Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Xilinx SPI controller driver (master mode only)
  3 *
  4 * Author: MontaVista Software, Inc.
  5 *	source@mvista.com
  6 *
  7 * Copyright (c) 2010 Secret Lab Technologies, Ltd.
  8 * Copyright (c) 2009 Intel Corporation
  9 * 2002-2007 (c) MontaVista Software, Inc.
 10
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License version 2 as
 13 * published by the Free Software Foundation.
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/init.h>
 18#include <linux/interrupt.h>
 19#include <linux/of.h>
 20#include <linux/platform_device.h>
 21#include <linux/spi/spi.h>
 22#include <linux/spi/spi_bitbang.h>
 23#include <linux/spi/xilinx_spi.h>
 24#include <linux/io.h>
 25
 
 
 26#define XILINX_SPI_NAME "xilinx_spi"
 27
 28/* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
 29 * Product Specification", DS464
 30 */
 31#define XSPI_CR_OFFSET		0x60	/* Control Register */
 32
 
 33#define XSPI_CR_ENABLE		0x02
 34#define XSPI_CR_MASTER_MODE	0x04
 35#define XSPI_CR_CPOL		0x08
 36#define XSPI_CR_CPHA		0x10
 37#define XSPI_CR_MODE_MASK	(XSPI_CR_CPHA | XSPI_CR_CPOL)
 
 38#define XSPI_CR_TXFIFO_RESET	0x20
 39#define XSPI_CR_RXFIFO_RESET	0x40
 40#define XSPI_CR_MANUAL_SSELECT	0x80
 41#define XSPI_CR_TRANS_INHIBIT	0x100
 42#define XSPI_CR_LSB_FIRST	0x200
 43
 44#define XSPI_SR_OFFSET		0x64	/* Status Register */
 45
 46#define XSPI_SR_RX_EMPTY_MASK	0x01	/* Receive FIFO is empty */
 47#define XSPI_SR_RX_FULL_MASK	0x02	/* Receive FIFO is full */
 48#define XSPI_SR_TX_EMPTY_MASK	0x04	/* Transmit FIFO is empty */
 49#define XSPI_SR_TX_FULL_MASK	0x08	/* Transmit FIFO is full */
 50#define XSPI_SR_MODE_FAULT_MASK	0x10	/* Mode fault error */
 51
 52#define XSPI_TXD_OFFSET		0x68	/* Data Transmit Register */
 53#define XSPI_RXD_OFFSET		0x6c	/* Data Receive Register */
 54
 55#define XSPI_SSR_OFFSET		0x70	/* 32-bit Slave Select Register */
 56
 57/* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
 58 * IPIF registers are 32 bit
 59 */
 60#define XIPIF_V123B_DGIER_OFFSET	0x1c	/* IPIF global int enable reg */
 61#define XIPIF_V123B_GINTR_ENABLE	0x80000000
 62
 63#define XIPIF_V123B_IISR_OFFSET		0x20	/* IPIF interrupt status reg */
 64#define XIPIF_V123B_IIER_OFFSET		0x28	/* IPIF interrupt enable reg */
 65
 66#define XSPI_INTR_MODE_FAULT		0x01	/* Mode fault error */
 67#define XSPI_INTR_SLAVE_MODE_FAULT	0x02	/* Selected as slave while
 68						 * disabled */
 69#define XSPI_INTR_TX_EMPTY		0x04	/* TxFIFO is empty */
 70#define XSPI_INTR_TX_UNDERRUN		0x08	/* TxFIFO was underrun */
 71#define XSPI_INTR_RX_FULL		0x10	/* RxFIFO is full */
 72#define XSPI_INTR_RX_OVERRUN		0x20	/* RxFIFO was overrun */
 73#define XSPI_INTR_TX_HALF_EMPTY		0x40	/* TxFIFO is half empty */
 74
 75#define XIPIF_V123B_RESETR_OFFSET	0x40	/* IPIF reset register */
 76#define XIPIF_V123B_RESET_MASK		0x0a	/* the value to write */
 77
 78struct xilinx_spi {
 79	/* bitbang has to be first */
 80	struct spi_bitbang bitbang;
 81	struct completion done;
 82	struct resource mem; /* phys mem */
 83	void __iomem	*regs;	/* virt. address of the control registers */
 84
 85	u32		irq;
 86
 87	u8 *rx_ptr;		/* pointer in the Tx buffer */
 88	const u8 *tx_ptr;	/* pointer in the Rx buffer */
 89	int remaining_bytes;	/* the number of bytes left to transfer */
 90	u8 bits_per_word;
 91	unsigned int (*read_fn) (void __iomem *);
 92	void (*write_fn) (u32, void __iomem *);
 93	void (*tx_fn) (struct xilinx_spi *);
 94	void (*rx_fn) (struct xilinx_spi *);
 95};
 96
 97static void xspi_write32(u32 val, void __iomem *addr)
 98{
 99	iowrite32(val, addr);
100}
101
102static unsigned int xspi_read32(void __iomem *addr)
103{
104	return ioread32(addr);
105}
106
107static void xspi_write32_be(u32 val, void __iomem *addr)
108{
109	iowrite32be(val, addr);
110}
111
112static unsigned int xspi_read32_be(void __iomem *addr)
113{
114	return ioread32be(addr);
115}
116
117static void xspi_tx8(struct xilinx_spi *xspi)
118{
119	xspi->write_fn(*xspi->tx_ptr, xspi->regs + XSPI_TXD_OFFSET);
120	xspi->tx_ptr++;
121}
122
123static void xspi_tx16(struct xilinx_spi *xspi)
124{
125	xspi->write_fn(*(u16 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
126	xspi->tx_ptr += 2;
127}
128
129static void xspi_tx32(struct xilinx_spi *xspi)
130{
131	xspi->write_fn(*(u32 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
132	xspi->tx_ptr += 4;
133}
134
135static void xspi_rx8(struct xilinx_spi *xspi)
136{
137	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
138	if (xspi->rx_ptr) {
139		*xspi->rx_ptr = data & 0xff;
140		xspi->rx_ptr++;
141	}
142}
143
144static void xspi_rx16(struct xilinx_spi *xspi)
145{
146	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
147	if (xspi->rx_ptr) {
148		*(u16 *)(xspi->rx_ptr) = data & 0xffff;
149		xspi->rx_ptr += 2;
 
