partitions");
 600	if (!partitions)
 601		goto exit_parent;
 602
 603	prefix_len = strlen(prefix);
 604	mtd_name_len = strlen(mtd->name);
 605
 606	/* Search if a partition is defined with the same name */
 607	for_each_child_of_node(partitions, mtd_dn) {
 608		/* Skip partition with no/wrong prefix */
 609		if (!of_node_name_prefix(mtd_dn, prefix))
 610			continue;
 611
 612		/* Label have priority. Check that first */
 613		if (!of_property_read_string(mtd_dn, "label", &pname)) {
 614			offset = 0;
 615		} else {
 616			pname = mtd_dn->name;
 617			offset = prefix_len;
 618		}
 619
 620		plen = strlen(pname) - offset;
 621		if (plen == mtd_name_len &&
 622		    !strncmp(mtd->name, pname + offset, plen)) {
 623			mtd_set_of_node(mtd, mtd_dn);
 624			of_node_put(mtd_dn);
 625			break;
 626		}
 627	}
 628
 629	of_node_put(partitions);
 630exit_parent:
 631	of_node_put(parent_dn);
 632}
 633
 634/**
 635 *	add_mtd_device - register an MTD device
 636 *	@mtd: pointer to new MTD device info structure
 637 *
 638 *	Add a device to the list of MTD devices present in the system, and
 639 *	notify each currently active MTD 'user' of its arrival. Returns
 640 *	zero on success or non-zero on failure.
 
 641 */
 642
 643int add_mtd_device(struct mtd_info *mtd)
 644{
 645	struct device_node *np = mtd_get_of_node(mtd);
 646	struct mtd_info *master = mtd_get_master(mtd);
 647	struct mtd_notifier *not;
 648	int i, error, ofidx;
 649
 650	/*
 651	 * May occur, for instance, on buggy drivers which call
 652	 * mtd_device_parse_register() multiple times on the same master MTD,
 653	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 654	 */
 655	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
 656		return -EEXIST;
 
 
 
 
 
 
 657
 658	BUG_ON(mtd->writesize == 0);
 
 659
 660	/*
 661	 * MTD drivers should implement ->_{write,read}() or
 662	 * ->_{write,read}_oob(), but not both.
 663	 */
 664	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
 665		    (mtd->_read && mtd->_read_oob)))
 666		return -EINVAL;
 667
 668	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
 669		    !(mtd->flags & MTD_NO_ERASE)))
 670		return -EINVAL;
 671
 672	/*
 673	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
 674	 * master is an MLC NAND and has a proper pairing scheme defined.
 675	 * We also reject masters that implement ->_writev() for now, because
 676	 * NAND controller drivers don't implement this hook, and adding the
 677	 * SLC -> MLC address/length conversion to this path is useless if we
 678	 * don't have a user.
 679	 */
 680	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
 681	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
 682	     !master->pairing || master->_writev))
 683		return -EINVAL;
 684
 685	mutex_lock(&mtd_table_mutex);
 686
 687	ofidx = -1;
 688	if (np)
 689		ofidx = of_alias_get_id(np, "mtd");
 690	if (ofidx >= 0)
 691		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
 692	else
 693		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 694	if (i < 0) {
 695		error = i;
 696		goto fail_locked;
 697	}
 698
 699	mtd->index = i;
 700	kref_init(&mtd->refcnt);
 701
 702	/* default value if not set by driver */
 703	if (mtd->bitflip_threshold == 0)
 704		mtd->bitflip_threshold = mtd->ecc_strength;
 705
 706	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
 707		int ngroups = mtd_pairing_groups(master);
 708
 709		mtd->erasesize /= ngroups;
 710		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
 711			    mtd->erasesize;
 712	}
 713
 714	if (is_power_of_2(mtd->erasesize))
 715		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 716	else
 717		mtd->erasesize_shift = 0;
 718
 719	if (is_power_of_2(mtd->writesize))
 720		mtd->writesize_shift = ffs(mtd->writesize) - 1;
 721	else
 722		mtd->writesize_shift = 0;
 723
 724	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 725	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 726
 727	/* Some chips always power up locked. Unlock them now */
 728	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 729		error = mtd_unlock(mtd, 0, mtd->size);
 730		if (error && error != -EOPNOTSUPP)
 731			printk(KERN_WARNING
 732			       "%s: unlock failed, writes may not work\n",
 733			       mtd->name);
 734		/* Ignore unlock failures? */
 735		error = 0;
 736	}
 737
 738	/* Caller should have set dev.parent to match the
 739	 * physical device, if appropriate.
 740	 */
 741	mtd->dev.type = &mtd_devtype;
 742	mtd->dev.class = &mtd_class;
 743	mtd->dev.devt = MTD_DEVT(i);
 744	dev_set_name(&mtd->dev, "mtd%d", i);
 745	dev_set_drvdata(&mtd->dev, mtd);
 746	mtd_check_of_node(mtd);
 747	of_node_get(mtd_get_of_node(mtd));
 748	error = device_register(&mtd->dev);
 749	if (error) {
 750		put_device(&mtd->dev);
 751		goto fail_added;
 752	}
 753
 754	/* Add the nvmem provider */
 755	error = mtd_nvmem_add(mtd);
 756	if (error)
 757		goto fail_nvmem_add;
 758
 759	mtd_debugfs_populate(mtd);
 760
 761	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 762		      "mtd%dro", i);
 
