Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2019 Intel Corporation
   4 */
   5
   6#include <linux/string_helpers.h>
   7
   8#include <drm/intel/i915_drm.h>
   9
  10#include "display/intel_display.h"
  11#include "display/intel_display_irq.h"
  12#include "i915_drv.h"
  13#include "i915_irq.h"
  14#include "i915_reg.h"
  15#include "intel_breadcrumbs.h"
  16#include "intel_gt.h"
  17#include "intel_gt_clock_utils.h"
  18#include "intel_gt_irq.h"
  19#include "intel_gt_pm.h"
  20#include "intel_gt_pm_irq.h"
  21#include "intel_gt_print.h"
  22#include "intel_gt_regs.h"
  23#include "intel_mchbar_regs.h"
  24#include "intel_pcode.h"
  25#include "intel_rps.h"
  26#include "vlv_sideband.h"
  27#include "../../../platform/x86/intel_ips.h"
  28
  29#define BUSY_MAX_EI	20u /* ms */
  30
  31/*
  32 * Lock protecting IPS related data structures
  33 */
  34static DEFINE_SPINLOCK(mchdev_lock);
  35
  36static struct intel_gt *rps_to_gt(struct intel_rps *rps)
  37{
  38	return container_of(rps, struct intel_gt, rps);
  39}
  40
  41static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
  42{
  43	return rps_to_gt(rps)->i915;
  44}
  45
  46static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
  47{
  48	return rps_to_gt(rps)->uncore;
  49}
  50
  51static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
  52{
  53	struct intel_gt *gt = rps_to_gt(rps);
  54
  55	return &gt_to_guc(gt)->slpc;
  56}
  57
  58static bool rps_uses_slpc(struct intel_rps *rps)
  59{
  60	struct intel_gt *gt = rps_to_gt(rps);
  61
  62	return intel_uc_uses_guc_slpc(&gt->uc);
  63}
  64
  65static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
  66{
  67	return mask & ~rps->pm_intrmsk_mbz;
  68}
  69
  70static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
  71{
  72	intel_uncore_write_fw(uncore, reg, val);
  73}
  74
  75static void rps_timer(struct timer_list *t)
  76{
  77	struct intel_rps *rps = from_timer(rps, t, timer);
  78	struct intel_gt *gt = rps_to_gt(rps);
  79	struct intel_engine_cs *engine;
  80	ktime_t dt, last, timestamp;
  81	enum intel_engine_id id;
  82	s64 max_busy[3] = {};
  83
  84	timestamp = 0;
  85	for_each_engine(engine, gt, id) {
  86		s64 busy;
  87		int i;
  88
  89		dt = intel_engine_get_busy_time(engine, &timestamp);
  90		last = engine->stats.rps;
  91		engine->stats.rps = dt;
  92
  93		busy = ktime_to_ns(ktime_sub(dt, last));
  94		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
  95			if (busy > max_busy[i])
  96				swap(busy, max_busy[i]);
  97		}
  98	}
  99	last = rps->pm_timestamp;
 100	rps->pm_timestamp = timestamp;
 101
 102	if (intel_rps_is_active(rps)) {
 103		s64 busy;
 104		int i;
 105
 106		dt = ktime_sub(timestamp, last);
 107
 108		/*
 109		 * Our goal is to evaluate each engine independently, so we run
 110		 * at the lowest clocks required to sustain the heaviest
 111		 * workload. However, a task may be split into sequential
 112		 * dependent operations across a set of engines, such that
 113		 * the independent contributions do not account for high load,
 114		 * but overall the task is GPU bound. For example, consider
 115		 * video decode on vcs followed by colour post-processing
 116		 * on vecs, followed by general post-processing on rcs.
 117		 * Since multi-engines being active does imply a single
 118		 * continuous workload across all engines, we hedge our
 119		 * bets by only contributing a factor of the distributed
 120		 * load into our busyness calculation.
 121		 */
 122		busy = max_busy[0];
 123		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
 124			if (!max_busy[i])
 125				break;
 126
 127			busy += div_u64(max_busy[i], 1 << i);
 128		}
 129		GT_TRACE(gt,
 130			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
 131			 busy, (int)div64_u64(100 * busy, dt),
 132			 max_busy[0], max_busy[1], max_busy[2],
 133			 rps->pm_interval);
 134
 135		if (100 * busy > rps->power.up_threshold * dt &&
 136		    rps->cur_freq < rps->max_freq_softlimit) {
 137			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
 138			rps->pm_interval = 1;
 139			queue_work(gt->i915->unordered_wq, &rps->work);
 140		} else if (100 * busy < rps->power.down_threshold * dt &&
 141			   rps->cur_freq > rps->min_freq_softlimit) {
 142			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
 143			rps->pm_interval = 1;
 144			queue_work(gt->i915->unordered_wq, &rps->work);
 145		} else {
 146			rps->last_adj = 0;
 147		}
 148
 149		mod_timer(&rps->timer,
 150			  jiffies + msecs_to_jiffies(rps->pm_interval));
 151		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
 152	}
 153}
 154
 155static void rps_start_timer(struct intel_rps *rps)
 156{
 157	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
 158	rps->pm_interval = 1;
 159	mod_timer(&rps->timer, jiffies + 1);
 160}
 161
 162static void rps_stop_timer(struct intel_rps *rps)
 163{
 164	del_timer_sync(&rps->timer);
 165	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
 166	cancel_work_sync(&rps->work);
 167}
 168
 169static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
 170{
 171	u32 mask = 0;
 172
 173	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
 174	if (val > rps->min_freq_softlimit)
 175		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
 176			 GEN6_PM_RP_DOWN_THRESHOLD |
 177			 GEN6_PM_RP_DOWN_TIMEOUT);
 178
 179	if (val < rps->max_freq_softlimit)
 180		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
 181
 182	mask &= rps->pm_events;
 183
 184	return rps_pm_sanitize_mask(rps, ~mask);
 185}
 186
 187static void rps_reset_ei(struct intel_rps *rps)
 188{
 189	memset(&rps->ei, 0, sizeof(rps->ei));
 190}
 191
 192static void rps_enable_interrupts(struct intel_rps *rps)
 193{
 194	struct intel_gt *gt = rps_to_gt(rps);
 195
 196	GEM_BUG_ON(rps_uses_slpc(rps));
 197
 198	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
 199		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
 200
 201	rps_reset_ei(rps);
 202
 203	spin_lock_irq(gt->irq_lock);
 204	gen6_gt_pm_enable_irq(gt, rps->pm_events);
 205	spin_unlock_irq(gt->irq_lock);
 206
 207	intel_uncore_write(gt->uncore,
 208			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
 209}
 210
 211static void gen6_rps_reset_interrupts(struct intel_rps *rps)
 212{
 213	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
 214}
 215
 216static void gen11_rps_reset_interrupts(struct intel_rps *rps)
 217{
 218	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
 219		;
 220}
 221
 222static void rps_reset_interrupts(struct intel_rps *rps)
 223{
 224	struct intel_gt *gt = rps_to_gt(rps);
 225
 226	spin_lock_irq(gt->irq_lock);
 227	if (GRAPHICS_VER(gt->i915) >= 11)
 228		gen11_rps_reset_interrupts(rps);
 229	else
 230		gen6_rps_reset_interrupts(rps);
 231
 232	rps->pm_iir = 0;
 233	spin_unlock_irq(gt->irq_lock);
 234}
 235
 236static void rps_disable_interrupts(struct intel_rps *rps)
 237{
 238	struct intel_gt *gt = rps_to_gt(rps);
 239
 240	intel_uncore_write(gt->uncore,
 241			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
 242
 243	spin_lock_irq(gt->irq_lock);
 244	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 245	spin_unlock_irq(gt->irq_lock);
 246
 247	intel_synchronize_irq(gt->i915);
 248
 249	/*
 250	 * Now that we will not be generating any more work, flush any
 251	 * outstanding tasks. As we are called on the RPS idle path,
 252	 * we will reset the GPU to minimum frequencies, so the current
 253	 * state of the worker can be discarded.
 254	 */
 255	cancel_work_sync(&rps->work);
 256
 257	rps_reset_interrupts(rps);
 258	GT_TRACE(gt, "interrupts:off\n");
 259}
 260
 261static const struct cparams {
 262	u16 i;
 263	u16 t;
 264	u16 m;
 265	u16 c;
 266} cparams[] = {
 267	{ 1, 1333, 301, 28664 },
 268	{ 1, 1067, 294, 24460 },
 269	{ 1, 800, 294, 25192 },
 270	{ 0, 1333, 276, 27605 },
 271	{ 0, 1067, 276, 27605 },
 272	{ 0, 800, 231, 23784 },
 273};
 274
 275static void gen5_rps_init(struct intel_rps *rps)
 276{
 277	struct drm_i915_private *i915 = rps_to_i915(rps);
 278	struct intel_uncore *uncore = rps_to_uncore(rps);
 279	u8 fmax, fmin, fstart;
 280	u32 rgvmodectl;
 281	int c_m, i;
 282
 283	if (i915->fsb_freq <= 3200000)
 284		c_m = 0;
 285	else if (i915->fsb_freq <= 4800000)
 286		c_m = 1;
 287	else
 288		c_m = 2;
 289
 290	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
 291		if (cparams[i].i == c_m &&
 292		    cparams[i].t == DIV_ROUND_CLOSEST(i915->mem_freq, 1000)) {
 293			rps->ips.m = cparams[i].m;
 294			rps->ips.c = cparams[i].c;
 295			break;
 296		}
 297	}
 298
 299	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
 300
 301	/* Set up min, max, and cur for interrupt handling */
 302	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
 303	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
 304	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
 305		MEMMODE_FSTART_SHIFT;
 306	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
 307		fmax, fmin, fstart);
 308
 309	rps->min_freq = fmax;
 310	rps->efficient_freq = fstart;
 311	rps->max_freq = fmin;
 312}
 313
 314static unsigned long
 315__ips_chipset_val(struct intel_ips *ips)
 316{
 317	struct intel_uncore *uncore =
 318		rps_to_uncore(container_of(ips, struct intel_rps, ips));
 319	unsigned long now = jiffies_to_msecs(jiffies), dt;
 320	unsigned long result;
 321	u64 total, delta;
 322
 323	lockdep_assert_held(&mchdev_lock);
 324
 325	/*
 326	 * Prevent division-by-zero if we are asking too fast.
 327	 * Also, we don't get interesting results if we are polling
 328	 * faster than once in 10ms, so just return the saved value
 329	 * in such cases.