 
 
 
150	}
 
 
 
151}
152
153static void xspi_rx32(struct xilinx_spi *xspi)
154{
155	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
156	if (xspi->rx_ptr) {
 
 
 
 
 
 
 
 
 
 
 
157		*(u32 *)(xspi->rx_ptr) = data;
158		xspi->rx_ptr += 4;
159	}
 
 
160}
161
162static void xspi_init_hw(struct xilinx_spi *xspi)
163{
164	void __iomem *regs_base = xspi->regs;
165
166	/* Reset the SPI device */
167	xspi->write_fn(XIPIF_V123B_RESET_MASK,
168		regs_base + XIPIF_V123B_RESETR_OFFSET);
169	/* Disable all the interrupts just in case */
170	xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET);
171	/* Enable the global IPIF interrupt */
172	xspi->write_fn(XIPIF_V123B_GINTR_ENABLE,
173		regs_base + XIPIF_V123B_DGIER_OFFSET);
174	/* Deselect the slave on the SPI bus */
 
 
175	xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET);
176	/* Disable the transmitter, enable Manual Slave Select Assertion,
177	 * put SPI controller into master mode, and enable it */
178	xspi->write_fn(XSPI_CR_TRANS_INHIBIT | XSPI_CR_MANUAL_SSELECT |
179		XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET |
180		XSPI_CR_RXFIFO_RESET, regs_base + XSPI_CR_OFFSET);
181}
182
183static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
184{
185	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
 
 
186
187	if (is_on == BITBANG_CS_INACTIVE) {
188		/* Deselect the slave on the SPI bus */
189		xspi->write_fn(0xffff, xspi->regs + XSPI_SSR_OFFSET);
190	} else if (is_on == BITBANG_CS_ACTIVE) {
191		/* Set the SPI clock phase and polarity */
192		u16 cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET)
193			 & ~XSPI_CR_MODE_MASK;
194		if (spi->mode & SPI_CPHA)
195			cr |= XSPI_CR_CPHA;
196		if (spi->mode & SPI_CPOL)
197			cr |= XSPI_CR_CPOL;
198		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
199
200		/* We do not check spi->max_speed_hz here as the SPI clock
201		 * frequency is not software programmable (the IP block design
202		 * parameter)
203		 */
 
 
 
 
 
 
 
204
205		/* Activate the chip select */
206		xspi->write_fn(~(0x0001 << spi->chip_select),
207			xspi->regs + XSPI_SSR_OFFSET);
208	}
 
 
 
 
 
 
209}
210
211/* spi_bitbang requires custom setup_transfer() to be defined if there is a
212 * custom txrx_bufs(). We have nothing to setup here as the SPI IP block
213 * supports 8 or 16 bits per word which cannot be changed in software.
214 * SPI clock can't be changed in software either.
215 * Check for correct bits per word. Chip select delay calculations could be
216 * added here as soon as bitbang_work() can be made aware of the delay value.
217 */
218static int xilinx_spi_setup_transfer(struct spi_device *spi,
219		struct spi_transfer *t)
220{
221	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
222	u8 bits_per_word;
223
224	bits_per_word = (t && t->bits_per_word)
225			 ? t->bits_per_word : spi->bits_per_word;
226	if (bits_per_word != xspi->bits_per_word) {
227		dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
228			__func__, bits_per_word);
229		return -EINVAL;
230	}
231
232	return 0;
233}
234
235static int xilinx_spi_setup(struct spi_device *spi)
236{
237	/* always return 0, we can not check the number of bits.
238	 * There are cases when SPI setup is called before any driver is
239	 * there, in that case the SPI core defaults to 8 bits, which we
240	 * do not support in some cases. But if we return an error, the
241	 * SPI device would not be registered and no driver can get hold of it
242	 * When the driver is there, it will call SPI setup again with the
243	 * correct number of bits per transfer.
244	 * If a driver setups with the wrong bit number, it will fail when
245	 * it tries to do a transfer
246	 */
247	return 0;
248}
249
250static void xilinx_spi_fill_tx_fifo(struct xilinx_spi *xspi)
251{
252	u8 sr;
253
254	/* Fill the Tx FIFO with as many bytes as possible */
255	sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
256	while ((sr & XSPI_SR_TX_FULL_MASK) == 0 && xspi->remaining_bytes > 0) {
257		if (xspi->tx_ptr)
258			xspi->tx_fn(xspi);
259		else
260			xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
261		xspi->remaining_bytes -= xspi->bits_per_word / 8;
262		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
263	}
264}
265
266static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
267{
268	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
269	u32 ipif_ier;
270	u16 cr;
 
