Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Core registration and callback routines for MTD
  3 * drivers and users.
  4 *
  5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
  6 * Copyright © 2006      Red Hat UK Limited 
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/kernel.h>
 26#include <linux/ptrace.h>
 27#include <linux/seq_file.h>
 28#include <linux/string.h>
 29#include <linux/timer.h>
 30#include <linux/major.h>
 31#include <linux/fs.h>
 32#include <linux/err.h>
 33#include <linux/ioctl.h>
 34#include <linux/init.h>
 35#include <linux/proc_fs.h>
 36#include <linux/idr.h>
 37#include <linux/backing-dev.h>
 38#include <linux/gfp.h>
 
 39
 40#include <linux/mtd/mtd.h>
 41#include <linux/mtd/partitions.h>
 42
 43#include "mtdcore.h"
 
 44/*
 45 * backing device capabilities for non-mappable devices (such as NAND flash)
 46 * - permits private mappings, copies are taken of the data
 47 */
 48static struct backing_dev_info mtd_bdi_unmappable = {
 49	.capabilities	= BDI_CAP_MAP_COPY,
 50};
 51
 52/*
 53 * backing device capabilities for R/O mappable devices (such as ROM)
 54 * - permits private mappings, copies are taken of the data
 55 * - permits non-writable shared mappings
 56 */
 57static struct backing_dev_info mtd_bdi_ro_mappable = {
 58	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
 59			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
 60};
 61
 62/*
 63 * backing device capabilities for writable mappable devices (such as RAM)
 64 * - permits private mappings, copies are taken of the data
 65 * - permits non-writable shared mappings
 66 */
 67static struct backing_dev_info mtd_bdi_rw_mappable = {
 68	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
 69			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
 70			   BDI_CAP_WRITE_MAP),
 71};
 72
 73static int mtd_cls_suspend(struct device *dev, pm_message_t state);
 74static int mtd_cls_resume(struct device *dev);
 75
 76static struct class mtd_class = {
 77	.name = "mtd",
 78	.owner = THIS_MODULE,
 79	.suspend = mtd_cls_suspend,
 80	.resume = mtd_cls_resume,
 81};
 82
 83static DEFINE_IDR(mtd_idr);
 84
 85/* These are exported solely for the purpose of mtd_blkdevs.c. You
 86   should not use them for _anything_ else */
 87DEFINE_MUTEX(mtd_table_mutex);
 88EXPORT_SYMBOL_GPL(mtd_table_mutex);
 89
 90struct mtd_info *__mtd_next_device(int i)
 91{
 92	return idr_get_next(&mtd_idr, &i);
 93}
 94EXPORT_SYMBOL_GPL(__mtd_next_device);
 95
 96static LIST_HEAD(mtd_notifiers);
 97
 98
 99#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101#else
102#define MTD_DEVT(index) 0
103#endif
104
105/* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
108static void mtd_release(struct device *dev)
109{
110	dev_t index = MTD_DEVT(dev_to_mtd(dev)->index);
 
111
112	/* remove /dev/mtdXro node if needed */
113	if (index)
114		device_destroy(&mtd_class, index + 1);
115}
116
117static int mtd_cls_suspend(struct device *dev, pm_message_t state)
118{
119	struct mtd_info *mtd = dev_to_mtd(dev);
120
121	if (mtd && mtd->suspend)
122		return mtd->suspend(mtd);
123	else
124		return 0;
125}
126
127static int mtd_cls_resume(struct device *dev)
128{
129	struct mtd_info *mtd = dev_to_mtd(dev);
130	
131	if (mtd && mtd->resume)
132		mtd->resume(mtd);
133	return 0;
134}
135
136static ssize_t mtd_type_show(struct device *dev,
137		struct device_attribute *attr, char *buf)
138{
139	struct mtd_info *mtd = dev_to_mtd(dev);
140	char *type;
141
142	switch (mtd->type) {
143	case MTD_ABSENT:
144		type = "absent";
145		break;
146	case MTD_RAM:
147		type = "ram";
148		break;
149	case MTD_ROM:
150		type = "rom";
151		break;
152	case MTD_NORFLASH:
153		type = "nor";
154		break;
155	case MTD_NANDFLASH:
156		type = "nand";
157		break;
158	case MTD_DATAFLASH:
159		type = "dataflash";
160		break;
161	case MTD_UBIVOLUME:
162		type = "ubi";
163		break;
 
 
 
164	default:
165		type = "unknown";
166	}
167
168	return snprintf(buf, PAGE_SIZE, "%s\n", type);
169}
170static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
171
172static ssize_t mtd_flags_show(struct device *dev,
173		struct device_attribute *attr, char *buf)
174{
175	struct mtd_info *mtd = dev_to_mtd(dev);
176
177	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
178
179}
180static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
181
182static ssize_t mtd_size_show(struct device *dev,
183		struct device_attribute *attr, char *buf)
184{
185	struct mtd_info *mtd = dev_to_mtd(dev);
186
187	return snprintf(buf, PAGE_SIZE, "%llu\n",
188		(unsigned long long)mtd->size);
189
190}
191static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
192
193static ssize_t mtd_erasesize_show(struct device *dev,
194		struct device_attribute *attr, char *buf)
195{
196	struct mtd_info *mtd = dev_to_mtd(dev);
197
198	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
199
200}
201static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
202
203static ssize_t mtd_writesize_show(struct device *dev,
204		struct device_attribute *attr, char *buf)
205{
206	struct mtd_info *mtd = dev_to_mtd(dev);
207
208	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
209
210}
211static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
212
213static ssize_t mtd_subpagesize_show(struct device *dev,
214		struct device_attribute *attr, char *buf)
215{
216	struct mtd_info *mtd = dev_to_mtd(dev);
217	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
218
219	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
220
221}
222static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
223
224static ssize_t mtd_oobsize_show(struct device *dev,
225		struct device_attribute *attr, char *buf)
226{
227	struct mtd_info *mtd = dev_to_mtd(dev);
228
229	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
230
231}
232static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
233
234static ssize_t mtd_numeraseregions_show(struct device *dev,
235		struct device_attribute *attr, char *buf)
236{
237	struct mtd_info *mtd = dev_to_mtd(dev);
238
239	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
240
241}
242static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
243	NULL);
244
245static ssize_t mtd_name_show(struct device *dev,
246		struct device_attribute *attr, char *buf)
247{
248	struct mtd_info *mtd = dev_to_mtd(dev);
249
250	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
251
252}
253static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255static struct attribute *mtd_attrs[] = {
256	&dev_attr_type.attr,
257	&dev_attr_flags.attr,
258	&dev_attr_size.attr,
259	&dev_attr_erasesize.attr,
260	&dev_attr_writesize.attr,
261	&dev_attr_subpagesize.attr,
262	&dev_attr_oobsize.attr,
263	&dev_attr_numeraseregions.attr,
264	&dev_attr_name.attr,
 
 
 
