Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 plane module
   8 *
   9 * Each DRM plane is a layer of pixels being scanned out by the HVS.
  10 *
  11 * At atomic modeset check time, we compute the HVS display element
  12 * state that would be necessary for displaying the plane (giving us a
  13 * chance to figure out if a plane configuration is invalid), then at
  14 * atomic flush time the CRTC will ask us to write our element state
  15 * into the region of the HVS that it has allocated for us.
  16 */
  17
  18#include <drm/drm_atomic.h>
  19#include <drm/drm_atomic_helper.h>
  20#include <drm/drm_atomic_uapi.h>
  21#include <drm/drm_blend.h>
  22#include <drm/drm_drv.h>
  23#include <drm/drm_fb_dma_helper.h>
  24#include <drm/drm_fourcc.h>
  25#include <drm/drm_framebuffer.h>
  26#include <drm/drm_gem_atomic_helper.h>
  27
  28#include "uapi/drm/vc4_drm.h"
  29
  30#include "vc4_drv.h"
  31#include "vc4_regs.h"
  32
  33static const struct hvs_format {
  34	u32 drm; /* DRM_FORMAT_* */
  35	u32 hvs; /* HVS_FORMAT_* */
  36	u32 pixel_order;
  37	u32 pixel_order_hvs5;
  38	bool hvs5_only;
  39} hvs_formats[] = {
  40	{
  41		.drm = DRM_FORMAT_XRGB8888,
  42		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  43		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  44		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  45	},
  46	{
  47		.drm = DRM_FORMAT_ARGB8888,
  48		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  49		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  50		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  51	},
  52	{
  53		.drm = DRM_FORMAT_ABGR8888,
  54		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  55		.pixel_order = HVS_PIXEL_ORDER_ARGB,
  56		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
  57	},
  58	{
  59		.drm = DRM_FORMAT_XBGR8888,
  60		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  61		.pixel_order = HVS_PIXEL_ORDER_ARGB,
  62		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
  63	},
  64	{
  65		.drm = DRM_FORMAT_RGB565,
  66		.hvs = HVS_PIXEL_FORMAT_RGB565,
  67		.pixel_order = HVS_PIXEL_ORDER_XRGB,
  68		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XRGB,
  69	},
  70	{
  71		.drm = DRM_FORMAT_BGR565,
  72		.hvs = HVS_PIXEL_FORMAT_RGB565,
  73		.pixel_order = HVS_PIXEL_ORDER_XBGR,
  74		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XBGR,
  75	},
  76	{
  77		.drm = DRM_FORMAT_ARGB1555,
  78		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
  79		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  80		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  81	},
  82	{
  83		.drm = DRM_FORMAT_XRGB1555,
  84		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
  85		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  86		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  87	},
  88	{
  89		.drm = DRM_FORMAT_RGB888,
  90		.hvs = HVS_PIXEL_FORMAT_RGB888,
  91		.pixel_order = HVS_PIXEL_ORDER_XRGB,
  92		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XRGB,
  93	},
  94	{
  95		.drm = DRM_FORMAT_BGR888,
  96		.hvs = HVS_PIXEL_FORMAT_RGB888,
  97		.pixel_order = HVS_PIXEL_ORDER_XBGR,
  98		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XBGR,
  99	},
 100	{
 101		.drm = DRM_FORMAT_YUV422,
 102		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
 103		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 104		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 105	},
 106	{
 107		.drm = DRM_FORMAT_YVU422,
 108		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
 109		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 110		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 111	},
 112	{
 113		.drm = DRM_FORMAT_YUV420,
 114		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
 115		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 116		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 117	},
 118	{
 119		.drm = DRM_FORMAT_YVU420,
 120		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
 121		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 122		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 123	},
 124	{
 125		.drm = DRM_FORMAT_NV12,
 126		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
 127		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 128		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 129	},
 130	{
 131		.drm = DRM_FORMAT_NV21,
 132		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
 133		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 134		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 135	},
 136	{
 137		.drm = DRM_FORMAT_NV16,
 138		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
 139		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 140		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 141	},
 142	{
 143		.drm = DRM_FORMAT_NV61,
 144		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
 145		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 146		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 147	},
 148	{
 149		.drm = DRM_FORMAT_P030,
 150		.hvs = HVS_PIXEL_FORMAT_YCBCR_10BIT,
 151		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 152		.hvs5_only = true,
 153	},
 154	{
 155		.drm = DRM_FORMAT_XRGB2101010,
 156		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
 157		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 158		.hvs5_only = true,
 159	},
 160	{
 161		.drm = DRM_FORMAT_ARGB2101010,
 162		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
 163		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 164		.hvs5_only = true,
 165	},
 166	{
 167		.drm = DRM_FORMAT_ABGR2101010,
 168		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
 169		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 170		.hvs5_only = true,
 171	},
 172	{
 173		.drm = DRM_FORMAT_XBGR2101010,
 174		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
 175		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 176		.hvs5_only = true,
 177	},
 178	{
 179		.drm = DRM_FORMAT_RGB332,
 180		.hvs = HVS_PIXEL_FORMAT_RGB332,
 181		.pixel_order = HVS_PIXEL_ORDER_ARGB,
 182		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 183	},
 184	{
 185		.drm = DRM_FORMAT_BGR233,
 186		.hvs = HVS_PIXEL_FORMAT_RGB332,
 187		.pixel_order = HVS_PIXEL_ORDER_ABGR,
 188		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 189	},
 190	{
 191		.drm = DRM_FORMAT_XRGB4444,
 192		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 193		.pixel_order = HVS_PIXEL_ORDER_ABGR,
 194		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 195	},
 196	{
 197		.drm = DRM_FORMAT_ARGB4444,
 198		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 199		.pixel_order = HVS_PIXEL_ORDER_ABGR,
 200		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 201	},
 202	{
 203		.drm = DRM_FORMAT_XBGR4444,
 204		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 205		.pixel_order = HVS_PIXEL_ORDER_ARGB,
 206		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 207	},
 208	{
 209		.drm = DRM_FORMAT_ABGR4444,
 210		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 211		.pixel_order = HVS_PIXEL_ORDER_ARGB,
 212		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 213	},
 214	{
 215		.drm = DRM_FORMAT_BGRX4444,
 216		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 217		.pixel_order = HVS_PIXEL_ORDER_RGBA,
 218		.pixel_order_hvs5 = HVS_PIXEL_ORDER_BGRA,
 219	},
 220	{
 221		.drm = DRM_FORMAT_BGRA4444,
 222		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 223		.pixel_order = HVS_PIXEL_ORDER_RGBA,
 224		.pixel_order_hvs5 = HVS_PIXEL_ORDER_BGRA,
 225	},
 226	{
 227		.drm = DRM_FORMAT_RGBX4444,
 228		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 229		.pixel_order = HVS_PIXEL_ORDER_BGRA,
 230		.pixel_order_hvs5 = HVS_PIXEL_ORDER_RGBA,
 231	},
 232	{
 233		.drm = DRM_FORMAT_RGBA4444,
 234		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 235		.pixel_order = HVS_PIXEL_ORDER_BGRA,
 236		.pixel_order_hvs5 = HVS_PIXEL_ORDER_RGBA,
 237	},
 238};
 239
 240static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
 241{
 242	unsigned i;
 243
 244	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
 245		if (hvs_formats[i].drm == drm_format)
 246			return &hvs_formats[i];
 247	}
 248
 249	return NULL;
 250}
 251
 252static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
 253{
 254	if (dst == src)
 255		return VC4_SCALING_NONE;
 256	if (3 * dst >= 2 * src)
 257		return VC4_SCALING_PPF;
 258	else