 
 763
 764	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 765	/* No need to get a refcount on the module containing
 766	   the notifier, since we hold the mtd_table_mutex */
 767	list_for_each_entry(not, &mtd_notifiers, list)
 768		not->add(mtd);
 769
 770	mutex_unlock(&mtd_table_mutex);
 771
 772	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
 773		if (IS_BUILTIN(CONFIG_MTD)) {
 774			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
 775			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
 776		} else {
 777			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
 778				mtd->index, mtd->name);
 779		}
 780	}
 781
 782	/* We _know_ we aren't being removed, because
 783	   our caller is still holding us here. So none
 784	   of this try_ nonsense, and no bitching about it
 785	   either. :) */
 786	__module_get(THIS_MODULE);
 787	return 0;
 788
 789fail_nvmem_add:
 790	device_unregister(&mtd->dev);
 791fail_added:
 792	of_node_put(mtd_get_of_node(mtd));
 793	idr_remove(&mtd_idr, i);
 794fail_locked:
 795	mutex_unlock(&mtd_table_mutex);
 796	return error;
 797}
 798
 799/**
 800 *	del_mtd_device - unregister an MTD device
 801 *	@mtd: pointer to MTD device info structure
 802 *
 803 *	Remove a device from the list of MTD devices present in the system,
 804 *	and notify each currently active MTD 'user' of its departure.
 805 *	Returns zero on success or 1 on failure, which currently will happen
 806 *	if the requested device does not appear to be present in the list.
 807 */
 808
 809int del_mtd_device(struct mtd_info *mtd)
 810{
 811	int ret;
 812	struct mtd_notifier *not;
 813
 814	mutex_lock(&mtd_table_mutex);
 815
 816	if (idr_find(&mtd_idr, mtd->index) != mtd) {
 817		ret = -ENODEV;
 818		goto out_error;
 819	}
 820
 821	/* No need to get a refcount on the module containing
 822		the notifier, since we hold the mtd_table_mutex */
 823	list_for_each_entry(not, &mtd_notifiers, list)
 824		not->remove(mtd);
 825
 826	kref_put(&mtd->refcnt, mtd_device_release);
 827	ret = 0;
 828
 829out_error:
 830	mutex_unlock(&mtd_table_mutex);
 831	return ret;
 832}
 833
 834/*
 835 * Set a few defaults based on the parent devices, if not provided by the
 836 * driver
 837 */
 838static void mtd_set_dev_defaults(struct mtd_info *mtd)
 839{
 840	if (mtd->dev.parent) {
 841		if (!mtd->owner && mtd->dev.parent->driver)
 842			mtd->owner = mtd->dev.parent->driver->owner;
 843		if (!mtd->name)
 844			mtd->name = dev_name(mtd->dev.parent);
 845	} else {
 846		pr_debug("mtd device won't show a device symlink in sysfs\n");
 847	}
 848
 849	INIT_LIST_HEAD(&mtd->partitions);
 850	mutex_init(&mtd->master.partitions_lock);
 851	mutex_init(&mtd->master.chrdev_lock);
 852}
 853
 854static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
 855{
 856	struct otp_info *info;
 857	ssize_t size = 0;
 858	unsigned int i;
 859	size_t retlen;
 860	int ret;
 861
 862	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
 863	if (!info)
 864		return -ENOMEM;
 865
 866	if (is_user)
 867		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
 868	else
 869		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
 870	if (ret)
 871		goto err;
 872
 873	for (i = 0; i < retlen / sizeof(*info); i++)
 874		size += info[i].length;
 875
 876	kfree(info);
 877	return size;
 878
 879err:
 880	kfree(info);
 881
 882	/* ENODATA means there is no OTP region. */
 883	return ret == -ENODATA ? 0 : ret;
 884}
 885
 886static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
 887						   const char *compatible,
 888						   int size,
 889						   nvmem_reg_read_t reg_read)
 890{
 891	struct nvmem_device *nvmem = NULL;
 892	struct nvmem_config config = {};
 893	struct device_node *np;
 894
 895	/* DT binding is optional */
 896	np = of_get_compatible_child(mtd->dev.of_node, compatible);
 897
 898	/* OTP nvmem will be registered on the physical device */
 899	config.dev = mtd->dev.parent;
 900	config.name = compatible;
 901	config.id = NVMEM_DEVID_AUTO;
 902	config.owner = THIS_MODULE;
 903	config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd);
 904	config.type = NVMEM_TYPE_OTP;
 905	config.root_only = true;
 906	config.ignore_wp = true;
 907	config.reg_read = reg_read;
 908	config.size = size;
 909	config.of_node = np;
 910	config.priv = mtd;
 911
 912	nvmem = nvmem_register(&config);
 913	/* Just ignore if there is no NVMEM support in the kernel */
 914	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
 915		nvmem = NULL;
 916
 917	of_node_put(np);
 918
 919	return nvmem;
 920}
 921
 922static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
 923				       void *val, size_t bytes)
 924{
 925	struct mtd_info *mtd = priv;
 926	size_t retlen;
 927	int ret;
 928
 929	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
 930	if (ret)
 931		return ret;
 932
 933	return retlen == bytes ? 0 : -EIO;
 934}
 935
 936static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
 937				       void *val, size_t bytes)
 938{
 939	struct mtd_info *mtd = priv;
 940	size_t retlen;
 941	int ret;
 942
 943	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
 944	if (ret)
 945		return ret;
 946
 947	return retlen == bytes ? 0 : -EIO;
 948}
 949
 950static int mtd_otp_nvmem_add(struct mtd_info *mtd)
 951{
 952	struct device *dev = mtd->dev.parent;
 953	struct nvmem_device *nvmem;
 954	ssize_t size;
 955	int err;
 956
 957	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
 958		size = mtd_otp_size(mtd, true);
 959		if (size < 0) {
 960			err = size;
 961			goto err;
 962		}
 963
 964		if (size > 0) {
 965			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
 966						       mtd_nvmem_user_otp_reg_read);
 967			if (IS_ERR(nvmem)) {
 968				err = PTR_ERR(nvmem);
 969				goto err;
 970			}
 971			mtd->otp_user_nvmem = nvmem;
 972		}
 973	}
 974
 975	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
 976		size = mtd_otp_size(mtd, false);
 977		if (size < 0) {
 978			err = size;
 979			goto err;
 980		}
 981
 982		if (size > 0) {
 983			/*
 984			 * The factory OTP contains thing such as a unique serial
 985			 * number and is small, so let's read it out and put it
 986			 * into the entropy pool.
 987			 */
 988			void *otp;
 989
 990			otp = kmalloc(size, GFP_KERNEL);
 991			if (!otp) {
 992				err = -ENOMEM;
 993				goto err;
 994			}
 995			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
 996			if (err < 0) {
 997				kfree(otp);
 998				goto err;
 999			}
1000			add_device_randomness(otp, err);
1001			kfree(otp);
1002
1003			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1004						       mtd_nvmem_fact_otp_reg_read);
1005			if (IS_ERR(nvmem)) {
1006				err = PTR_ERR(nvmem);
1007				goto err;
1008			}
1009			mtd->otp_factory_nvmem = nvmem;
1010		}
1011	}
1012
1013	return 0;
1014
1015err:
1016	nvmem_unregister(mtd->otp_user_nvmem);
1017	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1018}
1019
1020/**
1021 * mtd_device_parse_register - parse partitions and register an MTD device.
1022 *
1023 * @mtd: the MTD device to register
1024 * @types: the list of MTD partition probes to try, see
1025 *         'parse_mtd_partitions()' for more information
1026 * @parser_data: MTD partition parser-specific data
1027 * @parts: fallback partition information to register, if parsing fails;
1028 *         only valid if %nr_parts > %0
1029 * @nr_parts: the number of partitions in parts, if zero then the full
1030 *            MTD device is registered if no partition info is found
1031 *
1032 * This function aggregates MTD partitions parsing (done by
1033 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1034 * basically follows the most common pattern found in many MTD drivers:
1035 *
1036 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1037 *   registered first.
1038 * * Then It tries to probe partitions on MTD device @mtd using parsers
1039 *   specified in @types (if @types is %NULL, then the default list of parsers
1040 *   is used, see 'parse_mtd_partitions()' for more information). If none are
1041 *   found this functions tries to fallback to information specified in
1042 *   @parts/@nr_parts.
1043 * * If no partitions were found this function just registers the MTD device
1044 *   @mtd and exits.
1045 *
1046 * Returns zero in case of success and a negative error code in case of failure.
1047 */
1048int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1049			      struct mtd_part_parser_data *parser_data,
1050			      const struct mtd_partition *parts,
1051			      int nr_parts)
1052{
1053	int ret;
1054
1055	mtd_set_dev_defaults(mtd);
1056
1057	ret = mtd_otp_nvmem_add(mtd);
1058	if (ret)
1059		goto out;
1060
1061	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1062		ret = add_mtd_device(mtd);
1063		if (ret)
1064			goto out;
1065	}
1066
1067	/* Prefer parsed partitions over driver-provided fallback */
1068	ret = parse_mtd_partitions(mtd, types, parser_data);
1069	if (ret == -EPROBE_DEFER)
1070		goto out;
1071
1072	if (ret > 0)
1073		ret = 0;
1074	else if (nr_parts)
1075		ret = add_mtd_partitions(mtd, parts, nr_parts);
1076	else if (!device_is_registered(&mtd->dev))
1077		ret = add_mtd_device(mtd);
1078	else
1079		ret = 0;
1080
1081	if (ret)
1082		goto out;
1083
1084	/*
1085	 * FIXME: some drivers unfortunately call this function more than once.
1086	 * So we have to check if we've already assigned the reboot notifier.
1087	 *
1088	 * Generally, we can make multiple calls work for most cases, but it
1089	 * does cause problems with parse_mtd_partitions() above (e.g.,
1090	 * cmdlineparts will register partitions more than once).
1091	 */
1092	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1093		  "MTD already registered\n");
1094	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1095		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1096		register_reboot_notifier(&mtd->reboot_notifier);
1097	}
1098
1099out:
1100	if (ret) {
1101		nvmem_unregister(mtd->otp_user_nvmem);
1102		nvmem_unregister(mtd->otp_factory_nvmem);
1103	}
1104
1105	if (ret && device_is_registered(&mtd->dev))
1106		del_mtd_device(mtd);
1107
1108	return ret;
1109}
1110EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1111
1112/**
1113 * mtd_device_unregister - unregister an existing MTD device.
1114 *
1115 * @master: the MTD device to unregister.  This will unregister both the master
1116 *          and any partitions if registered.
1117 */
1118int mtd_device_unregister(struct mtd_info *master)
1119{
1120	int err;
1121
1122	if (master->_reboot) {
1123		unregister_reboot_notifier(&master->reboot_notifier);
1124		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1125	}
1126
1127	nvmem_unregister(master->otp_user_nvmem);
1128	nvmem_unregister(master->otp_factory_nvmem);
1129
1130	err = del_mtd_partitions(master);
1131	if (err)
1132		return err;
1133
1134	if (!device_is_registered(&master->dev))
1135		return 0;
1136
1137	return del_mtd_device(master);
1138}
1139EXPORT_SYMBOL_GPL(mtd_device_unregister);
1140
1141/**
1142 *	register_mtd_user - register a 'user' of MTD devices.
1143 *	@new: pointer to notifier info structure
1144 *
1145 *	Registers a pair of callbacks function to be called upon addition
1146 *	or removal of MTD devices. Causes the 'add' callback to be immediately
1147 *	invoked for each MTD device currently present in the system.
1148 */
 