 330	 */
 331	dt = now - ips->last_time1;
 332	if (dt <= 10)
 333		return ips->chipset_power;
 334
 335	/* FIXME: handle per-counter overflow */
 336	total = intel_uncore_read(uncore, DMIEC);
 337	total += intel_uncore_read(uncore, DDREC);
 338	total += intel_uncore_read(uncore, CSIEC);
 339
 340	delta = total - ips->last_count1;
 341
 342	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
 343
 344	ips->last_count1 = total;
 345	ips->last_time1 = now;
 346
 347	ips->chipset_power = result;
 348
 349	return result;
 350}
 351
 352static unsigned long ips_mch_val(struct intel_uncore *uncore)
 353{
 354	unsigned int m, x, b;
 355	u32 tsfs;
 356
 357	tsfs = intel_uncore_read(uncore, TSFS);
 358	x = intel_uncore_read8(uncore, TR1);
 359
 360	b = tsfs & TSFS_INTR_MASK;
 361	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
 362
 363	return m * x / 127 - b;
 364}
 365
 366static int _pxvid_to_vd(u8 pxvid)
 367{
 368	if (pxvid == 0)
 369		return 0;
 370
 371	if (pxvid >= 8 && pxvid < 31)
 372		pxvid = 31;
 373
 374	return (pxvid + 2) * 125;
 375}
 376
 377static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
 378{
 379	const int vd = _pxvid_to_vd(pxvid);
 380
 381	if (INTEL_INFO(i915)->is_mobile)
 382		return max(vd - 1125, 0);
 383
 384	return vd;
 385}
 386
 387static void __gen5_ips_update(struct intel_ips *ips)
 388{
 389	struct intel_uncore *uncore =
 390		rps_to_uncore(container_of(ips, struct intel_rps, ips));
 391	u64 now, delta, dt;
 392	u32 count;
 393
 394	lockdep_assert_held(&mchdev_lock);
 395
 396	now = ktime_get_raw_ns();
 397	dt = now - ips->last_time2;
 398	do_div(dt, NSEC_PER_MSEC);
 399
 400	/* Don't divide by 0 */
 401	if (dt <= 10)
 402		return;
 403
 404	count = intel_uncore_read(uncore, GFXEC);
 405	delta = count - ips->last_count2;
 406
 407	ips->last_count2 = count;
 408	ips->last_time2 = now;
 409
 410	/* More magic constants... */
 411	ips->gfx_power = div_u64(delta * 1181, dt * 10);
 412}
 413
 414static void gen5_rps_update(struct intel_rps *rps)
 415{
 416	spin_lock_irq(&mchdev_lock);
 417	__gen5_ips_update(&rps->ips);
 418	spin_unlock_irq(&mchdev_lock);
 419}
 420
 421static unsigned int gen5_invert_freq(struct intel_rps *rps,
 422				     unsigned int val)
 423{
 424	/* Invert the frequency bin into an ips delay */
 425	val = rps->max_freq - val;
 426	val = rps->min_freq + val;
 427
 428	return val;
 429}
 430
 431static int __gen5_rps_set(struct intel_rps *rps, u8 val)
 432{
 433	struct intel_uncore *uncore = rps_to_uncore(rps);
 434	u16 rgvswctl;
 435
 436	lockdep_assert_held(&mchdev_lock);
 437
 438	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
 439	if (rgvswctl & MEMCTL_CMD_STS) {
 440		drm_dbg(&rps_to_i915(rps)->drm,
 441			"gpu busy, RCS change rejected\n");
 442		return -EBUSY; /* still busy with another command */
 443	}
 444
 445	/* Invert the frequency bin into an ips delay */
 446	val = gen5_invert_freq(rps, val);
 447
 448	rgvswctl =
 449		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
 450		(val << MEMCTL_FREQ_SHIFT) |
 451		MEMCTL_SFCAVM;
 452	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
 453	intel_uncore_posting_read16(uncore, MEMSWCTL);
 454
 455	rgvswctl |= MEMCTL_CMD_STS;
 456	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
 457
 458	return 0;
 459}
 460
 461static int gen5_rps_set(struct intel_rps *rps, u8 val)
 462{
 463	int err;
 464
 465	spin_lock_irq(&mchdev_lock);
 466	err = __gen5_rps_set(rps, val);
 467	spin_unlock_irq(&mchdev_lock);
 468
 469	return err;
 470}
 471
 472static unsigned long intel_pxfreq(u32 vidfreq)
 473{
 474	int div = (vidfreq & 0x3f0000) >> 16;
 475	int post = (vidfreq & 0x3000) >> 12;
 476	int pre = (vidfreq & 0x7);
 477
 478	if (!pre)
 479		return 0;
 480
 481	return div * 133333 / (pre << post);
 482}
 483
 484static unsigned int init_emon(struct intel_uncore *uncore)
 485{
 486	u8 pxw[16];
 487	int i;
 488
 489	/* Disable to program */
 490	intel_uncore_write(uncore, ECR, 0);
 491	intel_uncore_posting_read(uncore, ECR);
 492
 493	/* Program energy weights for various events */
 494	intel_uncore_write(uncore, SDEW, 0x15040d00);
 495	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
 496	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
 497	intel_uncore_write(uncore, CSIEW2, 0x04000004);
 498
 499	for (i = 0; i < 5; i++)
 500		intel_uncore_write(uncore, PEW(i), 0);
 501	for (i = 0; i < 3; i++)
 502		intel_uncore_write(uncore, DEW(i), 0);
 503
 504	/* Program P-state weights to account for frequency power adjustment */
 505	for (i = 0; i < 16; i++) {
 506		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
 507		unsigned int freq = intel_pxfreq(pxvidfreq);
 508		unsigned int vid =
 509			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
 510		unsigned int val;
 511
 512		val = vid * vid * freq / 1000 * 255;
 513		val /= 127 * 127 * 900;
 514
 515		pxw[i] = val;
 516	}
 517	/* Render standby states get 0 weight */
 518	pxw[14] = 0;
 519	pxw[15] = 0;
 520
 521	for (i = 0; i < 4; i++) {
 522		intel_uncore_write(uncore, PXW(i),
 523				   pxw[i * 4 + 0] << 24 |
 524				   pxw[i * 4 + 1] << 16 |
 525				   pxw[i * 4 + 2] <<  8 |
 526				   pxw[i * 4 + 3] <<  0);
 527	}
 528
 529	/* Adjust magic regs to magic values (more experimental results) */
 530	intel_uncore_write(uncore, OGW0, 0);
 531	intel_uncore_write(uncore, OGW1, 0);
 532	intel_uncore_write(uncore, EG0, 0x00007f00);
 533	intel_uncore_write(uncore, EG1, 0x0000000e);
 534	intel_uncore_write(uncore, EG2, 0x000e0000);
 535	intel_uncore_write(uncore, EG3, 0x68000300);
 536	intel_uncore_write(uncore, EG4, 0x42000000);
 537	intel_uncore_write(uncore, EG5, 0x00140031);
 538	intel_uncore_write(uncore, EG6, 0);
 539	intel_uncore_write(uncore, EG7, 0);
 540
 541	for (i = 0; i < 8; i++)
 542		intel_uncore_write(uncore, PXWL(i), 0);
 543
 544	/* Enable PMON + select events */
 545	intel_uncore_write(uncore, ECR, 0x80000019);
 546
 547	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
 548}
 549
 550static bool gen5_rps_enable(struct intel_rps *rps)
 551{
 552	struct drm_i915_private *i915 = rps_to_i915(rps);
 553	struct intel_uncore *uncore = rps_to_uncore(rps);
 554	u8 fstart, vstart;
 555	u32 rgvmodectl;
 556
 557	spin_lock_irq(&mchdev_lock);
 558
 559	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
 560
 561	/* Enable temp reporting */
 562	intel_uncore_write16(uncore, PMMISC,
 563			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
 564	intel_uncore_write16(uncore, TSC1,
 565			     intel_uncore_read16(uncore, TSC1) | TSE);
 566
 567	/* 100ms RC evaluation intervals */
 568	intel_uncore_write(uncore, RCUPEI, 100000);
 569	intel_uncore_write(uncore, RCDNEI, 100000);
 570
 571	/* Set max/min thresholds to 90ms and 80ms respectively */
 572	intel_uncore_write(uncore, RCBMAXAVG, 90000);
 573	intel_uncore_write(uncore, RCBMINAVG, 80000);
 574
 575	intel_uncore_write(uncore, MEMIHYST, 1);
 576
 577	/* Set up min, max, and cur for interrupt handling */
 578	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
 579		MEMMODE_FSTART_SHIFT;
 580
 581	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
 582		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
 583
 584	intel_uncore_write(uncore,
 585			   MEMINTREN,
 586			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
 587
 588	intel_uncore_write(uncore, VIDSTART, vstart);
 589	intel_uncore_posting_read(uncore, VIDSTART);
 590
 591	rgvmodectl |= MEMMODE_SWMODE_EN;
 592	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
 593
 594	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
 595			     MEMCTL_CMD_STS) == 0, 10))
 596		drm_err(&uncore->i915->drm,
 597			"stuck trying to change perf mode\n");
 598	mdelay(1);
 599
 600	__gen5_rps_set(rps, rps->cur_freq);
 601
 602	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
 603	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
 604	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
 605	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
 606
 607	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
 608	rps->ips.last_time2 = ktime_get_raw_ns();
 609
 610	spin_lock(&i915->irq_lock);
 611	ilk_enable_display_irq(i915, DE_PCU_EVENT);
 612	spin_unlock(&i915->irq_lock);
 613
 614	spin_unlock_irq(&mchdev_lock);
 615
 616	rps->ips.corr = init_emon(uncore);
 617
 618	return true;
 619}
 620
 621static void gen5_rps_disable(struct intel_rps *rps)
 622{
 623	struct drm_i915_private *i915 = rps_to_i915(rps);
 624	struct intel_uncore *uncore = rps_to_uncore(rps);
 625	u16 rgvswctl;
 626
 627	spin_lock_irq(&mchdev_lock);
 628
 629	spin_lock(&i915->irq_lock);
 630	ilk_disable_display_irq(i915, DE_PCU_EVENT);
 631	spin_unlock(&i915->irq_lock);
 632
 633	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
 634
 635	/* Ack interrupts, disable EFC interrupt */
 636	intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
 637	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
 638
 639	/* Go back to the starting frequency */
 640	__gen5_rps_set(rps, rps->idle_freq);
 641	mdelay(1);
 642	rgvswctl |= MEMCTL_CMD_STS;
 643	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
 644	mdelay(1);
 645
 646	spin_unlock_irq(&mchdev_lock);
 647}
 648
 649static u32 rps_limits(struct intel_rps *rps, u8 val)
 650{
 651	u32 limits;
 652
 653	/*
 654	 * Only set the down limit when we've reached the lowest level to avoid
 655	 * getting more interrupts, otherwise leave this clear. This prevents a
 656	 * race in the hw when coming out of rc6: There's a tiny window where
 657	 * the hw runs at the minimal clock before selecting the desired
 658	 * frequency, if the down threshold expires in that window we will not
 659	 * receive a down interrupt.