 259		return VC4_SCALING_TPZ;
 260}
 261
 262static bool plane_enabled(struct drm_plane_state *state)
 263{
 264	return state->fb && !WARN_ON(!state->crtc);
 265}
 266
 267static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
 268{
 269	struct vc4_plane_state *vc4_state;
 270
 271	if (WARN_ON(!plane->state))
 272		return NULL;
 273
 274	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
 275	if (!vc4_state)
 276		return NULL;
 277
 278	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
 279	vc4_state->dlist_initialized = 0;
 280
 281	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
 282
 283	if (vc4_state->dlist) {
 284		vc4_state->dlist = kmemdup(vc4_state->dlist,
 285					   vc4_state->dlist_count * 4,
 286					   GFP_KERNEL);
 287		if (!vc4_state->dlist) {
 288			kfree(vc4_state);
 289			return NULL;
 290		}
 291		vc4_state->dlist_size = vc4_state->dlist_count;
 292	}
 293
 294	return &vc4_state->base;
 295}
 296
 297static void vc4_plane_destroy_state(struct drm_plane *plane,
 298				    struct drm_plane_state *state)
 299{
 300	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
 301	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 302
 303	if (drm_mm_node_allocated(&vc4_state->lbm)) {
 304		unsigned long irqflags;
 305
 306		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
 307		drm_mm_remove_node(&vc4_state->lbm);
 308		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
 309	}
 310
 311	kfree(vc4_state->dlist);
 312	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
 313	kfree(state);
 314}
 315
 316/* Called during init to allocate the plane's atomic state. */
 317static void vc4_plane_reset(struct drm_plane *plane)
 318{
 319	struct vc4_plane_state *vc4_state;
 320
 321	WARN_ON(plane->state);
 322
 323	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 324	if (!vc4_state)
 325		return;
 326
 327	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
 328}
 329
 330static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
 331{
 332	if (vc4_state->dlist_count == vc4_state->dlist_size) {
 333		u32 new_size = max(4u, vc4_state->dlist_count * 2);
 334		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
 335
 336		if (!new_dlist)
 337			return;
 338		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
 339
 340		kfree(vc4_state->dlist);
 341		vc4_state->dlist = new_dlist;
 342		vc4_state->dlist_size = new_size;
 343	}
 344
 345	vc4_state->dlist_count++;
 346}
 347
 348static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
 349{
 350	unsigned int idx = vc4_state->dlist_count;
 351
 352	vc4_dlist_counter_increment(vc4_state);
 353	vc4_state->dlist[idx] = val;
 354}
 355
 356/* Returns the scl0/scl1 field based on whether the dimensions need to
 357 * be up/down/non-scaled.
 358 *
 359 * This is a replication of a table from the spec.
 360 */
 361static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
 362{
 363	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 364
 365	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
 366	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
 367		return SCALER_CTL0_SCL_H_PPF_V_PPF;
 368	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
 369		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
 370	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
 371		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
 372	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
 373		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
 374	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
 375		return SCALER_CTL0_SCL_H_PPF_V_NONE;
 376	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
 377		return SCALER_CTL0_SCL_H_NONE_V_PPF;
 378	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
 379		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
 380	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
 381		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
 382	default:
 383	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
 384		/* The unity case is independently handled by
 385		 * SCALER_CTL0_UNITY.
 386		 */
 387		return 0;
 388	}
 389}
 390
 391static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
 392{
 393	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
 394	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
 395	struct drm_crtc_state *crtc_state;
 396
 397	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
 398						   pstate->crtc);
 399
 400	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
 401	if (!left && !right && !top && !bottom)
 402		return 0;
 403
 404	if (left + right >= crtc_state->mode.hdisplay ||
 405	    top + bottom >= crtc_state->mode.vdisplay)
 406		return -EINVAL;
 407
 408	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
 409	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
 410					       adjhdisplay,
 411					       crtc_state->mode.hdisplay);
 412	vc4_pstate->crtc_x += left;
 413	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - right)
 414		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - right;
 415
 416	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
 417	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
 418					       adjvdisplay,
 419					       crtc_state->mode.vdisplay);
 420	vc4_pstate->crtc_y += top;
 421	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - bottom)
 422		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - bottom;
 423
 424	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
 425					       adjhdisplay,
 426					       crtc_state->mode.hdisplay);
 427	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
 428					       adjvdisplay,
 429					       crtc_state->mode.vdisplay);
 430
 431	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
 432		return -EINVAL;
 433
 434	return 0;
 435}
 436
 437static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
 438{
 439	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 440	struct drm_framebuffer *fb = state->fb;
 441	struct drm_gem_dma_object *bo;
 442	int num_planes = fb->format->num_planes;
 443	struct drm_crtc_state *crtc_state;
 444	u32 h_subsample = fb->format->hsub;
 445	u32 v_subsample = fb->format->vsub;
 446	int i, ret;
 447
 448	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
 449							state->crtc);
 450	if (!crtc_state) {
 451		DRM_DEBUG_KMS("Invalid crtc state\n");
 452		return -EINVAL;
 453	}
 454
 455	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
 456						  INT_MAX, true, true);
 457	if (ret)
 458		return ret;
 459
 460	for (i = 0; i < num_planes; i++) {
 461		bo = drm_fb_dma_get_gem_obj(fb, i);
 462		vc4_state->offsets[i] = bo->dma_addr + fb->offsets[i];
 463	}
 464
 465	/*
 466	 * We don't support subpixel source positioning for scaling,
 467	 * but fractional coordinates can be generated by clipping
 468	 * so just round for now
 469	 */
 470	vc4_state->src_x = DIV_ROUND_CLOSEST(state->src.x1, 1 << 16);
 471	vc4_state->src_y = DIV_ROUND_CLOSEST(state->src.y1, 1 << 16);
 472	vc4_state->src_w[0] = DIV_ROUND_CLOSEST(state->src.x2, 1 << 16) - vc4_state->src_x;
 473	vc4_state->src_h[0] = DIV_ROUND_CLOSEST(state->src.y2, 1 << 16) - vc4_state->src_y;
 474
 475	vc4_state->crtc_x = state->dst.x1;
 476	vc4_state->crtc_y = state->dst.y1;
 477	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
 478	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
 479
 480	ret = vc4_plane_margins_adj(state);
 481	if (ret)
 482		return ret;
 483
 484	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
 485						       vc4_state->crtc_w);
 486	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
 487						       vc4_state->crtc_h);
 488
 489	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
 490			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
 491
 492	if (num_planes > 1) {
 493		vc4_state->is_yuv = true;
 494
 495		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
 496		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
 497
 498		vc4_state->x_scaling[1] =
 499			vc4_get_scaling_mode(vc4_state->src_w[1],
 500					     vc4_state->crtc_w);
 501		vc4_state->y_scaling[1] =
 502			vc4_get_scaling_mode(vc4_state->src_h[1],
 503					     vc4_state->crtc_h);
 504
 505		/* YUV conversion requires that horizontal scaling be enabled
 506		 * on the UV plane even if vc4_get_scaling_mode() returned
 507		 * VC4_SCALING_NONE (which can happen when the down-scaling
 508		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
 509		 * case.