1149void register_mtd_user (struct mtd_notifier *new)
1150{
1151	struct mtd_info *mtd;
1152
1153	mutex_lock(&mtd_table_mutex);
1154
1155	list_add(&new->list, &mtd_notifiers);
1156
1157	__module_get(THIS_MODULE);
1158
1159	mtd_for_each_device(mtd)
1160		new->add(mtd);
1161
1162	mutex_unlock(&mtd_table_mutex);
1163}
1164EXPORT_SYMBOL_GPL(register_mtd_user);
1165
1166/**
1167 *	unregister_mtd_user - unregister a 'user' of MTD devices.
1168 *	@old: pointer to notifier info structure
1169 *
1170 *	Removes a callback function pair from the list of 'users' to be
1171 *	notified upon addition or removal of MTD devices. Causes the
1172 *	'remove' callback to be immediately invoked for each MTD device
1173 *	currently present in the system.
1174 */
 
1175int unregister_mtd_user (struct mtd_notifier *old)
1176{
1177	struct mtd_info *mtd;
1178
1179	mutex_lock(&mtd_table_mutex);
1180
1181	module_put(THIS_MODULE);
1182
1183	mtd_for_each_device(mtd)
1184		old->remove(mtd);
1185
1186	list_del(&old->list);
1187	mutex_unlock(&mtd_table_mutex);
1188	return 0;
1189}
1190EXPORT_SYMBOL_GPL(unregister_mtd_user);
1191
1192/**
1193 *	get_mtd_device - obtain a validated handle for an MTD device
1194 *	@mtd: last known address of the required MTD device
1195 *	@num: internal device number of the required MTD device
1196 *
1197 *	Given a number and NULL address, return the num'th entry in the device
1198 *	table, if any.	Given an address and num == -1, search the device table
1199 *	for a device with that address and return if it's still present. Given
1200 *	both, return the num'th driver only if its address matches. Return
1201 *	error code if not.
1202 */
 
1203struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1204{
1205	struct mtd_info *ret = NULL, *other;
1206	int err = -ENODEV;
1207
1208	mutex_lock(&mtd_table_mutex);
1209
1210	if (num == -1) {
1211		mtd_for_each_device(other) {
1212			if (other == mtd) {
1213				ret = mtd;
1214				break;
1215			}
1216		}
1217	} else if (num >= 0) {
1218		ret = idr_find(&mtd_idr, num);
1219		if (mtd && mtd != ret)
1220			ret = NULL;
1221	}
1222
1223	if (!ret) {
1224		ret = ERR_PTR(err);
1225		goto out;
1226	}
1227
1228	err = __get_mtd_device(ret);
1229	if (err)
1230		ret = ERR_PTR(err);
1231out:
1232	mutex_unlock(&mtd_table_mutex);
1233	return ret;
1234}
1235EXPORT_SYMBOL_GPL(get_mtd_device);
1236
1237
1238int __get_mtd_device(struct mtd_info *mtd)
1239{
1240	struct mtd_info *master = mtd_get_master(mtd);
1241	int err;
1242
1243	if (master->_get_device) {
1244		err = master->_get_device(mtd);
1245		if (err)
1246			return err;
1247	}
1248
1249	if (!try_module_get(master->owner)) {
1250		if (master->_put_device)
1251			master->_put_device(master);
1252		return -ENODEV;
1253	}
1254
1255	while (mtd) {
1256		if (mtd != master)
1257			kref_get(&mtd->refcnt);
1258		mtd = mtd->parent;
1259	}
1260
1261	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1262		kref_get(&master->refcnt);
1263
1264	return 0;
1265}
1266EXPORT_SYMBOL_GPL(__get_mtd_device);
1267
1268/**
1269 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1270 *
1271 * @np: device tree node
1272 */
1273struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1274{
1275	struct mtd_info *mtd = NULL;
1276	struct mtd_info *tmp;
1277	int err;
1278
1279	mutex_lock(&mtd_table_mutex);
1280
1281	err = -EPROBE_DEFER;
1282	mtd_for_each_device(tmp) {
1283		if (mtd_get_of_node(tmp) == np) {
1284			mtd = tmp;
1285			err = __get_mtd_device(mtd);
1286			break;
1287		}
1288	}
1289
1290	mutex_unlock(&mtd_table_mutex);
1291
1292	return err ? ERR_PTR(err) : mtd;
1293}
1294EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1295
1296/**
1297 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1298 *	device name
1299 *	@name: MTD device name to open
1300 *
1301 * 	This function returns MTD device description structure in case of
1302 * 	success and an error code in case of failure.
1303 */
 
