Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2019 Intel Corporation
   4 */
   5
   6#include <linux/string_helpers.h>
   7
   8#include <drm/i915_drm.h>
   9
  10#include "display/intel_display.h"
  11#include "display/intel_display_irq.h"
  12#include "i915_drv.h"
  13#include "i915_irq.h"
  14#include "i915_reg.h"
  15#include "intel_breadcrumbs.h"
  16#include "intel_gt.h"
  17#include "intel_gt_clock_utils.h"
  18#include "intel_gt_irq.h"
  19#include "intel_gt_pm.h"
  20#include "intel_gt_pm_irq.h"
  21#include "intel_gt_print.h"
  22#include "intel_gt_regs.h"
  23#include "intel_mchbar_regs.h"
  24#include "intel_pcode.h"
  25#include "intel_rps.h"
  26#include "vlv_sideband.h"
  27#include "../../../platform/x86/intel_ips.h"
  28
  29#define BUSY_MAX_EI	20u /* ms */
  30
  31/*
  32 * Lock protecting IPS related data structures
  33 */
  34static DEFINE_SPINLOCK(mchdev_lock);
  35
  36static struct intel_gt *rps_to_gt(struct intel_rps *rps)
  37{
  38	return container_of(rps, struct intel_gt, rps);
  39}
  40
  41static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
  42{
  43	return rps_to_gt(rps)->i915;
  44}
  45
  46static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
  47{
  48	return rps_to_gt(rps)->uncore;
  49}
  50
  51static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
  52{
  53	struct intel_gt *gt = rps_to_gt(rps);
  54
  55	return &gt->uc.guc.slpc;
  56}
  57
  58static bool rps_uses_slpc(struct intel_rps *rps)
  59{
  60	struct intel_gt *gt = rps_to_gt(rps);
  61
  62	return intel_uc_uses_guc_slpc(&gt->uc);
  63}
  64
  65static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
  66{
  67	return mask & ~rps->pm_intrmsk_mbz;
  68}
  69
  70static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
  71{
  72	intel_uncore_write_fw(uncore, reg, val);
  73}
  74
  75static void rps_timer(struct timer_list *t)
  76{
  77	struct intel_rps *rps = from_timer(rps, t, timer);
  78	struct intel_gt *gt = rps_to_gt(rps);
  79	struct intel_engine_cs *engine;
  80	ktime_t dt, last, timestamp;
  81	enum intel_engine_id id;
  82	s64 max_busy[3] = {};
  83
  84	timestamp = 0;
  85	for_each_engine(engine, gt, id) {
  86		s64 busy;
  87		int i;
  88
  89		dt = intel_engine_get_busy_time(engine, &timestamp);
  90		last = engine->stats.rps;
  91		engine->stats.rps = dt;
  92
  93		busy = ktime_to_ns(ktime_sub(dt, last));
  94		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
  95			if (busy > max_busy[i])
  96				swap(busy, max_busy[i]);
  97		}
  98	}
  99	last = rps->pm_timestamp;
 100	rps->pm_timestamp = timestamp;
 101
 102	if (intel_rps_is_active(rps)) {
 103		s64 busy;
 104		int i;
 105
 106		dt = ktime_sub(timestamp, last);
 107
 108		/*
 109		 * Our goal is to evaluate each engine independently, so we run
 110		 * at the lowest clocks required to sustain the heaviest
 111		 * workload. However, a task may be split into sequential
 112		 * dependent operations across a set of engines, such that
 113		 * the independent contributions do not account for high load,
 114		 * but overall the task is GPU bound. For example, consider
 115		 * video decode on vcs followed by colour post-processing
 116		 * on vecs, followed by general post-processing on rcs.
 117		 * Since multi-engines being active does imply a single
 118		 * continuous workload across all engines, we hedge our
 119		 * bets by only contributing a factor of the distributed
 120		 * load into our busyness calculation.
 121		 */
 122		busy = max_busy[0];
 123		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
 124			if (!max_busy[i])
 125				break;
 126
 127			busy += div_u64(max_busy[i], 1 << i);
 128		}
 129		GT_TRACE(gt,
 130			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
 131			 busy, (int)div64_u64(100 * busy, dt),
 132			 max_busy[0], max_busy[1], max_busy[2],
 133			 rps->pm_interval);
 134
 135		if (100 * busy > rps->power.up_threshold * dt &&
 136		    rps->cur_freq < rps->max_freq_softlimit) {
 137			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
 138			rps->pm_interval = 1;
 139			queue_work(gt->i915->unordered_wq, &rps->work);
 140		} else if (100 * busy < rps->power.down_threshold * dt &&
 141			   rps->cur_freq > rps->min_freq_softlimit) {
 142			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
 143			rps->pm_interval = 1;
 144			queue_work(gt->i915->unordered_wq, &rps->work);
 145		} else {
 146			rps->last_adj = 0;
 147		}
 148
 149		mod_timer(&rps->timer,
 150			  jiffies + msecs_to_jiffies(rps->pm_interval));
 151		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
 152	}
 153}
 154
 155static void rps_start_timer(struct intel_rps *rps)
 156{
 157	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
 158	rps->pm_interval = 1;
 159	mod_timer(&rps->timer, jiffies + 1);
 160}
 161
 162static void rps_stop_timer(struct intel_rps *rps)
 163{
 164	del_timer_sync(&rps->timer);
 165	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
 166	cancel_work_sync(&rps->work);
 167}
 168
 169static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
 170{
 171	u32 mask = 0;
 172
 173	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
 174	if (val > rps->min_freq_softlimit)
 175		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
 176			 GEN6_PM_RP_DOWN_THRESHOLD |
 177			 GEN6_PM_RP_DOWN_TIMEOUT);
 178
 179	if (val < rps->max_freq_softlimit)
 180		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
 181
 182	mask &= rps->pm_events;
 183
 184	return rps_pm_sanitize_mask(rps, ~mask);
 185}
 186
 187static void rps_reset_ei(struct intel_rps *rps)
 188{
 189	memset(&rps->ei, 0, sizeof(rps->ei));
 190}
 191
 192static void rps_enable_interrupts(struct intel_rps *rps)
 193{
 194	struct intel_gt *gt = rps_to_gt(rps);
 195
 196	GEM_BUG_ON(rps_uses_slpc(rps));
 197
 198	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
 199		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
 200
 201	rps_reset_ei(rps);
 202
 203	spin_lock_irq(gt->irq_lock);
 204	gen6_gt_pm_enable_irq(gt, rps->pm_events);
 205	spin_unlock_irq(gt->irq_lock);
 206
 207	intel_uncore_write(gt->uncore,
 208			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
 209}
 210
 211static void gen6_rps_reset_interrupts(struct intel_rps *rps)
 212{
 213	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
 214}
 215
 216static void gen11_rps_reset_interrupts(struct intel_rps *rps)
 217{
 218	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
 219		;
 220}
 221
 222static void rps_reset_interrupts(struct intel_rps *rps)
 223{
 224	struct intel_gt *gt = rps_to_gt(rps);
 225
 226	spin_lock_irq(gt->irq_lock);
 227	if (GRAPHICS_VER(gt->i915) >= 11)
 228		gen11_rps_reset_interrupts(rps);
 229	else
 230		gen6_rps_reset_interrupts(rps);
 231
 232	rps->pm_iir = 0;
 233	spin_unlock_irq(gt->irq_lock);
 234}
 235
 236static void rps_disable_interrupts(struct intel_rps *rps)
 237{
 238	struct intel_gt *gt = rps_to_gt(rps);
 239
 240	intel_uncore_write(gt->uncore,
 241			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
 242
 243	spin_lock_irq(gt->irq_lock);
 244	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 245	spin_unlock_irq(gt->irq_lock);
 246
 247	intel_synchronize_irq(gt->i915);
 248
 249	/*
 250	 * Now that we will not be generating any more work, flush any
 251	 * outstanding tasks. As we are called on the RPS idle path,
 252	 * we will reset the GPU to minimum frequencies, so the current
 253	 * state of the worker can be discarded.
 254	 */
 255	cancel_work_sync(&rps->work);
 256
 257	rps_reset_interrupts(rps);
 258	GT_TRACE(gt, "interrupts:off\n");
 259}
 260
 261static const struct cparams {
 262	u16 i;
 263	u16 t;
 264	u16 m;
 265	u16 c;
 266} cparams[] = {
 267	{ 1, 1333, 301, 28664 },
 268	{ 1, 1066, 294, 24460 },
 269	{ 1, 800, 294, 25192 },
 270	{ 0, 1333, 276, 27605 },
 271	{ 0, 1066, 276, 27605 },
 272	{ 0, 800, 231, 23784 },
 273};
 274
 275static void gen5_rps_init(struct intel_rps *rps)
 276{
 277	struct drm_i915_private *i915 = rps_to_i915(rps);
 278	struct intel_uncore *uncore = rps_to_uncore(rps);
 279	u8 fmax, fmin, fstart;
 280	u32 rgvmodectl;
 281	int c_m, i;
 282
 283	if (i915->fsb_freq <= 3200)
 284		c_m = 0;
 285	else if (i915->fsb_freq <= 4800)
 286		c_m = 1;
 287	else
 288		c_m = 2;
 289
 290	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
 291		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
 292			rps->ips.m = cparams[i].m;
 293			rps->ips.c = cparams[i].c;
 294			break;
 295		}
 296	}
 297
 298	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
 299
 300	/* Set up min, max, and cur for interrupt handling */
 301	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
 302	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
 303	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
 304		MEMMODE_FSTART_SHIFT;
 305	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
 306		fmax, fmin, fstart);
 307
 308	rps->min_freq = fmax;
 309	rps->efficient_freq = fstart;
 310	rps->max_freq = fmin;
 311}
 312
 313static unsigned long
 314__ips_chipset_val(struct intel_ips *ips)
 315{
 316	struct intel_uncore *uncore =
 317		rps_to_uncore(container_of(ips, struct intel_rps, ips));
 318	unsigned long now = jiffies_to_msecs(jiffies), dt;
 319	unsigned long result;
 320	u64 total, delta;
 321
 322	lockdep_assert_held(&mchdev_lock);
 323
 324	/*
 325	 * Prevent division-by-zero if we are asking too fast.
 326	 * Also, we don't get interesting results if we are polling
 327	 * faster than once in 10ms, so just return the saved value
 328	 * in such cases.
