Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Xilinx SPI controller driver (master mode only)
  3 *
  4 * Author: MontaVista Software, Inc.
  5 *	source@mvista.com
  6 *
  7 * Copyright (c) 2010 Secret Lab Technologies, Ltd.
  8 * Copyright (c) 2009 Intel Corporation
  9 * 2002-2007 (c) MontaVista Software, Inc.
 10
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License version 2 as
 13 * published by the Free Software Foundation.
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/init.h>
 18#include <linux/interrupt.h>
 19#include <linux/of.h>
 20#include <linux/platform_device.h>
 21#include <linux/spi/spi.h>
 22#include <linux/spi/spi_bitbang.h>
 23#include <linux/spi/xilinx_spi.h>
 24#include <linux/io.h>
 25
 
 
 26#define XILINX_SPI_NAME "xilinx_spi"
 27
 28/* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
 29 * Product Specification", DS464
 30 */
 31#define XSPI_CR_OFFSET		0x60	/* Control Register */
 32
 
 33#define XSPI_CR_ENABLE		0x02
 34#define XSPI_CR_MASTER_MODE	0x04
 35#define XSPI_CR_CPOL		0x08
 36#define XSPI_CR_CPHA		0x10
 37#define XSPI_CR_MODE_MASK	(XSPI_CR_CPHA | XSPI_CR_CPOL)
 
 38#define XSPI_CR_TXFIFO_RESET	0x20
 39#define XSPI_CR_RXFIFO_RESET	0x40
 40#define XSPI_CR_MANUAL_SSELECT	0x80
 41#define XSPI_CR_TRANS_INHIBIT	0x100
 42#define XSPI_CR_LSB_FIRST	0x200
 43
 44#define XSPI_SR_OFFSET		0x64	/* Status Register */
 45
 46#define XSPI_SR_RX_EMPTY_MASK	0x01	/* Receive FIFO is empty */
 47#define XSPI_SR_RX_FULL_MASK	0x02	/* Receive FIFO is full */
 48#define XSPI_SR_TX_EMPTY_MASK	0x04	/* Transmit FIFO is empty */
 49#define XSPI_SR_TX_FULL_MASK	0x08	/* Transmit FIFO is full */
 50#define XSPI_SR_MODE_FAULT_MASK	0x10	/* Mode fault error */
 51
 52#define XSPI_TXD_OFFSET		0x68	/* Data Transmit Register */
 53#define XSPI_RXD_OFFSET		0x6c	/* Data Receive Register */
 54
 55#define XSPI_SSR_OFFSET		0x70	/* 32-bit Slave Select Register */
 56
 57/* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
 58 * IPIF registers are 32 bit
 59 */
 60#define XIPIF_V123B_DGIER_OFFSET	0x1c	/* IPIF global int enable reg */
 61#define XIPIF_V123B_GINTR_ENABLE	0x80000000
 62
 63#define XIPIF_V123B_IISR_OFFSET		0x20	/* IPIF interrupt status reg */
 64#define XIPIF_V123B_IIER_OFFSET		0x28	/* IPIF interrupt enable reg */
 65
 66#define XSPI_INTR_MODE_FAULT		0x01	/* Mode fault error */
 67#define XSPI_INTR_SLAVE_MODE_FAULT	0x02	/* Selected as slave while
 68						 * disabled */
 69#define XSPI_INTR_TX_EMPTY		0x04	/* TxFIFO is empty */
 70#define XSPI_INTR_TX_UNDERRUN		0x08	/* TxFIFO was underrun */
 71#define XSPI_INTR_RX_FULL		0x10	/* RxFIFO is full */
 72#define XSPI_INTR_RX_OVERRUN		0x20	/* RxFIFO was overrun */
 73#define XSPI_INTR_TX_HALF_EMPTY		0x40	/* TxFIFO is half empty */
 74
 75#define XIPIF_V123B_RESETR_OFFSET	0x40	/* IPIF reset register */
 76#define XIPIF_V123B_RESET_MASK		0x0a	/* the value to write */
 77
 78struct xilinx_spi {
 79	/* bitbang has to be first */
 80	struct spi_bitbang bitbang;
 81	struct completion done;
 82	struct resource mem; /* phys mem */
 83	void __iomem	*regs;	/* virt. address of the control registers */
 84
 85	u32		irq;
 86
 87	u8 *rx_ptr;		/* pointer in the Tx buffer */
 88	const u8 *tx_ptr;	/* pointer in the Rx buffer */
 89	int remaining_bytes;	/* the number of bytes left to transfer */
 90	u8 bits_per_word;
 91	unsigned int (*read_fn) (void __iomem *);
 92	void (*write_fn) (u32, void __iomem *);
 93	void (*tx_fn) (struct xilinx_spi *);
 94	void (*rx_fn) (struct xilinx_spi *);
 95};
 96
 97static void xspi_write32(u32 val, void __iomem *addr)
 98{
 99	iowrite32(val, addr);
100}
101
102static unsigned int xspi_read32(void __iomem *addr)
103{
104	return ioread32(addr);
105}
106
107static void xspi_write32_be(u32 val, void __iomem *addr)
108{
109	iowrite32be(val, addr);
110}
111
112static unsigned int xspi_read32_be(void __iomem *addr)
113{
114	return ioread32be(addr);
115}
116
117static void xspi_tx8(struct xilinx_spi *xspi)
118{
119	xspi->write_fn(*xspi->tx_ptr, xspi->regs + XSPI_TXD_OFFSET);
120	xspi->tx_ptr++;
121}
122
123static void xspi_tx16(struct xilinx_spi *xspi)
124{
125	xspi->write_fn(*(u16 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
126	xspi->tx_ptr += 2;
127}
128
129static void xspi_tx32(struct xilinx_spi *xspi)
130{
131	xspi->write_fn(*(u32 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
132	xspi->tx_ptr += 4;
133}
134
135static void xspi_rx8(struct xilinx_spi *xspi)
136{
137	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
138	if (xspi->rx_ptr) {
139		*xspi->rx_ptr = data & 0xff;
140		xspi->rx_ptr++;
141	}
142}
143
144static void xspi_rx16(struct xilinx_spi *xspi)
145{
146	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
147	if (xspi->rx_ptr) {
148		*(u16 *)(xspi->rx_ptr) = data & 0xffff;
149		xspi->rx_ptr += 2;
 