1304struct mtd_info *get_mtd_device_nm(const char *name)
1305{
1306	int err = -ENODEV;
1307	struct mtd_info *mtd = NULL, *other;
1308
1309	mutex_lock(&mtd_table_mutex);
1310
1311	mtd_for_each_device(other) {
1312		if (!strcmp(name, other->name)) {
1313			mtd = other;
1314			break;
1315		}
1316	}
1317
1318	if (!mtd)
1319		goto out_unlock;
1320
1321	err = __get_mtd_device(mtd);
1322	if (err)
1323		goto out_unlock;
1324
1325	mutex_unlock(&mtd_table_mutex);
1326	return mtd;
1327
1328out_unlock:
1329	mutex_unlock(&mtd_table_mutex);
1330	return ERR_PTR(err);
1331}
1332EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1333
1334void put_mtd_device(struct mtd_info *mtd)
1335{
1336	mutex_lock(&mtd_table_mutex);
1337	__put_mtd_device(mtd);
1338	mutex_unlock(&mtd_table_mutex);
1339
1340}
1341EXPORT_SYMBOL_GPL(put_mtd_device);
1342
1343void __put_mtd_device(struct mtd_info *mtd)
1344{
1345	struct mtd_info *master = mtd_get_master(mtd);
 
1346
1347	while (mtd) {
1348		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1349		struct mtd_info *parent = mtd->parent;
1350
1351		if (mtd != master)
1352			kref_put(&mtd->refcnt, mtd_device_release);
1353		mtd = parent;
1354	}
1355
1356	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1357		kref_put(&master->refcnt, mtd_device_release);
1358
1359	module_put(master->owner);
1360
1361	/* must be the last as master can be freed in the _put_device */
1362	if (master->_put_device)
1363		master->_put_device(master);
1364}
1365EXPORT_SYMBOL_GPL(__put_mtd_device);
1366
1367/*
1368 * Erase is an synchronous operation. Device drivers are epected to return a
1369 * negative error code if the operation failed and update instr->fail_addr
1370 * to point the portion that was not properly erased.
1371 */
1372int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1373{
1374	struct mtd_info *master = mtd_get_master(mtd);
1375	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1376	struct erase_info adjinstr;
1377	int ret;
1378
1379	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1380	adjinstr = *instr;
1381
1382	if (!mtd->erasesize || !master->_erase)
1383		return -ENOTSUPP;
1384
1385	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1386		return -EINVAL;
1387	if (!(mtd->flags & MTD_WRITEABLE))
1388		return -EROFS;
1389
1390	if (!instr->len)
1391		return 0;
1392
1393	ledtrig_mtd_activity();
1394
1395	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1396		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1397				master->erasesize;
1398		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1399				master->erasesize) -
1400			       adjinstr.addr;
1401	}
1402
1403	adjinstr.addr += mst_ofs;
1404
1405	ret = master->_erase(master, &adjinstr);
1406
1407	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1408		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1409		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1410			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1411							 master);
1412			instr->fail_addr *= mtd->erasesize;
1413		}
1414	}
1415
1416	return ret;
1417}
1418EXPORT_SYMBOL_GPL(mtd_erase);
1419ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1420
1421/*
1422 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1423 */
1424int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1425	      void **virt, resource_size_t *phys)
1426{
1427	struct mtd_info *master = mtd_get_master(mtd);
1428
1429	*retlen = 0;
1430	*virt = NULL;
1431	if (phys)
1432		*phys = 0;
1433	if (!master->_point)
1434		return -EOPNOTSUPP;
1435	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1436		return -EINVAL;
1437	if (!len)
1438		return 0;
1439
1440	from = mtd_get_master_ofs(mtd, from);
1441	return master->_point(master, from, len, retlen, virt, phys);
1442}
1443EXPORT_SYMBOL_GPL(mtd_point);
1444
1445/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1446int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1447{
1448	struct mtd_info *master = mtd_get_master(mtd);
1449
1450	if (!master->_unpoint)
1451		return -EOPNOTSUPP;
1452	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1453		return -EINVAL;
1454	if (!len)
1455		return 0;
1456	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1457}
1458EXPORT_SYMBOL_GPL(mtd_unpoint);
1459
1460/*
1461 * Allow NOMMU mmap() to directly map the device (if not NULL)
1462 * - return the address to which the offset maps
1463 * - return -ENOSYS to indicate refusal to do the mapping
1464 */
1465unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1466				    unsigned long offset, unsigned long flags)
1467{
1468	size_t retlen;
1469	void *virt;
1470	int ret;
1471
1472	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1473	if (ret)
1474		return ret;
1475	if (retlen != len) {
1476		mtd_unpoint(mtd, offset, retlen);
1477		return -ENOSYS;
1478	}
1479	return (unsigned long)virt;
1480}
1481EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1482
1483static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1484				 const struct mtd_ecc_stats *old_stats)
1485{
1486	struct mtd_ecc_stats diff;
1487
1488	if (master == mtd)
1489		return;
1490
1491	diff = master->ecc_stats;
1492	diff.failed -= old_stats->failed;
1493	diff.corrected -= old_stats->corrected;
1494
1495	while (mtd->parent) {
1496		mtd->ecc_stats.failed += diff.failed;
1497		mtd->ecc_stats.corrected += diff.corrected;
1498		mtd = mtd->parent;
1499	}
1500}
1501
1502int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1503	     u_char *buf)
1504{
1505	struct mtd_oob_ops ops = {
1506		.len = len,
1507		.datbuf = buf,
1508	};
1509	int ret;
1510
1511	ret = mtd_read_oob(mtd, from, &ops);
1512	*retlen = ops.retlen;
1513
1514	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1515
1516	return ret;
1517}
1518EXPORT_SYMBOL_GPL(mtd_read);
1519ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1520
1521int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1522	      const u_char *buf)
1523{
1524	struct mtd_oob_ops ops = {
1525		.len = len,
1526		.datbuf = (u8 *)buf,
1527	};
1528	int ret;
1529
1530	ret = mtd_write_oob(mtd, to, &ops);
1531	*retlen = ops.retlen;
1532
1533	return ret;
1534}
1535EXPORT_SYMBOL_GPL(mtd_write);
1536ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1537
1538/*
1539 * In blackbox flight recorder like scenarios we want to make successful writes
1540 * in interrupt context. panic_write() is only intended to be called when its
1541 * known the kernel is about to panic and we need the write to succeed. Since
1542 * the kernel is not going to be running for much longer, this function can
1543 * break locks and delay to ensure the write succeeds (but not sleep).
1544 */
1545int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1546		    const u_char *buf)
1547{
1548	struct mtd_info *master = mtd_get_master(mtd);
1549
1550	*retlen = 0;
1551	if (!master->_panic_write)
1552		return -EOPNOTSUPP;
1553	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1554		return -EINVAL;
1555	if (!(mtd->flags & MTD_WRITEABLE))
1556		return -EROFS;
1557	if (!len)
1558		return 0;
1559	if (!master->oops_panic_write)
1560		master->oops_panic_write = true;
1561
1562	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1563				    retlen, buf);
1564}
1565EXPORT_SYMBOL_GPL(mtd_panic_write);
1566
1567static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1568			     struct mtd_oob_ops *ops)
1569{
1570	/*
1571	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1572	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1573	 *  this case.
1574	 */
1575	if (!ops->datbuf)
1576		ops->len = 0;
1577
1578	if (!ops->oobbuf)
1579		ops->ooblen = 0;
1580
1581	if (offs < 0 || offs + ops->len > mtd->size)
1582		return -EINVAL;
1583
1584	if (ops->ooblen) {
1585		size_t maxooblen;
1586
1587		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1588			return -EINVAL;
1589
1590		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1591				      mtd_div_by_ws(offs, mtd)) *
1592			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1593		if (ops->ooblen > maxooblen)