 329	 */
 330	dt = now - ips->last_time1;
 331	if (dt <= 10)
 332		return ips->chipset_power;
 333
 334	/* FIXME: handle per-counter overflow */
 335	total = intel_uncore_read(uncore, DMIEC);
 336	total += intel_uncore_read(uncore, DDREC);
 337	total += intel_uncore_read(uncore, CSIEC);
 338
 339	delta = total - ips->last_count1;
 340
 341	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
 342
 343	ips->last_count1 = total;
 344	ips->last_time1 = now;
 345
 346	ips->chipset_power = result;
 347
 348	return result;
 349}
 350
 351static unsigned long ips_mch_val(struct intel_uncore *uncore)
 352{
 353	unsigned int m, x, b;
 354	u32 tsfs;
 355
 356	tsfs = intel_uncore_read(uncore, TSFS);
 357	x = intel_uncore_read8(uncore, TR1);
 358
 359	b = tsfs & TSFS_INTR_MASK;
 360	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
 361
 362	return m * x / 127 - b;
 363}
 364
 365static int _pxvid_to_vd(u8 pxvid)
 366{
 367	if (pxvid == 0)
 368		return 0;
 369
 370	if (pxvid >= 8 && pxvid < 31)
 371		pxvid = 31;
 372
 373	return (pxvid + 2) * 125;
 374}
 375
 376static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
 377{
 378	const int vd = _pxvid_to_vd(pxvid);
 379
 380	if (INTEL_INFO(i915)->is_mobile)
 381		return max(vd - 1125, 0);
 382
 383	return vd;
 384}
 385
 386static void __gen5_ips_update(struct intel_ips *ips)
 387{
 388	struct intel_uncore *uncore =
 389		rps_to_uncore(container_of(ips, struct intel_rps, ips));
 390	u64 now, delta, dt;
 391	u32 count;
 392
 393	lockdep_assert_held(&mchdev_lock);
 394
 395	now = ktime_get_raw_ns();
 396	dt = now - ips->last_time2;
 397	do_div(dt, NSEC_PER_MSEC);
 398
 399	/* Don't divide by 0 */
 400	if (dt <= 10)
 401		return;
 402
 403	count = intel_uncore_read(uncore, GFXEC);
 404	delta = count - ips->last_count2;
 405
 406	ips->last_count2 = count;
 407	ips->last_time2 = now;
 408
 409	/* More magic constants... */
 410	ips->gfx_power = div_u64(delta * 1181, dt * 10);
 411}
 412
 413static void gen5_rps_update(struct intel_rps *rps)
 414{
 415	spin_lock_irq(&mchdev_lock);
 416	__gen5_ips_update(&rps->ips);
 417	spin_unlock_irq(&mchdev_lock);
 418}
 419
 420static unsigned int gen5_invert_freq(struct intel_rps *rps,
 421				     unsigned int val)
 422{
 423	/* Invert the frequency bin into an ips delay */
 424	val = rps->max_freq - val;
 425	val = rps->min_freq + val;
 426
 427	return val;
 428}
 429
 430static int __gen5_rps_set(struct intel_rps *rps, u8 val)
 431{
 432	struct intel_uncore *uncore = rps_to_uncore(rps);
 433	u16 rgvswctl;
 434
 435	lockdep_assert_held(&mchdev_lock);
 436
 437	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
 438	if (rgvswctl & MEMCTL_CMD_STS) {
 439		drm_dbg(&rps_to_i915(rps)->drm,
 440			"gpu busy, RCS change rejected\n");
 441		return -EBUSY; /* still busy with another command */
 442	}
 443
 444	/* Invert the frequency bin into an ips delay */
 445	val = gen5_invert_freq(rps, val);
 446
 447	rgvswctl =
 448		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
 449		(val << MEMCTL_FREQ_SHIFT) |
 450		MEMCTL_SFCAVM;
 451	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
 452	intel_uncore_posting_read16(uncore, MEMSWCTL);
 453
 454	rgvswctl |= MEMCTL_CMD_STS;
 455	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
 456
 457	return 0;
 458}
 459
 460static int gen5_rps_set(struct intel_rps *rps, u8 val)
 461{
 462	int err;
 463
 464	spin_lock_irq(&mchdev_lock);
 465	err = __gen5_rps_set(rps, val);
 466	spin_unlock_irq(&mchdev_lock);
 467
 468	return err;
 469}
 470
 471static unsigned long intel_pxfreq(u32 vidfreq)
 472{
 473	int div = (vidfreq & 0x3f0000) >> 16;
 474	int post = (vidfreq & 0x3000) >> 12;
 475	int pre = (vidfreq & 0x7);
 476
 477	if (!pre)
 478		return 0;
 479
 480	return div * 133333 / (pre << post);
 481}
 482
 483static unsigned int init_emon(struct intel_uncore *uncore)
 484{
 485	u8 pxw[16];
 486	int i;
 487
 488	/* Disable to program */
 489	intel_uncore_write(uncore, ECR, 0);
 490	intel_uncore_posting_read(uncore, ECR);
 491
 492	/* Program energy weights for various events */
 493	intel_uncore_write(uncore, SDEW, 0x15040d00);
 494	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
 495	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
 496	intel_uncore_write(uncore, CSIEW2, 0x04000004);
 497
 498	for (i = 0; i < 5; i++)
 499		intel_uncore_write(uncore, PEW(i), 0);
 500	for (i = 0; i < 3; i++)
 501		intel_uncore_write(uncore, DEW(i), 0);
 502
 503	/* Program P-state weights to account for frequency power adjustment */
 504	for (i = 0; i < 16; i++) {
 505		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
 506		unsigned int freq = intel_pxfreq(pxvidfreq);
 507		unsigned int vid =
 508			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
 509		unsigned int val;
 510
 511		val = vid * vid * freq / 1000 * 255;
 512		val /= 127 * 127 * 900;
 513
 514		pxw[i] = val;
 515	}
 516	/* Render standby states get 0 weight */
 517	pxw[14] = 0;
 518	pxw[15] = 0;
 519
 520	for (i = 0; i < 4; i++) {
 521		intel_uncore_write(uncore, PXW(i),
 522				   pxw[i * 4 + 0] << 24 |
 523				   pxw[i * 4 + 1] << 16 |
 524				   pxw[i * 4 + 2] <<  8 |
 525				   pxw[i * 4 + 3] <<  0);
 526	}
 527
 528	/* Adjust magic regs to magic values (more experimental results) */
 529	intel_uncore_write(uncore, OGW0, 0);
 530	intel_uncore_write(uncore, OGW1, 0);
 531	intel_uncore_write(uncore, EG0, 0x00007f00);
 532	intel_uncore_write(uncore, EG1, 0x0000000e);
 533	intel_uncore_write(uncore, EG2, 0x000e0000);
 534	intel_uncore_write(uncore, EG3, 0x68000300);
 535	intel_uncore_write(uncore, EG4, 0x42000000);
 536	intel_uncore_write(uncore, EG5, 0x00140031);
 537	intel_uncore_write(uncore, EG6, 0);
 538	intel_uncore_write(uncore, EG7, 0);
 539
 540	for (i = 0; i < 8; i++)
 541		intel_uncore_write(uncore, PXWL(i), 0);
 542
 543	/* Enable PMON + select events */
 544	intel_uncore_write(uncore, ECR, 0x80000019);
 545
 546	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
 547}
 548
 549static bool gen5_rps_enable(struct intel_rps *rps)
 550{
 551	struct drm_i915_private *i915 = rps_to_i915(rps);
 552	struct intel_uncore *uncore = rps_to_uncore(rps);
 553	u8 fstart, vstart;
 554	u32 rgvmodectl;
 555
 556	spin_lock_irq(&mchdev_lock);
 557
 558	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
 559
 560	/* Enable temp reporting */
 561	intel_uncore_write16(uncore, PMMISC,
 562			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
 563	intel_uncore_write16(uncore, TSC1,
 564			     intel_uncore_read16(uncore, TSC1) | TSE);
 565
 566	/* 100ms RC evaluation intervals */
 567	intel_uncore_write(uncore, RCUPEI, 100000);
 568	intel_uncore_write(uncore, RCDNEI, 100000);
 569
 570	/* Set max/min thresholds to 90ms and 80ms respectively */
 571	intel_uncore_write(uncore, RCBMAXAVG, 90000);
 572	intel_uncore_write(uncore, RCBMINAVG, 80000);
 573
 574	intel_uncore_write(uncore, MEMIHYST, 1);
 575
 576	/* Set up min, max, and cur for interrupt handling */
 577	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
 578		MEMMODE_FSTART_SHIFT;
 579
 580	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
 581		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
 582
 583	intel_uncore_write(uncore,
 584			   MEMINTREN,
 585			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
 586
 587	intel_uncore_write(uncore, VIDSTART, vstart);
 588	intel_uncore_posting_read(uncore, VIDSTART);
 589
 590	rgvmodectl |= MEMMODE_SWMODE_EN;
 591	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
 592
 593	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
 594			     MEMCTL_CMD_STS) == 0, 10))
 595		drm_err(&uncore->i915->drm,
 596			"stuck trying to change perf mode\n");
 597	mdelay(1);
 598
 599	__gen5_rps_set(rps, rps->cur_freq);
 600
 601	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
 602	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
 603	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
 604	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
 605
 606	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
 607	rps->ips.last_time2 = ktime_get_raw_ns();
 608
 609	spin_lock(&i915->irq_lock);
 610	ilk_enable_display_irq(i915, DE_PCU_EVENT);
 611	spin_unlock(&i915->irq_lock);
 612
 613	spin_unlock_irq(&mchdev_lock);
 614
 615	rps->ips.corr = init_emon(uncore);
 616
 617	return true;
 618}
 619
 620static void gen5_rps_disable(struct intel_rps *rps)
 621{
 622	struct drm_i915_private *i915 = rps_to_i915(rps);
 623	struct intel_uncore *uncore = rps_to_uncore(rps);
 624	u16 rgvswctl;
 625
 626	spin_lock_irq(&mchdev_lock);
 627
 628	spin_lock(&i915->irq_lock);
 629	ilk_disable_display_irq(i915, DE_PCU_EVENT);
 630	spin_unlock(&i915->irq_lock);
 631
 632	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
 633
 634	/* Ack interrupts, disable EFC interrupt */
 635	intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
 636	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
 637
 638	/* Go back to the starting frequency */
 639	__gen5_rps_set(rps, rps->idle_freq);
 640	mdelay(1);
 641	rgvswctl |= MEMCTL_CMD_STS;
 642	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
 643	mdelay(1);
 644
 645	spin_unlock_irq(&mchdev_lock);
 646}
 647
 648static u32 rps_limits(struct intel_rps *rps, u8 val)
 649{
 650	u32 limits;
 651
 652	/*
 653	 * Only set the down limit when we've reached the lowest level to avoid
 654	 * getting more interrupts, otherwise leave this clear. This prevents a
 655	 * race in the hw when coming out of rc6: There's a tiny window where
 656	 * the hw runs at the minimal clock before selecting the desired
 657	 * frequency, if the down threshold expires in that window we will not
 658	 * receive a down interrupt.