271
272	/* We get here with transmitter inhibited */
273
274	xspi->tx_ptr = t->tx_buf;
275	xspi->rx_ptr = t->rx_buf;
276	xspi->remaining_bytes = t->len;
277	INIT_COMPLETION(xspi->done);
278
279	xilinx_spi_fill_tx_fifo(xspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
281	/* Enable the transmit empty interrupt, which we use to determine
282	 * progress on the transmission.
283	 */
284	ipif_ier = xspi->read_fn(xspi->regs + XIPIF_V123B_IIER_OFFSET);
285	xspi->write_fn(ipif_ier | XSPI_INTR_TX_EMPTY,
286		xspi->regs + XIPIF_V123B_IIER_OFFSET);
287
288	/* Start the transfer by not inhibiting the transmitter any longer */
289	cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) &
290		~XSPI_CR_TRANS_INHIBIT;
291	xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
292
293	wait_for_completion(&xspi->done);
 
 
 
 
 
 
 
 
 
 
 
 
 
294
295	/* Disable the transmit empty interrupt */
296	xspi->write_fn(ipif_ier, xspi->regs + XIPIF_V123B_IIER_OFFSET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298	return t->len - xspi->remaining_bytes;
299}
300
301
302/* This driver supports single master mode only. Hence Tx FIFO Empty
303 * is the only interrupt we care about.
304 * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode
305 * Fault are not to happen.
306 */
307static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
308{
309	struct xilinx_spi *xspi = dev_id;
310	u32 ipif_isr;
311
312	/* Get the IPIF interrupts, and clear them immediately */
313	ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
314	xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET);
315
316	if (ipif_isr & XSPI_INTR_TX_EMPTY) {	/* Transmission completed */
317		u16 cr;
318		u8 sr;
 
319
320		/* A transmit has just completed. Process received data and
321		 * check for more data to transmit. Always inhibit the
322		 * transmitter while the Isr refills the transmit register/FIFO,
323		 * or make sure it is stopped if we're done.
324		 */
325		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
326		xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
327			xspi->regs + XSPI_CR_OFFSET);
328
329		/* Read out all the data from the Rx FIFO */
330		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
331		while ((sr & XSPI_SR_RX_EMPTY_MASK) == 0) {
332			xspi->rx_fn(xspi);
333			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
334		}
335
336		/* See if there is more data to send */
337		if (xspi->remaining_bytes > 0) {
338			xilinx_spi_fill_tx_fifo(xspi);
339			/* Start the transfer by not inhibiting the
340			 * transmitter any longer
341			 */
342			xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
343		} else {
344			/* No more data to send.
345			 * Indicate the transfer is completed.
346			 */
347			complete(&xspi->done);
348		}
349	}
350
351	return IRQ_HANDLED;
 
 
 
 
 
 
 
352}
353
354static const struct of_device_id xilinx_spi_of_match[] = {
 
355	{ .compatible = "xlnx,xps-spi-2.00.a", },
356	{ .compatible = "xlnx,xps-spi-2.00.b", },
357	{}
358};
359MODULE_DEVICE_TABLE(of, xilinx_spi_of_match);
360
361struct spi_master *xilinx_spi_init(struct device *dev, struct resource *mem,
362	u32 irq, s16 bus_num, int num_cs, int little_endian, int bits_per_word)
363{
364	struct spi_master *master;
365	struct xilinx_spi *xspi;
366	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
368	master = spi_alloc_master(dev, sizeof(struct xilinx_spi));
369	if (!master)
370		return NULL;
 
 
 
 
 
 
 
 
 
 
 
371
372	/* the spi->mode bits understood by this driver: */
373	master->mode_bits = SPI_CPOL | SPI_CPHA;
 
374
375	xspi = spi_master_get_devdata(master);
376	xspi->bitbang.master = spi_master_get(master);
 
377	xspi->bitbang.chipselect = xilinx_spi_chipselect;
378	xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
379	xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
380	xspi->bitbang.master->setup = xilinx_spi_setup;
381	init_completion(&xspi->done);
382
383	if (!request_mem_region(mem->start, resource_size(mem),
384		XILINX_SPI_NAME))
385		goto put_master;
386
387	xspi->regs = ioremap(mem->start, resource_size(mem));
388	if (xspi->regs == NULL) {
389		dev_warn(dev, "ioremap failure\n");
390		goto map_failed;
391	}
392
393	master->bus_num = bus_num;
394	master->num_chipselect = num_cs;
395	master->dev.of_node = dev->of_node;
396
397	xspi->mem = *mem;
398	xspi->irq = irq;
399	if (little_endian) {
400		xspi->read_fn = xspi_read32;
401		xspi->write_fn = xspi_write32;
402	} else {
 