 660	 */
 661	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
 662		limits = rps->max_freq_softlimit << 23;
 663		if (val <= rps->min_freq_softlimit)
 664			limits |= rps->min_freq_softlimit << 14;
 665	} else {
 666		limits = rps->max_freq_softlimit << 24;
 667		if (val <= rps->min_freq_softlimit)
 668			limits |= rps->min_freq_softlimit << 16;
 669	}
 670
 671	return limits;
 672}
 673
 674static void rps_set_power(struct intel_rps *rps, int new_power)
 675{
 676	struct intel_gt *gt = rps_to_gt(rps);
 677	struct intel_uncore *uncore = gt->uncore;
 678	u32 ei_up = 0, ei_down = 0;
 679
 680	lockdep_assert_held(&rps->power.mutex);
 681
 682	if (new_power == rps->power.mode)
 683		return;
 684
 685	/* Note the units here are not exactly 1us, but 1280ns. */
 686	switch (new_power) {
 687	case LOW_POWER:
 688		ei_up = 16000;
 689		ei_down = 32000;
 690		break;
 691
 692	case BETWEEN:
 693		ei_up = 13000;
 694		ei_down = 32000;
 695		break;
 696
 697	case HIGH_POWER:
 698		ei_up = 10000;
 699		ei_down = 32000;
 700		break;
 701	}
 702
 703	/* When byt can survive without system hang with dynamic
 704	 * sw freq adjustments, this restriction can be lifted.
 705	 */
 706	if (IS_VALLEYVIEW(gt->i915))
 707		goto skip_hw_write;
 708
 709	GT_TRACE(gt,
 710		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
 711		 new_power,
 712		 rps->power.up_threshold, ei_up,
 713		 rps->power.down_threshold, ei_down);
 714
 715	set(uncore, GEN6_RP_UP_EI,
 716	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
 717	set(uncore, GEN6_RP_UP_THRESHOLD,
 718	    intel_gt_ns_to_pm_interval(gt,
 719				       ei_up * rps->power.up_threshold * 10));
 720
 721	set(uncore, GEN6_RP_DOWN_EI,
 722	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
 723	set(uncore, GEN6_RP_DOWN_THRESHOLD,
 724	    intel_gt_ns_to_pm_interval(gt,
 725				       ei_down *
 726				       rps->power.down_threshold * 10));
 727
 728	set(uncore, GEN6_RP_CONTROL,
 729	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
 730	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
 731	    GEN6_RP_MEDIA_IS_GFX |
 732	    GEN6_RP_ENABLE |
 733	    GEN6_RP_UP_BUSY_AVG |
 734	    GEN6_RP_DOWN_IDLE_AVG);
 735
 736skip_hw_write:
 737	rps->power.mode = new_power;
 738}
 739
 740static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
 741{
 742	int new_power;
 743
 744	new_power = rps->power.mode;
 745	switch (rps->power.mode) {
 746	case LOW_POWER:
 747		if (val > rps->efficient_freq + 1 &&
 748		    val > rps->cur_freq)
 749			new_power = BETWEEN;
 750		break;
 751
 752	case BETWEEN:
 753		if (val <= rps->efficient_freq &&
 754		    val < rps->cur_freq)
 755			new_power = LOW_POWER;
 756		else if (val >= rps->rp0_freq &&
 757			 val > rps->cur_freq)
 758			new_power = HIGH_POWER;
 759		break;
 760
 761	case HIGH_POWER:
 762		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
 763		    val < rps->cur_freq)
 764			new_power = BETWEEN;
 765		break;
 766	}
 767	/* Max/min bins are special */
 768	if (val <= rps->min_freq_softlimit)
 769		new_power = LOW_POWER;
 770	if (val >= rps->max_freq_softlimit)
 771		new_power = HIGH_POWER;
 772
 773	mutex_lock(&rps->power.mutex);
 774	if (rps->power.interactive)
 775		new_power = HIGH_POWER;
 776	rps_set_power(rps, new_power);
 777	mutex_unlock(&rps->power.mutex);
 778}
 779
 780void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
 781{
 782	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
 783		 str_yes_no(interactive));
 784
 785	mutex_lock(&rps->power.mutex);
 786	if (interactive) {
 787		if (!rps->power.interactive++ && intel_rps_is_active(rps))
 788			rps_set_power(rps, HIGH_POWER);
 789	} else {
 790		GEM_BUG_ON(!rps->power.interactive);
 791		rps->power.interactive--;
 792	}
 793	mutex_unlock(&rps->power.mutex);
 794}
 795
 796static int gen6_rps_set(struct intel_rps *rps, u8 val)
 797{
 798	struct intel_uncore *uncore = rps_to_uncore(rps);
 799	struct drm_i915_private *i915 = rps_to_i915(rps);
 800	u32 swreq;
 801
 802	GEM_BUG_ON(rps_uses_slpc(rps));
 803
 804	if (GRAPHICS_VER(i915) >= 9)
 805		swreq = GEN9_FREQUENCY(val);
 806	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
 807		swreq = HSW_FREQUENCY(val);
 808	else
 809		swreq = (GEN6_FREQUENCY(val) |
 810			 GEN6_OFFSET(0) |
 811			 GEN6_AGGRESSIVE_TURBO);
 812	set(uncore, GEN6_RPNSWREQ, swreq);
 813
 814	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
 815		 val, intel_gpu_freq(rps, val), swreq);
 816
 817	return 0;
 818}
 819
 820static int vlv_rps_set(struct intel_rps *rps, u8 val)
 821{
 822	struct drm_i915_private *i915 = rps_to_i915(rps);
 823	int err;
 824
 825	vlv_punit_get(i915);
 826	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
 827	vlv_punit_put(i915);
 828
 829	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
 830		 val, intel_gpu_freq(rps, val));
 831
 832	return err;
 833}
 834
 835static int rps_set(struct intel_rps *rps, u8 val, bool update)
 836{
 837	struct drm_i915_private *i915 = rps_to_i915(rps);
 838	int err;
 839
 840	if (val == rps->last_freq)
 841		return 0;
 842
 843	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
 844		err = vlv_rps_set(rps, val);
 845	else if (GRAPHICS_VER(i915) >= 6)
 846		err = gen6_rps_set(rps, val);
 847	else
 848		err = gen5_rps_set(rps, val);
 849	if (err)
 850		return err;
 851
 852	if (update && GRAPHICS_VER(i915) >= 6)
 853		gen6_rps_set_thresholds(rps, val);
 854	rps->last_freq = val;
 855
 856	return 0;
 857}
 858
 859void intel_rps_unpark(struct intel_rps *rps)
 860{
 861	if (!intel_rps_is_enabled(rps))
 862		return;
 863
 864	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
 865
 866	/*
 867	 * Use the user's desired frequency as a guide, but for better
 868	 * performance, jump directly to RPe as our starting frequency.
 869	 */
 870	mutex_lock(&rps->lock);
 871
 872	intel_rps_set_active(rps);
 873	intel_rps_set(rps,
 874		      clamp(rps->cur_freq,
 875			    rps->min_freq_softlimit,
 876			    rps->max_freq_softlimit));
 877
 878	mutex_unlock(&rps->lock);
 879
 880	rps->pm_iir = 0;
 881	if (intel_rps_has_interrupts(rps))
 882		rps_enable_interrupts(rps);
 883	if (intel_rps_uses_timer(rps))
 884		rps_start_timer(rps);
 885
 886	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
 887		gen5_rps_update(rps);
 888}
 889
 890void intel_rps_park(struct intel_rps *rps)
 891{
 892	int adj;
 893
 894	if (!intel_rps_is_enabled(rps))
 895		return;
 896
 897	if (!intel_rps_clear_active(rps))
 898		return;
 899
 900	if (intel_rps_uses_timer(rps))
 901		rps_stop_timer(rps);
 902	if (intel_rps_has_interrupts(rps))
 903		rps_disable_interrupts(rps);
 904
 905	if (rps->last_freq <= rps->idle_freq)
 906		return;
 907
 908	/*
 909	 * The punit delays the write of the frequency and voltage until it
 910	 * determines the GPU is awake. During normal usage we don't want to
 911	 * waste power changing the frequency if the GPU is sleeping (rc6).
 912	 * However, the GPU and driver is now idle and we do not want to delay
 913	 * switching to minimum voltage (reducing power whilst idle) as we do
 914	 * not expect to be woken in the near future and so must flush the
 915	 * change by waking the device.
 916	 *
 917	 * We choose to take the media powerwell (either would do to trick the
 918	 * punit into committing the voltage change) as that takes a lot less
 919	 * power than the render powerwell.
 920	 */
 921	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
 922	rps_set(rps, rps->idle_freq, false);
 923	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
 924
 925	/*
 926	 * Since we will try and restart from the previously requested
 927	 * frequency on unparking, treat this idle point as a downclock
 928	 * interrupt and reduce the frequency for resume. If we park/unpark
 929	 * more frequently than the rps worker can run, we will not respond
 930	 * to any EI and never see a change in frequency.
 931	 *
 932	 * (Note we accommodate Cherryview's limitation of only using an
 933	 * even bin by applying it to all.)
 934	 */
 935	adj = rps->last_adj;
 936	if (adj < 0)
 937		adj *= 2;
 938	else /* CHV needs even encode values */
 939		adj = -2;
 940	rps->last_adj = adj;
 941	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
 942	if (rps->cur_freq < rps->efficient_freq) {
 943		rps->cur_freq = rps->efficient_freq;
 944		rps->last_adj = 0;
 945	}
 946
 947	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
 948}
 949
 950u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
 951{
 952	struct intel_guc_slpc *slpc;
 953
 954	if (rps_uses_slpc(rps)) {
 955		slpc = rps_to_slpc(rps);
 956
 957		return slpc->boost_freq;
 958	} else {
 959		return intel_gpu_freq(rps, rps->boost_freq);
 960	}
 961}
 962
 963static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
 964{
 965	bool boost = false;
 966
 967	/* Validate against (static) hardware limits */
 968	val = intel_freq_opcode(rps, val);
 969	if (val < rps->min_freq || val > rps->max_freq)
 970		return -EINVAL;
 971
 972	mutex_lock(&rps->lock);
 973	if (val != rps->boost_freq) {
 974		rps->boost_freq = val;
 975		boost = atomic_read(&rps->num_waiters);
 976	}
 977	mutex_unlock(&rps->lock);
 978	if (boost)
 979		queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
 980
 981	return 0;
 982}
 983
 984int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
 985{
 986	struct intel_guc_slpc *slpc;
 987
 988	if (rps_uses_slpc(rps)) {
 989		slpc = rps_to_slpc(rps);
 990
 991		return intel_guc_slpc_set_boost_freq(slpc, freq);
 992	} else {
 993		return rps_set_boost_freq(rps, freq);
 994	}
 995}
 996
 997void intel_rps_dec_waiters(struct intel_rps *rps)
 998{
 999	struct intel_guc_slpc *slpc;
1000
1001	if (rps_uses_slpc(rps)) {
1002		slpc = rps_to_slpc(rps);
1003
1004		intel_guc_slpc_dec_waiters(slpc);
1005	} else {
1006		atomic_dec(&rps->num_waiters);
1007	}
1008}
1009
1010void intel_rps_boost(struct i915_request *rq)
1011{
1012	struct intel_guc_slpc *slpc;
1013
1014	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1015		return;
1016
1017	/* Waitboost is not needed for contexts marked with a Freq hint */
1018	if (test_bit(CONTEXT_LOW_LATENCY, &rq->context->flags))
1019		return;
1020
1021	/* Serializes with i915_request_retire() */
1022	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1023		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1024
1025		if (rps_uses_slpc(rps)) {
1026			slpc = rps_to_slpc(rps);
1027
1028			if (slpc->min_freq_softlimit >= slpc->boost_freq)
1029				return;
1030
1031			/* Return if old value is non zero */
1032			if (!atomic_fetch_inc(&slpc->num_waiters)) {
1033				GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1034					 rq->fence.context, rq->fence.seqno);
1035				queue_work(rps_to_gt(rps)->i915->unordered_wq,
1036					   &slpc->boost_work);
1037			}
1038
1039			return;
1040		}
1041
1042		if (atomic_fetch_inc(&rps->num_waiters))
1043			return;
1044
1045		if (!intel_rps_is_active(rps))
1046			return;
1047
1048		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1049			 rq->fence.context, rq->fence.seqno);
1050
1051		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1052			queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1053
1054		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1055	}
1056}
1057
1058int intel_rps_set(struct intel_rps *rps, u8 val)
1059{
1060	int err;
1061
1062	lockdep_assert_held(&rps->lock);
1063	GEM_BUG_ON(val > rps->max_freq);
1064	GEM_BUG_ON(val < rps->min_freq);
1065
1066	if (intel_rps_is_active(rps)) {
1067		err = rps_set(rps, val, true);
1068		if (err)
1069			return err;
1070
1071		/*
1072		 * Make sure we continue to get interrupts
1073		 * until we hit the minimum or maximum frequencies.
