Loading...
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/vmalloc.h>
14#include <linux/pagemap.h>
15#include <linux/init.h>
16#include <linux/spinlock.h>
17#include <linux/bootmem.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/kdebug.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23
24#include <asm/bitext.h>
25#include <asm/page.h>
26#include <asm/pgalloc.h>
27#include <asm/pgtable.h>
28#include <asm/io.h>
29#include <asm/vaddrs.h>
30#include <asm/traps.h>
31#include <asm/smp.h>
32#include <asm/mbus.h>
33#include <asm/cache.h>
34#include <asm/oplib.h>
35#include <asm/asi.h>
36#include <asm/msi.h>
37#include <asm/mmu_context.h>
38#include <asm/io-unit.h>
39#include <asm/cacheflush.h>
40#include <asm/tlbflush.h>
41
42/* Now the cpu specific definitions. */
43#include <asm/viking.h>
44#include <asm/mxcc.h>
45#include <asm/ross.h>
46#include <asm/tsunami.h>
47#include <asm/swift.h>
48#include <asm/turbosparc.h>
49#include <asm/leon.h>
50
51#include <asm/btfixup.h>
52
53enum mbus_module srmmu_modtype;
54static unsigned int hwbug_bitmask;
55int vac_cache_size;
56int vac_line_size;
57
58extern struct resource sparc_iomap;
59
60extern unsigned long last_valid_pfn;
61
62extern unsigned long page_kernel;
63
64static pgd_t *srmmu_swapper_pg_dir;
65
66#ifdef CONFIG_SMP
67#define FLUSH_BEGIN(mm)
68#define FLUSH_END
69#else
70#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71#define FLUSH_END }
72#endif
73
74BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
76
77int flush_page_for_dma_global = 1;
78
79#ifdef CONFIG_SMP
80BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82#endif
83
84char *srmmu_name;
85
86ctxd_t *srmmu_ctx_table_phys;
87static ctxd_t *srmmu_context_table;
88
89int viking_mxcc_present;
90static DEFINE_SPINLOCK(srmmu_context_spinlock);
91
92static int is_hypersparc;
93
94/*
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction. This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
98 */
99static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
100{
101 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102 return value;
103}
104
105static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
106{
107 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
108}
109
110/* The very generic SRMMU page table operations. */
111static inline int srmmu_device_memory(unsigned long x)
112{
113 return ((x & 0xF0000000) != 0);
114}
115
116static int srmmu_cache_pagetables;
117
118/* these will be initialized in srmmu_nocache_calcsize() */
119static unsigned long srmmu_nocache_size;
120static unsigned long srmmu_nocache_end;
121
122/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
124
125/* The context table is a nocache user with the biggest alignment needs. */
126#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
127
128void *srmmu_nocache_pool;
129void *srmmu_nocache_bitmap;
130static struct bit_map srmmu_nocache_map;
131
132static unsigned long srmmu_pte_pfn(pte_t pte)
133{
134 if (srmmu_device_memory(pte_val(pte))) {
135 /* Just return something that will cause
136 * pfn_valid() to return false. This makes
137 * copy_one_pte() to just directly copy to
138 * PTE over.
139 */
140 return ~0UL;
141 }
142 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143}
144
145static struct page *srmmu_pmd_page(pmd_t pmd)
146{
147
148 if (srmmu_device_memory(pmd_val(pmd)))
149 BUG();
150 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151}
152
153static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155
156
157static inline int srmmu_pte_none(pte_t pte)
158{ return !(pte_val(pte) & 0xFFFFFFF); }
159
160static inline int srmmu_pte_present(pte_t pte)
161{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162
163static inline void srmmu_pte_clear(pte_t *ptep)
164{ srmmu_set_pte(ptep, __pte(0)); }
165
166static inline int srmmu_pmd_none(pmd_t pmd)
167{ return !(pmd_val(pmd) & 0xFFFFFFF); }
168
169static inline int srmmu_pmd_bad(pmd_t pmd)
170{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
171
172static inline int srmmu_pmd_present(pmd_t pmd)
173{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
174
175static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176 int i;
177 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
179}
180
181static inline int srmmu_pgd_none(pgd_t pgd)
182{ return !(pgd_val(pgd) & 0xFFFFFFF); }
183
184static inline int srmmu_pgd_bad(pgd_t pgd)
185{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
186
187static inline int srmmu_pgd_present(pgd_t pgd)
188{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
189
190static inline void srmmu_pgd_clear(pgd_t * pgdp)
191{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
192
193static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
195
196static inline pte_t srmmu_pte_mkclean(pte_t pte)
197{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
198
199static inline pte_t srmmu_pte_mkold(pte_t pte)
200{ return __pte(pte_val(pte) & ~SRMMU_REF);}
201
202static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203{ return __pte(pte_val(pte) | SRMMU_WRITE);}
204
205static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
207
208static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209{ return __pte(pte_val(pte) | SRMMU_REF);}
210
211/*
212 * Conversion functions: convert a page and protection to a page entry,
213 * and a page entry and page directory to the page they refer to.
214 */
215static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
217
218static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
220
221static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
223
224/* XXX should we hyper_flush_whole_icache here - Anton */
225static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
226{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
227
228static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
229{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
230
231static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
232{
233 unsigned long ptp; /* Physical address, shifted right by 4 */
234 int i;
235
236 ptp = __nocache_pa((unsigned long) ptep) >> 4;
237 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
238 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
239 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
240 }
241}
242
243static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
244{
245 unsigned long ptp; /* Physical address, shifted right by 4 */
246 int i;
247
248 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
249 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
250 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
251 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
252 }
253}
254
255static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
256{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
257
258/* to find an entry in a top-level page table... */
259static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
260{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
261
262/* Find an entry in the second-level page table.. */
263static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
264{
265 return (pmd_t *) srmmu_pgd_page(*dir) +
266 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
267}
268
269/* Find an entry in the third-level page table.. */
270static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
271{
272 void *pte;
273
274 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
275 return (pte_t *) pte +
276 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
277}
278
279static unsigned long srmmu_swp_type(swp_entry_t entry)
280{
281 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
282}
283
284static unsigned long srmmu_swp_offset(swp_entry_t entry)
285{
286 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
287}
288
289static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
290{
291 return (swp_entry_t) {
292 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
293 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
294}
295
296/*
297 * size: bytes to allocate in the nocache area.
298 * align: bytes, number to align at.
299 * Returns the virtual address of the allocated area.
300 */
301static unsigned long __srmmu_get_nocache(int size, int align)
302{
303 int offset;
304
305 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
306 printk("Size 0x%x too small for nocache request\n", size);
307 size = SRMMU_NOCACHE_BITMAP_SHIFT;
308 }
309 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
310 printk("Size 0x%x unaligned int nocache request\n", size);
311 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
312 }
313 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
314
315 offset = bit_map_string_get(&srmmu_nocache_map,
316 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
317 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
318 if (offset == -1) {
319 printk("srmmu: out of nocache %d: %d/%d\n",
320 size, (int) srmmu_nocache_size,
321 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
322 return 0;
323 }
324
325 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
326}
327
328static unsigned long srmmu_get_nocache(int size, int align)
329{
330 unsigned long tmp;
331
332 tmp = __srmmu_get_nocache(size, align);
333
334 if (tmp)
335 memset((void *)tmp, 0, size);
336
337 return tmp;
338}
339
340static void srmmu_free_nocache(unsigned long vaddr, int size)
341{
342 int offset;
343
344 if (vaddr < SRMMU_NOCACHE_VADDR) {
345 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
346 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
347 BUG();
348 }
349 if (vaddr+size > srmmu_nocache_end) {
350 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
351 vaddr, srmmu_nocache_end);
352 BUG();
353 }
354 if (!is_power_of_2(size)) {
355 printk("Size 0x%x is not a power of 2\n", size);
356 BUG();
357 }
358 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
359 printk("Size 0x%x is too small\n", size);
360 BUG();
361 }
362 if (vaddr & (size-1)) {
363 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
364 BUG();
365 }
366
367 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
369
370 bit_map_clear(&srmmu_nocache_map, offset, size);
371}
372
373static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
374 unsigned long end);
375
376extern unsigned long probe_memory(void); /* in fault.c */
377
378/*
379 * Reserve nocache dynamically proportionally to the amount of
380 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
381 */
382static void srmmu_nocache_calcsize(void)
383{
384 unsigned long sysmemavail = probe_memory() / 1024;
385 int srmmu_nocache_npages;
386
387 srmmu_nocache_npages =
388 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
389
390 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
391 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
392 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
393 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
394
395 /* anything above 1280 blows up */
396 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
397 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
398
399 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
400 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
401}
402
403static void __init srmmu_nocache_init(void)
404{
405 unsigned int bitmap_bits;
406 pgd_t *pgd;
407 pmd_t *pmd;
408 pte_t *pte;
409 unsigned long paddr, vaddr;
410 unsigned long pteval;
411
412 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
413
414 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
415 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
416 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
417
418 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
419 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
420
421 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
422 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
423 init_mm.pgd = srmmu_swapper_pg_dir;
424
425 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
426
427 paddr = __pa((unsigned long)srmmu_nocache_pool);
428 vaddr = SRMMU_NOCACHE_VADDR;
429
430 while (vaddr < srmmu_nocache_end) {
431 pgd = pgd_offset_k(vaddr);
432 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
433 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
434
435 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
436
437 if (srmmu_cache_pagetables)
438 pteval |= SRMMU_CACHE;
439
440 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
441
442 vaddr += PAGE_SIZE;
443 paddr += PAGE_SIZE;
444 }
445
446 flush_cache_all();
447 flush_tlb_all();
448}
449
450static inline pgd_t *srmmu_get_pgd_fast(void)
451{
452 pgd_t *pgd = NULL;
453
454 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
455 if (pgd) {
456 pgd_t *init = pgd_offset_k(0);
457 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
458 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
459 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
460 }
461
462 return pgd;
463}
464
465static void srmmu_free_pgd_fast(pgd_t *pgd)
466{
467 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
468}
469
470static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
471{
472 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
473}
474
475static void srmmu_pmd_free(pmd_t * pmd)
476{
477 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
478}
479
480/*
481 * Hardware needs alignment to 256 only, but we align to whole page size
482 * to reduce fragmentation problems due to the buddy principle.
483 * XXX Provide actual fragmentation statistics in /proc.
484 *
485 * Alignments up to the page size are the same for physical and virtual
486 * addresses of the nocache area.
487 */
488static pte_t *
489srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
490{
491 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
492}
493
494static pgtable_t
495srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
496{
497 unsigned long pte;
498 struct page *page;
499
500 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
501 return NULL;
502 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
503 pgtable_page_ctor(page);
504 return page;
505}
506
507static void srmmu_free_pte_fast(pte_t *pte)
508{
509 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
510}
511
512static void srmmu_pte_free(pgtable_t pte)
513{
514 unsigned long p;
515
516 pgtable_page_dtor(pte);
517 p = (unsigned long)page_address(pte); /* Cached address (for test) */
518 if (p == 0)
519 BUG();
520 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
521 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
522 srmmu_free_nocache(p, PTE_SIZE);
523}
524
525/*
526 */
527static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
528{
529 struct ctx_list *ctxp;
530
531 ctxp = ctx_free.next;
532 if(ctxp != &ctx_free) {
533 remove_from_ctx_list(ctxp);
534 add_to_used_ctxlist(ctxp);
535 mm->context = ctxp->ctx_number;
536 ctxp->ctx_mm = mm;
537 return;
538 }
539 ctxp = ctx_used.next;
540 if(ctxp->ctx_mm == old_mm)
541 ctxp = ctxp->next;
542 if(ctxp == &ctx_used)
543 panic("out of mmu contexts");
544 flush_cache_mm(ctxp->ctx_mm);
545 flush_tlb_mm(ctxp->ctx_mm);
546 remove_from_ctx_list(ctxp);
547 add_to_used_ctxlist(ctxp);
548 ctxp->ctx_mm->context = NO_CONTEXT;
549 ctxp->ctx_mm = mm;
550 mm->context = ctxp->ctx_number;
551}
552
553static inline void free_context(int context)
554{
555 struct ctx_list *ctx_old;
556
557 ctx_old = ctx_list_pool + context;
558 remove_from_ctx_list(ctx_old);
559 add_to_free_ctxlist(ctx_old);
560}
561
562
563static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
564 struct task_struct *tsk, int cpu)
565{
566 if(mm->context == NO_CONTEXT) {
567 spin_lock(&srmmu_context_spinlock);
568 alloc_context(old_mm, mm);
569 spin_unlock(&srmmu_context_spinlock);
570 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
571 }
572
573 if (sparc_cpu_model == sparc_leon)
574 leon_switch_mm();
575
576 if (is_hypersparc)
577 hyper_flush_whole_icache();
578
579 srmmu_set_context(mm->context);
580}
581
582/* Low level IO area allocation on the SRMMU. */
583static inline void srmmu_mapioaddr(unsigned long physaddr,
584 unsigned long virt_addr, int bus_type)
585{
586 pgd_t *pgdp;
587 pmd_t *pmdp;
588 pte_t *ptep;
589 unsigned long tmp;
590
591 physaddr &= PAGE_MASK;
592 pgdp = pgd_offset_k(virt_addr);
593 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
594 ptep = srmmu_pte_offset(pmdp, virt_addr);
595 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
596
597 /*
598 * I need to test whether this is consistent over all
599 * sun4m's. The bus_type represents the upper 4 bits of
600 * 36-bit physical address on the I/O space lines...