 
403		xspi->read_fn = xspi_read32_be;
404		xspi->write_fn = xspi_write32_be;
405	}
406	xspi->bits_per_word = bits_per_word;
407	if (xspi->bits_per_word == 8) {
408		xspi->tx_fn = xspi_tx8;
409		xspi->rx_fn = xspi_rx8;
410	} else if (xspi->bits_per_word == 16) {
411		xspi->tx_fn = xspi_tx16;
412		xspi->rx_fn = xspi_rx16;
413	} else if (xspi->bits_per_word == 32) {
414		xspi->tx_fn = xspi_tx32;
415		xspi->rx_fn = xspi_rx32;
416	} else
417		goto unmap_io;
418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419
420	/* SPI controller initializations */
421	xspi_init_hw(xspi);
422
423	/* Register for SPI Interrupt */
424	ret = request_irq(xspi->irq, xilinx_spi_irq, 0, XILINX_SPI_NAME, xspi);
425	if (ret)
426		goto unmap_io;
427
428	ret = spi_bitbang_start(&xspi->bitbang);
429	if (ret) {
430		dev_err(dev, "spi_bitbang_start FAILED\n");
431		goto free_irq;
432	}
433
434	dev_info(dev, "at 0x%08llX mapped to 0x%p, irq=%d\n",
435		(unsigned long long)mem->start, xspi->regs, xspi->irq);
436	return master;
437
438free_irq:
439	free_irq(xspi->irq, xspi);
440unmap_io:
441	iounmap(xspi->regs);
442map_failed:
443	release_mem_region(mem->start, resource_size(mem));
444put_master:
445	spi_master_put(master);
446	return NULL;
447}
448EXPORT_SYMBOL(xilinx_spi_init);
449
450void xilinx_spi_deinit(struct spi_master *master)
451{
452	struct xilinx_spi *xspi;
453
454	xspi = spi_master_get_devdata(master);
455
456	spi_bitbang_stop(&xspi->bitbang);
457	free_irq(xspi->irq, xspi);
458	iounmap(xspi->regs);
459
460	release_mem_region(xspi->mem.start, resource_size(&xspi->mem));
461	spi_master_put(xspi->bitbang.master);
462}
463EXPORT_SYMBOL(xilinx_spi_deinit);
464
465static int __devinit xilinx_spi_probe(struct platform_device *dev)
466{
467	struct xspi_platform_data *pdata;
468	struct resource *r;
469	int irq, num_cs = 0, little_endian = 0, bits_per_word = 8;
470	struct spi_master *master;
471	u8 i;
472
473	pdata = dev->dev.platform_data;
474	if (pdata) {
475		num_cs = pdata->num_chipselect;
476		little_endian = pdata->little_endian;
477		bits_per_word = pdata->bits_per_word;
478	}
479
480#ifdef CONFIG_OF
481	if (dev->dev.of_node) {
482		const __be32 *prop;
483		int len;
484
485		/* number of slave select bits is required */
486		prop = of_get_property(dev->dev.of_node, "xlnx,num-ss-bits",
487				       &len);
488		if (prop && len >= sizeof(*prop))
489			num_cs = __be32_to_cpup(prop);
490	}
491#endif
492
493	if (!num_cs) {
494		dev_err(&dev->dev, "Missing slave select configuration data\n");
495		return -EINVAL;
496	}
497
498
499	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
500	if (!r)
501		return -ENODEV;
502
503	irq = platform_get_irq(dev, 0);
504	if (irq < 0)
505		return -ENXIO;
506
507	master = xilinx_spi_init(&dev->dev, r, irq, dev->id, num_cs,
508				 little_endian, bits_per_word);
509	if (!master)
510		return -ENODEV;
511
512	if (pdata) {
513		for (i = 0; i < pdata->num_devices; i++)
514			spi_new_device(master, pdata->devices + i);
515	}
516
517	platform_set_drvdata(dev, master);
518	return 0;
519}
520
521static int __devexit xilinx_spi_remove(struct platform_device *dev)
522{
523	xilinx_spi_deinit(platform_get_drvdata(dev));
524	platform_set_drvdata(dev, 0);
 
525
526	return 0;
 
 
 
 
 
 
 
527}
528
529/* work with hotplug and coldplug */
530MODULE_ALIAS("platform:" XILINX_SPI_NAME);
531
532static struct platform_driver xilinx_spi_driver = {
533	.probe = xilinx_spi_probe,
534	.remove = __devexit_p(xilinx_spi_remove),
535	.driver = {
536		.name = XILINX_SPI_NAME,
537		.owner = THIS_MODULE,
538		.of_match_table = xilinx_spi_of_match,
539	},
540};
541
542static int __init xilinx_spi_pltfm_init(void)
543{
544	return platform_driver_register(&xilinx_spi_driver);
545}
546module_init(xilinx_spi_pltfm_init);
547
548static void __exit xilinx_spi_pltfm_exit(void)
549{
550	platform_driver_unregister(&xilinx_spi_driver);
551}
552module_exit(xilinx_spi_pltfm_exit);
553
554MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
555MODULE_DESCRIPTION("Xilinx SPI driver");
556MODULE_LICENSE("GPL");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Xilinx SPI controller driver (host mode only)
  4 *
  5 * Author: MontaVista Software, Inc.
  6 *	source@mvista.com
  7 *
  8 * Copyright (c) 2010 Secret Lab Technologies, Ltd.
  9 * Copyright (c) 2009 Intel Corporation
 10 * 2002-2007 (c) MontaVista Software, Inc.
 11
 