 659	 */
 660	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
 661		limits = rps->max_freq_softlimit << 23;
 662		if (val <= rps->min_freq_softlimit)
 663			limits |= rps->min_freq_softlimit << 14;
 664	} else {
 665		limits = rps->max_freq_softlimit << 24;
 666		if (val <= rps->min_freq_softlimit)
 667			limits |= rps->min_freq_softlimit << 16;
 668	}
 669
 670	return limits;
 671}
 672
 673static void rps_set_power(struct intel_rps *rps, int new_power)
 674{
 675	struct intel_gt *gt = rps_to_gt(rps);
 676	struct intel_uncore *uncore = gt->uncore;
 677	u32 ei_up = 0, ei_down = 0;
 678
 679	lockdep_assert_held(&rps->power.mutex);
 680
 681	if (new_power == rps->power.mode)
 682		return;
 683
 684	/* Note the units here are not exactly 1us, but 1280ns. */
 685	switch (new_power) {
 686	case LOW_POWER:
 687		ei_up = 16000;
 688		ei_down = 32000;
 689		break;
 690
 691	case BETWEEN:
 692		ei_up = 13000;
 693		ei_down = 32000;
 694		break;
 695
 696	case HIGH_POWER:
 697		ei_up = 10000;
 698		ei_down = 32000;
 699		break;
 700	}
 701
 702	/* When byt can survive without system hang with dynamic
 703	 * sw freq adjustments, this restriction can be lifted.
 704	 */
 705	if (IS_VALLEYVIEW(gt->i915))
 706		goto skip_hw_write;
 707
 708	GT_TRACE(gt,
 709		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
 710		 new_power,
 711		 rps->power.up_threshold, ei_up,
 712		 rps->power.down_threshold, ei_down);
 713
 714	set(uncore, GEN6_RP_UP_EI,
 715	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
 716	set(uncore, GEN6_RP_UP_THRESHOLD,
 717	    intel_gt_ns_to_pm_interval(gt,
 718				       ei_up * rps->power.up_threshold * 10));
 719
 720	set(uncore, GEN6_RP_DOWN_EI,
 721	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
 722	set(uncore, GEN6_RP_DOWN_THRESHOLD,
 723	    intel_gt_ns_to_pm_interval(gt,
 724				       ei_down *
 725				       rps->power.down_threshold * 10));
 726
 727	set(uncore, GEN6_RP_CONTROL,
 728	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
 729	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
 730	    GEN6_RP_MEDIA_IS_GFX |
 731	    GEN6_RP_ENABLE |
 732	    GEN6_RP_UP_BUSY_AVG |
 733	    GEN6_RP_DOWN_IDLE_AVG);
 734
 735skip_hw_write:
 736	rps->power.mode = new_power;
 737}
 738
 739static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
 740{
 741	int new_power;
 742
 743	new_power = rps->power.mode;
 744	switch (rps->power.mode) {
 745	case LOW_POWER:
 746		if (val > rps->efficient_freq + 1 &&
 747		    val > rps->cur_freq)
 748			new_power = BETWEEN;
 749		break;
 750
 751	case BETWEEN:
 752		if (val <= rps->efficient_freq &&
 753		    val < rps->cur_freq)
 754			new_power = LOW_POWER;
 755		else if (val >= rps->rp0_freq &&
 756			 val > rps->cur_freq)
 757			new_power = HIGH_POWER;
 758		break;
 759
 760	case HIGH_POWER:
 761		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
 762		    val < rps->cur_freq)
 763			new_power = BETWEEN;
 764		break;
 765	}
 766	/* Max/min bins are special */
 767	if (val <= rps->min_freq_softlimit)
 768		new_power = LOW_POWER;
 769	if (val >= rps->max_freq_softlimit)
 770		new_power = HIGH_POWER;
 771
 772	mutex_lock(&rps->power.mutex);
 773	if (rps->power.interactive)
 774		new_power = HIGH_POWER;
 775	rps_set_power(rps, new_power);
 776	mutex_unlock(&rps->power.mutex);
 777}
 778
 779void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
 780{
 781	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
 782		 str_yes_no(interactive));
 783
 784	mutex_lock(&rps->power.mutex);
 785	if (interactive) {
 786		if (!rps->power.interactive++ && intel_rps_is_active(rps))
 787			rps_set_power(rps, HIGH_POWER);
 788	} else {
 789		GEM_BUG_ON(!rps->power.interactive);
 790		rps->power.interactive--;
 791	}
 792	mutex_unlock(&rps->power.mutex);
 793}
 794
 795static int gen6_rps_set(struct intel_rps *rps, u8 val)
 796{
 797	struct intel_uncore *uncore = rps_to_uncore(rps);
 798	struct drm_i915_private *i915 = rps_to_i915(rps);
 799	u32 swreq;
 800
 801	GEM_BUG_ON(rps_uses_slpc(rps));
 802
 803	if (GRAPHICS_VER(i915) >= 9)
 804		swreq = GEN9_FREQUENCY(val);
 805	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
 806		swreq = HSW_FREQUENCY(val);
 807	else
 808		swreq = (GEN6_FREQUENCY(val) |
 809			 GEN6_OFFSET(0) |
 810			 GEN6_AGGRESSIVE_TURBO);
 811	set(uncore, GEN6_RPNSWREQ, swreq);
 812
 813	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
 814		 val, intel_gpu_freq(rps, val), swreq);
 815
 816	return 0;
 817}
 818
 819static int vlv_rps_set(struct intel_rps *rps, u8 val)
 820{
 821	struct drm_i915_private *i915 = rps_to_i915(rps);
 822	int err;
 823
 824	vlv_punit_get(i915);
 825	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
 826	vlv_punit_put(i915);
 827
 828	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
 829		 val, intel_gpu_freq(rps, val));
 830
 831	return err;
 832}
 833
 834static int rps_set(struct intel_rps *rps, u8 val, bool update)
 835{
 836	struct drm_i915_private *i915 = rps_to_i915(rps);
 837	int err;
 838
 839	if (val == rps->last_freq)
 840		return 0;
 841
 842	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
 843		err = vlv_rps_set(rps, val);
 844	else if (GRAPHICS_VER(i915) >= 6)
 845		err = gen6_rps_set(rps, val);
 846	else
 847		err = gen5_rps_set(rps, val);
 848	if (err)
 849		return err;
 850
 851	if (update && GRAPHICS_VER(i915) >= 6)
 852		gen6_rps_set_thresholds(rps, val);
 853	rps->last_freq = val;
 854
 855	return 0;
 856}
 857
 858void intel_rps_unpark(struct intel_rps *rps)
 859{
 860	if (!intel_rps_is_enabled(rps))
 861		return;
 862
 863	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
 864
 865	/*
 866	 * Use the user's desired frequency as a guide, but for better
 867	 * performance, jump directly to RPe as our starting frequency.
 868	 */
 869	mutex_lock(&rps->lock);
 870
 871	intel_rps_set_active(rps);
 872	intel_rps_set(rps,
 873		      clamp(rps->cur_freq,
 874			    rps->min_freq_softlimit,
 875			    rps->max_freq_softlimit));
 876
 877	mutex_unlock(&rps->lock);
 878
 879	rps->pm_iir = 0;
 880	if (intel_rps_has_interrupts(rps))
 881		rps_enable_interrupts(rps);
 882	if (intel_rps_uses_timer(rps))
 883		rps_start_timer(rps);
 884
 885	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
 886		gen5_rps_update(rps);
 887}
 888
 889void intel_rps_park(struct intel_rps *rps)
 890{
 891	int adj;
 892
 893	if (!intel_rps_is_enabled(rps))
 894		return;
 895
 896	if (!intel_rps_clear_active(rps))
 897		return;
 898
 899	if (intel_rps_uses_timer(rps))
 900		rps_stop_timer(rps);
 901	if (intel_rps_has_interrupts(rps))
 902		rps_disable_interrupts(rps);
 903
 904	if (rps->last_freq <= rps->idle_freq)
 905		return;
 906
 907	/*
 908	 * The punit delays the write of the frequency and voltage until it
 909	 * determines the GPU is awake. During normal usage we don't want to
 910	 * waste power changing the frequency if the GPU is sleeping (rc6).
 911	 * However, the GPU and driver is now idle and we do not want to delay
 912	 * switching to minimum voltage (reducing power whilst idle) as we do
 913	 * not expect to be woken in the near future and so must flush the
 914	 * change by waking the device.
 915	 *
 916	 * We choose to take the media powerwell (either would do to trick the
 917	 * punit into committing the voltage change) as that takes a lot less
 918	 * power than the render powerwell.
 919	 */
 920	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
 921	rps_set(rps, rps->idle_freq, false);
 922	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
 923
 924	/*
 925	 * Since we will try and restart from the previously requested
 926	 * frequency on unparking, treat this idle point as a downclock
 927	 * interrupt and reduce the frequency for resume. If we park/unpark
 928	 * more frequently than the rps worker can run, we will not respond
 929	 * to any EI and never see a change in frequency.
 930	 *
 931	 * (Note we accommodate Cherryview's limitation of only using an
 932	 * even bin by applying it to all.)
 933	 */
 934	adj = rps->last_adj;
 935	if (adj < 0)
 936		adj *= 2;
 937	else /* CHV needs even encode values */
 938		adj = -2;
 939	rps->last_adj = adj;
 940	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
 941	if (rps->cur_freq < rps->efficient_freq) {
 942		rps->cur_freq = rps->efficient_freq;
 943		rps->last_adj = 0;
 944	}
 945
 946	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
 947}
 948
 949u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
 950{
 951	struct intel_guc_slpc *slpc;
 952
 953	if (rps_uses_slpc(rps)) {
 954		slpc = rps_to_slpc(rps);
 955
 956		return slpc->boost_freq;
 957	} else {
 958		return intel_gpu_freq(rps, rps->boost_freq);
 959	}
 960}
 961
 962static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
 963{
 964	bool boost = false;
 965
 966	/* Validate against (static) hardware limits */
 967	val = intel_freq_opcode(rps, val);
 968	if (val < rps->min_freq || val > rps->max_freq)
 969		return -EINVAL;
 970
 971	mutex_lock(&rps->lock);
 972	if (val != rps->boost_freq) {
 973		rps->boost_freq = val;
 974		boost = atomic_read(&rps->num_waiters);
 975	}
 976	mutex_unlock(&rps->lock);
 977	if (boost)
 978		queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
 979
 980	return 0;
 981}
 982
 983int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
 984{
 985	struct intel_guc_slpc *slpc;
 986
 987	if (rps_uses_slpc(rps)) {
 988		slpc = rps_to_slpc(rps);
 989
 990		return intel_guc_slpc_set_boost_freq(slpc, freq);
 991	} else {
 992		return rps_set_boost_freq(rps, freq);
 993	}
 994}
 995
 996void intel_rps_dec_waiters(struct intel_rps *rps)
 997{
 998	struct intel_guc_slpc *slpc;
 999
1000	if (rps_uses_slpc(rps)) {
1001		slpc = rps_to_slpc(rps);
1002
1003		intel_guc_slpc_dec_waiters(slpc);
1004	} else {
1005		atomic_dec(&rps->num_waiters);
1006	}
1007}
1008
1009void intel_rps_boost(struct i915_request *rq)
1010{
1011	struct intel_guc_slpc *slpc;
1012
1013	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1014		return;
1015
1016	/* Serializes with i915_request_retire() */
1017	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1018		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1019
1020		if (rps_uses_slpc(rps)) {
1021			slpc = rps_to_slpc(rps);
1022
1023			if (slpc->min_freq_softlimit >= slpc->boost_freq)
1024				return;
1025
1026			/* Return if old value is non zero */
1027			if (!atomic_fetch_inc(&slpc->num_waiters)) {
1028				GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1029					 rq->fence.context, rq->fence.seqno);
1030				queue_work(rps_to_gt(rps)->i915->unordered_wq,
1031					   &slpc->boost_work);
1032			}
1033
1034			return;
1035		}
1036
1037		if (atomic_fetch_inc(&rps->num_waiters))
1038			return;
1039
1040		if (!intel_rps_is_active(rps))
1041			return;
1042
1043		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1044			 rq->fence.context, rq->fence.seqno);
1045
1046		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1047			queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1048
1049		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1050	}
1051}
1052
1053int intel_rps_set(struct intel_rps *rps, u8 val)
1054{
1055	int err;
1056
1057	lockdep_assert_held(&rps->lock);
1058	GEM_BUG_ON(val > rps->max_freq);
1059	GEM_BUG_ON(val < rps->min_freq);
1060
1061	if (intel_rps_is_active(rps)) {
1062		err = rps_set(rps, val, true);
1063		if (err)
1064			return err;
1065
1066		/*
1067		 * Make sure we continue to get interrupts
1068		 * until we hit the minimum or maximum frequencies.
