Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * The code contained herein is licensed under the GNU General Public
  5 * License. You may obtain a copy of the GNU General Public License
  6 * Version 2 or later at the following locations:
  7 *
  8 * http://www.opensource.org/licenses/gpl-license.html
  9 * http://www.gnu.org/copyleft/gpl.html
 10 */
 11
 12#include <linux/io.h>
 13#include <linux/rtc.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/interrupt.h>
 17#include <linux/platform_device.h>
 18#include <linux/clk.h>
 19
 20#include <mach/hardware.h>
 21
 22#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 23#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 24#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 25
 26#define RTC_SW_BIT      (1 << 0)
 27#define RTC_ALM_BIT     (1 << 2)
 28#define RTC_1HZ_BIT     (1 << 4)
 29#define RTC_2HZ_BIT     (1 << 7)
 30#define RTC_SAM0_BIT    (1 << 8)
 31#define RTC_SAM1_BIT    (1 << 9)
 32#define RTC_SAM2_BIT    (1 << 10)
 33#define RTC_SAM3_BIT    (1 << 11)
 34#define RTC_SAM4_BIT    (1 << 12)
 35#define RTC_SAM5_BIT    (1 << 13)
 36#define RTC_SAM6_BIT    (1 << 14)
 37#define RTC_SAM7_BIT    (1 << 15)
 38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 39			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 40			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 41
 42#define RTC_ENABLE_BIT  (1 << 7)
 43
 44#define MAX_PIE_NUM     9
 45#define MAX_PIE_FREQ    512
 46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
 47	{ 2,		RTC_2HZ_BIT },
 48	{ 4,		RTC_SAM0_BIT },
 49	{ 8,		RTC_SAM1_BIT },
 50	{ 16,		RTC_SAM2_BIT },
 51	{ 32,		RTC_SAM3_BIT },
 52	{ 64,		RTC_SAM4_BIT },
 53	{ 128,		RTC_SAM5_BIT },
 54	{ 256,		RTC_SAM6_BIT },
 55	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
 56};
 57
 58#define MXC_RTC_TIME	0
 59#define MXC_RTC_ALARM	1
 60
 61#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 62#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 63#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 64#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 65#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 66#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 67#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 68#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 69#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 70#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 71#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 72#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 73#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 74
 
 
 
 
 
 75struct rtc_plat_data {
 76	struct rtc_device *rtc;
 77	void __iomem *ioaddr;
 78	int irq;
 79	struct clk *clk;
 80	struct rtc_time g_rtc_alarm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 81};
 
 
 
 
 