 
 
 
150	}
 
 
 
151}
152
153static void xspi_rx32(struct xilinx_spi *xspi)
154{
155	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
156	if (xspi->rx_ptr) {
 
 
 
 
 
 
 
 
 
 
 
157		*(u32 *)(xspi->rx_ptr) = data;
158		xspi->rx_ptr += 4;
159	}
 
 
160}
161
162static void xspi_init_hw(struct xilinx_spi *xspi)
163{
164	void __iomem *regs_base = xspi->regs;
165
166	/* Reset the SPI device */
167	xspi->write_fn(XIPIF_V123B_RESET_MASK,
168		regs_base + XIPIF_V123B_RESETR_OFFSET);
169	/* Disable all the interrupts just in case */
170	xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET);
171	/* Enable the global IPIF interrupt */
172	xspi->write_fn(XIPIF_V123B_GINTR_ENABLE,
173		regs_base + XIPIF_V123B_DGIER_OFFSET);
 
 
174	/* Deselect the slave on the SPI bus */
175	xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET);
176	/* Disable the transmitter, enable Manual Slave Select Assertion,
177	 * put SPI controller into master mode, and enable it */
178	xspi->write_fn(XSPI_CR_TRANS_INHIBIT | XSPI_CR_MANUAL_SSELECT |
179		XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET |
180		XSPI_CR_RXFIFO_RESET, regs_base + XSPI_CR_OFFSET);
181}
182
183static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
184{
185	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
 
 
186
187	if (is_on == BITBANG_CS_INACTIVE) {
188		/* Deselect the slave on the SPI bus */
189		xspi->write_fn(0xffff, xspi->regs + XSPI_SSR_OFFSET);
190	} else if (is_on == BITBANG_CS_ACTIVE) {
191		/* Set the SPI clock phase and polarity */
192		u16 cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET)
193			 & ~XSPI_CR_MODE_MASK;
194		if (spi->mode & SPI_CPHA)
195			cr |= XSPI_CR_CPHA;
196		if (spi->mode & SPI_CPOL)
197			cr |= XSPI_CR_CPOL;
198		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
199
200		/* We do not check spi->max_speed_hz here as the SPI clock
201		 * frequency is not software programmable (the IP block design
202		 * parameter)
203		 */
 
 
 
 
 
 
 
204
205		/* Activate the chip select */
206		xspi->write_fn(~(0x0001 << spi->chip_select),
207			xspi->regs + XSPI_SSR_OFFSET);
208	}
 
 
 
 
 
 
209}
210
211/* spi_bitbang requires custom setup_transfer() to be defined if there is a
212 * custom txrx_bufs(). We have nothing to setup here as the SPI IP block
213 * supports 8 or 16 bits per word which cannot be changed in software.
214 * SPI clock can't be changed in software either.
215 * Check for correct bits per word. Chip select delay calculations could be
216 * added here as soon as bitbang_work() can be made aware of the delay value.
217 */
218static int xilinx_spi_setup_transfer(struct spi_device *spi,
219		struct spi_transfer *t)
220{
221	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
222	u8 bits_per_word;
223
224	bits_per_word = (t && t->bits_per_word)
225			 ? t->bits_per_word : spi->bits_per_word;
226	if (bits_per_word != xspi->bits_per_word) {
227		dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
228			__func__, bits_per_word);
229		return -EINVAL;
230	}
231
232	return 0;
233}
234
235static int xilinx_spi_setup(struct spi_device *spi)
236{
237	/* always return 0, we can not check the number of bits.
238	 * There are cases when SPI setup is called before any driver is
239	 * there, in that case the SPI core defaults to 8 bits, which we
240	 * do not support in some cases. But if we return an error, the
241	 * SPI device would not be registered and no driver can get hold of it
242	 * When the driver is there, it will call SPI setup again with the
243	 * correct number of bits per transfer.
244	 * If a driver setups with the wrong bit number, it will fail when
245	 * it tries to do a transfer
246	 */
247	return 0;
248}
249
250static void xilinx_spi_fill_tx_fifo(struct xilinx_spi *xspi)
251{
252	u8 sr;
253
254	/* Fill the Tx FIFO with as many bytes as possible */
255	sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
256	while ((sr & XSPI_SR_TX_FULL_MASK) == 0 && xspi->remaining_bytes > 0) {
257		if (xspi->tx_ptr)
258			xspi->tx_fn(xspi);
259		else
260			xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
261		xspi->remaining_bytes -= xspi->bits_per_word / 8;
262		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
263	}
264}
265
266static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
267{
268	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
269	u32 ipif_ier;
270	u16 cr;
 