 
 
 12 */
 13
 14#include <linux/module.h>
 
 15#include <linux/interrupt.h>
 16#include <linux/of.h>
 17#include <linux/platform_device.h>
 18#include <linux/spi/spi.h>
 19#include <linux/spi/spi_bitbang.h>
 20#include <linux/spi/xilinx_spi.h>
 21#include <linux/io.h>
 22
 23#define XILINX_SPI_MAX_CS	32
 24
 25#define XILINX_SPI_NAME "xilinx_spi"
 26
 27/* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
 28 * Product Specification", DS464
 29 */
 30#define XSPI_CR_OFFSET		0x60	/* Control Register */
 31
 32#define XSPI_CR_LOOP		0x01
 33#define XSPI_CR_ENABLE		0x02
 34#define XSPI_CR_MASTER_MODE	0x04
 35#define XSPI_CR_CPOL		0x08
 36#define XSPI_CR_CPHA		0x10
 37#define XSPI_CR_MODE_MASK	(XSPI_CR_CPHA | XSPI_CR_CPOL | \
 38				 XSPI_CR_LSB_FIRST | XSPI_CR_LOOP)
 39#define XSPI_CR_TXFIFO_RESET	0x20
 40#define XSPI_CR_RXFIFO_RESET	0x40
 41#define XSPI_CR_MANUAL_SSELECT	0x80
 42#define XSPI_CR_TRANS_INHIBIT	0x100
 43#define XSPI_CR_LSB_FIRST	0x200
 44
 45#define XSPI_SR_OFFSET		0x64	/* Status Register */
 46
 47#define XSPI_SR_RX_EMPTY_MASK	0x01	/* Receive FIFO is empty */
 48#define XSPI_SR_RX_FULL_MASK	0x02	/* Receive FIFO is full */
 49#define XSPI_SR_TX_EMPTY_MASK	0x04	/* Transmit FIFO is empty */
 50#define XSPI_SR_TX_FULL_MASK	0x08	/* Transmit FIFO is full */
 51#define XSPI_SR_MODE_FAULT_MASK	0x10	/* Mode fault error */
 52
 53#define XSPI_TXD_OFFSET		0x68	/* Data Transmit Register */
 54#define XSPI_RXD_OFFSET		0x6c	/* Data Receive Register */
 55
 56#define XSPI_SSR_OFFSET		0x70	/* 32-bit Slave Select Register */
 57
 58/* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
 59 * IPIF registers are 32 bit
 60 */
 61#define XIPIF_V123B_DGIER_OFFSET	0x1c	/* IPIF global int enable reg */
 62#define XIPIF_V123B_GINTR_ENABLE	0x80000000
 63
 64#define XIPIF_V123B_IISR_OFFSET		0x20	/* IPIF interrupt status reg */
 65#define XIPIF_V123B_IIER_OFFSET		0x28	/* IPIF interrupt enable reg */
 66
 67#define XSPI_INTR_MODE_FAULT		0x01	/* Mode fault error */
 68#define XSPI_INTR_SLAVE_MODE_FAULT	0x02	/* Selected as slave while
 69						 * disabled */
 70#define XSPI_INTR_TX_EMPTY		0x04	/* TxFIFO is empty */
 71#define XSPI_INTR_TX_UNDERRUN		0x08	/* TxFIFO was underrun */
 72#define XSPI_INTR_RX_FULL		0x10	/* RxFIFO is full */
 73#define XSPI_INTR_RX_OVERRUN		0x20	/* RxFIFO was overrun */
 74#define XSPI_INTR_TX_HALF_EMPTY		0x40	/* TxFIFO is half empty */
 75
 76#define XIPIF_V123B_RESETR_OFFSET	0x40	/* IPIF reset register */
 77#define XIPIF_V123B_RESET_MASK		0x0a	/* the value to write */
 78
 79struct xilinx_spi {
 80	/* bitbang has to be first */
 81	struct spi_bitbang bitbang;
 82	struct completion done;
 
 83	void __iomem	*regs;	/* virt. address of the control registers */
 84
 85	int		irq;
 86	bool force_irq;		/* force irq to setup host inhibit */
 87	u8 *rx_ptr;		/* pointer in the Tx buffer */
 88	const u8 *tx_ptr;	/* pointer in the Rx buffer */
 89	u8 bytes_per_word;
 90	int buffer_size;	/* buffer size in words */
 91	u32 cs_inactive;	/* Level of the CS pins when inactive*/
 92	unsigned int (*read_fn)(void __iomem *);
 93	void (*write_fn)(u32, void __iomem *);
 