1074		 */
1075		if (intel_rps_has_interrupts(rps)) {
1076			struct intel_uncore *uncore = rps_to_uncore(rps);
1077
1078			set(uncore,
1079			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1080
1081			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1082		}
1083	}
1084
1085	rps->cur_freq = val;
1086	return 0;
1087}
1088
1089static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1090{
1091	struct drm_i915_private *i915 = rps_to_i915(rps);
1092	struct intel_uncore *uncore = rps_to_uncore(rps);
1093
1094	if (IS_GEN9_LP(i915))
1095		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1096	else
1097		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1098}
1099
1100static void
1101mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1102{
1103	struct intel_uncore *uncore = rps_to_uncore(rps);
1104	u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1105				intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1106				intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1107	u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1108			intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1109			intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1110
1111	/* MTL values are in units of 16.67 MHz */
1112	caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1113	caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1114	caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1115}
1116
1117static void
1118__gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1119{
1120	struct drm_i915_private *i915 = rps_to_i915(rps);
1121	u32 rp_state_cap;
1122
1123	rp_state_cap = intel_rps_read_state_cap(rps);
1124
1125	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1126	if (IS_GEN9_LP(i915)) {
1127		caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1128		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1129		caps->min_freq = (rp_state_cap >>  0) & 0xff;
1130	} else {
1131		caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1132		if (GRAPHICS_VER(i915) >= 10)
1133			caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1134						       intel_uncore_read(to_gt(i915)->uncore,
1135						       GEN10_FREQ_INFO_REC));
1136		else
1137			caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1138		caps->min_freq = (rp_state_cap >> 16) & 0xff;
1139	}
1140
1141	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1142		/*
1143		 * In this case rp_state_cap register reports frequencies in
1144		 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1145		 * units of 16.67 MHz
1146		 */
1147		caps->rp0_freq *= GEN9_FREQ_SCALER;
1148		caps->rp1_freq *= GEN9_FREQ_SCALER;
1149		caps->min_freq *= GEN9_FREQ_SCALER;
1150	}
1151}
1152
1153/**
1154 * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1155 * @rps: the intel_rps structure
1156 * @caps: returned freq caps
1157 *
1158 * Returned "caps" frequencies should be converted to MHz using
1159 * intel_gpu_freq()
1160 */
1161void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1162{
1163	struct drm_i915_private *i915 = rps_to_i915(rps);
1164
1165	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1166		return mtl_get_freq_caps(rps, caps);
1167	else
1168		return __gen6_rps_get_freq_caps(rps, caps);
1169}
1170
1171static void gen6_rps_init(struct intel_rps *rps)
1172{
1173	struct drm_i915_private *i915 = rps_to_i915(rps);
1174	struct intel_rps_freq_caps caps;
1175
1176	gen6_rps_get_freq_caps(rps, &caps);
1177	rps->rp0_freq = caps.rp0_freq;
1178	rps->rp1_freq = caps.rp1_freq;
1179	rps->min_freq = caps.min_freq;
1180
1181	/* hw_max = RP0 until we check for overclocking */
1182	rps->max_freq = rps->rp0_freq;
1183
1184	rps->efficient_freq = rps->rp1_freq;
1185	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1186	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1187		u32 ddcc_status = 0;
1188		u32 mult = 1;
1189
1190		if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1191			mult = GEN9_FREQ_SCALER;
1192		if (snb_pcode_read(rps_to_gt(rps)->uncore,
1193				   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1194				   &ddcc_status, NULL) == 0)
1195			rps->efficient_freq =
1196				clamp_t(u32,
1197					((ddcc_status >> 8) & 0xff) * mult,
1198					rps->min_freq,
1199					rps->max_freq);
1200	}
1201}
1202
1203static bool rps_reset(struct intel_rps *rps)
1204{
1205	struct drm_i915_private *i915 = rps_to_i915(rps);
1206
1207	/* force a reset */
1208	rps->power.mode = -1;
1209	rps->last_freq = -1;
1210
1211	if (rps_set(rps, rps->min_freq, true)) {
1212		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1213		return false;
1214	}
1215
1216	rps->cur_freq = rps->min_freq;
1217	return true;
1218}
1219
1220/* See the Gen9_GT_PM_Programming_Guide doc for the below */
1221static bool gen9_rps_enable(struct intel_rps *rps)
1222{
1223	struct intel_gt *gt = rps_to_gt(rps);
1224	struct intel_uncore *uncore = gt->uncore;
1225
1226	/* Program defaults and thresholds for RPS */
1227	if (GRAPHICS_VER(gt->i915) == 9)
1228		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1229				      GEN9_FREQUENCY(rps->rp1_freq));
1230
1231	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1232
1233	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1234
1235	return rps_reset(rps);
1236}
1237
1238static bool gen8_rps_enable(struct intel_rps *rps)
1239{
1240	struct intel_uncore *uncore = rps_to_uncore(rps);
1241
1242	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1243			      HSW_FREQUENCY(rps->rp1_freq));
1244
1245	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1246
1247	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1248
1249	return rps_reset(rps);
1250}
1251
1252static bool gen6_rps_enable(struct intel_rps *rps)
1253{
1254	struct intel_uncore *uncore = rps_to_uncore(rps);
1255
1256	/* Power down if completely idle for over 50ms */
1257	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1258	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1259
1260	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1261			  GEN6_PM_RP_DOWN_THRESHOLD |
1262			  GEN6_PM_RP_DOWN_TIMEOUT);
1263
1264	return rps_reset(rps);
1265}
1266
1267static int chv_rps_max_freq(struct intel_rps *rps)
1268{
1269	struct drm_i915_private *i915 = rps_to_i915(rps);
1270	struct intel_gt *gt = rps_to_gt(rps);
1271	u32 val;
1272
1273	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1274
1275	switch (gt->info.sseu.eu_total) {
1276	case 8:
1277		/* (2 * 4) config */
1278		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1279		break;
1280	case 12:
1281		/* (2 * 6) config */
1282		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1283		break;
1284	case 16:
1285		/* (2 * 8) config */
1286	default:
1287		/* Setting (2 * 8) Min RP0 for any other combination */
1288		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1289		break;
1290	}
1291
1292	return val & FB_GFX_FREQ_FUSE_MASK;
1293}
1294
1295static int chv_rps_rpe_freq(struct intel_rps *rps)
1296{
1297	struct drm_i915_private *i915 = rps_to_i915(rps);
1298	u32 val;
1299
1300	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1301	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1302
1303	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1304}
1305
1306static int chv_rps_guar_freq(struct intel_rps *rps)
1307{
1308	struct drm_i915_private *i915 = rps_to_i915(rps);
1309	u32 val;
1310
1311	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1312
1313	return val & FB_GFX_FREQ_FUSE_MASK;
1314}
1315
1316static u32 chv_rps_min_freq(struct intel_rps *rps)
1317{
1318	struct drm_i915_private *i915 = rps_to_i915(rps);
1319	u32 val;
1320
1321	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1322	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1323
1324	return val & FB_GFX_FREQ_FUSE_MASK;
1325}
1326
1327static bool chv_rps_enable(struct intel_rps *rps)
1328{
1329	struct intel_uncore *uncore = rps_to_uncore(rps);
1330	struct drm_i915_private *i915 = rps_to_i915(rps);
1331	u32 val;
1332
1333	/* 1: Program defaults and thresholds for RPS*/
1334	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1335	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1336	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1337	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1338	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1339
1340	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1341
1342	/* 2: Enable RPS */
1343	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1344			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1345			      GEN6_RP_MEDIA_IS_GFX |
1346			      GEN6_RP_ENABLE |
1347			      GEN6_RP_UP_BUSY_AVG |
1348			      GEN6_RP_DOWN_IDLE_AVG);
1349
1350	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1351			  GEN6_PM_RP_DOWN_THRESHOLD |
1352			  GEN6_PM_RP_DOWN_TIMEOUT);
1353
1354	/* Setting Fixed Bias */
1355	vlv_punit_get(i915);
1356
1357	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1358	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1359
1360	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1361
1362	vlv_punit_put(i915);
1363
1364	/* RPS code assumes GPLL is used */
1365	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1366		      "GPLL not enabled\n");
1367
1368	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1369		str_yes_no(val & GPLLENABLE));
1370	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1371
1372	return rps_reset(rps);
1373}
1374
1375static int vlv_rps_guar_freq(struct intel_rps *rps)
1376{
1377	struct drm_i915_private *i915 = rps_to_i915(rps);
1378	u32 val, rp1;
1379
1380	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1381
1382	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1383	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1384
1385	return rp1;
1386}
1387
1388static int vlv_rps_max_freq(struct intel_rps *rps)
1389{
1390	struct drm_i915_private *i915 = rps_to_i915(rps);
1391	u32 val, rp0;
1392
1393	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1394
1395	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1396	/* Clamp to max */
1397	rp0 = min_t(u32, rp0, 0xea);
1398
1399	return rp0;
1400}
1401
1402static int vlv_rps_rpe_freq(struct intel_rps *rps)
1403{
1404	struct drm_i915_private *i915 = rps_to_i915(rps);
1405	u32 val, rpe;
1406
1407	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1408	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1409	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1410	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1411
1412	return rpe;
1413}
1414
1415static int vlv_rps_min_freq(struct intel_rps *rps)
1416{
1417	struct drm_i915_private *i915 = rps_to_i915(rps);
1418	u32 val;
1419
1420	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1421	/*
1422	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1423	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1424	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1425	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1426	 * to make sure it matches what Punit accepts.