271
272	/* We get here with transmitter inhibited */
273
274	xspi->tx_ptr = t->tx_buf;
275	xspi->rx_ptr = t->rx_buf;
276	xspi->remaining_bytes = t->len;
277	INIT_COMPLETION(xspi->done);
278
279	xilinx_spi_fill_tx_fifo(xspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
281	/* Enable the transmit empty interrupt, which we use to determine
282	 * progress on the transmission.
283	 */
284	ipif_ier = xspi->read_fn(xspi->regs + XIPIF_V123B_IIER_OFFSET);
285	xspi->write_fn(ipif_ier | XSPI_INTR_TX_EMPTY,
286		xspi->regs + XIPIF_V123B_IIER_OFFSET);
287
288	/* Start the transfer by not inhibiting the transmitter any longer */
289	cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) &
290		~XSPI_CR_TRANS_INHIBIT;
291	xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
292
293	wait_for_completion(&xspi->done);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294
295	/* Disable the transmit empty interrupt */
296	xspi->write_fn(ipif_ier, xspi->regs + XIPIF_V123B_IIER_OFFSET);
 
 
 
 
297
298	return t->len - xspi->remaining_bytes;
 
 
 
 
 
 
 
 
299}
300
301
302/* This driver supports single master mode only. Hence Tx FIFO Empty
303 * is the only interrupt we care about.
304 * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode
305 * Fault are not to happen.
306 */
307static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
308{
309	struct xilinx_spi *xspi = dev_id;
310	u32 ipif_isr;
311
312	/* Get the IPIF interrupts, and clear them immediately */
313	ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
314	xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET);
315
316	if (ipif_isr & XSPI_INTR_TX_EMPTY) {	/* Transmission completed */
317		u16 cr;
318		u8 sr;
 
319
320		/* A transmit has just completed. Process received data and
321		 * check for more data to transmit. Always inhibit the
322		 * transmitter while the Isr refills the transmit register/FIFO,
323		 * or make sure it is stopped if we're done.
324		 */
325		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
326		xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
327			xspi->regs + XSPI_CR_OFFSET);
328
329		/* Read out all the data from the Rx FIFO */
330		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
331		while ((sr & XSPI_SR_RX_EMPTY_MASK) == 0) {
332			xspi->rx_fn(xspi);
333			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
334		}
335
336		/* See if there is more data to send */
337		if (xspi->remaining_bytes > 0) {
338			xilinx_spi_fill_tx_fifo(xspi);
339			/* Start the transfer by not inhibiting the
340			 * transmitter any longer
341			 */
342			xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
343		} else {
344			/* No more data to send.
345			 * Indicate the transfer is completed.
346			 */
347			complete(&xspi->done);
348		}
349	}
350
351	return IRQ_HANDLED;
 
 
 
 
 
 
 
352}
353
354static const struct of_device_id xilinx_spi_of_match[] = {
 
355	{ .compatible = "xlnx,xps-spi-2.00.a", },
356	{ .compatible = "xlnx,xps-spi-2.00.b", },
357	{}
358};
359MODULE_DEVICE_TABLE(of, xilinx_spi_of_match);
360
361struct spi_master *xilinx_spi_init(struct device *dev, struct resource *mem,
362	u32 irq, s16 bus_num, int num_cs, int little_endian, int bits_per_word)
363{
364	struct spi_master *master;
365	struct xilinx_spi *xspi;
366	int ret;
 
 
 
 
 
367
368	master = spi_alloc_master(dev, sizeof(struct xilinx_spi));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369	if (!master)
370		return NULL;
371
372	/* the spi->mode bits understood by this driver: */
373	master->mode_bits = SPI_CPOL | SPI_CPHA;
 
374
375	xspi = spi_master_get_devdata(master);
376	xspi->bitbang.master = spi_master_get(master);
 
377	xspi->bitbang.chipselect = xilinx_spi_chipselect;
378	xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
379	xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
380	xspi->bitbang.master->setup = xilinx_spi_setup;
381	init_completion(&xspi->done);
382
383	if (!request_mem_region(mem->start, resource_size(mem),
384		XILINX_SPI_NAME))
 
 
385		goto put_master;
386
387	xspi->regs = ioremap(mem->start, resource_size(mem));
388	if (xspi->regs == NULL) {
389		dev_warn(dev, "ioremap failure\n");
390		goto map_failed;
391	}
392
393	master->bus_num = bus_num;
394	master->num_chipselect = num_cs;
395	master->dev.of_node = dev->of_node;
396
397	xspi->mem = *mem;
398	xspi->irq = irq;
399	if (little_endian) {
400		xspi->read_fn = xspi_read32;
401		xspi->write_fn = xspi_write32;
402	} else {
 
