Loading...
1/*
2 * TI OMAP1 Real Time Clock interface for Linux
3 *
4 * Copyright (C) 2003 MontaVista Software, Inc.
5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
6 *
7 * Copyright (C) 2006 David Brownell (new RTC framework)
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/ioport.h>
19#include <linux/delay.h>
20#include <linux/rtc.h>
21#include <linux/bcd.h>
22#include <linux/platform_device.h>
23
24#include <asm/io.h>
25
26
27/* The OMAP1 RTC is a year/month/day/hours/minutes/seconds BCD clock
28 * with century-range alarm matching, driven by the 32kHz clock.
29 *
30 * The main user-visible ways it differs from PC RTCs are by omitting
31 * "don't care" alarm fields and sub-second periodic IRQs, and having
32 * an autoadjust mechanism to calibrate to the true oscillator rate.
33 *
34 * Board-specific wiring options include using split power mode with
35 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
36 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
37 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
38 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
39 */
40
41#define OMAP_RTC_BASE 0xfffb4800
42
43/* RTC registers */
44#define OMAP_RTC_SECONDS_REG 0x00
45#define OMAP_RTC_MINUTES_REG 0x04
46#define OMAP_RTC_HOURS_REG 0x08
47#define OMAP_RTC_DAYS_REG 0x0C
48#define OMAP_RTC_MONTHS_REG 0x10
49#define OMAP_RTC_YEARS_REG 0x14
50#define OMAP_RTC_WEEKS_REG 0x18
51
52#define OMAP_RTC_ALARM_SECONDS_REG 0x20
53#define OMAP_RTC_ALARM_MINUTES_REG 0x24
54#define OMAP_RTC_ALARM_HOURS_REG 0x28
55#define OMAP_RTC_ALARM_DAYS_REG 0x2c
56#define OMAP_RTC_ALARM_MONTHS_REG 0x30
57#define OMAP_RTC_ALARM_YEARS_REG 0x34
58
59#define OMAP_RTC_CTRL_REG 0x40
60#define OMAP_RTC_STATUS_REG 0x44
61#define OMAP_RTC_INTERRUPTS_REG 0x48
62
63#define OMAP_RTC_COMP_LSB_REG 0x4c
64#define OMAP_RTC_COMP_MSB_REG 0x50
65#define OMAP_RTC_OSC_REG 0x54
66
67/* OMAP_RTC_CTRL_REG bit fields: */
68#define OMAP_RTC_CTRL_SPLIT (1<<7)
69#define OMAP_RTC_CTRL_DISABLE (1<<6)
70#define OMAP_RTC_CTRL_SET_32_COUNTER (1<<5)
71#define OMAP_RTC_CTRL_TEST (1<<4)
72#define OMAP_RTC_CTRL_MODE_12_24 (1<<3)
73#define OMAP_RTC_CTRL_AUTO_COMP (1<<2)
74#define OMAP_RTC_CTRL_ROUND_30S (1<<1)
75#define OMAP_RTC_CTRL_STOP (1<<0)
76
77/* OMAP_RTC_STATUS_REG bit fields: */
78#define OMAP_RTC_STATUS_POWER_UP (1<<7)
79#define OMAP_RTC_STATUS_ALARM (1<<6)
80#define OMAP_RTC_STATUS_1D_EVENT (1<<5)
81#define OMAP_RTC_STATUS_1H_EVENT (1<<4)
82#define OMAP_RTC_STATUS_1M_EVENT (1<<3)
83#define OMAP_RTC_STATUS_1S_EVENT (1<<2)
84#define OMAP_RTC_STATUS_RUN (1<<1)
85#define OMAP_RTC_STATUS_BUSY (1<<0)
86
87/* OMAP_RTC_INTERRUPTS_REG bit fields: */
88#define OMAP_RTC_INTERRUPTS_IT_ALARM (1<<3)
89#define OMAP_RTC_INTERRUPTS_IT_TIMER (1<<2)
90
91static void __iomem *rtc_base;
92
93#define rtc_read(addr) __raw_readb(rtc_base + (addr))
94#define rtc_write(val, addr) __raw_writeb(val, rtc_base + (addr))
95
96
97/* we rely on the rtc framework to handle locking (rtc->ops_lock),
98 * so the only other requirement is that register accesses which
99 * require BUSY to be clear are made with IRQs locally disabled
100 */
101static void rtc_wait_not_busy(void)
102{
103 int count = 0;
104 u8 status;
105
106 /* BUSY may stay active for 1/32768 second (~30 usec) */
107 for (count = 0; count < 50; count++) {
108 status = rtc_read(OMAP_RTC_STATUS_REG);
109 if ((status & (u8)OMAP_RTC_STATUS_BUSY) == 0)
110 break;
111 udelay(1);
112 }
113 /* now we have ~15 usec to read/write various registers */
114}
115
116static irqreturn_t rtc_irq(int irq, void *rtc)
117{
118 unsigned long events = 0;
119 u8 irq_data;
120
121 irq_data = rtc_read(OMAP_RTC_STATUS_REG);
122
123 /* alarm irq? */
124 if (irq_data & OMAP_RTC_STATUS_ALARM) {
125 rtc_write(OMAP_RTC_STATUS_ALARM, OMAP_RTC_STATUS_REG);
126 events |= RTC_IRQF | RTC_AF;
127 }
128
129 /* 1/sec periodic/update irq? */
130 if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
131 events |= RTC_IRQF | RTC_UF;
132
133 rtc_update_irq(rtc, 1, events);
134
135 return IRQ_HANDLED;
136}
137
138static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
139{
140 u8 reg;
141
142 local_irq_disable();
143 rtc_wait_not_busy();
144 reg = rtc_read(OMAP_RTC_INTERRUPTS_REG);
145 if (enabled)
146 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
147 else
148 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
149 rtc_wait_not_busy();
150 rtc_write(reg, OMAP_RTC_INTERRUPTS_REG);
151 local_irq_enable();
152
153 return 0;
154}
155
156/* this hardware doesn't support "don't care" alarm fields */
157static int tm2bcd(struct rtc_time *tm)
158{
159 if (rtc_valid_tm(tm) != 0)
160 return -EINVAL;
161
162 tm->tm_sec = bin2bcd(tm->tm_sec);
163 tm->tm_min = bin2bcd(tm->tm_min);
164 tm->tm_hour = bin2bcd(tm->tm_hour);
165 tm->tm_mday = bin2bcd(tm->tm_mday);
