Loading...
1/*
2 * TI OMAP1 Real Time Clock interface for Linux
3 *
4 * Copyright (C) 2003 MontaVista Software, Inc.
5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
6 *
7 * Copyright (C) 2006 David Brownell (new RTC framework)
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/ioport.h>
19#include <linux/delay.h>
20#include <linux/rtc.h>
21#include <linux/bcd.h>
22#include <linux/platform_device.h>
23
24#include <asm/io.h>
25
26
27/* The OMAP1 RTC is a year/month/day/hours/minutes/seconds BCD clock
28 * with century-range alarm matching, driven by the 32kHz clock.
29 *
30 * The main user-visible ways it differs from PC RTCs are by omitting
31 * "don't care" alarm fields and sub-second periodic IRQs, and having
32 * an autoadjust mechanism to calibrate to the true oscillator rate.
33 *
34 * Board-specific wiring options include using split power mode with
35 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
36 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
37 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
38 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
39 */
40
41#define OMAP_RTC_BASE 0xfffb4800
42
43/* RTC registers */
44#define OMAP_RTC_SECONDS_REG 0x00
45#define OMAP_RTC_MINUTES_REG 0x04
46#define OMAP_RTC_HOURS_REG 0x08
47#define OMAP_RTC_DAYS_REG 0x0C
48#define OMAP_RTC_MONTHS_REG 0x10
49#define OMAP_RTC_YEARS_REG 0x14
50#define OMAP_RTC_WEEKS_REG 0x18
51
52#define OMAP_RTC_ALARM_SECONDS_REG 0x20
53#define OMAP_RTC_ALARM_MINUTES_REG 0x24
54#define OMAP_RTC_ALARM_HOURS_REG 0x28
55#define OMAP_RTC_ALARM_DAYS_REG 0x2c
56#define OMAP_RTC_ALARM_MONTHS_REG 0x30
57#define OMAP_RTC_ALARM_YEARS_REG 0x34
58
59#define OMAP_RTC_CTRL_REG 0x40
60#define OMAP_RTC_STATUS_REG 0x44
61#define OMAP_RTC_INTERRUPTS_REG 0x48
62
63#define OMAP_RTC_COMP_LSB_REG 0x4c
64#define OMAP_RTC_COMP_MSB_REG 0x50
65#define OMAP_RTC_OSC_REG 0x54
66
67/* OMAP_RTC_CTRL_REG bit fields: */
68#define OMAP_RTC_CTRL_SPLIT (1<<7)
69#define OMAP_RTC_CTRL_DISABLE (1<<6)
70#define OMAP_RTC_CTRL_SET_32_COUNTER (1<<5)
71#define OMAP_RTC_CTRL_TEST (1<<4)
72#define OMAP_RTC_CTRL_MODE_12_24 (1<<3)
73#define OMAP_RTC_CTRL_AUTO_COMP (1<<2)
74#define OMAP_RTC_CTRL_ROUND_30S (1<<1)
75#define OMAP_RTC_CTRL_STOP (1<<0)
76
77/* OMAP_RTC_STATUS_REG bit fields: */
78#define OMAP_RTC_STATUS_POWER_UP (1<<7)
79#define OMAP_RTC_STATUS_ALARM (1<<6)
80#define OMAP_RTC_STATUS_1D_EVENT (1<<5)
81#define OMAP_RTC_STATUS_1H_EVENT (1<<4)
82#define OMAP_RTC_STATUS_1M_EVENT (1<<3)
83#define OMAP_RTC_STATUS_1S_EVENT (1<<2)
84#define OMAP_RTC_STATUS_RUN (1<<1)
85#define OMAP_RTC_STATUS_BUSY (1<<0)
86
87/* OMAP_RTC_INTERRUPTS_REG bit fields: */
88#define OMAP_RTC_INTERRUPTS_IT_ALARM (1<<3)
89#define OMAP_RTC_INTERRUPTS_IT_TIMER (1<<2)
90
91static void __iomem *rtc_base;
92
93#define rtc_read(addr) __raw_readb(rtc_base + (addr))
94#define rtc_write(val, addr) __raw_writeb(val, rtc_base + (addr))
95
96
97/* we rely on the rtc framework to handle locking (rtc->ops_lock),
98 * so the only other requirement is that register accesses which
99 * require BUSY to be clear are made with IRQs locally disabled
100 */
101static void rtc_wait_not_busy(void)
102{
103 int count = 0;
104 u8 status;
105
106 /* BUSY may stay active for 1/32768 second (~30 usec) */
107 for (count = 0; count < 50; count++) {
108 status = rtc_read(OMAP_RTC_STATUS_REG);
109 if ((status & (u8)OMAP_RTC_STATUS_BUSY) == 0)
110 break;
111 udelay(1);
112 }
113 /* now we have ~15 usec to read/write various registers */
114}
115
116static irqreturn_t rtc_irq(int irq, void *rtc)
117{
118 unsigned long events = 0;
119 u8 irq_data;
120
121 irq_data = rtc_read(OMAP_RTC_STATUS_REG);
122
123 /* alarm irq? */
124 if (irq_data & OMAP_RTC_STATUS_ALARM) {
125 rtc_write(OMAP_RTC_STATUS_ALARM, OMAP_RTC_STATUS_REG);
126 events |= RTC_IRQF | RTC_AF;
127 }
128
129 /* 1/sec periodic/update irq? */
130 if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
131 events |= RTC_IRQF | RTC_UF;
132
133 rtc_update_irq(rtc, 1, events);
134
135 return IRQ_HANDLED;
136}
137
138static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
139{
140 u8 reg;
141
142 local_irq_disable();
143 rtc_wait_not_busy();
144 reg = rtc_read(OMAP_RTC_INTERRUPTS_REG);
145 if (enabled)
146 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
147 else
148 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
149 rtc_wait_not_busy();
150 rtc_write(reg, OMAP_RTC_INTERRUPTS_REG);
151 local_irq_enable();
152
153 return 0;
154}
155
156/* this hardware doesn't support "don't care" alarm fields */
157static int tm2bcd(struct rtc_time *tm)
158{
159 if (rtc_valid_tm(tm) != 0)
160 return -EINVAL;
161
162 tm->tm_sec = bin2bcd(tm->tm_sec);
163 tm->tm_min = bin2bcd(tm->tm_min);
164 tm->tm_hour = bin2bcd(tm->tm_hour);
165 tm->tm_mday = bin2bcd(tm->tm_mday);