601 */
602 tmp |= (bus_type << 28);
603 tmp |= SRMMU_PRIV;
604 __flush_page_to_ram(virt_addr);
605 srmmu_set_pte(ptep, __pte(tmp));
606}
607
608static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
609 unsigned long xva, unsigned int len)
610{
611 while (len != 0) {
612 len -= PAGE_SIZE;
613 srmmu_mapioaddr(xpa, xva, bus);
614 xva += PAGE_SIZE;
615 xpa += PAGE_SIZE;
616 }
617 flush_tlb_all();
618}
619
620static inline void srmmu_unmapioaddr(unsigned long virt_addr)
621{
622 pgd_t *pgdp;
623 pmd_t *pmdp;
624 pte_t *ptep;
625
626 pgdp = pgd_offset_k(virt_addr);
627 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
628 ptep = srmmu_pte_offset(pmdp, virt_addr);
629
630 /* No need to flush uncacheable page. */
631 srmmu_pte_clear(ptep);
632}
633
634static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
635{
636 while (len != 0) {
637 len -= PAGE_SIZE;
638 srmmu_unmapioaddr(virt_addr);
639 virt_addr += PAGE_SIZE;
640 }
641 flush_tlb_all();
642}
643
644/*
645 * On the SRMMU we do not have the problems with limited tlb entries
646 * for mapping kernel pages, so we just take things from the free page
647 * pool. As a side effect we are putting a little too much pressure
648 * on the gfp() subsystem. This setup also makes the logic of the
649 * iommu mapping code a lot easier as we can transparently handle
650 * mappings on the kernel stack without any special code as we did
651 * need on the sun4c.
652 */
653static struct thread_info *srmmu_alloc_thread_info_node(int node)
654{
655 struct thread_info *ret;
656
657 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
658 THREAD_INFO_ORDER);
659#ifdef CONFIG_DEBUG_STACK_USAGE
660 if (ret)
661 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
662#endif /* DEBUG_STACK_USAGE */
663
664 return ret;
665}
666
667static void srmmu_free_thread_info(struct thread_info *ti)
668{
669 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
670}
671
672/* tsunami.S */
673extern void tsunami_flush_cache_all(void);
674extern void tsunami_flush_cache_mm(struct mm_struct *mm);
675extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
677extern void tsunami_flush_page_to_ram(unsigned long page);
678extern void tsunami_flush_page_for_dma(unsigned long page);
679extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
680extern void tsunami_flush_tlb_all(void);
681extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
682extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
683extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
684extern void tsunami_setup_blockops(void);
685
686/*
687 * Workaround, until we find what's going on with Swift. When low on memory,
688 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
689 * out it is already in page tables/ fault again on the same instruction.
690 * I really don't understand it, have checked it and contexts
691 * are right, flush_tlb_all is done as well, and it faults again...
692 * Strange. -jj
693 *
694 * The following code is a deadwood that may be necessary when
695 * we start to make precise page flushes again. --zaitcev
696 */
697static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
698{
699#if 0
700 static unsigned long last;
701 unsigned int val;
702 /* unsigned int n; */
703
704 if (address == last) {
705 val = srmmu_hwprobe(address);
706 if (val != 0 && pte_val(*ptep) != val) {
707 printk("swift_update_mmu_cache: "
708 "addr %lx put %08x probed %08x from %p\n",
709 address, pte_val(*ptep), val,
710 __builtin_return_address(0));
711 srmmu_flush_whole_tlb();
712 }
713 }
714 last = address;
715#endif
716}
717
718/* swift.S */
719extern void swift_flush_cache_all(void);
720extern void swift_flush_cache_mm(struct mm_struct *mm);
721extern void swift_flush_cache_range(struct vm_area_struct *vma,
722 unsigned long start, unsigned long end);
723extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
724extern void swift_flush_page_to_ram(unsigned long page);
725extern void swift_flush_page_for_dma(unsigned long page);
726extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
727extern void swift_flush_tlb_all(void);
728extern void swift_flush_tlb_mm(struct mm_struct *mm);
729extern void swift_flush_tlb_range(struct vm_area_struct *vma,
730 unsigned long start, unsigned long end);
731extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
732
733#if 0 /* P3: deadwood to debug precise flushes on Swift. */
734void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
735{
736 int cctx, ctx1;
737
738 page &= PAGE_MASK;
739 if ((ctx1 = vma->vm_mm->context) != -1) {
740 cctx = srmmu_get_context();
741/* Is context # ever different from current context? P3 */
742 if (cctx != ctx1) {
743 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
744 srmmu_set_context(ctx1);
745 swift_flush_page(page);
746 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
747 "r" (page), "i" (ASI_M_FLUSH_PROBE));
748 srmmu_set_context(cctx);
749 } else {
750 /* Rm. prot. bits from virt. c. */
751 /* swift_flush_cache_all(); */
752 /* swift_flush_cache_page(vma, page); */
753 swift_flush_page(page);
754
755 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
756 "r" (page), "i" (ASI_M_FLUSH_PROBE));
757 /* same as above: srmmu_flush_tlb_page() */
758 }
759 }
760}
761#endif
762
763/*
764 * The following are all MBUS based SRMMU modules, and therefore could
765 * be found in a multiprocessor configuration. On the whole, these
766 * chips seems to be much more touchy about DVMA and page tables
767 * with respect to cache coherency.
768 */
769
770/* Cypress flushes. */
771static void cypress_flush_cache_all(void)
772{
773 volatile unsigned long cypress_sucks;
774 unsigned long faddr, tagval;
775
776 flush_user_windows();
777 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
778 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
779 "=r" (tagval) :
780 "r" (faddr), "r" (0x40000),
781 "i" (ASI_M_DATAC_TAG));
782
783 /* If modified and valid, kick it. */
784 if((tagval & 0x60) == 0x60)
785 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
786 }
787}
788
789static void cypress_flush_cache_mm(struct mm_struct *mm)
790{
791 register unsigned long a, b, c, d, e, f, g;
792 unsigned long flags, faddr;
793 int octx;
794
795 FLUSH_BEGIN(mm)
796 flush_user_windows();
797 local_irq_save(flags);
798 octx = srmmu_get_context();
799 srmmu_set_context(mm->context);
800 a = 0x20; b = 0x40; c = 0x60;
801 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
802
803 faddr = (0x10000 - 0x100);
804 goto inside;
805 do {
806 faddr -= 0x100;
807 inside:
808 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
809 "sta %%g0, [%0 + %2] %1\n\t"
810 "sta %%g0, [%0 + %3] %1\n\t"
811 "sta %%g0, [%0 + %4] %1\n\t"
812 "sta %%g0, [%0 + %5] %1\n\t"
813 "sta %%g0, [%0 + %6] %1\n\t"
814 "sta %%g0, [%0 + %7] %1\n\t"
815 "sta %%g0, [%0 + %8] %1\n\t" : :
816 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
817 "r" (a), "r" (b), "r" (c), "r" (d),
818 "r" (e), "r" (f), "r" (g));
819 } while(faddr);
820 srmmu_set_context(octx);
821 local_irq_restore(flags);
822 FLUSH_END
823}
824
825static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
826{
827 struct mm_struct *mm = vma->vm_mm;
828 register unsigned long a, b, c, d, e, f, g;
829 unsigned long flags, faddr;
830 int octx;
831
832 FLUSH_BEGIN(mm)
833 flush_user_windows();
834 local_irq_save(flags);
835 octx = srmmu_get_context();
836 srmmu_set_context(mm->context);
837 a = 0x20; b = 0x40; c = 0x60;
838 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
839
840 start &= SRMMU_REAL_PMD_MASK;
841 while(start < end) {
842 faddr = (start + (0x10000 - 0x100));
843 goto inside;
844 do {
845 faddr -= 0x100;
846 inside:
847 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
848 "sta %%g0, [%0 + %2] %1\n\t"
849 "sta %%g0, [%0 + %3] %1\n\t"
850 "sta %%g0, [%0 + %4] %1\n\t"
851 "sta %%g0, [%0 + %5] %1\n\t"
852 "sta %%g0, [%0 + %6] %1\n\t"
853 "sta %%g0, [%0 + %7] %1\n\t"
854 "sta %%g0, [%0 + %8] %1\n\t" : :
855 "r" (faddr),
856 "i" (ASI_M_FLUSH_SEG),
857 "r" (a), "r" (b), "r" (c), "r" (d),
858 "r" (e), "r" (f), "r" (g));
859 } while (faddr != start);
860 start += SRMMU_REAL_PMD_SIZE;
861 }
862 srmmu_set_context(octx);
863 local_irq_restore(flags);
864 FLUSH_END
865}
866
867static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
868{
869 register unsigned long a, b, c, d, e, f, g;
870 struct mm_struct *mm = vma->vm_mm;
871 unsigned long flags, line;
872 int octx;
873
874 FLUSH_BEGIN(mm)
875 flush_user_windows();
876 local_irq_save(flags);
877 octx = srmmu_get_context();
878 srmmu_set_context(mm->context);
879 a = 0x20; b = 0x40; c = 0x60;
880 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
881
882 page &= PAGE_MASK;
883 line = (page + PAGE_SIZE) - 0x100;
884 goto inside;
885 do {
886 line -= 0x100;
887 inside:
888 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
889 "sta %%g0, [%0 + %2] %1\n\t"
890 "sta %%g0, [%0 + %3] %1\n\t"
891 "sta %%g0, [%0 + %4] %1\n\t"
892 "sta %%g0, [%0 + %5] %1\n\t"
893 "sta %%g0, [%0 + %6] %1\n\t"
894 "sta %%g0, [%0 + %7] %1\n\t"
895 "sta %%g0, [%0 + %8] %1\n\t" : :
896 "r" (line),
897 "i" (ASI_M_FLUSH_PAGE),
898 "r" (a), "r" (b), "r" (c), "r" (d),
899 "r" (e), "r" (f), "r" (g));
900 } while(line != page);
901 srmmu_set_context(octx);
902 local_irq_restore(flags);
903 FLUSH_END
904}
905
906/* Cypress is copy-back, at least that is how we configure it. */
907static void cypress_flush_page_to_ram(unsigned long page)
908{
909 register unsigned long a, b, c, d, e, f, g;
910 unsigned long line;
911
912 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
913 page &= PAGE_MASK;
914 line = (page + PAGE_SIZE) - 0x100;
915 goto inside;
916 do {
917 line -= 0x100;
918 inside:
919 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
920 "sta %%g0, [%0 + %2] %1\n\t"
921 "sta %%g0, [%0 + %3] %1\n\t"
922 "sta %%g0, [%0 + %4] %1\n\t"
923 "sta %%g0, [%0 + %5] %1\n\t"
924 "sta %%g0, [%0 + %6] %1\n\t"
925 "sta %%g0, [%0 + %7] %1\n\t"
926 "sta %%g0, [%0 + %8] %1\n\t" : :
927 "r" (line),
928 "i" (ASI_M_FLUSH_PAGE),
929 "r" (a), "r" (b), "r" (c), "r" (d),
930 "r" (e), "r" (f), "r" (g));
931 } while(line != page);
932}
933
934/* Cypress is also IO cache coherent. */
935static void cypress_flush_page_for_dma(unsigned long page)
936{
937}
938
939/* Cypress has unified L2 VIPT, from which both instructions and data
940 * are stored. It does not have an onboard icache of any sort, therefore
941 * no flush is necessary.
942 */
943static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
944{
945}
946
947static void cypress_flush_tlb_all(void)
948{
949 srmmu_flush_whole_tlb();
950}
951
952static void cypress_flush_tlb_mm(struct mm_struct *mm)
953{
954 FLUSH_BEGIN(mm)
955 __asm__ __volatile__(
956 "lda [%0] %3, %%g5\n\t"
957 "sta %2, [%0] %3\n\t"
958 "sta %%g0, [%1] %4\n\t"
959 "sta %%g5, [%0] %3\n"
960 : /* no outputs */
961 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
962 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
963 : "g5");
964 FLUSH_END
965}
966
967static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
968{
969 struct mm_struct *mm = vma->vm_mm;
970 unsigned long size;
971
972 FLUSH_BEGIN(mm)
973 start &= SRMMU_PGDIR_MASK;
974 size = SRMMU_PGDIR_ALIGN(end) - start;
975 __asm__ __volatile__(
976 "lda [%0] %5, %%g5\n\t"
977 "sta %1, [%0] %5\n"
978 "1:\n\t"
979 "subcc %3, %4, %3\n\t"
980 "bne 1b\n\t"
981 " sta %%g0, [%2 + %3] %6\n\t"
982 "sta %%g5, [%0] %5\n"
983 : /* no outputs */
984 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
985 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
986 "i" (ASI_M_FLUSH_PROBE)
987 : "g5", "cc");
988 FLUSH_END
989}
990
991static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
992{
993 struct mm_struct *mm = vma->vm_mm;
994
995 FLUSH_BEGIN(mm)
996 __asm__ __volatile__(
997 "lda [%0] %3, %%g5\n\t"
998 "sta %1, [%0] %3\n\t"
999 "sta %%g0, [%2] %4\n\t"
1000 "sta %%g5, [%0] %3\n"
1001 : /* no outputs */
1002 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
1003 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1004 : "g5");
1005 FLUSH_END
1006}
1007
1008/* viking.S */
1009extern void viking_flush_cache_all(void);
1010extern void viking_flush_cache_mm(struct mm_struct *mm);
1011extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1012 unsigned long end);
1013extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1014extern void viking_flush_page_to_ram(unsigned long page);
1015extern void viking_flush_page_for_dma(unsigned long page);
1016extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1017extern void viking_flush_page(unsigned long page);
1018extern void viking_mxcc_flush_page(unsigned long page);
1019extern void viking_flush_tlb_all(void);
1020extern void viking_flush_tlb_mm(struct mm_struct *mm);
1021extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1022 unsigned long end);
1023extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1024 unsigned long page);
1025extern void sun4dsmp_flush_tlb_all(void);
1026extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1027extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1028 unsigned long end);
1029extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1030 unsigned long page);
1031
1032/* hypersparc.S */
1033extern void hypersparc_flush_cache_all(void);
1034extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1035extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1036extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1037extern void hypersparc_flush_page_to_ram(unsigned long page);
1038extern void hypersparc_flush_page_for_dma(unsigned long page);
1039extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1040extern void hypersparc_flush_tlb_all(void);
1041extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1042extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1043extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1044extern void hypersparc_setup_blockops(void);
1045
1046/*
1047 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1048 * kernel mappings are done with one single contiguous chunk of
1049 * ram. On small ram machines (classics mainly) we only get
1050 * around 8mb mapped for us.