166
167 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
168
169 /* epoch == 1900 */
170 if (tm->tm_year < 100 || tm->tm_year > 199)
171 return -EINVAL;
172 tm->tm_year = bin2bcd(tm->tm_year - 100);
173
174 return 0;
175}
176
177static void bcd2tm(struct rtc_time *tm)
178{
179 tm->tm_sec = bcd2bin(tm->tm_sec);
180 tm->tm_min = bcd2bin(tm->tm_min);
181 tm->tm_hour = bcd2bin(tm->tm_hour);
182 tm->tm_mday = bcd2bin(tm->tm_mday);
183 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
184 /* epoch == 1900 */
185 tm->tm_year = bcd2bin(tm->tm_year) + 100;
186}
187
188
189static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
190{
191 /* we don't report wday/yday/isdst ... */
192 local_irq_disable();
193 rtc_wait_not_busy();
194
195 tm->tm_sec = rtc_read(OMAP_RTC_SECONDS_REG);
196 tm->tm_min = rtc_read(OMAP_RTC_MINUTES_REG);
197 tm->tm_hour = rtc_read(OMAP_RTC_HOURS_REG);
198 tm->tm_mday = rtc_read(OMAP_RTC_DAYS_REG);
199 tm->tm_mon = rtc_read(OMAP_RTC_MONTHS_REG);
200 tm->tm_year = rtc_read(OMAP_RTC_YEARS_REG);
201
202 local_irq_enable();
203
204 bcd2tm(tm);
205 return 0;
206}
207
208static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
209{
210 if (tm2bcd(tm) < 0)
211 return -EINVAL;
212 local_irq_disable();
213 rtc_wait_not_busy();
214
215 rtc_write(tm->tm_year, OMAP_RTC_YEARS_REG);
216 rtc_write(tm->tm_mon, OMAP_RTC_MONTHS_REG);
217 rtc_write(tm->tm_mday, OMAP_RTC_DAYS_REG);
218 rtc_write(tm->tm_hour, OMAP_RTC_HOURS_REG);
219 rtc_write(tm->tm_min, OMAP_RTC_MINUTES_REG);
220 rtc_write(tm->tm_sec, OMAP_RTC_SECONDS_REG);
221
222 local_irq_enable();
223
224 return 0;
225}
226
227static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
228{
229 local_irq_disable();
230 rtc_wait_not_busy();
231
232 alm->time.tm_sec = rtc_read(OMAP_RTC_ALARM_SECONDS_REG);
233 alm->time.tm_min = rtc_read(OMAP_RTC_ALARM_MINUTES_REG);
234 alm->time.tm_hour = rtc_read(OMAP_RTC_ALARM_HOURS_REG);
235 alm->time.tm_mday = rtc_read(OMAP_RTC_ALARM_DAYS_REG);
236 alm->time.tm_mon = rtc_read(OMAP_RTC_ALARM_MONTHS_REG);
237 alm->time.tm_year = rtc_read(OMAP_RTC_ALARM_YEARS_REG);
238
239 local_irq_enable();
240
241 bcd2tm(&alm->time);
242 alm->enabled = !!(rtc_read(OMAP_RTC_INTERRUPTS_REG)
243 & OMAP_RTC_INTERRUPTS_IT_ALARM);
244
245 return 0;
246}
247
248static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
249{
250 u8 reg;
251
252 if (tm2bcd(&alm->time) < 0)
253 return -EINVAL;
254
255 local_irq_disable();
256 rtc_wait_not_busy();
257
258 rtc_write(alm->time.tm_year, OMAP_RTC_ALARM_YEARS_REG);
259 rtc_write(alm->time.tm_mon, OMAP_RTC_ALARM_MONTHS_REG);
260 rtc_write(alm->time.tm_mday, OMAP_RTC_ALARM_DAYS_REG);
261 rtc_write(alm->time.tm_hour, OMAP_RTC_ALARM_HOURS_REG);
262 rtc_write(alm->time.tm_min, OMAP_RTC_ALARM_MINUTES_REG);
263 rtc_write(alm->time.tm_sec, OMAP_RTC_ALARM_SECONDS_REG);
264
265 reg = rtc_read(OMAP_RTC_INTERRUPTS_REG);
266 if (alm->enabled)
267 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
268 else
269 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
270 rtc_write(reg, OMAP_RTC_INTERRUPTS_REG);
271
272 local_irq_enable();
273
274 return 0;
275}
276
277static struct rtc_class_ops omap_rtc_ops = {
278 .read_time = omap_rtc_read_time,
279 .set_time = omap_rtc_set_time,
280 .read_alarm = omap_rtc_read_alarm,
281 .set_alarm = omap_rtc_set_alarm,
282 .alarm_irq_enable = omap_rtc_alarm_irq_enable,
283};
284
285static int omap_rtc_alarm;
286static int omap_rtc_timer;
287
288static int __init omap_rtc_probe(struct platform_device *pdev)
289{
290 struct resource *res, *mem;
291 struct rtc_device *rtc;
292 u8 reg, new_ctrl;
293
294 omap_rtc_timer = platform_get_irq(pdev, 0);
295 if (omap_rtc_timer <= 0) {
296 pr_debug("%s: no update irq?\n", pdev->name);
297 return -ENOENT;
298 }
299
300 omap_rtc_alarm = platform_get_irq(pdev, 1);
301 if (omap_rtc_alarm <= 0) {
302 pr_debug("%s: no alarm irq?\n", pdev->name);
303 return -ENOENT;
304 }
305
306 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
307 if (!res) {
308 pr_debug("%s: RTC resource data missing\n", pdev->name);
309 return -ENOENT;
310 }
311
312 mem = request_mem_region(res->start, resource_size(res), pdev->name);
313 if (!mem) {
314 pr_debug("%s: RTC registers at %08x are not free\n",
315 pdev->name, res->start);
316 return -EBUSY;
317 }
318
319 rtc_base = ioremap(res->start, resource_size(res));
320 if (!rtc_base) {
321 pr_debug("%s: RTC registers can't be mapped\n", pdev->name);
322 goto fail;
323 }
324
325 rtc = rtc_device_register(pdev->name, &pdev->dev,
326 &omap_rtc_ops, THIS_MODULE);
327 if (IS_ERR(rtc)) {
328 pr_debug("%s: can't register RTC device, err %ld\n",
329 pdev->name, PTR_ERR(rtc));
330 goto fail0;
331 }
332 platform_set_drvdata(pdev, rtc);
333 dev_set_drvdata(&rtc->dev, mem);
334