265	NULL,
266};
267
268static struct attribute_group mtd_group = {
269	.attrs		= mtd_attrs,
270};
271
272static const struct attribute_group *mtd_groups[] = {
273	&mtd_group,
274	NULL,
275};
276
277static struct device_type mtd_devtype = {
278	.name		= "mtd",
279	.groups		= mtd_groups,
280	.release	= mtd_release,
281};
282
283/**
284 *	add_mtd_device - register an MTD device
285 *	@mtd: pointer to new MTD device info structure
286 *
287 *	Add a device to the list of MTD devices present in the system, and
288 *	notify each currently active MTD 'user' of its arrival. Returns
289 *	zero on success or 1 on failure, which currently will only happen
290 *	if there is insufficient memory or a sysfs error.
291 */
292
293int add_mtd_device(struct mtd_info *mtd)
294{
295	struct mtd_notifier *not;
296	int i, error;
297
298	if (!mtd->backing_dev_info) {
299		switch (mtd->type) {
300		case MTD_RAM:
301			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
302			break;
303		case MTD_ROM:
304			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
305			break;
306		default:
307			mtd->backing_dev_info = &mtd_bdi_unmappable;
308			break;
309		}
310	}
311
312	BUG_ON(mtd->writesize == 0);
313	mutex_lock(&mtd_table_mutex);
314
315	do {
316		if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
317			goto fail_locked;
318		error = idr_get_new(&mtd_idr, mtd, &i);
319	} while (error == -EAGAIN);
320
321	if (error)
322		goto fail_locked;
323
324	mtd->index = i;
325	mtd->usecount = 0;
326
 
 
 
 
327	if (is_power_of_2(mtd->erasesize))
328		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
329	else
330		mtd->erasesize_shift = 0;
331
332	if (is_power_of_2(mtd->writesize))
333		mtd->writesize_shift = ffs(mtd->writesize) - 1;
334	else
335		mtd->writesize_shift = 0;
336
337	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
338	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
339
340	/* Some chips always power up locked. Unlock them now */
341	if ((mtd->flags & MTD_WRITEABLE)
342	    && (mtd->flags & MTD_POWERUP_LOCK) && mtd->unlock) {
343		if (mtd->unlock(mtd, 0, mtd->size))
344			printk(KERN_WARNING
345			       "%s: unlock failed, writes may not work\n",
346			       mtd->name);
347	}
348
349	/* Caller should have set dev.parent to match the
350	 * physical device.
351	 */
352	mtd->dev.type = &mtd_devtype;
353	mtd->dev.class = &mtd_class;
354	mtd->dev.devt = MTD_DEVT(i);
355	dev_set_name(&mtd->dev, "mtd%d", i);
356	dev_set_drvdata(&mtd->dev, mtd);
357	if (device_register(&mtd->dev) != 0)
358		goto fail_added;
359
360	if (MTD_DEVT(i))
361		device_create(&mtd_class, mtd->dev.parent,
362			      MTD_DEVT(i) + 1,
363			      NULL, "mtd%dro", i);
364
365	DEBUG(0, "mtd: Giving out device %d to %s\n", i, mtd->name);
366	/* No need to get a refcount on the module containing
367	   the notifier, since we hold the mtd_table_mutex */
368	list_for_each_entry(not, &mtd_notifiers, list)
369		not->add(mtd);
370
371	mutex_unlock(&mtd_table_mutex);
372	/* We _know_ we aren't being removed, because
373	   our caller is still holding us here. So none
374	   of this try_ nonsense, and no bitching about it
375	   either. :) */
376	__module_get(THIS_MODULE);
377	return 0;
378
379fail_added:
380	idr_remove(&mtd_idr, i);
381fail_locked:
382	mutex_unlock(&mtd_table_mutex);
383	return 1;
384}
385
386/**
387 *	del_mtd_device - unregister an MTD device
388 *	@mtd: pointer to MTD device info structure
389 *
390 *	Remove a device from the list of MTD devices present in the system,
391 *	and notify each currently active MTD 'user' of its departure.
392 *	Returns zero on success or 1 on failure, which currently will happen
393 *	if the requested device does not appear to be present in the list.
394 */
395
396int del_mtd_device(struct mtd_info *mtd)
397{
398	int ret;
399	struct mtd_notifier *not;
400
401	mutex_lock(&mtd_table_mutex);
402
403	if (idr_find(&mtd_idr, mtd->index) != mtd) {
404		ret = -ENODEV;
405		goto out_error;
406	}
407
408	/* No need to get a refcount on the module containing
409		the notifier, since we hold the mtd_table_mutex */
410	list_for_each_entry(not, &mtd_notifiers, list)
411		not->remove(mtd);
412
413	if (mtd->usecount) {
414		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
415		       mtd->index, mtd->name, mtd->usecount);
416		ret = -EBUSY;
417	} else {
418		device_unregister(&mtd->dev);
419
420		idr_remove(&mtd_idr, mtd->index);
421
422		module_put(THIS_MODULE);
423		ret = 0;
424	}
425
426out_error:
427	mutex_unlock(&mtd_table_mutex);
428	return ret;
429}
430
431/**
432 * mtd_device_register - register an MTD device.
 
 
 
 
 
 
 
 
 
 
 
 
 
433 *
434 * @master: the MTD device to register
435 * @parts: the partitions to register - only valid if nr_parts > 0
436 * @nr_parts: the number of partitions in parts.  If zero then the full MTD
437 *            device is registered
438 *
439 * Register an MTD device with the system and optionally, a number of
440 * partitions.  If nr_parts is 0 then the whole device is registered, otherwise
441 * only the partitions are registered.  To register both the full device *and*
442 * the partitions, call mtd_device_register() twice, once with nr_parts == 0
443 * and once equal to the number of partitions.
444 */
445int mtd_device_register(struct mtd_info *master,
446			const struct mtd_partition *parts,
447			int nr_parts)
 
 
448{
449	return parts ? add_mtd_partitions(master, parts, nr_parts) :
450		add_mtd_device(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451}
452EXPORT_SYMBOL_GPL(mtd_device_register);
453
454/**
455 * mtd_device_unregister - unregister an existing MTD device.
456 *
457 * @master: the MTD device to unregister.  This will unregister both the master
458 *          and any partitions if registered.
459 */
460int mtd_device_unregister(struct mtd_info *master)
461{
462	int err;
463
464	err = del_mtd_partitions(master);
465	if (err)
466		return err;
467
468	if (!device_is_registered(&master->dev))
469		return 0;
470
471	return del_mtd_device(master);
472}
473EXPORT_SYMBOL_GPL(mtd_device_unregister);
474
475/**
476 *	register_mtd_user - register a 'user' of MTD devices.
477 *	@new: pointer to notifier info structure
478 *
479 *	Registers a pair of callbacks function to be called upon addition
480 *	or removal of MTD devices. Causes the 'add' callback to be immediately
481 *	invoked for each MTD device currently present in the system.
482 */
483
484void register_mtd_user (struct mtd_notifier *new)
485{
486	struct mtd_info *mtd;
487
488	mutex_lock(&mtd_table_mutex);
489
490	list_add(&new->list, &mtd_notifiers);
491
492	__module_get(THIS_MODULE);
493
494	mtd_for_each_device(mtd)
495		new->add(mtd);
496
497	mutex_unlock(&mtd_table_mutex);
498}
 
499
500/**
501 *	unregister_mtd_user - unregister a 'user' of MTD devices.
502 *	@old: pointer to notifier info structure
503 *
504 *	Removes a callback function pair from the list of 'users' to be
505 *	notified upon addition or removal of MTD devices. Causes the
506 *	'remove' callback to be immediately invoked for each MTD device
507 *	currently present in the system.
508 */
509
510int unregister_mtd_user (struct mtd_notifier *old)
511{
512	struct mtd_info *mtd;
513
514	mutex_lock(&mtd_table_mutex);
515
516	module_put(THIS_MODULE);
517
518	mtd_for_each_device(mtd)
519		old->remove(mtd);
520
521	list_del(&old->list);
522	mutex_unlock(&mtd_table_mutex);
523	return 0;
524}
525
526
527/**
528 *	get_mtd_device - obtain a validated handle for an MTD device
529 *	@mtd: last known address of the required MTD device
530 *	@num: internal device number of the required MTD device
531 *
532 *	Given a number and NULL address, return the num'th entry in the device
533 *	table, if any.	Given an address and num == -1, search the device table
534 *	for a device with that address and return if it's still present. Given
535 *	both, return the num'th driver only if its address matches. Return
536 *	error code if not.
537 */
538
539struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
540{
541	struct mtd_info *ret = NULL, *other;
542	int err = -ENODEV;
543
544	mutex_lock(&mtd_table_mutex);
545
546	if (num == -1) {
547		mtd_for_each_device(other) {
548			if (other == mtd) {
549				ret = mtd;
550				break;
551			}
552		}
553	} else if (num >= 0) {
554		ret = idr_find(&mtd_idr, num);
555		if (mtd && mtd != ret)
556			ret = NULL;
557	}
558
559	if (!ret) {
560		ret = ERR_PTR(err);
561		goto out;
562	}
563
564	err = __get_mtd_device(ret);
565	if (err)
566		ret = ERR_PTR(err);
567out:
568	mutex_unlock(&mtd_table_mutex);
569	return ret;
570}
 