1051 */
1052
1053static void __init early_pgtable_allocfail(char *type)
1054{
1055 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1056 prom_halt();
1057}
1058
1059static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1060 unsigned long end)
1061{
1062 pgd_t *pgdp;
1063 pmd_t *pmdp;
1064 pte_t *ptep;
1065
1066 while(start < end) {
1067 pgdp = pgd_offset_k(start);
1068 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1069 pmdp = (pmd_t *) __srmmu_get_nocache(
1070 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1071 if (pmdp == NULL)
1072 early_pgtable_allocfail("pmd");
1073 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1074 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1075 }
1076 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1077 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1078 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1079 if (ptep == NULL)
1080 early_pgtable_allocfail("pte");
1081 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1082 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1083 }
1084 if (start > (0xffffffffUL - PMD_SIZE))
1085 break;
1086 start = (start + PMD_SIZE) & PMD_MASK;
1087 }
1088}
1089
1090static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1091 unsigned long end)
1092{
1093 pgd_t *pgdp;
1094 pmd_t *pmdp;
1095 pte_t *ptep;
1096
1097 while(start < end) {
1098 pgdp = pgd_offset_k(start);
1099 if(srmmu_pgd_none(*pgdp)) {
1100 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1101 if (pmdp == NULL)
1102 early_pgtable_allocfail("pmd");
1103 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1104 srmmu_pgd_set(pgdp, pmdp);
1105 }
1106 pmdp = srmmu_pmd_offset(pgdp, start);
1107 if(srmmu_pmd_none(*pmdp)) {
1108 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1109 PTE_SIZE);
1110 if (ptep == NULL)
1111 early_pgtable_allocfail("pte");
1112 memset(ptep, 0, PTE_SIZE);
1113 srmmu_pmd_set(pmdp, ptep);
1114 }
1115 if (start > (0xffffffffUL - PMD_SIZE))
1116 break;
1117 start = (start + PMD_SIZE) & PMD_MASK;
1118 }
1119}
1120
1121/*
1122 * This is much cleaner than poking around physical address space
1123 * looking at the prom's page table directly which is what most
1124 * other OS's do. Yuck... this is much better.
1125 */
1126static void __init srmmu_inherit_prom_mappings(unsigned long start,
1127 unsigned long end)
1128{
1129 pgd_t *pgdp;
1130 pmd_t *pmdp;
1131 pte_t *ptep;
1132 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1133 unsigned long prompte;
1134
1135 while(start <= end) {
1136 if (start == 0)
1137 break; /* probably wrap around */
1138 if(start == 0xfef00000)
1139 start = KADB_DEBUGGER_BEGVM;
1140 if(!(prompte = srmmu_hwprobe(start))) {
1141 start += PAGE_SIZE;
1142 continue;
1143 }
1144
1145 /* A red snapper, see what it really is. */
1146 what = 0;
1147
1148 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1149 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1150 what = 1;
1151 }
1152
1153 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1154 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1155 prompte)
1156 what = 2;
1157 }
1158
1159 pgdp = pgd_offset_k(start);
1160 if(what == 2) {
1161 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1162 start += SRMMU_PGDIR_SIZE;
1163 continue;
1164 }
1165 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1166 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1167 if (pmdp == NULL)
1168 early_pgtable_allocfail("pmd");
1169 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1170 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1171 }
1172 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1173 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1174 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1175 PTE_SIZE);
1176 if (ptep == NULL)
1177 early_pgtable_allocfail("pte");
1178 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1179 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1180 }
1181 if(what == 1) {
1182 /*
1183 * We bend the rule where all 16 PTPs in a pmd_t point
1184 * inside the same PTE page, and we leak a perfectly
1185 * good hardware PTE piece. Alternatives seem worse.
1186 */
1187 unsigned int x; /* Index of HW PMD in soft cluster */
1188 x = (start >> PMD_SHIFT) & 15;
1189 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1190 start += SRMMU_REAL_PMD_SIZE;
1191 continue;
1192 }
1193 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1194 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1195 start += PAGE_SIZE;
1196 }
1197}
1198
1199#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1200
1201/* Create a third-level SRMMU 16MB page mapping. */
1202static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1203{
1204 pgd_t *pgdp = pgd_offset_k(vaddr);
1205 unsigned long big_pte;
1206
1207 big_pte = KERNEL_PTE(phys_base >> 4);
1208 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1209}
1210
1211/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1212static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1213{
1214 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1215 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1216 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1217 /* Map "low" memory only */
1218 const unsigned long min_vaddr = PAGE_OFFSET;
1219 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1220
1221 if (vstart < min_vaddr || vstart >= max_vaddr)
1222 return vstart;
1223
1224 if (vend > max_vaddr || vend < min_vaddr)
1225 vend = max_vaddr;
1226
1227 while(vstart < vend) {
1228 do_large_mapping(vstart, pstart);
1229 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1230 }
1231 return vstart;
1232}
1233
1234static inline void memprobe_error(char *msg)
1235{
1236 prom_printf(msg);
1237 prom_printf("Halting now...\n");
1238 prom_halt();
1239}
1240
1241static inline void map_kernel(void)
1242{
1243 int i;
1244
1245 if (phys_base > 0) {
1246 do_large_mapping(PAGE_OFFSET, phys_base);
1247 }
1248
1249 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1250 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1251 }
1252
1253 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1254}
1255
1256/* Paging initialization on the Sparc Reference MMU. */
1257extern void sparc_context_init(int);
1258
1259void (*poke_srmmu)(void) __cpuinitdata = NULL;
1260
1261extern unsigned long bootmem_init(unsigned long *pages_avail);
1262
1263void __init srmmu_paging_init(void)
1264{
1265 int i;
1266 phandle cpunode;
1267 char node_str[128];
1268 pgd_t *pgd;
1269 pmd_t *pmd;
1270 pte_t *pte;
1271 unsigned long pages_avail;
1272
1273 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1274
1275 if (sparc_cpu_model == sun4d)
1276 num_contexts = 65536; /* We know it is Viking */
1277 else {
1278 /* Find the number of contexts on the srmmu. */
1279 cpunode = prom_getchild(prom_root_node);
1280 num_contexts = 0;
1281 while(cpunode != 0) {
1282 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1283 if(!strcmp(node_str, "cpu")) {
1284 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1285 break;
1286 }
1287 cpunode = prom_getsibling(cpunode);
1288 }
1289 }
1290
1291 if(!num_contexts) {
1292 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1293 prom_halt();
1294 }
1295
1296 pages_avail = 0;
1297 last_valid_pfn = bootmem_init(&pages_avail);
1298
1299 srmmu_nocache_calcsize();
1300 srmmu_nocache_init();
1301 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1302 map_kernel();
1303
1304 /* ctx table has to be physically aligned to its size */
1305 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1306 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1307
1308 for(i = 0; i < num_contexts; i++)
1309 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1310
1311 flush_cache_all();
1312 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1313#ifdef CONFIG_SMP
1314 /* Stop from hanging here... */
1315 local_flush_tlb_all();
1316#else
1317 flush_tlb_all();
1318#endif
1319 poke_srmmu();
1320
1321 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1322 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1323
1324 srmmu_allocate_ptable_skeleton(
1325 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1326 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1327
1328 pgd = pgd_offset_k(PKMAP_BASE);
1329 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1330 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1331 pkmap_page_table = pte;
1332
1333 flush_cache_all();
1334 flush_tlb_all();
1335
1336 sparc_context_init(num_contexts);
1337
1338 kmap_init();
1339
1340 {
1341 unsigned long zones_size[MAX_NR_ZONES];
1342 unsigned long zholes_size[MAX_NR_ZONES];
1343 unsigned long npages;
1344 int znum;
1345
1346 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1347 zones_size[znum] = zholes_size[znum] = 0;
1348
1349 npages = max_low_pfn - pfn_base;
1350
1351 zones_size[ZONE_DMA] = npages;
1352 zholes_size[ZONE_DMA] = npages - pages_avail;
1353
1354 npages = highend_pfn - max_low_pfn;
1355 zones_size[ZONE_HIGHMEM] = npages;
1356 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1357
1358 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1359 }
1360}
1361
1362static void srmmu_mmu_info(struct seq_file *m)
1363{
1364 seq_printf(m,
1365 "MMU type\t: %s\n"
1366 "contexts\t: %d\n"
1367 "nocache total\t: %ld\n"
1368 "nocache used\t: %d\n",
1369 srmmu_name,
1370 num_contexts,
1371 srmmu_nocache_size,
1372 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1373}
1374
1375static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1376{
1377}
1378
1379static void srmmu_destroy_context(struct mm_struct *mm)
1380{
1381
1382 if(mm->context != NO_CONTEXT) {
1383 flush_cache_mm(mm);
1384 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1385 flush_tlb_mm(mm);
1386 spin_lock(&srmmu_context_spinlock);
1387 free_context(mm->context);
1388 spin_unlock(&srmmu_context_spinlock);
1389 mm->context = NO_CONTEXT;
1390 }
1391}
1392
1393/* Init various srmmu chip types. */
1394static void __init srmmu_is_bad(void)
1395{
1396 prom_printf("Could not determine SRMMU chip type.\n");
1397 prom_halt();
1398}
1399
1400static void __init init_vac_layout(void)
1401{
1402 phandle nd;
1403 int cache_lines;
1404 char node_str[128];
1405#ifdef CONFIG_SMP
1406 int cpu = 0;
1407 unsigned long max_size = 0;
1408 unsigned long min_line_size = 0x10000000;
1409#endif
1410
1411 nd = prom_getchild(prom_root_node);
1412 while((nd = prom_getsibling(nd)) != 0) {
1413 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1414 if(!strcmp(node_str, "cpu")) {
1415 vac_line_size = prom_getint(nd, "cache-line-size");
1416 if (vac_line_size == -1) {
1417 prom_printf("can't determine cache-line-size, "
1418 "halting.\n");
1419 prom_halt();
1420 }
1421 cache_lines = prom_getint(nd, "cache-nlines");
1422 if (cache_lines == -1) {
1423 prom_printf("can't determine cache-nlines, halting.\n");
1424 prom_halt();
1425 }
1426
1427 vac_cache_size = cache_lines * vac_line_size;
1428#ifdef CONFIG_SMP
1429 if(vac_cache_size > max_size)
1430 max_size = vac_cache_size;
1431 if(vac_line_size < min_line_size)
1432 min_line_size = vac_line_size;
1433 //FIXME: cpus not contiguous!!
1434 cpu++;
1435 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1436 break;
1437#else
1438 break;
1439#endif
1440 }
1441 }
1442 if(nd == 0) {
1443 prom_printf("No CPU nodes found, halting.\n");
1444 prom_halt();
1445 }
1446#ifdef CONFIG_SMP
1447 vac_cache_size = max_size;
1448 vac_line_size = min_line_size;
1449#endif
1450 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1451 (int)vac_cache_size, (int)vac_line_size);
1452}
1453
1454static void __cpuinit poke_hypersparc(void)
1455{
1456 volatile unsigned long clear;
1457 unsigned long mreg = srmmu_get_mmureg();
1458
1459 hyper_flush_unconditional_combined();
1460
1461 mreg &= ~(HYPERSPARC_CWENABLE);
1462 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1463 mreg |= (HYPERSPARC_CMODE);
1464
1465 srmmu_set_mmureg(mreg);
1466
1467#if 0 /* XXX I think this is bad news... -DaveM */
1468 hyper_clear_all_tags();
1469#endif
1470
1471 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1472 hyper_flush_whole_icache();
1473 clear = srmmu_get_faddr();
1474 clear = srmmu_get_fstatus();
1475}
1476
1477static void __init init_hypersparc(void)
1478{
1479 srmmu_name = "ROSS HyperSparc";
1480 srmmu_modtype = HyperSparc;
1481
1482 init_vac_layout();
1483
1484 is_hypersparc = 1;
1485
1486 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1488 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1491 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1492 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1493
1494 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1495 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1496 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1497 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1498
1499 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1500 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1501 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1502
1503
1504 poke_srmmu = poke_hypersparc;
1505
1506 hypersparc_setup_blockops();
1507}
1508
1509static void __cpuinit poke_cypress(void)
1510{
1511 unsigned long mreg = srmmu_get_mmureg();
1512 unsigned long faddr, tagval;
1513 volatile unsigned long cypress_sucks;
1514 volatile unsigned long clear;
1515
1516 clear = srmmu_get_faddr();
1517 clear = srmmu_get_fstatus();
1518
1519 if (!(mreg & CYPRESS_CENABLE)) {
1520 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1521 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1522 "sta %%g0, [%0] %2\n\t" : :
1523 "r" (faddr), "r" (0x40000),
1524 "i" (ASI_M_DATAC_TAG));
1525 }
1526 } else {
1527 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1528 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1529 "=r" (tagval) :
1530 "r" (faddr), "r" (0x40000),
1531 "i" (ASI_M_DATAC_TAG));
1532
1533 /* If modified and valid, kick it. */
1534 if((tagval & 0x60) == 0x60)
1535 cypress_sucks = *(unsigned long *)
1536 (0xf0020000 + faddr);
1537 }
1538 }
1539
1540 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1541 clear = srmmu_get_faddr();
1542 clear = srmmu_get_fstatus();
1543
1544 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1545 srmmu_set_mmureg(mreg);
1546}
1547
1548static void __init init_cypress_common(void)
1549{
1550 init_vac_layout();
1551
1552 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1554 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1555 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1557 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1558 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1559
1560 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1561 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1562 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1563 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1564
1565
1566 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1567 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1568 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1569
1570 poke_srmmu = poke_cypress;
1571}
1572
1573static void __init init_cypress_604(void)
1574{
1575 srmmu_name = "ROSS Cypress-604(UP)";
1576 srmmu_modtype = Cypress;
1577 init_cypress_common();
1578}
1579
1580static void __init init_cypress_605(unsigned long mrev)
1581{
1582 srmmu_name = "ROSS Cypress-605(MP)";
1583 if(mrev == 0xe) {
1584 srmmu_modtype = Cypress_vE;
1585 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1586 } else {
1587 if(mrev == 0xd) {
1588 srmmu_modtype = Cypress_vD;
1589 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1590 } else {
1591 srmmu_modtype = Cypress;
1592 }
1593 }
1594 init_cypress_common();
1595}
1596
1597static void __cpuinit poke_swift(void)
1598{
1599 unsigned long mreg;
1600
1601 /* Clear any crap from the cache or else... */
1602 swift_flush_cache_all();
1603
1604 /* Enable I & D caches */
1605 mreg = srmmu_get_mmureg();
1606 mreg |= (SWIFT_IE | SWIFT_DE);
1607 /*
1608 * The Swift branch folding logic is completely broken. At
1609 * trap time, if things are just right, if can mistakenly
1610 * think that a trap is coming from kernel mode when in fact
1611 * it is coming from user mode (it mis-executes the branch in
1612 * the trap code). So you see things like crashme completely
1613 * hosing your machine which is completely unacceptable. Turn
1614 * this shit off... nice job Fujitsu.