335 /* clear pending irqs, and set 1/second periodic,
336 * which we'll use instead of update irqs
337 */
338 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
339
340 /* clear old status */
341 reg = rtc_read(OMAP_RTC_STATUS_REG);
342 if (reg & (u8) OMAP_RTC_STATUS_POWER_UP) {
343 pr_info("%s: RTC power up reset detected\n",
344 pdev->name);
345 rtc_write(OMAP_RTC_STATUS_POWER_UP, OMAP_RTC_STATUS_REG);
346 }
347 if (reg & (u8) OMAP_RTC_STATUS_ALARM)
348 rtc_write(OMAP_RTC_STATUS_ALARM, OMAP_RTC_STATUS_REG);
349
350 /* handle periodic and alarm irqs */
351 if (request_irq(omap_rtc_timer, rtc_irq, IRQF_DISABLED,
352 dev_name(&rtc->dev), rtc)) {
353 pr_debug("%s: RTC timer interrupt IRQ%d already claimed\n",
354 pdev->name, omap_rtc_timer);
355 goto fail1;
356 }
357 if ((omap_rtc_timer != omap_rtc_alarm) &&
358 (request_irq(omap_rtc_alarm, rtc_irq, IRQF_DISABLED,
359 dev_name(&rtc->dev), rtc))) {
360 pr_debug("%s: RTC alarm interrupt IRQ%d already claimed\n",
361 pdev->name, omap_rtc_alarm);
362 goto fail2;
363 }
364
365 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
366 reg = rtc_read(OMAP_RTC_CTRL_REG);
367 if (reg & (u8) OMAP_RTC_CTRL_STOP)
368 pr_info("%s: already running\n", pdev->name);
369
370 /* force to 24 hour mode */
371 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT|OMAP_RTC_CTRL_AUTO_COMP);
372 new_ctrl |= OMAP_RTC_CTRL_STOP;
373
374 /* BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
375 *
376 * - Device wake-up capability setting should come through chip
377 * init logic. OMAP1 boards should initialize the "wakeup capable"
378 * flag in the platform device if the board is wired right for
379 * being woken up by RTC alarm. For OMAP-L138, this capability
380 * is built into the SoC by the "Deep Sleep" capability.
381 *
382 * - Boards wired so RTC_ON_nOFF is used as the reset signal,
383 * rather than nPWRON_RESET, should forcibly enable split
384 * power mode. (Some chip errata report that RTC_CTRL_SPLIT
385 * is write-only, and always reads as zero...)
386 */
387
388 if (new_ctrl & (u8) OMAP_RTC_CTRL_SPLIT)
389 pr_info("%s: split power mode\n", pdev->name);
390
391 if (reg != new_ctrl)
392 rtc_write(new_ctrl, OMAP_RTC_CTRL_REG);
393
394 return 0;
395
396fail2:
397 free_irq(omap_rtc_timer, rtc);
398fail1:
399 rtc_device_unregister(rtc);
400fail0:
401 iounmap(rtc_base);
402fail:
403 release_mem_region(mem->start, resource_size(mem));
404 return -EIO;
405}
406
407static int __exit omap_rtc_remove(struct platform_device *pdev)
408{
409 struct rtc_device *rtc = platform_get_drvdata(pdev);
410 struct resource *mem = dev_get_drvdata(&rtc->dev);
411
412 device_init_wakeup(&pdev->dev, 0);
413
414 /* leave rtc running, but disable irqs */
415 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
416
417 free_irq(omap_rtc_timer, rtc);
418
419 if (omap_rtc_timer != omap_rtc_alarm)
420 free_irq(omap_rtc_alarm, rtc);
421
422 rtc_device_unregister(rtc);
423 iounmap(rtc_base);
424 release_mem_region(mem->start, resource_size(mem));
425 return 0;
426}
427
428#ifdef CONFIG_PM
429
430static u8 irqstat;
431
432static int omap_rtc_suspend(struct platform_device *pdev, pm_message_t state)
433{
434 irqstat = rtc_read(OMAP_RTC_INTERRUPTS_REG);
435
436 /* FIXME the RTC alarm is not currently acting as a wakeup event
437 * source, and in fact this enable() call is just saving a flag
438 * that's never used...
439 */
440 if (device_may_wakeup(&pdev->dev))
441 enable_irq_wake(omap_rtc_alarm);
442 else
443 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
444
445 return 0;
446}
447
448static int omap_rtc_resume(struct platform_device *pdev)
449{
450 if (device_may_wakeup(&pdev->dev))
451 disable_irq_wake(omap_rtc_alarm);
452 else
453 rtc_write(irqstat, OMAP_RTC_INTERRUPTS_REG);
454 return 0;
455}
456
457#else
458#define omap_rtc_suspend NULL
459#define omap_rtc_resume NULL
460#endif
461
462static void omap_rtc_shutdown(struct platform_device *pdev)
463{
464 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
465}
466
467MODULE_ALIAS("platform:omap_rtc");
468static struct platform_driver omap_rtc_driver = {
469 .remove = __exit_p(omap_rtc_remove),
470 .suspend = omap_rtc_suspend,
471 .resume = omap_rtc_resume,
472 .shutdown = omap_rtc_shutdown,
473 .driver = {
474 .name = "omap_rtc",
475 .owner = THIS_MODULE,
476 },
477};
478
479static int __init rtc_init(void)
480{
481 return platform_driver_probe(&omap_rtc_driver, omap_rtc_probe);
482}
483module_init(rtc_init);
484
485static void __exit rtc_exit(void)
486{
487 platform_driver_unregister(&omap_rtc_driver);
488}
489module_exit(rtc_exit);
490
491MODULE_AUTHOR("George G. Davis (and others)");
492MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * TI OMAP Real Time Clock interface for Linux
4 *
5 * Copyright (C) 2003 MontaVista Software, Inc.