 510		 */
 511		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
 512			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
 513	} else {
 514		vc4_state->is_yuv = false;
 515		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
 516		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
 517	}
 518
 519	return 0;
 520}
 521
 522static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
 523{
 524	u32 scale, recip;
 525
 526	scale = (1 << 16) * src / dst;
 527
 528	/* The specs note that while the reciprocal would be defined
 529	 * as (1<<32)/scale, ~0 is close enough.
 530	 */
 531	recip = ~0 / scale;
 532
 533	vc4_dlist_write(vc4_state,
 534			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
 535			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
 536	vc4_dlist_write(vc4_state,
 537			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
 538}
 539
 540static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
 541{
 542	u32 scale = (1 << 16) * src / dst;
 543
 544	vc4_dlist_write(vc4_state,
 545			SCALER_PPF_AGC |
 546			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
 547			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
 548}
 549
 550static u32 vc4_lbm_size(struct drm_plane_state *state)
 551{
 552	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 553	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
 554	u32 pix_per_line;
 555	u32 lbm;
 556
 557	/* LBM is not needed when there's no vertical scaling. */
 558	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
 559	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
 560		return 0;
 561
 562	/*
 563	 * This can be further optimized in the RGB/YUV444 case if the PPF
 564	 * decimation factor is between 0.5 and 1.0 by using crtc_w.
 565	 *
 566	 * It's not an issue though, since in that case since src_w[0] is going
 567	 * to be greater than or equal to crtc_w.
 568	 */
 569	if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
 570		pix_per_line = vc4_state->crtc_w;
 571	else
 572		pix_per_line = vc4_state->src_w[0];
 573
 574	if (!vc4_state->is_yuv) {
 575		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
 576			lbm = pix_per_line * 8;
 577		else {
 578			/* In special cases, this multiplier might be 12. */
 579			lbm = pix_per_line * 16;
 580		}
 581	} else {
 582		/* There are cases for this going down to a multiplier
 583		 * of 2, but according to the firmware source, the
 584		 * table in the docs is somewhat wrong.
 585		 */
 586		lbm = pix_per_line * 16;
 587	}
 588
 589	/* Align it to 64 or 128 (hvs5) bytes */
 590	lbm = roundup(lbm, vc4->is_vc5 ? 128 : 64);
 591
 592	/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
 593	lbm /= vc4->is_vc5 ? 4 : 2;
 594
 595	return lbm;
 596}
 597
 598static void vc4_write_scaling_parameters(struct drm_plane_state *state,
 599					 int channel)
 600{
 601	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 602
 603	/* Ch0 H-PPF Word 0: Scaling Parameters */
 604	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
 605		vc4_write_ppf(vc4_state,
 606			      vc4_state->src_w[channel], vc4_state->crtc_w);
 607	}
 608
 609	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
 610	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
 611		vc4_write_ppf(vc4_state,
 612			      vc4_state->src_h[channel], vc4_state->crtc_h);
 613		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 614	}
 615
 616	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
 617	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
 618		vc4_write_tpz(vc4_state,
 619			      vc4_state->src_w[channel], vc4_state->crtc_w);
 620	}
 621
 622	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
 623	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
 624		vc4_write_tpz(vc4_state,
 625			      vc4_state->src_h[channel], vc4_state->crtc_h);
 626		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 627	}
 628}
 629
 630static void vc4_plane_calc_load(struct drm_plane_state *state)
 631{
 632	unsigned int hvs_load_shift, vrefresh, i;
 633	struct drm_framebuffer *fb = state->fb;
 634	struct vc4_plane_state *vc4_state;
 635	struct drm_crtc_state *crtc_state;
 636	unsigned int vscale_factor;
 637
 638	vc4_state = to_vc4_plane_state(state);
 639	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
 640							state->crtc);
 641	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
 642
 643	/* The HVS is able to process 2 pixels/cycle when scaling the source,
 644	 * 4 pixels/cycle otherwise.
 645	 * Alpha blending step seems to be pipelined and it's always operating
 646	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
 647	 * scaler block.
 648	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
 649	 */
 650	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
 651	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
 652	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
 653	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
 654		hvs_load_shift = 1;
 655	else
 656		hvs_load_shift = 2;
 657
 658	vc4_state->membus_load = 0;
 659	vc4_state->hvs_load = 0;
 660	for (i = 0; i < fb->format->num_planes; i++) {
 661		/* Even if the bandwidth/plane required for a single frame is
 662		 *
 663		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
 664		 *
 665		 * when downscaling, we have to read more pixels per line in
 666		 * the time frame reserved for a single line, so the bandwidth
 667		 * demand can be punctually higher. To account for that, we
 668		 * calculate the down-scaling factor and multiply the plane
 669		 * load by this number. We're likely over-estimating the read
 670		 * demand, but that's better than under-estimating it.
 671		 */
 672		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
 673					     vc4_state->crtc_h);
 674		vc4_state->membus_load += vc4_state->src_w[i] *
 675					  vc4_state->src_h[i] * vscale_factor *
 676					  fb->format->cpp[i];
 677		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
 678	}
 679
 680	vc4_state->hvs_load *= vrefresh;
 681	vc4_state->hvs_load >>= hvs_load_shift;
 682	vc4_state->membus_load *= vrefresh;
 683}
 684
 685static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
 686{
 687	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
 688	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 689	unsigned long irqflags;
 690	u32 lbm_size;
 691
 692	lbm_size = vc4_lbm_size(state);
 693	if (!lbm_size)
 694		return 0;
 695
 696	if (WARN_ON(!vc4_state->lbm_offset))
 697		return -EINVAL;
 698
 699	/* Allocate the LBM memory that the HVS will use for temporary
 700	 * storage due to our scaling/format conversion.
 701	 */
 702	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
 703		int ret;
 704
 705		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
 706		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
 707						 &vc4_state->lbm,
 708						 lbm_size,
 709						 vc4->is_vc5 ? 64 : 32,
 710						 0, 0);
 711		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
 712
 713		if (ret)
 714			return ret;
 715	} else {
 716		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
 717	}
 718
 719	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
 720
 721	return 0;
 722}
 723
 724/*
 725 * The colorspace conversion matrices are held in 3 entries in the dlist.
 726 * Create an array of them, with entries for each full and limited mode, and
 727 * each supported colorspace.