1594			return -EINVAL;
1595	}
1596
1597	return 0;
1598}
1599
1600static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1601			    struct mtd_oob_ops *ops)
1602{
1603	struct mtd_info *master = mtd_get_master(mtd);
1604	int ret;
1605
1606	from = mtd_get_master_ofs(mtd, from);
1607	if (master->_read_oob)
1608		ret = master->_read_oob(master, from, ops);
1609	else
1610		ret = master->_read(master, from, ops->len, &ops->retlen,
1611				    ops->datbuf);
1612
1613	return ret;
1614}
1615
1616static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1617			     struct mtd_oob_ops *ops)
1618{
1619	struct mtd_info *master = mtd_get_master(mtd);
1620	int ret;
1621
1622	to = mtd_get_master_ofs(mtd, to);
1623	if (master->_write_oob)
1624		ret = master->_write_oob(master, to, ops);
1625	else
1626		ret = master->_write(master, to, ops->len, &ops->retlen,
1627				     ops->datbuf);
1628
1629	return ret;
1630}
1631
1632static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1633			       struct mtd_oob_ops *ops)
1634{
1635	struct mtd_info *master = mtd_get_master(mtd);
1636	int ngroups = mtd_pairing_groups(master);
1637	int npairs = mtd_wunit_per_eb(master) / ngroups;
1638	struct mtd_oob_ops adjops = *ops;
1639	unsigned int wunit, oobavail;
1640	struct mtd_pairing_info info;
1641	int max_bitflips = 0;
1642	u32 ebofs, pageofs;
1643	loff_t base, pos;
1644
1645	ebofs = mtd_mod_by_eb(start, mtd);
1646	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1647	info.group = 0;
1648	info.pair = mtd_div_by_ws(ebofs, mtd);
1649	pageofs = mtd_mod_by_ws(ebofs, mtd);
1650	oobavail = mtd_oobavail(mtd, ops);
1651
1652	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1653		int ret;
1654
1655		if (info.pair >= npairs) {
1656			info.pair = 0;
1657			base += master->erasesize;
1658		}
1659
1660		wunit = mtd_pairing_info_to_wunit(master, &info);
1661		pos = mtd_wunit_to_offset(mtd, base, wunit);
1662
1663		adjops.len = ops->len - ops->retlen;
1664		if (adjops.len > mtd->writesize - pageofs)
1665			adjops.len = mtd->writesize - pageofs;
1666
1667		adjops.ooblen = ops->ooblen - ops->oobretlen;
1668		if (adjops.ooblen > oobavail - adjops.ooboffs)
1669			adjops.ooblen = oobavail - adjops.ooboffs;
1670
1671		if (read) {
1672			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1673			if (ret > 0)
1674				max_bitflips = max(max_bitflips, ret);
1675		} else {
1676			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1677		}
1678
1679		if (ret < 0)
1680			return ret;
1681
1682		max_bitflips = max(max_bitflips, ret);
1683		ops->retlen += adjops.retlen;
1684		ops->oobretlen += adjops.oobretlen;
1685		adjops.datbuf += adjops.retlen;
1686		adjops.oobbuf += adjops.oobretlen;
1687		adjops.ooboffs = 0;
1688		pageofs = 0;
1689		info.pair++;
1690	}
1691
1692	return max_bitflips;
1693}
1694
1695int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1696{
1697	struct mtd_info *master = mtd_get_master(mtd);
1698	struct mtd_ecc_stats old_stats = master->ecc_stats;
1699	int ret_code;
1700
1701	ops->retlen = ops->oobretlen = 0;
1702
1703	ret_code = mtd_check_oob_ops(mtd, from, ops);
1704	if (ret_code)
1705		return ret_code;
1706
1707	ledtrig_mtd_activity();
1708
1709	/* Check the validity of a potential fallback on mtd->_read */
1710	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1711		return -EOPNOTSUPP;
1712
1713	if (ops->stats)
1714		memset(ops->stats, 0, sizeof(*ops->stats));
1715
1716	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1717		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1718	else
1719		ret_code = mtd_read_oob_std(mtd, from, ops);
1720
1721	mtd_update_ecc_stats(mtd, master, &old_stats);
1722
1723	/*
1724	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1725	 * similar to mtd->_read(), returning a non-negative integer
1726	 * representing max bitflips. In other cases, mtd->_read_oob() may
1727	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1728	 */
1729	if (unlikely(ret_code < 0))
1730		return ret_code;
1731	if (mtd->ecc_strength == 0)
1732		return 0;	/* device lacks ecc */
1733	if (ops->stats)
1734		ops->stats->max_bitflips = ret_code;
1735	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1736}
1737EXPORT_SYMBOL_GPL(mtd_read_oob);
1738
1739int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1740				struct mtd_oob_ops *ops)
1741{
1742	struct mtd_info *master = mtd_get_master(mtd);
1743	int ret;
1744
1745	ops->retlen = ops->oobretlen = 0;
1746
1747	if (!(mtd->flags & MTD_WRITEABLE))
1748		return -EROFS;
1749
1750	ret = mtd_check_oob_ops(mtd, to, ops);
1751	if (ret)
1752		return ret;
1753
1754	ledtrig_mtd_activity();
1755
1756	/* Check the validity of a potential fallback on mtd->_write */
1757	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1758		return -EOPNOTSUPP;
1759
1760	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1761		return mtd_io_emulated_slc(mtd, to, false, ops);
1762
1763	return mtd_write_oob_std(mtd, to, ops);
1764}
1765EXPORT_SYMBOL_GPL(mtd_write_oob);
1766
1767/**
1768 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1769 * @mtd: MTD device structure
1770 * @section: ECC section. Depending on the layout you may have all the ECC
1771 *	     bytes stored in a single contiguous section, or one section
1772 *	     per ECC chunk (and sometime several sections for a single ECC
1773 *	     ECC chunk)
1774 * @oobecc: OOB region struct filled with the appropriate ECC position
1775 *	    information
1776 *
1777 * This function returns ECC section information in the OOB area. If you want
1778 * to get all the ECC bytes information, then you should call
1779 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1780 *
1781 * Returns zero on success, a negative error code otherwise.
1782 */
1783int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1784		      struct mtd_oob_region *oobecc)
1785{
1786	struct mtd_info *master = mtd_get_master(mtd);
1787
1788	memset(oobecc, 0, sizeof(*oobecc));
1789
1790	if (!master || section < 0)
1791		return -EINVAL;
1792
1793	if (!master->ooblayout || !master->ooblayout->ecc)
1794		return -ENOTSUPP;
1795
1796	return master->ooblayout->ecc(master, section, oobecc);
1797}
1798EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1799
1800/**
1801 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1802 *			section
1803 * @mtd: MTD device structure
1804 * @section: Free section you are interested in. Depending on the layout
1805 *	     you may have all the free bytes stored in a single contiguous
1806 *	     section, or one section per ECC chunk plus an extra section
1807 *	     for the remaining bytes (or other funky layout).
1808 * @oobfree: OOB region struct filled with the appropriate free position
1809 *	     information
1810 *
1811 * This function returns free bytes position in the OOB area. If you want
1812 * to get all the free bytes information, then you should call
1813 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1814 *
1815 * Returns zero on success, a negative error code otherwise.
1816 */
1817int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1818		       struct mtd_oob_region *oobfree)
1819{
1820	struct mtd_info *master = mtd_get_master(mtd);
1821
1822	memset(oobfree, 0, sizeof(*oobfree));
1823
1824	if (!master || section < 0)
1825		return -EINVAL;
1826
1827	if (!master->ooblayout || !master->ooblayout->free)
1828		return -ENOTSUPP;
1829
1830	return master->ooblayout->free(master, section, oobfree);
1831}
1832EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1833
1834/**
1835 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1836 * @mtd: mtd info structure
1837 * @byte: the byte we are searching for
1838 * @sectionp: pointer where the section id will be stored
1839 * @oobregion: used to retrieve the ECC position
1840 * @iter: iterator function. Should be either mtd_ooblayout_free or
1841 *	  mtd_ooblayout_ecc depending on the region type you're searching for
1842 *
1843 * This function returns the section id and oobregion information of a
