Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/setup.c
  4 *
  5 * Copyright (C) 1995-2001 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/export.h>
 11#include <linux/kernel.h>
 12#include <linux/stddef.h>
 13#include <linux/ioport.h>
 14#include <linux/delay.h>
 15#include <linux/initrd.h>
 16#include <linux/console.h>
 17#include <linux/cache.h>
 18#include <linux/screen_info.h>
 19#include <linux/init.h>
 20#include <linux/kexec.h>
 21#include <linux/root_dev.h>
 22#include <linux/cpu.h>
 23#include <linux/interrupt.h>
 24#include <linux/smp.h>
 25#include <linux/fs.h>
 26#include <linux/panic_notifier.h>
 27#include <linux/proc_fs.h>
 28#include <linux/memblock.h>
 29#include <linux/of_fdt.h>
 30#include <linux/efi.h>
 31#include <linux/psci.h>
 32#include <linux/sched/task.h>
 33#include <linux/scs.h>
 34#include <linux/mm.h>
 35
 36#include <asm/acpi.h>
 37#include <asm/fixmap.h>
 38#include <asm/cpu.h>
 39#include <asm/cputype.h>
 40#include <asm/daifflags.h>
 41#include <asm/elf.h>
 42#include <asm/cpufeature.h>
 43#include <asm/cpu_ops.h>
 44#include <asm/kasan.h>
 45#include <asm/numa.h>
 46#include <asm/scs.h>
 47#include <asm/sections.h>
 48#include <asm/setup.h>
 49#include <asm/smp_plat.h>
 50#include <asm/cacheflush.h>
 51#include <asm/tlbflush.h>
 52#include <asm/traps.h>
 53#include <asm/efi.h>
 54#include <asm/xen/hypervisor.h>
 55#include <asm/mmu_context.h>
 56
 57static int num_standard_resources;
 58static struct resource *standard_resources;
 59
 60phys_addr_t __fdt_pointer __initdata;
 61u64 mmu_enabled_at_boot __initdata;
 62
 63/*
 64 * Standard memory resources
 65 */
 66static struct resource mem_res[] = {
 67	{
 68		.name = "Kernel code",
 69		.start = 0,
 70		.end = 0,
 71		.flags = IORESOURCE_SYSTEM_RAM
 72	},
 73	{
 74		.name = "Kernel data",
 75		.start = 0,
 76		.end = 0,
 77		.flags = IORESOURCE_SYSTEM_RAM
 78	}
 79};
 80
 81#define kernel_code mem_res[0]
 82#define kernel_data mem_res[1]
 83
 84/*
 85 * The recorded values of x0 .. x3 upon kernel entry.
 86 */
 87u64 __cacheline_aligned boot_args[4];
 88
 89void __init smp_setup_processor_id(void)
 90{
 91	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
 92	set_cpu_logical_map(0, mpidr);
 93
 94	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
 95		(unsigned long)mpidr, read_cpuid_id());
 96}
 97
 98bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
 99{
100	return phys_id == cpu_logical_map(cpu);
101}
102
103struct mpidr_hash mpidr_hash;
104/**
105 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
106 *			  level in order to build a linear index from an
107 *			  MPIDR value. Resulting algorithm is a collision
108 *			  free hash carried out through shifting and ORing
109 */
110static void __init smp_build_mpidr_hash(void)
111{
112	u32 i, affinity, fs[4], bits[4], ls;
113	u64 mask = 0;
114	/*
115	 * Pre-scan the list of MPIDRS and filter out bits that do
116	 * not contribute to affinity levels, ie they never toggle.
117	 */
118	for_each_possible_cpu(i)
119		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
120	pr_debug("mask of set bits %#llx\n", mask);
121	/*
122	 * Find and stash the last and first bit set at all affinity levels to
123	 * check how many bits are required to represent them.
124	 */
125	for (i = 0; i < 4; i++) {
126		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
127		/*
128		 * Find the MSB bit and LSB bits position
129		 * to determine how many bits are required
130		 * to express the affinity level.