571
572
573int __get_mtd_device(struct mtd_info *mtd)
574{
575	int err;
576
577	if (!try_module_get(mtd->owner))
578		return -ENODEV;
579
580	if (mtd->get_device) {
581		err = mtd->get_device(mtd);
582
583		if (err) {
584			module_put(mtd->owner);
585			return err;
586		}
587	}
588	mtd->usecount++;
589	return 0;
590}
 
591
592/**
593 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
594 *	device name
595 *	@name: MTD device name to open
596 *
597 * 	This function returns MTD device description structure in case of
598 * 	success and an error code in case of failure.
599 */
600
601struct mtd_info *get_mtd_device_nm(const char *name)
602{
603	int err = -ENODEV;
604	struct mtd_info *mtd = NULL, *other;
605
606	mutex_lock(&mtd_table_mutex);
607
608	mtd_for_each_device(other) {
609		if (!strcmp(name, other->name)) {
610			mtd = other;
611			break;
612		}
613	}
614
615	if (!mtd)
616		goto out_unlock;
617
618	err = __get_mtd_device(mtd);
619	if (err)
620		goto out_unlock;
621
622	mutex_unlock(&mtd_table_mutex);
623	return mtd;
624
625out_unlock:
626	mutex_unlock(&mtd_table_mutex);
627	return ERR_PTR(err);
628}
 
629
630void put_mtd_device(struct mtd_info *mtd)
631{
632	mutex_lock(&mtd_table_mutex);
633	__put_mtd_device(mtd);
634	mutex_unlock(&mtd_table_mutex);
635
636}
 
637
638void __put_mtd_device(struct mtd_info *mtd)
639{
640	--mtd->usecount;
641	BUG_ON(mtd->usecount < 0);
642
643	if (mtd->put_device)
644		mtd->put_device(mtd);
645
646	module_put(mtd->owner);
647}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648
649/* default_mtd_writev - default mtd writev method for MTD devices that
650 *			don't implement their own
 
 
651 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652
653int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
654		       unsigned long count, loff_t to, size_t *retlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655{
656	unsigned long i;
657	size_t totlen = 0, thislen;
658	int ret = 0;
659
660	if(!mtd->write) {
661		ret = -EROFS;
662	} else {
663		for (i=0; i<count; i++) {
664			if (!vecs[i].iov_len)
665				continue;
666			ret = mtd->write(mtd, to, vecs[i].iov_len, &thislen, vecs[i].iov_base);
667			totlen += thislen;
668			if (ret || thislen != vecs[i].iov_len)
669				break;
670			to += vecs[i].iov_len;
671		}
672	}
673	if (retlen)
674		*retlen = totlen;
675	return ret;
676}
677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
678/**
679 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
680 * @size: A pointer to the ideal or maximum size of the allocation. Points
 
681 *        to the actual allocation size on success.
682 *
683 * This routine attempts to allocate a contiguous kernel buffer up to
684 * the specified size, backing off the size of the request exponentially
685 * until the request succeeds or until the allocation size falls below
686 * the system page size. This attempts to make sure it does not adversely
687 * impact system performance, so when allocating more than one page, we
688 * ask the memory allocator to avoid re-trying, swapping, writing back
689 * or performing I/O.
690 *
691 * Note, this function also makes sure that the allocated buffer is aligned to
692 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
693 *
694 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
695 * to handle smaller (i.e. degraded) buffer allocations under low- or
696 * fragmented-memory situations where such reduced allocations, from a
697 * requested ideal, are allowed.
698 *
699 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
700 */
701void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
702{
703	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
704		       __GFP_NORETRY | __GFP_NO_KSWAPD;
705	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
706	void *kbuf;
707
708	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
709
710	while (*size > min_alloc) {
711		kbuf = kmalloc(*size, flags);
712		if (kbuf)
713			return kbuf;
714
715		*size >>= 1;
716		*size = ALIGN(*size, mtd->writesize);
717	}
718
719	/*
720	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
721	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
722	 */
723	return kmalloc(*size, GFP_KERNEL);
724}
725
726EXPORT_SYMBOL_GPL(get_mtd_device);
727EXPORT_SYMBOL_GPL(get_mtd_device_nm);
728EXPORT_SYMBOL_GPL(__get_mtd_device);
729EXPORT_SYMBOL_GPL(put_mtd_device);
730EXPORT_SYMBOL_GPL(__put_mtd_device);
731EXPORT_SYMBOL_GPL(register_mtd_user);
732EXPORT_SYMBOL_GPL(unregister_mtd_user);
733EXPORT_SYMBOL_GPL(default_mtd_writev);
734EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
735
736#ifdef CONFIG_PROC_FS
737
738/*====================================================================*/
739/* Support for /proc/mtd */
740
741static struct proc_dir_entry *proc_mtd;
742
743static int mtd_proc_show(struct seq_file *m, void *v)
744{
745	struct mtd_info *mtd;
746
747	seq_puts(m, "dev:    size   erasesize  name\n");
748	mutex_lock(&mtd_table_mutex);
749	mtd_for_each_device(mtd) {
750		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
751			   mtd->index, (unsigned long long)mtd->size,
752			   mtd->erasesize, mtd->name);
753	}
754	mutex_unlock(&mtd_table_mutex);
755	return 0;
756}
757
758static int mtd_proc_open(struct inode *inode, struct file *file)
759{
760	return single_open(file, mtd_proc_show, NULL);
761}
762
763static const struct file_operations mtd_proc_ops = {
764	.open		= mtd_proc_open,
765	.read		= seq_read,
766	.llseek		= seq_lseek,
767	.release	= single_release,
768};
769#endif /* CONFIG_PROC_FS */
770
771/*====================================================================*/
772/* Init code */
773
774static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
775{
776	int ret;
777
778	ret = bdi_init(bdi);
779	if (!ret)
780		ret = bdi_register(bdi, NULL, name);
781
782	if (ret)
783		bdi_destroy(bdi);
784
785	return ret;
786}
787
 
 
788static int __init init_mtd(void)
789{
790	int ret;
791
792	ret = class_register(&mtd_class);
793	if (ret)
794		goto err_reg;
795
796	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
797	if (ret)
798		goto err_bdi1;
799
800	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
801	if (ret)
802		goto err_bdi2;
803
804	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
805	if (ret)
806		goto err_bdi3;
807
808#ifdef CONFIG_PROC_FS
809	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
810#endif /* CONFIG_PROC_FS */
 
 
 
 
811	return 0;
812
 
 
 