1069		 */
1070		if (intel_rps_has_interrupts(rps)) {
1071			struct intel_uncore *uncore = rps_to_uncore(rps);
1072
1073			set(uncore,
1074			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1075
1076			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1077		}
1078	}
1079
1080	rps->cur_freq = val;
1081	return 0;
1082}
1083
1084static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1085{
1086	struct drm_i915_private *i915 = rps_to_i915(rps);
1087	struct intel_uncore *uncore = rps_to_uncore(rps);
1088
1089	if (IS_PONTEVECCHIO(i915))
1090		return intel_uncore_read(uncore, PVC_RP_STATE_CAP);
1091	else if (IS_XEHPSDV(i915))
1092		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1093	else if (IS_GEN9_LP(i915))
1094		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1095	else
1096		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1097}
1098
1099static void
1100mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1101{
1102	struct intel_uncore *uncore = rps_to_uncore(rps);
1103	u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1104				intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1105				intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1106	u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1107			intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1108			intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1109
1110	/* MTL values are in units of 16.67 MHz */
1111	caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1112	caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1113	caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1114}
1115
1116static void
1117__gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1118{
1119	struct drm_i915_private *i915 = rps_to_i915(rps);
1120	u32 rp_state_cap;
1121
1122	rp_state_cap = intel_rps_read_state_cap(rps);
1123
1124	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1125	if (IS_GEN9_LP(i915)) {
1126		caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1127		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1128		caps->min_freq = (rp_state_cap >>  0) & 0xff;
1129	} else {
1130		caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1131		if (GRAPHICS_VER(i915) >= 10)
1132			caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1133						       intel_uncore_read(to_gt(i915)->uncore,
1134						       GEN10_FREQ_INFO_REC));
1135		else
1136			caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1137		caps->min_freq = (rp_state_cap >> 16) & 0xff;
1138	}
1139
1140	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1141		/*
1142		 * In this case rp_state_cap register reports frequencies in
1143		 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1144		 * units of 16.67 MHz
1145		 */
1146		caps->rp0_freq *= GEN9_FREQ_SCALER;
1147		caps->rp1_freq *= GEN9_FREQ_SCALER;
1148		caps->min_freq *= GEN9_FREQ_SCALER;
1149	}
1150}
1151
1152/**
1153 * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1154 * @rps: the intel_rps structure
1155 * @caps: returned freq caps
1156 *
1157 * Returned "caps" frequencies should be converted to MHz using
1158 * intel_gpu_freq()
1159 */
1160void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1161{
1162	struct drm_i915_private *i915 = rps_to_i915(rps);
1163
1164	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1165		return mtl_get_freq_caps(rps, caps);
1166	else
1167		return __gen6_rps_get_freq_caps(rps, caps);
1168}
1169
1170static void gen6_rps_init(struct intel_rps *rps)
1171{
1172	struct drm_i915_private *i915 = rps_to_i915(rps);
1173	struct intel_rps_freq_caps caps;
1174
1175	gen6_rps_get_freq_caps(rps, &caps);
1176	rps->rp0_freq = caps.rp0_freq;
1177	rps->rp1_freq = caps.rp1_freq;
1178	rps->min_freq = caps.min_freq;
1179
1180	/* hw_max = RP0 until we check for overclocking */
1181	rps->max_freq = rps->rp0_freq;
1182
1183	rps->efficient_freq = rps->rp1_freq;
1184	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1185	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1186		u32 ddcc_status = 0;
1187		u32 mult = 1;
1188
1189		if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1190			mult = GEN9_FREQ_SCALER;
1191		if (snb_pcode_read(rps_to_gt(rps)->uncore,
1192				   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1193				   &ddcc_status, NULL) == 0)
1194			rps->efficient_freq =
1195				clamp_t(u32,
1196					((ddcc_status >> 8) & 0xff) * mult,
1197					rps->min_freq,
1198					rps->max_freq);
1199	}
1200}
1201
1202static bool rps_reset(struct intel_rps *rps)
1203{
1204	struct drm_i915_private *i915 = rps_to_i915(rps);
1205
1206	/* force a reset */
1207	rps->power.mode = -1;
1208	rps->last_freq = -1;
1209
1210	if (rps_set(rps, rps->min_freq, true)) {
1211		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1212		return false;
1213	}
1214
1215	rps->cur_freq = rps->min_freq;
1216	return true;
1217}
1218
1219/* See the Gen9_GT_PM_Programming_Guide doc for the below */
1220static bool gen9_rps_enable(struct intel_rps *rps)
1221{
1222	struct intel_gt *gt = rps_to_gt(rps);
1223	struct intel_uncore *uncore = gt->uncore;
1224
1225	/* Program defaults and thresholds for RPS */
1226	if (GRAPHICS_VER(gt->i915) == 9)
1227		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1228				      GEN9_FREQUENCY(rps->rp1_freq));
1229
1230	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1231
1232	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1233
1234	return rps_reset(rps);
1235}
1236
1237static bool gen8_rps_enable(struct intel_rps *rps)
1238{
1239	struct intel_uncore *uncore = rps_to_uncore(rps);
1240
1241	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1242			      HSW_FREQUENCY(rps->rp1_freq));
1243
1244	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1245
1246	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1247
1248	return rps_reset(rps);
1249}
1250
1251static bool gen6_rps_enable(struct intel_rps *rps)
1252{
1253	struct intel_uncore *uncore = rps_to_uncore(rps);
1254
1255	/* Power down if completely idle for over 50ms */
1256	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1257	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1258
1259	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1260			  GEN6_PM_RP_DOWN_THRESHOLD |
1261			  GEN6_PM_RP_DOWN_TIMEOUT);
1262
1263	return rps_reset(rps);
1264}
1265
1266static int chv_rps_max_freq(struct intel_rps *rps)
1267{
1268	struct drm_i915_private *i915 = rps_to_i915(rps);
1269	struct intel_gt *gt = rps_to_gt(rps);
1270	u32 val;
1271
1272	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1273
1274	switch (gt->info.sseu.eu_total) {
1275	case 8:
1276		/* (2 * 4) config */
1277		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1278		break;
1279	case 12:
1280		/* (2 * 6) config */
1281		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1282		break;
1283	case 16:
1284		/* (2 * 8) config */
1285	default:
1286		/* Setting (2 * 8) Min RP0 for any other combination */
1287		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1288		break;
1289	}
1290
1291	return val & FB_GFX_FREQ_FUSE_MASK;
1292}
1293
1294static int chv_rps_rpe_freq(struct intel_rps *rps)
1295{
1296	struct drm_i915_private *i915 = rps_to_i915(rps);
1297	u32 val;
1298
1299	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1300	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1301
1302	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1303}
1304
1305static int chv_rps_guar_freq(struct intel_rps *rps)
1306{
1307	struct drm_i915_private *i915 = rps_to_i915(rps);
1308	u32 val;
1309
1310	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1311
1312	return val & FB_GFX_FREQ_FUSE_MASK;
1313}
1314
1315static u32 chv_rps_min_freq(struct intel_rps *rps)
1316{
1317	struct drm_i915_private *i915 = rps_to_i915(rps);
1318	u32 val;
1319
1320	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1321	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1322
1323	return val & FB_GFX_FREQ_FUSE_MASK;
1324}
1325
1326static bool chv_rps_enable(struct intel_rps *rps)
1327{
1328	struct intel_uncore *uncore = rps_to_uncore(rps);
1329	struct drm_i915_private *i915 = rps_to_i915(rps);
1330	u32 val;
1331
1332	/* 1: Program defaults and thresholds for RPS*/
1333	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1334	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1335	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1336	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1337	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1338
1339	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1340
1341	/* 2: Enable RPS */
1342	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1343			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1344			      GEN6_RP_MEDIA_IS_GFX |
1345			      GEN6_RP_ENABLE |
1346			      GEN6_RP_UP_BUSY_AVG |
1347			      GEN6_RP_DOWN_IDLE_AVG);
1348
1349	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1350			  GEN6_PM_RP_DOWN_THRESHOLD |
1351			  GEN6_PM_RP_DOWN_TIMEOUT);
1352
1353	/* Setting Fixed Bias */
1354	vlv_punit_get(i915);
1355
1356	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1357	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1358
1359	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1360
1361	vlv_punit_put(i915);
1362
1363	/* RPS code assumes GPLL is used */
1364	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1365		      "GPLL not enabled\n");
1366
1367	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1368		str_yes_no(val & GPLLENABLE));
1369	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1370
1371	return rps_reset(rps);
1372}
1373
1374static int vlv_rps_guar_freq(struct intel_rps *rps)
1375{
1376	struct drm_i915_private *i915 = rps_to_i915(rps);
1377	u32 val, rp1;
1378
1379	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1380
1381	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1382	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1383
1384	return rp1;
1385}
1386
1387static int vlv_rps_max_freq(struct intel_rps *rps)
1388{
1389	struct drm_i915_private *i915 = rps_to_i915(rps);
1390	u32 val, rp0;
1391
1392	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1393
1394	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1395	/* Clamp to max */
1396	rp0 = min_t(u32, rp0, 0xea);
1397
1398	return rp0;
1399}
1400
1401static int vlv_rps_rpe_freq(struct intel_rps *rps)
1402{
1403	struct drm_i915_private *i915 = rps_to_i915(rps);
1404	u32 val, rpe;
1405
1406	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1407	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1408	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1409	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1410
1411	return rpe;
1412}
1413
1414static int vlv_rps_min_freq(struct intel_rps *rps)
1415{
1416	struct drm_i915_private *i915 = rps_to_i915(rps);
1417	u32 val;
1418
1419	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1420	/*
1421	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1422	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1423	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1424	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1425	 * to make sure it matches what Punit accepts.