166
167 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
168
169 /* epoch == 1900 */
170 if (tm->tm_year < 100 || tm->tm_year > 199)
171 return -EINVAL;
172 tm->tm_year = bin2bcd(tm->tm_year - 100);
173
174 return 0;
175}
176
177static void bcd2tm(struct rtc_time *tm)
178{
179 tm->tm_sec = bcd2bin(tm->tm_sec);
180 tm->tm_min = bcd2bin(tm->tm_min);
181 tm->tm_hour = bcd2bin(tm->tm_hour);
182 tm->tm_mday = bcd2bin(tm->tm_mday);
183 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
184 /* epoch == 1900 */
185 tm->tm_year = bcd2bin(tm->tm_year) + 100;
186}
187
188
189static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
190{
191 /* we don't report wday/yday/isdst ... */
192 local_irq_disable();
193 rtc_wait_not_busy();
194
195 tm->tm_sec = rtc_read(OMAP_RTC_SECONDS_REG);
196 tm->tm_min = rtc_read(OMAP_RTC_MINUTES_REG);
197 tm->tm_hour = rtc_read(OMAP_RTC_HOURS_REG);
198 tm->tm_mday = rtc_read(OMAP_RTC_DAYS_REG);
199 tm->tm_mon = rtc_read(OMAP_RTC_MONTHS_REG);
200 tm->tm_year = rtc_read(OMAP_RTC_YEARS_REG);
201
202 local_irq_enable();
203
204 bcd2tm(tm);
205 return 0;
206}
207
208static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
209{
210 if (tm2bcd(tm) < 0)
211 return -EINVAL;
212 local_irq_disable();
213 rtc_wait_not_busy();
214
215 rtc_write(tm->tm_year, OMAP_RTC_YEARS_REG);
216 rtc_write(tm->tm_mon, OMAP_RTC_MONTHS_REG);
217 rtc_write(tm->tm_mday, OMAP_RTC_DAYS_REG);
218 rtc_write(tm->tm_hour, OMAP_RTC_HOURS_REG);
219 rtc_write(tm->tm_min, OMAP_RTC_MINUTES_REG);
220 rtc_write(tm->tm_sec, OMAP_RTC_SECONDS_REG);
221
222 local_irq_enable();
223
224 return 0;
225}
226
227static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
228{
229 local_irq_disable();
230 rtc_wait_not_busy();
231
232 alm->time.tm_sec = rtc_read(OMAP_RTC_ALARM_SECONDS_REG);
233 alm->time.tm_min = rtc_read(OMAP_RTC_ALARM_MINUTES_REG);
234 alm->time.tm_hour = rtc_read(OMAP_RTC_ALARM_HOURS_REG);
235 alm->time.tm_mday = rtc_read(OMAP_RTC_ALARM_DAYS_REG);
236 alm->time.tm_mon = rtc_read(OMAP_RTC_ALARM_MONTHS_REG);
237 alm->time.tm_year = rtc_read(OMAP_RTC_ALARM_YEARS_REG);
238
239 local_irq_enable();
240
241 bcd2tm(&alm->time);
242 alm->enabled = !!(rtc_read(OMAP_RTC_INTERRUPTS_REG)
243 & OMAP_RTC_INTERRUPTS_IT_ALARM);
244
245 return 0;
246}
247
248static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
249{
250 u8 reg;
251
252 if (tm2bcd(&alm->time) < 0)
253 return -EINVAL;
254
255 local_irq_disable();
256 rtc_wait_not_busy();
257
258 rtc_write(alm->time.tm_year, OMAP_RTC_ALARM_YEARS_REG);
259 rtc_write(alm->time.tm_mon, OMAP_RTC_ALARM_MONTHS_REG);
260 rtc_write(alm->time.tm_mday, OMAP_RTC_ALARM_DAYS_REG);
261 rtc_write(alm->time.tm_hour, OMAP_RTC_ALARM_HOURS_REG);
262 rtc_write(alm->time.tm_min, OMAP_RTC_ALARM_MINUTES_REG);
263 rtc_write(alm->time.tm_sec, OMAP_RTC_ALARM_SECONDS_REG);
264
265 reg = rtc_read(OMAP_RTC_INTERRUPTS_REG);
266 if (alm->enabled)
267 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
268 else
269 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
270 rtc_write(reg, OMAP_RTC_INTERRUPTS_REG);
271
272 local_irq_enable();
273
274 return 0;
275}
276
277static struct rtc_class_ops omap_rtc_ops = {
278 .read_time = omap_rtc_read_time,
279 .set_time = omap_rtc_set_time,
280 .read_alarm = omap_rtc_read_alarm,
281 .set_alarm = omap_rtc_set_alarm,
282 .alarm_irq_enable = omap_rtc_alarm_irq_enable,
283};
284
285static int omap_rtc_alarm;
286static int omap_rtc_timer;
287
288static int __init omap_rtc_probe(struct platform_device *pdev)
289{
290 struct resource *res, *mem;
291 struct rtc_device *rtc;
292 u8 reg, new_ctrl;
293
294 omap_rtc_timer = platform_get_irq(pdev, 0);
295 if (omap_rtc_timer <= 0) {
296 pr_debug("%s: no update irq?\n", pdev->name);
297 return -ENOENT;
298 }
299
300 omap_rtc_alarm = platform_get_irq(pdev, 1);
301 if (omap_rtc_alarm <= 0) {
302 pr_debug("%s: no alarm irq?\n", pdev->name);
303 return -ENOENT;
304 }
305
306 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
307 if (!res) {
308 pr_debug("%s: RTC resource data missing\n", pdev->name);
309 return -ENOENT;
310 }
311
312 mem = request_mem_region(res->start, resource_size(res), pdev->name);
313 if (!mem) {
314 pr_debug("%s: RTC registers at %08x are not free\n",
315 pdev->name, res->start);
316 return -EBUSY;
317 }
318
319 rtc_base = ioremap(res->start, resource_size(res));
320 if (!rtc_base) {
321 pr_debug("%s: RTC registers can't be mapped\n", pdev->name);
322 goto fail;
323 }
324
325 rtc = rtc_device_register(pdev->name, &pdev->dev,
326 &omap_rtc_ops, THIS_MODULE);
327 if (IS_ERR(rtc)) {
328 pr_debug("%s: can't register RTC device, err %ld\n",
329 pdev->name, PTR_ERR(rtc));
330 goto fail0;
331 }
332 platform_set_drvdata(pdev, rtc);
333 dev_set_drvdata(&rtc->dev, mem);
334