 94};
 95
 96static void xspi_write32(u32 val, void __iomem *addr)
 97{
 98	iowrite32(val, addr);
 99}
100
101static unsigned int xspi_read32(void __iomem *addr)
102{
103	return ioread32(addr);
104}
105
106static void xspi_write32_be(u32 val, void __iomem *addr)
107{
108	iowrite32be(val, addr);
109}
110
111static unsigned int xspi_read32_be(void __iomem *addr)
112{
113	return ioread32be(addr);
114}
115
116static void xilinx_spi_tx(struct xilinx_spi *xspi)
 
 
 
 
 
 
117{
118	u32 data = 0;
 
 
119
120	if (!xspi->tx_ptr) {
121		xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
122		return;
 
 
 
 
 
 
 
 
 
123	}
 
124
125	switch (xspi->bytes_per_word) {
126	case 1:
127		data = *(u8 *)(xspi->tx_ptr);
128		break;
129	case 2:
130		data = *(u16 *)(xspi->tx_ptr);
131		break;
132	case 4:
133		data = *(u32 *)(xspi->tx_ptr);
134		break;
135	}
136
137	xspi->write_fn(data, xspi->regs + XSPI_TXD_OFFSET);
138	xspi->tx_ptr += xspi->bytes_per_word;
139}
140
141static void xilinx_spi_rx(struct xilinx_spi *xspi)
142{
143	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
144
145	if (!xspi->rx_ptr)
146		return;
147
148	switch (xspi->bytes_per_word) {
149	case 1:
150		*(u8 *)(xspi->rx_ptr) = data;
151		break;
152	case 2:
153		*(u16 *)(xspi->rx_ptr) = data;
154		break;
155	case 4:
156		*(u32 *)(xspi->rx_ptr) = data;
157		break;
158	}
159
160	xspi->rx_ptr += xspi->bytes_per_word;
161}
162
163static void xspi_init_hw(struct xilinx_spi *xspi)
164{
165	void __iomem *regs_base = xspi->regs;
166
167	/* Reset the SPI device */
168	xspi->write_fn(XIPIF_V123B_RESET_MASK,
169		regs_base + XIPIF_V123B_RESETR_OFFSET);
170	/* Enable the transmit empty interrupt, which we use to determine
171	 * progress on the transmission.
172	 */
173	xspi->write_fn(XSPI_INTR_TX_EMPTY,
174			regs_base + XIPIF_V123B_IIER_OFFSET);
175	/* Disable the global IPIF interrupt */
176	xspi->write_fn(0, regs_base + XIPIF_V123B_DGIER_OFFSET);
177	/* Deselect the Target on the SPI bus */
178	xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET);
179	/* Disable the transmitter, enable Manual Target Select Assertion,
180	 * put SPI controller into host mode, and enable it */
181	xspi->write_fn(XSPI_CR_MANUAL_SSELECT |	XSPI_CR_MASTER_MODE |
182		XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET |	XSPI_CR_RXFIFO_RESET,
183		regs_base + XSPI_CR_OFFSET);
184}
185
186static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
187{
188	struct xilinx_spi *xspi = spi_controller_get_devdata(spi->controller);
189	u16 cr;
190	u32 cs;
191
192	if (is_on == BITBANG_CS_INACTIVE) {
193		/* Deselect the target on the SPI bus */
194		xspi->write_fn(xspi->cs_inactive, xspi->regs + XSPI_SSR_OFFSET);
195		return;
196	}
 
 
 
 
 
 
 
197
198	/* Set the SPI clock phase and polarity */
199	cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET)	& ~XSPI_CR_MODE_MASK;
200	if (spi->mode & SPI_CPHA)
201		cr |= XSPI_CR_CPHA;
202	if (spi->mode & SPI_CPOL)
203		cr |= XSPI_CR_CPOL;
204	if (spi->mode & SPI_LSB_FIRST)
205		cr |= XSPI_CR_LSB_FIRST;
206	if (spi->mode & SPI_LOOP)
207		cr |= XSPI_CR_LOOP;
208	xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
209
210	/* We do not check spi->max_speed_hz here as the SPI clock
211	 * frequency is not software programmable (the IP block design
212	 * parameter)
213	 */
214
215	cs = xspi->cs_inactive;
216	cs ^= BIT(spi_get_chipselect(spi, 0));
217
218	/* Activate the chip select */
219	xspi->write_fn(cs, xspi->regs + XSPI_SSR_OFFSET);
220}
221
222/* spi_bitbang requires custom setup_transfer() to be defined if there is a
223 * custom txrx_bufs().
 
 
 
 
224 */
225static int xilinx_spi_setup_transfer(struct spi_device *spi,
226		struct spi_transfer *t)
227{
228	struct xilinx_spi *xspi = spi_controller_get_devdata(spi->controller);
 
229
230	if (spi->mode & SPI_CS_HIGH)
231		xspi->cs_inactive &= ~BIT(spi_get_chipselect(spi, 0));
232	else
233		xspi->cs_inactive |= BIT(spi_get_chipselect(spi, 0));
 
 
 
234
235	return 0;
236}
237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
239{
240	struct xilinx_spi *xspi = spi_controller_get_devdata(spi->controller);
241	int remaining_words;	/* the number of words left to transfer */
242	bool use_irq = false;
243	u16 cr = 0;
244
245	/* We get here with transmitter inhibited */
246
247	xspi->tx_ptr = t->tx_buf;
248	xspi->rx_ptr = t->rx_buf;
249	remaining_words = t->len / xspi->bytes_per_word;
 
