Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * The code contained herein is licensed under the GNU General Public
  5 * License. You may obtain a copy of the GNU General Public License
  6 * Version 2 or later at the following locations:
  7 *
  8 * http://www.opensource.org/licenses/gpl-license.html
  9 * http://www.gnu.org/copyleft/gpl.html
 10 */
 11
 12#include <linux/io.h>
 13#include <linux/rtc.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/interrupt.h>
 17#include <linux/platform_device.h>
 
 18#include <linux/clk.h>
 19
 20#include <mach/hardware.h>
 21
 22#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 23#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 24#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 25
 26#define RTC_SW_BIT      (1 << 0)
 27#define RTC_ALM_BIT     (1 << 2)
 28#define RTC_1HZ_BIT     (1 << 4)
 29#define RTC_2HZ_BIT     (1 << 7)
 30#define RTC_SAM0_BIT    (1 << 8)
 31#define RTC_SAM1_BIT    (1 << 9)
 32#define RTC_SAM2_BIT    (1 << 10)
 33#define RTC_SAM3_BIT    (1 << 11)
 34#define RTC_SAM4_BIT    (1 << 12)
 35#define RTC_SAM5_BIT    (1 << 13)
 36#define RTC_SAM6_BIT    (1 << 14)
 37#define RTC_SAM7_BIT    (1 << 15)
 38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 39			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 40			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 41
 42#define RTC_ENABLE_BIT  (1 << 7)
 43
 44#define MAX_PIE_NUM     9
 45#define MAX_PIE_FREQ    512
 46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
 47	{ 2,		RTC_2HZ_BIT },
 48	{ 4,		RTC_SAM0_BIT },
 49	{ 8,		RTC_SAM1_BIT },
 50	{ 16,		RTC_SAM2_BIT },
 51	{ 32,		RTC_SAM3_BIT },
 52	{ 64,		RTC_SAM4_BIT },
 53	{ 128,		RTC_SAM5_BIT },
 54	{ 256,		RTC_SAM6_BIT },
 55	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
 56};
 57
 58#define MXC_RTC_TIME	0
 59#define MXC_RTC_ALARM	1
 60
 61#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 62#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 63#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 64#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 65#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 66#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 67#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 68#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 69#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 70#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 71#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 72#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 73#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 74
 
 
 
 
 
 75struct rtc_plat_data {
 76	struct rtc_device *rtc;
 77	void __iomem *ioaddr;
 78	int irq;
 79	struct clk *clk;
 
 80	struct rtc_time g_rtc_alarm;
 
 81};
 82
 
 
 
 
 
 
 
 
 
 
 
 
 83/*
 84 * This function is used to obtain the RTC time or the alarm value in
 85 * second.
 86 */
 87static u32 get_alarm_or_time(struct device *dev, int time_alarm)
 88{
 89	struct platform_device *pdev = to_platform_device(dev);
 90	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 91	void __iomem *ioaddr = pdata->ioaddr;
 92	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 93
 94	switch (time_alarm) {
 95	case MXC_RTC_TIME:
 96		day = readw(ioaddr + RTC_DAYR);
 97		hr_min = readw(ioaddr + RTC_HOURMIN);
 98		sec = readw(ioaddr + RTC_SECOND);
 99		break;
100	case MXC_RTC_ALARM:
101		day = readw(ioaddr + RTC_DAYALARM);
102		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103		sec = readw(ioaddr + RTC_ALRM_SEC);
104		break;
105	}
106
107	hr = hr_min >> 8;
108	min = hr_min & 0xff;
109
110	return (((day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117{
118	u32 day, hr, min, sec, temp;
119	struct platform_device *pdev = to_platform_device(dev);
120	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121	void __iomem *ioaddr = pdata->ioaddr;
122
123	day = time / 86400;
124	time -= day * 86400;
125
126	/* time is within a day now */
127	hr = time / 3600;
128	time -= hr * 3600;
129
130	/* time is within an hour now */
131	min = time / 60;
132	sec = time - min * 60;
133
134	temp = (hr << 8) + min;
135
136	switch (time_alarm) {
137	case MXC_RTC_TIME:
138		writew(day, ioaddr + RTC_DAYR);
139		writew(sec, ioaddr + RTC_SECOND);
140		writew(temp, ioaddr + RTC_HOURMIN);
141		break;
142	case MXC_RTC_ALARM:
143		writew(day, ioaddr + RTC_DAYALARM);
144		writew(sec, ioaddr + RTC_ALRM_SEC);
145		writew(temp, ioaddr + RTC_ALRM_HM);
146		break;
147	}
148}
149
150/*
151 * This function updates the RTC alarm registers and then clears all the
152 * interrupt status bits.
153 */
154static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155{
156	struct rtc_time alarm_tm, now_tm;
157	unsigned long now, time;
158	int ret;
159	struct platform_device *pdev = to_platform_device(dev);
160	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
161	void __iomem *ioaddr = pdata->ioaddr;
162
163	now = get_alarm_or_time(dev, MXC_RTC_TIME);
164	rtc_time_to_tm(now, &now_tm);
165	alarm_tm.tm_year = now_tm.tm_year;
166	alarm_tm.tm_mon = now_tm.tm_mon;
167	alarm_tm.tm_mday = now_tm.tm_mday;
168	alarm_tm.tm_hour = alrm->tm_hour;
169	alarm_tm.tm_min = alrm->tm_min;
170	alarm_tm.tm_sec = alrm->tm_sec;
171	rtc_tm_to_time(&now_tm, &now);
172	rtc_tm_to_time(&alarm_tm, &time);
173
174	if (time < now) {
175		time += 60 * 60 * 24;
176		rtc_time_to_tm(time, &alarm_tm);
177	}
178
179	ret = rtc_tm_to_time(&alarm_tm, &time);
180
181	/* clear all the interrupt status bits */
182	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
183	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
 