335 /* clear pending irqs, and set 1/second periodic,
336 * which we'll use instead of update irqs
337 */
338 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
339
340 /* clear old status */
341 reg = rtc_read(OMAP_RTC_STATUS_REG);
342 if (reg & (u8) OMAP_RTC_STATUS_POWER_UP) {
343 pr_info("%s: RTC power up reset detected\n",
344 pdev->name);
345 rtc_write(OMAP_RTC_STATUS_POWER_UP, OMAP_RTC_STATUS_REG);
346 }
347 if (reg & (u8) OMAP_RTC_STATUS_ALARM)
348 rtc_write(OMAP_RTC_STATUS_ALARM, OMAP_RTC_STATUS_REG);
349
350 /* handle periodic and alarm irqs */
351 if (request_irq(omap_rtc_timer, rtc_irq, IRQF_DISABLED,
352 dev_name(&rtc->dev), rtc)) {
353 pr_debug("%s: RTC timer interrupt IRQ%d already claimed\n",
354 pdev->name, omap_rtc_timer);
355 goto fail1;
356 }
357 if ((omap_rtc_timer != omap_rtc_alarm) &&
358 (request_irq(omap_rtc_alarm, rtc_irq, IRQF_DISABLED,
359 dev_name(&rtc->dev), rtc))) {
360 pr_debug("%s: RTC alarm interrupt IRQ%d already claimed\n",
361 pdev->name, omap_rtc_alarm);
362 goto fail2;
363 }
364
365 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
366 reg = rtc_read(OMAP_RTC_CTRL_REG);
367 if (reg & (u8) OMAP_RTC_CTRL_STOP)
368 pr_info("%s: already running\n", pdev->name);
369
370 /* force to 24 hour mode */
371 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT|OMAP_RTC_CTRL_AUTO_COMP);
372 new_ctrl |= OMAP_RTC_CTRL_STOP;
373
374 /* BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
375 *
376 * - Device wake-up capability setting should come through chip
377 * init logic. OMAP1 boards should initialize the "wakeup capable"
378 * flag in the platform device if the board is wired right for
379 * being woken up by RTC alarm. For OMAP-L138, this capability
380 * is built into the SoC by the "Deep Sleep" capability.
381 *
382 * - Boards wired so RTC_ON_nOFF is used as the reset signal,
383 * rather than nPWRON_RESET, should forcibly enable split
384 * power mode. (Some chip errata report that RTC_CTRL_SPLIT
385 * is write-only, and always reads as zero...)
386 */
387
388 if (new_ctrl & (u8) OMAP_RTC_CTRL_SPLIT)
389 pr_info("%s: split power mode\n", pdev->name);
390
391 if (reg != new_ctrl)
392 rtc_write(new_ctrl, OMAP_RTC_CTRL_REG);
393
394 return 0;
395
396fail2:
397 free_irq(omap_rtc_timer, rtc);
398fail1:
399 rtc_device_unregister(rtc);
400fail0:
401 iounmap(rtc_base);
402fail:
403 release_mem_region(mem->start, resource_size(mem));
404 return -EIO;
405}
406
407static int __exit omap_rtc_remove(struct platform_device *pdev)
408{
409 struct rtc_device *rtc = platform_get_drvdata(pdev);
410 struct resource *mem = dev_get_drvdata(&rtc->dev);
411
412 device_init_wakeup(&pdev->dev, 0);
413
414 /* leave rtc running, but disable irqs */
415 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
416
417 free_irq(omap_rtc_timer, rtc);
418
419 if (omap_rtc_timer != omap_rtc_alarm)
420 free_irq(omap_rtc_alarm, rtc);
421
422 rtc_device_unregister(rtc);
423 iounmap(rtc_base);
424 release_mem_region(mem->start, resource_size(mem));
425 return 0;
426}
427
428#ifdef CONFIG_PM
429
430static u8 irqstat;
431
432static int omap_rtc_suspend(struct platform_device *pdev, pm_message_t state)
433{
434 irqstat = rtc_read(OMAP_RTC_INTERRUPTS_REG);
435
436 /* FIXME the RTC alarm is not currently acting as a wakeup event
437 * source, and in fact this enable() call is just saving a flag
438 * that's never used...
439 */
440 if (device_may_wakeup(&pdev->dev))
441 enable_irq_wake(omap_rtc_alarm);
442 else
443 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
444
445 return 0;
446}
447
448static int omap_rtc_resume(struct platform_device *pdev)
449{
450 if (device_may_wakeup(&pdev->dev))
451 disable_irq_wake(omap_rtc_alarm);
452 else
453 rtc_write(irqstat, OMAP_RTC_INTERRUPTS_REG);
454 return 0;
455}
456
457#else
458#define omap_rtc_suspend NULL
459#define omap_rtc_resume NULL
460#endif
461
462static void omap_rtc_shutdown(struct platform_device *pdev)
463{
464 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
465}
466
467MODULE_ALIAS("platform:omap_rtc");
468static struct platform_driver omap_rtc_driver = {
469 .remove = __exit_p(omap_rtc_remove),
470 .suspend = omap_rtc_suspend,
471 .resume = omap_rtc_resume,
472 .shutdown = omap_rtc_shutdown,
473 .driver = {
474 .name = "omap_rtc",
475 .owner = THIS_MODULE,
476 },
477};
478
479static int __init rtc_init(void)
480{
481 return platform_driver_probe(&omap_rtc_driver, omap_rtc_probe);
482}
483module_init(rtc_init);
484
485static void __exit rtc_exit(void)
486{
487 platform_driver_unregister(&omap_rtc_driver);
488}
489module_exit(rtc_exit);
490
491MODULE_AUTHOR("George G. Davis (and others)");
492MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * TI OMAP Real Time Clock interface for Linux
4 *
5 * Copyright (C) 2003 MontaVista Software, Inc.