250
251	if (xspi->irq >= 0 &&
252	    (xspi->force_irq || remaining_words > xspi->buffer_size)) {
253		u32 isr;
254		use_irq = true;
255		/* Inhibit irq to avoid spurious irqs on tx_empty*/
256		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
257		xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
258			       xspi->regs + XSPI_CR_OFFSET);
259		/* ACK old irqs (if any) */
260		isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
261		if (isr)
262			xspi->write_fn(isr,
263				       xspi->regs + XIPIF_V123B_IISR_OFFSET);
264		/* Enable the global IPIF interrupt */
265		xspi->write_fn(XIPIF_V123B_GINTR_ENABLE,
266				xspi->regs + XIPIF_V123B_DGIER_OFFSET);
267		reinit_completion(&xspi->done);
268	}
269
270	while (remaining_words) {
271		int n_words, tx_words, rx_words;
272		u32 sr;
273		int stalled;
274
275		n_words = min(remaining_words, xspi->buffer_size);
276
277		tx_words = n_words;
278		while (tx_words--)
279			xilinx_spi_tx(xspi);
280
281		/* Start the transfer by not inhibiting the transmitter any
282		 * longer
283		 */
 
 
 
 
 
 
 
 
284
285		if (use_irq) {
286			xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
287			wait_for_completion(&xspi->done);
288			/* A transmit has just completed. Process received data
289			 * and check for more data to transmit. Always inhibit
290			 * the transmitter while the Isr refills the transmit
291			 * register/FIFO, or make sure it is stopped if we're
292			 * done.
293			 */
294			xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
295				       xspi->regs + XSPI_CR_OFFSET);
296			sr = XSPI_SR_TX_EMPTY_MASK;
297		} else
298			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
299
300		/* Read out all the data from the Rx FIFO */
301		rx_words = n_words;
302		stalled = 10;
303		while (rx_words) {
304			if (rx_words == n_words && !(stalled--) &&
305			    !(sr & XSPI_SR_TX_EMPTY_MASK) &&
306			    (sr & XSPI_SR_RX_EMPTY_MASK)) {
307				dev_err(&spi->dev,
308					"Detected stall. Check C_SPI_MODE and C_SPI_MEMORY\n");
309				xspi_init_hw(xspi);
310				return -EIO;
311			}
312
313			if ((sr & XSPI_SR_TX_EMPTY_MASK) && (rx_words > 1)) {
314				xilinx_spi_rx(xspi);
315				rx_words--;
316				continue;
317			}
318
319			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
320			if (!(sr & XSPI_SR_RX_EMPTY_MASK)) {
321				xilinx_spi_rx(xspi);
322				rx_words--;
323			}
324		}
325
326		remaining_words -= n_words;
327	}
328
329	if (use_irq) {
330		xspi->write_fn(0, xspi->regs + XIPIF_V123B_DGIER_OFFSET);
331		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
332	}
333
334	return t->len;
335}
336
337
338/* This driver supports single host mode only. Hence Tx FIFO Empty
339 * is the only interrupt we care about.
340 * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Target Mode
341 * Fault are not to happen.
342 */
343static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
344{
345	struct xilinx_spi *xspi = dev_id;
346	u32 ipif_isr;
347
348	/* Get the IPIF interrupts, and clear them immediately */
349	ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
350	xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET);
351
352	if (ipif_isr & XSPI_INTR_TX_EMPTY) {	/* Transmission completed */
353		complete(&xspi->done);
354		return IRQ_HANDLED;
355	}
356
357	return IRQ_NONE;
358}
 
 
 
 
 
 
359
360static int xilinx_spi_find_buffer_size(struct xilinx_spi *xspi)
361{
362	u8 sr;
363	int n_words = 0;
 
 
364
365	/*
366	 * Before the buffer_size detection we reset the core
367	 * to make sure we start with a clean state.
368	 */
369	xspi->write_fn(XIPIF_V123B_RESET_MASK,
370		xspi->regs + XIPIF_V123B_RESETR_OFFSET);
 
 
 
 
 
 
 
 
371
372	/* Fill the Tx FIFO with as many words as possible */
373	do {
374		xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
375		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
376		n_words++;
377	} while (!(sr & XSPI_SR_TX_FULL_MASK));
378
379	return n_words;
380}
381
382static const struct of_device_id xilinx_spi_of_match[] = {
383	{ .compatible = "xlnx,axi-quad-spi-1.00.a", },
384	{ .compatible = "xlnx,xps-spi-2.00.a", },
385	{ .compatible = "xlnx,xps-spi-2.00.b", },
386	{}
387};
388MODULE_DEVICE_TABLE(of, xilinx_spi_of_match);
389
390static int xilinx_spi_probe(struct platform_device *pdev)
 