184
185	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186}
187
188/* This function is the RTC interrupt service routine. */
189static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
190{
191	struct platform_device *pdev = dev_id;
192	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
193	void __iomem *ioaddr = pdata->ioaddr;
194	u32 status;
195	u32 events = 0;
196
197	spin_lock_irq(&pdata->rtc->irq_lock);
198	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
199	/* clear interrupt sources */
200	writew(status, ioaddr + RTC_RTCISR);
201
202	/* clear alarm interrupt if it has occurred */
203	if (status & RTC_ALM_BIT)
204		status &= ~RTC_ALM_BIT;
205
206	/* update irq data & counter */
207	if (status & RTC_ALM_BIT)
208		events |= (RTC_AF | RTC_IRQF);
209
210	if (status & RTC_1HZ_BIT)
211		events |= (RTC_UF | RTC_IRQF);
212
213	if (status & PIT_ALL_ON)
214		events |= (RTC_PF | RTC_IRQF);
215
216	if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
217		rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
218
219	rtc_update_irq(pdata->rtc, 1, events);
220	spin_unlock_irq(&pdata->rtc->irq_lock);
221
222	return IRQ_HANDLED;
223}
224
225/*
226 * Clear all interrupts and release the IRQ
227 */
228static void mxc_rtc_release(struct device *dev)
229{
230	struct platform_device *pdev = to_platform_device(dev);
231	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
232	void __iomem *ioaddr = pdata->ioaddr;
233
234	spin_lock_irq(&pdata->rtc->irq_lock);
235
236	/* Disable all rtc interrupts */
237	writew(0, ioaddr + RTC_RTCIENR);
238
239	/* Clear all interrupt status */
240	writew(0xffffffff, ioaddr + RTC_RTCISR);
241
242	spin_unlock_irq(&pdata->rtc->irq_lock);
243}
244
245static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
246				unsigned int enabled)
247{
248	struct platform_device *pdev = to_platform_device(dev);
249	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
250	void __iomem *ioaddr = pdata->ioaddr;
251	u32 reg;
252
253	spin_lock_irq(&pdata->rtc->irq_lock);
254	reg = readw(ioaddr + RTC_RTCIENR);
255
256	if (enabled)
257		reg |= bit;
258	else
259		reg &= ~bit;
260
261	writew(reg, ioaddr + RTC_RTCIENR);
262	spin_unlock_irq(&pdata->rtc->irq_lock);
263}
264
265static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
266{
267	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
268	return 0;
269}
270
271/*
272 * This function reads the current RTC time into tm in Gregorian date.
273 */
274static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
275{
276	u32 val;
277
278	/* Avoid roll-over from reading the different registers */
279	do {
280		val = get_alarm_or_time(dev, MXC_RTC_TIME);
281	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
282
283	rtc_time_to_tm(val, tm);
284
285	return 0;
286}
287
288/*
289 * This function sets the internal RTC time based on tm in Gregorian date.
290 */
291static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
292{
 