1427	 */
1428	return max_t(u32, val, 0xc0);
1429}
1430
1431static bool vlv_rps_enable(struct intel_rps *rps)
1432{
1433	struct intel_uncore *uncore = rps_to_uncore(rps);
1434	struct drm_i915_private *i915 = rps_to_i915(rps);
1435	u32 val;
1436
1437	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1438	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1439	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1440	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1441	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1442
1443	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1444
1445	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1446			      GEN6_RP_MEDIA_TURBO |
1447			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1448			      GEN6_RP_MEDIA_IS_GFX |
1449			      GEN6_RP_ENABLE |
1450			      GEN6_RP_UP_BUSY_AVG |
1451			      GEN6_RP_DOWN_IDLE_CONT);
1452
1453	/* WaGsvRC0ResidencyMethod:vlv */
1454	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1455
1456	vlv_punit_get(i915);
1457
1458	/* Setting Fixed Bias */
1459	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1460	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1461
1462	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1463
1464	vlv_punit_put(i915);
1465
1466	/* RPS code assumes GPLL is used */
1467	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1468		      "GPLL not enabled\n");
1469
1470	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1471		str_yes_no(val & GPLLENABLE));
1472	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1473
1474	return rps_reset(rps);
1475}
1476
1477static unsigned long __ips_gfx_val(struct intel_ips *ips)
1478{
1479	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1480	struct intel_uncore *uncore = rps_to_uncore(rps);
1481	unsigned int t, state1, state2;
1482	u32 pxvid, ext_v;
1483	u64 corr, corr2;
1484
1485	lockdep_assert_held(&mchdev_lock);
1486
1487	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1488	pxvid = (pxvid >> 24) & 0x7f;
1489	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1490
1491	state1 = ext_v;
1492
1493	/* Revel in the empirically derived constants */
1494
1495	/* Correction factor in 1/100000 units */
1496	t = ips_mch_val(uncore);
1497	if (t > 80)
1498		corr = t * 2349 + 135940;
1499	else if (t >= 50)
1500		corr = t * 964 + 29317;
1501	else /* < 50 */
1502		corr = t * 301 + 1004;
1503
1504	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1505	corr2 = div_u64(corr, 100000) * ips->corr;
1506
1507	state2 = div_u64(corr2 * state1, 10000);
1508	state2 /= 100; /* convert to mW */
1509
1510	__gen5_ips_update(ips);
1511
1512	return ips->gfx_power + state2;
1513}
1514
1515static bool has_busy_stats(struct intel_rps *rps)
1516{
1517	struct intel_engine_cs *engine;
1518	enum intel_engine_id id;
1519
1520	for_each_engine(engine, rps_to_gt(rps), id) {
1521		if (!intel_engine_supports_stats(engine))
1522			return false;
1523	}
1524
1525	return true;
1526}
1527
1528void intel_rps_enable(struct intel_rps *rps)
1529{
1530	struct drm_i915_private *i915 = rps_to_i915(rps);
1531	struct intel_uncore *uncore = rps_to_uncore(rps);
1532	bool enabled = false;
1533
1534	if (!HAS_RPS(i915))
1535		return;
1536
1537	if (rps_uses_slpc(rps))
1538		return;
1539
1540	intel_gt_check_clock_frequency(rps_to_gt(rps));
1541
1542	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1543	if (rps->max_freq <= rps->min_freq)
1544		/* leave disabled, no room for dynamic reclocking */;
1545	else if (IS_CHERRYVIEW(i915))
1546		enabled = chv_rps_enable(rps);
1547	else if (IS_VALLEYVIEW(i915))
1548		enabled = vlv_rps_enable(rps);
1549	else if (GRAPHICS_VER(i915) >= 9)
1550		enabled = gen9_rps_enable(rps);
1551	else if (GRAPHICS_VER(i915) >= 8)
1552		enabled = gen8_rps_enable(rps);
1553	else if (GRAPHICS_VER(i915) >= 6)
1554		enabled = gen6_rps_enable(rps);
1555	else if (IS_IRONLAKE_M(i915))
1556		enabled = gen5_rps_enable(rps);
1557	else
1558		MISSING_CASE(GRAPHICS_VER(i915));
1559	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1560	if (!enabled)
1561		return;
1562
1563	GT_TRACE(rps_to_gt(rps),
1564		 "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
1565		 rps->min_freq, rps->max_freq,
1566		 intel_gpu_freq(rps, rps->min_freq),
1567		 intel_gpu_freq(rps, rps->max_freq),
1568		 rps->power.up_threshold,
1569		 rps->power.down_threshold);
1570
1571	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1572	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1573
1574	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1575	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1576
1577	if (has_busy_stats(rps))
1578		intel_rps_set_timer(rps);
1579	else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1580		intel_rps_set_interrupts(rps);
1581	else
1582		/* Ironlake currently uses intel_ips.ko */ {}
1583
1584	intel_rps_set_enabled(rps);
1585}
1586
1587static void gen6_rps_disable(struct intel_rps *rps)
1588{
1589	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1590}
1591
1592void intel_rps_disable(struct intel_rps *rps)
1593{
1594	struct drm_i915_private *i915 = rps_to_i915(rps);
1595
1596	if (!intel_rps_is_enabled(rps))
1597		return;
1598
1599	intel_rps_clear_enabled(rps);
1600	intel_rps_clear_interrupts(rps);
1601	intel_rps_clear_timer(rps);
1602
1603	if (GRAPHICS_VER(i915) >= 6)
1604		gen6_rps_disable(rps);
1605	else if (IS_IRONLAKE_M(i915))
1606		gen5_rps_disable(rps);
1607}
1608
1609static int byt_gpu_freq(struct intel_rps *rps, int val)
1610{
1611	/*
1612	 * N = val - 0xb7
1613	 * Slow = Fast = GPLL ref * N
1614	 */
1615	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1616}
1617
1618static int byt_freq_opcode(struct intel_rps *rps, int val)
1619{
1620	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1621}
1622
1623static int chv_gpu_freq(struct intel_rps *rps, int val)
1624{
1625	/*
1626	 * N = val / 2
1627	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1628	 */
1629	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1630}
1631
1632static int chv_freq_opcode(struct intel_rps *rps, int val)
1633{
1634	/* CHV needs even values */
1635	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1636}
1637
1638int intel_gpu_freq(struct intel_rps *rps, int val)
1639{
1640	struct drm_i915_private *i915 = rps_to_i915(rps);
1641
1642	if (GRAPHICS_VER(i915) >= 9)
1643		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1644					 GEN9_FREQ_SCALER);
1645	else if (IS_CHERRYVIEW(i915))
1646		return chv_gpu_freq(rps, val);
1647	else if (IS_VALLEYVIEW(i915))
1648		return byt_gpu_freq(rps, val);
1649	else if (GRAPHICS_VER(i915) >= 6)
1650		return val * GT_FREQUENCY_MULTIPLIER;
1651	else
1652		return val;
1653}
1654
1655int intel_freq_opcode(struct intel_rps *rps, int val)
1656{
1657	struct drm_i915_private *i915 = rps_to_i915(rps);
1658
1659	if (GRAPHICS_VER(i915) >= 9)
1660		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1661					 GT_FREQUENCY_MULTIPLIER);
1662	else if (IS_CHERRYVIEW(i915))
1663		return chv_freq_opcode(rps, val);
1664	else if (IS_VALLEYVIEW(i915))
1665		return byt_freq_opcode(rps, val);
1666	else if (GRAPHICS_VER(i915) >= 6)
1667		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1668	else
1669		return val;
1670}
1671
1672static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1673{
1674	struct drm_i915_private *i915 = rps_to_i915(rps);
1675
1676	rps->gpll_ref_freq =
1677		vlv_get_cck_clock(i915, "GPLL ref",
1678				  CCK_GPLL_CLOCK_CONTROL,
1679				  i915->czclk_freq);
1680
1681	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1682		rps->gpll_ref_freq);
1683}
1684
1685static void vlv_rps_init(struct intel_rps *rps)
1686{
1687	struct drm_i915_private *i915 = rps_to_i915(rps);
1688
1689	vlv_iosf_sb_get(i915,
1690			BIT(VLV_IOSF_SB_PUNIT) |
1691			BIT(VLV_IOSF_SB_NC) |
1692			BIT(VLV_IOSF_SB_CCK));
1693
1694	vlv_init_gpll_ref_freq(rps);
1695
1696	rps->max_freq = vlv_rps_max_freq(rps);
1697	rps->rp0_freq = rps->max_freq;
1698	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1699		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1700
1701	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1702	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1703		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1704
1705	rps->rp1_freq = vlv_rps_guar_freq(rps);
1706	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1707		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1708
1709	rps->min_freq = vlv_rps_min_freq(rps);
1710	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1711		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1712
1713	vlv_iosf_sb_put(i915,
1714			BIT(VLV_IOSF_SB_PUNIT) |
1715			BIT(VLV_IOSF_SB_NC) |
1716			BIT(VLV_IOSF_SB_CCK));
1717}
1718
1719static void chv_rps_init(struct intel_rps *rps)
1720{
1721	struct drm_i915_private *i915 = rps_to_i915(rps);
1722
1723	vlv_iosf_sb_get(i915,
1724			BIT(VLV_IOSF_SB_PUNIT) |
1725			BIT(VLV_IOSF_SB_NC) |
1726			BIT(VLV_IOSF_SB_CCK));
1727
1728	vlv_init_gpll_ref_freq(rps);
1729
1730	rps->max_freq = chv_rps_max_freq(rps);
1731	rps->rp0_freq = rps->max_freq;
1732	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1733		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1734
1735	rps->efficient_freq = chv_rps_rpe_freq(rps);
1736	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1737		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1738
1739	rps->rp1_freq = chv_rps_guar_freq(rps);
1740	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1741		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1742
1743	rps->min_freq = chv_rps_min_freq(rps);
1744	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1745		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1746
1747	vlv_iosf_sb_put(i915,
1748			BIT(VLV_IOSF_SB_PUNIT) |
1749			BIT(VLV_IOSF_SB_NC) |
1750			BIT(VLV_IOSF_SB_CCK));
1751
1752	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1753				   rps->rp1_freq | rps->min_freq) & 1,
1754		      "Odd GPU freq values\n");
1755}
1756
1757static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1758{
1759	ei->ktime = ktime_get_raw();
1760	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1761	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1762}
1763
1764static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1765{
1766	struct intel_uncore *uncore = rps_to_uncore(rps);
1767	const struct intel_rps_ei *prev = &rps->ei;
1768	struct intel_rps_ei now;
1769	u32 events = 0;
1770
1771	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1772		return 0;
1773
1774	vlv_c0_read(uncore, &now);
1775
1776	if (prev->ktime) {
1777		u64 time, c0;
1778		u32 render, media;
1779
1780		time = ktime_us_delta(now.ktime, prev->ktime);
1781
1782		time *= rps_to_i915(rps)->czclk_freq;
1783
1784		/* Workload can be split between render + media,
1785		 * e.g. SwapBuffers being blitted in X after being rendered in
1786		 * mesa. To account for this we need to combine both engines
1787		 * into our activity counter.