391{
 
392	struct xilinx_spi *xspi;
393	struct xspi_platform_data *pdata;
394	struct resource *res;
395	int ret, num_cs = 0, bits_per_word;
396	struct spi_controller *host;
397	bool force_irq = false;
398	u32 tmp;
399	u8 i;
400
401	pdata = dev_get_platdata(&pdev->dev);
402	if (pdata) {
403		num_cs = pdata->num_chipselect;
404		bits_per_word = pdata->bits_per_word;
405		force_irq = pdata->force_irq;
406	} else {
407		of_property_read_u32(pdev->dev.of_node, "xlnx,num-ss-bits",
408					  &num_cs);
409		ret = of_property_read_u32(pdev->dev.of_node,
410					   "xlnx,num-transfer-bits",
411					   &bits_per_word);
412		if (ret)
413			bits_per_word = 8;
414	}
415
416	if (!num_cs) {
417		dev_err(&pdev->dev,
418			"Missing target select configuration data\n");
419		return -EINVAL;
420	}
421
422	if (num_cs > XILINX_SPI_MAX_CS) {
423		dev_err(&pdev->dev, "Invalid number of spi targets\n");
424		return -EINVAL;
425	}
426
427	host = devm_spi_alloc_host(&pdev->dev, sizeof(struct xilinx_spi));
428	if (!host)
429		return -ENODEV;
430
431	/* the spi->mode bits understood by this driver: */
432	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_LOOP |
433			  SPI_CS_HIGH;
434
435	xspi = spi_controller_get_devdata(host);
436	xspi->cs_inactive = 0xffffffff;
437	xspi->bitbang.master = host;
438	xspi->bitbang.chipselect = xilinx_spi_chipselect;
439	xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
440	xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
 
441	init_completion(&xspi->done);
442
443	xspi->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
444	if (IS_ERR(xspi->regs))
445		return PTR_ERR(xspi->regs);
446
447	host->bus_num = pdev->id;
448	host->num_chipselect = num_cs;
449	host->dev.of_node = pdev->dev.of_node;
450
451	/*
452	 * Detect endianess on the IP via loop bit in CR. Detection
453	 * must be done before reset is sent because incorrect reset
454	 * value generates error interrupt.
455	 * Setup little endian helper functions first and try to use them
456	 * and check if bit was correctly setup or not.
457	 */
458	xspi->read_fn = xspi_read32;
459	xspi->write_fn = xspi_write32;
460
461	xspi->write_fn(XSPI_CR_LOOP, xspi->regs + XSPI_CR_OFFSET);
462	tmp = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
463	tmp &= XSPI_CR_LOOP;
464	if (tmp != XSPI_CR_LOOP) {
465		xspi->read_fn = xspi_read32_be;
466		xspi->write_fn = xspi_write32_be;
467	}
 
 
 
 
 
 
 
 
 
 
 
 
468
469	host->bits_per_word_mask = SPI_BPW_MASK(bits_per_word);
470	xspi->bytes_per_word = bits_per_word / 8;
471	xspi->buffer_size = xilinx_spi_find_buffer_size(xspi);
472
473	xspi->irq = platform_get_irq(pdev, 0);
474	if (xspi->irq < 0 && xspi->irq != -ENXIO) {
475		return xspi->irq;
476	} else if (xspi->irq >= 0) {
477		/* Register for SPI Interrupt */
478		ret = devm_request_irq(&pdev->dev, xspi->irq, xilinx_spi_irq, 0,
479				dev_name(&pdev->dev), xspi);
480		if (ret)
481			return ret;
482
483		xspi->force_irq = force_irq;
484	}
485
486	/* SPI controller initializations */
487	xspi_init_hw(xspi);
488
 
 
 
 
 
489	ret = spi_bitbang_start(&xspi->bitbang);
490	if (ret) {
491		dev_err(&pdev->dev, "spi_bitbang_start FAILED\n");
492		return ret;
493	}
494
495	dev_info(&pdev->dev, "at %pR, irq=%d\n", res, xspi->irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496
497	if (pdata) {
498		for (i = 0; i < pdata->num_devices; i++)
499			spi_new_device(host, pdata->devices + i);
500	}
501
502	platform_set_drvdata(pdev, host);
503	return 0;
504}
505
506static void xilinx_spi_remove(struct platform_device *pdev)
507{
508	struct spi_controller *host = platform_get_drvdata(pdev);
509	struct xilinx_spi *xspi = spi_controller_get_devdata(host);
510	void __iomem *regs_base = xspi->regs;
511
512	spi_bitbang_stop(&xspi->bitbang);
513
514	/* Disable all the interrupts just in case */
515	xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET);
516	/* Disable the global IPIF interrupt */
517	xspi->write_fn(0, regs_base + XIPIF_V123B_DGIER_OFFSET);
518
519	spi_controller_put(xspi->bitbang.master);
520}
521
522/* work with hotplug and coldplug */
523MODULE_ALIAS("platform:" XILINX_SPI_NAME);
524
525static struct platform_driver xilinx_spi_driver = {
526	.probe = xilinx_spi_probe,
527	.remove_new = xilinx_spi_remove,
528	.driver = {
529		.name = XILINX_SPI_NAME,
 
530		.of_match_table = xilinx_spi_of_match,
531	},
532};
533module_platform_driver(xilinx_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
534
535MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
536MODULE_DESCRIPTION("Xilinx SPI driver");
537MODULE_LICENSE("GPL");