 728 */
 729static const u32 colorspace_coeffs[2][DRM_COLOR_ENCODING_MAX][3] = {
 730	{
 731		/* Limited range */
 732		{
 733			/* BT601 */
 734			SCALER_CSC0_ITR_R_601_5,
 735			SCALER_CSC1_ITR_R_601_5,
 736			SCALER_CSC2_ITR_R_601_5,
 737		}, {
 738			/* BT709 */
 739			SCALER_CSC0_ITR_R_709_3,
 740			SCALER_CSC1_ITR_R_709_3,
 741			SCALER_CSC2_ITR_R_709_3,
 742		}, {
 743			/* BT2020 */
 744			SCALER_CSC0_ITR_R_2020,
 745			SCALER_CSC1_ITR_R_2020,
 746			SCALER_CSC2_ITR_R_2020,
 747		}
 748	}, {
 749		/* Full range */
 750		{
 751			/* JFIF */
 752			SCALER_CSC0_JPEG_JFIF,
 753			SCALER_CSC1_JPEG_JFIF,
 754			SCALER_CSC2_JPEG_JFIF,
 755		}, {
 756			/* BT709 */
 757			SCALER_CSC0_ITR_R_709_3_FR,
 758			SCALER_CSC1_ITR_R_709_3_FR,
 759			SCALER_CSC2_ITR_R_709_3_FR,
 760		}, {
 761			/* BT2020 */
 762			SCALER_CSC0_ITR_R_2020_FR,
 763			SCALER_CSC1_ITR_R_2020_FR,
 764			SCALER_CSC2_ITR_R_2020_FR,
 765		}
 766	}
 767};
 768
 769static u32 vc4_hvs4_get_alpha_blend_mode(struct drm_plane_state *state)
 770{
 771	if (!state->fb->format->has_alpha)
 772		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
 773				     SCALER_POS2_ALPHA_MODE);
 774
 775	switch (state->pixel_blend_mode) {
 776	case DRM_MODE_BLEND_PIXEL_NONE:
 777		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
 778				     SCALER_POS2_ALPHA_MODE);
 779	default:
 780	case DRM_MODE_BLEND_PREMULTI:
 781		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
 782				     SCALER_POS2_ALPHA_MODE) |
 783			SCALER_POS2_ALPHA_PREMULT;
 784	case DRM_MODE_BLEND_COVERAGE:
 785		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
 786				     SCALER_POS2_ALPHA_MODE);
 787	}
 788}
 789
 790static u32 vc4_hvs5_get_alpha_blend_mode(struct drm_plane_state *state)
 791{
 792	if (!state->fb->format->has_alpha)
 793		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
 794				     SCALER5_CTL2_ALPHA_MODE);
 795
 796	switch (state->pixel_blend_mode) {
 797	case DRM_MODE_BLEND_PIXEL_NONE:
 798		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
 799				     SCALER5_CTL2_ALPHA_MODE);
 800	default:
 801	case DRM_MODE_BLEND_PREMULTI:
 802		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
 803				     SCALER5_CTL2_ALPHA_MODE) |
 804			SCALER5_CTL2_ALPHA_PREMULT;
 805	case DRM_MODE_BLEND_COVERAGE:
 806		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
 807				     SCALER5_CTL2_ALPHA_MODE);
 808	}
 809}
 810
 811/* Writes out a full display list for an active plane to the plane's
 812 * private dlist state.
 813 */
 814static int vc4_plane_mode_set(struct drm_plane *plane,
 815			      struct drm_plane_state *state)
 816{
 817	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
 818	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 819	struct drm_framebuffer *fb = state->fb;
 820	u32 ctl0_offset = vc4_state->dlist_count;
 821	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
 822	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
 823	int num_planes = fb->format->num_planes;
 824	u32 h_subsample = fb->format->hsub;
 825	u32 v_subsample = fb->format->vsub;
 826	bool mix_plane_alpha;
 827	bool covers_screen;
 828	u32 scl0, scl1, pitch0;
 829	u32 tiling, src_y;
 830	u32 hvs_format = format->hvs;
 831	unsigned int rotation;
 832	int ret, i;
 833
 834	if (vc4_state->dlist_initialized)
 835		return 0;
 836
 837	ret = vc4_plane_setup_clipping_and_scaling(state);
 838	if (ret)
 839		return ret;
 840
 841	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
 842	 * and 4:4:4, scl1 should be set to scl0 so both channels of
 843	 * the scaler do the same thing.  For YUV, the Y plane needs
 844	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
 845	 * the scl fields here.
 846	 */
 847	if (num_planes == 1) {
 848		scl0 = vc4_get_scl_field(state, 0);
 849		scl1 = scl0;
 850	} else {
 851		scl0 = vc4_get_scl_field(state, 1);
 852		scl1 = vc4_get_scl_field(state, 0);
 853	}
 854
 855	rotation = drm_rotation_simplify(state->rotation,
 856					 DRM_MODE_ROTATE_0 |
 857					 DRM_MODE_REFLECT_X |
 858					 DRM_MODE_REFLECT_Y);
 859
 860	/* We must point to the last line when Y reflection is enabled. */
 861	src_y = vc4_state->src_y;
 862	if (rotation & DRM_MODE_REFLECT_Y)
 863		src_y += vc4_state->src_h[0] - 1;
 864
 865	switch (base_format_mod) {
 866	case DRM_FORMAT_MOD_LINEAR:
 867		tiling = SCALER_CTL0_TILING_LINEAR;
 868		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
 869
 870		/* Adjust the base pointer to the first pixel to be scanned
 871		 * out.
 872		 */
 873		for (i = 0; i < num_planes; i++) {
 874			vc4_state->offsets[i] += src_y /
 875						 (i ? v_subsample : 1) *
 876						 fb->pitches[i];
 877
 878			vc4_state->offsets[i] += vc4_state->src_x /
 879						 (i ? h_subsample : 1) *
 880						 fb->format->cpp[i];
 881		}
 882
 883		break;
 884
 885	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
 886		u32 tile_size_shift = 12; /* T tiles are 4kb */
 887		/* Whole-tile offsets, mostly for setting the pitch. */
 888		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
 889		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
 890		u32 tile_w_mask = (1 << tile_w_shift) - 1;
 891		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
 892		 * the height (in pixels) of a 4k tile.
 893		 */
 894		u32 tile_h_mask = (2 << tile_h_shift) - 1;
 895		/* For T-tiled, the FB pitch is "how many bytes from one row to
 896		 * the next, such that
 897		 *
 898		 *	pitch * tile_h == tile_size * tiles_per_row
 899		 */
 900		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
 901		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
 902		u32 tiles_r = tiles_w - tiles_l;
 903		u32 tiles_t = src_y >> tile_h_shift;
 904		/* Intra-tile offsets, which modify the base address (the
 905		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
 906		 * base address).
 907		 */
 908		u32 tile_y = (src_y >> 4) & 1;
 909		u32 subtile_y = (src_y >> 2) & 3;
 910		u32 utile_y = src_y & 3;
 911		u32 x_off = vc4_state->src_x & tile_w_mask;
 912		u32 y_off = src_y & tile_h_mask;
 913
 914		/* When Y reflection is requested we must set the
 915		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
 916		 * after the initial one should be fetched in descending order,
 917		 * which makes sense since we start from the last line and go
 918		 * backward.
 919		 * Don't know why we need y_off = max_y_off - y_off, but it's
 920		 * definitely required (I guess it's also related to the "going
 921		 * backward" situation).