1788		 */
1789		render = now.render_c0 - prev->render_c0;
1790		media = now.media_c0 - prev->media_c0;
1791		c0 = max(render, media);
1792		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1793
1794		if (c0 > time * rps->power.up_threshold)
1795			events = GEN6_PM_RP_UP_THRESHOLD;
1796		else if (c0 < time * rps->power.down_threshold)
1797			events = GEN6_PM_RP_DOWN_THRESHOLD;
1798	}
1799
1800	rps->ei = now;
1801	return events;
1802}
1803
1804static void rps_work(struct work_struct *work)
1805{
1806	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1807	struct intel_gt *gt = rps_to_gt(rps);
1808	struct drm_i915_private *i915 = rps_to_i915(rps);
1809	bool client_boost = false;
1810	int new_freq, adj, min, max;
1811	u32 pm_iir = 0;
1812
1813	spin_lock_irq(gt->irq_lock);
1814	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1815	client_boost = atomic_read(&rps->num_waiters);
1816	spin_unlock_irq(gt->irq_lock);
1817
1818	/* Make sure we didn't queue anything we're not going to process. */
1819	if (!pm_iir && !client_boost)
1820		goto out;
1821
1822	mutex_lock(&rps->lock);
1823	if (!intel_rps_is_active(rps)) {
1824		mutex_unlock(&rps->lock);
1825		return;
1826	}
1827
1828	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1829
1830	adj = rps->last_adj;
1831	new_freq = rps->cur_freq;
1832	min = rps->min_freq_softlimit;
1833	max = rps->max_freq_softlimit;
1834	if (client_boost)
1835		max = rps->max_freq;
1836
1837	GT_TRACE(gt,
1838		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1839		 pm_iir, str_yes_no(client_boost),
1840		 adj, new_freq, min, max);
1841
1842	if (client_boost && new_freq < rps->boost_freq) {
1843		new_freq = rps->boost_freq;
1844		adj = 0;
1845	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1846		if (adj > 0)
1847			adj *= 2;
1848		else /* CHV needs even encode values */
1849			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1850
1851		if (new_freq >= rps->max_freq_softlimit)
1852			adj = 0;
1853	} else if (client_boost) {
1854		adj = 0;
1855	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1856		if (rps->cur_freq > rps->efficient_freq)
1857			new_freq = rps->efficient_freq;
1858		else if (rps->cur_freq > rps->min_freq_softlimit)
1859			new_freq = rps->min_freq_softlimit;
1860		adj = 0;
1861	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1862		if (adj < 0)
1863			adj *= 2;
1864		else /* CHV needs even encode values */
1865			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1866
1867		if (new_freq <= rps->min_freq_softlimit)
1868			adj = 0;
1869	} else { /* unknown event */
1870		adj = 0;
1871	}
1872
1873	/*
1874	 * sysfs frequency limits may have snuck in while
1875	 * servicing the interrupt
1876	 */
1877	new_freq += adj;
1878	new_freq = clamp_t(int, new_freq, min, max);
1879
1880	if (intel_rps_set(rps, new_freq)) {
1881		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1882		adj = 0;
1883	}
1884	rps->last_adj = adj;
1885
1886	mutex_unlock(&rps->lock);
1887
1888out:
1889	spin_lock_irq(gt->irq_lock);
1890	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1891	spin_unlock_irq(gt->irq_lock);
1892}
1893
1894void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1895{
1896	struct intel_gt *gt = rps_to_gt(rps);
1897	const u32 events = rps->pm_events & pm_iir;
1898
1899	lockdep_assert_held(gt->irq_lock);
1900
1901	if (unlikely(!events))
1902		return;
1903
1904	GT_TRACE(gt, "irq events:%x\n", events);
1905
1906	gen6_gt_pm_mask_irq(gt, events);
1907
1908	rps->pm_iir |= events;
1909	queue_work(gt->i915->unordered_wq, &rps->work);
1910}
1911
1912void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1913{
1914	struct intel_gt *gt = rps_to_gt(rps);
1915	u32 events;
1916
1917	events = pm_iir & rps->pm_events;
1918	if (events) {
1919		spin_lock(gt->irq_lock);
1920
1921		GT_TRACE(gt, "irq events:%x\n", events);
1922
1923		gen6_gt_pm_mask_irq(gt, events);
1924		rps->pm_iir |= events;
1925
1926		queue_work(gt->i915->unordered_wq, &rps->work);
1927		spin_unlock(gt->irq_lock);
1928	}
1929
1930	if (GRAPHICS_VER(gt->i915) >= 8)
1931		return;
1932
1933	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1934		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1935
1936	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1937		drm_dbg(&rps_to_i915(rps)->drm,
1938			"Command parser error, pm_iir 0x%08x\n", pm_iir);
1939}
1940
1941void gen5_rps_irq_handler(struct intel_rps *rps)
1942{
1943	struct intel_uncore *uncore = rps_to_uncore(rps);
1944	u32 busy_up, busy_down, max_avg, min_avg;
1945	u8 new_freq;
1946
1947	spin_lock(&mchdev_lock);
1948
1949	intel_uncore_write16(uncore,
1950			     MEMINTRSTS,
1951			     intel_uncore_read(uncore, MEMINTRSTS));
1952
1953	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1954	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1955	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1956	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1957	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1958
1959	/* Handle RCS change request from hw */
1960	new_freq = rps->cur_freq;
1961	if (busy_up > max_avg)
1962		new_freq++;
1963	else if (busy_down < min_avg)
1964		new_freq--;
1965	new_freq = clamp(new_freq,
1966			 rps->min_freq_softlimit,
1967			 rps->max_freq_softlimit);
1968
1969	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1970		rps->cur_freq = new_freq;
1971
1972	spin_unlock(&mchdev_lock);
1973}
1974
1975void intel_rps_init_early(struct intel_rps *rps)
1976{
1977	mutex_init(&rps->lock);
1978	mutex_init(&rps->power.mutex);
1979
1980	INIT_WORK(&rps->work, rps_work);
1981	timer_setup(&rps->timer, rps_timer, 0);
1982
1983	atomic_set(&rps->num_waiters, 0);
1984}
1985
1986void intel_rps_init(struct intel_rps *rps)
1987{
1988	struct drm_i915_private *i915 = rps_to_i915(rps);
1989
1990	if (rps_uses_slpc(rps))
1991		return;
1992
1993	if (IS_CHERRYVIEW(i915))
1994		chv_rps_init(rps);
1995	else if (IS_VALLEYVIEW(i915))
1996		vlv_rps_init(rps);
1997	else if (GRAPHICS_VER(i915) >= 6)
1998		gen6_rps_init(rps);
1999	else if (IS_IRONLAKE_M(i915))
2000		gen5_rps_init(rps);
2001
2002	/* Derive initial user preferences/limits from the hardware limits */
2003	rps->max_freq_softlimit = rps->max_freq;
2004	rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2005	rps->min_freq_softlimit = rps->min_freq;
2006	rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2007
2008	/* After setting max-softlimit, find the overclock max freq */
2009	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2010		u32 params = 0;
2011
2012		snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
2013		if (params & BIT(31)) { /* OC supported */
2014			drm_dbg(&i915->drm,
2015				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2016				(rps->max_freq & 0xff) * 50,
2017				(params & 0xff) * 50);
2018			rps->max_freq = params & 0xff;
2019		}
2020	}
2021
2022	/* Set default thresholds in % */
2023	rps->power.up_threshold = 95;
2024	rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
2025	rps->power.down_threshold = 85;
2026	rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
2027
2028	/* Finally allow us to boost to max by default */
2029	rps->boost_freq = rps->max_freq;
2030	rps->idle_freq = rps->min_freq;
2031
2032	/* Start in the middle, from here we will autotune based on workload */
2033	rps->cur_freq = rps->efficient_freq;
2034
2035	rps->pm_intrmsk_mbz = 0;
2036
2037	/*
2038	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2039	 * if GEN6_PM_UP_EI_EXPIRED is masked.
2040	 *
2041	 * TODO: verify if this can be reproduced on VLV,CHV.
2042	 */
2043	if (GRAPHICS_VER(i915) <= 7)
2044		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2045
2046	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2047		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2048
2049	/* GuC needs ARAT expired interrupt unmasked */
2050	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2051		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2052}
2053
2054void intel_rps_sanitize(struct intel_rps *rps)
2055{
2056	if (rps_uses_slpc(rps))
2057		return;
2058
2059	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2060		rps_disable_interrupts(rps);
2061}
2062
2063u32 intel_rps_read_rpstat(struct intel_rps *rps)
2064{
2065	struct drm_i915_private *i915 = rps_to_i915(rps);
2066	i915_reg_t rpstat;
2067
2068	rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2069
2070	return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2071}
2072
2073static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2074{
2075	struct drm_i915_private *i915 = rps_to_i915(rps);
2076	u32 cagf;
2077
2078	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2079		cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2080	else if (GRAPHICS_VER(i915) >= 12)
2081		cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2082	else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2083		cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2084	else if (GRAPHICS_VER(i915) >= 9)
2085		cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2086	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2087		cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2088	else if (GRAPHICS_VER(i915) >= 6)
2089		cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2090	else
2091		cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2092
2093	return cagf;
2094}
2095
2096static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2097{
2098	struct drm_i915_private *i915 = rps_to_i915(rps);
2099	struct intel_uncore *uncore = rps_to_uncore(rps);
2100	i915_reg_t r = INVALID_MMIO_REG;
2101	u32 freq;
2102
2103	/*
2104	 * For Gen12+ reading freq from HW does not need a forcewake and
2105	 * registers will return 0 freq when GT is in RC6
2106	 */
2107	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2108		r = MTL_MIRROR_TARGET_WP1;
2109	} else if (GRAPHICS_VER(i915) >= 12) {
2110		r = GEN12_RPSTAT1;
2111	} else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2112		vlv_punit_get(i915);
2113		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2114		vlv_punit_put(i915);
2115	} else if (GRAPHICS_VER(i915) >= 6) {
2116		r = GEN6_RPSTAT1;
2117	} else {
2118		r = MEMSTAT_ILK;
2119	}
2120
2121	if (i915_mmio_reg_valid(r))
2122		freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2123
2124	return intel_rps_get_cagf(rps, freq);
2125}
2126
2127static u32 read_cagf(struct intel_rps *rps)
2128{
2129	return __read_cagf(rps, true);
2130}
2131
2132u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2133{
2134	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2135	intel_wakeref_t wakeref;
2136	u32 freq = 0;
2137
2138	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2139		freq = intel_gpu_freq(rps, read_cagf(rps));
2140
2141	return freq;
2142}
2143
2144u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2145{
2146	return intel_gpu_freq(rps, __read_cagf(rps, false));
2147}
2148
2149static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2150{
2151	struct intel_uncore *uncore = rps_to_uncore(rps);
2152	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2153	intel_wakeref_t wakeref;
2154	u32 freq = 0;
2155
2156	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2157		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2158
2159	return freq;
2160}
2161
2162static u32 intel_rps_get_req(u32 pureq)
2163{
2164	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2165
2166	return req;
2167}
2168
2169u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2170{
2171	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2172
2173	return intel_gpu_freq(rps, freq);
2174}
2175
2176u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2177{
2178	if (rps_uses_slpc(rps))
2179		return intel_rps_read_punit_req_frequency(rps);
2180	else
2181		return intel_gpu_freq(rps, rps->cur_freq);
2182}
2183
2184u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2185{
2186	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2187
2188	if (rps_uses_slpc(rps))
2189		return slpc->max_freq_softlimit;
2190	else
2191		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2192}
2193
2194/**
2195 * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2196 * @rps: the intel_rps structure
2197 *
2198 * Returns the max frequency in a raw format. In newer platforms raw is in
2199 * units of 50 MHz.