 
 
 
 
 
 
 
403		xspi->read_fn = xspi_read32_be;
404		xspi->write_fn = xspi_write32_be;
405	}
406	xspi->bits_per_word = bits_per_word;
407	if (xspi->bits_per_word == 8) {
408		xspi->tx_fn = xspi_tx8;
409		xspi->rx_fn = xspi_rx8;
410	} else if (xspi->bits_per_word == 16) {
411		xspi->tx_fn = xspi_tx16;
412		xspi->rx_fn = xspi_rx16;
413	} else if (xspi->bits_per_word == 32) {
414		xspi->tx_fn = xspi_tx32;
415		xspi->rx_fn = xspi_rx32;
416	} else
417		goto unmap_io;
418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419
420	/* SPI controller initializations */
421	xspi_init_hw(xspi);
422
423	/* Register for SPI Interrupt */
424	ret = request_irq(xspi->irq, xilinx_spi_irq, 0, XILINX_SPI_NAME, xspi);
425	if (ret)
426		goto unmap_io;
427
428	ret = spi_bitbang_start(&xspi->bitbang);
429	if (ret) {
430		dev_err(dev, "spi_bitbang_start FAILED\n");
431		goto free_irq;
432	}
433
434	dev_info(dev, "at 0x%08llX mapped to 0x%p, irq=%d\n",
435		(unsigned long long)mem->start, xspi->regs, xspi->irq);
436	return master;
437
438free_irq:
439	free_irq(xspi->irq, xspi);
440unmap_io:
441	iounmap(xspi->regs);
442map_failed:
443	release_mem_region(mem->start, resource_size(mem));
444put_master:
445	spi_master_put(master);
446	return NULL;
447}
448EXPORT_SYMBOL(xilinx_spi_init);
449
450void xilinx_spi_deinit(struct spi_master *master)
451{
452	struct xilinx_spi *xspi;
453
454	xspi = spi_master_get_devdata(master);
455
456	spi_bitbang_stop(&xspi->bitbang);
457	free_irq(xspi->irq, xspi);
458	iounmap(xspi->regs);
459
460	release_mem_region(xspi->mem.start, resource_size(&xspi->mem));
461	spi_master_put(xspi->bitbang.master);
462}
463EXPORT_SYMBOL(xilinx_spi_deinit);
464
465static int __devinit xilinx_spi_probe(struct platform_device *dev)
466{
467	struct xspi_platform_data *pdata;
468	struct resource *r;
469	int irq, num_cs = 0, little_endian = 0, bits_per_word = 8;
470	struct spi_master *master;
471	u8 i;
472
473	pdata = dev->dev.platform_data;
474	if (pdata) {
475		num_cs = pdata->num_chipselect;
476		little_endian = pdata->little_endian;
477		bits_per_word = pdata->bits_per_word;
478	}
479
480#ifdef CONFIG_OF
481	if (dev->dev.of_node) {
482		const __be32 *prop;
483		int len;
484
485		/* number of slave select bits is required */
486		prop = of_get_property(dev->dev.of_node, "xlnx,num-ss-bits",
487				       &len);
488		if (prop && len >= sizeof(*prop))
489			num_cs = __be32_to_cpup(prop);
490	}
491#endif
492
493	if (!num_cs) {
494		dev_err(&dev->dev, "Missing slave select configuration data\n");
495		return -EINVAL;
496	}
497
498
499	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
500	if (!r)
501		return -ENODEV;
502
503	irq = platform_get_irq(dev, 0);
504	if (irq < 0)
505		return -ENXIO;
506
507	master = xilinx_spi_init(&dev->dev, r, irq, dev->id, num_cs,
508				 little_endian, bits_per_word);
509	if (!master)
510		return -ENODEV;
511
512	if (pdata) {
513		for (i = 0; i < pdata->num_devices; i++)
514			spi_new_device(master, pdata->devices + i);
515	}
516
517	platform_set_drvdata(dev, master);
518	return 0;
 
 
 
 
 
519}
520
521static int __devexit xilinx_spi_remove(struct platform_device *dev)
522{
523	xilinx_spi_deinit(platform_get_drvdata(dev));
524	platform_set_drvdata(dev, 0);
 
 
 
 
 
 
 
 
 
 
525
526	return 0;
527}
528
529/* work with hotplug and coldplug */
530MODULE_ALIAS("platform:" XILINX_SPI_NAME);
531
532static struct platform_driver xilinx_spi_driver = {
533	.probe = xilinx_spi_probe,
534	.remove = __devexit_p(xilinx_spi_remove),
535	.driver = {
536		.name = XILINX_SPI_NAME,
537		.owner = THIS_MODULE,
538		.of_match_table = xilinx_spi_of_match,
539	},
540};
541
542static int __init xilinx_spi_pltfm_init(void)
543{
544	return platform_driver_register(&xilinx_spi_driver);
545}
546module_init(xilinx_spi_pltfm_init);
547
548static void __exit xilinx_spi_pltfm_exit(void)
549{
550	platform_driver_unregister(&xilinx_spi_driver);
551}
552module_exit(xilinx_spi_pltfm_exit);
553
554MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
555MODULE_DESCRIPTION("Xilinx SPI driver");
556MODULE_LICENSE("GPL");
v4.17
  1/*
  2 * Xilinx SPI controller driver (master mode only)
  3 *
  4 * Author: MontaVista Software, Inc.
  5 *	source@mvista.com
  6 *
  7 * Copyright (c) 2010 Secret Lab Technologies, Ltd.
  8 * Copyright (c) 2009 Intel Corporation
  9 * 2002-2007 (c) MontaVista Software, Inc.
 10
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License version 2 as
 13 * published by the Free Software Foundation.
 14 */
 15
 16#include <linux/module.h>
 