813err_bdi3:
814	bdi_destroy(&mtd_bdi_ro_mappable);
815err_bdi2:
816	bdi_destroy(&mtd_bdi_unmappable);
817err_bdi1:
818	class_unregister(&mtd_class);
819err_reg:
820	pr_err("Error registering mtd class or bdi: %d\n", ret);
821	return ret;
822}
823
824static void __exit cleanup_mtd(void)
825{
826#ifdef CONFIG_PROC_FS
827	if (proc_mtd)
828		remove_proc_entry( "mtd", NULL);
829#endif /* CONFIG_PROC_FS */
830	class_unregister(&mtd_class);
831	bdi_destroy(&mtd_bdi_unmappable);
832	bdi_destroy(&mtd_bdi_ro_mappable);
833	bdi_destroy(&mtd_bdi_rw_mappable);
834}
835
836module_init(init_mtd);
837module_exit(cleanup_mtd);
838
839MODULE_LICENSE("GPL");
840MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
841MODULE_DESCRIPTION("Core MTD registration and access routines");
v3.15
   1/*
   2 * Core registration and callback routines for MTD
   3 * drivers and users.
   4 *
   5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   6 * Copyright © 2006      Red Hat UK Limited 
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/ptrace.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/timer.h>
  30#include <linux/major.h>
  31#include <linux/fs.h>
  32#include <linux/err.h>
  33#include <linux/ioctl.h>
  34#include <linux/init.h>
  35#include <linux/proc_fs.h>
  36#include <linux/idr.h>
  37#include <linux/backing-dev.h>
  38#include <linux/gfp.h>
  39#include <linux/slab.h>
  40
  41#include <linux/mtd/mtd.h>
  42#include <linux/mtd/partitions.h>
  43
  44#include "mtdcore.h"
  45
  46/*
  47 * backing device capabilities for non-mappable devices (such as NAND flash)
  48 * - permits private mappings, copies are taken of the data
  49 */
  50static struct backing_dev_info mtd_bdi_unmappable = {
  51	.capabilities	= BDI_CAP_MAP_COPY,
  52};
  53
  54/*
  55 * backing device capabilities for R/O mappable devices (such as ROM)
  56 * - permits private mappings, copies are taken of the data
  57 * - permits non-writable shared mappings
  58 */
  59static struct backing_dev_info mtd_bdi_ro_mappable = {
  60	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  61			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
  62};
  63
  64/*
  65 * backing device capabilities for writable mappable devices (such as RAM)
  66 * - permits private mappings, copies are taken of the data
  67 * - permits non-writable shared mappings
  68 */
  69static struct backing_dev_info mtd_bdi_rw_mappable = {
  70	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  71			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
  72			   BDI_CAP_WRITE_MAP),
  73};
  74
  75static int mtd_cls_suspend(struct device *dev, pm_message_t state);
  76static int mtd_cls_resume(struct device *dev);
  77
  78static struct class mtd_class = {
  79	.name = "mtd",
  80	.owner = THIS_MODULE,
  81	.suspend = mtd_cls_suspend,
  82	.resume = mtd_cls_resume,
  83};
  84
  85static DEFINE_IDR(mtd_idr);
  86
  87/* These are exported solely for the purpose of mtd_blkdevs.c. You
  88   should not use them for _anything_ else */
  89DEFINE_MUTEX(mtd_table_mutex);
  90EXPORT_SYMBOL_GPL(mtd_table_mutex);
  91
  92struct mtd_info *__mtd_next_device(int i)
  93{
  94	return idr_get_next(&mtd_idr, &i);
  95}
  96EXPORT_SYMBOL_GPL(__mtd_next_device);
  97
  98static LIST_HEAD(mtd_notifiers);
  99
 100
 
 101#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
 
 
 
 102
 103/* REVISIT once MTD uses the driver model better, whoever allocates
 104 * the mtd_info will probably want to use the release() hook...
 105 */
 106static void mtd_release(struct device *dev)
 107{
 108	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
 109	dev_t index = MTD_DEVT(mtd->index);
 110
 111	/* remove /dev/mtdXro node if needed */
 112	if (index)
 113		device_destroy(&mtd_class, index + 1);
 114}
 115
 116static int mtd_cls_suspend(struct device *dev, pm_message_t state)
 117{
 118	struct mtd_info *mtd = dev_get_drvdata(dev);
 119
 120	return mtd ? mtd_suspend(mtd) : 0;
 
 
 
 121}
 122
 123static int mtd_cls_resume(struct device *dev)
 124{
 125	struct mtd_info *mtd = dev_get_drvdata(dev);
 126
 127	if (mtd)
 128		mtd_resume(mtd);
 129	return 0;
 130}
 131
 132static ssize_t mtd_type_show(struct device *dev,
 133		struct device_attribute *attr, char *buf)
 134{
 135	struct mtd_info *mtd = dev_get_drvdata(dev);
 136	char *type;
 137
 138	switch (mtd->type) {
 139	case MTD_ABSENT:
 140		type = "absent";
 141		break;
 142	case MTD_RAM:
 143		type = "ram";
 144		break;
 145	case MTD_ROM:
 146		type = "rom";
 147		break;
 148	case MTD_NORFLASH:
 149		type = "nor";
 150		break;
 151	case MTD_NANDFLASH:
 152		type = "nand";
 153		break;
 154	case MTD_DATAFLASH:
 155		type = "dataflash";
 156		break;
 157	case MTD_UBIVOLUME:
 158		type = "ubi";
 159		break;
 160	case MTD_MLCNANDFLASH:
 161		type = "mlc-nand";
 162		break;
 163	default:
 164		type = "unknown";
 165	}
 166
 167	return snprintf(buf, PAGE_SIZE, "%s\n", type);
 168}
 169static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 170
 171static ssize_t mtd_flags_show(struct device *dev,
 172		struct device_attribute *attr, char *buf)
 173{
 174	struct mtd_info *mtd = dev_get_drvdata(dev);
 175
 176	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 177
 178}
 179static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 180
 181static ssize_t mtd_size_show(struct device *dev,
 182		struct device_attribute *attr, char *buf)
 183{
 184	struct mtd_info *mtd = dev_get_drvdata(dev);
 185
 186	return snprintf(buf, PAGE_SIZE, "%llu\n",
 187		(unsigned long long)mtd->size);
 188
 189}
 190static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 191
 192static ssize_t mtd_erasesize_show(struct device *dev,
 193		struct device_attribute *attr, char *buf)
 194{
 195	struct mtd_info *mtd = dev_get_drvdata(dev);
 196
 197	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 198
 199}
 200static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 201
 202static ssize_t mtd_writesize_show(struct device *dev,
 203		struct device_attribute *attr, char *buf)
 204{
 205	struct mtd_info *mtd = dev_get_drvdata(dev);
 206
 207	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 208
 209}
 210static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 211
 212static ssize_t mtd_subpagesize_show(struct device *dev,
 213		struct device_attribute *attr, char *buf)
 214{
 215	struct mtd_info *mtd = dev_get_drvdata(dev);
 216	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 217
 218	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 219
 220}
 221static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 222
 223static ssize_t mtd_oobsize_show(struct device *dev,
 224		struct device_attribute *attr, char *buf)
 225{
 226	struct mtd_info *mtd = dev_get_drvdata(dev);
 227
 228	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 229
 230}
 231static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 232
 233static ssize_t mtd_numeraseregions_show(struct device *dev,
 234		struct device_attribute *attr, char *buf)
 235{
 236	struct mtd_info *mtd = dev_get_drvdata(dev);
 237
 238	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 239
 240}
 241static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 242	NULL);
 243
 244static ssize_t mtd_name_show(struct device *dev,
 245		struct device_attribute *attr, char *buf)
 246{
 247	struct mtd_info *mtd = dev_get_drvdata(dev);
 248
 249	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 250
 251}
 252static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 253
 254static ssize_t mtd_ecc_strength_show(struct device *dev,
 255				     struct device_attribute *attr, char *buf)
 256{
 257	struct mtd_info *mtd = dev_get_drvdata(dev);
 258
 259	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 260}
 261static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 262
 263static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 264					  struct device_attribute *attr,
 265					  char *buf)
 266{
 267	struct mtd_info *mtd = dev_get_drvdata(dev);
 268
 269	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 270}
 271
 272static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 273					   struct device_attribute *attr,
 274					   const char *buf, size_t count)
 275{
 276	struct mtd_info *mtd = dev_get_drvdata(dev);
 277	unsigned int bitflip_threshold;
 278	int retval;
 279
 280	retval = kstrtouint(buf, 0, &bitflip_threshold);
 281	if (retval)
 282		return retval;
 283
 284	mtd->bitflip_threshold = bitflip_threshold;
 285	return count;
 286}
 287static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 288		   mtd_bitflip_threshold_show,
 289		   mtd_bitflip_threshold_store);
 290
 291static ssize_t mtd_ecc_step_size_show(struct device *dev,
 292		struct device_attribute *attr, char *buf)
 293{
 294	struct mtd_info *mtd = dev_get_drvdata(dev);
 295
 296	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 297
 298}
 299static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 300
 301static struct attribute *mtd_attrs[] = {
 302	&dev_attr_type.attr,
 303	&dev_attr_flags.attr,
 304	&dev_attr_size.attr,
 305	&dev_attr_erasesize.attr,
 306	&dev_attr_writesize.attr,
 307	&dev_attr_subpagesize.attr,
 308	&dev_attr_oobsize.attr,
 309	&dev_attr_numeraseregions.attr,
 310	&dev_attr_name.attr,
 311	&dev_attr_ecc_strength.attr,
 312	&dev_attr_ecc_step_size.attr,
 313	&dev_attr_bitflip_threshold.attr,
 314	NULL,
 315};
 316ATTRIBUTE_GROUPS(mtd);
 