1426	 */
1427	return max_t(u32, val, 0xc0);
1428}
1429
1430static bool vlv_rps_enable(struct intel_rps *rps)
1431{
1432	struct intel_uncore *uncore = rps_to_uncore(rps);
1433	struct drm_i915_private *i915 = rps_to_i915(rps);
1434	u32 val;
1435
1436	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1437	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1438	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1439	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1440	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1441
1442	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1443
1444	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1445			      GEN6_RP_MEDIA_TURBO |
1446			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1447			      GEN6_RP_MEDIA_IS_GFX |
1448			      GEN6_RP_ENABLE |
1449			      GEN6_RP_UP_BUSY_AVG |
1450			      GEN6_RP_DOWN_IDLE_CONT);
1451
1452	/* WaGsvRC0ResidencyMethod:vlv */
1453	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1454
1455	vlv_punit_get(i915);
1456
1457	/* Setting Fixed Bias */
1458	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1459	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1460
1461	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1462
1463	vlv_punit_put(i915);
1464
1465	/* RPS code assumes GPLL is used */
1466	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1467		      "GPLL not enabled\n");
1468
1469	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1470		str_yes_no(val & GPLLENABLE));
1471	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1472
1473	return rps_reset(rps);
1474}
1475
1476static unsigned long __ips_gfx_val(struct intel_ips *ips)
1477{
1478	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1479	struct intel_uncore *uncore = rps_to_uncore(rps);
1480	unsigned int t, state1, state2;
1481	u32 pxvid, ext_v;
1482	u64 corr, corr2;
1483
1484	lockdep_assert_held(&mchdev_lock);
1485
1486	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1487	pxvid = (pxvid >> 24) & 0x7f;
1488	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1489
1490	state1 = ext_v;
1491
1492	/* Revel in the empirically derived constants */
1493
1494	/* Correction factor in 1/100000 units */
1495	t = ips_mch_val(uncore);
1496	if (t > 80)
1497		corr = t * 2349 + 135940;
1498	else if (t >= 50)
1499		corr = t * 964 + 29317;
1500	else /* < 50 */
1501		corr = t * 301 + 1004;
1502
1503	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1504	corr2 = div_u64(corr, 100000) * ips->corr;
1505
1506	state2 = div_u64(corr2 * state1, 10000);
1507	state2 /= 100; /* convert to mW */
1508
1509	__gen5_ips_update(ips);
1510
1511	return ips->gfx_power + state2;
1512}
1513
1514static bool has_busy_stats(struct intel_rps *rps)
1515{
1516	struct intel_engine_cs *engine;
1517	enum intel_engine_id id;
1518
1519	for_each_engine(engine, rps_to_gt(rps), id) {
1520		if (!intel_engine_supports_stats(engine))
1521			return false;
1522	}
1523
1524	return true;
1525}
1526
1527void intel_rps_enable(struct intel_rps *rps)
1528{
1529	struct drm_i915_private *i915 = rps_to_i915(rps);
1530	struct intel_uncore *uncore = rps_to_uncore(rps);
1531	bool enabled = false;
1532
1533	if (!HAS_RPS(i915))
1534		return;
1535
1536	if (rps_uses_slpc(rps))
1537		return;
1538
1539	intel_gt_check_clock_frequency(rps_to_gt(rps));
1540
1541	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1542	if (rps->max_freq <= rps->min_freq)
1543		/* leave disabled, no room for dynamic reclocking */;
1544	else if (IS_CHERRYVIEW(i915))
1545		enabled = chv_rps_enable(rps);
1546	else if (IS_VALLEYVIEW(i915))
1547		enabled = vlv_rps_enable(rps);
1548	else if (GRAPHICS_VER(i915) >= 9)
1549		enabled = gen9_rps_enable(rps);
1550	else if (GRAPHICS_VER(i915) >= 8)
1551		enabled = gen8_rps_enable(rps);
1552	else if (GRAPHICS_VER(i915) >= 6)
1553		enabled = gen6_rps_enable(rps);
1554	else if (IS_IRONLAKE_M(i915))
1555		enabled = gen5_rps_enable(rps);
1556	else
1557		MISSING_CASE(GRAPHICS_VER(i915));
1558	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1559	if (!enabled)
1560		return;
1561
1562	GT_TRACE(rps_to_gt(rps),
1563		 "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
1564		 rps->min_freq, rps->max_freq,
1565		 intel_gpu_freq(rps, rps->min_freq),
1566		 intel_gpu_freq(rps, rps->max_freq),
1567		 rps->power.up_threshold,
1568		 rps->power.down_threshold);
1569
1570	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1571	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1572
1573	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1574	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1575
1576	if (has_busy_stats(rps))
1577		intel_rps_set_timer(rps);
1578	else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1579		intel_rps_set_interrupts(rps);
1580	else
1581		/* Ironlake currently uses intel_ips.ko */ {}
1582
1583	intel_rps_set_enabled(rps);
1584}
1585
1586static void gen6_rps_disable(struct intel_rps *rps)
1587{
1588	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1589}
1590
1591void intel_rps_disable(struct intel_rps *rps)
1592{
1593	struct drm_i915_private *i915 = rps_to_i915(rps);
1594
1595	if (!intel_rps_is_enabled(rps))
1596		return;
1597
1598	intel_rps_clear_enabled(rps);
1599	intel_rps_clear_interrupts(rps);
1600	intel_rps_clear_timer(rps);
1601
1602	if (GRAPHICS_VER(i915) >= 6)
1603		gen6_rps_disable(rps);
1604	else if (IS_IRONLAKE_M(i915))
1605		gen5_rps_disable(rps);
1606}
1607
1608static int byt_gpu_freq(struct intel_rps *rps, int val)
1609{
1610	/*
1611	 * N = val - 0xb7
1612	 * Slow = Fast = GPLL ref * N
1613	 */
1614	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1615}
1616
1617static int byt_freq_opcode(struct intel_rps *rps, int val)
1618{
1619	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1620}
1621
1622static int chv_gpu_freq(struct intel_rps *rps, int val)
1623{
1624	/*
1625	 * N = val / 2
1626	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1627	 */
1628	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1629}
1630
1631static int chv_freq_opcode(struct intel_rps *rps, int val)
1632{
1633	/* CHV needs even values */
1634	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1635}
1636
1637int intel_gpu_freq(struct intel_rps *rps, int val)
1638{
1639	struct drm_i915_private *i915 = rps_to_i915(rps);
1640
1641	if (GRAPHICS_VER(i915) >= 9)
1642		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1643					 GEN9_FREQ_SCALER);
1644	else if (IS_CHERRYVIEW(i915))
1645		return chv_gpu_freq(rps, val);
1646	else if (IS_VALLEYVIEW(i915))
1647		return byt_gpu_freq(rps, val);
1648	else if (GRAPHICS_VER(i915) >= 6)
1649		return val * GT_FREQUENCY_MULTIPLIER;
1650	else
1651		return val;
1652}
1653
1654int intel_freq_opcode(struct intel_rps *rps, int val)
1655{
1656	struct drm_i915_private *i915 = rps_to_i915(rps);
1657
1658	if (GRAPHICS_VER(i915) >= 9)
1659		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1660					 GT_FREQUENCY_MULTIPLIER);
1661	else if (IS_CHERRYVIEW(i915))
1662		return chv_freq_opcode(rps, val);
1663	else if (IS_VALLEYVIEW(i915))
1664		return byt_freq_opcode(rps, val);
1665	else if (GRAPHICS_VER(i915) >= 6)
1666		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1667	else
1668		return val;
1669}
1670
1671static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1672{
1673	struct drm_i915_private *i915 = rps_to_i915(rps);
1674
1675	rps->gpll_ref_freq =
1676		vlv_get_cck_clock(i915, "GPLL ref",
1677				  CCK_GPLL_CLOCK_CONTROL,
1678				  i915->czclk_freq);
1679
1680	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1681		rps->gpll_ref_freq);
1682}
1683
1684static void vlv_rps_init(struct intel_rps *rps)
1685{
1686	struct drm_i915_private *i915 = rps_to_i915(rps);
1687
1688	vlv_iosf_sb_get(i915,
1689			BIT(VLV_IOSF_SB_PUNIT) |
1690			BIT(VLV_IOSF_SB_NC) |
1691			BIT(VLV_IOSF_SB_CCK));
1692
1693	vlv_init_gpll_ref_freq(rps);
1694
1695	rps->max_freq = vlv_rps_max_freq(rps);
1696	rps->rp0_freq = rps->max_freq;
1697	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1698		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1699
1700	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1701	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1702		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1703
1704	rps->rp1_freq = vlv_rps_guar_freq(rps);
1705	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1706		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1707
1708	rps->min_freq = vlv_rps_min_freq(rps);
1709	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1710		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1711
1712	vlv_iosf_sb_put(i915,
1713			BIT(VLV_IOSF_SB_PUNIT) |
1714			BIT(VLV_IOSF_SB_NC) |
1715			BIT(VLV_IOSF_SB_CCK));
1716}
1717
1718static void chv_rps_init(struct intel_rps *rps)
1719{
1720	struct drm_i915_private *i915 = rps_to_i915(rps);
1721
1722	vlv_iosf_sb_get(i915,
1723			BIT(VLV_IOSF_SB_PUNIT) |
1724			BIT(VLV_IOSF_SB_NC) |
1725			BIT(VLV_IOSF_SB_CCK));
1726
1727	vlv_init_gpll_ref_freq(rps);
1728
1729	rps->max_freq = chv_rps_max_freq(rps);
1730	rps->rp0_freq = rps->max_freq;
1731	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1732		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1733
1734	rps->efficient_freq = chv_rps_rpe_freq(rps);
1735	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1736		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1737
1738	rps->rp1_freq = chv_rps_guar_freq(rps);
1739	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1740		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1741
1742	rps->min_freq = chv_rps_min_freq(rps);
1743	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1744		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1745
1746	vlv_iosf_sb_put(i915,
1747			BIT(VLV_IOSF_SB_PUNIT) |
1748			BIT(VLV_IOSF_SB_NC) |
1749			BIT(VLV_IOSF_SB_CCK));
1750
1751	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1752				   rps->rp1_freq | rps->min_freq) & 1,
1753		      "Odd GPU freq values\n");
1754}
1755
1756static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1757{
1758	ei->ktime = ktime_get_raw();
1759	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1760	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1761}
1762
1763static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1764{
1765	struct intel_uncore *uncore = rps_to_uncore(rps);
1766	const struct intel_rps_ei *prev = &rps->ei;
1767	struct intel_rps_ei now;
1768	u32 events = 0;
1769
1770	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1771		return 0;
1772
1773	vlv_c0_read(uncore, &now);
1774
1775	if (prev->ktime) {
1776		u64 time, c0;
1777		u32 render, media;
1778
1779		time = ktime_us_delta(now.ktime, prev->ktime);
1780
1781		time *= rps_to_i915(rps)->czclk_freq;
1782
1783		/* Workload can be split between render + media,
1784		 * e.g. SwapBuffers being blitted in X after being rendered in
1785		 * mesa. To account for this we need to combine both engines
1786		 * into our activity counter.
