Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/setup.c
  4 *
  5 * Copyright (C) 1995-2001 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/export.h>
 11#include <linux/kernel.h>
 12#include <linux/stddef.h>
 13#include <linux/ioport.h>
 14#include <linux/delay.h>
 15#include <linux/initrd.h>
 16#include <linux/console.h>
 17#include <linux/cache.h>
 18#include <linux/screen_info.h>
 19#include <linux/init.h>
 20#include <linux/kexec.h>
 21#include <linux/root_dev.h>
 22#include <linux/cpu.h>
 23#include <linux/interrupt.h>
 24#include <linux/smp.h>
 25#include <linux/fs.h>
 26#include <linux/panic_notifier.h>
 27#include <linux/proc_fs.h>
 28#include <linux/memblock.h>
 29#include <linux/of_fdt.h>
 30#include <linux/efi.h>
 31#include <linux/psci.h>
 32#include <linux/sched/task.h>
 33#include <linux/scs.h>
 34#include <linux/mm.h>
 35
 36#include <asm/acpi.h>
 37#include <asm/fixmap.h>
 38#include <asm/cpu.h>
 39#include <asm/cputype.h>
 40#include <asm/daifflags.h>
 41#include <asm/elf.h>
 42#include <asm/cpufeature.h>
 43#include <asm/cpu_ops.h>
 44#include <asm/kasan.h>
 45#include <asm/numa.h>
 46#include <asm/scs.h>
 47#include <asm/sections.h>
 48#include <asm/setup.h>
 49#include <asm/smp_plat.h>
 50#include <asm/cacheflush.h>
 51#include <asm/tlbflush.h>
 52#include <asm/traps.h>
 53#include <asm/efi.h>
 54#include <asm/xen/hypervisor.h>
 55#include <asm/mmu_context.h>
 56
 57static int num_standard_resources;
 58static struct resource *standard_resources;
 59
 60phys_addr_t __fdt_pointer __initdata;
 61
 62/*
 63 * Standard memory resources
 64 */
 65static struct resource mem_res[] = {
 66	{
 67		.name = "Kernel code",
 68		.start = 0,
 69		.end = 0,
 70		.flags = IORESOURCE_SYSTEM_RAM
 71	},
 72	{
 73		.name = "Kernel data",
 74		.start = 0,
 75		.end = 0,
 76		.flags = IORESOURCE_SYSTEM_RAM
 77	}
 78};
 79
 80#define kernel_code mem_res[0]
 81#define kernel_data mem_res[1]
 82
 83/*
 84 * The recorded values of x0 .. x3 upon kernel entry.
 85 */
 86u64 __cacheline_aligned boot_args[4];
 87
 88void __init smp_setup_processor_id(void)
 89{
 90	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
 91	set_cpu_logical_map(0, mpidr);
 92
 93	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
 94		(unsigned long)mpidr, read_cpuid_id());
 95}
 96
 97bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
 98{
 99	return phys_id == cpu_logical_map(cpu);
100}
101
102struct mpidr_hash mpidr_hash;
103/**
104 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
105 *			  level in order to build a linear index from an
106 *			  MPIDR value. Resulting algorithm is a collision
107 *			  free hash carried out through shifting and ORing
108 */
109static void __init smp_build_mpidr_hash(void)
110{
111	u32 i, affinity, fs[4], bits[4], ls;
112	u64 mask = 0;
113	/*
114	 * Pre-scan the list of MPIDRS and filter out bits that do
115	 * not contribute to affinity levels, ie they never toggle.
116	 */
117	for_each_possible_cpu(i)
118		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
119	pr_debug("mask of set bits %#llx\n", mask);
120	/*
121	 * Find and stash the last and first bit set at all affinity levels to
122	 * check how many bits are required to represent them.
123	 */
124	for (i = 0; i < 4; i++) {
125		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
126		/*
127		 * Find the MSB bit and LSB bits position
128		 * to determine how many bits are required
129		 * to express the affinity level.