 
 
 
 
 
 
 
 317
 318static struct device_type mtd_devtype = {
 319	.name		= "mtd",
 320	.groups		= mtd_groups,
 321	.release	= mtd_release,
 322};
 323
 324/**
 325 *	add_mtd_device - register an MTD device
 326 *	@mtd: pointer to new MTD device info structure
 327 *
 328 *	Add a device to the list of MTD devices present in the system, and
 329 *	notify each currently active MTD 'user' of its arrival. Returns
 330 *	zero on success or 1 on failure, which currently will only happen
 331 *	if there is insufficient memory or a sysfs error.
 332 */
 333
 334int add_mtd_device(struct mtd_info *mtd)
 335{
 336	struct mtd_notifier *not;
 337	int i, error;
 338
 339	if (!mtd->backing_dev_info) {
 340		switch (mtd->type) {
 341		case MTD_RAM:
 342			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
 343			break;
 344		case MTD_ROM:
 345			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
 346			break;
 347		default:
 348			mtd->backing_dev_info = &mtd_bdi_unmappable;
 349			break;
 350		}
 351	}
 352
 353	BUG_ON(mtd->writesize == 0);
 354	mutex_lock(&mtd_table_mutex);
 355
 356	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 357	if (i < 0)
 
 
 
 
 
 358		goto fail_locked;
 359
 360	mtd->index = i;
 361	mtd->usecount = 0;
 362
 363	/* default value if not set by driver */
 364	if (mtd->bitflip_threshold == 0)
 365		mtd->bitflip_threshold = mtd->ecc_strength;
 366
 367	if (is_power_of_2(mtd->erasesize))
 368		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 369	else
 370		mtd->erasesize_shift = 0;
 371
 372	if (is_power_of_2(mtd->writesize))
 373		mtd->writesize_shift = ffs(mtd->writesize) - 1;
 374	else
 375		mtd->writesize_shift = 0;
 376
 377	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 378	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 379
 380	/* Some chips always power up locked. Unlock them now */
 381	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 382		error = mtd_unlock(mtd, 0, mtd->size);
 383		if (error && error != -EOPNOTSUPP)
 384			printk(KERN_WARNING
 385			       "%s: unlock failed, writes may not work\n",
 386			       mtd->name);
 387	}
 388
 389	/* Caller should have set dev.parent to match the
 390	 * physical device.
 391	 */
 392	mtd->dev.type = &mtd_devtype;
 393	mtd->dev.class = &mtd_class;
 394	mtd->dev.devt = MTD_DEVT(i);
 395	dev_set_name(&mtd->dev, "mtd%d", i);
 396	dev_set_drvdata(&mtd->dev, mtd);
 397	if (device_register(&mtd->dev) != 0)
 398		goto fail_added;
 399
 400	if (MTD_DEVT(i))
 401		device_create(&mtd_class, mtd->dev.parent,
 402			      MTD_DEVT(i) + 1,
 403			      NULL, "mtd%dro", i);
 404
 405	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 406	/* No need to get a refcount on the module containing
 407	   the notifier, since we hold the mtd_table_mutex */
 408	list_for_each_entry(not, &mtd_notifiers, list)
 409		not->add(mtd);
 410
 411	mutex_unlock(&mtd_table_mutex);
 412	/* We _know_ we aren't being removed, because
 413	   our caller is still holding us here. So none
 414	   of this try_ nonsense, and no bitching about it
 415	   either. :) */
 416	__module_get(THIS_MODULE);
 417	return 0;
 418
 419fail_added:
 420	idr_remove(&mtd_idr, i);
 421fail_locked:
 422	mutex_unlock(&mtd_table_mutex);
 423	return 1;
 424}
 425
 426/**
 427 *	del_mtd_device - unregister an MTD device
 428 *	@mtd: pointer to MTD device info structure
 429 *
 430 *	Remove a device from the list of MTD devices present in the system,
 431 *	and notify each currently active MTD 'user' of its departure.
 432 *	Returns zero on success or 1 on failure, which currently will happen
 433 *	if the requested device does not appear to be present in the list.
 434 */
 435
 436int del_mtd_device(struct mtd_info *mtd)
 437{
 438	int ret;
 439	struct mtd_notifier *not;
 440
 441	mutex_lock(&mtd_table_mutex);
 442
 443	if (idr_find(&mtd_idr, mtd->index) != mtd) {
 444		ret = -ENODEV;
 445		goto out_error;
 446	}
 447
 448	/* No need to get a refcount on the module containing
 449		the notifier, since we hold the mtd_table_mutex */
 450	list_for_each_entry(not, &mtd_notifiers, list)
 451		not->remove(mtd);
 452
 453	if (mtd->usecount) {
 454		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 455		       mtd->index, mtd->name, mtd->usecount);
 456		ret = -EBUSY;
 457	} else {
 458		device_unregister(&mtd->dev);
 459
 460		idr_remove(&mtd_idr, mtd->index);
 461
 462		module_put(THIS_MODULE);
 463		ret = 0;
 464	}
 465
 466out_error:
 467	mutex_unlock(&mtd_table_mutex);
 468	return ret;
 469}
 470
 471/**
 472 * mtd_device_parse_register - parse partitions and register an MTD device.
 473 *
 474 * @mtd: the MTD device to register
 475 * @types: the list of MTD partition probes to try, see
 476 *         'parse_mtd_partitions()' for more information
 477 * @parser_data: MTD partition parser-specific data
 478 * @parts: fallback partition information to register, if parsing fails;
 479 *         only valid if %nr_parts > %0
 480 * @nr_parts: the number of partitions in parts, if zero then the full
 481 *            MTD device is registered if no partition info is found
 482 *
 483 * This function aggregates MTD partitions parsing (done by
 484 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 485 * basically follows the most common pattern found in many MTD drivers:
 486 *
 487 * * It first tries to probe partitions on MTD device @mtd using parsers
 488 *   specified in @types (if @types is %NULL, then the default list of parsers
 489 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 490 *   found this functions tries to fallback to information specified in
 491 *   @parts/@nr_parts.
 492 * * If any partitioning info was found, this function registers the found
 493 *   partitions.
 494 * * If no partitions were found this function just registers the MTD device
 495 *   @mtd and exits.
 496 *
 497 * Returns zero in case of success and a negative error code in case of failure.
 498 */
 499int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 500			      struct mtd_part_parser_data *parser_data,
 501			      const struct mtd_partition *parts,
 502			      int nr_parts)
 503{
 504	int err;
 505	struct mtd_partition *real_parts;
 506
 507	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
 508	if (err <= 0 && nr_parts && parts) {
 509		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
 510				     GFP_KERNEL);
 511		if (!real_parts)
 512			err = -ENOMEM;
 513		else
 514			err = nr_parts;
 515	}
 516
 517	if (err > 0) {
 518		err = add_mtd_partitions(mtd, real_parts, err);
 519		kfree(real_parts);
 520	} else if (err == 0) {
 521		err = add_mtd_device(mtd);
 522		if (err == 1)
 523			err = -ENODEV;
 524	}
 525
 526	return err;
 527}
 528EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 529
 530/**
 531 * mtd_device_unregister - unregister an existing MTD device.
 532 *
 533 * @master: the MTD device to unregister.  This will unregister both the master
 534 *          and any partitions if registered.
 535 */
 536int mtd_device_unregister(struct mtd_info *master)
 537{
 538	int err;
 539
 540	err = del_mtd_partitions(master);
 541	if (err)
 542		return err;
 543
 544	if (!device_is_registered(&master->dev))
 545		return 0;
 546
 547	return del_mtd_device(master);
 548}
 549EXPORT_SYMBOL_GPL(mtd_device_unregister);
 550
 551/**
 552 *	register_mtd_user - register a 'user' of MTD devices.
 553 *	@new: pointer to notifier info structure
 554 *
 555 *	Registers a pair of callbacks function to be called upon addition
 556 *	or removal of MTD devices. Causes the 'add' callback to be immediately
 557 *	invoked for each MTD device currently present in the system.
 558 */
 