1615 */
1616 mreg &= ~(SWIFT_BF);
1617 srmmu_set_mmureg(mreg);
1618}
1619
1620#define SWIFT_MASKID_ADDR 0x10003018
1621static void __init init_swift(void)
1622{
1623 unsigned long swift_rev;
1624
1625 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1626 "srl %0, 0x18, %0\n\t" :
1627 "=r" (swift_rev) :
1628 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1629 srmmu_name = "Fujitsu Swift";
1630 switch(swift_rev) {
1631 case 0x11:
1632 case 0x20:
1633 case 0x23:
1634 case 0x30:
1635 srmmu_modtype = Swift_lots_o_bugs;
1636 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1637 /*
1638 * Gee george, I wonder why Sun is so hush hush about
1639 * this hardware bug... really braindamage stuff going
1640 * on here. However I think we can find a way to avoid
1641 * all of the workaround overhead under Linux. Basically,
1642 * any page fault can cause kernel pages to become user
1643 * accessible (the mmu gets confused and clears some of
1644 * the ACC bits in kernel ptes). Aha, sounds pretty
1645 * horrible eh? But wait, after extensive testing it appears
1646 * that if you use pgd_t level large kernel pte's (like the
1647 * 4MB pages on the Pentium) the bug does not get tripped
1648 * at all. This avoids almost all of the major overhead.
1649 * Welcome to a world where your vendor tells you to,
1650 * "apply this kernel patch" instead of "sorry for the
1651 * broken hardware, send it back and we'll give you
1652 * properly functioning parts"
1653 */
1654 break;
1655 case 0x25:
1656 case 0x31:
1657 srmmu_modtype = Swift_bad_c;
1658 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1659 /*
1660 * You see Sun allude to this hardware bug but never
1661 * admit things directly, they'll say things like,
1662 * "the Swift chip cache problems" or similar.
1663 */
1664 break;
1665 default:
1666 srmmu_modtype = Swift_ok;
1667 break;
1668 }
1669
1670 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1671 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1674
1675
1676 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1677 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1678 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1679 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1680
1681 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1682 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1683 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1684
1685 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1686
1687 flush_page_for_dma_global = 0;
1688
1689 /*
1690 * Are you now convinced that the Swift is one of the
1691 * biggest VLSI abortions of all time? Bravo Fujitsu!
1692 * Fujitsu, the !#?!%$'d up processor people. I bet if
1693 * you examined the microcode of the Swift you'd find
1694 * XXX's all over the place.
1695 */
1696 poke_srmmu = poke_swift;
1697}
1698
1699static void turbosparc_flush_cache_all(void)
1700{
1701 flush_user_windows();
1702 turbosparc_idflash_clear();
1703}
1704
1705static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1706{
1707 FLUSH_BEGIN(mm)
1708 flush_user_windows();
1709 turbosparc_idflash_clear();
1710 FLUSH_END
1711}
1712
1713static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1714{
1715 FLUSH_BEGIN(vma->vm_mm)
1716 flush_user_windows();
1717 turbosparc_idflash_clear();
1718 FLUSH_END
1719}
1720
1721static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1722{
1723 FLUSH_BEGIN(vma->vm_mm)
1724 flush_user_windows();
1725 if (vma->vm_flags & VM_EXEC)
1726 turbosparc_flush_icache();
1727 turbosparc_flush_dcache();
1728 FLUSH_END
1729}
1730
1731/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1732static void turbosparc_flush_page_to_ram(unsigned long page)
1733{
1734#ifdef TURBOSPARC_WRITEBACK
1735 volatile unsigned long clear;
1736
1737 if (srmmu_hwprobe(page))
1738 turbosparc_flush_page_cache(page);
1739 clear = srmmu_get_fstatus();
1740#endif
1741}
1742
1743static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744{
1745}
1746
1747static void turbosparc_flush_page_for_dma(unsigned long page)
1748{
1749 turbosparc_flush_dcache();
1750}
1751
1752static void turbosparc_flush_tlb_all(void)
1753{
1754 srmmu_flush_whole_tlb();
1755}
1756
1757static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1758{
1759 FLUSH_BEGIN(mm)
1760 srmmu_flush_whole_tlb();
1761 FLUSH_END
1762}
1763
1764static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1765{
1766 FLUSH_BEGIN(vma->vm_mm)
1767 srmmu_flush_whole_tlb();
1768 FLUSH_END
1769}
1770
1771static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1772{
1773 FLUSH_BEGIN(vma->vm_mm)
1774 srmmu_flush_whole_tlb();
1775 FLUSH_END
1776}
1777
1778
1779static void __cpuinit poke_turbosparc(void)
1780{
1781 unsigned long mreg = srmmu_get_mmureg();
1782 unsigned long ccreg;
1783
1784 /* Clear any crap from the cache or else... */
1785 turbosparc_flush_cache_all();
1786 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1787 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1788 srmmu_set_mmureg(mreg);
1789
1790 ccreg = turbosparc_get_ccreg();
1791
1792#ifdef TURBOSPARC_WRITEBACK
1793 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1794 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1795 /* Write-back D-cache, emulate VLSI
1796 * abortion number three, not number one */
1797#else
1798 /* For now let's play safe, optimize later */
1799 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1800 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1801 ccreg &= ~(TURBOSPARC_uS2);
1802 /* Emulate VLSI abortion number three, not number one */
1803#endif
1804
1805 switch (ccreg & 7) {
1806 case 0: /* No SE cache */
1807 case 7: /* Test mode */
1808 break;
1809 default:
1810 ccreg |= (TURBOSPARC_SCENABLE);
1811 }
1812 turbosparc_set_ccreg (ccreg);
1813
1814 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1815 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1816 srmmu_set_mmureg(mreg);
1817}
1818
1819static void __init init_turbosparc(void)
1820{
1821 srmmu_name = "Fujitsu TurboSparc";
1822 srmmu_modtype = TurboSparc;
1823
1824 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1826 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1827 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1828
1829 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1830 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1831 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1832 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1833
1834 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1835
1836 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1837 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1838
1839 poke_srmmu = poke_turbosparc;
1840}
1841
1842static void __cpuinit poke_tsunami(void)
1843{
1844 unsigned long mreg = srmmu_get_mmureg();
1845
1846 tsunami_flush_icache();
1847 tsunami_flush_dcache();
1848 mreg &= ~TSUNAMI_ITD;
1849 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1850 srmmu_set_mmureg(mreg);
1851}
1852
1853static void __init init_tsunami(void)
1854{
1855 /*
1856 * Tsunami's pretty sane, Sun and TI actually got it
1857 * somewhat right this time. Fujitsu should have
1858 * taken some lessons from them.
1859 */
1860
1861 srmmu_name = "TI Tsunami";
1862 srmmu_modtype = Tsunami;
1863
1864 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1865 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1868
1869
1870 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1871 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1872 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1873 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1874
1875 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1876 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1877 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1878
1879 poke_srmmu = poke_tsunami;
1880
1881 tsunami_setup_blockops();
1882}
1883
1884static void __cpuinit poke_viking(void)
1885{
1886 unsigned long mreg = srmmu_get_mmureg();
1887 static int smp_catch;
1888
1889 if(viking_mxcc_present) {
1890 unsigned long mxcc_control = mxcc_get_creg();
1891
1892 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1893 mxcc_control &= ~(MXCC_CTL_RRC);
1894 mxcc_set_creg(mxcc_control);
1895
1896 /*
1897 * We don't need memory parity checks.
1898 * XXX This is a mess, have to dig out later. ecd.
1899 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1900 */
1901
1902 /* We do cache ptables on MXCC. */
1903 mreg |= VIKING_TCENABLE;
1904 } else {
1905 unsigned long bpreg;
1906
1907 mreg &= ~(VIKING_TCENABLE);
1908 if(smp_catch++) {
1909 /* Must disable mixed-cmd mode here for other cpu's. */
1910 bpreg = viking_get_bpreg();
1911 bpreg &= ~(VIKING_ACTION_MIX);
1912 viking_set_bpreg(bpreg);
1913
1914 /* Just in case PROM does something funny. */
1915 msi_set_sync();
1916 }
1917 }
1918
1919 mreg |= VIKING_SPENABLE;
1920 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1921 mreg |= VIKING_SBENABLE;
1922 mreg &= ~(VIKING_ACENABLE);
1923 srmmu_set_mmureg(mreg);
1924}
1925
1926static void __init init_viking(void)
1927{
1928 unsigned long mreg = srmmu_get_mmureg();
1929
1930 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1931 if(mreg & VIKING_MMODE) {
1932 srmmu_name = "TI Viking";
1933 viking_mxcc_present = 0;
1934 msi_set_sync();
1935
1936 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1937 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1938 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1939
1940 /*
1941 * We need this to make sure old viking takes no hits
1942 * on it's cache for dma snoops to workaround the
1943 * "load from non-cacheable memory" interrupt bug.
1944 * This is only necessary because of the new way in
1945 * which we use the IOMMU.
1946 */
1947 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1948
1949 flush_page_for_dma_global = 0;
1950 } else {
1951 srmmu_name = "TI Viking/MXCC";
1952 viking_mxcc_present = 1;
1953
1954 srmmu_cache_pagetables = 1;
1955
1956 /* MXCC vikings lack the DMA snooping bug. */
1957 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1958 }
1959
1960 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1961 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1962 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1963 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1964
1965#ifdef CONFIG_SMP
1966 if (sparc_cpu_model == sun4d) {
1967 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1968 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1971 } else
1972#endif
1973 {
1974 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1975 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1976 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1978 }
1979
1980 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1981 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1982
1983 poke_srmmu = poke_viking;
1984}
1985
1986#ifdef CONFIG_SPARC_LEON
1987
1988void __init poke_leonsparc(void)
1989{
1990}
1991
1992void __init init_leon(void)
1993{
1994
1995 srmmu_name = "LEON";
1996
1997 BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1998 BTFIXUPCALL_NORM);
1999 BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
2000 BTFIXUPCALL_NORM);
2001 BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
2002 BTFIXUPCALL_NORM);
2003 BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
2004 BTFIXUPCALL_NORM);
2005 BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
2006 BTFIXUPCALL_NORM);
2007
2008 BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2009 BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2010 BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2011 BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2012
2013 BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
2014 BTFIXUPCALL_NOP);
2015 BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
2016
2017 poke_srmmu = poke_leonsparc;
2018
2019 srmmu_cache_pagetables = 0;
2020
2021 leon_flush_during_switch = leon_flush_needed();
2022}
2023#endif
2024
2025/* Probe for the srmmu chip version. */
2026static void __init get_srmmu_type(void)
2027{
2028 unsigned long mreg, psr;
2029 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2030
2031 srmmu_modtype = SRMMU_INVAL_MOD;
2032 hwbug_bitmask = 0;
2033
2034 mreg = srmmu_get_mmureg(); psr = get_psr();
2035 mod_typ = (mreg & 0xf0000000) >> 28;
2036 mod_rev = (mreg & 0x0f000000) >> 24;
2037 psr_typ = (psr >> 28) & 0xf;
2038 psr_vers = (psr >> 24) & 0xf;
2039
2040 /* First, check for sparc-leon. */
2041 if (sparc_cpu_model == sparc_leon) {
2042 init_leon();
2043 return;
2044 }
2045
2046 /* Second, check for HyperSparc or Cypress. */
2047 if(mod_typ == 1) {
2048 switch(mod_rev) {
2049 case 7:
2050 /* UP or MP Hypersparc */
2051 init_hypersparc();
2052 break;
2053 case 0:
2054 case 2:
2055 /* Uniprocessor Cypress */
2056 init_cypress_604();
2057 break;
2058 case 10:
2059 case 11:
2060 case 12:
2061 /* _REALLY OLD_ Cypress MP chips... */
2062 case 13:
2063 case 14:
2064 case 15:
2065 /* MP Cypress mmu/cache-controller */
2066 init_cypress_605(mod_rev);
2067 break;
2068 default:
2069 /* Some other Cypress revision, assume a 605. */
2070 init_cypress_605(mod_rev);
2071 break;
2072 }
2073 return;
2074 }
2075
2076 /*
2077 * Now Fujitsu TurboSparc. It might happen that it is
2078 * in Swift emulation mode, so we will check later...