 
293	/* Avoid roll-over from reading the different registers */
294	do {
295		set_alarm_or_time(dev, MXC_RTC_TIME, time);
296	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
297
298	return 0;
299}
300
301/*
302 * This function reads the current alarm value into the passed in 'alrm'
303 * argument. It updates the alrm's pending field value based on the whether
304 * an alarm interrupt occurs or not.
305 */
306static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
307{
308	struct platform_device *pdev = to_platform_device(dev);
309	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
310	void __iomem *ioaddr = pdata->ioaddr;
311
312	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
313	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
314
315	return 0;
316}
317
318/*
319 * This function sets the RTC alarm based on passed in alrm.
320 */
321static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
322{
323	struct platform_device *pdev = to_platform_device(dev);
324	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
325	int ret;
326
327	if (rtc_valid_tm(&alrm->time)) {
328		if (alrm->time.tm_sec > 59 ||
329		    alrm->time.tm_hour > 23 ||
330		    alrm->time.tm_min > 59)
331			return -EINVAL;
332
333		ret = rtc_update_alarm(dev, &alrm->time);
334	} else {
335		ret = rtc_valid_tm(&alrm->time);
336		if (ret)
337			return ret;
338
339		ret = rtc_update_alarm(dev, &alrm->time);
340	}
341
342	if (ret)
343		return ret;
344
345	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
346	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
347
348	return 0;
349}
350
351/* RTC layer */
352static struct rtc_class_ops mxc_rtc_ops = {
353	.release		= mxc_rtc_release,
354	.read_time		= mxc_rtc_read_time,
355	.set_mmss		= mxc_rtc_set_mmss,
356	.read_alarm		= mxc_rtc_read_alarm,
357	.set_alarm		= mxc_rtc_set_alarm,
358	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
359};
360
361static int __init mxc_rtc_probe(struct platform_device *pdev)
362{
363	struct resource *res;
364	struct rtc_device *rtc;
365	struct rtc_plat_data *pdata = NULL;
366	u32 reg;
367	unsigned long rate;
368	int ret;
369
370	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
371	if (!res)
372		return -ENODEV;
373
374	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
375	if (!pdata)
376		return -ENOMEM;
377
378	if (!devm_request_mem_region(&pdev->dev, res->start,
379				     resource_size(res), pdev->name))
380		return -EBUSY;
381
382	pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
383				     resource_size(res));
384
385	pdata->clk = clk_get(&pdev->dev, "rtc");
386	if (IS_ERR(pdata->clk)) {
387		dev_err(&pdev->dev, "unable to get clock!\n");
388		ret = PTR_ERR(pdata->clk);
389		goto exit_free_pdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390	}
391
392	clk_enable(pdata->clk);
393	rate = clk_get_rate(pdata->clk);
 
 
 
 
 
 
 
 
 
 
 