 559void register_mtd_user (struct mtd_notifier *new)
 560{
 561	struct mtd_info *mtd;
 562
 563	mutex_lock(&mtd_table_mutex);
 564
 565	list_add(&new->list, &mtd_notifiers);
 566
 567	__module_get(THIS_MODULE);
 568
 569	mtd_for_each_device(mtd)
 570		new->add(mtd);
 571
 572	mutex_unlock(&mtd_table_mutex);
 573}
 574EXPORT_SYMBOL_GPL(register_mtd_user);
 575
 576/**
 577 *	unregister_mtd_user - unregister a 'user' of MTD devices.
 578 *	@old: pointer to notifier info structure
 579 *
 580 *	Removes a callback function pair from the list of 'users' to be
 581 *	notified upon addition or removal of MTD devices. Causes the
 582 *	'remove' callback to be immediately invoked for each MTD device
 583 *	currently present in the system.
 584 */
 
 585int unregister_mtd_user (struct mtd_notifier *old)
 586{
 587	struct mtd_info *mtd;
 588
 589	mutex_lock(&mtd_table_mutex);
 590
 591	module_put(THIS_MODULE);
 592
 593	mtd_for_each_device(mtd)
 594		old->remove(mtd);
 595
 596	list_del(&old->list);
 597	mutex_unlock(&mtd_table_mutex);
 598	return 0;
 599}
 600EXPORT_SYMBOL_GPL(unregister_mtd_user);
 601
 602/**
 603 *	get_mtd_device - obtain a validated handle for an MTD device
 604 *	@mtd: last known address of the required MTD device
 605 *	@num: internal device number of the required MTD device
 606 *
 607 *	Given a number and NULL address, return the num'th entry in the device
 608 *	table, if any.	Given an address and num == -1, search the device table
 609 *	for a device with that address and return if it's still present. Given
 610 *	both, return the num'th driver only if its address matches. Return
 611 *	error code if not.
 612 */
 
 613struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 614{
 615	struct mtd_info *ret = NULL, *other;
 616	int err = -ENODEV;
 617
 618	mutex_lock(&mtd_table_mutex);
 619
 620	if (num == -1) {
 621		mtd_for_each_device(other) {
 622			if (other == mtd) {
 623				ret = mtd;
 624				break;
 625			}
 626		}
 627	} else if (num >= 0) {
 628		ret = idr_find(&mtd_idr, num);
 629		if (mtd && mtd != ret)
 630			ret = NULL;
 631	}
 632
 633	if (!ret) {
 634		ret = ERR_PTR(err);
 635		goto out;
 636	}
 637
 638	err = __get_mtd_device(ret);
 639	if (err)
 640		ret = ERR_PTR(err);
 641out:
 642	mutex_unlock(&mtd_table_mutex);
 643	return ret;
 644}
 645EXPORT_SYMBOL_GPL(get_mtd_device);
 646
 647
 648int __get_mtd_device(struct mtd_info *mtd)
 649{
 650	int err;
 651
 652	if (!try_module_get(mtd->owner))
 653		return -ENODEV;
 654
 655	if (mtd->_get_device) {
 656		err = mtd->_get_device(mtd);
 657
 658		if (err) {
 659			module_put(mtd->owner);
 660			return err;
 661		}
 662	}
 663	mtd->usecount++;
 664	return 0;
 665}
 666EXPORT_SYMBOL_GPL(__get_mtd_device);
 667
 668/**
 669 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
 670 *	device name
 671 *	@name: MTD device name to open
 672 *
 673 * 	This function returns MTD device description structure in case of
 674 * 	success and an error code in case of failure.
 675 */
 