6 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
7 *
8 * Copyright (C) 2006 David Brownell (new RTC framework)
9 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
10 */
11
12#include <linux/bcd.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/init.h>
16#include <linux/io.h>
17#include <linux/ioport.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/pinctrl/pinctrl.h>
22#include <linux/pinctrl/pinconf.h>
23#include <linux/pinctrl/pinconf-generic.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/property.h>
27#include <linux/rtc.h>
28#include <linux/rtc/rtc-omap.h>
29
30/*
31 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
32 * with century-range alarm matching, driven by the 32kHz clock.
33 *
34 * The main user-visible ways it differs from PC RTCs are by omitting
35 * "don't care" alarm fields and sub-second periodic IRQs, and having
36 * an autoadjust mechanism to calibrate to the true oscillator rate.
37 *
38 * Board-specific wiring options include using split power mode with
39 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
40 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
41 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
42 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
43 */
44
45/* RTC registers */
46#define OMAP_RTC_SECONDS_REG 0x00
47#define OMAP_RTC_MINUTES_REG 0x04
48#define OMAP_RTC_HOURS_REG 0x08
49#define OMAP_RTC_DAYS_REG 0x0C
50#define OMAP_RTC_MONTHS_REG 0x10
51#define OMAP_RTC_YEARS_REG 0x14
52#define OMAP_RTC_WEEKS_REG 0x18
53
54#define OMAP_RTC_ALARM_SECONDS_REG 0x20
55#define OMAP_RTC_ALARM_MINUTES_REG 0x24
56#define OMAP_RTC_ALARM_HOURS_REG 0x28
57#define OMAP_RTC_ALARM_DAYS_REG 0x2c
58#define OMAP_RTC_ALARM_MONTHS_REG 0x30
59#define OMAP_RTC_ALARM_YEARS_REG 0x34
60
61#define OMAP_RTC_CTRL_REG 0x40
62#define OMAP_RTC_STATUS_REG 0x44
63#define OMAP_RTC_INTERRUPTS_REG 0x48
64
65#define OMAP_RTC_COMP_LSB_REG 0x4c
66#define OMAP_RTC_COMP_MSB_REG 0x50
67#define OMAP_RTC_OSC_REG 0x54
68
69#define OMAP_RTC_SCRATCH0_REG 0x60
70#define OMAP_RTC_SCRATCH1_REG 0x64
71#define OMAP_RTC_SCRATCH2_REG 0x68
72
73#define OMAP_RTC_KICK0_REG 0x6c
74#define OMAP_RTC_KICK1_REG 0x70
75
76#define OMAP_RTC_IRQWAKEEN 0x7c
77
78#define OMAP_RTC_ALARM2_SECONDS_REG 0x80
79#define OMAP_RTC_ALARM2_MINUTES_REG 0x84
80#define OMAP_RTC_ALARM2_HOURS_REG 0x88
81#define OMAP_RTC_ALARM2_DAYS_REG 0x8c
82#define OMAP_RTC_ALARM2_MONTHS_REG 0x90
83#define OMAP_RTC_ALARM2_YEARS_REG 0x94
84
85#define OMAP_RTC_PMIC_REG 0x98
86
87/* OMAP_RTC_CTRL_REG bit fields: */
88#define OMAP_RTC_CTRL_SPLIT BIT(7)
89#define OMAP_RTC_CTRL_DISABLE BIT(6)
90#define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5)
91#define OMAP_RTC_CTRL_TEST BIT(4)
92#define OMAP_RTC_CTRL_MODE_12_24 BIT(3)
93#define OMAP_RTC_CTRL_AUTO_COMP BIT(2)
94#define OMAP_RTC_CTRL_ROUND_30S BIT(1)
95#define OMAP_RTC_CTRL_STOP BIT(0)
96
97/* OMAP_RTC_STATUS_REG bit fields: */
98#define OMAP_RTC_STATUS_POWER_UP BIT(7)
99#define OMAP_RTC_STATUS_ALARM2 BIT(7)
100#define OMAP_RTC_STATUS_ALARM BIT(6)
101#define OMAP_RTC_STATUS_1D_EVENT BIT(5)
102#define OMAP_RTC_STATUS_1H_EVENT BIT(4)
103#define OMAP_RTC_STATUS_1M_EVENT BIT(3)
104#define OMAP_RTC_STATUS_1S_EVENT BIT(2)
105#define OMAP_RTC_STATUS_RUN BIT(1)
106#define OMAP_RTC_STATUS_BUSY BIT(0)
107
108/* OMAP_RTC_INTERRUPTS_REG bit fields: */
109#define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4)
110#define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3)
111#define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2)
112
113/* OMAP_RTC_OSC_REG bit fields: */
114#define OMAP_RTC_OSC_32KCLK_EN BIT(6)
115#define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3)
116#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4)
117
118/* OMAP_RTC_IRQWAKEEN bit fields: */
119#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1)
120
121/* OMAP_RTC_PMIC bit fields: */
122#define OMAP_RTC_PMIC_POWER_EN_EN BIT(16)
123#define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x)
124#define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x)
125
126/* OMAP_RTC_KICKER values */
127#define KICK0_VALUE 0x83e70b13
128#define KICK1_VALUE 0x95a4f1e0
129
130struct omap_rtc;
131
132struct omap_rtc_device_type {
133 bool has_32kclk_en;
134 bool has_irqwakeen;
135 bool has_pmic_mode;
136 bool has_power_up_reset;
137 void (*lock)(struct omap_rtc *rtc);
138 void (*unlock)(struct omap_rtc *rtc);
139};
140
141struct omap_rtc {
142 struct rtc_device *rtc;
143 void __iomem *base;
144 struct clk *clk;
145 int irq_alarm;
146 int irq_timer;
147 u8 interrupts_reg;
148 bool is_pmic_controller;
149 bool has_ext_clk;
150 bool is_suspending;
151 const struct omap_rtc_device_type *type;
152 struct pinctrl_dev *pctldev;
153};
154
155static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
156{
157 return readb(rtc->base + reg);
158}
159
160static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
161{
162 return readl(rtc->base + reg);
163}
164
165static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
166{
167 writeb(val, rtc->base + reg);
168}
169
170static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
171{
172 writel(val, rtc->base + reg);
173}
174
175static void am3352_rtc_unlock(struct omap_rtc *rtc)
176{
177 rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
178 rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
179}
180
181static void am3352_rtc_lock(struct omap_rtc *rtc)
182{
183 rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
184 rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
185}
186
187static void default_rtc_unlock(struct omap_rtc *rtc)
188{
189}
190
191static void default_rtc_lock(struct omap_rtc *rtc)
192{
193}
194
195/*
196 * We rely on the rtc framework to handle locking (rtc->ops_lock),
197 * so the only other requirement is that register accesses which
198 * require BUSY to be clear are made with IRQs locally disabled
199 */
200static void rtc_wait_not_busy(struct omap_rtc *rtc)
201{
202 int count;
203 u8 status;
204
205 /* BUSY may stay active for 1/32768 second (~30 usec) */
206 for (count = 0; count < 50; count++) {