394
395	if (rate == 32768)
396		reg = RTC_INPUT_CLK_32768HZ;
397	else if (rate == 32000)
398		reg = RTC_INPUT_CLK_32000HZ;
399	else if (rate == 38400)
400		reg = RTC_INPUT_CLK_38400HZ;
401	else {
402		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
403		ret = -EINVAL;
404		goto exit_put_clk;
405	}
406
407	reg |= RTC_ENABLE_BIT;
408	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
409	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
410		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
411		ret = -EIO;
412		goto exit_put_clk;
413	}
414
415	platform_set_drvdata(pdev, pdata);
416
417	/* Configure and enable the RTC */
418	pdata->irq = platform_get_irq(pdev, 0);
419
420	if (pdata->irq >= 0 &&
421	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
422			     IRQF_SHARED, pdev->name, pdev) < 0) {
423		dev_warn(&pdev->dev, "interrupt not available.\n");
424		pdata->irq = -1;
425	}
426
427	rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
428				  THIS_MODULE);
429	if (IS_ERR(rtc)) {
430		ret = PTR_ERR(rtc);
431		goto exit_clr_drvdata;
432	}
433
434	pdata->rtc = rtc;
435
436	return 0;
437
438exit_clr_drvdata:
439	platform_set_drvdata(pdev, NULL);
440exit_put_clk:
441	clk_disable(pdata->clk);
442	clk_put(pdata->clk);
443
444exit_free_pdata:
445
446	return ret;
447}
448
449static int __exit mxc_rtc_remove(struct platform_device *pdev)
450{
451	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
452
453	rtc_device_unregister(pdata->rtc);
454
455	clk_disable(pdata->clk);
456	clk_put(pdata->clk);
457	platform_set_drvdata(pdev, NULL);
458
459	return 0;
460}
461
462static struct platform_driver mxc_rtc_driver = {
463	.driver = {
464		   .name	= "mxc_rtc",
465		   .owner	= THIS_MODULE,
466	},
467	.remove		= __exit_p(mxc_rtc_remove),
468};
469
470static int __init mxc_rtc_init(void)
471{
472	return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
473}
474
475static void __exit mxc_rtc_exit(void)
476{
477	platform_driver_unregister(&mxc_rtc_driver);
478}
479
480module_init(mxc_rtc_init);
481module_exit(mxc_rtc_exit);
482
483MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
484MODULE_DESCRIPTION("RTC driver for Freescale MXC");
485MODULE_LICENSE("GPL");
486
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
 
 
 
 
 
 
 
  4
  5#include <linux/io.h>
  6#include <linux/rtc.h>
  7#include <linux/module.h>
  8#include <linux/slab.h>
  9#include <linux/interrupt.h>
 10#include <linux/platform_device.h>
 11#include <linux/pm_wakeirq.h>
 12#include <linux/clk.h>
 13#include <linux/of.h>
 14#include <linux/of_device.h>
 15
 16#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 17#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 18#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 19
 20#define RTC_SW_BIT      (1 << 0)
 21#define RTC_ALM_BIT     (1 << 2)
 22#define RTC_1HZ_BIT     (1 << 4)
 23#define RTC_2HZ_BIT     (1 << 7)
 24#define RTC_SAM0_BIT    (1 << 8)
 25#define RTC_SAM1_BIT    (1 << 9)
 26#define RTC_SAM2_BIT    (1 << 10)
 27#define RTC_SAM3_BIT    (1 << 11)
 28#define RTC_SAM4_BIT    (1 << 12)
 29#define RTC_SAM5_BIT    (1 << 13)
 30#define RTC_SAM6_BIT    (1 << 14)
 31#define RTC_SAM7_BIT    (1 << 15)
 32#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 33			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 34			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 35
 36#define RTC_ENABLE_BIT  (1 << 7)
 37
 38#define MAX_PIE_NUM     9
 39#define MAX_PIE_FREQ    512
 
 
 
 
 
 
 
 
 
 
 
 40
 41#define MXC_RTC_TIME	0
 42#define MXC_RTC_ALARM	1
 43
 44#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 45#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 46#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 47#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 48#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 49#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 50#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 51#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 52#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 53#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 54#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 55#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 56#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 57
 58enum imx_rtc_type {
 59	IMX1_RTC,
 60	IMX21_RTC,
 61};
 62
 63struct rtc_plat_data {
 64	struct rtc_device *rtc;
 65	void __iomem *ioaddr;
 66	int irq;
 67	struct clk *clk_ref;
 68	struct clk *clk_ipg;
 69	struct rtc_time g_rtc_alarm;
 70	enum imx_rtc_type devtype;
 71};
 72
 73static const struct of_device_id imx_rtc_dt_ids[] = {
 74	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
 75	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
 76	{}
 77};
 78MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
 79
 80static inline int is_imx1_rtc(struct rtc_plat_data *data)
 81{
 82	return data->devtype == IMX1_RTC;
 83}
 84
 85/*
 86 * This function is used to obtain the RTC time or the alarm value in
 87 * second.
 88 */
 89static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
 90{
 91	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
 92	void __iomem *ioaddr = pdata->ioaddr;
 93	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 94
 95	switch (time_alarm) {
 96	case MXC_RTC_TIME:
 97		day = readw(ioaddr + RTC_DAYR);
 98		hr_min = readw(ioaddr + RTC_HOURMIN);
 99		sec = readw(ioaddr + RTC_SECOND);
100		break;
101	case MXC_RTC_ALARM:
102		day = readw(ioaddr + RTC_DAYALARM);
103		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
104		sec = readw(ioaddr + RTC_ALRM_SEC);
105		break;
106	}
107
108	hr = hr_min >> 8;
109	min = hr_min & 0xff;
110
111	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
112}
113
114/*
115 * This function sets the RTC alarm value or the time value.
116 */
117static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
118{
119	u32 tod, day, hr, min, sec, temp;
120	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
121	void __iomem *ioaddr = pdata->ioaddr;
122
123	day = div_s64_rem(time, 86400, &tod);
 