 676struct mtd_info *get_mtd_device_nm(const char *name)
 677{
 678	int err = -ENODEV;
 679	struct mtd_info *mtd = NULL, *other;
 680
 681	mutex_lock(&mtd_table_mutex);
 682
 683	mtd_for_each_device(other) {
 684		if (!strcmp(name, other->name)) {
 685			mtd = other;
 686			break;
 687		}
 688	}
 689
 690	if (!mtd)
 691		goto out_unlock;
 692
 693	err = __get_mtd_device(mtd);
 694	if (err)
 695		goto out_unlock;
 696
 697	mutex_unlock(&mtd_table_mutex);
 698	return mtd;
 699
 700out_unlock:
 701	mutex_unlock(&mtd_table_mutex);
 702	return ERR_PTR(err);
 703}
 704EXPORT_SYMBOL_GPL(get_mtd_device_nm);
 705
 706void put_mtd_device(struct mtd_info *mtd)
 707{
 708	mutex_lock(&mtd_table_mutex);
 709	__put_mtd_device(mtd);
 710	mutex_unlock(&mtd_table_mutex);
 711
 712}
 713EXPORT_SYMBOL_GPL(put_mtd_device);
 714
 715void __put_mtd_device(struct mtd_info *mtd)
 716{
 717	--mtd->usecount;
 718	BUG_ON(mtd->usecount < 0);
 719
 720	if (mtd->_put_device)
 721		mtd->_put_device(mtd);
 722
 723	module_put(mtd->owner);
 724}
 725EXPORT_SYMBOL_GPL(__put_mtd_device);
 726
 727/*
 728 * Erase is an asynchronous operation.  Device drivers are supposed
 729 * to call instr->callback() whenever the operation completes, even
 730 * if it completes with a failure.
 731 * Callers are supposed to pass a callback function and wait for it
 732 * to be called before writing to the block.
 733 */
 734int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
 735{
 736	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
 737		return -EINVAL;
 738	if (!(mtd->flags & MTD_WRITEABLE))
 739		return -EROFS;
 740	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 741	if (!instr->len) {
 742		instr->state = MTD_ERASE_DONE;
 743		mtd_erase_callback(instr);
 744		return 0;
 745	}
 746	return mtd->_erase(mtd, instr);
 747}
 748EXPORT_SYMBOL_GPL(mtd_erase);
 749
 750/*
 751 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
 752 */
 753int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 754	      void **virt, resource_size_t *phys)
 755{
 756	*retlen = 0;
 757	*virt = NULL;
 758	if (phys)
 759		*phys = 0;
 760	if (!mtd->_point)
 761		return -EOPNOTSUPP;
 762	if (from < 0 || from > mtd->size || len > mtd->size - from)
 763		return -EINVAL;
 764	if (!len)
 765		return 0;
 766	return mtd->_point(mtd, from, len, retlen, virt, phys);
 767}
 768EXPORT_SYMBOL_GPL(mtd_point);
 769
 770/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
 771int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 772{
 773	if (!mtd->_point)
 774		return -EOPNOTSUPP;
 775	if (from < 0 || from > mtd->size || len > mtd->size - from)
 776		return -EINVAL;
 777	if (!len)
 778		return 0;
 779	return mtd->_unpoint(mtd, from, len);
 780}
 781EXPORT_SYMBOL_GPL(mtd_unpoint);
 782
 783/*
 784 * Allow NOMMU mmap() to directly map the device (if not NULL)
 785 * - return the address to which the offset maps
 786 * - return -ENOSYS to indicate refusal to do the mapping
 787 */
 788unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
 789				    unsigned long offset, unsigned long flags)
 790{
 791	if (!mtd->_get_unmapped_area)
 792		return -EOPNOTSUPP;
 793	if (offset > mtd->size || len > mtd->size - offset)
 794		return -EINVAL;
 795	return mtd->_get_unmapped_area(mtd, len, offset, flags);
 796}
 797EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
 798
 799int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 800	     u_char *buf)
 801{
 802	int ret_code;
 803	*retlen = 0;
 804	if (from < 0 || from > mtd->size || len > mtd->size - from)
 805		return -EINVAL;
 806	if (!len)
 807		return 0;
 808
 809	/*
 810	 * In the absence of an error, drivers return a non-negative integer
 811	 * representing the maximum number of bitflips that were corrected on
 812	 * any one ecc region (if applicable; zero otherwise).
 813	 */
 814	ret_code = mtd->_read(mtd, from, len, retlen, buf);
 815	if (unlikely(ret_code < 0))
 816		return ret_code;
 817	if (mtd->ecc_strength == 0)
 818		return 0;	/* device lacks ecc */
 819	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
 820}
 821EXPORT_SYMBOL_GPL(mtd_read);
 822
 823int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 824	      const u_char *buf)
 825{
 826	*retlen = 0;
 827	if (to < 0 || to > mtd->size || len > mtd->size - to)
 828		return -EINVAL;
 829	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
 830		return -EROFS;
 831	if (!len)
 832		return 0;
 833	return mtd->_write(mtd, to, len, retlen, buf);
 834}
 835EXPORT_SYMBOL_GPL(mtd_write);
 836
 837/*
 838 * In blackbox flight recorder like scenarios we want to make successful writes
 839 * in interrupt context. panic_write() is only intended to be called when its
 840 * known the kernel is about to panic and we need the write to succeed. Since
 841 * the kernel is not going to be running for much longer, this function can
 842 * break locks and delay to ensure the write succeeds (but not sleep).
 843 */
 844int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 845		    const u_char *buf)
 846{
 847	*retlen = 0;
 848	if (!mtd->_panic_write)
 849		return -EOPNOTSUPP;
 850	if (to < 0 || to > mtd->size || len > mtd->size - to)
 851		return -EINVAL;
 852	if (!(mtd->flags & MTD_WRITEABLE))
 853		return -EROFS;
 854	if (!len)
 855		return 0;
 856	return mtd->_panic_write(mtd, to, len, retlen, buf);
 857}
 858EXPORT_SYMBOL_GPL(mtd_panic_write);
 859
 860int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
 861{
 862	int ret_code;
 863	ops->retlen = ops->oobretlen = 0;
 864	if (!mtd->_read_oob)
 865		return -EOPNOTSUPP;
 866	/*
 867	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
 868	 * similar to mtd->_read(), returning a non-negative integer
 869	 * representing max bitflips. In other cases, mtd->_read_oob() may
 870	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
 871	 */
 872	ret_code = mtd->_read_oob(mtd, from, ops);
 873	if (unlikely(ret_code < 0))
 874		return ret_code;
 875	if (mtd->ecc_strength == 0)
 876		return 0;	/* device lacks ecc */
 877	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
 878}
 879EXPORT_SYMBOL_GPL(mtd_read_oob);
 880
 881/*
 882 * Method to access the protection register area, present in some flash
 883 * devices. The user data is one time programmable but the factory data is read
 884 * only.
 885 */
 886int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
 887			   struct otp_info *buf)
 888{
 889	if (!mtd->_get_fact_prot_info)
 890		return -EOPNOTSUPP;
 891	if (!len)
 892		return 0;
 893	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
 894}
 895EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
 896
 897int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
 898			   size_t *retlen, u_char *buf)
 899{
 900	*retlen = 0;
 901	if (!mtd->_read_fact_prot_reg)
 902		return -EOPNOTSUPP;
 903	if (!len)
 904		return 0;
 905	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
 906}
 907EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
 908
 909int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
 910			   struct otp_info *buf)
 911{
 912	if (!mtd->_get_user_prot_info)
 913		return -EOPNOTSUPP;
 914	if (!len)
 915		return 0;
 916	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
 917}
 918EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
 919
 920int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
 921			   size_t *retlen, u_char *buf)
 922{
 923	*retlen = 0;
 924	if (!mtd->_read_user_prot_reg)
 925		return -EOPNOTSUPP;
 926	if (!len)
 927		return 0;
 928	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
 929}
 930EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
 931
 932int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
 933			    size_t *retlen, u_char *buf)
 934{
 935	int ret;
 936
 937	*retlen = 0;
 938	if (!mtd->_write_user_prot_reg)
 939		return -EOPNOTSUPP;
 940	if (!len)
 941		return 0;
 942	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
 943	if (ret)
 944		return ret;
 945
 946	/*
 947	 * If no data could be written at all, we are out of memory and
 948	 * must return -ENOSPC.
 949	 */
 950	return (*retlen) ? 0 : -ENOSPC;
 951}
 952EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
 953
 954int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
 955{
 956	if (!mtd->_lock_user_prot_reg)
 957		return -EOPNOTSUPP;
 958	if (!len)
 959		return 0;
 960	return mtd->_lock_user_prot_reg(mtd, from, len);
 961}
 962EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
 963
 964/* Chip-supported device locking */
 965int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 966{
 967	if (!mtd->_lock)
 968		return -EOPNOTSUPP;
 969	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
 970		return -EINVAL;
 971	if (!len)
 972		return 0;
 973	return mtd->_lock(mtd, ofs, len);
 974}
 975EXPORT_SYMBOL_GPL(mtd_lock);
 976
 977int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 978{
 979	if (!mtd->_unlock)
 980		return -EOPNOTSUPP;
 981	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
 982		return -EINVAL;
 983	if (!len)
 984		return 0;
 985	return mtd->_unlock(mtd, ofs, len);
 986}
 987EXPORT_SYMBOL_GPL(mtd_unlock);
 988
 989int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 990{
 991	if (!mtd->_is_locked)
 992		return -EOPNOTSUPP;
 993	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
 994		return -EINVAL;
 995	if (!len)
 996		return 0;
 997	return mtd->_is_locked(mtd, ofs, len);
 998}
 999EXPORT_SYMBOL_GPL(mtd_is_locked);
1000
1001int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1002{
1003	if (!mtd->_block_isbad)
1004		return 0;
1005	if (ofs < 0 || ofs > mtd->size)
1006		return -EINVAL;
1007	return mtd->_block_isbad(mtd, ofs);
1008}
1009EXPORT_SYMBOL_GPL(mtd_block_isbad);
1010
1011int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1012{
1013	if (!mtd->_block_markbad)
1014		return -EOPNOTSUPP;
1015	if (ofs < 0 || ofs > mtd->size)
1016		return -EINVAL;
1017	if (!(mtd->flags & MTD_WRITEABLE))
1018		return -EROFS;
1019	return mtd->_block_markbad(mtd, ofs);
1020}
1021EXPORT_SYMBOL_GPL(mtd_block_markbad);
1022
1023/*
1024 * default_mtd_writev - the default writev method
1025 * @mtd: mtd device description object pointer
1026 * @vecs: the vectors to write
1027 * @count: count of vectors in @vecs
1028 * @to: the MTD device offset to write to
1029 * @retlen: on exit contains the count of bytes written to the MTD device.
1030 *
1031 * This function returns zero in case of success and a negative error code in
1032 * case of failure.
1033 */
1034static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1035			      unsigned long count, loff_t to, size_t *retlen)
1036{
1037	unsigned long i;
1038	size_t totlen = 0, thislen;
1039	int ret = 0;
1040
1041	for (i = 0; i < count; i++) {
1042		if (!vecs[i].iov_len)
1043			continue;
1044		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1045				vecs[i].iov_base);
1046		totlen += thislen;
1047		if (ret || thislen != vecs[i].iov_len)
1048			break;
1049		to += vecs[i].iov_len;
 