1787		 */
1788		render = now.render_c0 - prev->render_c0;
1789		media = now.media_c0 - prev->media_c0;
1790		c0 = max(render, media);
1791		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1792
1793		if (c0 > time * rps->power.up_threshold)
1794			events = GEN6_PM_RP_UP_THRESHOLD;
1795		else if (c0 < time * rps->power.down_threshold)
1796			events = GEN6_PM_RP_DOWN_THRESHOLD;
1797	}
1798
1799	rps->ei = now;
1800	return events;
1801}
1802
1803static void rps_work(struct work_struct *work)
1804{
1805	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1806	struct intel_gt *gt = rps_to_gt(rps);
1807	struct drm_i915_private *i915 = rps_to_i915(rps);
1808	bool client_boost = false;
1809	int new_freq, adj, min, max;
1810	u32 pm_iir = 0;
1811
1812	spin_lock_irq(gt->irq_lock);
1813	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1814	client_boost = atomic_read(&rps->num_waiters);
1815	spin_unlock_irq(gt->irq_lock);
1816
1817	/* Make sure we didn't queue anything we're not going to process. */
1818	if (!pm_iir && !client_boost)
1819		goto out;
1820
1821	mutex_lock(&rps->lock);
1822	if (!intel_rps_is_active(rps)) {
1823		mutex_unlock(&rps->lock);
1824		return;
1825	}
1826
1827	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1828
1829	adj = rps->last_adj;
1830	new_freq = rps->cur_freq;
1831	min = rps->min_freq_softlimit;
1832	max = rps->max_freq_softlimit;
1833	if (client_boost)
1834		max = rps->max_freq;
1835
1836	GT_TRACE(gt,
1837		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1838		 pm_iir, str_yes_no(client_boost),
1839		 adj, new_freq, min, max);
1840
1841	if (client_boost && new_freq < rps->boost_freq) {
1842		new_freq = rps->boost_freq;
1843		adj = 0;
1844	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1845		if (adj > 0)
1846			adj *= 2;
1847		else /* CHV needs even encode values */
1848			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1849
1850		if (new_freq >= rps->max_freq_softlimit)
1851			adj = 0;
1852	} else if (client_boost) {
1853		adj = 0;
1854	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1855		if (rps->cur_freq > rps->efficient_freq)
1856			new_freq = rps->efficient_freq;
1857		else if (rps->cur_freq > rps->min_freq_softlimit)
1858			new_freq = rps->min_freq_softlimit;
1859		adj = 0;
1860	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1861		if (adj < 0)
1862			adj *= 2;
1863		else /* CHV needs even encode values */
1864			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1865
1866		if (new_freq <= rps->min_freq_softlimit)
1867			adj = 0;
1868	} else { /* unknown event */
1869		adj = 0;
1870	}
1871
1872	/*
1873	 * sysfs frequency limits may have snuck in while
1874	 * servicing the interrupt
1875	 */
1876	new_freq += adj;
1877	new_freq = clamp_t(int, new_freq, min, max);
1878
1879	if (intel_rps_set(rps, new_freq)) {
1880		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1881		adj = 0;
1882	}
1883	rps->last_adj = adj;
1884
1885	mutex_unlock(&rps->lock);
1886
1887out:
1888	spin_lock_irq(gt->irq_lock);
1889	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1890	spin_unlock_irq(gt->irq_lock);
1891}
1892
1893void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1894{
1895	struct intel_gt *gt = rps_to_gt(rps);
1896	const u32 events = rps->pm_events & pm_iir;
1897
1898	lockdep_assert_held(gt->irq_lock);
1899
1900	if (unlikely(!events))
1901		return;
1902
1903	GT_TRACE(gt, "irq events:%x\n", events);
1904
1905	gen6_gt_pm_mask_irq(gt, events);
1906
1907	rps->pm_iir |= events;
1908	queue_work(gt->i915->unordered_wq, &rps->work);
1909}
1910
1911void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1912{
1913	struct intel_gt *gt = rps_to_gt(rps);
1914	u32 events;
1915
1916	events = pm_iir & rps->pm_events;
1917	if (events) {
1918		spin_lock(gt->irq_lock);
1919
1920		GT_TRACE(gt, "irq events:%x\n", events);
1921
1922		gen6_gt_pm_mask_irq(gt, events);
1923		rps->pm_iir |= events;
1924
1925		queue_work(gt->i915->unordered_wq, &rps->work);
1926		spin_unlock(gt->irq_lock);
1927	}
1928
1929	if (GRAPHICS_VER(gt->i915) >= 8)
1930		return;
1931
1932	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1933		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1934
1935	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1936		drm_dbg(&rps_to_i915(rps)->drm,
1937			"Command parser error, pm_iir 0x%08x\n", pm_iir);
1938}
1939
1940void gen5_rps_irq_handler(struct intel_rps *rps)
1941{
1942	struct intel_uncore *uncore = rps_to_uncore(rps);
1943	u32 busy_up, busy_down, max_avg, min_avg;
1944	u8 new_freq;
1945
1946	spin_lock(&mchdev_lock);
1947
1948	intel_uncore_write16(uncore,
1949			     MEMINTRSTS,
1950			     intel_uncore_read(uncore, MEMINTRSTS));
1951
1952	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1953	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1954	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1955	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1956	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1957
1958	/* Handle RCS change request from hw */
1959	new_freq = rps->cur_freq;
1960	if (busy_up > max_avg)
1961		new_freq++;
1962	else if (busy_down < min_avg)
1963		new_freq--;
1964	new_freq = clamp(new_freq,
1965			 rps->min_freq_softlimit,
1966			 rps->max_freq_softlimit);
1967
1968	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1969		rps->cur_freq = new_freq;
1970
1971	spin_unlock(&mchdev_lock);
1972}
1973
1974void intel_rps_init_early(struct intel_rps *rps)
1975{
1976	mutex_init(&rps->lock);
1977	mutex_init(&rps->power.mutex);
1978
1979	INIT_WORK(&rps->work, rps_work);
1980	timer_setup(&rps->timer, rps_timer, 0);
1981
1982	atomic_set(&rps->num_waiters, 0);
1983}
1984
1985void intel_rps_init(struct intel_rps *rps)
1986{
1987	struct drm_i915_private *i915 = rps_to_i915(rps);
1988
1989	if (rps_uses_slpc(rps))
1990		return;
1991
1992	if (IS_CHERRYVIEW(i915))
1993		chv_rps_init(rps);
1994	else if (IS_VALLEYVIEW(i915))
1995		vlv_rps_init(rps);
1996	else if (GRAPHICS_VER(i915) >= 6)
1997		gen6_rps_init(rps);
1998	else if (IS_IRONLAKE_M(i915))
1999		gen5_rps_init(rps);
2000
2001	/* Derive initial user preferences/limits from the hardware limits */
2002	rps->max_freq_softlimit = rps->max_freq;
2003	rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2004	rps->min_freq_softlimit = rps->min_freq;
2005	rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2006
2007	/* After setting max-softlimit, find the overclock max freq */
2008	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2009		u32 params = 0;
2010
2011		snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
2012		if (params & BIT(31)) { /* OC supported */
2013			drm_dbg(&i915->drm,
2014				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2015				(rps->max_freq & 0xff) * 50,
2016				(params & 0xff) * 50);
2017			rps->max_freq = params & 0xff;
2018		}
2019	}
2020
2021	/* Set default thresholds in % */
2022	rps->power.up_threshold = 95;
2023	rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
2024	rps->power.down_threshold = 85;
2025	rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
2026
2027	/* Finally allow us to boost to max by default */
2028	rps->boost_freq = rps->max_freq;
2029	rps->idle_freq = rps->min_freq;
2030
2031	/* Start in the middle, from here we will autotune based on workload */
2032	rps->cur_freq = rps->efficient_freq;
2033
2034	rps->pm_intrmsk_mbz = 0;
2035
2036	/*
2037	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2038	 * if GEN6_PM_UP_EI_EXPIRED is masked.
2039	 *
2040	 * TODO: verify if this can be reproduced on VLV,CHV.
2041	 */
2042	if (GRAPHICS_VER(i915) <= 7)
2043		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2044
2045	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2046		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2047
2048	/* GuC needs ARAT expired interrupt unmasked */
2049	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2050		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2051}
2052
2053void intel_rps_sanitize(struct intel_rps *rps)
2054{
2055	if (rps_uses_slpc(rps))
2056		return;
2057
2058	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2059		rps_disable_interrupts(rps);
2060}
2061
2062u32 intel_rps_read_rpstat(struct intel_rps *rps)
2063{
2064	struct drm_i915_private *i915 = rps_to_i915(rps);
2065	i915_reg_t rpstat;
2066
2067	rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2068
2069	return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2070}
2071
2072static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2073{
2074	struct drm_i915_private *i915 = rps_to_i915(rps);
2075	u32 cagf;
2076
2077	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2078		cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2079	else if (GRAPHICS_VER(i915) >= 12)
2080		cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2081	else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2082		cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2083	else if (GRAPHICS_VER(i915) >= 9)
2084		cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2085	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2086		cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2087	else if (GRAPHICS_VER(i915) >= 6)
2088		cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2089	else
2090		cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2091
2092	return cagf;
2093}
2094
2095static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2096{
2097	struct drm_i915_private *i915 = rps_to_i915(rps);
2098	struct intel_uncore *uncore = rps_to_uncore(rps);
2099	i915_reg_t r = INVALID_MMIO_REG;
2100	u32 freq;
2101
2102	/*
2103	 * For Gen12+ reading freq from HW does not need a forcewake and
2104	 * registers will return 0 freq when GT is in RC6
2105	 */
2106	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2107		r = MTL_MIRROR_TARGET_WP1;
2108	} else if (GRAPHICS_VER(i915) >= 12) {
2109		r = GEN12_RPSTAT1;
2110	} else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2111		vlv_punit_get(i915);
2112		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2113		vlv_punit_put(i915);
2114	} else if (GRAPHICS_VER(i915) >= 6) {
2115		r = GEN6_RPSTAT1;
2116	} else {
2117		r = MEMSTAT_ILK;
2118	}
2119
2120	if (i915_mmio_reg_valid(r))
2121		freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2122
2123	return intel_rps_get_cagf(rps, freq);
2124}
2125
2126static u32 read_cagf(struct intel_rps *rps)
2127{
2128	return __read_cagf(rps, true);
2129}
2130
2131u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2132{
2133	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2134	intel_wakeref_t wakeref;
2135	u32 freq = 0;
2136
2137	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2138		freq = intel_gpu_freq(rps, read_cagf(rps));
2139
2140	return freq;
2141}
2142
2143u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2144{
2145	return intel_gpu_freq(rps, __read_cagf(rps, false));
2146}
2147
2148static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2149{
2150	struct intel_uncore *uncore = rps_to_uncore(rps);
2151	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2152	intel_wakeref_t wakeref;
2153	u32 freq = 0;
2154
2155	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2156		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2157
2158	return freq;
2159}
2160
2161static u32 intel_rps_get_req(u32 pureq)
2162{
2163	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2164
2165	return req;
2166}
2167
2168u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2169{
2170	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2171
2172	return intel_gpu_freq(rps, freq);
2173}
2174
2175u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2176{
2177	if (rps_uses_slpc(rps))
2178		return intel_rps_read_punit_req_frequency(rps);
2179	else
2180		return intel_gpu_freq(rps, rps->cur_freq);
2181}
2182
2183u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2184{
2185	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2186
2187	if (rps_uses_slpc(rps))
2188		return slpc->max_freq_softlimit;
2189	else
2190		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2191}
2192
2193/**
2194 * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2195 * @rps: the intel_rps structure
2196 *
2197 * Returns the max frequency in a raw format. In newer platforms raw is in
2198 * units of 50 MHz.