207 status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
208 if (!(status & OMAP_RTC_STATUS_BUSY))
209 break;
210 udelay(1);
211 }
212 /* now we have ~15 usec to read/write various registers */
213}
214
215static irqreturn_t rtc_irq(int irq, void *dev_id)
216{
217 struct omap_rtc *rtc = dev_id;
218 unsigned long events = 0;
219 u8 irq_data;
220
221 irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
222
223 /* alarm irq? */
224 if (irq_data & OMAP_RTC_STATUS_ALARM) {
225 rtc->type->unlock(rtc);
226 rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
227 rtc->type->lock(rtc);
228 events |= RTC_IRQF | RTC_AF;
229 }
230
231 /* 1/sec periodic/update irq? */
232 if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
233 events |= RTC_IRQF | RTC_UF;
234
235 rtc_update_irq(rtc->rtc, 1, events);
236
237 return IRQ_HANDLED;
238}
239
240static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
241{
242 struct omap_rtc *rtc = dev_get_drvdata(dev);
243 u8 reg, irqwake_reg = 0;
244
245 local_irq_disable();
246 rtc_wait_not_busy(rtc);
247 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
248 if (rtc->type->has_irqwakeen)
249 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
250
251 if (enabled) {
252 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
253 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
254 } else {
255 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
256 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
257 }
258 rtc_wait_not_busy(rtc);
259 rtc->type->unlock(rtc);
260 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
261 if (rtc->type->has_irqwakeen)
262 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
263 rtc->type->lock(rtc);
264 local_irq_enable();
265
266 return 0;
267}
268
269/* this hardware doesn't support "don't care" alarm fields */
270static void tm2bcd(struct rtc_time *tm)
271{
272 tm->tm_sec = bin2bcd(tm->tm_sec);
273 tm->tm_min = bin2bcd(tm->tm_min);
274 tm->tm_hour = bin2bcd(tm->tm_hour);
275 tm->tm_mday = bin2bcd(tm->tm_mday);
276
277 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
278 tm->tm_year = bin2bcd(tm->tm_year - 100);
279}
280
281static void bcd2tm(struct rtc_time *tm)
282{
283 tm->tm_sec = bcd2bin(tm->tm_sec);
284 tm->tm_min = bcd2bin(tm->tm_min);
285 tm->tm_hour = bcd2bin(tm->tm_hour);
286 tm->tm_mday = bcd2bin(tm->tm_mday);
287 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
288 /* epoch == 1900 */
289 tm->tm_year = bcd2bin(tm->tm_year) + 100;
290}
291
292static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
293{
294 tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
295 tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
296 tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
297 tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
298 tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
299 tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
300}
301
302static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
303{
304 struct omap_rtc *rtc = dev_get_drvdata(dev);
305
306 /* we don't report wday/yday/isdst ... */
307 local_irq_disable();
308 rtc_wait_not_busy(rtc);
309 omap_rtc_read_time_raw(rtc, tm);
310 local_irq_enable();
311
312 bcd2tm(tm);
313
314 return 0;
315}
316
317static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
318{
319 struct omap_rtc *rtc = dev_get_drvdata(dev);
320
321 tm2bcd(tm);
322
323 local_irq_disable();
324 rtc_wait_not_busy(rtc);
325
326 rtc->type->unlock(rtc);
327 rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
328 rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
329 rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
330 rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
331 rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
332 rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
333 rtc->type->lock(rtc);
334
335 local_irq_enable();
336
337 return 0;
338}
339
340static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
341{
342 struct omap_rtc *rtc = dev_get_drvdata(dev);
343 u8 interrupts;
344
345 local_irq_disable();
346 rtc_wait_not_busy(rtc);
347
348 alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
349 alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
350 alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
351 alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
352 alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
353 alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
354
355 local_irq_enable();
356
357 bcd2tm(&alm->time);
358
359 interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
360 alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
361
362 return 0;
363}
364
365static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
366{
367 struct omap_rtc *rtc = dev_get_drvdata(dev);
368 u8 reg, irqwake_reg = 0;
369
370 tm2bcd(&alm->time);
371
372 local_irq_disable();
373 rtc_wait_not_busy(rtc);
374
375 rtc->type->unlock(rtc);
376 rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
377 rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
378 rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
379 rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
380 rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
381 rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
382
383 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
384 if (rtc->type->has_irqwakeen)
385 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
386
387 if (alm->enabled) {
388 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
389 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
390 } else {
391 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
392 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
393 }
394 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
395 if (rtc->type->has_irqwakeen)
396 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
397 rtc->type->lock(rtc);
398
399 local_irq_enable();
400
401 return 0;
402}
403
404static struct omap_rtc *omap_rtc_power_off_rtc;
405
406/**
407 * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC
408 * generates pmic_pwr_enable control, which can be used to control an external
409 * PMIC.