6 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
7 *
8 * Copyright (C) 2006 David Brownell (new RTC framework)
9 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
10 */
11
12#include <linux/bcd.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/init.h>
16#include <linux/io.h>
17#include <linux/ioport.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/pinctrl/pinctrl.h>
23#include <linux/pinctrl/pinconf.h>
24#include <linux/pinctrl/pinconf-generic.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/rtc.h>
28
29/*
30 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
31 * with century-range alarm matching, driven by the 32kHz clock.
32 *
33 * The main user-visible ways it differs from PC RTCs are by omitting
34 * "don't care" alarm fields and sub-second periodic IRQs, and having
35 * an autoadjust mechanism to calibrate to the true oscillator rate.
36 *
37 * Board-specific wiring options include using split power mode with
38 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
39 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
40 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
41 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
42 */
43
44/* RTC registers */
45#define OMAP_RTC_SECONDS_REG 0x00
46#define OMAP_RTC_MINUTES_REG 0x04
47#define OMAP_RTC_HOURS_REG 0x08
48#define OMAP_RTC_DAYS_REG 0x0C
49#define OMAP_RTC_MONTHS_REG 0x10
50#define OMAP_RTC_YEARS_REG 0x14
51#define OMAP_RTC_WEEKS_REG 0x18
52
53#define OMAP_RTC_ALARM_SECONDS_REG 0x20
54#define OMAP_RTC_ALARM_MINUTES_REG 0x24
55#define OMAP_RTC_ALARM_HOURS_REG 0x28
56#define OMAP_RTC_ALARM_DAYS_REG 0x2c
57#define OMAP_RTC_ALARM_MONTHS_REG 0x30
58#define OMAP_RTC_ALARM_YEARS_REG 0x34
59
60#define OMAP_RTC_CTRL_REG 0x40
61#define OMAP_RTC_STATUS_REG 0x44
62#define OMAP_RTC_INTERRUPTS_REG 0x48
63
64#define OMAP_RTC_COMP_LSB_REG 0x4c
65#define OMAP_RTC_COMP_MSB_REG 0x50
66#define OMAP_RTC_OSC_REG 0x54
67
68#define OMAP_RTC_SCRATCH0_REG 0x60
69#define OMAP_RTC_SCRATCH1_REG 0x64
70#define OMAP_RTC_SCRATCH2_REG 0x68
71
72#define OMAP_RTC_KICK0_REG 0x6c
73#define OMAP_RTC_KICK1_REG 0x70
74
75#define OMAP_RTC_IRQWAKEEN 0x7c
76
77#define OMAP_RTC_ALARM2_SECONDS_REG 0x80
78#define OMAP_RTC_ALARM2_MINUTES_REG 0x84
79#define OMAP_RTC_ALARM2_HOURS_REG 0x88
80#define OMAP_RTC_ALARM2_DAYS_REG 0x8c
81#define OMAP_RTC_ALARM2_MONTHS_REG 0x90
82#define OMAP_RTC_ALARM2_YEARS_REG 0x94
83
84#define OMAP_RTC_PMIC_REG 0x98
85
86/* OMAP_RTC_CTRL_REG bit fields: */
87#define OMAP_RTC_CTRL_SPLIT BIT(7)
88#define OMAP_RTC_CTRL_DISABLE BIT(6)
89#define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5)
90#define OMAP_RTC_CTRL_TEST BIT(4)
91#define OMAP_RTC_CTRL_MODE_12_24 BIT(3)
92#define OMAP_RTC_CTRL_AUTO_COMP BIT(2)
93#define OMAP_RTC_CTRL_ROUND_30S BIT(1)
94#define OMAP_RTC_CTRL_STOP BIT(0)
95
96/* OMAP_RTC_STATUS_REG bit fields: */
97#define OMAP_RTC_STATUS_POWER_UP BIT(7)
98#define OMAP_RTC_STATUS_ALARM2 BIT(7)
99#define OMAP_RTC_STATUS_ALARM BIT(6)
100#define OMAP_RTC_STATUS_1D_EVENT BIT(5)
101#define OMAP_RTC_STATUS_1H_EVENT BIT(4)
102#define OMAP_RTC_STATUS_1M_EVENT BIT(3)
103#define OMAP_RTC_STATUS_1S_EVENT BIT(2)
104#define OMAP_RTC_STATUS_RUN BIT(1)
105#define OMAP_RTC_STATUS_BUSY BIT(0)
106
107/* OMAP_RTC_INTERRUPTS_REG bit fields: */
108#define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4)
109#define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3)
110#define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2)
111
112/* OMAP_RTC_OSC_REG bit fields: */
113#define OMAP_RTC_OSC_32KCLK_EN BIT(6)
114#define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3)
115#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4)
116
117/* OMAP_RTC_IRQWAKEEN bit fields: */
118#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1)
119
120/* OMAP_RTC_PMIC bit fields: */
121#define OMAP_RTC_PMIC_POWER_EN_EN BIT(16)
122#define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x)
123#define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x)
124
125/* OMAP_RTC_KICKER values */
126#define KICK0_VALUE 0x83e70b13
127#define KICK1_VALUE 0x95a4f1e0
128
129struct omap_rtc;
130
131struct omap_rtc_device_type {
132 bool has_32kclk_en;
133 bool has_irqwakeen;
134 bool has_pmic_mode;
135 bool has_power_up_reset;
136 void (*lock)(struct omap_rtc *rtc);
137 void (*unlock)(struct omap_rtc *rtc);
138};
139
140struct omap_rtc {
141 struct rtc_device *rtc;
142 void __iomem *base;
143 struct clk *clk;
144 int irq_alarm;
145 int irq_timer;
146 u8 interrupts_reg;
147 bool is_pmic_controller;
148 bool has_ext_clk;
149 bool is_suspending;
150 const struct omap_rtc_device_type *type;
151 struct pinctrl_dev *pctldev;
152};
153
154static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
155{
156 return readb(rtc->base + reg);
157}
158
159static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
160{
161 return readl(rtc->base + reg);
162}
163
164static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
165{
166 writeb(val, rtc->base + reg);
167}
168
169static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
170{
171 writel(val, rtc->base + reg);
172}
173
174static void am3352_rtc_unlock(struct omap_rtc *rtc)
175{
176 rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
177 rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
178}
179
180static void am3352_rtc_lock(struct omap_rtc *rtc)
181{
182 rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
183 rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
184}
185
186static void default_rtc_unlock(struct omap_rtc *rtc)
187{
188}
189
190static void default_rtc_lock(struct omap_rtc *rtc)
191{
192}
193
194/*
195 * We rely on the rtc framework to handle locking (rtc->ops_lock),
196 * so the only other requirement is that register accesses which
197 * require BUSY to be clear are made with IRQs locally disabled
198 */
199static void rtc_wait_not_busy(struct omap_rtc *rtc)
200{
201 int count;
202 u8 status;
203
204 /* BUSY may stay active for 1/32768 second (~30 usec) */
205 for (count = 0; count < 50; count++) {
206 status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