2199 */
2200u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2201{
2202	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2203	u32 freq;
2204
2205	if (rps_uses_slpc(rps)) {
2206		return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2207					 GT_FREQUENCY_MULTIPLIER);
2208	} else {
2209		freq = rps->max_freq;
2210		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2211			/* Convert GT frequency to 50 MHz units */
2212			freq /= GEN9_FREQ_SCALER;
2213		}
2214		return freq;
2215	}
2216}
2217
2218u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2219{
2220	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2221
2222	if (rps_uses_slpc(rps))
2223		return slpc->rp0_freq;
2224	else
2225		return intel_gpu_freq(rps, rps->rp0_freq);
2226}
2227
2228u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2229{
2230	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2231
2232	if (rps_uses_slpc(rps))
2233		return slpc->rp1_freq;
2234	else
2235		return intel_gpu_freq(rps, rps->rp1_freq);
2236}
2237
2238u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2239{
2240	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2241
2242	if (rps_uses_slpc(rps))
2243		return slpc->min_freq;
2244	else
2245		return intel_gpu_freq(rps, rps->min_freq);
2246}
2247
2248static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2249{
2250	struct intel_gt *gt = rps_to_gt(rps);
2251	struct drm_i915_private *i915 = gt->i915;
2252	struct intel_uncore *uncore = gt->uncore;
2253	struct intel_rps_freq_caps caps;
2254	u32 rp_state_limits;
2255	u32 gt_perf_status;
2256	u32 rpmodectl, rpinclimit, rpdeclimit;
2257	u32 rpstat, cagf, reqf;
2258	u32 rpcurupei, rpcurup, rpprevup;
2259	u32 rpcurdownei, rpcurdown, rpprevdown;
2260	u32 rpupei, rpupt, rpdownei, rpdownt;
2261	u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2262
2263	rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2264	gen6_rps_get_freq_caps(rps, &caps);
2265	if (IS_GEN9_LP(i915))
2266		gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2267	else
2268		gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2269
2270	/* RPSTAT1 is in the GT power well */
2271	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2272
2273	reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2274	if (GRAPHICS_VER(i915) >= 9) {
2275		reqf >>= 23;
2276	} else {
2277		reqf &= ~GEN6_TURBO_DISABLE;
2278		if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2279			reqf >>= 24;
2280		else
2281			reqf >>= 25;
2282	}
2283	reqf = intel_gpu_freq(rps, reqf);
2284
2285	rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2286	rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2287	rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2288
2289	rpstat = intel_rps_read_rpstat(rps);
2290	rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2291	rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2292	rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2293	rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2294	rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2295	rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2296
2297	rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2298	rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2299
2300	rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2301	rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2302
2303	cagf = intel_rps_read_actual_frequency(rps);
2304
2305	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2306
2307	if (GRAPHICS_VER(i915) >= 11) {
2308		pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2309		pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2310		/*
2311		 * The equivalent to the PM ISR & IIR cannot be read
2312		 * without affecting the current state of the system
2313		 */
2314		pm_isr = 0;
2315		pm_iir = 0;
2316	} else if (GRAPHICS_VER(i915) >= 8) {
2317		pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2318		pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2319		pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2320		pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2321	} else {
2322		pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2323		pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2324		pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2325		pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2326	}
2327	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2328
2329	drm_printf(p, "Video Turbo Mode: %s\n",
2330		   str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2331	drm_printf(p, "HW control enabled: %s\n",
2332		   str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2333	drm_printf(p, "SW control enabled: %s\n",
2334		   str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2335
2336	drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2337		   pm_ier, pm_imr, pm_mask);
2338	if (GRAPHICS_VER(i915) <= 10)
2339		drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2340			   pm_isr, pm_iir);
2341	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2342		   rps->pm_intrmsk_mbz);
2343	drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2344	drm_printf(p, "Render p-state ratio: %d\n",
2345		   (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2346	drm_printf(p, "Render p-state VID: %d\n",
2347		   gt_perf_status & 0xff);
2348	drm_printf(p, "Render p-state limit: %d\n",
2349		   rp_state_limits & 0xff);
2350	drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2351	drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2352	drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2353	drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2354	drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2355	drm_printf(p, "CAGF: %dMHz\n", cagf);
2356	drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2357		   rpcurupei,
2358		   intel_gt_pm_interval_to_ns(gt, rpcurupei));
2359	drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2360		   rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2361	drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2362		   rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2363	drm_printf(p, "Up threshold: %d%%\n",
2364		   rps->power.up_threshold);
2365	drm_printf(p, "RP UP EI: %d (%lldns)\n",
2366		   rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2367	drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2368		   rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2369
2370	drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2371		   rpcurdownei,
2372		   intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2373	drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2374		   rpcurdown,
2375		   intel_gt_pm_interval_to_ns(gt, rpcurdown));
2376	drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2377		   rpprevdown,
2378		   intel_gt_pm_interval_to_ns(gt, rpprevdown));
2379	drm_printf(p, "Down threshold: %d%%\n",
2380		   rps->power.down_threshold);
2381	drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2382		   rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2383	drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2384		   rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2385
2386	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2387		   intel_gpu_freq(rps, caps.min_freq));
2388	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2389		   intel_gpu_freq(rps, caps.rp1_freq));
2390	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2391		   intel_gpu_freq(rps, caps.rp0_freq));
2392	drm_printf(p, "Max overclocked frequency: %dMHz\n",
2393		   intel_gpu_freq(rps, rps->max_freq));
2394
2395	drm_printf(p, "Current freq: %d MHz\n",
2396		   intel_gpu_freq(rps, rps->cur_freq));
2397	drm_printf(p, "Actual freq: %d MHz\n", cagf);
2398	drm_printf(p, "Idle freq: %d MHz\n",
2399		   intel_gpu_freq(rps, rps->idle_freq));
2400	drm_printf(p, "Min freq: %d MHz\n",
2401		   intel_gpu_freq(rps, rps->min_freq));
2402	drm_printf(p, "Boost freq: %d MHz\n",
2403		   intel_gpu_freq(rps, rps->boost_freq));
2404	drm_printf(p, "Max freq: %d MHz\n",
2405		   intel_gpu_freq(rps, rps->max_freq));
2406	drm_printf(p,
2407		   "efficient (RPe) frequency: %d MHz\n",
2408		   intel_gpu_freq(rps, rps->efficient_freq));
2409}
2410
2411static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2412{
2413	struct intel_gt *gt = rps_to_gt(rps);
2414	struct intel_uncore *uncore = gt->uncore;
2415	struct intel_rps_freq_caps caps;
2416	u32 pm_mask;
2417
2418	gen6_rps_get_freq_caps(rps, &caps);
2419	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2420
2421	drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2422	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2423		   rps->pm_intrmsk_mbz);
2424	drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2425	drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2426	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2427		   intel_gpu_freq(rps, caps.min_freq));
2428	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2429		   intel_gpu_freq(rps, caps.rp1_freq));
2430	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2431		   intel_gpu_freq(rps, caps.rp0_freq));
2432	drm_printf(p, "Current freq: %d MHz\n",
2433		   intel_rps_get_requested_frequency(rps));
2434	drm_printf(p, "Actual freq: %d MHz\n",
2435		   intel_rps_read_actual_frequency(rps));
2436	drm_printf(p, "Min freq: %d MHz\n",
2437		   intel_rps_get_min_frequency(rps));
2438	drm_printf(p, "Boost freq: %d MHz\n",
2439		   intel_rps_get_boost_frequency(rps));
2440	drm_printf(p, "Max freq: %d MHz\n",
2441		   intel_rps_get_max_frequency(rps));
2442	drm_printf(p,
2443		   "efficient (RPe) frequency: %d MHz\n",
2444		   intel_gpu_freq(rps, caps.rp1_freq));
2445}
2446
2447void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2448{
2449	if (rps_uses_slpc(rps))
2450		return slpc_frequency_dump(rps, p);
2451	else
2452		return rps_frequency_dump(rps, p);
2453}
2454
2455static int set_max_freq(struct intel_rps *rps, u32 val)
2456{
2457	struct drm_i915_private *i915 = rps_to_i915(rps);
2458	int ret = 0;
2459
2460	mutex_lock(&rps->lock);
2461
2462	val = intel_freq_opcode(rps, val);
2463	if (val < rps->min_freq ||
2464	    val > rps->max_freq ||
2465	    val < rps->min_freq_softlimit) {
2466		ret = -EINVAL;
2467		goto unlock;
2468	}
2469
2470	if (val > rps->rp0_freq)
2471		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2472			intel_gpu_freq(rps, val));
2473
2474	rps->max_freq_softlimit = val;
2475
2476	val = clamp_t(int, rps->cur_freq,
2477		      rps->min_freq_softlimit,
2478		      rps->max_freq_softlimit);
2479
2480	/*
2481	 * We still need *_set_rps to process the new max_delay and
2482	 * update the interrupt limits and PMINTRMSK even though
2483	 * frequency request may be unchanged.
2484	 */
2485	intel_rps_set(rps, val);
2486
2487unlock:
2488	mutex_unlock(&rps->lock);
2489
2490	return ret;
2491}
2492
2493int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2494{
2495	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2496
2497	if (rps_uses_slpc(rps))
2498		return intel_guc_slpc_set_max_freq(slpc, val);
2499	else
2500		return set_max_freq(rps, val);
2501}
2502
2503u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2504{
2505	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2506
2507	if (rps_uses_slpc(rps))
2508		return slpc->min_freq_softlimit;
2509	else
2510		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2511}
2512
2513/**
2514 * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2515 * @rps: the intel_rps structure
2516 *
2517 * Returns the min frequency in a raw format. In newer platforms raw is in
2518 * units of 50 MHz.