124
125	/* time is within a day now */
126	hr = tod / 3600;
127	tod -= hr * 3600;
128
129	/* time is within an hour now */
130	min = tod / 60;
131	sec = tod - min * 60;
132
133	temp = (hr << 8) + min;
134
135	switch (time_alarm) {
136	case MXC_RTC_TIME:
137		writew(day, ioaddr + RTC_DAYR);
138		writew(sec, ioaddr + RTC_SECOND);
139		writew(temp, ioaddr + RTC_HOURMIN);
140		break;
141	case MXC_RTC_ALARM:
142		writew(day, ioaddr + RTC_DAYALARM);
143		writew(sec, ioaddr + RTC_ALRM_SEC);
144		writew(temp, ioaddr + RTC_ALRM_HM);
145		break;
146	}
147}
148
149/*
150 * This function updates the RTC alarm registers and then clears all the
151 * interrupt status bits.
152 */
153static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
154{
155	time64_t time;
156	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
 
 
157	void __iomem *ioaddr = pdata->ioaddr;
158
159	time = rtc_tm_to_time64(alrm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
161	/* clear all the interrupt status bits */
162	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
163	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
164}
165
166static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
167				unsigned int enabled)
168{
169	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
170	void __iomem *ioaddr = pdata->ioaddr;
171	u32 reg;
172	unsigned long flags;
173
174	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
175	reg = readw(ioaddr + RTC_RTCIENR);
176
177	if (enabled)
178		reg |= bit;
179	else
180		reg &= ~bit;
181
182	writew(reg, ioaddr + RTC_RTCIENR);
183	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
184}
185
186/* This function is the RTC interrupt service routine. */
187static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
188{
189	struct platform_device *pdev = dev_id;
190	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
191	void __iomem *ioaddr = pdata->ioaddr;
192	u32 status;
193	u32 events = 0;
194
195	spin_lock(&pdata->rtc->irq_lock);
196	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
197	/* clear interrupt sources */
198	writew(status, ioaddr + RTC_RTCISR);
199
 
 
 
 
200	/* update irq data & counter */
201	if (status & RTC_ALM_BIT) {
202		events |= (RTC_AF | RTC_IRQF);
203		/* RTC alarm should be one-shot */
204		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
205	}
206
207	if (status & PIT_ALL_ON)
208		events |= (RTC_PF | RTC_IRQF);
209
 
 
 
210	rtc_update_irq(pdata->rtc, 1, events);
211	spin_unlock(&pdata->rtc->irq_lock);
212
213	return IRQ_HANDLED;
214}
215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
217{
218	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
219	return 0;
220}
221
222/*
223 * This function reads the current RTC time into tm in Gregorian date.
224 */
225static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
226{
227	time64_t val;
228
229	/* Avoid roll-over from reading the different registers */
230	do {
231		val = get_alarm_or_time(dev, MXC_RTC_TIME);
232	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
233
234	rtc_time64_to_tm(val, tm);
235
236	return 0;
237}
238
239/*
240 * This function sets the internal RTC time based on tm in Gregorian date.
241 */
242static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
243{
244	time64_t time = rtc_tm_to_time64(tm);
245
246	/* Avoid roll-over from reading the different registers */
247	do {
248		set_alarm_or_time(dev, MXC_RTC_TIME, time);
249	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
250
251	return 0;
252}
253
254/*
255 * This function reads the current alarm value into the passed in 'alrm'
256 * argument. It updates the alrm's pending field value based on the whether
257 * an alarm interrupt occurs or not.
258 */
259static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
260{
261	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
262	void __iomem *ioaddr = pdata->ioaddr;
263
264	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
265	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
266
267	return 0;
268}
269
270/*
271 * This function sets the RTC alarm based on passed in alrm.
272 */
273static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
274{
275	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
 