 922		 */
 923		if (rotation & DRM_MODE_REFLECT_Y) {
 924			y_off = tile_h_mask - y_off;
 925			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
 926		} else {
 927			pitch0 = 0;
 928		}
 929
 930		tiling = SCALER_CTL0_TILING_256B_OR_T;
 931		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
 932			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
 933			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
 934			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
 935		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
 936		vc4_state->offsets[0] += subtile_y << 8;
 937		vc4_state->offsets[0] += utile_y << 4;
 938
 939		/* Rows of tiles alternate left-to-right and right-to-left. */
 940		if (tiles_t & 1) {
 941			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
 942			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
 943						 tile_size_shift;
 944			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
 945		} else {
 946			vc4_state->offsets[0] += tiles_l << tile_size_shift;
 947			vc4_state->offsets[0] += tile_y << 10;
 948		}
 949
 950		break;
 951	}
 952
 953	case DRM_FORMAT_MOD_BROADCOM_SAND64:
 954	case DRM_FORMAT_MOD_BROADCOM_SAND128:
 955	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
 956		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
 957
 958		if (param > SCALER_TILE_HEIGHT_MASK) {
 959			DRM_DEBUG_KMS("SAND height too large (%d)\n",
 960				      param);
 961			return -EINVAL;
 962		}
 963
 964		if (fb->format->format == DRM_FORMAT_P030) {
 965			hvs_format = HVS_PIXEL_FORMAT_YCBCR_10BIT;
 966			tiling = SCALER_CTL0_TILING_128B;
 967		} else {
 968			hvs_format = HVS_PIXEL_FORMAT_H264;
 969
 970			switch (base_format_mod) {
 971			case DRM_FORMAT_MOD_BROADCOM_SAND64:
 972				tiling = SCALER_CTL0_TILING_64B;
 973				break;
 974			case DRM_FORMAT_MOD_BROADCOM_SAND128:
 975				tiling = SCALER_CTL0_TILING_128B;
 976				break;
 977			case DRM_FORMAT_MOD_BROADCOM_SAND256:
 978				tiling = SCALER_CTL0_TILING_256B_OR_T;
 979				break;
 980			default:
 981				return -EINVAL;
 982			}
 983		}
 984
 985		/* Adjust the base pointer to the first pixel to be scanned
 986		 * out.
 987		 *
 988		 * For P030, y_ptr [31:4] is the 128bit word for the start pixel
 989		 * y_ptr [3:0] is the pixel (0-11) contained within that 128bit
 990		 * word that should be taken as the first pixel.
 991		 * Ditto uv_ptr [31:4] vs [3:0], however [3:0] contains the
 992		 * element within the 128bit word, eg for pixel 3 the value
 993		 * should be 6.
 994		 */
 995		for (i = 0; i < num_planes; i++) {
 996			u32 tile_w, tile, x_off, pix_per_tile;
 997
 998			if (fb->format->format == DRM_FORMAT_P030) {
 999				/*
1000				 * Spec says: bits [31:4] of the given address
1001				 * should point to the 128-bit word containing
1002				 * the desired starting pixel, and bits[3:0]
1003				 * should be between 0 and 11, indicating which
1004				 * of the 12-pixels in that 128-bit word is the
1005				 * first pixel to be used
1006				 */
1007				u32 remaining_pixels = vc4_state->src_x % 96;
1008				u32 aligned = remaining_pixels / 12;
1009				u32 last_bits = remaining_pixels % 12;
1010
1011				x_off = aligned * 16 + last_bits;
1012				tile_w = 128;
1013				pix_per_tile = 96;
1014			} else {
1015				switch (base_format_mod) {
1016				case DRM_FORMAT_MOD_BROADCOM_SAND64:
1017					tile_w = 64;
1018					break;
1019				case DRM_FORMAT_MOD_BROADCOM_SAND128:
1020					tile_w = 128;
1021					break;
1022				case DRM_FORMAT_MOD_BROADCOM_SAND256:
1023					tile_w = 256;
1024					break;
1025				default:
1026					return -EINVAL;
1027				}
1028				pix_per_tile = tile_w / fb->format->cpp[0];
1029				x_off = (vc4_state->src_x % pix_per_tile) /
1030					(i ? h_subsample : 1) *
1031					fb->format->cpp[i];
1032			}
1033
1034			tile = vc4_state->src_x / pix_per_tile;
1035
1036			vc4_state->offsets[i] += param * tile_w * tile;
1037			vc4_state->offsets[i] += src_y /
1038						 (i ? v_subsample : 1) *
1039						 tile_w;
1040			vc4_state->offsets[i] += x_off & ~(i ? 1 : 0);
1041		}
1042
1043		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
1044		break;
1045	}
1046
1047	default:
1048		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
1049			      (long long)fb->modifier);
1050		return -EINVAL;
1051	}
1052
1053	/* Don't waste cycles mixing with plane alpha if the set alpha
1054	 * is opaque or there is no per-pixel alpha information.
1055	 * In any case we use the alpha property value as the fixed alpha.
1056	 */
1057	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
1058			  fb->format->has_alpha;
1059
1060	if (!vc4->is_vc5) {
1061	/* Control word */
1062		vc4_dlist_write(vc4_state,
1063				SCALER_CTL0_VALID |
1064				(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
1065				(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
1066				VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
1067				(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
1068				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1069				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1070				(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
1071				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1072				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
1073
1074		/* Position Word 0: Image Positions and Alpha Value */
1075		vc4_state->pos0_offset = vc4_state->dlist_count;
1076		vc4_dlist_write(vc4_state,
1077				VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
1078				VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
1079				VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
1080
1081		/* Position Word 1: Scaled Image Dimensions. */
1082		if (!vc4_state->is_unity) {
1083			vc4_dlist_write(vc4_state,
1084					VC4_SET_FIELD(vc4_state->crtc_w,
1085						      SCALER_POS1_SCL_WIDTH) |
1086					VC4_SET_FIELD(vc4_state->crtc_h,
1087						      SCALER_POS1_SCL_HEIGHT));
1088		}
1089
1090		/* Position Word 2: Source Image Size, Alpha */
1091		vc4_state->pos2_offset = vc4_state->dlist_count;
1092		vc4_dlist_write(vc4_state,
1093				(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
1094				vc4_hvs4_get_alpha_blend_mode(state) |
1095				VC4_SET_FIELD(vc4_state->src_w[0],
1096					      SCALER_POS2_WIDTH) |
1097				VC4_SET_FIELD(vc4_state->src_h[0],
1098					      SCALER_POS2_HEIGHT));
1099
1100		/* Position Word 3: Context.  Written by the HVS. */
1101		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1102
1103	} else {
1104		/* Control word */
1105		vc4_dlist_write(vc4_state,
1106				SCALER_CTL0_VALID |
1107				(format->pixel_order_hvs5 << SCALER_CTL0_ORDER_SHIFT) |
1108				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1109				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1110				(vc4_state->is_unity ?
1111						SCALER5_CTL0_UNITY : 0) |
1112				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1113				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
1114				SCALER5_CTL0_ALPHA_EXPAND |
1115				SCALER5_CTL0_RGB_EXPAND);
1116
1117		/* Position Word 0: Image Positions and Alpha Value */
1118		vc4_state->pos0_offset = vc4_state->dlist_count;
1119		vc4_dlist_write(vc4_state,
1120				(rotation & DRM_MODE_REFLECT_Y ?
1121						SCALER5_POS0_VFLIP : 0) |
1122				VC4_SET_FIELD(vc4_state->crtc_x,
1123					      SCALER_POS0_START_X) |
1124				(rotation & DRM_MODE_REFLECT_X ?
1125					      SCALER5_POS0_HFLIP : 0) |
1126				VC4_SET_FIELD(vc4_state->crtc_y,
1127					      SCALER5_POS0_START_Y)
1128			       );
1129
1130		/* Control Word 2 */
1131		vc4_dlist_write(vc4_state,
1132				VC4_SET_FIELD(state->alpha >> 4,
1133					      SCALER5_CTL2_ALPHA) |
1134				vc4_hvs5_get_alpha_blend_mode(state) |
1135				(mix_plane_alpha ?