2079 */
2080 if (psr_typ == 0 && psr_vers == 5) {
2081 init_turbosparc();
2082 return;
2083 }
2084
2085 /* Next check for Fujitsu Swift. */
2086 if(psr_typ == 0 && psr_vers == 4) {
2087 phandle cpunode;
2088 char node_str[128];
2089
2090 /* Look if it is not a TurboSparc emulating Swift... */
2091 cpunode = prom_getchild(prom_root_node);
2092 while((cpunode = prom_getsibling(cpunode)) != 0) {
2093 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2094 if(!strcmp(node_str, "cpu")) {
2095 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2096 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2097 init_turbosparc();
2098 return;
2099 }
2100 break;
2101 }
2102 }
2103
2104 init_swift();
2105 return;
2106 }
2107
2108 /* Now the Viking family of srmmu. */
2109 if(psr_typ == 4 &&
2110 ((psr_vers == 0) ||
2111 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2112 init_viking();
2113 return;
2114 }
2115
2116 /* Finally the Tsunami. */
2117 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2118 init_tsunami();
2119 return;
2120 }
2121
2122 /* Oh well */
2123 srmmu_is_bad();
2124}
2125
2126/* don't laugh, static pagetables */
2127static void srmmu_check_pgt_cache(int low, int high)
2128{
2129}
2130
2131extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2132 tsetup_mmu_patchme, rtrap_mmu_patchme;
2133
2134extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2135 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2136
2137extern unsigned long srmmu_fault;
2138
2139#define PATCH_BRANCH(insn, dest) do { \
2140 iaddr = &(insn); \
2141 daddr = &(dest); \
2142 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2143 } while(0)
2144
2145static void __init patch_window_trap_handlers(void)
2146{
2147 unsigned long *iaddr, *daddr;
2148
2149 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2150 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2151 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2152 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2153 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2154 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2155 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2156}
2157
2158#ifdef CONFIG_SMP
2159/* Local cross-calls. */
2160static void smp_flush_page_for_dma(unsigned long page)
2161{
2162 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2163 local_flush_page_for_dma(page);
2164}
2165
2166#endif
2167
2168static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2169{
2170 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2171}
2172
2173static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2174{
2175 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2176}
2177
2178static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2179{
2180 prot &= ~__pgprot(SRMMU_CACHE);
2181
2182 return prot;
2183}
2184
2185/* Load up routines and constants for sun4m and sun4d mmu */
2186void __init ld_mmu_srmmu(void)
2187{
2188 extern void ld_mmu_iommu(void);
2189 extern void ld_mmu_iounit(void);
2190 extern void ___xchg32_sun4md(void);
2191
2192 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2193 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2194 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2195
2196 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2197 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2198
2199 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2200 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2201 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2202 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2203 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2204 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2205
2206 /* Functions */
2207 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2208#ifndef CONFIG_SMP
2209 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2210#endif
2211 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2212
2213 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2214 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2215
2216 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2217 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2218 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2219
2220 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2221 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2222
2223 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2224 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2225 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2226
2227 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2228 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2229 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2230 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2231
2232 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2234 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2235 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2236 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2237 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2238
2239 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2240 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2241 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2242
2243 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2244 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2245 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2246 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2247 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2248 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2249 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2250 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2251
2252 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2253 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2254 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2255 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2256 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2257 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2258 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2259 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2260 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2261 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2262 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2263 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2264
2265 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2266 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2267
2268 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2270 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2271
2272 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2273
2274 BTFIXUPSET_CALL(alloc_thread_info_node, srmmu_alloc_thread_info_node, BTFIXUPCALL_NORM);
2275 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2276
2277 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2278 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2279
2280 get_srmmu_type();
2281 patch_window_trap_handlers();
2282
2283#ifdef CONFIG_SMP
2284 /* El switcheroo... */
2285
2286 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2287 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2288 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2289 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2290 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2291 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2292 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2293 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2294 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2295 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2296 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2297
2298 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2299 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2300 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2301 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2302 if (sparc_cpu_model != sun4d &&
2303 sparc_cpu_model != sparc_leon) {
2304 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2305 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2306 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2307 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2308 }
2309 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2310 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2311 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2312
2313 if (poke_srmmu == poke_viking) {
2314 /* Avoid unnecessary cross calls. */
2315 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2316 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2317 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2318 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2319 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2320 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2321 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2322 }
2323#endif
2324
2325 if (sparc_cpu_model == sun4d)
2326 ld_mmu_iounit();
2327 else
2328 ld_mmu_iommu();
2329#ifdef CONFIG_SMP
2330 if (sparc_cpu_model == sun4d)
2331 sun4d_init_smp();
2332 else if (sparc_cpu_model == sparc_leon)
2333 leon_init_smp();
2334 else
2335 sun4m_init_smp();
2336#endif
2337}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * srmmu.c: SRMMU specific routines for memory management.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10 */
11
12#include <linux/seq_file.h>
13#include <linux/spinlock.h>
14#include <linux/memblock.h>
15#include <linux/pagemap.h>
16#include <linux/vmalloc.h>
17#include <linux/kdebug.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/init.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25
26#include <asm/mmu_context.h>
27#include <asm/cacheflush.h>
28#include <asm/tlbflush.h>
29#include <asm/io-unit.h>
30#include <asm/pgalloc.h>
31#include <asm/pgtable.h>
32#include <asm/bitext.h>
33#include <asm/vaddrs.h>
34#include <asm/cache.h>
35#include <asm/traps.h>
36#include <asm/oplib.h>
37#include <asm/mbus.h>
38#include <asm/page.h>
39#include <asm/asi.h>
40#include <asm/smp.h>
41#include <asm/io.h>
42
43/* Now the cpu specific definitions. */
44#include <asm/turbosparc.h>
45#include <asm/tsunami.h>
46#include <asm/viking.h>
47#include <asm/swift.h>
48#include <asm/leon.h>
49#include <asm/mxcc.h>
50#include <asm/ross.h>
51
52#include "mm_32.h"
53
54enum mbus_module srmmu_modtype;
55static unsigned int hwbug_bitmask;
56int vac_cache_size;
57EXPORT_SYMBOL(vac_cache_size);
58int vac_line_size;
59
60extern struct resource sparc_iomap;
61
62extern unsigned long last_valid_pfn;
63
64static pgd_t *srmmu_swapper_pg_dir;
65
66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67EXPORT_SYMBOL(sparc32_cachetlb_ops);
68
69#ifdef CONFIG_SMP
70const struct sparc32_cachetlb_ops *local_ops;
71
72#define FLUSH_BEGIN(mm)
73#define FLUSH_END
74#else
75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76#define FLUSH_END }
77#endif
78
79int flush_page_for_dma_global = 1;
80
81char *srmmu_name;
82
83ctxd_t *srmmu_ctx_table_phys;
84static ctxd_t *srmmu_context_table;
85
86int viking_mxcc_present;
87static DEFINE_SPINLOCK(srmmu_context_spinlock);
88
89static int is_hypersparc;
90
91static int srmmu_cache_pagetables;
92
93/* these will be initialized in srmmu_nocache_calcsize() */
94static unsigned long srmmu_nocache_size;
95static unsigned long srmmu_nocache_end;
96
97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99
100/* The context table is a nocache user with the biggest alignment needs. */
101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102
103void *srmmu_nocache_pool;
104static struct bit_map srmmu_nocache_map;
105
106static inline int srmmu_pmd_none(pmd_t pmd)
107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109/* XXX should we hyper_flush_whole_icache here - Anton */
110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111{
112 pte_t pte;
113
114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 set_pte((pte_t *)ctxp, pte);
116}
117
118/*
119 * Locations of MSI Registers.
120 */
121#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
122
123/*
124 * Useful bits in the MSI Registers.
125 */
126#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
127
128static void msi_set_sync(void)
129{
130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN),
134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135}
136
137void pmd_set(pmd_t *pmdp, pte_t *ptep)
138{
139 unsigned long ptp = __nocache_pa(ptep) >> 4;
140 set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
141}
142
143/*
144 * size: bytes to allocate in the nocache area.
145 * align: bytes, number to align at.
146 * Returns the virtual address of the allocated area.
147 */
148static void *__srmmu_get_nocache(int size, int align)
149{
150 int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
151 unsigned long addr;
152
153 if (size < minsz) {
154 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
155 size);
156 size = minsz;
157 }
158 if (size & (minsz - 1)) {
159 printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
160 size);
161 size += minsz - 1;
162 }
163 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
164
165 offset = bit_map_string_get(&srmmu_nocache_map,
166 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
167 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
168 if (offset == -1) {
169 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
170 size, (int) srmmu_nocache_size,
171 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
172 return NULL;
173 }
174
175 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
176 return (void *)addr;
177}
178
179void *srmmu_get_nocache(int size, int align)
180{
181 void *tmp;
182
183 tmp = __srmmu_get_nocache(size, align);
184
185 if (tmp)
186 memset(tmp, 0, size);
187
188 return tmp;
189}
190
191void srmmu_free_nocache(void *addr, int size)
192{
193 unsigned long vaddr;
194 int offset;
195
196 vaddr = (unsigned long)addr;
197 if (vaddr < SRMMU_NOCACHE_VADDR) {
198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 BUG();
201 }
202 if (vaddr + size > srmmu_nocache_end) {
203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 vaddr, srmmu_nocache_end);
205 BUG();
206 }
207 if (!is_power_of_2(size)) {
208 printk("Size 0x%x is not a power of 2\n", size);
209 BUG();
210 }
211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 printk("Size 0x%x is too small\n", size);
213 BUG();
214 }
215 if (vaddr & (size - 1)) {
216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 BUG();
218 }
219
220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222
223 bit_map_clear(&srmmu_nocache_map, offset, size);
224}
225
226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 unsigned long end);
228
229/* Return how much physical memory we have. */
230static unsigned long __init probe_memory(void)
231{
232 unsigned long total = 0;
233 int i;
234
235 for (i = 0; sp_banks[i].num_bytes; i++)
236 total += sp_banks[i].num_bytes;
237
238 return total;
239}
240
241/*
242 * Reserve nocache dynamically proportionally to the amount of
243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
244 */
245static void __init srmmu_nocache_calcsize(void)
246{
247 unsigned long sysmemavail = probe_memory() / 1024;
248 int srmmu_nocache_npages;
249
250 srmmu_nocache_npages =
251 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
252
253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
254 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
255 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
256 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
257
258 /* anything above 1280 blows up */
259 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
260 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
261
262 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
263 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
264}
265
266static void __init srmmu_nocache_init(void)
267{
268 void *srmmu_nocache_bitmap;
269 unsigned int bitmap_bits;
270 pgd_t *pgd;
271 p4d_t *p4d;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *pte;
275 unsigned long paddr, vaddr;
276 unsigned long pteval;
277
278 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
279
280 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
281 SRMMU_NOCACHE_ALIGN_MAX);
282 if (!srmmu_nocache_pool)
283 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
284 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
285 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
286
287 srmmu_nocache_bitmap =
288 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
289 SMP_CACHE_BYTES);
290 if (!srmmu_nocache_bitmap)
291 panic("%s: Failed to allocate %zu bytes\n", __func__,
292 BITS_TO_LONGS(bitmap_bits) * sizeof(long));
293 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
294
295 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
296 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
297 init_mm.pgd = srmmu_swapper_pg_dir;
298
299 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
300
301 paddr = __pa((unsigned long)srmmu_nocache_pool);
302 vaddr = SRMMU_NOCACHE_VADDR;
303
304 while (vaddr < srmmu_nocache_end) {
305 pgd = pgd_offset_k(vaddr);
306 p4d = p4d_offset(pgd, vaddr);
307 pud = pud_offset(p4d, vaddr);
308 pmd = pmd_offset(__nocache_fix(pud), vaddr);
309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
310
311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
312
313 if (srmmu_cache_pagetables)
314 pteval |= SRMMU_CACHE;
315
316 set_pte(__nocache_fix(pte), __pte(pteval));
317
318 vaddr += PAGE_SIZE;
319 paddr += PAGE_SIZE;
320 }
321
322 flush_cache_all();
323 flush_tlb_all();
324}
325
326pgd_t *get_pgd_fast(void)
327{
328 pgd_t *pgd = NULL;
329
330 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331 if (pgd) {
332 pgd_t *init = pgd_offset_k(0);
333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336 }
337
338 return pgd;
339}
340
341/*
342 * Hardware needs alignment to 256 only, but we align to whole page size
343 * to reduce fragmentation problems due to the buddy principle.
344 * XXX Provide actual fragmentation statistics in /proc.
345 *
346 * Alignments up to the page size are the same for physical and virtual
347 * addresses of the nocache area.
348 */
349pgtable_t pte_alloc_one(struct mm_struct *mm)
350{
351 pte_t *ptep;
352 struct page *page;
353
354 if (!(ptep = pte_alloc_one_kernel(mm)))
355 return NULL;
356 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
357 spin_lock(&mm->page_table_lock);
358 if (page_ref_inc_return(page) == 2 &&
359 !pagetable_pte_ctor(page_ptdesc(page))) {
360 page_ref_dec(page);
361 ptep = NULL;
362 }
363 spin_unlock(&mm->page_table_lock);
364
365 return ptep;
366}
367
368void pte_free(struct mm_struct *mm, pgtable_t ptep)
369{
370 struct page *page;
371
372 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
373 spin_lock(&mm->page_table_lock);
374 if (page_ref_dec_return(page) == 1)
375 pagetable_pte_dtor(page_ptdesc(page));
376 spin_unlock(&mm->page_table_lock);
377
378 srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
379}
380
381/* context handling - a dynamically sized pool is used */
382#define NO_CONTEXT -1
383
384struct ctx_list {
385 struct ctx_list *next;
386 struct ctx_list *prev;
387 unsigned int ctx_number;
388 struct mm_struct *ctx_mm;
389};
390
391static struct ctx_list *ctx_list_pool;
392static struct ctx_list ctx_free;
393static struct ctx_list ctx_used;
394
395/* At boot time we determine the number of contexts */
396static int num_contexts;
397
398static inline void remove_from_ctx_list(struct ctx_list *entry)
399{
400 entry->next->prev = entry->prev;
401 entry->prev->next = entry->next;
402}
403
404static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
405{
406 entry->next = head;
407 (entry->prev = head->prev)->next = entry;
408 head->prev = entry;
409}
410#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
411#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
412
413
414static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
415{
416 struct ctx_list *ctxp;
417
418 ctxp = ctx_free.next;
419 if (ctxp != &ctx_free) {
420 remove_from_ctx_list(ctxp);
421 add_to_used_ctxlist(ctxp);
422 mm->context = ctxp->ctx_number;
423 ctxp->ctx_mm = mm;
424 return;
425 }
426 ctxp = ctx_used.next;
427 if (ctxp->ctx_mm == old_mm)
428 ctxp = ctxp->next;
429 if (ctxp == &ctx_used)
430 panic("out of mmu contexts");
431 flush_cache_mm(ctxp->ctx_mm);
432 flush_tlb_mm(ctxp->ctx_mm);
433 remove_from_ctx_list(ctxp);
434 add_to_used_ctxlist(ctxp);
435 ctxp->ctx_mm->context = NO_CONTEXT;
436 ctxp->ctx_mm = mm;
437 mm->context = ctxp->ctx_number;
438}
439
440static inline void free_context(int context)
441{
442 struct ctx_list *ctx_old;
443
444 ctx_old = ctx_list_pool + context;
445 remove_from_ctx_list(ctx_old);
446 add_to_free_ctxlist(ctx_old);
447}
448
449static void __init sparc_context_init(int numctx)
450{
451 int ctx;
452 unsigned long size;
453
454 size = numctx * sizeof(struct ctx_list);
455 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
456 if (!ctx_list_pool)
457 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
458
459 for (ctx = 0; ctx < numctx; ctx++) {
460 struct ctx_list *clist;
461
462 clist = (ctx_list_pool + ctx);
463 clist->ctx_number = ctx;
464 clist->ctx_mm = NULL;
465 }
466 ctx_free.next = ctx_free.prev = &ctx_free;
467 ctx_used.next = ctx_used.prev = &ctx_used;
468 for (ctx = 0; ctx < numctx; ctx++)
469 add_to_free_ctxlist(ctx_list_pool + ctx);
470}
471
472void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
473 struct task_struct *tsk)
474{
475 unsigned long flags;
476
477 if (mm->context == NO_CONTEXT) {
478 spin_lock_irqsave(&srmmu_context_spinlock, flags);
479 alloc_context(old_mm, mm);
480 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
481 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
482 }
483
484 if (sparc_cpu_model == sparc_leon)
485 leon_switch_mm();
486
487 if (is_hypersparc)
488 hyper_flush_whole_icache();
489
490 srmmu_set_context(mm->context);
491}
492
493/* Low level IO area allocation on the SRMMU. */
494static inline void srmmu_mapioaddr(unsigned long physaddr,
495 unsigned long virt_addr, int bus_type)
496{
497 pgd_t *pgdp;
498 p4d_t *p4dp;
499 pud_t *pudp;
500 pmd_t *pmdp;
501 pte_t *ptep;
502 unsigned long tmp;
503
504 physaddr &= PAGE_MASK;
505 pgdp = pgd_offset_k(virt_addr);
506 p4dp = p4d_offset(pgdp, virt_addr);
507 pudp = pud_offset(p4dp, virt_addr);
508 pmdp = pmd_offset(pudp, virt_addr);
509 ptep = pte_offset_kernel(pmdp, virt_addr);
510 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
511
512 /* I need to test whether this is consistent over all
513 * sun4m's. The bus_type represents the upper 4 bits of
514 * 36-bit physical address on the I/O space lines...