 17#include <linux/interrupt.h>
 18#include <linux/of.h>
 19#include <linux/platform_device.h>
 20#include <linux/spi/spi.h>
 21#include <linux/spi/spi_bitbang.h>
 22#include <linux/spi/xilinx_spi.h>
 23#include <linux/io.h>
 24
 25#define XILINX_SPI_MAX_CS	32
 26
 27#define XILINX_SPI_NAME "xilinx_spi"
 28
 29/* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
 30 * Product Specification", DS464
 31 */
 32#define XSPI_CR_OFFSET		0x60	/* Control Register */
 33
 34#define XSPI_CR_LOOP		0x01
 35#define XSPI_CR_ENABLE		0x02
 36#define XSPI_CR_MASTER_MODE	0x04
 37#define XSPI_CR_CPOL		0x08
 38#define XSPI_CR_CPHA		0x10
 39#define XSPI_CR_MODE_MASK	(XSPI_CR_CPHA | XSPI_CR_CPOL | \
 40				 XSPI_CR_LSB_FIRST | XSPI_CR_LOOP)
 41#define XSPI_CR_TXFIFO_RESET	0x20
 42#define XSPI_CR_RXFIFO_RESET	0x40
 43#define XSPI_CR_MANUAL_SSELECT	0x80
 44#define XSPI_CR_TRANS_INHIBIT	0x100
 45#define XSPI_CR_LSB_FIRST	0x200
 46
 47#define XSPI_SR_OFFSET		0x64	/* Status Register */
 48
 49#define XSPI_SR_RX_EMPTY_MASK	0x01	/* Receive FIFO is empty */
 50#define XSPI_SR_RX_FULL_MASK	0x02	/* Receive FIFO is full */
 51#define XSPI_SR_TX_EMPTY_MASK	0x04	/* Transmit FIFO is empty */
 52#define XSPI_SR_TX_FULL_MASK	0x08	/* Transmit FIFO is full */
 53#define XSPI_SR_MODE_FAULT_MASK	0x10	/* Mode fault error */
 54
 55#define XSPI_TXD_OFFSET		0x68	/* Data Transmit Register */
 56#define XSPI_RXD_OFFSET		0x6c	/* Data Receive Register */
 57
 58#define XSPI_SSR_OFFSET		0x70	/* 32-bit Slave Select Register */
 59
 60/* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
 61 * IPIF registers are 32 bit
 62 */
 63#define XIPIF_V123B_DGIER_OFFSET	0x1c	/* IPIF global int enable reg */
 64#define XIPIF_V123B_GINTR_ENABLE	0x80000000
 65
 66#define XIPIF_V123B_IISR_OFFSET		0x20	/* IPIF interrupt status reg */
 67#define XIPIF_V123B_IIER_OFFSET		0x28	/* IPIF interrupt enable reg */
 68
 69#define XSPI_INTR_MODE_FAULT		0x01	/* Mode fault error */
 70#define XSPI_INTR_SLAVE_MODE_FAULT	0x02	/* Selected as slave while
 71						 * disabled */
 72#define XSPI_INTR_TX_EMPTY		0x04	/* TxFIFO is empty */
 73#define XSPI_INTR_TX_UNDERRUN		0x08	/* TxFIFO was underrun */
 74#define XSPI_INTR_RX_FULL		0x10	/* RxFIFO is full */
 75#define XSPI_INTR_RX_OVERRUN		0x20	/* RxFIFO was overrun */
 76#define XSPI_INTR_TX_HALF_EMPTY		0x40	/* TxFIFO is half empty */
 77
 78#define XIPIF_V123B_RESETR_OFFSET	0x40	/* IPIF reset register */
 79#define XIPIF_V123B_RESET_MASK		0x0a	/* the value to write */
 80
 81struct xilinx_spi {
 82	/* bitbang has to be first */
 83	struct spi_bitbang bitbang;
 84	struct completion done;
 
 85	void __iomem	*regs;	/* virt. address of the control registers */
 86
 87	int		irq;
 88
 89	u8 *rx_ptr;		/* pointer in the Tx buffer */
 90	const u8 *tx_ptr;	/* pointer in the Rx buffer */
 91	u8 bytes_per_word;
 92	int buffer_size;	/* buffer size in words */
 93	u32 cs_inactive;	/* Level of the CS pins when inactive*/
 94	unsigned int (*read_fn)(void __iomem *);
 95	void (*write_fn)(u32, void __iomem *);
 