1136					SCALER5_CTL2_ALPHA_MIX : 0)
1137			       );
1138
1139		/* Position Word 1: Scaled Image Dimensions. */
1140		if (!vc4_state->is_unity) {
1141			vc4_dlist_write(vc4_state,
1142					VC4_SET_FIELD(vc4_state->crtc_w,
1143						      SCALER5_POS1_SCL_WIDTH) |
1144					VC4_SET_FIELD(vc4_state->crtc_h,
1145						      SCALER5_POS1_SCL_HEIGHT));
1146		}
1147
1148		/* Position Word 2: Source Image Size */
1149		vc4_state->pos2_offset = vc4_state->dlist_count;
1150		vc4_dlist_write(vc4_state,
1151				VC4_SET_FIELD(vc4_state->src_w[0],
1152					      SCALER5_POS2_WIDTH) |
1153				VC4_SET_FIELD(vc4_state->src_h[0],
1154					      SCALER5_POS2_HEIGHT));
1155
1156		/* Position Word 3: Context.  Written by the HVS. */
1157		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1158	}
1159
1160
1161	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
1162	 *
1163	 * The pointers may be any byte address.
1164	 */
1165	vc4_state->ptr0_offset = vc4_state->dlist_count;
1166	for (i = 0; i < num_planes; i++)
1167		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
1168
1169	/* Pointer Context Word 0/1/2: Written by the HVS */
1170	for (i = 0; i < num_planes; i++)
1171		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1172
1173	/* Pitch word 0 */
1174	vc4_dlist_write(vc4_state, pitch0);
1175
1176	/* Pitch word 1/2 */
1177	for (i = 1; i < num_planes; i++) {
1178		if (hvs_format != HVS_PIXEL_FORMAT_H264 &&
1179		    hvs_format != HVS_PIXEL_FORMAT_YCBCR_10BIT) {
1180			vc4_dlist_write(vc4_state,
1181					VC4_SET_FIELD(fb->pitches[i],
1182						      SCALER_SRC_PITCH));
1183		} else {
1184			vc4_dlist_write(vc4_state, pitch0);
1185		}
1186	}
1187
1188	/* Colorspace conversion words */
1189	if (vc4_state->is_yuv) {
1190		enum drm_color_encoding color_encoding = state->color_encoding;
1191		enum drm_color_range color_range = state->color_range;
1192		const u32 *ccm;
1193
1194		if (color_encoding >= DRM_COLOR_ENCODING_MAX)
1195			color_encoding = DRM_COLOR_YCBCR_BT601;
1196		if (color_range >= DRM_COLOR_RANGE_MAX)
1197			color_range = DRM_COLOR_YCBCR_LIMITED_RANGE;
1198
1199		ccm = colorspace_coeffs[color_range][color_encoding];
1200
1201		vc4_dlist_write(vc4_state, ccm[0]);
1202		vc4_dlist_write(vc4_state, ccm[1]);
1203		vc4_dlist_write(vc4_state, ccm[2]);
1204	}
1205
1206	vc4_state->lbm_offset = 0;
1207
1208	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
1209	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
1210	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1211	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1212		/* Reserve a slot for the LBM Base Address. The real value will
1213		 * be set when calling vc4_plane_allocate_lbm().
1214		 */
1215		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1216		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1217			vc4_state->lbm_offset = vc4_state->dlist_count;
1218			vc4_dlist_counter_increment(vc4_state);
1219		}
1220
1221		if (num_planes > 1) {
1222			/* Emit Cb/Cr as channel 0 and Y as channel
1223			 * 1. This matches how we set up scl0/scl1
1224			 * above.
1225			 */
1226			vc4_write_scaling_parameters(state, 1);
1227		}
1228		vc4_write_scaling_parameters(state, 0);
1229
1230		/* If any PPF setup was done, then all the kernel
1231		 * pointers get uploaded.
1232		 */
1233		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1234		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1235		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1236		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1237			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1238						   SCALER_PPF_KERNEL_OFFSET);
1239
1240			/* HPPF plane 0 */
1241			vc4_dlist_write(vc4_state, kernel);
1242			/* VPPF plane 0 */
1243			vc4_dlist_write(vc4_state, kernel);
1244			/* HPPF plane 1 */
1245			vc4_dlist_write(vc4_state, kernel);
1246			/* VPPF plane 1 */
1247			vc4_dlist_write(vc4_state, kernel);
1248		}
1249	}
1250
1251	vc4_state->dlist[ctl0_offset] |=
1252		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1253
1254	/* crtc_* are already clipped coordinates. */
1255	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1256			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1257			vc4_state->crtc_h == state->crtc->mode.vdisplay;
1258	/* Background fill might be necessary when the plane has per-pixel
1259	 * alpha content or a non-opaque plane alpha and could blend from the
1260	 * background or does not cover the entire screen.
1261	 */
1262	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1263				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1264
1265	/* Flag the dlist as initialized to avoid checking it twice in case
1266	 * the async update check already called vc4_plane_mode_set() and
1267	 * decided to fallback to sync update because async update was not
1268	 * possible.
1269	 */
1270	vc4_state->dlist_initialized = 1;
1271
1272	vc4_plane_calc_load(state);
1273
1274	return 0;
1275}
1276
1277/* If a modeset involves changing the setup of a plane, the atomic
1278 * infrastructure will call this to validate a proposed plane setup.
1279 * However, if a plane isn't getting updated, this (and the
1280 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
1281 * compute the dlist here and have all active plane dlists get updated
1282 * in the CRTC's flush.
1283 */
1284static int vc4_plane_atomic_check(struct drm_plane *plane,
1285				  struct drm_atomic_state *state)
1286{
1287	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1288										 plane);
1289	struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
1290	int ret;
1291
1292	vc4_state->dlist_count = 0;
1293
1294	if (!plane_enabled(new_plane_state))
1295		return 0;
1296
1297	ret = vc4_plane_mode_set(plane, new_plane_state);
1298	if (ret)
1299		return ret;
1300
1301	return vc4_plane_allocate_lbm(new_plane_state);
1302}
1303
1304static void vc4_plane_atomic_update(struct drm_plane *plane,
1305				    struct drm_atomic_state *state)
1306{
1307	/* No contents here.  Since we don't know where in the CRTC's
1308	 * dlist we should be stored, our dlist is uploaded to the
1309	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1310	 * time.
1311	 */
1312}
1313
1314u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1315{
1316	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1317	int i;
1318	int idx;
1319
1320	if (!drm_dev_enter(plane->dev, &idx))
1321		goto out;
1322
1323	vc4_state->hw_dlist = dlist;
1324
1325	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
1326	for (i = 0; i < vc4_state->dlist_count; i++)
1327		writel(vc4_state->dlist[i], &dlist[i]);
1328
1329	drm_dev_exit(idx);
1330
1331out:
1332	return vc4_state->dlist_count;
1333}
1334
1335u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1336{
1337	const struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
1338
1339	return vc4_state->dlist_count;
1340}
1341
1342/* Updates the plane to immediately (well, once the FIFO needs
1343 * refilling) scan out from at a new framebuffer.
1344 */
1345void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1346{
1347	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1348	struct drm_gem_dma_object *bo = drm_fb_dma_get_gem_obj(fb, 0);
1349	uint32_t addr;
1350	int idx;
1351
1352	if (!drm_dev_enter(plane->dev, &idx))
1353		return;
1354
1355	/* We're skipping the address adjustment for negative origin,
1356	 * because this is only called on the primary plane.