515 */
516 tmp |= (bus_type << 28);
517 tmp |= SRMMU_PRIV;
518 __flush_page_to_ram(virt_addr);
519 set_pte(ptep, __pte(tmp));
520}
521
522void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
523 unsigned long xva, unsigned int len)
524{
525 while (len != 0) {
526 len -= PAGE_SIZE;
527 srmmu_mapioaddr(xpa, xva, bus);
528 xva += PAGE_SIZE;
529 xpa += PAGE_SIZE;
530 }
531 flush_tlb_all();
532}
533
534static inline void srmmu_unmapioaddr(unsigned long virt_addr)
535{
536 pgd_t *pgdp;
537 p4d_t *p4dp;
538 pud_t *pudp;
539 pmd_t *pmdp;
540 pte_t *ptep;
541
542
543 pgdp = pgd_offset_k(virt_addr);
544 p4dp = p4d_offset(pgdp, virt_addr);
545 pudp = pud_offset(p4dp, virt_addr);
546 pmdp = pmd_offset(pudp, virt_addr);
547 ptep = pte_offset_kernel(pmdp, virt_addr);
548
549 /* No need to flush uncacheable page. */
550 __pte_clear(ptep);
551}
552
553void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
554{
555 while (len != 0) {
556 len -= PAGE_SIZE;
557 srmmu_unmapioaddr(virt_addr);
558 virt_addr += PAGE_SIZE;
559 }
560 flush_tlb_all();
561}
562
563/* tsunami.S */
564extern void tsunami_flush_cache_all(void);
565extern void tsunami_flush_cache_mm(struct mm_struct *mm);
566extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
567extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
568extern void tsunami_flush_page_to_ram(unsigned long page);
569extern void tsunami_flush_page_for_dma(unsigned long page);
570extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
571extern void tsunami_flush_tlb_all(void);
572extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
573extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
574extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
575extern void tsunami_setup_blockops(void);
576
577/* swift.S */
578extern void swift_flush_cache_all(void);
579extern void swift_flush_cache_mm(struct mm_struct *mm);
580extern void swift_flush_cache_range(struct vm_area_struct *vma,
581 unsigned long start, unsigned long end);
582extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
583extern void swift_flush_page_to_ram(unsigned long page);
584extern void swift_flush_page_for_dma(unsigned long page);
585extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
586extern void swift_flush_tlb_all(void);
587extern void swift_flush_tlb_mm(struct mm_struct *mm);
588extern void swift_flush_tlb_range(struct vm_area_struct *vma,
589 unsigned long start, unsigned long end);
590extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
591
592#if 0 /* P3: deadwood to debug precise flushes on Swift. */
593void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
594{
595 int cctx, ctx1;
596
597 page &= PAGE_MASK;
598 if ((ctx1 = vma->vm_mm->context) != -1) {
599 cctx = srmmu_get_context();
600/* Is context # ever different from current context? P3 */
601 if (cctx != ctx1) {
602 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
603 srmmu_set_context(ctx1);
604 swift_flush_page(page);
605 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
606 "r" (page), "i" (ASI_M_FLUSH_PROBE));
607 srmmu_set_context(cctx);
608 } else {
609 /* Rm. prot. bits from virt. c. */
610 /* swift_flush_cache_all(); */
611 /* swift_flush_cache_page(vma, page); */
612 swift_flush_page(page);
613
614 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
615 "r" (page), "i" (ASI_M_FLUSH_PROBE));
616 /* same as above: srmmu_flush_tlb_page() */
617 }
618 }
619}
620#endif
621
622/*
623 * The following are all MBUS based SRMMU modules, and therefore could
624 * be found in a multiprocessor configuration. On the whole, these
625 * chips seems to be much more touchy about DVMA and page tables
626 * with respect to cache coherency.
627 */
628
629/* viking.S */
630extern void viking_flush_cache_all(void);
631extern void viking_flush_cache_mm(struct mm_struct *mm);
632extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
633 unsigned long end);
634extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
635extern void viking_flush_page_to_ram(unsigned long page);
636extern void viking_flush_page_for_dma(unsigned long page);
637extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
638extern void viking_flush_page(unsigned long page);
639extern void viking_mxcc_flush_page(unsigned long page);
640extern void viking_flush_tlb_all(void);
641extern void viking_flush_tlb_mm(struct mm_struct *mm);
642extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
643 unsigned long end);
644extern void viking_flush_tlb_page(struct vm_area_struct *vma,
645 unsigned long page);
646extern void sun4dsmp_flush_tlb_all(void);
647extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
648extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
649 unsigned long end);
650extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
651 unsigned long page);
652
653/* hypersparc.S */
654extern void hypersparc_flush_cache_all(void);
655extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
656extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
657extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
658extern void hypersparc_flush_page_to_ram(unsigned long page);
659extern void hypersparc_flush_page_for_dma(unsigned long page);
660extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
661extern void hypersparc_flush_tlb_all(void);
662extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
663extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
664extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
665extern void hypersparc_setup_blockops(void);
666
667/*
668 * NOTE: All of this startup code assumes the low 16mb (approx.) of
669 * kernel mappings are done with one single contiguous chunk of
670 * ram. On small ram machines (classics mainly) we only get
671 * around 8mb mapped for us.
672 */
673
674static void __init early_pgtable_allocfail(char *type)
675{
676 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
677 prom_halt();
678}
679
680static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
681 unsigned long end)
682{
683 pgd_t *pgdp;
684 p4d_t *p4dp;
685 pud_t *pudp;
686 pmd_t *pmdp;
687 pte_t *ptep;
688
689 while (start < end) {
690 pgdp = pgd_offset_k(start);
691 p4dp = p4d_offset(pgdp, start);
692 pudp = pud_offset(p4dp, start);
693 if (pud_none(*__nocache_fix(pudp))) {
694 pmdp = __srmmu_get_nocache(
695 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
696 if (pmdp == NULL)
697 early_pgtable_allocfail("pmd");
698 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
699 pud_set(__nocache_fix(pudp), pmdp);
700 }
701 pmdp = pmd_offset(__nocache_fix(pudp), start);
702 if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
703 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
704 if (ptep == NULL)
705 early_pgtable_allocfail("pte");
706 memset(__nocache_fix(ptep), 0, PTE_SIZE);
707 pmd_set(__nocache_fix(pmdp), ptep);
708 }
709 if (start > (0xffffffffUL - PMD_SIZE))
710 break;
711 start = (start + PMD_SIZE) & PMD_MASK;
712 }
713}
714
715static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
716 unsigned long end)
717{
718 pgd_t *pgdp;
719 p4d_t *p4dp;
720 pud_t *pudp;
721 pmd_t *pmdp;
722 pte_t *ptep;
723
724 while (start < end) {
725 pgdp = pgd_offset_k(start);
726 p4dp = p4d_offset(pgdp, start);
727 pudp = pud_offset(p4dp, start);
728 if (pud_none(*pudp)) {
729 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
730 if (pmdp == NULL)
731 early_pgtable_allocfail("pmd");
732 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
733 pud_set((pud_t *)pgdp, pmdp);
734 }
735 pmdp = pmd_offset(pudp, start);
736 if (srmmu_pmd_none(*pmdp)) {
737 ptep = __srmmu_get_nocache(PTE_SIZE,
738 PTE_SIZE);
739 if (ptep == NULL)
740 early_pgtable_allocfail("pte");
741 memset(ptep, 0, PTE_SIZE);
742 pmd_set(pmdp, ptep);
743 }
744 if (start > (0xffffffffUL - PMD_SIZE))
745 break;
746 start = (start + PMD_SIZE) & PMD_MASK;
747 }
748}
749
750/* These flush types are not available on all chips... */
751static inline unsigned long srmmu_probe(unsigned long vaddr)
752{
753 unsigned long retval;
754
755 if (sparc_cpu_model != sparc_leon) {
756
757 vaddr &= PAGE_MASK;
758 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
759 "=r" (retval) :
760 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
761 } else {
762 retval = leon_swprobe(vaddr, NULL);
763 }
764 return retval;
765}
766
767/*
768 * This is much cleaner than poking around physical address space
769 * looking at the prom's page table directly which is what most
770 * other OS's do. Yuck... this is much better.
771 */
772static void __init srmmu_inherit_prom_mappings(unsigned long start,
773 unsigned long end)
774{
775 unsigned long probed;
776 unsigned long addr;
777 pgd_t *pgdp;
778 p4d_t *p4dp;
779 pud_t *pudp;
780 pmd_t *pmdp;
781 pte_t *ptep;
782 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
783
784 while (start <= end) {
785 if (start == 0)
786 break; /* probably wrap around */
787 if (start == 0xfef00000)
788 start = KADB_DEBUGGER_BEGVM;
789 probed = srmmu_probe(start);
790 if (!probed) {
791 /* continue probing until we find an entry */
792 start += PAGE_SIZE;
793 continue;
794 }
795
796 /* A red snapper, see what it really is. */
797 what = 0;
798 addr = start - PAGE_SIZE;
799
800 if (!(start & ~(PMD_MASK))) {
801 if (srmmu_probe(addr + PMD_SIZE) == probed)
802 what = 1;
803 }
804
805 if (!(start & ~(PGDIR_MASK))) {
806 if (srmmu_probe(addr + PGDIR_SIZE) == probed)
807 what = 2;
808 }
809
810 pgdp = pgd_offset_k(start);
811 p4dp = p4d_offset(pgdp, start);
812 pudp = pud_offset(p4dp, start);
813 if (what == 2) {
814 *__nocache_fix(pgdp) = __pgd(probed);
815 start += PGDIR_SIZE;
816 continue;
817 }
818 if (pud_none(*__nocache_fix(pudp))) {
819 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
820 SRMMU_PMD_TABLE_SIZE);
821 if (pmdp == NULL)
822 early_pgtable_allocfail("pmd");
823 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
824 pud_set(__nocache_fix(pudp), pmdp);
825 }
826 pmdp = pmd_offset(__nocache_fix(pudp), start);
827 if (what == 1) {
828 *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
829 start += PMD_SIZE;
830 continue;
831 }
832 if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
833 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
834 if (ptep == NULL)
835 early_pgtable_allocfail("pte");
836 memset(__nocache_fix(ptep), 0, PTE_SIZE);
837 pmd_set(__nocache_fix(pmdp), ptep);
838 }
839 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
840 *__nocache_fix(ptep) = __pte(probed);
841 start += PAGE_SIZE;
842 }
843}
844
845#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
846
847/* Create a third-level SRMMU 16MB page mapping. */
848static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
849{
850 pgd_t *pgdp = pgd_offset_k(vaddr);
851 unsigned long big_pte;
852
853 big_pte = KERNEL_PTE(phys_base >> 4);
854 *__nocache_fix(pgdp) = __pgd(big_pte);
855}
856
857/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
858static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
859{
860 unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
861 unsigned long vstart = (vbase & PGDIR_MASK);
862 unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
863 /* Map "low" memory only */
864 const unsigned long min_vaddr = PAGE_OFFSET;
865 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
866
867 if (vstart < min_vaddr || vstart >= max_vaddr)
868 return vstart;
869
870 if (vend > max_vaddr || vend < min_vaddr)
871 vend = max_vaddr;
872
873 while (vstart < vend) {
874 do_large_mapping(vstart, pstart);
875 vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
876 }
877 return vstart;
878}
879
880static void __init map_kernel(void)
881{
882 int i;
883
884 if (phys_base > 0) {
885 do_large_mapping(PAGE_OFFSET, phys_base);
886 }
887
888 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
889 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
890 }
891}
892
893void (*poke_srmmu)(void) = NULL;
894
895void __init srmmu_paging_init(void)
896{
897 int i;
898 phandle cpunode;
899 char node_str[128];
900 pgd_t *pgd;
901 p4d_t *p4d;
902 pud_t *pud;
903 pmd_t *pmd;
904 pte_t *pte;
905 unsigned long pages_avail;
906
907 init_mm.context = (unsigned long) NO_CONTEXT;
908 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
909
910 if (sparc_cpu_model == sun4d)
911 num_contexts = 65536; /* We know it is Viking */
912 else {
913 /* Find the number of contexts on the srmmu. */
914 cpunode = prom_getchild(prom_root_node);
915 num_contexts = 0;
916 while (cpunode != 0) {
917 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
918 if (!strcmp(node_str, "cpu")) {
919 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
920 break;
921 }
922 cpunode = prom_getsibling(cpunode);
923 }
924 }
925
926 if (!num_contexts) {
927 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
928 prom_halt();
929 }
930
931 pages_avail = 0;
932 last_valid_pfn = bootmem_init(&pages_avail);
933
934 srmmu_nocache_calcsize();
935 srmmu_nocache_init();
936 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
937 map_kernel();
938
939 /* ctx table has to be physically aligned to its size */
940 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
941 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
942
943 for (i = 0; i < num_contexts; i++)
944 srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
945
946 flush_cache_all();
947 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
948#ifdef CONFIG_SMP
949 /* Stop from hanging here... */
950 local_ops->tlb_all();
951#else
952 flush_tlb_all();
953#endif
954 poke_srmmu();
955
956 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
957 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
958
959 srmmu_allocate_ptable_skeleton(
960 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
961 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
962
963 pgd = pgd_offset_k(PKMAP_BASE);
964 p4d = p4d_offset(pgd, PKMAP_BASE);
965 pud = pud_offset(p4d, PKMAP_BASE);
966 pmd = pmd_offset(pud, PKMAP_BASE);
967 pte = pte_offset_kernel(pmd, PKMAP_BASE);
968 pkmap_page_table = pte;
969
970 flush_cache_all();
971 flush_tlb_all();
972
973 sparc_context_init(num_contexts);
974
975 {
976 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
977
978 max_zone_pfn[ZONE_DMA] = max_low_pfn;
979 max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
980 max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
981
982 free_area_init(max_zone_pfn);
983 }
984}
985
986void mmu_info(struct seq_file *m)
987{
988 seq_printf(m,
989 "MMU type\t: %s\n"
990 "contexts\t: %d\n"
991 "nocache total\t: %ld\n"
992 "nocache used\t: %d\n",
993 srmmu_name,
994 num_contexts,
995 srmmu_nocache_size,
996 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
997}
998
999int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1000{
1001 mm->context = NO_CONTEXT;
1002 return 0;
1003}
1004
1005void destroy_context(struct mm_struct *mm)
1006{
1007 unsigned long flags;
1008
1009 if (mm->context != NO_CONTEXT) {
1010 flush_cache_mm(mm);
1011 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1012 flush_tlb_mm(mm);
1013 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1014 free_context(mm->context);
1015 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1016 mm->context = NO_CONTEXT;
1017 }
1018}
1019
1020/* Init various srmmu chip types. */
1021static void __init srmmu_is_bad(void)
1022{
1023 prom_printf("Could not determine SRMMU chip type.\n");
1024 prom_halt();
1025}
1026
1027static void __init init_vac_layout(void)
1028{
1029 phandle nd;
1030 int cache_lines;
1031 char node_str[128];
1032#ifdef CONFIG_SMP
1033 int cpu = 0;
1034 unsigned long max_size = 0;
1035 unsigned long min_line_size = 0x10000000;
1036#endif
1037
1038 nd = prom_getchild(prom_root_node);
1039 while ((nd = prom_getsibling(nd)) != 0) {
1040 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1041 if (!strcmp(node_str, "cpu")) {
1042 vac_line_size = prom_getint(nd, "cache-line-size");
1043 if (vac_line_size == -1) {
1044 prom_printf("can't determine cache-line-size, halting.\n");
1045 prom_halt();
1046 }
1047 cache_lines = prom_getint(nd, "cache-nlines");
1048 if (cache_lines == -1) {
1049 prom_printf("can't determine cache-nlines, halting.\n");
1050 prom_halt();
1051 }
1052
1053 vac_cache_size = cache_lines * vac_line_size;
1054#ifdef CONFIG_SMP
1055 if (vac_cache_size > max_size)
1056 max_size = vac_cache_size;
1057 if (vac_line_size < min_line_size)
1058 min_line_size = vac_line_size;
1059 //FIXME: cpus not contiguous!!