1844 * specific byte. For example, say you want to know where the 4th ECC byte is
1845 * stored, you'll use:
1846 *
1847 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1848 *
1849 * Returns zero on success, a negative error code otherwise.
1850 */
1851static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1852				int *sectionp, struct mtd_oob_region *oobregion,
1853				int (*iter)(struct mtd_info *,
1854					    int section,
1855					    struct mtd_oob_region *oobregion))
1856{
1857	int pos = 0, ret, section = 0;
1858
1859	memset(oobregion, 0, sizeof(*oobregion));
1860
1861	while (1) {
1862		ret = iter(mtd, section, oobregion);
1863		if (ret)
1864			return ret;
1865
1866		if (pos + oobregion->length > byte)
1867			break;
1868
1869		pos += oobregion->length;
1870		section++;
1871	}
1872
1873	/*
1874	 * Adjust region info to make it start at the beginning at the
1875	 * 'start' ECC byte.
1876	 */
1877	oobregion->offset += byte - pos;
1878	oobregion->length -= byte - pos;
1879	*sectionp = section;
1880
1881	return 0;
1882}
1883
1884/**
1885 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1886 *				  ECC byte
1887 * @mtd: mtd info structure
1888 * @eccbyte: the byte we are searching for
1889 * @section: pointer where the section id will be stored
1890 * @oobregion: OOB region information
1891 *
1892 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1893 * byte.
1894 *
1895 * Returns zero on success, a negative error code otherwise.
1896 */
1897int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1898				 int *section,
1899				 struct mtd_oob_region *oobregion)
1900{
1901	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1902					 mtd_ooblayout_ecc);
1903}
1904EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1905
1906/**
1907 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1908 * @mtd: mtd info structure
1909 * @buf: destination buffer to store OOB bytes
1910 * @oobbuf: OOB buffer
1911 * @start: first byte to retrieve
1912 * @nbytes: number of bytes to retrieve
1913 * @iter: section iterator
1914 *
1915 * Extract bytes attached to a specific category (ECC or free)
1916 * from the OOB buffer and copy them into buf.
1917 *
1918 * Returns zero on success, a negative error code otherwise.
1919 */
1920static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1921				const u8 *oobbuf, int start, int nbytes,
1922				int (*iter)(struct mtd_info *,
1923					    int section,
1924					    struct mtd_oob_region *oobregion))
1925{
1926	struct mtd_oob_region oobregion;
1927	int section, ret;
1928
1929	ret = mtd_ooblayout_find_region(mtd, start, &section,
1930					&oobregion, iter);
1931
1932	while (!ret) {
1933		int cnt;
1934
1935		cnt = min_t(int, nbytes, oobregion.length);
1936		memcpy(buf, oobbuf + oobregion.offset, cnt);
1937		buf += cnt;
1938		nbytes -= cnt;
1939
1940		if (!nbytes)
1941			break;
1942
1943		ret = iter(mtd, ++section, &oobregion);
1944	}
1945
1946	return ret;
1947}
1948
1949/**
1950 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1951 * @mtd: mtd info structure
1952 * @buf: source buffer to get OOB bytes from
1953 * @oobbuf: OOB buffer
1954 * @start: first OOB byte to set
1955 * @nbytes: number of OOB bytes to set
1956 * @iter: section iterator
1957 *
1958 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1959 * is selected by passing the appropriate iterator.
1960 *
1961 * Returns zero on success, a negative error code otherwise.
1962 */
1963static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1964				u8 *oobbuf, int start, int nbytes,
1965				int (*iter)(struct mtd_info *,
1966					    int section,
1967					    struct mtd_oob_region *oobregion))
1968{
1969	struct mtd_oob_region oobregion;
1970	int section, ret;
1971
1972	ret = mtd_ooblayout_find_region(mtd, start, &section,
1973					&oobregion, iter);
1974
1975	while (!ret) {
1976		int cnt;
1977
1978		cnt = min_t(int, nbytes, oobregion.length);
1979		memcpy(oobbuf + oobregion.offset, buf, cnt);
1980		buf += cnt;
1981		nbytes -= cnt;
1982
1983		if (!nbytes)
1984			break;
1985
1986		ret = iter(mtd, ++section, &oobregion);
1987	}
1988
1989	return ret;
1990}
1991
1992/**
1993 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1994 * @mtd: mtd info structure
1995 * @iter: category iterator
1996 *
1997 * Count the number of bytes in a given category.
1998 *
1999 * Returns a positive value on success, a negative error code otherwise.
2000 */
2001static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2002				int (*iter)(struct mtd_info *,
2003					    int section,
2004					    struct mtd_oob_region *oobregion))
2005{
2006	struct mtd_oob_region oobregion;
2007	int section = 0, ret, nbytes = 0;
2008
2009	while (1) {
2010		ret = iter(mtd, section++, &oobregion);
2011		if (ret) {
2012			if (ret == -ERANGE)
2013				ret = nbytes;
2014			break;
2015		}
2016
2017		nbytes += oobregion.length;
2018	}
2019
2020	return ret;
2021}
2022
2023/**
2024 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2025 * @mtd: mtd info structure
2026 * @eccbuf: destination buffer to store ECC bytes
2027 * @oobbuf: OOB buffer
2028 * @start: first ECC byte to retrieve
2029 * @nbytes: number of ECC bytes to retrieve
2030 *
2031 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2032 *
2033 * Returns zero on success, a negative error code otherwise.
2034 */
2035int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2036			       const u8 *oobbuf, int start, int nbytes)
2037{
2038	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2039				       mtd_ooblayout_ecc);
2040}
2041EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2042
2043/**
2044 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2045 * @mtd: mtd info structure
2046 * @eccbuf: source buffer to get ECC bytes from
2047 * @oobbuf: OOB buffer
2048 * @start: first ECC byte to set
2049 * @nbytes: number of ECC bytes to set
2050 *
2051 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2052 *
2053 * Returns zero on success, a negative error code otherwise.
2054 */
2055int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2056			       u8 *oobbuf, int start, int nbytes)
2057{
2058	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2059				       mtd_ooblayout_ecc);
2060}
2061EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2062
2063/**
2064 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2065 * @mtd: mtd info structure
2066 * @databuf: destination buffer to store ECC bytes
2067 * @oobbuf: OOB buffer
2068 * @start: first ECC byte to retrieve
2069 * @nbytes: number of ECC bytes to retrieve
2070 *
2071 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2072 *
2073 * Returns zero on success, a negative error code otherwise.
2074 */
2075int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2076				const u8 *oobbuf, int start, int nbytes)
2077{
2078	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2079				       mtd_ooblayout_free);
2080}
2081EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2082
2083/**
2084 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2085 * @mtd: mtd info structure
2086 * @databuf: source buffer to get data bytes from
2087 * @oobbuf: OOB buffer
2088 * @start: first ECC byte to set
2089 * @nbytes: number of ECC bytes to set
2090 *
2091 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2092 *
2093 * Returns zero on success, a negative error code otherwise.
2094 */
2095int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2096				u8 *oobbuf, int start, int nbytes)
2097{
2098	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2099				       mtd_ooblayout_free);
2100}
2101EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2102
2103/**
2104 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2105 * @mtd: mtd info structure
2106 *
2107 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2108 *
2109 * Returns zero on success, a negative error code otherwise.
2110 */
2111int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2112{
2113	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2114}