1357	 */
1358	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1359	addr = bo->dma_addr + fb->offsets[0];
1360
1361	/* Write the new address into the hardware immediately.  The
1362	 * scanout will start from this address as soon as the FIFO
1363	 * needs to refill with pixels.
1364	 */
1365	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1366
1367	/* Also update the CPU-side dlist copy, so that any later
1368	 * atomic updates that don't do a new modeset on our plane
1369	 * also use our updated address.
1370	 */
1371	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1372
1373	drm_dev_exit(idx);
1374}
1375
1376static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1377					  struct drm_atomic_state *state)
1378{
1379	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1380										 plane);
1381	struct vc4_plane_state *vc4_state, *new_vc4_state;
1382	int idx;
1383
1384	if (!drm_dev_enter(plane->dev, &idx))
1385		return;
1386
1387	swap(plane->state->fb, new_plane_state->fb);
1388	plane->state->crtc_x = new_plane_state->crtc_x;
1389	plane->state->crtc_y = new_plane_state->crtc_y;
1390	plane->state->crtc_w = new_plane_state->crtc_w;
1391	plane->state->crtc_h = new_plane_state->crtc_h;
1392	plane->state->src_x = new_plane_state->src_x;
1393	plane->state->src_y = new_plane_state->src_y;
1394	plane->state->src_w = new_plane_state->src_w;
1395	plane->state->src_h = new_plane_state->src_h;
1396	plane->state->alpha = new_plane_state->alpha;
1397	plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
1398	plane->state->rotation = new_plane_state->rotation;
1399	plane->state->zpos = new_plane_state->zpos;
1400	plane->state->normalized_zpos = new_plane_state->normalized_zpos;
1401	plane->state->color_encoding = new_plane_state->color_encoding;
1402	plane->state->color_range = new_plane_state->color_range;
1403	plane->state->src = new_plane_state->src;
1404	plane->state->dst = new_plane_state->dst;
1405	plane->state->visible = new_plane_state->visible;
1406
1407	new_vc4_state = to_vc4_plane_state(new_plane_state);
1408	vc4_state = to_vc4_plane_state(plane->state);
1409
1410	vc4_state->crtc_x = new_vc4_state->crtc_x;
1411	vc4_state->crtc_y = new_vc4_state->crtc_y;
1412	vc4_state->crtc_h = new_vc4_state->crtc_h;
1413	vc4_state->crtc_w = new_vc4_state->crtc_w;
1414	vc4_state->src_x = new_vc4_state->src_x;
1415	vc4_state->src_y = new_vc4_state->src_y;
1416	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1417	       sizeof(vc4_state->src_w));
1418	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1419	       sizeof(vc4_state->src_h));
1420	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1421	       sizeof(vc4_state->x_scaling));
1422	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1423	       sizeof(vc4_state->y_scaling));
1424	vc4_state->is_unity = new_vc4_state->is_unity;
1425	vc4_state->is_yuv = new_vc4_state->is_yuv;
1426	memcpy(vc4_state->offsets, new_vc4_state->offsets,
1427	       sizeof(vc4_state->offsets));
1428	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1429
1430	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1431	vc4_state->dlist[vc4_state->pos0_offset] =
1432		new_vc4_state->dlist[vc4_state->pos0_offset];
1433	vc4_state->dlist[vc4_state->pos2_offset] =
1434		new_vc4_state->dlist[vc4_state->pos2_offset];
1435	vc4_state->dlist[vc4_state->ptr0_offset] =
1436		new_vc4_state->dlist[vc4_state->ptr0_offset];
1437
1438	/* Note that we can't just call vc4_plane_write_dlist()
1439	 * because that would smash the context data that the HVS is
1440	 * currently using.
1441	 */
1442	writel(vc4_state->dlist[vc4_state->pos0_offset],
1443	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1444	writel(vc4_state->dlist[vc4_state->pos2_offset],
1445	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1446	writel(vc4_state->dlist[vc4_state->ptr0_offset],
1447	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1448
1449	drm_dev_exit(idx);
1450}
1451
1452static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1453					struct drm_atomic_state *state)
1454{
1455	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1456										 plane);
1457	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1458	int ret;
1459	u32 i;
1460
1461	ret = vc4_plane_mode_set(plane, new_plane_state);
1462	if (ret)
1463		return ret;
1464
1465	old_vc4_state = to_vc4_plane_state(plane->state);
1466	new_vc4_state = to_vc4_plane_state(new_plane_state);
1467
1468	if (!new_vc4_state->hw_dlist)
1469		return -EINVAL;
1470
1471	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1472	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1473	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1474	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1475	    vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
1476		return -EINVAL;
1477
1478	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1479	 * if anything else has changed, fallback to a sync update.
1480	 */
1481	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1482		if (i == new_vc4_state->pos0_offset ||
1483		    i == new_vc4_state->pos2_offset ||
1484		    i == new_vc4_state->ptr0_offset ||
1485		    (new_vc4_state->lbm_offset &&
1486		     i == new_vc4_state->lbm_offset))
1487			continue;
1488
1489		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1490			return -EINVAL;
1491	}
1492
1493	return 0;
1494}
1495
1496static int vc4_prepare_fb(struct drm_plane *plane,
1497			  struct drm_plane_state *state)
1498{
1499	struct vc4_bo *bo;
1500
1501	if (!state->fb)
1502		return 0;
1503
1504	bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1505
1506	drm_gem_plane_helper_prepare_fb(plane, state);
1507
1508	if (plane->state->fb == state->fb)
1509		return 0;
1510
1511	return vc4_bo_inc_usecnt(bo);
1512}
1513
1514static void vc4_cleanup_fb(struct drm_plane *plane,
1515			   struct drm_plane_state *state)
1516{
1517	struct vc4_bo *bo;
1518
1519	if (plane->state->fb == state->fb || !state->fb)
1520		return;
1521
1522	bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1523	vc4_bo_dec_usecnt(bo);
1524}
1525
1526static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1527	.atomic_check = vc4_plane_atomic_check,
1528	.atomic_update = vc4_plane_atomic_update,
1529	.prepare_fb = vc4_prepare_fb,
1530	.cleanup_fb = vc4_cleanup_fb,
1531	.atomic_async_check = vc4_plane_atomic_async_check,
1532	.atomic_async_update = vc4_plane_atomic_async_update,
1533};
1534
1535static const struct drm_plane_helper_funcs vc5_plane_helper_funcs = {