1060 cpu++;
1061 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1062 break;
1063#else
1064 break;
1065#endif
1066 }
1067 }
1068 if (nd == 0) {
1069 prom_printf("No CPU nodes found, halting.\n");
1070 prom_halt();
1071 }
1072#ifdef CONFIG_SMP
1073 vac_cache_size = max_size;
1074 vac_line_size = min_line_size;
1075#endif
1076 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1077 (int)vac_cache_size, (int)vac_line_size);
1078}
1079
1080static void poke_hypersparc(void)
1081{
1082 volatile unsigned long clear;
1083 unsigned long mreg = srmmu_get_mmureg();
1084
1085 hyper_flush_unconditional_combined();
1086
1087 mreg &= ~(HYPERSPARC_CWENABLE);
1088 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1089 mreg |= (HYPERSPARC_CMODE);
1090
1091 srmmu_set_mmureg(mreg);
1092
1093#if 0 /* XXX I think this is bad news... -DaveM */
1094 hyper_clear_all_tags();
1095#endif
1096
1097 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1098 hyper_flush_whole_icache();
1099 clear = srmmu_get_faddr();
1100 clear = srmmu_get_fstatus();
1101}
1102
1103static const struct sparc32_cachetlb_ops hypersparc_ops = {
1104 .cache_all = hypersparc_flush_cache_all,
1105 .cache_mm = hypersparc_flush_cache_mm,
1106 .cache_page = hypersparc_flush_cache_page,
1107 .cache_range = hypersparc_flush_cache_range,
1108 .tlb_all = hypersparc_flush_tlb_all,
1109 .tlb_mm = hypersparc_flush_tlb_mm,
1110 .tlb_page = hypersparc_flush_tlb_page,
1111 .tlb_range = hypersparc_flush_tlb_range,
1112 .page_to_ram = hypersparc_flush_page_to_ram,
1113 .sig_insns = hypersparc_flush_sig_insns,
1114 .page_for_dma = hypersparc_flush_page_for_dma,
1115};
1116
1117static void __init init_hypersparc(void)
1118{
1119 srmmu_name = "ROSS HyperSparc";
1120 srmmu_modtype = HyperSparc;
1121
1122 init_vac_layout();
1123
1124 is_hypersparc = 1;
1125 sparc32_cachetlb_ops = &hypersparc_ops;
1126
1127 poke_srmmu = poke_hypersparc;
1128
1129 hypersparc_setup_blockops();
1130}
1131
1132static void poke_swift(void)
1133{
1134 unsigned long mreg;
1135
1136 /* Clear any crap from the cache or else... */
1137 swift_flush_cache_all();
1138
1139 /* Enable I & D caches */
1140 mreg = srmmu_get_mmureg();
1141 mreg |= (SWIFT_IE | SWIFT_DE);
1142 /*
1143 * The Swift branch folding logic is completely broken. At
1144 * trap time, if things are just right, if can mistakenly
1145 * think that a trap is coming from kernel mode when in fact
1146 * it is coming from user mode (it mis-executes the branch in
1147 * the trap code). So you see things like crashme completely
1148 * hosing your machine which is completely unacceptable. Turn
1149 * this shit off... nice job Fujitsu.
1150 */
1151 mreg &= ~(SWIFT_BF);
1152 srmmu_set_mmureg(mreg);
1153}
1154
1155static const struct sparc32_cachetlb_ops swift_ops = {
1156 .cache_all = swift_flush_cache_all,
1157 .cache_mm = swift_flush_cache_mm,
1158 .cache_page = swift_flush_cache_page,
1159 .cache_range = swift_flush_cache_range,
1160 .tlb_all = swift_flush_tlb_all,
1161 .tlb_mm = swift_flush_tlb_mm,
1162 .tlb_page = swift_flush_tlb_page,
1163 .tlb_range = swift_flush_tlb_range,
1164 .page_to_ram = swift_flush_page_to_ram,
1165 .sig_insns = swift_flush_sig_insns,
1166 .page_for_dma = swift_flush_page_for_dma,
1167};
1168
1169#define SWIFT_MASKID_ADDR 0x10003018
1170static void __init init_swift(void)
1171{
1172 unsigned long swift_rev;
1173
1174 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1175 "srl %0, 0x18, %0\n\t" :
1176 "=r" (swift_rev) :
1177 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1178 srmmu_name = "Fujitsu Swift";
1179 switch (swift_rev) {
1180 case 0x11:
1181 case 0x20:
1182 case 0x23:
1183 case 0x30:
1184 srmmu_modtype = Swift_lots_o_bugs;
1185 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1186 /*
1187 * Gee george, I wonder why Sun is so hush hush about
1188 * this hardware bug... really braindamage stuff going
1189 * on here. However I think we can find a way to avoid
1190 * all of the workaround overhead under Linux. Basically,
1191 * any page fault can cause kernel pages to become user
1192 * accessible (the mmu gets confused and clears some of
1193 * the ACC bits in kernel ptes). Aha, sounds pretty
1194 * horrible eh? But wait, after extensive testing it appears
1195 * that if you use pgd_t level large kernel pte's (like the
1196 * 4MB pages on the Pentium) the bug does not get tripped
1197 * at all. This avoids almost all of the major overhead.
1198 * Welcome to a world where your vendor tells you to,
1199 * "apply this kernel patch" instead of "sorry for the
1200 * broken hardware, send it back and we'll give you
1201 * properly functioning parts"
1202 */
1203 break;
1204 case 0x25:
1205 case 0x31:
1206 srmmu_modtype = Swift_bad_c;
1207 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1208 /*
1209 * You see Sun allude to this hardware bug but never
1210 * admit things directly, they'll say things like,
1211 * "the Swift chip cache problems" or similar.
1212 */
1213 break;
1214 default:
1215 srmmu_modtype = Swift_ok;
1216 break;
1217 }
1218
1219 sparc32_cachetlb_ops = &swift_ops;
1220 flush_page_for_dma_global = 0;
1221
1222 /*
1223 * Are you now convinced that the Swift is one of the
1224 * biggest VLSI abortions of all time? Bravo Fujitsu!
1225 * Fujitsu, the !#?!%$'d up processor people. I bet if
1226 * you examined the microcode of the Swift you'd find
1227 * XXX's all over the place.
1228 */
1229 poke_srmmu = poke_swift;
1230}
1231
1232static void turbosparc_flush_cache_all(void)
1233{
1234 flush_user_windows();
1235 turbosparc_idflash_clear();
1236}
1237
1238static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1239{
1240 FLUSH_BEGIN(mm)
1241 flush_user_windows();
1242 turbosparc_idflash_clear();
1243 FLUSH_END
1244}
1245
1246static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1247{
1248 FLUSH_BEGIN(vma->vm_mm)
1249 flush_user_windows();
1250 turbosparc_idflash_clear();
1251 FLUSH_END
1252}
1253
1254static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1255{
1256 FLUSH_BEGIN(vma->vm_mm)
1257 flush_user_windows();
1258 if (vma->vm_flags & VM_EXEC)
1259 turbosparc_flush_icache();
1260 turbosparc_flush_dcache();
1261 FLUSH_END
1262}
1263
1264/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1265static void turbosparc_flush_page_to_ram(unsigned long page)
1266{
1267#ifdef TURBOSPARC_WRITEBACK
1268 volatile unsigned long clear;
1269
1270 if (srmmu_probe(page))
1271 turbosparc_flush_page_cache(page);
1272 clear = srmmu_get_fstatus();
1273#endif
1274}
1275
1276static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1277{
1278}
1279
1280static void turbosparc_flush_page_for_dma(unsigned long page)
1281{
1282 turbosparc_flush_dcache();
1283}
1284
1285static void turbosparc_flush_tlb_all(void)
1286{
1287 srmmu_flush_whole_tlb();
1288}
1289
1290static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1291{
1292 FLUSH_BEGIN(mm)
1293 srmmu_flush_whole_tlb();
1294 FLUSH_END
1295}
1296
1297static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1298{
1299 FLUSH_BEGIN(vma->vm_mm)
1300 srmmu_flush_whole_tlb();
1301 FLUSH_END
1302}
1303
1304static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1305{
1306 FLUSH_BEGIN(vma->vm_mm)
1307 srmmu_flush_whole_tlb();
1308 FLUSH_END
1309}
1310
1311
1312static void poke_turbosparc(void)
1313{
1314 unsigned long mreg = srmmu_get_mmureg();
1315 unsigned long ccreg;
1316
1317 /* Clear any crap from the cache or else... */
1318 turbosparc_flush_cache_all();
1319 /* Temporarily disable I & D caches */
1320 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1321 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1322 srmmu_set_mmureg(mreg);
1323
1324 ccreg = turbosparc_get_ccreg();
1325
1326#ifdef TURBOSPARC_WRITEBACK
1327 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1328 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1329 /* Write-back D-cache, emulate VLSI
1330 * abortion number three, not number one */
1331#else
1332 /* For now let's play safe, optimize later */
1333 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1334 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1335 ccreg &= ~(TURBOSPARC_uS2);
1336 /* Emulate VLSI abortion number three, not number one */
1337#endif
1338
1339 switch (ccreg & 7) {
1340 case 0: /* No SE cache */
1341 case 7: /* Test mode */
1342 break;
1343 default:
1344 ccreg |= (TURBOSPARC_SCENABLE);
1345 }
1346 turbosparc_set_ccreg(ccreg);
1347
1348 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1349 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1350 srmmu_set_mmureg(mreg);
1351}
1352
1353static const struct sparc32_cachetlb_ops turbosparc_ops = {
1354 .cache_all = turbosparc_flush_cache_all,
1355 .cache_mm = turbosparc_flush_cache_mm,
1356 .cache_page = turbosparc_flush_cache_page,
1357 .cache_range = turbosparc_flush_cache_range,
1358 .tlb_all = turbosparc_flush_tlb_all,
1359 .tlb_mm = turbosparc_flush_tlb_mm,
1360 .tlb_page = turbosparc_flush_tlb_page,
1361 .tlb_range = turbosparc_flush_tlb_range,
1362 .page_to_ram = turbosparc_flush_page_to_ram,
1363 .sig_insns = turbosparc_flush_sig_insns,
1364 .page_for_dma = turbosparc_flush_page_for_dma,
1365};
1366
1367static void __init init_turbosparc(void)
1368{
1369 srmmu_name = "Fujitsu TurboSparc";
1370 srmmu_modtype = TurboSparc;
1371 sparc32_cachetlb_ops = &turbosparc_ops;
1372 poke_srmmu = poke_turbosparc;
1373}
1374
1375static void poke_tsunami(void)
1376{
1377 unsigned long mreg = srmmu_get_mmureg();
1378
1379 tsunami_flush_icache();
1380 tsunami_flush_dcache();
1381 mreg &= ~TSUNAMI_ITD;
1382 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1383 srmmu_set_mmureg(mreg);
1384}
1385
1386static const struct sparc32_cachetlb_ops tsunami_ops = {
1387 .cache_all = tsunami_flush_cache_all,
1388 .cache_mm = tsunami_flush_cache_mm,
1389 .cache_page = tsunami_flush_cache_page,
1390 .cache_range = tsunami_flush_cache_range,
1391 .tlb_all = tsunami_flush_tlb_all,
1392 .tlb_mm = tsunami_flush_tlb_mm,
1393 .tlb_page = tsunami_flush_tlb_page,
1394 .tlb_range = tsunami_flush_tlb_range,
1395 .page_to_ram = tsunami_flush_page_to_ram,
1396 .sig_insns = tsunami_flush_sig_insns,
1397 .page_for_dma = tsunami_flush_page_for_dma,
1398};
1399
1400static void __init init_tsunami(void)
1401{
1402 /*
1403 * Tsunami's pretty sane, Sun and TI actually got it
1404 * somewhat right this time. Fujitsu should have
1405 * taken some lessons from them.