 
 82
 83/*
 84 * This function is used to obtain the RTC time or the alarm value in
 85 * second.
 86 */
 87static u32 get_alarm_or_time(struct device *dev, int time_alarm)
 88{
 89	struct platform_device *pdev = to_platform_device(dev);
 90	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 91	void __iomem *ioaddr = pdata->ioaddr;
 92	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 93
 94	switch (time_alarm) {
 95	case MXC_RTC_TIME:
 96		day = readw(ioaddr + RTC_DAYR);
 97		hr_min = readw(ioaddr + RTC_HOURMIN);
 98		sec = readw(ioaddr + RTC_SECOND);
 99		break;
100	case MXC_RTC_ALARM:
101		day = readw(ioaddr + RTC_DAYALARM);
102		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103		sec = readw(ioaddr + RTC_ALRM_SEC);
104		break;
105	}
106
107	hr = hr_min >> 8;
108	min = hr_min & 0xff;
109
110	return (((day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117{
118	u32 day, hr, min, sec, temp;
119	struct platform_device *pdev = to_platform_device(dev);
120	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121	void __iomem *ioaddr = pdata->ioaddr;
122
123	day = time / 86400;
124	time -= day * 86400;
125
126	/* time is within a day now */
127	hr = time / 3600;
128	time -= hr * 3600;
129
130	/* time is within an hour now */
131	min = time / 60;
132	sec = time - min * 60;
133
134	temp = (hr << 8) + min;
135
136	switch (time_alarm) {
137	case MXC_RTC_TIME:
138		writew(day, ioaddr + RTC_DAYR);
139		writew(sec, ioaddr + RTC_SECOND);
140		writew(temp, ioaddr + RTC_HOURMIN);
141		break;
142	case MXC_RTC_ALARM:
143		writew(day, ioaddr + RTC_DAYALARM);
144		writew(sec, ioaddr + RTC_ALRM_SEC);
145		writew(temp, ioaddr + RTC_ALRM_HM);
146		break;
147	}
148}
149
150/*
151 * This function updates the RTC alarm registers and then clears all the
152 * interrupt status bits.
153 */
154static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155{
156	struct rtc_time alarm_tm, now_tm;
157	unsigned long now, time;
158	int ret;
159	struct platform_device *pdev = to_platform_device(dev);
160	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
161	void __iomem *ioaddr = pdata->ioaddr;
162
163	now = get_alarm_or_time(dev, MXC_RTC_TIME);
164	rtc_time_to_tm(now, &now_tm);
165	alarm_tm.tm_year = now_tm.tm_year;
166	alarm_tm.tm_mon = now_tm.tm_mon;
167	alarm_tm.tm_mday = now_tm.tm_mday;
168	alarm_tm.tm_hour = alrm->tm_hour;
169	alarm_tm.tm_min = alrm->tm_min;
170	alarm_tm.tm_sec = alrm->tm_sec;
171	rtc_tm_to_time(&now_tm, &now);
172	rtc_tm_to_time(&alarm_tm, &time);
173
174	if (time < now) {
175		time += 60 * 60 * 24;
176		rtc_time_to_tm(time, &alarm_tm);
177	}
178
179	ret = rtc_tm_to_time(&alarm_tm, &time);
180
181	/* clear all the interrupt status bits */
182	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
183	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
184
185	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186}
187
188/* This function is the RTC interrupt service routine. */
189static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
190{
191	struct platform_device *pdev = dev_id;
192	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
193	void __iomem *ioaddr = pdata->ioaddr;
 
194	u32 status;
195	u32 events = 0;
196
197	spin_lock_irq(&pdata->rtc->irq_lock);
198	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
199	/* clear interrupt sources */
200	writew(status, ioaddr + RTC_RTCISR);
201
202	/* clear alarm interrupt if it has occurred */
203	if (status & RTC_ALM_BIT)
204		status &= ~RTC_ALM_BIT;
205
206	/* update irq data & counter */
207	if (status & RTC_ALM_BIT)
208		events |= (RTC_AF | RTC_IRQF);
 
 
 