 
 
1050	}
1051	*retlen = totlen;
 
1052	return ret;
1053}
1054
1055/*
1056 * mtd_writev - the vector-based MTD write method
1057 * @mtd: mtd device description object pointer
1058 * @vecs: the vectors to write
1059 * @count: count of vectors in @vecs
1060 * @to: the MTD device offset to write to
1061 * @retlen: on exit contains the count of bytes written to the MTD device.
1062 *
1063 * This function returns zero in case of success and a negative error code in
1064 * case of failure.
1065 */
1066int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1067	       unsigned long count, loff_t to, size_t *retlen)
1068{
1069	*retlen = 0;
1070	if (!(mtd->flags & MTD_WRITEABLE))
1071		return -EROFS;
1072	if (!mtd->_writev)
1073		return default_mtd_writev(mtd, vecs, count, to, retlen);
1074	return mtd->_writev(mtd, vecs, count, to, retlen);
1075}
1076EXPORT_SYMBOL_GPL(mtd_writev);
1077
1078/**
1079 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1080 * @mtd: mtd device description object pointer
1081 * @size: a pointer to the ideal or maximum size of the allocation, points
1082 *        to the actual allocation size on success.
1083 *
1084 * This routine attempts to allocate a contiguous kernel buffer up to
1085 * the specified size, backing off the size of the request exponentially
1086 * until the request succeeds or until the allocation size falls below
1087 * the system page size. This attempts to make sure it does not adversely
1088 * impact system performance, so when allocating more than one page, we
1089 * ask the memory allocator to avoid re-trying, swapping, writing back
1090 * or performing I/O.
1091 *
1092 * Note, this function also makes sure that the allocated buffer is aligned to
1093 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1094 *
1095 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1096 * to handle smaller (i.e. degraded) buffer allocations under low- or
1097 * fragmented-memory situations where such reduced allocations, from a
1098 * requested ideal, are allowed.
1099 *
1100 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1101 */
1102void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1103{
1104	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1105		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1106	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1107	void *kbuf;
1108
1109	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1110
1111	while (*size > min_alloc) {
1112		kbuf = kmalloc(*size, flags);
1113		if (kbuf)
1114			return kbuf;
1115
1116		*size >>= 1;
1117		*size = ALIGN(*size, mtd->writesize);
1118	}
1119
1120	/*
1121	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1122	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1123	 */
1124	return kmalloc(*size, GFP_KERNEL);
1125}
 
 
 
 
 
 
 
 
 
1126EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1127
1128#ifdef CONFIG_PROC_FS
1129
1130/*====================================================================*/
1131/* Support for /proc/mtd */
1132
 
 
1133static int mtd_proc_show(struct seq_file *m, void *v)
1134{
1135	struct mtd_info *mtd;
1136
1137	seq_puts(m, "dev:    size   erasesize  name\n");
1138	mutex_lock(&mtd_table_mutex);
1139	mtd_for_each_device(mtd) {
1140		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1141			   mtd->index, (unsigned long long)mtd->size,
1142			   mtd->erasesize, mtd->name);
1143	}
1144	mutex_unlock(&mtd_table_mutex);
1145	return 0;
1146}
1147
1148static int mtd_proc_open(struct inode *inode, struct file *file)
1149{
1150	return single_open(file, mtd_proc_show, NULL);
1151}
1152
1153static const struct file_operations mtd_proc_ops = {
1154	.open		= mtd_proc_open,
1155	.read		= seq_read,
1156	.llseek		= seq_lseek,
1157	.release	= single_release,
1158};
1159#endif /* CONFIG_PROC_FS */
1160
1161/*====================================================================*/
1162/* Init code */
1163
1164static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1165{
1166	int ret;
1167
1168	ret = bdi_init(bdi);
1169	if (!ret)
1170		ret = bdi_register(bdi, NULL, "%s", name);
1171
1172	if (ret)
1173		bdi_destroy(bdi);
1174
1175	return ret;
1176}
1177
1178static struct proc_dir_entry *proc_mtd;
1179
1180static int __init init_mtd(void)
1181{
1182	int ret;
1183
1184	ret = class_register(&mtd_class);
1185	if (ret)
1186		goto err_reg;
1187
1188	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1189	if (ret)
1190		goto err_bdi1;
1191
1192	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1193	if (ret)
1194		goto err_bdi2;
1195
1196	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1197	if (ret)
1198		goto err_bdi3;
1199
 
1200	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1201
1202	ret = init_mtdchar();
1203	if (ret)
1204		goto out_procfs;
1205
1206	return 0;
1207
1208out_procfs:
1209	if (proc_mtd)
1210		remove_proc_entry("mtd", NULL);
1211err_bdi3:
1212	bdi_destroy(&mtd_bdi_ro_mappable);
1213err_bdi2:
1214	bdi_destroy(&mtd_bdi_unmappable);
1215err_bdi1:
1216	class_unregister(&mtd_class);
1217err_reg:
1218	pr_err("Error registering mtd class or bdi: %d\n", ret);
1219	return ret;
1220}
1221
1222static void __exit cleanup_mtd(void)
1223{
1224	cleanup_mtdchar();
1225	if (proc_mtd)
1226		remove_proc_entry("mtd", NULL);
 
1227	class_unregister(&mtd_class);
1228	bdi_destroy(&mtd_bdi_unmappable);
1229	bdi_destroy(&mtd_bdi_ro_mappable);
1230	bdi_destroy(&mtd_bdi_rw_mappable);
1231}
1232
1233module_init(init_mtd);
1234module_exit(cleanup_mtd);
1235
1236MODULE_LICENSE("GPL");
1237MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1238MODULE_DESCRIPTION("Core MTD registration and access routines");