 96};
 97
 98static void xspi_write32(u32 val, void __iomem *addr)
 99{
100	iowrite32(val, addr);
101}
102
103static unsigned int xspi_read32(void __iomem *addr)
104{
105	return ioread32(addr);
106}
107
108static void xspi_write32_be(u32 val, void __iomem *addr)
109{
110	iowrite32be(val, addr);
111}
112
113static unsigned int xspi_read32_be(void __iomem *addr)
114{
115	return ioread32be(addr);
116}
117
118static void xilinx_spi_tx(struct xilinx_spi *xspi)
 
 
 
 
 
 
119{
120	u32 data = 0;
 
 
121
122	if (!xspi->tx_ptr) {
123		xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
124		return;
 
 
 
 
 
 
 
 
 
125	}
 
126
127	switch (xspi->bytes_per_word) {
128	case 1:
129		data = *(u8 *)(xspi->tx_ptr);
130		break;
131	case 2:
132		data = *(u16 *)(xspi->tx_ptr);
133		break;
134	case 4:
135		data = *(u32 *)(xspi->tx_ptr);
136		break;
137	}
138
139	xspi->write_fn(data, xspi->regs + XSPI_TXD_OFFSET);
140	xspi->tx_ptr += xspi->bytes_per_word;
141}
142
143static void xilinx_spi_rx(struct xilinx_spi *xspi)
144{
145	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
146
147	if (!xspi->rx_ptr)
148		return;
149
150	switch (xspi->bytes_per_word) {
151	case 1:
152		*(u8 *)(xspi->rx_ptr) = data;
153		break;
154	case 2:
155		*(u16 *)(xspi->rx_ptr) = data;
156		break;
157	case 4:
158		*(u32 *)(xspi->rx_ptr) = data;
159		break;
160	}
161
162	xspi->rx_ptr += xspi->bytes_per_word;
163}
164
165static void xspi_init_hw(struct xilinx_spi *xspi)
166{
167	void __iomem *regs_base = xspi->regs;
168
169	/* Reset the SPI device */
170	xspi->write_fn(XIPIF_V123B_RESET_MASK,
171		regs_base + XIPIF_V123B_RESETR_OFFSET);
172	/* Enable the transmit empty interrupt, which we use to determine
173	 * progress on the transmission.
174	 */
175	xspi->write_fn(XSPI_INTR_TX_EMPTY,
176			regs_base + XIPIF_V123B_IIER_OFFSET);
177	/* Disable the global IPIF interrupt */
178	xspi->write_fn(0, regs_base + XIPIF_V123B_DGIER_OFFSET);
179	/* Deselect the slave on the SPI bus */
180	xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET);
181	/* Disable the transmitter, enable Manual Slave Select Assertion,
182	 * put SPI controller into master mode, and enable it */
183	xspi->write_fn(XSPI_CR_MANUAL_SSELECT |	XSPI_CR_MASTER_MODE |
184		XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET |	XSPI_CR_RXFIFO_RESET,
185		regs_base + XSPI_CR_OFFSET);
186}
187
188static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
189{
190	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
191	u16 cr;
192	u32 cs;
193
194	if (is_on == BITBANG_CS_INACTIVE) {
195		/* Deselect the slave on the SPI bus */
196		xspi->write_fn(xspi->cs_inactive, xspi->regs + XSPI_SSR_OFFSET);
197		return;
198	}
 
 
 
 
 
 
 
199
200	/* Set the SPI clock phase and polarity */
201	cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET)	& ~XSPI_CR_MODE_MASK;
202	if (spi->mode & SPI_CPHA)
203		cr |= XSPI_CR_CPHA;
204	if (spi->mode & SPI_CPOL)
205		cr |= XSPI_CR_CPOL;
206	if (spi->mode & SPI_LSB_FIRST)
207		cr |= XSPI_CR_LSB_FIRST;
208	if (spi->mode & SPI_LOOP)
209		cr |= XSPI_CR_LOOP;
210	xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
211
212	/* We do not check spi->max_speed_hz here as the SPI clock
213	 * frequency is not software programmable (the IP block design
214	 * parameter)
215	 */
216
217	cs = xspi->cs_inactive;
218	cs ^= BIT(spi->chip_select);
219
220	/* Activate the chip select */
221	xspi->write_fn(cs, xspi->regs + XSPI_SSR_OFFSET);
222}
223
224/* spi_bitbang requires custom setup_transfer() to be defined if there is a
225 * custom txrx_bufs().
 