130		 */
131		ls = fls(affinity);
132		fs[i] = affinity ? ffs(affinity) - 1 : 0;
133		bits[i] = ls - fs[i];
134	}
135	/*
136	 * An index can be created from the MPIDR_EL1 by isolating the
137	 * significant bits at each affinity level and by shifting
138	 * them in order to compress the 32 bits values space to a
139	 * compressed set of values. This is equivalent to hashing
140	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
141	 * hash though not minimal since some levels might contain a number
142	 * of CPUs that is not an exact power of 2 and their bit
143	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
144	 */
145	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
146	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
147	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
148						(bits[1] + bits[0]);
149	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
150				  fs[3] - (bits[2] + bits[1] + bits[0]);
151	mpidr_hash.mask = mask;
152	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
153	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
154		mpidr_hash.shift_aff[0],
155		mpidr_hash.shift_aff[1],
156		mpidr_hash.shift_aff[2],
157		mpidr_hash.shift_aff[3],
158		mpidr_hash.mask,
159		mpidr_hash.bits);
160	/*
161	 * 4x is an arbitrary value used to warn on a hash table much bigger
162	 * than expected on most systems.
163	 */
164	if (mpidr_hash_size() > 4 * num_possible_cpus())
165		pr_warn("Large number of MPIDR hash buckets detected\n");
166}
167
168static void *early_fdt_ptr __initdata;
169
170void __init *get_early_fdt_ptr(void)
171{
172	return early_fdt_ptr;
173}
174
175asmlinkage void __init early_fdt_map(u64 dt_phys)
176{
177	int fdt_size;
178
179	early_fixmap_init();
180	early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
181}
182
183static void __init setup_machine_fdt(phys_addr_t dt_phys)
184{
185	int size;
186	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
187	const char *name;
188
189	if (dt_virt)
190		memblock_reserve(dt_phys, size);
191
192	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
193		pr_crit("\n"
194			"Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
195			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
196			"\nPlease check your bootloader.",
197			&dt_phys, dt_virt);
198
199		/*
200		 * Note that in this _really_ early stage we cannot even BUG()
201		 * or oops, so the least terrible thing to do is cpu_relax(),
202		 * or else we could end-up printing non-initialized data, etc.
203		 */
204		while (true)
205			cpu_relax();
206	}
207
208	/* Early fixups are done, map the FDT as read-only now */
209	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
210
211	name = of_flat_dt_get_machine_name();
212	if (!name)
213		return;
214
215	pr_info("Machine model: %s\n", name);
216	dump_stack_set_arch_desc("%s (DT)", name);
217}
218
219static void __init request_standard_resources(void)
220{
221	struct memblock_region *region;
222	struct resource *res;
223	unsigned long i = 0;
224	size_t res_size;
225
226	kernel_code.start   = __pa_symbol(_stext);
227	kernel_code.end     = __pa_symbol(__init_begin - 1);
228	kernel_data.start   = __pa_symbol(_sdata);
229	kernel_data.end     = __pa_symbol(_end - 1);
230	insert_resource(&iomem_resource, &kernel_code);
231	insert_resource(&iomem_resource, &kernel_data);
232
233	num_standard_resources = memblock.memory.cnt;
234	res_size = num_standard_resources * sizeof(*standard_resources);
235	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
236	if (!standard_resources)
237		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
238
239	for_each_mem_region(region) {
240		res = &standard_resources[i++];
241		if (memblock_is_nomap(region)) {
242			res->name  = "reserved";
243			res->flags = IORESOURCE_MEM;
244			res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
245			res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
246		} else {
247			res->name  = "System RAM";
248			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
249			res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
250			res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
251		}
252
253		insert_resource(&iomem_resource, res);
254	}
255}
256
257static int __init reserve_memblock_reserved_regions(void)
258{
259	u64 i, j;
260
261	for (i = 0; i < num_standard_resources; ++i) {
262		struct resource *mem = &standard_resources[i];
263		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
264
265		if (!memblock_is_region_reserved(mem->start, mem_size))
266			continue;
267
268		for_each_reserved_mem_range(j, &r_start, &r_end) {
269			resource_size_t start, end;
270
271			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
272			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
273
274			if (start > mem->end || end < mem->start)
275				continue;
276
277			reserve_region_with_split(mem, start, end, "reserved");
278		}
279	}
280
281	return 0;
282}
283arch_initcall(reserve_memblock_reserved_regions);
284
285u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
286
287u64 cpu_logical_map(unsigned int cpu)
288{
289	return __cpu_logical_map[cpu];
290}
291
292void __init __no_sanitize_address setup_arch(char **cmdline_p)
293{
294	setup_initial_init_mm(_stext, _etext, _edata, _end);
295
296	*cmdline_p = boot_command_line;
297
298	/*
299	 * If know now we are going to need KPTI then use non-global
300	 * mappings from the start, avoiding the cost of rewriting
301	 * everything later.