207 if (!(status & OMAP_RTC_STATUS_BUSY))
208 break;
209 udelay(1);
210 }
211 /* now we have ~15 usec to read/write various registers */
212}
213
214static irqreturn_t rtc_irq(int irq, void *dev_id)
215{
216 struct omap_rtc *rtc = dev_id;
217 unsigned long events = 0;
218 u8 irq_data;
219
220 irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
221
222 /* alarm irq? */
223 if (irq_data & OMAP_RTC_STATUS_ALARM) {
224 rtc->type->unlock(rtc);
225 rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
226 rtc->type->lock(rtc);
227 events |= RTC_IRQF | RTC_AF;
228 }
229
230 /* 1/sec periodic/update irq? */
231 if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
232 events |= RTC_IRQF | RTC_UF;
233
234 rtc_update_irq(rtc->rtc, 1, events);
235
236 return IRQ_HANDLED;
237}
238
239static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
240{
241 struct omap_rtc *rtc = dev_get_drvdata(dev);
242 u8 reg, irqwake_reg = 0;
243
244 local_irq_disable();
245 rtc_wait_not_busy(rtc);
246 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
247 if (rtc->type->has_irqwakeen)
248 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
249
250 if (enabled) {
251 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
252 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
253 } else {
254 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
255 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
256 }
257 rtc_wait_not_busy(rtc);
258 rtc->type->unlock(rtc);
259 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
260 if (rtc->type->has_irqwakeen)
261 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
262 rtc->type->lock(rtc);
263 local_irq_enable();
264
265 return 0;
266}
267
268/* this hardware doesn't support "don't care" alarm fields */
269static void tm2bcd(struct rtc_time *tm)
270{
271 tm->tm_sec = bin2bcd(tm->tm_sec);
272 tm->tm_min = bin2bcd(tm->tm_min);
273 tm->tm_hour = bin2bcd(tm->tm_hour);
274 tm->tm_mday = bin2bcd(tm->tm_mday);
275
276 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
277 tm->tm_year = bin2bcd(tm->tm_year - 100);
278}
279
280static void bcd2tm(struct rtc_time *tm)
281{
282 tm->tm_sec = bcd2bin(tm->tm_sec);
283 tm->tm_min = bcd2bin(tm->tm_min);
284 tm->tm_hour = bcd2bin(tm->tm_hour);
285 tm->tm_mday = bcd2bin(tm->tm_mday);
286 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
287 /* epoch == 1900 */
288 tm->tm_year = bcd2bin(tm->tm_year) + 100;
289}
290
291static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
292{
293 tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
294 tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
295 tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
296 tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
297 tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
298 tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
299}
300
301static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
302{
303 struct omap_rtc *rtc = dev_get_drvdata(dev);
304
305 /* we don't report wday/yday/isdst ... */
306 local_irq_disable();
307 rtc_wait_not_busy(rtc);
308 omap_rtc_read_time_raw(rtc, tm);
309 local_irq_enable();
310
311 bcd2tm(tm);
312
313 return 0;
314}
315
316static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
317{
318 struct omap_rtc *rtc = dev_get_drvdata(dev);
319
320 tm2bcd(tm);
321
322 local_irq_disable();
323 rtc_wait_not_busy(rtc);
324
325 rtc->type->unlock(rtc);
326 rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
327 rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
328 rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
329 rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
330 rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
331 rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
332 rtc->type->lock(rtc);
333
334 local_irq_enable();
335
336 return 0;
337}
338
339static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
340{
341 struct omap_rtc *rtc = dev_get_drvdata(dev);
342 u8 interrupts;
343
344 local_irq_disable();
345 rtc_wait_not_busy(rtc);
346
347 alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
348 alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
349 alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
350 alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
351 alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
352 alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
353
354 local_irq_enable();
355
356 bcd2tm(&alm->time);
357
358 interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
359 alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
360
361 return 0;
362}
363
364static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
365{
366 struct omap_rtc *rtc = dev_get_drvdata(dev);
367 u8 reg, irqwake_reg = 0;
368
369 tm2bcd(&alm->time);
370
371 local_irq_disable();
372 rtc_wait_not_busy(rtc);
373
374 rtc->type->unlock(rtc);
375 rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
376 rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
377 rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
378 rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
379 rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
380 rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
381
382 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
383 if (rtc->type->has_irqwakeen)
384 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
385
386 if (alm->enabled) {
387 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
388 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
389 } else {
390 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
391 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
392 }
393 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
394 if (rtc->type->has_irqwakeen)
395 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
396 rtc->type->lock(rtc);
397
398 local_irq_enable();
399
400 return 0;
401}
402
403static struct omap_rtc *omap_rtc_power_off_rtc;
404
405/**
406 * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC
407 * generates pmic_pwr_enable control, which can be used to control an external
408 * PMIC.