2115EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2116
2117/**
2118 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2119 * @mtd: mtd info structure
2120 *
2121 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2122 *
2123 * Returns zero on success, a negative error code otherwise.
2124 */
2125int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2126{
2127	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2128}
2129EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2130
2131/*
2132 * Method to access the protection register area, present in some flash
2133 * devices. The user data is one time programmable but the factory data is read
2134 * only.
2135 */
2136int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2137			   struct otp_info *buf)
2138{
2139	struct mtd_info *master = mtd_get_master(mtd);
2140
2141	if (!master->_get_fact_prot_info)
2142		return -EOPNOTSUPP;
2143	if (!len)
2144		return 0;
2145	return master->_get_fact_prot_info(master, len, retlen, buf);
2146}
2147EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2148
2149int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2150			   size_t *retlen, u_char *buf)
2151{
2152	struct mtd_info *master = mtd_get_master(mtd);
2153
2154	*retlen = 0;
2155	if (!master->_read_fact_prot_reg)
2156		return -EOPNOTSUPP;
2157	if (!len)
2158		return 0;
2159	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2160}
2161EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2162
2163int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2164			   struct otp_info *buf)
2165{
2166	struct mtd_info *master = mtd_get_master(mtd);
2167
2168	if (!master->_get_user_prot_info)
2169		return -EOPNOTSUPP;
2170	if (!len)
2171		return 0;
2172	return master->_get_user_prot_info(master, len, retlen, buf);
2173}
2174EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2175
2176int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2177			   size_t *retlen, u_char *buf)
2178{
2179	struct mtd_info *master = mtd_get_master(mtd);
2180
2181	*retlen = 0;
2182	if (!master->_read_user_prot_reg)
2183		return -EOPNOTSUPP;
2184	if (!len)
2185		return 0;
2186	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2187}
2188EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2189
2190int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2191			    size_t *retlen, const u_char *buf)
2192{
2193	struct mtd_info *master = mtd_get_master(mtd);
2194	int ret;
2195
2196	*retlen = 0;
2197	if (!master->_write_user_prot_reg)
2198		return -EOPNOTSUPP;
2199	if (!len)
2200		return 0;
2201	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2202	if (ret)
2203		return ret;
2204
2205	/*
2206	 * If no data could be written at all, we are out of memory and
2207	 * must return -ENOSPC.
2208	 */
2209	return (*retlen) ? 0 : -ENOSPC;
2210}
2211EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2212
2213int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2214{
2215	struct mtd_info *master = mtd_get_master(mtd);
2216
2217	if (!master->_lock_user_prot_reg)
2218		return -EOPNOTSUPP;
2219	if (!len)
2220		return 0;
2221	return master->_lock_user_prot_reg(master, from, len);
2222}
2223EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2224
2225int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2226{
2227	struct mtd_info *master = mtd_get_master(mtd);
2228
2229	if (!master->_erase_user_prot_reg)
2230		return -EOPNOTSUPP;
2231	if (!len)
2232		return 0;
2233	return master->_erase_user_prot_reg(master, from, len);
2234}
2235EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2236
2237/* Chip-supported device locking */
2238int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2239{
2240	struct mtd_info *master = mtd_get_master(mtd);
2241
2242	if (!master->_lock)
2243		return -EOPNOTSUPP;
2244	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2245		return -EINVAL;
2246	if (!len)
2247		return 0;
2248
2249	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2250		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2251		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2252	}
2253
2254	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2255}
2256EXPORT_SYMBOL_GPL(mtd_lock);
2257
2258int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2259{
2260	struct mtd_info *master = mtd_get_master(mtd);
2261
2262	if (!master->_unlock)
2263		return -EOPNOTSUPP;
2264	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2265		return -EINVAL;
2266	if (!len)
2267		return 0;
2268
2269	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2270		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2271		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2272	}
2273
2274	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2275}
2276EXPORT_SYMBOL_GPL(mtd_unlock);
2277
2278int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2279{
2280	struct mtd_info *master = mtd_get_master(mtd);
2281
2282	if (!master->_is_locked)
2283		return -EOPNOTSUPP;
2284	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2285		return -EINVAL;
2286	if (!len)
2287		return 0;
2288
2289	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2290		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2291		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2292	}
2293
2294	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2295}
2296EXPORT_SYMBOL_GPL(mtd_is_locked);
2297
2298int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2299{
2300	struct mtd_info *master = mtd_get_master(mtd);
2301
2302	if (ofs < 0 || ofs >= mtd->size)
2303		return -EINVAL;
2304	if (!master->_block_isreserved)
2305		return 0;
2306
2307	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2308		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2309
2310	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2311}
2312EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2313
2314int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2315{
2316	struct mtd_info *master = mtd_get_master(mtd);
2317
2318	if (ofs < 0 || ofs >= mtd->size)
2319		return -EINVAL;
2320	if (!master->_block_isbad)
2321		return 0;
2322
2323	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2324		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2325
2326	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2327}
2328EXPORT_SYMBOL_GPL(mtd_block_isbad);
2329
2330int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2331{
2332	struct mtd_info *master = mtd_get_master(mtd);
2333	int ret;
2334
2335	if (!master->_block_markbad)
2336		return -EOPNOTSUPP;
2337	if (ofs < 0 || ofs >= mtd->size)
2338		return -EINVAL;
2339	if (!(mtd->flags & MTD_WRITEABLE))
2340		return -EROFS;
2341
2342	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2343		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2344
2345	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2346	if (ret)
2347		return ret;
2348
2349	while (mtd->parent) {
2350		mtd->ecc_stats.badblocks++;
2351		mtd = mtd->parent;
2352	}
2353
2354	return 0;
2355}
2356EXPORT_SYMBOL_GPL(mtd_block_markbad);
2357ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2358
2359/*
2360 * default_mtd_writev - the default writev method
2361 * @mtd: mtd device description object pointer
2362 * @vecs: the vectors to write
2363 * @count: count of vectors in @vecs
2364 * @to: the MTD device offset to write to
2365 * @retlen: on exit contains the count of bytes written to the MTD device.
2366 *
2367 * This function returns zero in case of success and a negative error code in
2368 * case of failure.
2369 */
2370static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2371			      unsigned long count, loff_t to, size_t *retlen)
2372{
2373	unsigned long i;
2374	size_t totlen = 0, thislen;
2375	int ret = 0;
2376
2377	for (i = 0; i < count; i++) {
2378		if (!vecs[i].iov_len)
2379			continue;
2380		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2381				vecs[i].iov_base);
2382		totlen += thislen;
2383		if (ret || thislen != vecs[i].iov_len)
2384			break;
2385		to += vecs[i].iov_len;
 