131		 */
132		ls = fls(affinity);
133		fs[i] = affinity ? ffs(affinity) - 1 : 0;
134		bits[i] = ls - fs[i];
135	}
136	/*
137	 * An index can be created from the MPIDR_EL1 by isolating the
138	 * significant bits at each affinity level and by shifting
139	 * them in order to compress the 32 bits values space to a
140	 * compressed set of values. This is equivalent to hashing
141	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
142	 * hash though not minimal since some levels might contain a number
143	 * of CPUs that is not an exact power of 2 and their bit
144	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
145	 */
146	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
147	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
148	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
149						(bits[1] + bits[0]);
150	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
151				  fs[3] - (bits[2] + bits[1] + bits[0]);
152	mpidr_hash.mask = mask;
153	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
154	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
155		mpidr_hash.shift_aff[0],
156		mpidr_hash.shift_aff[1],
157		mpidr_hash.shift_aff[2],
158		mpidr_hash.shift_aff[3],
159		mpidr_hash.mask,
160		mpidr_hash.bits);
161	/*
162	 * 4x is an arbitrary value used to warn on a hash table much bigger
163	 * than expected on most systems.
164	 */
165	if (mpidr_hash_size() > 4 * num_possible_cpus())
166		pr_warn("Large number of MPIDR hash buckets detected\n");
167}
168
169static void *early_fdt_ptr __initdata;
170
171void __init *get_early_fdt_ptr(void)
172{
173	return early_fdt_ptr;
174}
175
176asmlinkage void __init early_fdt_map(u64 dt_phys)
177{
178	int fdt_size;
179
180	early_fixmap_init();
181	early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
182}
183
184static void __init setup_machine_fdt(phys_addr_t dt_phys)
185{
186	int size;
187	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
188	const char *name;
189
190	if (dt_virt)
191		memblock_reserve(dt_phys, size);
192
193	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
194		pr_crit("\n"
195			"Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
196			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
197			"\nPlease check your bootloader.",
198			&dt_phys, dt_virt);
199
200		/*
201		 * Note that in this _really_ early stage we cannot even BUG()
202		 * or oops, so the least terrible thing to do is cpu_relax(),
203		 * or else we could end-up printing non-initialized data, etc.
204		 */
205		while (true)
206			cpu_relax();
207	}
208
209	/* Early fixups are done, map the FDT as read-only now */
210	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
211
212	name = of_flat_dt_get_machine_name();
213	if (!name)
214		return;
215
216	pr_info("Machine model: %s\n", name);
217	dump_stack_set_arch_desc("%s (DT)", name);
218}
219
220static void __init request_standard_resources(void)
221{
222	struct memblock_region *region;
223	struct resource *res;
224	unsigned long i = 0;
225	size_t res_size;
226
227	kernel_code.start   = __pa_symbol(_stext);
228	kernel_code.end     = __pa_symbol(__init_begin - 1);
229	kernel_data.start   = __pa_symbol(_sdata);
230	kernel_data.end     = __pa_symbol(_end - 1);
231	insert_resource(&iomem_resource, &kernel_code);
232	insert_resource(&iomem_resource, &kernel_data);
233
234	num_standard_resources = memblock.memory.cnt;
235	res_size = num_standard_resources * sizeof(*standard_resources);
236	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
237	if (!standard_resources)
238		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
239
240	for_each_mem_region(region) {
241		res = &standard_resources[i++];
242		if (memblock_is_nomap(region)) {
243			res->name  = "reserved";
244			res->flags = IORESOURCE_MEM;
245			res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
246			res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
247		} else {
248			res->name  = "System RAM";
249			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
250			res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
251			res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
252		}
253
254		insert_resource(&iomem_resource, res);
255	}
256}
257
258static int __init reserve_memblock_reserved_regions(void)
259{
260	u64 i, j;
261
262	for (i = 0; i < num_standard_resources; ++i) {
263		struct resource *mem = &standard_resources[i];
264		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
265
266		if (!memblock_is_region_reserved(mem->start, mem_size))
267			continue;
268
269		for_each_reserved_mem_range(j, &r_start, &r_end) {
270			resource_size_t start, end;
271
272			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
273			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
274
275			if (start > mem->end || end < mem->start)
276				continue;
277
278			reserve_region_with_split(mem, start, end, "reserved");
279		}
280	}
281
282	return 0;
283}
284arch_initcall(reserve_memblock_reserved_regions);
285
286u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
287
288u64 cpu_logical_map(unsigned int cpu)
289{
290	return __cpu_logical_map[cpu];
291}
292
293void __init __no_sanitize_address setup_arch(char **cmdline_p)
294{
295	setup_initial_init_mm(_stext, _etext, _edata, _end);
296
297	*cmdline_p = boot_command_line;
298
299	kaslr_init();
300
301	/*
302	 * If know now we are going to need KPTI then use non-global
303	 * mappings from the start, avoiding the cost of rewriting
304	 * everything later.