2200 */
2201u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2202{
2203	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2204	u32 freq;
2205
2206	if (rps_uses_slpc(rps)) {
2207		return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2208					 GT_FREQUENCY_MULTIPLIER);
2209	} else {
2210		freq = rps->max_freq;
2211		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2212			/* Convert GT frequency to 50 MHz units */
2213			freq /= GEN9_FREQ_SCALER;
2214		}
2215		return freq;
2216	}
2217}
2218
2219u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2220{
2221	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2222
2223	if (rps_uses_slpc(rps))
2224		return slpc->rp0_freq;
2225	else
2226		return intel_gpu_freq(rps, rps->rp0_freq);
2227}
2228
2229u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2230{
2231	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2232
2233	if (rps_uses_slpc(rps))
2234		return slpc->rp1_freq;
2235	else
2236		return intel_gpu_freq(rps, rps->rp1_freq);
2237}
2238
2239u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2240{
2241	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2242
2243	if (rps_uses_slpc(rps))
2244		return slpc->min_freq;
2245	else
2246		return intel_gpu_freq(rps, rps->min_freq);
2247}
2248
2249static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2250{
2251	struct intel_gt *gt = rps_to_gt(rps);
2252	struct drm_i915_private *i915 = gt->i915;
2253	struct intel_uncore *uncore = gt->uncore;
2254	struct intel_rps_freq_caps caps;
2255	u32 rp_state_limits;
2256	u32 gt_perf_status;
2257	u32 rpmodectl, rpinclimit, rpdeclimit;
2258	u32 rpstat, cagf, reqf;
2259	u32 rpcurupei, rpcurup, rpprevup;
2260	u32 rpcurdownei, rpcurdown, rpprevdown;
2261	u32 rpupei, rpupt, rpdownei, rpdownt;
2262	u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2263
2264	rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2265	gen6_rps_get_freq_caps(rps, &caps);
2266	if (IS_GEN9_LP(i915))
2267		gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2268	else
2269		gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2270
2271	/* RPSTAT1 is in the GT power well */
2272	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2273
2274	reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2275	if (GRAPHICS_VER(i915) >= 9) {
2276		reqf >>= 23;
2277	} else {
2278		reqf &= ~GEN6_TURBO_DISABLE;
2279		if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2280			reqf >>= 24;
2281		else
2282			reqf >>= 25;
2283	}
2284	reqf = intel_gpu_freq(rps, reqf);
2285
2286	rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2287	rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2288	rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2289
2290	rpstat = intel_rps_read_rpstat(rps);
2291	rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2292	rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2293	rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2294	rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2295	rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2296	rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2297
2298	rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2299	rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2300
2301	rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2302	rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2303
2304	cagf = intel_rps_read_actual_frequency(rps);
2305
2306	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2307
2308	if (GRAPHICS_VER(i915) >= 11) {
2309		pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2310		pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2311		/*
2312		 * The equivalent to the PM ISR & IIR cannot be read
2313		 * without affecting the current state of the system
2314		 */
2315		pm_isr = 0;
2316		pm_iir = 0;
2317	} else if (GRAPHICS_VER(i915) >= 8) {
2318		pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2319		pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2320		pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2321		pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2322	} else {
2323		pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2324		pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2325		pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2326		pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2327	}
2328	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2329
2330	drm_printf(p, "Video Turbo Mode: %s\n",
2331		   str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2332	drm_printf(p, "HW control enabled: %s\n",
2333		   str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2334	drm_printf(p, "SW control enabled: %s\n",
2335		   str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2336
2337	drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2338		   pm_ier, pm_imr, pm_mask);
2339	if (GRAPHICS_VER(i915) <= 10)
2340		drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2341			   pm_isr, pm_iir);
2342	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2343		   rps->pm_intrmsk_mbz);
2344	drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2345	drm_printf(p, "Render p-state ratio: %d\n",
2346		   (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2347	drm_printf(p, "Render p-state VID: %d\n",
2348		   gt_perf_status & 0xff);
2349	drm_printf(p, "Render p-state limit: %d\n",
2350		   rp_state_limits & 0xff);
2351	drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2352	drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2353	drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2354	drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2355	drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2356	drm_printf(p, "CAGF: %dMHz\n", cagf);
2357	drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2358		   rpcurupei,
2359		   intel_gt_pm_interval_to_ns(gt, rpcurupei));
2360	drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2361		   rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2362	drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2363		   rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2364	drm_printf(p, "Up threshold: %d%%\n",
2365		   rps->power.up_threshold);
2366	drm_printf(p, "RP UP EI: %d (%lldns)\n",
2367		   rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2368	drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2369		   rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2370
2371	drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2372		   rpcurdownei,
2373		   intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2374	drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2375		   rpcurdown,
2376		   intel_gt_pm_interval_to_ns(gt, rpcurdown));
2377	drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2378		   rpprevdown,
2379		   intel_gt_pm_interval_to_ns(gt, rpprevdown));
2380	drm_printf(p, "Down threshold: %d%%\n",
2381		   rps->power.down_threshold);
2382	drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2383		   rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2384	drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2385		   rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2386
2387	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2388		   intel_gpu_freq(rps, caps.min_freq));
2389	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2390		   intel_gpu_freq(rps, caps.rp1_freq));
2391	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2392		   intel_gpu_freq(rps, caps.rp0_freq));
2393	drm_printf(p, "Max overclocked frequency: %dMHz\n",
2394		   intel_gpu_freq(rps, rps->max_freq));
2395
2396	drm_printf(p, "Current freq: %d MHz\n",
2397		   intel_gpu_freq(rps, rps->cur_freq));
2398	drm_printf(p, "Actual freq: %d MHz\n", cagf);
2399	drm_printf(p, "Idle freq: %d MHz\n",
2400		   intel_gpu_freq(rps, rps->idle_freq));
2401	drm_printf(p, "Min freq: %d MHz\n",
2402		   intel_gpu_freq(rps, rps->min_freq));
2403	drm_printf(p, "Boost freq: %d MHz\n",
2404		   intel_gpu_freq(rps, rps->boost_freq));
2405	drm_printf(p, "Max freq: %d MHz\n",
2406		   intel_gpu_freq(rps, rps->max_freq));
2407	drm_printf(p,
2408		   "efficient (RPe) frequency: %d MHz\n",
2409		   intel_gpu_freq(rps, rps->efficient_freq));
2410}
2411
2412static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2413{
2414	struct intel_gt *gt = rps_to_gt(rps);
2415	struct intel_uncore *uncore = gt->uncore;
2416	struct intel_rps_freq_caps caps;
2417	u32 pm_mask;
2418
2419	gen6_rps_get_freq_caps(rps, &caps);
2420	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2421
2422	drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2423	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2424		   rps->pm_intrmsk_mbz);
2425	drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2426	drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2427	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2428		   intel_gpu_freq(rps, caps.min_freq));
2429	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2430		   intel_gpu_freq(rps, caps.rp1_freq));
2431	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2432		   intel_gpu_freq(rps, caps.rp0_freq));
2433	drm_printf(p, "Current freq: %d MHz\n",
2434		   intel_rps_get_requested_frequency(rps));
2435	drm_printf(p, "Actual freq: %d MHz\n",
2436		   intel_rps_read_actual_frequency(rps));
2437	drm_printf(p, "Min freq: %d MHz\n",
2438		   intel_rps_get_min_frequency(rps));
2439	drm_printf(p, "Boost freq: %d MHz\n",
2440		   intel_rps_get_boost_frequency(rps));
2441	drm_printf(p, "Max freq: %d MHz\n",
2442		   intel_rps_get_max_frequency(rps));
2443	drm_printf(p,
2444		   "efficient (RPe) frequency: %d MHz\n",
2445		   intel_gpu_freq(rps, caps.rp1_freq));
2446}
2447
2448void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2449{
2450	if (rps_uses_slpc(rps))
2451		return slpc_frequency_dump(rps, p);
2452	else
2453		return rps_frequency_dump(rps, p);
2454}
2455
2456static int set_max_freq(struct intel_rps *rps, u32 val)
2457{
2458	struct drm_i915_private *i915 = rps_to_i915(rps);
2459	int ret = 0;
2460
2461	mutex_lock(&rps->lock);
2462
2463	val = intel_freq_opcode(rps, val);
2464	if (val < rps->min_freq ||
2465	    val > rps->max_freq ||
2466	    val < rps->min_freq_softlimit) {
2467		ret = -EINVAL;
2468		goto unlock;
2469	}
2470
2471	if (val > rps->rp0_freq)
2472		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2473			intel_gpu_freq(rps, val));
2474
2475	rps->max_freq_softlimit = val;
2476
2477	val = clamp_t(int, rps->cur_freq,
2478		      rps->min_freq_softlimit,
2479		      rps->max_freq_softlimit);
2480
2481	/*
2482	 * We still need *_set_rps to process the new max_delay and
2483	 * update the interrupt limits and PMINTRMSK even though
2484	 * frequency request may be unchanged.
2485	 */
2486	intel_rps_set(rps, val);
2487
2488unlock:
2489	mutex_unlock(&rps->lock);
2490
2491	return ret;
2492}
2493
2494int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2495{
2496	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2497
2498	if (rps_uses_slpc(rps))
2499		return intel_guc_slpc_set_max_freq(slpc, val);
2500	else
2501		return set_max_freq(rps, val);
2502}
2503
2504u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2505{
2506	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2507
2508	if (rps_uses_slpc(rps))
2509		return slpc->min_freq_softlimit;
2510	else
2511		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2512}
2513
2514/**
2515 * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2516 * @rps: the intel_rps structure
2517 *
2518 * Returns the min frequency in a raw format. In newer platforms raw is in
2519 * units of 50 MHz.