 
 
 
226 */
227static int xilinx_spi_setup_transfer(struct spi_device *spi,
228		struct spi_transfer *t)
229{
230	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
 
231
232	if (spi->mode & SPI_CS_HIGH)
233		xspi->cs_inactive &= ~BIT(spi->chip_select);
234	else
235		xspi->cs_inactive |= BIT(spi->chip_select);
 
 
 
236
237	return 0;
238}
239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
241{
242	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
243	int remaining_words;	/* the number of words left to transfer */
244	bool use_irq = false;
245	u16 cr = 0;
246
247	/* We get here with transmitter inhibited */
248
249	xspi->tx_ptr = t->tx_buf;
250	xspi->rx_ptr = t->rx_buf;
251	remaining_words = t->len / xspi->bytes_per_word;
 
252
253	if (xspi->irq >= 0 &&  remaining_words > xspi->buffer_size) {
254		u32 isr;
255		use_irq = true;
256		/* Inhibit irq to avoid spurious irqs on tx_empty*/
257		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
258		xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
259			       xspi->regs + XSPI_CR_OFFSET);
260		/* ACK old irqs (if any) */
261		isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
262		if (isr)
263			xspi->write_fn(isr,
264				       xspi->regs + XIPIF_V123B_IISR_OFFSET);
265		/* Enable the global IPIF interrupt */
266		xspi->write_fn(XIPIF_V123B_GINTR_ENABLE,
267				xspi->regs + XIPIF_V123B_DGIER_OFFSET);
268		reinit_completion(&xspi->done);
269	}
270
271	while (remaining_words) {
272		int n_words, tx_words, rx_words;
273		u32 sr;
274		int stalled;
275
276		n_words = min(remaining_words, xspi->buffer_size);
277
278		tx_words = n_words;
279		while (tx_words--)
280			xilinx_spi_tx(xspi);
281
282		/* Start the transfer by not inhibiting the transmitter any
283		 * longer
284		 */
 
 
 
 
 
 
 
 
285
286		if (use_irq) {
287			xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
288			wait_for_completion(&xspi->done);
289			/* A transmit has just completed. Process received data
290			 * and check for more data to transmit. Always inhibit
291			 * the transmitter while the Isr refills the transmit
292			 * register/FIFO, or make sure it is stopped if we're
293			 * done.
294			 */
295			xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
296				       xspi->regs + XSPI_CR_OFFSET);
297			sr = XSPI_SR_TX_EMPTY_MASK;
298		} else
299			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
300
301		/* Read out all the data from the Rx FIFO */
302		rx_words = n_words;
303		stalled = 10;
304		while (rx_words) {
305			if (rx_words == n_words && !(stalled--) &&
306			    !(sr & XSPI_SR_TX_EMPTY_MASK) &&
307			    (sr & XSPI_SR_RX_EMPTY_MASK)) {
308				dev_err(&spi->dev,
309					"Detected stall. Check C_SPI_MODE and C_SPI_MEMORY\n");
310				xspi_init_hw(xspi);
311				return -EIO;
312			}
313
314			if ((sr & XSPI_SR_TX_EMPTY_MASK) && (rx_words > 1)) {
315				xilinx_spi_rx(xspi);
316				rx_words--;
317				continue;
318			}
319
320			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
321			if (!(sr & XSPI_SR_RX_EMPTY_MASK)) {
322				xilinx_spi_rx(xspi);
323				rx_words--;
324			}
325		}
326
327		remaining_words -= n_words;
328	}
329
330	if (use_irq) {
331		xspi->write_fn(0, xspi->regs + XIPIF_V123B_DGIER_OFFSET);
332		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
333	}
334
335	return t->len;
336}
337
338
339/* This driver supports single master mode only. Hence Tx FIFO Empty
340 * is the only interrupt we care about.
341 * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode
342 * Fault are not to happen.
343 */
344static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
345{
346	struct xilinx_spi *xspi = dev_id;
347	u32 ipif_isr;
348
349	/* Get the IPIF interrupts, and clear them immediately */
350	ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
351	xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET);
352
353	if (ipif_isr & XSPI_INTR_TX_EMPTY) {	/* Transmission completed */
354		complete(&xspi->done);
355		return IRQ_HANDLED;
356	}
357
358	return IRQ_NONE;
359}
 
 
 
 
 
 
360
361static int xilinx_spi_find_buffer_size(struct xilinx_spi *xspi)
362{
363	u8 sr;
364	int n_words = 0;
 
 
365
366	/*
367	 * Before the buffer_size detection we reset the core
368	 * to make sure we start with a clean state.
369	 */
370	xspi->write_fn(XIPIF_V123B_RESET_MASK,
371		xspi->regs + XIPIF_V123B_RESETR_OFFSET);
 
 
 
 
 
 
 
 
372
373	/* Fill the Tx FIFO with as many words as possible */
374	do {
375		xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
376		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
377		n_words++;
378	} while (!(sr & XSPI_SR_TX_FULL_MASK));
379
380	return n_words;
381}
382
383static const struct of_device_id xilinx_spi_of_match[] = {
384	{ .compatible = "xlnx,axi-quad-spi-1.00.a", },
385	{ .compatible = "xlnx,xps-spi-2.00.a", },
386	{ .compatible = "xlnx,xps-spi-2.00.b", },
387	{}
388};
389MODULE_DEVICE_TABLE(of, xilinx_spi_of_match);
390
391static int xilinx_spi_probe(struct platform_device *pdev)
 