209
210	if (status & RTC_1HZ_BIT)
211		events |= (RTC_UF | RTC_IRQF);
212
213	if (status & PIT_ALL_ON)
214		events |= (RTC_PF | RTC_IRQF);
215
216	if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
217		rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
218
219	rtc_update_irq(pdata->rtc, 1, events);
220	spin_unlock_irq(&pdata->rtc->irq_lock);
221
222	return IRQ_HANDLED;
223}
224
225/*
226 * Clear all interrupts and release the IRQ
227 */
228static void mxc_rtc_release(struct device *dev)
229{
230	struct platform_device *pdev = to_platform_device(dev);
231	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
232	void __iomem *ioaddr = pdata->ioaddr;
233
234	spin_lock_irq(&pdata->rtc->irq_lock);
235
236	/* Disable all rtc interrupts */
237	writew(0, ioaddr + RTC_RTCIENR);
238
239	/* Clear all interrupt status */
240	writew(0xffffffff, ioaddr + RTC_RTCISR);
241
242	spin_unlock_irq(&pdata->rtc->irq_lock);
243}
244
245static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
246				unsigned int enabled)
247{
248	struct platform_device *pdev = to_platform_device(dev);
249	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
250	void __iomem *ioaddr = pdata->ioaddr;
251	u32 reg;
252
253	spin_lock_irq(&pdata->rtc->irq_lock);
254	reg = readw(ioaddr + RTC_RTCIENR);
255
256	if (enabled)
257		reg |= bit;
258	else
259		reg &= ~bit;
260
261	writew(reg, ioaddr + RTC_RTCIENR);
262	spin_unlock_irq(&pdata->rtc->irq_lock);
263}
264
265static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
266{
267	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
268	return 0;
269}
270
271/*
272 * This function reads the current RTC time into tm in Gregorian date.
273 */
274static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
275{
276	u32 val;
277
278	/* Avoid roll-over from reading the different registers */
279	do {
280		val = get_alarm_or_time(dev, MXC_RTC_TIME);
281	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
282
283	rtc_time_to_tm(val, tm);
284
285	return 0;
286}
287
288/*
289 * This function sets the internal RTC time based on tm in Gregorian date.
290 */
291static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
292{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293	/* Avoid roll-over from reading the different registers */
294	do {
295		set_alarm_or_time(dev, MXC_RTC_TIME, time);
296	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
297
298	return 0;
299}
300
301/*
302 * This function reads the current alarm value into the passed in 'alrm'
303 * argument. It updates the alrm's pending field value based on the whether
304 * an alarm interrupt occurs or not.
305 */
306static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
307{
308	struct platform_device *pdev = to_platform_device(dev);
309	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
310	void __iomem *ioaddr = pdata->ioaddr;
311
312	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
313	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
314
315	return 0;
316}
317
318/*
319 * This function sets the RTC alarm based on passed in alrm.
320 */
321static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
322{
323	struct platform_device *pdev = to_platform_device(dev);
324	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
325	int ret;
326
327	if (rtc_valid_tm(&alrm->time)) {
328		if (alrm->time.tm_sec > 59 ||
329		    alrm->time.tm_hour > 23 ||
330		    alrm->time.tm_min > 59)
331			return -EINVAL;
332
333		ret = rtc_update_alarm(dev, &alrm->time);
334	} else {
335		ret = rtc_valid_tm(&alrm->time);
336		if (ret)
337			return ret;
338
339		ret = rtc_update_alarm(dev, &alrm->time);
340	}
341
342	if (ret)
343		return ret;
344
345	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
346	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
347
348	return 0;
349}
350
351/* RTC layer */
352static struct rtc_class_ops mxc_rtc_ops = {
353	.release		= mxc_rtc_release,
354	.read_time		= mxc_rtc_read_time,
355	.set_mmss		= mxc_rtc_set_mmss,
356	.read_alarm		= mxc_rtc_read_alarm,
357	.set_alarm		= mxc_rtc_set_alarm,
358	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
359};
360
361static int __init mxc_rtc_probe(struct platform_device *pdev)
362{
363	struct resource *res;
364	struct rtc_device *rtc;
365	struct rtc_plat_data *pdata = NULL;
366	u32 reg;
367	unsigned long rate;
368	int ret;
369
370	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
371	if (!res)
372		return -ENODEV;
373
374	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
375	if (!pdata)
376		return -ENOMEM;
377
378	if (!devm_request_mem_region(&pdev->dev, res->start,
379				     resource_size(res), pdev->name))
380		return -EBUSY;
381
382	pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
383				     resource_size(res));
 
 
384
385	pdata->clk = clk_get(&pdev->dev, "rtc");
386	if (IS_ERR(pdata->clk)) {
387		dev_err(&pdev->dev, "unable to get clock!\n");
388		ret = PTR_ERR(pdata->clk);
389		goto exit_free_pdata;
390	}
391
392	clk_enable(pdata->clk);
 
 
 