409 */
410int omap_rtc_power_off_program(struct device *dev)
411{
412 struct omap_rtc *rtc = omap_rtc_power_off_rtc;
413 struct rtc_time tm;
414 unsigned long now;
415 int seconds;
416 u32 val;
417
418 rtc->type->unlock(rtc);
419 /* enable pmic_power_en control */
420 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
421 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
422
423again:
424 /* Clear any existing ALARM2 event */
425 rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2);
426
427 /* set alarm one second from now */
428 omap_rtc_read_time_raw(rtc, &tm);
429 seconds = tm.tm_sec;
430 bcd2tm(&tm);
431 now = rtc_tm_to_time64(&tm);
432 rtc_time64_to_tm(now + 1, &tm);
433
434 tm2bcd(&tm);
435
436 rtc_wait_not_busy(rtc);
437
438 rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
439 rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
440 rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
441 rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
442 rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
443 rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
444
445 /*
446 * enable ALARM2 interrupt
447 *
448 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
449 */
450 val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
451 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
452 val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
453
454 /* Retry in case roll over happened before alarm was armed. */
455 if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) {
456 val = rtc_read(rtc, OMAP_RTC_STATUS_REG);
457 if (!(val & OMAP_RTC_STATUS_ALARM2))
458 goto again;
459 }
460
461 rtc->type->lock(rtc);
462
463 return 0;
464}
465EXPORT_SYMBOL(omap_rtc_power_off_program);
466
467/*
468 * omap_rtc_poweroff: RTC-controlled power off
469 *
470 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
471 * which can be configured to transition to OFF on ALARM2 events.
472 *
473 * Notes:
474 * The one-second alarm offset is the shortest offset possible as the alarm
475 * registers must be set before the next timer update and the offset
476 * calculation is too heavy for everything to be done within a single access
477 * period (~15 us).
478 *
479 * Called with local interrupts disabled.
480 */
481static void omap_rtc_power_off(void)
482{
483 struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc;
484 u32 val;
485
486 omap_rtc_power_off_program(rtc->dev.parent);
487
488 /* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */
489 omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc);
490 val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG);
491 val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) |
492 OMAP_RTC_PMIC_EXT_WKUP_EN(0);
493 rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val);
494 omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc);
495
496 /*
497 * Wait for alarm to trigger (within one second) and external PMIC to
498 * power off the system. Add a 500 ms margin for external latencies
499 * (e.g. debounce circuits).
500 */
501 mdelay(1500);
502}
503
504static const struct rtc_class_ops omap_rtc_ops = {
505 .read_time = omap_rtc_read_time,
506 .set_time = omap_rtc_set_time,
507 .read_alarm = omap_rtc_read_alarm,
508 .set_alarm = omap_rtc_set_alarm,
509 .alarm_irq_enable = omap_rtc_alarm_irq_enable,
510};
511
512static const struct omap_rtc_device_type omap_rtc_default_type = {
513 .has_power_up_reset = true,
514 .lock = default_rtc_lock,
515 .unlock = default_rtc_unlock,
516};
517
518static const struct omap_rtc_device_type omap_rtc_am3352_type = {
519 .has_32kclk_en = true,
520 .has_irqwakeen = true,
521 .has_pmic_mode = true,
522 .lock = am3352_rtc_lock,
523 .unlock = am3352_rtc_unlock,
524};
525
526static const struct omap_rtc_device_type omap_rtc_da830_type = {
527 .lock = am3352_rtc_lock,
528 .unlock = am3352_rtc_unlock,
529};
530
531static const struct platform_device_id omap_rtc_id_table[] = {
532 {
533 .name = "omap_rtc",
534 .driver_data = (kernel_ulong_t)&omap_rtc_default_type,
535 }, {
536 .name = "am3352-rtc",
537 .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
538 }, {
539 .name = "da830-rtc",
540 .driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
541 }, {
542 /* sentinel */
543 }
544};
545MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
546
547static const struct of_device_id omap_rtc_of_match[] = {
548 {
549 .compatible = "ti,am3352-rtc",
550 .data = &omap_rtc_am3352_type,
551 }, {
552 .compatible = "ti,da830-rtc",
553 .data = &omap_rtc_da830_type,
554 }, {
555 /* sentinel */
556 }
557};
558MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
559
560static const struct pinctrl_pin_desc rtc_pins_desc[] = {
561 PINCTRL_PIN(0, "ext_wakeup0"),
562 PINCTRL_PIN(1, "ext_wakeup1"),
563 PINCTRL_PIN(2, "ext_wakeup2"),
564 PINCTRL_PIN(3, "ext_wakeup3"),
565};
566
567static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
568{
569 return 0;
570}
571
572static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
573 unsigned int group)
574{
575 return NULL;
576}
577
578static const struct pinctrl_ops rtc_pinctrl_ops = {
579 .get_groups_count = rtc_pinctrl_get_groups_count,
580 .get_group_name = rtc_pinctrl_get_group_name,
581 .dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
582 .dt_free_map = pinconf_generic_dt_free_map,
583};
584
585#define PIN_CONFIG_ACTIVE_HIGH (PIN_CONFIG_END + 1)
586
587static const struct pinconf_generic_params rtc_params[] = {
588 {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
589};
590
591#ifdef CONFIG_DEBUG_FS
592static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
593 PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
594};
595#endif
596
597static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
598 unsigned int pin, unsigned long *config)
599{
600 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
601 unsigned int param = pinconf_to_config_param(*config);
602 u32 val;
603 u16 arg = 0;
604
605 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
606
607 switch (param) {
608 case PIN_CONFIG_INPUT_ENABLE:
609 if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
610 return -EINVAL;
611 break;
612 case PIN_CONFIG_ACTIVE_HIGH:
613 if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
614 return -EINVAL;
615 break;
616 default:
617 return -ENOTSUPP;
618 }
619
620 *config = pinconf_to_config_packed(param, arg);
621
622 return 0;
623}
624
625static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
626 unsigned int pin, unsigned long *configs,
627 unsigned int num_configs)
628{
629 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
630 u32 val;
631 unsigned int param;
632 u32 param_val;
633 int i;
634
635 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
636
637 /* active low by default */
638 val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
639
640 for (i = 0; i < num_configs; i++) {
641 param = pinconf_to_config_param(configs[i]);
642 param_val = pinconf_to_config_argument(configs[i]);
643
644 switch (param) {
645 case PIN_CONFIG_INPUT_ENABLE:
646 if (param_val)
647 val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
648 else
649 val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
650 break;
651 case PIN_CONFIG_ACTIVE_HIGH:
652 val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
653 break;
654 default:
655 dev_err(&rtc->rtc->dev, "Property %u not supported\n",
656 param);
657 return -ENOTSUPP;
658 }
659 }
660
661 rtc->type->unlock(rtc);
662 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
663 rtc->type->lock(rtc);
664
665 return 0;
666}
667
668static const struct pinconf_ops rtc_pinconf_ops = {
669 .is_generic = true,
670 .pin_config_get = rtc_pinconf_get,
671 .pin_config_set = rtc_pinconf_set,
672};
673
674static struct pinctrl_desc rtc_pinctrl_desc = {
675 .pins = rtc_pins_desc,
676 .npins = ARRAY_SIZE(rtc_pins_desc),
677 .pctlops = &rtc_pinctrl_ops,
678 .confops = &rtc_pinconf_ops,
679 .custom_params = rtc_params,
680 .num_custom_params = ARRAY_SIZE(rtc_params),
681#ifdef CONFIG_DEBUG_FS
682 .custom_conf_items = rtc_conf_items,
683#endif
684 .owner = THIS_MODULE,
685};
686
687static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
688 size_t bytes)
689{
690 struct omap_rtc *rtc = priv;
691 u32 *val = _val;
692 int i;
693
694 for (i = 0; i < bytes / 4; i++)
695 val[i] = rtc_readl(rtc,
696 OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
697
698 return 0;
699}
700
701static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
702 size_t bytes)
703{
704 struct omap_rtc *rtc = priv;
705 u32 *val = _val;
706 int i;
707
708 rtc->type->unlock(rtc);
709 for (i = 0; i < bytes / 4; i++)
710 rtc_writel(rtc,
711 OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
712 rtc->type->lock(rtc);
713
714 return 0;
715}
716
717static struct nvmem_config omap_rtc_nvmem_config = {
718 .name = "omap_rtc_scratch",
719 .word_size = 4,
720 .stride = 4,
721 .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
722 .reg_read = omap_rtc_scratch_read,
723 .reg_write = omap_rtc_scratch_write,
724};
725
726static int omap_rtc_probe(struct platform_device *pdev)
727{
728 struct omap_rtc *rtc;
729 u8 reg, mask, new_ctrl;
730 const struct platform_device_id *id_entry;
731 const struct of_device_id *of_id;
732 int ret;
733
734 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
735 if (!rtc)
736 return -ENOMEM;
737
738 of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
739 if (of_id) {
740 rtc->type = of_id->data;
741 rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
742 of_device_is_system_power_controller(pdev->dev.of_node);
743 } else {
744 id_entry = platform_get_device_id(pdev);
745 rtc->type = (void *)id_entry->driver_data;
746 }
747
748 rtc->irq_timer = platform_get_irq(pdev, 0);
749 if (rtc->irq_timer <= 0)
750 return -ENOENT;
751
752 rtc->irq_alarm = platform_get_irq(pdev, 1);
753 if (rtc->irq_alarm <= 0)
754 return -ENOENT;
755
756 rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
757 if (!IS_ERR(rtc->clk))
758 rtc->has_ext_clk = true;
759 else
760 rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
761
762 if (!IS_ERR(rtc->clk))
763 clk_prepare_enable(rtc->clk);
764
765 rtc->base = devm_platform_ioremap_resource(pdev, 0);
766 if (IS_ERR(rtc->base)) {
767 clk_disable_unprepare(rtc->clk);
768 return PTR_ERR(rtc->base);
769 }
770
771 platform_set_drvdata(pdev, rtc);
772
773 /* Enable the clock/module so that we can access the registers */
774 pm_runtime_enable(&pdev->dev);
775 pm_runtime_get_sync(&pdev->dev);
776
777 rtc->type->unlock(rtc);
778
779 /*
780 * disable interrupts
781 *
782 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
783 */
784 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
785
786 /* enable RTC functional clock */
787 if (rtc->type->has_32kclk_en) {
788 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
789 rtc_writel(rtc, OMAP_RTC_OSC_REG,
790 reg | OMAP_RTC_OSC_32KCLK_EN);
791 }
792
793 /* clear old status */
794 reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
795
796 mask = OMAP_RTC_STATUS_ALARM;
797
798 if (rtc->type->has_pmic_mode)
799 mask |= OMAP_RTC_STATUS_ALARM2;
800
801 if (rtc->type->has_power_up_reset) {
802 mask |= OMAP_RTC_STATUS_POWER_UP;
803 if (reg & OMAP_RTC_STATUS_POWER_UP)
804 dev_info(&pdev->dev, "RTC power up reset detected\n");
805 }
806
807 if (reg & mask)
808 rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
809
810 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
811 reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
812 if (reg & OMAP_RTC_CTRL_STOP)
813 dev_info(&pdev->dev, "already running\n");
814
815 /* force to 24 hour mode */
816 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
817 new_ctrl |= OMAP_RTC_CTRL_STOP;
818
819 /*
820 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
821 *
822 * - Device wake-up capability setting should come through chip
823 * init logic. OMAP1 boards should initialize the "wakeup capable"
824 * flag in the platform device if the board is wired right for
825 * being woken up by RTC alarm. For OMAP-L138, this capability
826 * is built into the SoC by the "Deep Sleep" capability.
827 *
828 * - Boards wired so RTC_ON_nOFF is used as the reset signal,
829 * rather than nPWRON_RESET, should forcibly enable split
830 * power mode. (Some chip errata report that RTC_CTRL_SPLIT
831 * is write-only, and always reads as zero...)