1536	.atomic_check = vc4_plane_atomic_check,
1537	.atomic_update = vc4_plane_atomic_update,
1538	.atomic_async_check = vc4_plane_atomic_async_check,
1539	.atomic_async_update = vc4_plane_atomic_async_update,
1540};
1541
1542static bool vc4_format_mod_supported(struct drm_plane *plane,
1543				     uint32_t format,
1544				     uint64_t modifier)
1545{
1546	/* Support T_TILING for RGB formats only. */
1547	switch (format) {
1548	case DRM_FORMAT_XRGB8888:
1549	case DRM_FORMAT_ARGB8888:
1550	case DRM_FORMAT_ABGR8888:
1551	case DRM_FORMAT_XBGR8888:
1552	case DRM_FORMAT_RGB565:
1553	case DRM_FORMAT_BGR565:
1554	case DRM_FORMAT_ARGB1555:
1555	case DRM_FORMAT_XRGB1555:
1556		switch (fourcc_mod_broadcom_mod(modifier)) {
1557		case DRM_FORMAT_MOD_LINEAR:
1558		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1559			return true;
1560		default:
1561			return false;
1562		}
1563	case DRM_FORMAT_NV12:
1564	case DRM_FORMAT_NV21:
1565		switch (fourcc_mod_broadcom_mod(modifier)) {
1566		case DRM_FORMAT_MOD_LINEAR:
1567		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1568		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1569		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1570			return true;
1571		default:
1572			return false;
1573		}
1574	case DRM_FORMAT_P030:
1575		switch (fourcc_mod_broadcom_mod(modifier)) {
1576		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1577			return true;
1578		default:
1579			return false;
1580		}
1581	case DRM_FORMAT_RGBX1010102:
1582	case DRM_FORMAT_BGRX1010102:
1583	case DRM_FORMAT_RGBA1010102:
1584	case DRM_FORMAT_BGRA1010102:
1585	case DRM_FORMAT_XRGB4444:
1586	case DRM_FORMAT_ARGB4444:
1587	case DRM_FORMAT_XBGR4444:
1588	case DRM_FORMAT_ABGR4444:
1589	case DRM_FORMAT_RGBX4444:
1590	case DRM_FORMAT_RGBA4444:
1591	case DRM_FORMAT_BGRX4444:
1592	case DRM_FORMAT_BGRA4444:
1593	case DRM_FORMAT_RGB332:
1594	case DRM_FORMAT_BGR233:
1595	case DRM_FORMAT_YUV422:
1596	case DRM_FORMAT_YVU422:
1597	case DRM_FORMAT_YUV420:
1598	case DRM_FORMAT_YVU420:
1599	case DRM_FORMAT_NV16:
1600	case DRM_FORMAT_NV61:
1601	default:
1602		return (modifier == DRM_FORMAT_MOD_LINEAR);
1603	}
1604}
1605
1606static const struct drm_plane_funcs vc4_plane_funcs = {
1607	.update_plane = drm_atomic_helper_update_plane,
1608	.disable_plane = drm_atomic_helper_disable_plane,
1609	.reset = vc4_plane_reset,
1610	.atomic_duplicate_state = vc4_plane_duplicate_state,
1611	.atomic_destroy_state = vc4_plane_destroy_state,
1612	.format_mod_supported = vc4_format_mod_supported,
1613};
1614
1615struct drm_plane *vc4_plane_init(struct drm_device *dev,
1616				 enum drm_plane_type type,
1617				 uint32_t possible_crtcs)
1618{
1619	struct vc4_dev *vc4 = to_vc4_dev(dev);
1620	struct drm_plane *plane;
1621	struct vc4_plane *vc4_plane;
1622	u32 formats[ARRAY_SIZE(hvs_formats)];
1623	int num_formats = 0;
1624	unsigned i;
1625	static const uint64_t modifiers[] = {
1626		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1627		DRM_FORMAT_MOD_BROADCOM_SAND128,
1628		DRM_FORMAT_MOD_BROADCOM_SAND64,
1629		DRM_FORMAT_MOD_BROADCOM_SAND256,
1630		DRM_FORMAT_MOD_LINEAR,
1631		DRM_FORMAT_MOD_INVALID
1632	};
1633
1634	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
1635		if (!hvs_formats[i].hvs5_only || vc4->is_vc5) {
1636			formats[num_formats] = hvs_formats[i].drm;
1637			num_formats++;
1638		}
1639	}
1640
1641	vc4_plane = drmm_universal_plane_alloc(dev, struct vc4_plane, base,
1642					       possible_crtcs,
1643					       &vc4_plane_funcs,
1644					       formats, num_formats,
1645					       modifiers, type, NULL);
1646	if (IS_ERR(vc4_plane))
1647		return ERR_CAST(vc4_plane);
1648	plane = &vc4_plane->base;
1649
1650	if (vc4->is_vc5)
1651		drm_plane_helper_add(plane, &vc5_plane_helper_funcs);
1652	else
1653		drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1654
1655	drm_plane_create_alpha_property(plane);
1656	drm_plane_create_blend_mode_property(plane,
1657					     BIT(DRM_MODE_BLEND_PIXEL_NONE) |
1658					     BIT(DRM_MODE_BLEND_PREMULTI) |
1659					     BIT(DRM_MODE_BLEND_COVERAGE));
1660	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1661					   DRM_MODE_ROTATE_0 |
1662					   DRM_MODE_ROTATE_180 |
1663					   DRM_MODE_REFLECT_X |
1664					   DRM_MODE_REFLECT_Y);
1665
1666	drm_plane_create_color_properties(plane,
1667					  BIT(DRM_COLOR_YCBCR_BT601) |
1668					  BIT(DRM_COLOR_YCBCR_BT709) |
1669					  BIT(DRM_COLOR_YCBCR_BT2020),
1670					  BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
1671					  BIT(DRM_COLOR_YCBCR_FULL_RANGE),
1672					  DRM_COLOR_YCBCR_BT709,
1673					  DRM_COLOR_YCBCR_LIMITED_RANGE);
1674
1675	if (type == DRM_PLANE_TYPE_PRIMARY)
1676		drm_plane_create_zpos_immutable_property(plane, 0);
1677
1678	return plane;
1679}
1680
1681#define VC4_NUM_OVERLAY_PLANES	16
1682
1683int vc4_plane_create_additional_planes(struct drm_device *drm)
1684{
1685	struct drm_plane *cursor_plane;
1686	struct drm_crtc *crtc;
1687	unsigned int i;
1688
1689	/* Set up some arbitrary number of planes.  We're not limited
1690	 * by a set number of physical registers, just the space in
1691	 * the HVS (16k) and how small an plane can be (28 bytes).
1692	 * However, each plane we set up takes up some memory, and
1693	 * increases the cost of looping over planes, which atomic
1694	 * modesetting does quite a bit.  As a result, we pick a
1695	 * modest number of planes to expose, that should hopefully
1696	 * still cover any sane usecase.
1697	 */
1698	for (i = 0; i < VC4_NUM_OVERLAY_PLANES; i++) {
1699		struct drm_plane *plane =
1700			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY,
1701				       GENMASK(drm->mode_config.num_crtc - 1, 0));
1702
1703		if (IS_ERR(plane))
1704			continue;
1705
1706		/* Create zpos property. Max of all the overlays + 1 primary +
1707		 * 1 cursor plane on a crtc.
1708		 */
1709		drm_plane_create_zpos_property(plane, i + 1, 1,
1710					       VC4_NUM_OVERLAY_PLANES + 1);
1711	}
1712
1713	drm_for_each_crtc(crtc, drm) {
1714		/* Set up the legacy cursor after overlay initialization,
1715		 * since the zpos fallback is that planes are rendered by plane
1716		 * ID order, and that then puts the cursor on top.
1717		 */
1718		cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR,
1719					      drm_crtc_mask(crtc));
1720		if (!IS_ERR(cursor_plane)) {
1721			crtc->cursor = cursor_plane;
1722
1723			drm_plane_create_zpos_property(cursor_plane,
1724						       VC4_NUM_OVERLAY_PLANES + 1,
1725						       1,
1726						       VC4_NUM_OVERLAY_PLANES + 1);
1727		}
1728	}
1729
1730	return 0;
1731}