 
 
2386	}
2387	*retlen = totlen;
 
2388	return ret;
2389}
2390
2391/*
2392 * mtd_writev - the vector-based MTD write method
2393 * @mtd: mtd device description object pointer
2394 * @vecs: the vectors to write
2395 * @count: count of vectors in @vecs
2396 * @to: the MTD device offset to write to
2397 * @retlen: on exit contains the count of bytes written to the MTD device.
2398 *
2399 * This function returns zero in case of success and a negative error code in
2400 * case of failure.
2401 */
2402int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2403	       unsigned long count, loff_t to, size_t *retlen)
2404{
2405	struct mtd_info *master = mtd_get_master(mtd);
2406
2407	*retlen = 0;
2408	if (!(mtd->flags & MTD_WRITEABLE))
2409		return -EROFS;
2410
2411	if (!master->_writev)
2412		return default_mtd_writev(mtd, vecs, count, to, retlen);
2413
2414	return master->_writev(master, vecs, count,
2415			       mtd_get_master_ofs(mtd, to), retlen);
2416}
2417EXPORT_SYMBOL_GPL(mtd_writev);
2418
2419/**
2420 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2421 * @mtd: mtd device description object pointer
2422 * @size: a pointer to the ideal or maximum size of the allocation, points
2423 *        to the actual allocation size on success.
2424 *
2425 * This routine attempts to allocate a contiguous kernel buffer up to
2426 * the specified size, backing off the size of the request exponentially
2427 * until the request succeeds or until the allocation size falls below
2428 * the system page size. This attempts to make sure it does not adversely
2429 * impact system performance, so when allocating more than one page, we
2430 * ask the memory allocator to avoid re-trying, swapping, writing back
2431 * or performing I/O.
2432 *
2433 * Note, this function also makes sure that the allocated buffer is aligned to
2434 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2435 *
2436 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2437 * to handle smaller (i.e. degraded) buffer allocations under low- or
2438 * fragmented-memory situations where such reduced allocations, from a
2439 * requested ideal, are allowed.
2440 *
2441 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2442 */
2443void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2444{
2445	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
 
2446	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2447	void *kbuf;
2448
2449	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2450
2451	while (*size > min_alloc) {
2452		kbuf = kmalloc(*size, flags);
2453		if (kbuf)
2454			return kbuf;
2455
2456		*size >>= 1;
2457		*size = ALIGN(*size, mtd->writesize);
2458	}
2459
2460	/*
2461	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2462	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2463	 */
2464	return kmalloc(*size, GFP_KERNEL);
2465}
 
 
 
 
 
 
 
 
 
2466EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2467
2468#ifdef CONFIG_PROC_FS
2469
2470/*====================================================================*/
2471/* Support for /proc/mtd */
2472
 
 
2473static int mtd_proc_show(struct seq_file *m, void *v)
2474{
2475	struct mtd_info *mtd;
2476
2477	seq_puts(m, "dev:    size   erasesize  name\n");
2478	mutex_lock(&mtd_table_mutex);
2479	mtd_for_each_device(mtd) {
2480		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2481			   mtd->index, (unsigned long long)mtd->size,
2482			   mtd->erasesize, mtd->name);
2483	}
2484	mutex_unlock(&mtd_table_mutex);
2485	return 0;
2486}
 
 
 
 
 
 
 
 
 
 
 
 
2487#endif /* CONFIG_PROC_FS */
2488
2489/*====================================================================*/
2490/* Init code */
2491
2492static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2493{
2494	struct backing_dev_info *bdi;
2495	int ret;
2496
2497	bdi = bdi_alloc(NUMA_NO_NODE);
2498	if (!bdi)
2499		return ERR_PTR(-ENOMEM);
2500	bdi->ra_pages = 0;
2501	bdi->io_pages = 0;
2502
2503	/*
2504	 * We put '-0' suffix to the name to get the same name format as we
2505	 * used to get. Since this is called only once, we get a unique name. 
2506	 */
2507	ret = bdi_register(bdi, "%.28s-0", name);
2508	if (ret)
2509		bdi_put(bdi);
2510
2511	return ret ? ERR_PTR(ret) : bdi;
2512}
2513
2514static struct proc_dir_entry *proc_mtd;
2515
2516static int __init init_mtd(void)
2517{
2518	int ret;
2519
2520	ret = class_register(&mtd_class);
2521	if (ret)
2522		goto err_reg;
2523
2524	mtd_bdi = mtd_bdi_init("mtd");
2525	if (IS_ERR(mtd_bdi)) {
2526		ret = PTR_ERR(mtd_bdi);
2527		goto err_bdi;
2528	}
2529
2530	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
 
 
2531
2532	ret = init_mtdchar();
2533	if (ret)
2534		goto out_procfs;
2535
2536	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2537	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2538			    &mtd_expert_analysis_mode);
2539
 
 
 
2540	return 0;
2541
2542out_procfs:
2543	if (proc_mtd)
2544		remove_proc_entry("mtd", NULL);
2545	bdi_unregister(mtd_bdi);
2546	bdi_put(mtd_bdi);
2547err_bdi:
2548	class_unregister(&mtd_class);
2549err_reg:
2550	pr_err("Error registering mtd class or bdi: %d\n", ret);
2551	return ret;
2552}
2553
2554static void __exit cleanup_mtd(void)
2555{
2556	debugfs_remove_recursive(dfs_dir_mtd);
2557	cleanup_mtdchar();
2558	if (proc_mtd)
2559		remove_proc_entry("mtd", NULL);
 
2560	class_unregister(&mtd_class);
2561	bdi_unregister(mtd_bdi);
2562	bdi_put(mtd_bdi);
2563	idr_destroy(&mtd_idr);
2564}
2565
2566module_init(init_mtd);
2567module_exit(cleanup_mtd);
2568
2569MODULE_LICENSE("GPL");
2570MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2571MODULE_DESCRIPTION("Core MTD registration and access routines");