410 */
411int omap_rtc_power_off_program(struct device *dev)
412{
413 struct omap_rtc *rtc = omap_rtc_power_off_rtc;
414 struct rtc_time tm;
415 unsigned long now;
416 int seconds;
417 u32 val;
418
419 rtc->type->unlock(rtc);
420 /* enable pmic_power_en control */
421 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
422 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
423
424again:
425 /* Clear any existing ALARM2 event */
426 rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2);
427
428 /* set alarm one second from now */
429 omap_rtc_read_time_raw(rtc, &tm);
430 seconds = tm.tm_sec;
431 bcd2tm(&tm);
432 now = rtc_tm_to_time64(&tm);
433 rtc_time64_to_tm(now + 1, &tm);
434
435 tm2bcd(&tm);
436
437 rtc_wait_not_busy(rtc);
438
439 rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
440 rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
441 rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
442 rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
443 rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
444 rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
445
446 /*
447 * enable ALARM2 interrupt
448 *
449 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
450 */
451 val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
452 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
453 val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
454
455 /* Retry in case roll over happened before alarm was armed. */
456 if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) {
457 val = rtc_read(rtc, OMAP_RTC_STATUS_REG);
458 if (!(val & OMAP_RTC_STATUS_ALARM2))
459 goto again;
460 }
461
462 rtc->type->lock(rtc);
463
464 return 0;
465}
466EXPORT_SYMBOL(omap_rtc_power_off_program);
467
468/*
469 * omap_rtc_poweroff: RTC-controlled power off
470 *
471 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
472 * which can be configured to transition to OFF on ALARM2 events.
473 *
474 * Notes:
475 * The one-second alarm offset is the shortest offset possible as the alarm
476 * registers must be set before the next timer update and the offset
477 * calculation is too heavy for everything to be done within a single access
478 * period (~15 us).
479 *
480 * Called with local interrupts disabled.
481 */
482static void omap_rtc_power_off(void)
483{
484 struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc;
485 u32 val;
486
487 omap_rtc_power_off_program(rtc->dev.parent);
488
489 /* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */
490 omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc);
491 val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG);
492 val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) |
493 OMAP_RTC_PMIC_EXT_WKUP_EN(0);
494 rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val);
495 omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc);
496
497 /*
498 * Wait for alarm to trigger (within one second) and external PMIC to
499 * power off the system. Add a 500 ms margin for external latencies
500 * (e.g. debounce circuits).
501 */
502 mdelay(1500);
503}
504
505static const struct rtc_class_ops omap_rtc_ops = {
506 .read_time = omap_rtc_read_time,
507 .set_time = omap_rtc_set_time,
508 .read_alarm = omap_rtc_read_alarm,
509 .set_alarm = omap_rtc_set_alarm,
510 .alarm_irq_enable = omap_rtc_alarm_irq_enable,
511};
512
513static const struct omap_rtc_device_type omap_rtc_default_type = {
514 .has_power_up_reset = true,
515 .lock = default_rtc_lock,
516 .unlock = default_rtc_unlock,
517};
518
519static const struct omap_rtc_device_type omap_rtc_am3352_type = {
520 .has_32kclk_en = true,
521 .has_irqwakeen = true,
522 .has_pmic_mode = true,
523 .lock = am3352_rtc_lock,
524 .unlock = am3352_rtc_unlock,
525};
526
527static const struct omap_rtc_device_type omap_rtc_da830_type = {
528 .lock = am3352_rtc_lock,
529 .unlock = am3352_rtc_unlock,
530};
531
532static const struct platform_device_id omap_rtc_id_table[] = {
533 {
534 .name = "omap_rtc",
535 .driver_data = (kernel_ulong_t)&omap_rtc_default_type,
536 }, {
537 .name = "am3352-rtc",
538 .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
539 }, {
540 .name = "da830-rtc",
541 .driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
542 }, {
543 /* sentinel */
544 }
545};
546MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
547
548static const struct of_device_id omap_rtc_of_match[] = {
549 {
550 .compatible = "ti,am3352-rtc",
551 .data = &omap_rtc_am3352_type,
552 }, {
553 .compatible = "ti,da830-rtc",
554 .data = &omap_rtc_da830_type,
555 }, {
556 /* sentinel */
557 }
558};
559MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
560
561static const struct pinctrl_pin_desc rtc_pins_desc[] = {
562 PINCTRL_PIN(0, "ext_wakeup0"),
563 PINCTRL_PIN(1, "ext_wakeup1"),
564 PINCTRL_PIN(2, "ext_wakeup2"),
565 PINCTRL_PIN(3, "ext_wakeup3"),
566};
567
568static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
569{
570 return 0;
571}
572
573static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
574 unsigned int group)
575{
576 return NULL;
577}
578
579static const struct pinctrl_ops rtc_pinctrl_ops = {
580 .get_groups_count = rtc_pinctrl_get_groups_count,
581 .get_group_name = rtc_pinctrl_get_group_name,
582 .dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
583 .dt_free_map = pinconf_generic_dt_free_map,
584};
585
586#define PIN_CONFIG_ACTIVE_HIGH (PIN_CONFIG_END + 1)
587
588static const struct pinconf_generic_params rtc_params[] = {
589 {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
590};
591
592#ifdef CONFIG_DEBUG_FS
593static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
594 PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
595};
596#endif
597
598static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
599 unsigned int pin, unsigned long *config)
600{
601 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
602 unsigned int param = pinconf_to_config_param(*config);
603 u32 val;
604 u16 arg = 0;
605
606 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
607
608 switch (param) {