305	 */
306	arm64_use_ng_mappings = kaslr_requires_kpti();
307
308	early_fixmap_init();
309	early_ioremap_init();
310
311	setup_machine_fdt(__fdt_pointer);
312
313	/*
314	 * Initialise the static keys early as they may be enabled by the
315	 * cpufeature code and early parameters.
316	 */
317	jump_label_init();
318	parse_early_param();
319
320	dynamic_scs_init();
321
322	/*
323	 * Unmask asynchronous aborts and fiq after bringing up possible
324	 * earlycon. (Report possible System Errors once we can report this
325	 * occurred).
326	 */
327	local_daif_restore(DAIF_PROCCTX_NOIRQ);
328
329	/*
330	 * TTBR0 is only used for the identity mapping at this stage. Make it
331	 * point to zero page to avoid speculatively fetching new entries.
332	 */
333	cpu_uninstall_idmap();
334
335	xen_early_init();
336	efi_init();
337
338	if (!efi_enabled(EFI_BOOT)) {
339		if ((u64)_text % MIN_KIMG_ALIGN)
340			pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
341		WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND,
342			   FW_BUG "Booted with MMU enabled!");
343	}
344
345	arm64_memblock_init();
346
347	paging_init();
348
349	acpi_table_upgrade();
350
351	/* Parse the ACPI tables for possible boot-time configuration */
352	acpi_boot_table_init();
353
354	if (acpi_disabled)
355		unflatten_device_tree();
356
357	bootmem_init();
358
359	kasan_init();
360
361	request_standard_resources();
362
363	early_ioremap_reset();
364
365	if (acpi_disabled)
366		psci_dt_init();
367	else
368		psci_acpi_init();
369
370	init_bootcpu_ops();
371	smp_init_cpus();
372	smp_build_mpidr_hash();
373
374	/* Init percpu seeds for random tags after cpus are set up. */
375	kasan_init_sw_tags();
376
377#ifdef CONFIG_ARM64_SW_TTBR0_PAN
378	/*
379	 * Make sure init_thread_info.ttbr0 always generates translation
380	 * faults in case uaccess_enable() is inadvertently called by the init
381	 * thread.
382	 */
383	init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
384#endif
385
386	if (boot_args[1] || boot_args[2] || boot_args[3]) {
387		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
388			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
389			"This indicates a broken bootloader or old kernel\n",
390			boot_args[1], boot_args[2], boot_args[3]);
391	}
392}
393
394static inline bool cpu_can_disable(unsigned int cpu)
395{
396#ifdef CONFIG_HOTPLUG_CPU
397	const struct cpu_operations *ops = get_cpu_ops(cpu);
398
399	if (ops && ops->cpu_can_disable)
400		return ops->cpu_can_disable(cpu);
401#endif
402	return false;
403}
404
405bool arch_cpu_is_hotpluggable(int num)
406{
407	return cpu_can_disable(num);
408}
409
410static void dump_kernel_offset(void)
411{
412	const unsigned long offset = kaslr_offset();
413
414	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
415		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
416			 offset, KIMAGE_VADDR);
417		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
418	} else {
419		pr_emerg("Kernel Offset: disabled\n");
420	}
421}
422
423static int arm64_panic_block_dump(struct notifier_block *self,
424				  unsigned long v, void *p)
425{
426	dump_kernel_offset();
427	dump_cpu_features();
428	dump_mem_limit();
429	return 0;
430}
431
432static struct notifier_block arm64_panic_block = {
433	.notifier_call = arm64_panic_block_dump
434};
435
436static int __init register_arm64_panic_block(void)
437{
438	atomic_notifier_chain_register(&panic_notifier_list,
439				       &arm64_panic_block);
440	return 0;
441}
442device_initcall(register_arm64_panic_block);
443
444static int __init check_mmu_enabled_at_boot(void)
445{
446	if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot)
447		panic("Non-EFI boot detected with MMU and caches enabled");
448	return 0;
449}
450device_initcall_sync(check_mmu_enabled_at_boot);