2519 */
2520u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2521{
2522	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2523	u32 freq;
2524
2525	if (rps_uses_slpc(rps)) {
2526		return DIV_ROUND_CLOSEST(slpc->min_freq,
2527					 GT_FREQUENCY_MULTIPLIER);
2528	} else {
2529		freq = rps->min_freq;
2530		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2531			/* Convert GT frequency to 50 MHz units */
2532			freq /= GEN9_FREQ_SCALER;
2533		}
2534		return freq;
2535	}
2536}
2537
2538static int set_min_freq(struct intel_rps *rps, u32 val)
2539{
2540	int ret = 0;
2541
2542	mutex_lock(&rps->lock);
2543
2544	val = intel_freq_opcode(rps, val);
2545	if (val < rps->min_freq ||
2546	    val > rps->max_freq ||
2547	    val > rps->max_freq_softlimit) {
2548		ret = -EINVAL;
2549		goto unlock;
2550	}
2551
2552	rps->min_freq_softlimit = val;
2553
2554	val = clamp_t(int, rps->cur_freq,
2555		      rps->min_freq_softlimit,
2556		      rps->max_freq_softlimit);
2557
2558	/*
2559	 * We still need *_set_rps to process the new min_delay and
2560	 * update the interrupt limits and PMINTRMSK even though
2561	 * frequency request may be unchanged.
2562	 */
2563	intel_rps_set(rps, val);
2564
2565unlock:
2566	mutex_unlock(&rps->lock);
2567
2568	return ret;
2569}
2570
2571int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2572{
2573	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2574
2575	if (rps_uses_slpc(rps))
2576		return intel_guc_slpc_set_min_freq(slpc, val);
2577	else
2578		return set_min_freq(rps, val);
2579}
2580
2581u8 intel_rps_get_up_threshold(struct intel_rps *rps)
2582{
2583	return rps->power.up_threshold;
2584}
2585
2586static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
2587{
2588	int ret;
2589
2590	if (val > 100)
2591		return -EINVAL;
2592
2593	ret = mutex_lock_interruptible(&rps->lock);
2594	if (ret)
2595		return ret;
2596
2597	if (*threshold == val)
2598		goto out_unlock;
2599
2600	*threshold = val;
2601
2602	/* Force reset. */
2603	rps->last_freq = -1;
2604	mutex_lock(&rps->power.mutex);
2605	rps->power.mode = -1;
2606	mutex_unlock(&rps->power.mutex);
2607
2608	intel_rps_set(rps, clamp(rps->cur_freq,
2609				 rps->min_freq_softlimit,
2610				 rps->max_freq_softlimit));
2611
2612out_unlock:
2613	mutex_unlock(&rps->lock);
2614
2615	return ret;
2616}
2617
2618int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
2619{
2620	return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
2621}
2622
2623u8 intel_rps_get_down_threshold(struct intel_rps *rps)
2624{
2625	return rps->power.down_threshold;
2626}
2627
2628int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
2629{
2630	return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
2631}
2632
2633static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2634{
2635	struct intel_uncore *uncore = rps_to_uncore(rps);
2636	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2637
2638	/* Allow punit to process software requests */
2639	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2640}
2641
2642void intel_rps_raise_unslice(struct intel_rps *rps)
2643{
2644	struct intel_uncore *uncore = rps_to_uncore(rps);
2645
2646	mutex_lock(&rps->lock);
2647
2648	if (rps_uses_slpc(rps)) {
2649		/* RP limits have not been initialized yet for SLPC path */
2650		struct intel_rps_freq_caps caps;
2651
2652		gen6_rps_get_freq_caps(rps, &caps);
2653
2654		intel_rps_set_manual(rps, true);
2655		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2656				   ((caps.rp0_freq <<
2657				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2658				   GEN9_IGNORE_SLICE_RATIO));
2659		intel_rps_set_manual(rps, false);
2660	} else {
2661		intel_rps_set(rps, rps->rp0_freq);
2662	}
2663
2664	mutex_unlock(&rps->lock);
2665}
2666
2667void intel_rps_lower_unslice(struct intel_rps *rps)
2668{
2669	struct intel_uncore *uncore = rps_to_uncore(rps);
2670
2671	mutex_lock(&rps->lock);
2672
2673	if (rps_uses_slpc(rps)) {
2674		/* RP limits have not been initialized yet for SLPC path */
2675		struct intel_rps_freq_caps caps;
2676
2677		gen6_rps_get_freq_caps(rps, &caps);
2678
2679		intel_rps_set_manual(rps, true);
2680		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2681				   ((caps.min_freq <<
2682				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2683				   GEN9_IGNORE_SLICE_RATIO));
2684		intel_rps_set_manual(rps, false);
2685	} else {
2686		intel_rps_set(rps, rps->min_freq);
2687	}
2688
2689	mutex_unlock(&rps->lock);
2690}
2691
2692static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2693{
2694	struct intel_gt *gt = rps_to_gt(rps);
2695	intel_wakeref_t wakeref;
2696	u32 val;
2697
2698	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2699		val = intel_uncore_read(gt->uncore, reg32);
2700
2701	return val;
2702}
2703
2704bool rps_read_mask_mmio(struct intel_rps *rps,
2705			i915_reg_t reg32, u32 mask)
2706{
2707	return rps_read_mmio(rps, reg32) & mask;
2708}
2709
2710/* External interface for intel_ips.ko */
2711
2712static struct drm_i915_private __rcu *ips_mchdev;
2713
2714/*
2715 * Tells the intel_ips driver that the i915 driver is now loaded, if
2716 * IPS got loaded first.
2717 *
2718 * This awkward dance is so that neither module has to depend on the
2719 * other in order for IPS to do the appropriate communication of
2720 * GPU turbo limits to i915.
2721 */
2722static void
2723ips_ping_for_i915_load(void)
2724{
2725	void (*link)(void);
2726
2727	link = symbol_get(ips_link_to_i915_driver);
2728	if (link) {
2729		link();
2730		symbol_put(ips_link_to_i915_driver);
2731	}
2732}
2733
2734void intel_rps_driver_register(struct intel_rps *rps)
2735{
2736	struct intel_gt *gt = rps_to_gt(rps);
2737
2738	/*
2739	 * We only register the i915 ips part with intel-ips once everything is
2740	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2741	 */
2742	if (GRAPHICS_VER(gt->i915) == 5) {
2743		GEM_BUG_ON(ips_mchdev);
2744		rcu_assign_pointer(ips_mchdev, gt->i915);
2745		ips_ping_for_i915_load();
2746	}
2747}
2748
2749void intel_rps_driver_unregister(struct intel_rps *rps)
2750{
2751	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2752		rcu_assign_pointer(ips_mchdev, NULL);
2753}
2754
2755static struct drm_i915_private *mchdev_get(void)
2756{
2757	struct drm_i915_private *i915;
2758
2759	rcu_read_lock();
2760	i915 = rcu_dereference(ips_mchdev);
2761	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2762		i915 = NULL;
2763	rcu_read_unlock();
2764
2765	return i915;
2766}
2767
2768/**
2769 * i915_read_mch_val - return value for IPS use
2770 *
2771 * Calculate and return a value for the IPS driver to use when deciding whether
2772 * we have thermal and power headroom to increase CPU or GPU power budget.
2773 */
2774unsigned long i915_read_mch_val(void)
2775{
2776	struct drm_i915_private *i915;
2777	unsigned long chipset_val = 0;
2778	unsigned long graphics_val = 0;
2779	intel_wakeref_t wakeref;
2780
2781	i915 = mchdev_get();
2782	if (!i915)
2783		return 0;
2784
2785	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2786		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2787
2788		spin_lock_irq(&mchdev_lock);
2789		chipset_val = __ips_chipset_val(ips);
2790		graphics_val = __ips_gfx_val(ips);
2791		spin_unlock_irq(&mchdev_lock);
2792	}
2793
2794	drm_dev_put(&i915->drm);
2795	return chipset_val + graphics_val;
2796}
2797EXPORT_SYMBOL_GPL(i915_read_mch_val);
2798
2799/**
2800 * i915_gpu_raise - raise GPU frequency limit
2801 *
2802 * Raise the limit; IPS indicates we have thermal headroom.
2803 */
2804bool i915_gpu_raise(void)
2805{
2806	struct drm_i915_private *i915;
2807	struct intel_rps *rps;
2808
2809	i915 = mchdev_get();
2810	if (!i915)
2811		return false;
2812
2813	rps = &to_gt(i915)->rps;
2814
2815	spin_lock_irq(&mchdev_lock);
2816	if (rps->max_freq_softlimit < rps->max_freq)
2817		rps->max_freq_softlimit++;
2818	spin_unlock_irq(&mchdev_lock);
2819
2820	drm_dev_put(&i915->drm);
2821	return true;
2822}
2823EXPORT_SYMBOL_GPL(i915_gpu_raise);
2824
2825/**
2826 * i915_gpu_lower - lower GPU frequency limit
2827 *
2828 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2829 * frequency maximum.
2830 */
2831bool i915_gpu_lower(void)
2832{
2833	struct drm_i915_private *i915;
2834	struct intel_rps *rps;
2835
2836	i915 = mchdev_get();
2837	if (!i915)
2838		return false;
2839
2840	rps = &to_gt(i915)->rps;
2841
2842	spin_lock_irq(&mchdev_lock);
2843	if (rps->max_freq_softlimit > rps->min_freq)
2844		rps->max_freq_softlimit--;
2845	spin_unlock_irq(&mchdev_lock);
2846
2847	drm_dev_put(&i915->drm);
2848	return true;
2849}
2850EXPORT_SYMBOL_GPL(i915_gpu_lower);
2851
2852/**
2853 * i915_gpu_busy - indicate GPU business to IPS
2854 *
2855 * Tell the IPS driver whether or not the GPU is busy.
2856 */
2857bool i915_gpu_busy(void)
2858{
2859	struct drm_i915_private *i915;
2860	bool ret;
2861
2862	i915 = mchdev_get();
2863	if (!i915)
2864		return false;
2865
2866	ret = to_gt(i915)->awake;
2867
2868	drm_dev_put(&i915->drm);
2869	return ret;
2870}
2871EXPORT_SYMBOL_GPL(i915_gpu_busy);
2872
2873/**
2874 * i915_gpu_turbo_disable - disable graphics turbo
2875 *
2876 * Disable graphics turbo by resetting the max frequency and setting the
2877 * current frequency to the default.
2878 */
2879bool i915_gpu_turbo_disable(void)
2880{
2881	struct drm_i915_private *i915;
2882	struct intel_rps *rps;
2883	bool ret;
2884
2885	i915 = mchdev_get();
2886	if (!i915)
2887		return false;
2888
2889	rps = &to_gt(i915)->rps;
2890
2891	spin_lock_irq(&mchdev_lock);
2892	rps->max_freq_softlimit = rps->min_freq;
2893	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2894	spin_unlock_irq(&mchdev_lock);
2895
2896	drm_dev_put(&i915->drm);
2897	return ret;
2898}
2899EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2900
2901#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2902#include "selftest_rps.c"
2903#include "selftest_slpc.c"
2904#endif