609 case PIN_CONFIG_INPUT_ENABLE:
610 if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
611 return -EINVAL;
612 break;
613 case PIN_CONFIG_ACTIVE_HIGH:
614 if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
615 return -EINVAL;
616 break;
617 default:
618 return -ENOTSUPP;
619 }
620
621 *config = pinconf_to_config_packed(param, arg);
622
623 return 0;
624}
625
626static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
627 unsigned int pin, unsigned long *configs,
628 unsigned int num_configs)
629{
630 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
631 u32 val;
632 unsigned int param;
633 u32 param_val;
634 int i;
635
636 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
637
638 /* active low by default */
639 val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
640
641 for (i = 0; i < num_configs; i++) {
642 param = pinconf_to_config_param(configs[i]);
643 param_val = pinconf_to_config_argument(configs[i]);
644
645 switch (param) {
646 case PIN_CONFIG_INPUT_ENABLE:
647 if (param_val)
648 val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
649 else
650 val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
651 break;
652 case PIN_CONFIG_ACTIVE_HIGH:
653 val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
654 break;
655 default:
656 dev_err(&rtc->rtc->dev, "Property %u not supported\n",
657 param);
658 return -ENOTSUPP;
659 }
660 }
661
662 rtc->type->unlock(rtc);
663 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
664 rtc->type->lock(rtc);
665
666 return 0;
667}
668
669static const struct pinconf_ops rtc_pinconf_ops = {
670 .is_generic = true,
671 .pin_config_get = rtc_pinconf_get,
672 .pin_config_set = rtc_pinconf_set,
673};
674
675static struct pinctrl_desc rtc_pinctrl_desc = {
676 .pins = rtc_pins_desc,
677 .npins = ARRAY_SIZE(rtc_pins_desc),
678 .pctlops = &rtc_pinctrl_ops,
679 .confops = &rtc_pinconf_ops,
680 .custom_params = rtc_params,
681 .num_custom_params = ARRAY_SIZE(rtc_params),
682#ifdef CONFIG_DEBUG_FS
683 .custom_conf_items = rtc_conf_items,
684#endif
685 .owner = THIS_MODULE,
686};
687
688static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
689 size_t bytes)
690{
691 struct omap_rtc *rtc = priv;
692 u32 *val = _val;
693 int i;
694
695 for (i = 0; i < bytes / 4; i++)
696 val[i] = rtc_readl(rtc,
697 OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
698
699 return 0;
700}
701
702static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
703 size_t bytes)
704{
705 struct omap_rtc *rtc = priv;
706 u32 *val = _val;
707 int i;
708
709 rtc->type->unlock(rtc);
710 for (i = 0; i < bytes / 4; i++)
711 rtc_writel(rtc,
712 OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
713 rtc->type->lock(rtc);
714
715 return 0;
716}
717
718static struct nvmem_config omap_rtc_nvmem_config = {
719 .name = "omap_rtc_scratch",
720 .word_size = 4,
721 .stride = 4,
722 .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
723 .reg_read = omap_rtc_scratch_read,
724 .reg_write = omap_rtc_scratch_write,
725};
726
727static int omap_rtc_probe(struct platform_device *pdev)
728{
729 struct omap_rtc *rtc;
730 u8 reg, mask, new_ctrl;
731 const struct platform_device_id *id_entry;
732 int ret;
733
734 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
735 if (!rtc)
736 return -ENOMEM;
737
738 rtc->type = device_get_match_data(&pdev->dev);
739 if (rtc->type) {
740 rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
741 of_device_is_system_power_controller(pdev->dev.of_node);
742 } else {
743 id_entry = platform_get_device_id(pdev);
744 rtc->type = (void *)id_entry->driver_data;
745 }
746
747 rtc->irq_timer = platform_get_irq(pdev, 0);
748 if (rtc->irq_timer < 0)
749 return rtc->irq_timer;
750
751 rtc->irq_alarm = platform_get_irq(pdev, 1);
752 if (rtc->irq_alarm < 0)
753 return rtc->irq_alarm;
754
755 rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
756 if (!IS_ERR(rtc->clk))
757 rtc->has_ext_clk = true;
758 else
759 rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
760
761 if (!IS_ERR(rtc->clk))
762 clk_prepare_enable(rtc->clk);
763
764 rtc->base = devm_platform_ioremap_resource(pdev, 0);
765 if (IS_ERR(rtc->base)) {
766 clk_disable_unprepare(rtc->clk);
767 return PTR_ERR(rtc->base);
768 }
769
770 platform_set_drvdata(pdev, rtc);
771
772 /* Enable the clock/module so that we can access the registers */
773 pm_runtime_enable(&pdev->dev);
774 pm_runtime_get_sync(&pdev->dev);
775
776 rtc->type->unlock(rtc);
777
778 /*
779 * disable interrupts
780 *
781 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
782 */
783 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
784
785 /* enable RTC functional clock */
786 if (rtc->type->has_32kclk_en) {
787 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
788 rtc_write(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN);
789 }
790
791 /* clear old status */
792 reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
793
794 mask = OMAP_RTC_STATUS_ALARM;
795
796 if (rtc->type->has_pmic_mode)
797 mask |= OMAP_RTC_STATUS_ALARM2;
798
799 if (rtc->type->has_power_up_reset) {
800 mask |= OMAP_RTC_STATUS_POWER_UP;
801 if (reg & OMAP_RTC_STATUS_POWER_UP)
802 dev_info(&pdev->dev, "RTC power up reset detected\n");
803 }
804
805 if (reg & mask)
806 rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
807
808 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
809 reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
810 if (reg & OMAP_RTC_CTRL_STOP)
811 dev_info(&pdev->dev, "already running\n");
812
813 /* force to 24 hour mode */
814 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
815 new_ctrl |= OMAP_RTC_CTRL_STOP;
816
817 /*
818 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
819 *
820 * - Device wake-up capability setting should come through chip
821 * init logic. OMAP1 boards should initialize the "wakeup capable"
822 * flag in the platform device if the board is wired right for
823 * being woken up by RTC alarm. For OMAP-L138, this capability
824 * is built into the SoC by the "Deep Sleep" capability.