1406 */
1407
1408 srmmu_name = "TI Tsunami";
1409 srmmu_modtype = Tsunami;
1410 sparc32_cachetlb_ops = &tsunami_ops;
1411 poke_srmmu = poke_tsunami;
1412
1413 tsunami_setup_blockops();
1414}
1415
1416static void poke_viking(void)
1417{
1418 unsigned long mreg = srmmu_get_mmureg();
1419 static int smp_catch;
1420
1421 if (viking_mxcc_present) {
1422 unsigned long mxcc_control = mxcc_get_creg();
1423
1424 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1425 mxcc_control &= ~(MXCC_CTL_RRC);
1426 mxcc_set_creg(mxcc_control);
1427
1428 /*
1429 * We don't need memory parity checks.
1430 * XXX This is a mess, have to dig out later. ecd.
1431 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1432 */
1433
1434 /* We do cache ptables on MXCC. */
1435 mreg |= VIKING_TCENABLE;
1436 } else {
1437 unsigned long bpreg;
1438
1439 mreg &= ~(VIKING_TCENABLE);
1440 if (smp_catch++) {
1441 /* Must disable mixed-cmd mode here for other cpu's. */
1442 bpreg = viking_get_bpreg();
1443 bpreg &= ~(VIKING_ACTION_MIX);
1444 viking_set_bpreg(bpreg);
1445
1446 /* Just in case PROM does something funny. */
1447 msi_set_sync();
1448 }
1449 }
1450
1451 mreg |= VIKING_SPENABLE;
1452 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1453 mreg |= VIKING_SBENABLE;
1454 mreg &= ~(VIKING_ACENABLE);
1455 srmmu_set_mmureg(mreg);
1456}
1457
1458static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1459 .cache_all = viking_flush_cache_all,
1460 .cache_mm = viking_flush_cache_mm,
1461 .cache_page = viking_flush_cache_page,
1462 .cache_range = viking_flush_cache_range,
1463 .tlb_all = viking_flush_tlb_all,
1464 .tlb_mm = viking_flush_tlb_mm,
1465 .tlb_page = viking_flush_tlb_page,
1466 .tlb_range = viking_flush_tlb_range,
1467 .page_to_ram = viking_flush_page_to_ram,
1468 .sig_insns = viking_flush_sig_insns,
1469 .page_for_dma = viking_flush_page_for_dma,
1470};
1471
1472#ifdef CONFIG_SMP
1473/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1474 * perform the local TLB flush and all the other cpus will see it.
1475 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1476 * that requires that we add some synchronization to these flushes.
1477 *
1478 * The bug is that the fifo which keeps track of all the pending TLB
1479 * broadcasts in the system is an entry or two too small, so if we
1480 * have too many going at once we'll overflow that fifo and lose a TLB
1481 * flush resulting in corruption.
1482 *
1483 * Our workaround is to take a global spinlock around the TLB flushes,
1484 * which guarentees we won't ever have too many pending. It's a big
1485 * hammer, but a semaphore like system to make sure we only have N TLB
1486 * flushes going at once will require SMP locking anyways so there's
1487 * no real value in trying any harder than this.
1488 */
1489static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1490 .cache_all = viking_flush_cache_all,
1491 .cache_mm = viking_flush_cache_mm,
1492 .cache_page = viking_flush_cache_page,
1493 .cache_range = viking_flush_cache_range,
1494 .tlb_all = sun4dsmp_flush_tlb_all,
1495 .tlb_mm = sun4dsmp_flush_tlb_mm,
1496 .tlb_page = sun4dsmp_flush_tlb_page,
1497 .tlb_range = sun4dsmp_flush_tlb_range,
1498 .page_to_ram = viking_flush_page_to_ram,
1499 .sig_insns = viking_flush_sig_insns,
1500 .page_for_dma = viking_flush_page_for_dma,
1501};
1502#endif
1503
1504static void __init init_viking(void)
1505{
1506 unsigned long mreg = srmmu_get_mmureg();
1507
1508 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1509 if (mreg & VIKING_MMODE) {
1510 srmmu_name = "TI Viking";
1511 viking_mxcc_present = 0;
1512 msi_set_sync();
1513
1514 /*
1515 * We need this to make sure old viking takes no hits
1516 * on it's cache for dma snoops to workaround the
1517 * "load from non-cacheable memory" interrupt bug.
1518 * This is only necessary because of the new way in
1519 * which we use the IOMMU.
1520 */
1521 viking_ops.page_for_dma = viking_flush_page;
1522#ifdef CONFIG_SMP
1523 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1524#endif
1525 flush_page_for_dma_global = 0;
1526 } else {
1527 srmmu_name = "TI Viking/MXCC";
1528 viking_mxcc_present = 1;
1529 srmmu_cache_pagetables = 1;
1530 }
1531
1532 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1533 &viking_ops;
1534#ifdef CONFIG_SMP
1535 if (sparc_cpu_model == sun4d)
1536 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1537 &viking_sun4d_smp_ops;
1538#endif
1539
1540 poke_srmmu = poke_viking;
1541}
1542
1543/* Probe for the srmmu chip version. */
1544static void __init get_srmmu_type(void)
1545{
1546 unsigned long mreg, psr;
1547 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1548
1549 srmmu_modtype = SRMMU_INVAL_MOD;
1550 hwbug_bitmask = 0;
1551
1552 mreg = srmmu_get_mmureg(); psr = get_psr();
1553 mod_typ = (mreg & 0xf0000000) >> 28;
1554 mod_rev = (mreg & 0x0f000000) >> 24;
1555 psr_typ = (psr >> 28) & 0xf;
1556 psr_vers = (psr >> 24) & 0xf;
1557
1558 /* First, check for sparc-leon. */
1559 if (sparc_cpu_model == sparc_leon) {
1560 init_leon();
1561 return;
1562 }
1563
1564 /* Second, check for HyperSparc or Cypress. */
1565 if (mod_typ == 1) {
1566 switch (mod_rev) {
1567 case 7:
1568 /* UP or MP Hypersparc */
1569 init_hypersparc();
1570 break;
1571 case 0:
1572 case 2:
1573 case 10:
1574 case 11:
1575 case 12:
1576 case 13:
1577 case 14:
1578 case 15:
1579 default:
1580 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1581 prom_halt();
1582 break;
1583 }
1584 return;
1585 }
1586
1587 /* Now Fujitsu TurboSparc. It might happen that it is
1588 * in Swift emulation mode, so we will check later...
1589 */
1590 if (psr_typ == 0 && psr_vers == 5) {
1591 init_turbosparc();
1592 return;
1593 }
1594
1595 /* Next check for Fujitsu Swift. */
1596 if (psr_typ == 0 && psr_vers == 4) {
1597 phandle cpunode;
1598 char node_str[128];
1599
1600 /* Look if it is not a TurboSparc emulating Swift... */
1601 cpunode = prom_getchild(prom_root_node);
1602 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1603 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1604 if (!strcmp(node_str, "cpu")) {
1605 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1606 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1607 init_turbosparc();
1608 return;
1609 }
1610 break;
1611 }
1612 }
1613
1614 init_swift();
1615 return;
1616 }
1617
1618 /* Now the Viking family of srmmu. */
1619 if (psr_typ == 4 &&
1620 ((psr_vers == 0) ||
1621 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1622 init_viking();
1623 return;
1624 }
1625
1626 /* Finally the Tsunami. */
1627 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1628 init_tsunami();
1629 return;
1630 }
1631
1632 /* Oh well */
1633 srmmu_is_bad();
1634}
1635
1636#ifdef CONFIG_SMP
1637/* Local cross-calls. */
1638static void smp_flush_page_for_dma(unsigned long page)
1639{
1640 xc1(local_ops->page_for_dma, page);
1641 local_ops->page_for_dma(page);
1642}
1643
1644static void smp_flush_cache_all(void)
1645{
1646 xc0(local_ops->cache_all);
1647 local_ops->cache_all();
1648}
1649
1650static void smp_flush_tlb_all(void)
1651{
1652 xc0(local_ops->tlb_all);
1653 local_ops->tlb_all();
1654}
1655
1656static void smp_flush_cache_mm(struct mm_struct *mm)
1657{
1658 if (mm->context != NO_CONTEXT) {
1659 cpumask_t cpu_mask;
1660 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1661 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1662 if (!cpumask_empty(&cpu_mask))
1663 xc1(local_ops->cache_mm, (unsigned long)mm);
1664 local_ops->cache_mm(mm);
1665 }
1666}
1667
1668static void smp_flush_tlb_mm(struct mm_struct *mm)
1669{
1670 if (mm->context != NO_CONTEXT) {
1671 cpumask_t cpu_mask;
1672 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1673 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1674 if (!cpumask_empty(&cpu_mask)) {
1675 xc1(local_ops->tlb_mm, (unsigned long)mm);
1676 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1677 cpumask_copy(mm_cpumask(mm),
1678 cpumask_of(smp_processor_id()));
1679 }
1680 local_ops->tlb_mm(mm);
1681 }
1682}
1683
1684static void smp_flush_cache_range(struct vm_area_struct *vma,
1685 unsigned long start,
1686 unsigned long end)
1687{
1688 struct mm_struct *mm = vma->vm_mm;
1689
1690 if (mm->context != NO_CONTEXT) {
1691 cpumask_t cpu_mask;
1692 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1693 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1694 if (!cpumask_empty(&cpu_mask))
1695 xc3(local_ops->cache_range, (unsigned long)vma, start,
1696 end);
1697 local_ops->cache_range(vma, start, end);
1698 }
1699}
1700
1701static void smp_flush_tlb_range(struct vm_area_struct *vma,
1702 unsigned long start,
1703 unsigned long end)
1704{
1705 struct mm_struct *mm = vma->vm_mm;
1706
1707 if (mm->context != NO_CONTEXT) {
1708 cpumask_t cpu_mask;
1709 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711 if (!cpumask_empty(&cpu_mask))
1712 xc3(local_ops->tlb_range, (unsigned long)vma, start,
1713 end);
1714 local_ops->tlb_range(vma, start, end);
1715 }
1716}
1717
1718static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1719{
1720 struct mm_struct *mm = vma->vm_mm;
1721
1722 if (mm->context != NO_CONTEXT) {
1723 cpumask_t cpu_mask;
1724 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1725 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1726 if (!cpumask_empty(&cpu_mask))
1727 xc2(local_ops->cache_page, (unsigned long)vma, page);
1728 local_ops->cache_page(vma, page);
1729 }
1730}
1731
1732static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1733{
1734 struct mm_struct *mm = vma->vm_mm;
1735
1736 if (mm->context != NO_CONTEXT) {
1737 cpumask_t cpu_mask;
1738 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1739 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1740 if (!cpumask_empty(&cpu_mask))
1741 xc2(local_ops->tlb_page, (unsigned long)vma, page);
1742 local_ops->tlb_page(vma, page);
1743 }
1744}
1745
1746static void smp_flush_page_to_ram(unsigned long page)
1747{
1748 /* Current theory is that those who call this are the one's
1749 * who have just dirtied their cache with the pages contents
1750 * in kernel space, therefore we only run this on local cpu.
1751 *
1752 * XXX This experiment failed, research further... -DaveM
1753 */
1754#if 1
1755 xc1(local_ops->page_to_ram, page);
1756#endif
1757 local_ops->page_to_ram(page);
1758}
1759
1760static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1761{
1762 cpumask_t cpu_mask;
1763 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1764 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1765 if (!cpumask_empty(&cpu_mask))
1766 xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
1767 local_ops->sig_insns(mm, insn_addr);
1768}
1769
1770static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1771 .cache_all = smp_flush_cache_all,
1772 .cache_mm = smp_flush_cache_mm,
1773 .cache_page = smp_flush_cache_page,
1774 .cache_range = smp_flush_cache_range,
1775 .tlb_all = smp_flush_tlb_all,
1776 .tlb_mm = smp_flush_tlb_mm,
1777 .tlb_page = smp_flush_tlb_page,
1778 .tlb_range = smp_flush_tlb_range,
1779 .page_to_ram = smp_flush_page_to_ram,
1780 .sig_insns = smp_flush_sig_insns,
1781 .page_for_dma = smp_flush_page_for_dma,
1782};
1783#endif
1784
1785/* Load up routines and constants for sun4m and sun4d mmu */
1786void __init load_mmu(void)
1787{
1788 /* Functions */
1789 get_srmmu_type();
1790
1791#ifdef CONFIG_SMP
1792 /* El switcheroo... */
1793 local_ops = sparc32_cachetlb_ops;
1794
1795 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1796 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1797 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1798 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1799 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1800 }
1801
1802 if (poke_srmmu == poke_viking) {
1803 /* Avoid unnecessary cross calls. */
1804 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1805 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1806 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1807 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1808
1809 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1810 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1811 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1812 }
1813
1814 /* It really is const after this point. */
1815 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1816 &smp_cachetlb_ops;
1817#endif
1818
1819 if (sparc_cpu_model != sun4d)
1820 ld_mmu_iommu();
1821#ifdef CONFIG_SMP
1822 if (sparc_cpu_model == sun4d)
1823 sun4d_init_smp();
1824 else if (sparc_cpu_model == sparc_leon)
1825 leon_init_smp();
1826 else
1827 sun4m_init_smp();
1828#endif
1829}