2520 */
2521u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2522{
2523	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2524	u32 freq;
2525
2526	if (rps_uses_slpc(rps)) {
2527		return DIV_ROUND_CLOSEST(slpc->min_freq,
2528					 GT_FREQUENCY_MULTIPLIER);
2529	} else {
2530		freq = rps->min_freq;
2531		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2532			/* Convert GT frequency to 50 MHz units */
2533			freq /= GEN9_FREQ_SCALER;
2534		}
2535		return freq;
2536	}
2537}
2538
2539static int set_min_freq(struct intel_rps *rps, u32 val)
2540{
2541	int ret = 0;
2542
2543	mutex_lock(&rps->lock);
2544
2545	val = intel_freq_opcode(rps, val);
2546	if (val < rps->min_freq ||
2547	    val > rps->max_freq ||
2548	    val > rps->max_freq_softlimit) {
2549		ret = -EINVAL;
2550		goto unlock;
2551	}
2552
2553	rps->min_freq_softlimit = val;
2554
2555	val = clamp_t(int, rps->cur_freq,
2556		      rps->min_freq_softlimit,
2557		      rps->max_freq_softlimit);
2558
2559	/*
2560	 * We still need *_set_rps to process the new min_delay and
2561	 * update the interrupt limits and PMINTRMSK even though
2562	 * frequency request may be unchanged.
2563	 */
2564	intel_rps_set(rps, val);
2565
2566unlock:
2567	mutex_unlock(&rps->lock);
2568
2569	return ret;
2570}
2571
2572int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2573{
2574	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2575
2576	if (rps_uses_slpc(rps))
2577		return intel_guc_slpc_set_min_freq(slpc, val);
2578	else
2579		return set_min_freq(rps, val);
2580}
2581
2582u8 intel_rps_get_up_threshold(struct intel_rps *rps)
2583{
2584	return rps->power.up_threshold;
2585}
2586
2587static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
2588{
2589	int ret;
2590
2591	if (val > 100)
2592		return -EINVAL;
2593
2594	ret = mutex_lock_interruptible(&rps->lock);
2595	if (ret)
2596		return ret;
2597
2598	if (*threshold == val)
2599		goto out_unlock;
2600
2601	*threshold = val;
2602
2603	/* Force reset. */
2604	rps->last_freq = -1;
2605	mutex_lock(&rps->power.mutex);
2606	rps->power.mode = -1;
2607	mutex_unlock(&rps->power.mutex);
2608
2609	intel_rps_set(rps, clamp(rps->cur_freq,
2610				 rps->min_freq_softlimit,
2611				 rps->max_freq_softlimit));
2612
2613out_unlock:
2614	mutex_unlock(&rps->lock);
2615
2616	return ret;
2617}
2618
2619int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
2620{
2621	return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
2622}
2623
2624u8 intel_rps_get_down_threshold(struct intel_rps *rps)
2625{
2626	return rps->power.down_threshold;
2627}
2628
2629int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
2630{
2631	return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
2632}
2633
2634static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2635{
2636	struct intel_uncore *uncore = rps_to_uncore(rps);
2637	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2638
2639	/* Allow punit to process software requests */
2640	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2641}
2642
2643void intel_rps_raise_unslice(struct intel_rps *rps)
2644{
2645	struct intel_uncore *uncore = rps_to_uncore(rps);
2646
2647	mutex_lock(&rps->lock);
2648
2649	if (rps_uses_slpc(rps)) {
2650		/* RP limits have not been initialized yet for SLPC path */
2651		struct intel_rps_freq_caps caps;
2652
2653		gen6_rps_get_freq_caps(rps, &caps);
2654
2655		intel_rps_set_manual(rps, true);
2656		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2657				   ((caps.rp0_freq <<
2658				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2659				   GEN9_IGNORE_SLICE_RATIO));
2660		intel_rps_set_manual(rps, false);
2661	} else {
2662		intel_rps_set(rps, rps->rp0_freq);
2663	}
2664
2665	mutex_unlock(&rps->lock);
2666}
2667
2668void intel_rps_lower_unslice(struct intel_rps *rps)
2669{
2670	struct intel_uncore *uncore = rps_to_uncore(rps);
2671
2672	mutex_lock(&rps->lock);
2673
2674	if (rps_uses_slpc(rps)) {
2675		/* RP limits have not been initialized yet for SLPC path */
2676		struct intel_rps_freq_caps caps;
2677
2678		gen6_rps_get_freq_caps(rps, &caps);
2679
2680		intel_rps_set_manual(rps, true);
2681		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2682				   ((caps.min_freq <<
2683				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2684				   GEN9_IGNORE_SLICE_RATIO));
2685		intel_rps_set_manual(rps, false);
2686	} else {
2687		intel_rps_set(rps, rps->min_freq);
2688	}
2689
2690	mutex_unlock(&rps->lock);
2691}
2692
2693static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2694{
2695	struct intel_gt *gt = rps_to_gt(rps);
2696	intel_wakeref_t wakeref;
2697	u32 val;
2698
2699	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2700		val = intel_uncore_read(gt->uncore, reg32);
2701
2702	return val;
2703}
2704
2705bool rps_read_mask_mmio(struct intel_rps *rps,
2706			i915_reg_t reg32, u32 mask)
2707{
2708	return rps_read_mmio(rps, reg32) & mask;
2709}
2710
2711/* External interface for intel_ips.ko */
2712
2713static struct drm_i915_private __rcu *ips_mchdev;
2714
2715/*
2716 * Tells the intel_ips driver that the i915 driver is now loaded, if
2717 * IPS got loaded first.
2718 *
2719 * This awkward dance is so that neither module has to depend on the
2720 * other in order for IPS to do the appropriate communication of
2721 * GPU turbo limits to i915.
2722 */
2723static void
2724ips_ping_for_i915_load(void)
2725{
2726	void (*link)(void);
2727
2728	link = symbol_get(ips_link_to_i915_driver);
2729	if (link) {
2730		link();
2731		symbol_put(ips_link_to_i915_driver);
2732	}
2733}
2734
2735void intel_rps_driver_register(struct intel_rps *rps)
2736{
2737	struct intel_gt *gt = rps_to_gt(rps);
2738
2739	/*
2740	 * We only register the i915 ips part with intel-ips once everything is
2741	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2742	 */
2743	if (GRAPHICS_VER(gt->i915) == 5) {
2744		GEM_BUG_ON(ips_mchdev);
2745		rcu_assign_pointer(ips_mchdev, gt->i915);
2746		ips_ping_for_i915_load();
2747	}
2748}
2749
2750void intel_rps_driver_unregister(struct intel_rps *rps)
2751{
2752	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2753		rcu_assign_pointer(ips_mchdev, NULL);
2754}
2755
2756static struct drm_i915_private *mchdev_get(void)
2757{
2758	struct drm_i915_private *i915;
2759
2760	rcu_read_lock();
2761	i915 = rcu_dereference(ips_mchdev);
2762	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2763		i915 = NULL;
2764	rcu_read_unlock();
2765
2766	return i915;
2767}
2768
2769/**
2770 * i915_read_mch_val - return value for IPS use
2771 *
2772 * Calculate and return a value for the IPS driver to use when deciding whether
2773 * we have thermal and power headroom to increase CPU or GPU power budget.
2774 */
2775unsigned long i915_read_mch_val(void)
2776{
2777	struct drm_i915_private *i915;
2778	unsigned long chipset_val = 0;
2779	unsigned long graphics_val = 0;
2780	intel_wakeref_t wakeref;
2781
2782	i915 = mchdev_get();
2783	if (!i915)
2784		return 0;
2785
2786	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2787		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2788
2789		spin_lock_irq(&mchdev_lock);
2790		chipset_val = __ips_chipset_val(ips);
2791		graphics_val = __ips_gfx_val(ips);
2792		spin_unlock_irq(&mchdev_lock);
2793	}
2794
2795	drm_dev_put(&i915->drm);
2796	return chipset_val + graphics_val;
2797}
2798EXPORT_SYMBOL_GPL(i915_read_mch_val);
2799
2800/**
2801 * i915_gpu_raise - raise GPU frequency limit
2802 *
2803 * Raise the limit; IPS indicates we have thermal headroom.
2804 */
2805bool i915_gpu_raise(void)
2806{
2807	struct drm_i915_private *i915;
2808	struct intel_rps *rps;
2809
2810	i915 = mchdev_get();
2811	if (!i915)
2812		return false;
2813
2814	rps = &to_gt(i915)->rps;
2815
2816	spin_lock_irq(&mchdev_lock);
2817	if (rps->max_freq_softlimit < rps->max_freq)
2818		rps->max_freq_softlimit++;
2819	spin_unlock_irq(&mchdev_lock);
2820
2821	drm_dev_put(&i915->drm);
2822	return true;
2823}
2824EXPORT_SYMBOL_GPL(i915_gpu_raise);
2825
2826/**
2827 * i915_gpu_lower - lower GPU frequency limit
2828 *
2829 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2830 * frequency maximum.
2831 */
2832bool i915_gpu_lower(void)
2833{
2834	struct drm_i915_private *i915;
2835	struct intel_rps *rps;
2836
2837	i915 = mchdev_get();
2838	if (!i915)
2839		return false;
2840
2841	rps = &to_gt(i915)->rps;
2842
2843	spin_lock_irq(&mchdev_lock);
2844	if (rps->max_freq_softlimit > rps->min_freq)
2845		rps->max_freq_softlimit--;
2846	spin_unlock_irq(&mchdev_lock);
2847
2848	drm_dev_put(&i915->drm);
2849	return true;
2850}
2851EXPORT_SYMBOL_GPL(i915_gpu_lower);
2852
2853/**
2854 * i915_gpu_busy - indicate GPU business to IPS
2855 *
2856 * Tell the IPS driver whether or not the GPU is busy.
2857 */
2858bool i915_gpu_busy(void)
2859{
2860	struct drm_i915_private *i915;
2861	bool ret;
2862
2863	i915 = mchdev_get();
2864	if (!i915)
2865		return false;
2866
2867	ret = to_gt(i915)->awake;
2868
2869	drm_dev_put(&i915->drm);
2870	return ret;
2871}
2872EXPORT_SYMBOL_GPL(i915_gpu_busy);
2873
2874/**
2875 * i915_gpu_turbo_disable - disable graphics turbo
2876 *
2877 * Disable graphics turbo by resetting the max frequency and setting the
2878 * current frequency to the default.
2879 */
2880bool i915_gpu_turbo_disable(void)
2881{
2882	struct drm_i915_private *i915;
2883	struct intel_rps *rps;
2884	bool ret;
2885
2886	i915 = mchdev_get();
2887	if (!i915)
2888		return false;
2889
2890	rps = &to_gt(i915)->rps;
2891
2892	spin_lock_irq(&mchdev_lock);
2893	rps->max_freq_softlimit = rps->min_freq;
2894	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2895	spin_unlock_irq(&mchdev_lock);
2896
2897	drm_dev_put(&i915->drm);
2898	return ret;
2899}
2900EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2901
2902#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2903#include "selftest_rps.c"
2904#include "selftest_slpc.c"
2905#endif