825 *
826 * - Boards wired so RTC_ON_nOFF is used as the reset signal,
827 * rather than nPWRON_RESET, should forcibly enable split
828 * power mode. (Some chip errata report that RTC_CTRL_SPLIT
829 * is write-only, and always reads as zero...)
830 */
831
832 if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
833 dev_info(&pdev->dev, "split power mode\n");
834
835 if (reg != new_ctrl)
836 rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
837
838 /*
839 * If we have the external clock then switch to it so we can keep
840 * ticking across suspend.
841 */
842 if (rtc->has_ext_clk) {
843 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
844 reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
845 reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
846 rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
847 }
848
849 rtc->type->lock(rtc);
850
851 device_init_wakeup(&pdev->dev, true);
852
853 rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
854 if (IS_ERR(rtc->rtc)) {
855 ret = PTR_ERR(rtc->rtc);
856 goto err;
857 }
858
859 rtc->rtc->ops = &omap_rtc_ops;
860 rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
861 rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
862 omap_rtc_nvmem_config.priv = rtc;
863
864 /* handle periodic and alarm irqs */
865 ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
866 dev_name(&rtc->rtc->dev), rtc);
867 if (ret)
868 goto err;
869
870 if (rtc->irq_timer != rtc->irq_alarm) {
871 ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
872 dev_name(&rtc->rtc->dev), rtc);
873 if (ret)
874 goto err;
875 }
876
877 /* Support ext_wakeup pinconf */
878 rtc_pinctrl_desc.name = dev_name(&pdev->dev);
879
880 rtc->pctldev = devm_pinctrl_register(&pdev->dev, &rtc_pinctrl_desc, rtc);
881 if (IS_ERR(rtc->pctldev)) {
882 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
883 ret = PTR_ERR(rtc->pctldev);
884 goto err;
885 }
886
887 ret = devm_rtc_register_device(rtc->rtc);
888 if (ret)
889 goto err;
890
891 devm_rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
892
893 if (rtc->is_pmic_controller) {
894 if (!pm_power_off) {
895 omap_rtc_power_off_rtc = rtc;
896 pm_power_off = omap_rtc_power_off;
897 }
898 }
899
900 return 0;
901
902err:
903 clk_disable_unprepare(rtc->clk);
904 device_init_wakeup(&pdev->dev, false);
905 rtc->type->lock(rtc);
906 pm_runtime_put_sync(&pdev->dev);
907 pm_runtime_disable(&pdev->dev);
908
909 return ret;
910}
911
912static void omap_rtc_remove(struct platform_device *pdev)
913{
914 struct omap_rtc *rtc = platform_get_drvdata(pdev);
915 u8 reg;
916
917 if (pm_power_off == omap_rtc_power_off &&
918 omap_rtc_power_off_rtc == rtc) {
919 pm_power_off = NULL;
920 omap_rtc_power_off_rtc = NULL;
921 }
922
923 device_init_wakeup(&pdev->dev, 0);
924
925 if (!IS_ERR(rtc->clk))
926 clk_disable_unprepare(rtc->clk);
927
928 rtc->type->unlock(rtc);
929 /* leave rtc running, but disable irqs */
930 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
931
932 if (rtc->has_ext_clk) {
933 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
934 reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
935 rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
936 }
937
938 rtc->type->lock(rtc);
939
940 /* Disable the clock/module */
941 pm_runtime_put_sync(&pdev->dev);
942 pm_runtime_disable(&pdev->dev);
943}
944
945static int __maybe_unused omap_rtc_suspend(struct device *dev)
946{
947 struct omap_rtc *rtc = dev_get_drvdata(dev);
948
949 rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
950
951 rtc->type->unlock(rtc);
952 /*
953 * FIXME: the RTC alarm is not currently acting as a wakeup event
954 * source on some platforms, and in fact this enable() call is just
955 * saving a flag that's never used...
956 */
957 if (device_may_wakeup(dev))
958 enable_irq_wake(rtc->irq_alarm);
959 else
960 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
961 rtc->type->lock(rtc);
962
963 rtc->is_suspending = true;
964
965 return 0;
966}
967
968static int __maybe_unused omap_rtc_resume(struct device *dev)
969{
970 struct omap_rtc *rtc = dev_get_drvdata(dev);
971
972 rtc->type->unlock(rtc);
973 if (device_may_wakeup(dev))
974 disable_irq_wake(rtc->irq_alarm);
975 else
976 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
977 rtc->type->lock(rtc);
978
979 rtc->is_suspending = false;
980
981 return 0;
982}
983
984static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
985{
986 struct omap_rtc *rtc = dev_get_drvdata(dev);
987
988 if (rtc->is_suspending && !rtc->has_ext_clk)
989 return -EBUSY;
990
991 return 0;
992}
993
994static const struct dev_pm_ops omap_rtc_pm_ops = {
995 SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
996 SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
997};
998
999static void omap_rtc_shutdown(struct platform_device *pdev)
1000{
1001 struct omap_rtc *rtc = platform_get_drvdata(pdev);
1002 u8 mask;
1003
1004 /*
1005 * Keep the ALARM interrupt enabled to allow the system to power up on
1006 * alarm events.
1007 */
1008 rtc->type->unlock(rtc);
1009 mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1010 mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1011 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1012 rtc->type->lock(rtc);
1013}
1014
1015static struct platform_driver omap_rtc_driver = {
1016 .probe = omap_rtc_probe,
1017 .remove_new = omap_rtc_remove,
1018 .shutdown = omap_rtc_shutdown,
1019 .driver = {
1020 .name = "omap_rtc",
1021 .pm = &omap_rtc_pm_ops,
1022 .of_match_table = omap_rtc_of_match,
1023 },
1024 .id_table = omap_rtc_id_table,
1025};
1026
1027module_platform_driver(omap_rtc_driver);
1028
1029MODULE_AUTHOR("George G. Davis (and others)");
1030MODULE_LICENSE("GPL");