832 */
833
834 if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
835 dev_info(&pdev->dev, "split power mode\n");
836
837 if (reg != new_ctrl)
838 rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
839
840 /*
841 * If we have the external clock then switch to it so we can keep
842 * ticking across suspend.
843 */
844 if (rtc->has_ext_clk) {
845 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
846 reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
847 reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
848 rtc_writel(rtc, OMAP_RTC_OSC_REG, reg);
849 }
850
851 rtc->type->lock(rtc);
852
853 device_init_wakeup(&pdev->dev, true);
854
855 rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
856 if (IS_ERR(rtc->rtc)) {
857 ret = PTR_ERR(rtc->rtc);
858 goto err;
859 }
860
861 rtc->rtc->ops = &omap_rtc_ops;
862 rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
863 rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
864 omap_rtc_nvmem_config.priv = rtc;
865
866 /* handle periodic and alarm irqs */
867 ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
868 dev_name(&rtc->rtc->dev), rtc);
869 if (ret)
870 goto err;
871
872 if (rtc->irq_timer != rtc->irq_alarm) {
873 ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
874 dev_name(&rtc->rtc->dev), rtc);
875 if (ret)
876 goto err;
877 }
878
879 /* Support ext_wakeup pinconf */
880 rtc_pinctrl_desc.name = dev_name(&pdev->dev);
881
882 rtc->pctldev = pinctrl_register(&rtc_pinctrl_desc, &pdev->dev, rtc);
883 if (IS_ERR(rtc->pctldev)) {
884 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
885 ret = PTR_ERR(rtc->pctldev);
886 goto err;
887 }
888
889 ret = rtc_register_device(rtc->rtc);
890 if (ret)
891 goto err_deregister_pinctrl;
892
893 rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
894
895 if (rtc->is_pmic_controller) {
896 if (!pm_power_off) {
897 omap_rtc_power_off_rtc = rtc;
898 pm_power_off = omap_rtc_power_off;
899 }
900 }
901
902 return 0;
903
904err_deregister_pinctrl:
905 pinctrl_unregister(rtc->pctldev);
906err:
907 clk_disable_unprepare(rtc->clk);
908 device_init_wakeup(&pdev->dev, false);
909 rtc->type->lock(rtc);
910 pm_runtime_put_sync(&pdev->dev);
911 pm_runtime_disable(&pdev->dev);
912
913 return ret;
914}
915
916static int omap_rtc_remove(struct platform_device *pdev)
917{
918 struct omap_rtc *rtc = platform_get_drvdata(pdev);
919 u8 reg;
920
921 if (pm_power_off == omap_rtc_power_off &&
922 omap_rtc_power_off_rtc == rtc) {
923 pm_power_off = NULL;
924 omap_rtc_power_off_rtc = NULL;
925 }
926
927 device_init_wakeup(&pdev->dev, 0);
928
929 if (!IS_ERR(rtc->clk))
930 clk_disable_unprepare(rtc->clk);
931
932 rtc->type->unlock(rtc);
933 /* leave rtc running, but disable irqs */
934 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
935
936 if (rtc->has_ext_clk) {
937 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
938 reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
939 rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
940 }
941
942 rtc->type->lock(rtc);
943
944 /* Disable the clock/module */
945 pm_runtime_put_sync(&pdev->dev);
946 pm_runtime_disable(&pdev->dev);
947
948 /* Remove ext_wakeup pinconf */
949 pinctrl_unregister(rtc->pctldev);
950
951 return 0;
952}
953
954static int __maybe_unused omap_rtc_suspend(struct device *dev)
955{
956 struct omap_rtc *rtc = dev_get_drvdata(dev);
957
958 rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
959
960 rtc->type->unlock(rtc);
961 /*
962 * FIXME: the RTC alarm is not currently acting as a wakeup event
963 * source on some platforms, and in fact this enable() call is just
964 * saving a flag that's never used...
965 */
966 if (device_may_wakeup(dev))
967 enable_irq_wake(rtc->irq_alarm);
968 else
969 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
970 rtc->type->lock(rtc);
971
972 rtc->is_suspending = true;
973
974 return 0;
975}
976
977static int __maybe_unused omap_rtc_resume(struct device *dev)
978{
979 struct omap_rtc *rtc = dev_get_drvdata(dev);
980
981 rtc->type->unlock(rtc);
982 if (device_may_wakeup(dev))
983 disable_irq_wake(rtc->irq_alarm);
984 else
985 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
986 rtc->type->lock(rtc);
987
988 rtc->is_suspending = false;
989
990 return 0;
991}
992
993static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
994{
995 struct omap_rtc *rtc = dev_get_drvdata(dev);
996
997 if (rtc->is_suspending && !rtc->has_ext_clk)
998 return -EBUSY;
999
1000 return 0;
1001}
1002
1003static const struct dev_pm_ops omap_rtc_pm_ops = {
1004 SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
1005 SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
1006};
1007
1008static void omap_rtc_shutdown(struct platform_device *pdev)
1009{
1010 struct omap_rtc *rtc = platform_get_drvdata(pdev);
1011 u8 mask;
1012
1013 /*
1014 * Keep the ALARM interrupt enabled to allow the system to power up on
1015 * alarm events.
1016 */
1017 rtc->type->unlock(rtc);
1018 mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1019 mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1020 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1021 rtc->type->lock(rtc);
1022}
1023
1024static struct platform_driver omap_rtc_driver = {
1025 .probe = omap_rtc_probe,
1026 .remove = omap_rtc_remove,
1027 .shutdown = omap_rtc_shutdown,
1028 .driver = {
1029 .name = "omap_rtc",
1030 .pm = &omap_rtc_pm_ops,
1031 .of_match_table = omap_rtc_of_match,
1032 },
1033 .id_table = omap_rtc_id_table,
1034};
1035
1036module_platform_driver(omap_rtc_driver);
1037
1038MODULE_ALIAS("platform:omap_rtc");
1039MODULE_AUTHOR("George G. Davis (and others)");
1040MODULE_LICENSE("GPL");