393	rate = clk_get_rate(pdata->clk);
394
395	if (rate == 32768)
396		reg = RTC_INPUT_CLK_32768HZ;
397	else if (rate == 32000)
398		reg = RTC_INPUT_CLK_32000HZ;
399	else if (rate == 38400)
400		reg = RTC_INPUT_CLK_38400HZ;
401	else {
402		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
403		ret = -EINVAL;
404		goto exit_put_clk;
405	}
406
407	reg |= RTC_ENABLE_BIT;
408	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
409	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
410		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
411		ret = -EIO;
412		goto exit_put_clk;
413	}
414
415	platform_set_drvdata(pdev, pdata);
416
417	/* Configure and enable the RTC */
418	pdata->irq = platform_get_irq(pdev, 0);
419
420	if (pdata->irq >= 0 &&
421	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
422			     IRQF_SHARED, pdev->name, pdev) < 0) {
423		dev_warn(&pdev->dev, "interrupt not available.\n");
424		pdata->irq = -1;
425	}
426
427	rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
 
 
 
428				  THIS_MODULE);
429	if (IS_ERR(rtc)) {
430		ret = PTR_ERR(rtc);
431		goto exit_clr_drvdata;
432	}
433
434	pdata->rtc = rtc;
435
436	return 0;
437
438exit_clr_drvdata:
439	platform_set_drvdata(pdev, NULL);
440exit_put_clk:
441	clk_disable(pdata->clk);
442	clk_put(pdata->clk);
443
444exit_free_pdata:
445
446	return ret;
447}
448
449static int __exit mxc_rtc_remove(struct platform_device *pdev)
450{
451	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
452
453	rtc_device_unregister(pdata->rtc);
 
 
 
 
 
 
 
 
454
455	clk_disable(pdata->clk);
456	clk_put(pdata->clk);
457	platform_set_drvdata(pdev, NULL);
458
459	return 0;
460}
461
 
 
 
 
 
 
 
 
 
 
 
 
 
462static struct platform_driver mxc_rtc_driver = {
463	.driver = {
464		   .name	= "mxc_rtc",
 
465		   .owner	= THIS_MODULE,
466	},
467	.remove		= __exit_p(mxc_rtc_remove),
 
 
468};
469
470static int __init mxc_rtc_init(void)
471{
472	return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
473}
474
475static void __exit mxc_rtc_exit(void)
476{
477	platform_driver_unregister(&mxc_rtc_driver);
478}
479
480module_init(mxc_rtc_init);
481module_exit(mxc_rtc_exit);
482
483MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
484MODULE_DESCRIPTION("RTC driver for Freescale MXC");
485MODULE_LICENSE("GPL");
486
v3.15
  1/*
  2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * The code contained herein is licensed under the GNU General Public
  5 * License. You may obtain a copy of the GNU General Public License
  6 * Version 2 or later at the following locations:
  7 *
  8 * http://www.opensource.org/licenses/gpl-license.html
  9 * http://www.gnu.org/copyleft/gpl.html
 10 */
 11
 12#include <linux/io.h>
 13#include <linux/rtc.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/interrupt.h>
 17#include <linux/platform_device.h>
 18#include <linux/clk.h>
 19
 