276
277	rtc_update_alarm(dev, &alrm->time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
279	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
280	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
281
282	return 0;
283}
284
285/* RTC layer */
286static const struct rtc_class_ops mxc_rtc_ops = {
 
287	.read_time		= mxc_rtc_read_time,
288	.set_time		= mxc_rtc_set_time,
289	.read_alarm		= mxc_rtc_read_alarm,
290	.set_alarm		= mxc_rtc_set_alarm,
291	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
292};
293
294static int mxc_rtc_probe(struct platform_device *pdev)
295{
 
296	struct rtc_device *rtc;
297	struct rtc_plat_data *pdata = NULL;
298	u32 reg;
299	unsigned long rate;
300	int ret;
301
 
 
 
 
302	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
303	if (!pdata)
304		return -ENOMEM;
305
306	pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
307
308	pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
309	if (IS_ERR(pdata->ioaddr))
310		return PTR_ERR(pdata->ioaddr);
311
312	rtc = devm_rtc_allocate_device(&pdev->dev);
313	if (IS_ERR(rtc))
314		return PTR_ERR(rtc);
315
316	pdata->rtc = rtc;
317	rtc->ops = &mxc_rtc_ops;
318	if (is_imx1_rtc(pdata)) {
319		struct rtc_time tm;
320
321		/* 9bit days + hours minutes seconds */
322		rtc->range_max = (1 << 9) * 86400 - 1;
323
324		/*
325		 * Set the start date as beginning of the current year. This can
326		 * be overridden using device tree.
327		 */
328		rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
329		rtc->start_secs =  mktime64(tm.tm_year, 1, 1, 0, 0, 0);
330		rtc->set_start_time = true;
331	} else {
332		/* 16bit days + hours minutes seconds */
333		rtc->range_max = (1 << 16) * 86400ULL - 1;
334	}
335
336	pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
337	if (IS_ERR(pdata->clk_ipg)) {
338		dev_err(&pdev->dev, "unable to get ipg clock!\n");
339		return PTR_ERR(pdata->clk_ipg);
340	}
341
342	pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
343	if (IS_ERR(pdata->clk_ref)) {
344		dev_err(&pdev->dev, "unable to get ref clock!\n");
345		return PTR_ERR(pdata->clk_ref);
346	}
347
348	rate = clk_get_rate(pdata->clk_ref);
349
350	if (rate == 32768)
351		reg = RTC_INPUT_CLK_32768HZ;
352	else if (rate == 32000)
353		reg = RTC_INPUT_CLK_32000HZ;
354	else if (rate == 38400)
355		reg = RTC_INPUT_CLK_38400HZ;
356	else {
357		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
358		return -EINVAL;
 
359	}
360
361	reg |= RTC_ENABLE_BIT;
362	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
363	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
364		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
365		return -EIO;
 
366	}
367
368	platform_set_drvdata(pdev, pdata);
369
370	/* Configure and enable the RTC */
371	pdata->irq = platform_get_irq(pdev, 0);
372
373	if (pdata->irq >= 0 &&
374	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
375			     IRQF_SHARED, pdev->name, pdev) < 0) {
376		dev_warn(&pdev->dev, "interrupt not available.\n");
377		pdata->irq = -1;
378	}
379
380	if (pdata->irq >= 0) {
381		device_init_wakeup(&pdev->dev, 1);
382		ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
383		if (ret)
384			dev_err(&pdev->dev, "failed to enable irq wake\n");
385	}
386
387	ret = devm_rtc_register_device(rtc);
 
 
 
 
 
 
 
 
 
 
388
389	return ret;
390}
391
 
 
 
 
 
 
 
 
 
 
 
 
 
392static struct platform_driver mxc_rtc_driver = {
393	.driver = {
394		   .name	= "mxc_rtc",
395		   .of_match_table = imx_rtc_dt_ids,
396	},
397	.probe = mxc_rtc_probe,
398};
399
400module_platform_driver(mxc_rtc_driver)
 
 
 
 
 
 
 
 
 
 
 
401
402MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
403MODULE_DESCRIPTION("RTC driver for Freescale MXC");
404MODULE_LICENSE("GPL");
405