392{
 
393	struct xilinx_spi *xspi;
394	struct xspi_platform_data *pdata;
395	struct resource *res;
396	int ret, num_cs = 0, bits_per_word = 8;
397	struct spi_master *master;
398	u32 tmp;
399	u8 i;
400
401	pdata = dev_get_platdata(&pdev->dev);
402	if (pdata) {
403		num_cs = pdata->num_chipselect;
404		bits_per_word = pdata->bits_per_word;
405	} else {
406		of_property_read_u32(pdev->dev.of_node, "xlnx,num-ss-bits",
407					  &num_cs);
408	}
409
410	if (!num_cs) {
411		dev_err(&pdev->dev,
412			"Missing slave select configuration data\n");
413		return -EINVAL;
414	}
415
416	if (num_cs > XILINX_SPI_MAX_CS) {
417		dev_err(&pdev->dev, "Invalid number of spi slaves\n");
418		return -EINVAL;
419	}
420
421	master = spi_alloc_master(&pdev->dev, sizeof(struct xilinx_spi));
422	if (!master)
423		return -ENODEV;
424
425	/* the spi->mode bits understood by this driver: */
426	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_LOOP |
427			    SPI_CS_HIGH;
428
429	xspi = spi_master_get_devdata(master);
430	xspi->cs_inactive = 0xffffffff;
431	xspi->bitbang.master = master;
432	xspi->bitbang.chipselect = xilinx_spi_chipselect;
433	xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
434	xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
 
435	init_completion(&xspi->done);
436
437	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
438	xspi->regs = devm_ioremap_resource(&pdev->dev, res);
439	if (IS_ERR(xspi->regs)) {
440		ret = PTR_ERR(xspi->regs);
441		goto put_master;
 
 
 
 
 
442	}
443
444	master->bus_num = pdev->id;
445	master->num_chipselect = num_cs;
446	master->dev.of_node = pdev->dev.of_node;
447
448	/*
449	 * Detect endianess on the IP via loop bit in CR. Detection
450	 * must be done before reset is sent because incorrect reset
451	 * value generates error interrupt.
452	 * Setup little endian helper functions first and try to use them
453	 * and check if bit was correctly setup or not.
454	 */
455	xspi->read_fn = xspi_read32;
456	xspi->write_fn = xspi_write32;
457
458	xspi->write_fn(XSPI_CR_LOOP, xspi->regs + XSPI_CR_OFFSET);
459	tmp = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
460	tmp &= XSPI_CR_LOOP;
461	if (tmp != XSPI_CR_LOOP) {
462		xspi->read_fn = xspi_read32_be;
463		xspi->write_fn = xspi_write32_be;
464	}
 
 
 
 
 
 
 
 
 
 
 
 
465
466	master->bits_per_word_mask = SPI_BPW_MASK(bits_per_word);
467	xspi->bytes_per_word = bits_per_word / 8;
468	xspi->buffer_size = xilinx_spi_find_buffer_size(xspi);
469
470	xspi->irq = platform_get_irq(pdev, 0);
471	if (xspi->irq < 0 && xspi->irq != -ENXIO) {
472		ret = xspi->irq;
473		goto put_master;
474	} else if (xspi->irq >= 0) {
475		/* Register for SPI Interrupt */
476		ret = devm_request_irq(&pdev->dev, xspi->irq, xilinx_spi_irq, 0,
477				dev_name(&pdev->dev), xspi);
478		if (ret)
479			goto put_master;
480	}
481
482	/* SPI controller initializations */
483	xspi_init_hw(xspi);
484
 
 
 
 
 
485	ret = spi_bitbang_start(&xspi->bitbang);
486	if (ret) {
487		dev_err(&pdev->dev, "spi_bitbang_start FAILED\n");
488		goto put_master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489	}
490
491	dev_info(&pdev->dev, "at 0x%08llX mapped to 0x%p, irq=%d\n",
492		(unsigned long long)res->start, xspi->regs, xspi->irq);
 
 
 
 
 
 
 
 
 
 
 
493
494	if (pdata) {
495		for (i = 0; i < pdata->num_devices; i++)
496			spi_new_device(master, pdata->devices + i);
497	}
498
499	platform_set_drvdata(pdev, master);
500	return 0;
501
502put_master:
503	spi_master_put(master);
504
505	return ret;
506}
507
508static int xilinx_spi_remove(struct platform_device *pdev)
509{
510	struct spi_master *master = platform_get_drvdata(pdev);
511	struct xilinx_spi *xspi = spi_master_get_devdata(master);
512	void __iomem *regs_base = xspi->regs;
513
514	spi_bitbang_stop(&xspi->bitbang);
515
516	/* Disable all the interrupts just in case */
517	xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET);
518	/* Disable the global IPIF interrupt */
519	xspi->write_fn(0, regs_base + XIPIF_V123B_DGIER_OFFSET);
520
521	spi_master_put(xspi->bitbang.master);
522
523	return 0;
524}
525
526/* work with hotplug and coldplug */
527MODULE_ALIAS("platform:" XILINX_SPI_NAME);
528
529static struct platform_driver xilinx_spi_driver = {
530	.probe = xilinx_spi_probe,
531	.remove = xilinx_spi_remove,
532	.driver = {
533		.name = XILINX_SPI_NAME,
 
534		.of_match_table = xilinx_spi_of_match,
535	},
536};
537module_platform_driver(xilinx_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
538
539MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
540MODULE_DESCRIPTION("Xilinx SPI driver");
541MODULE_LICENSE("GPL");