 
 20#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 21#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 22#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 23
 24#define RTC_SW_BIT      (1 << 0)
 25#define RTC_ALM_BIT     (1 << 2)
 26#define RTC_1HZ_BIT     (1 << 4)
 27#define RTC_2HZ_BIT     (1 << 7)
 28#define RTC_SAM0_BIT    (1 << 8)
 29#define RTC_SAM1_BIT    (1 << 9)
 30#define RTC_SAM2_BIT    (1 << 10)
 31#define RTC_SAM3_BIT    (1 << 11)
 32#define RTC_SAM4_BIT    (1 << 12)
 33#define RTC_SAM5_BIT    (1 << 13)
 34#define RTC_SAM6_BIT    (1 << 14)
 35#define RTC_SAM7_BIT    (1 << 15)
 36#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 37			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 38			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 39
 40#define RTC_ENABLE_BIT  (1 << 7)
 41
 42#define MAX_PIE_NUM     9
 43#define MAX_PIE_FREQ    512
 44static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
 45	{ 2,		RTC_2HZ_BIT },
 46	{ 4,		RTC_SAM0_BIT },
 47	{ 8,		RTC_SAM1_BIT },
 48	{ 16,		RTC_SAM2_BIT },
 49	{ 32,		RTC_SAM3_BIT },
 50	{ 64,		RTC_SAM4_BIT },
 51	{ 128,		RTC_SAM5_BIT },
 52	{ 256,		RTC_SAM6_BIT },
 53	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
 54};
 55
 56#define MXC_RTC_TIME	0
 57#define MXC_RTC_ALARM	1
 58
 59#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 60#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 61#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 62#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 63#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 64#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 65#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 66#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 67#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 68#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 69#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 70#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 71#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 72
 73enum imx_rtc_type {
 74	IMX1_RTC,
 75	IMX21_RTC,
 76};
 77
 78struct rtc_plat_data {
 79	struct rtc_device *rtc;
 80	void __iomem *ioaddr;
 81	int irq;
 82	struct clk *clk;
 83	struct rtc_time g_rtc_alarm;
 84	enum imx_rtc_type devtype;
 85};
 86
 87static struct platform_device_id imx_rtc_devtype[] = {
 88	{
 89		.name = "imx1-rtc",
 90		.driver_data = IMX1_RTC,
 91	}, {
 92		.name = "imx21-rtc",
 93		.driver_data = IMX21_RTC,
 94	}, {
 95		/* sentinel */
 96	}
 97};
 98MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
 99
100static inline int is_imx1_rtc(struct rtc_plat_data *data)
101{
102	return data->devtype == IMX1_RTC;
103}
104
105/*
106 * This function is used to obtain the RTC time or the alarm value in
107 * second.
108 */
109static u32 get_alarm_or_time(struct device *dev, int time_alarm)
110{
111	struct platform_device *pdev = to_platform_device(dev);
112	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
113	void __iomem *ioaddr = pdata->ioaddr;
114	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
115
116	switch (time_alarm) {
117	case MXC_RTC_TIME:
118		day = readw(ioaddr + RTC_DAYR);
119		hr_min = readw(ioaddr + RTC_HOURMIN);
120		sec = readw(ioaddr + RTC_SECOND);
121		break;
122	case MXC_RTC_ALARM:
123		day = readw(ioaddr + RTC_DAYALARM);
124		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
125		sec = readw(ioaddr + RTC_ALRM_SEC);
126		break;
127	}
128
129	hr = hr_min >> 8;
130	min = hr_min & 0xff;
131
132	return (((day * 24 + hr) * 60) + min) * 60 + sec;
133}
134
135/*
136 * This function sets the RTC alarm value or the time value.
137 */
138static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
139{
140	u32 day, hr, min, sec, temp;
141	struct platform_device *pdev = to_platform_device(dev);
142	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
143	void __iomem *ioaddr = pdata->ioaddr;
144
145	day = time / 86400;
146	time -= day * 86400;
147
148	/* time is within a day now */
149	hr = time / 3600;
150	time -= hr * 3600;
151
152	/* time is within an hour now */
153	min = time / 60;
154	sec = time - min * 60;
155
156	temp = (hr << 8) + min;
157
158	switch (time_alarm) {
159	case MXC_RTC_TIME:
160		writew(day, ioaddr + RTC_DAYR);
161		writew(sec, ioaddr + RTC_SECOND);
162		writew(temp, ioaddr + RTC_HOURMIN);
163		break;
164	case MXC_RTC_ALARM:
165		writew(day, ioaddr + RTC_DAYALARM);
166		writew(sec, ioaddr + RTC_ALRM_SEC);
167		writew(temp, ioaddr + RTC_ALRM_HM);
168		break;
169	}
170}
171
172/*
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
175 */
176static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177{
178	struct rtc_time alarm_tm, now_tm;
179	unsigned long now, time;
 
180	struct platform_device *pdev = to_platform_device(dev);
181	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
182	void __iomem *ioaddr = pdata->ioaddr;
183
184	now = get_alarm_or_time(dev, MXC_RTC_TIME);
185	rtc_time_to_tm(now, &now_tm);
186	alarm_tm.tm_year = now_tm.tm_year;
187	alarm_tm.tm_mon = now_tm.tm_mon;
188	alarm_tm.tm_mday = now_tm.tm_mday;
189	alarm_tm.tm_hour = alrm->tm_hour;
190	alarm_tm.tm_min = alrm->tm_min;
191	alarm_tm.tm_sec = alrm->tm_sec;
 