302	 */
303	arm64_use_ng_mappings = kaslr_requires_kpti();
304
305	early_fixmap_init();
306	early_ioremap_init();
307
308	setup_machine_fdt(__fdt_pointer);
309
310	/*
311	 * Initialise the static keys early as they may be enabled by the
312	 * cpufeature code and early parameters.
313	 */
314	jump_label_init();
315	parse_early_param();
316
317	dynamic_scs_init();
318
319	/*
320	 * Unmask asynchronous aborts and fiq after bringing up possible
321	 * earlycon. (Report possible System Errors once we can report this
322	 * occurred).
323	 */
324	local_daif_restore(DAIF_PROCCTX_NOIRQ);
325
326	/*
327	 * TTBR0 is only used for the identity mapping at this stage. Make it
328	 * point to zero page to avoid speculatively fetching new entries.
329	 */
330	cpu_uninstall_idmap();
331
332	xen_early_init();
333	efi_init();
334
335	if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
336	     pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
337
338	arm64_memblock_init();
339
340	paging_init();
341
342	acpi_table_upgrade();
343
344	/* Parse the ACPI tables for possible boot-time configuration */
345	acpi_boot_table_init();
346
347	if (acpi_disabled)
348		unflatten_device_tree();
349
350	bootmem_init();
351
352	kasan_init();
353
354	request_standard_resources();
355
356	early_ioremap_reset();
357
358	if (acpi_disabled)
359		psci_dt_init();
360	else
361		psci_acpi_init();
362
363	init_bootcpu_ops();
364	smp_init_cpus();
365	smp_build_mpidr_hash();
366
367	/* Init percpu seeds for random tags after cpus are set up. */
368	kasan_init_sw_tags();
369
370#ifdef CONFIG_ARM64_SW_TTBR0_PAN
371	/*
372	 * Make sure init_thread_info.ttbr0 always generates translation
373	 * faults in case uaccess_enable() is inadvertently called by the init
374	 * thread.
375	 */
376	init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
377#endif
378
379	if (boot_args[1] || boot_args[2] || boot_args[3]) {
380		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
381			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
382			"This indicates a broken bootloader or old kernel\n",
383			boot_args[1], boot_args[2], boot_args[3]);
384	}
385}
386
387static inline bool cpu_can_disable(unsigned int cpu)
388{
389#ifdef CONFIG_HOTPLUG_CPU
390	const struct cpu_operations *ops = get_cpu_ops(cpu);
391
392	if (ops && ops->cpu_can_disable)
393		return ops->cpu_can_disable(cpu);
394#endif
395	return false;
396}
397
398static int __init topology_init(void)
399{
400	int i;
401
402	for_each_possible_cpu(i) {
403		struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
404		cpu->hotpluggable = cpu_can_disable(i);
405		register_cpu(cpu, i);
406	}
407
408	return 0;
409}
410subsys_initcall(topology_init);
411
412static void dump_kernel_offset(void)
413{
414	const unsigned long offset = kaslr_offset();
415
416	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
417		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
418			 offset, KIMAGE_VADDR);
419		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
420	} else {
421		pr_emerg("Kernel Offset: disabled\n");
422	}
423}
424
425static int arm64_panic_block_dump(struct notifier_block *self,
426				  unsigned long v, void *p)
427{
428	dump_kernel_offset();
429	dump_cpu_features();
430	dump_mem_limit();
431	return 0;
432}
433
434static struct notifier_block arm64_panic_block = {
435	.notifier_call = arm64_panic_block_dump
436};
437
438static int __init register_arm64_panic_block(void)
439{
440	atomic_notifier_chain_register(&panic_notifier_list,
441				       &arm64_panic_block);
442	return 0;
443}
444device_initcall(register_arm64_panic_block);