192	rtc_tm_to_time(&alarm_tm, &time);
193
 
 
 
 
 
 
 
194	/* clear all the interrupt status bits */
195	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
196	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
197
198	return 0;
199}
200
201static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202				unsigned int enabled)
203{
204	struct platform_device *pdev = to_platform_device(dev);
205	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206	void __iomem *ioaddr = pdata->ioaddr;
207	u32 reg;
208
209	spin_lock_irq(&pdata->rtc->irq_lock);
210	reg = readw(ioaddr + RTC_RTCIENR);
211
212	if (enabled)
213		reg |= bit;
214	else
215		reg &= ~bit;
216
217	writew(reg, ioaddr + RTC_RTCIENR);
218	spin_unlock_irq(&pdata->rtc->irq_lock);
219}
220
221/* This function is the RTC interrupt service routine. */
222static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
223{
224	struct platform_device *pdev = dev_id;
225	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226	void __iomem *ioaddr = pdata->ioaddr;
227	unsigned long flags;
228	u32 status;
229	u32 events = 0;
230
231	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233	/* clear interrupt sources */
234	writew(status, ioaddr + RTC_RTCISR);
235
 
 
 
 
236	/* update irq data & counter */
237	if (status & RTC_ALM_BIT) {
238		events |= (RTC_AF | RTC_IRQF);
239		/* RTC alarm should be one-shot */
240		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
241	}
242
243	if (status & RTC_1HZ_BIT)
244		events |= (RTC_UF | RTC_IRQF);
245
246	if (status & PIT_ALL_ON)
247		events |= (RTC_PF | RTC_IRQF);
248
 
 
 
249	rtc_update_irq(pdata->rtc, 1, events);
250	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
251
252	return IRQ_HANDLED;
253}
254
255/*
256 * Clear all interrupts and release the IRQ
257 */
258static void mxc_rtc_release(struct device *dev)
259{
260	struct platform_device *pdev = to_platform_device(dev);
261	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
262	void __iomem *ioaddr = pdata->ioaddr;
263
264	spin_lock_irq(&pdata->rtc->irq_lock);
265
266	/* Disable all rtc interrupts */
267	writew(0, ioaddr + RTC_RTCIENR);
268
269	/* Clear all interrupt status */
270	writew(0xffffffff, ioaddr + RTC_RTCISR);
271
272	spin_unlock_irq(&pdata->rtc->irq_lock);
273}
274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
276{
277	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
278	return 0;
279}
280
281/*
282 * This function reads the current RTC time into tm in Gregorian date.
283 */
284static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
285{
286	u32 val;
287
288	/* Avoid roll-over from reading the different registers */
289	do {
290		val = get_alarm_or_time(dev, MXC_RTC_TIME);
291	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
292
293	rtc_time_to_tm(val, tm);
294
295	return 0;
296}
297
298/*
299 * This function sets the internal RTC time based on tm in Gregorian date.
300 */
301static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
302{
303	struct platform_device *pdev = to_platform_device(dev);
304	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
305
306	/*
307	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
308	 */
309	if (is_imx1_rtc(pdata)) {
310		struct rtc_time tm;
311
312		rtc_time_to_tm(time, &tm);
313		tm.tm_year = 70;
314		rtc_tm_to_time(&tm, &time);
315	}
316
317	/* Avoid roll-over from reading the different registers */
318	do {
319		set_alarm_or_time(dev, MXC_RTC_TIME, time);
320	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
321
322	return 0;
323}
324
325/*
326 * This function reads the current alarm value into the passed in 'alrm'
327 * argument. It updates the alrm's pending field value based on the whether
328 * an alarm interrupt occurs or not.
329 */
330static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
331{
332	struct platform_device *pdev = to_platform_device(dev);
333	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
334	void __iomem *ioaddr = pdata->ioaddr;
335
336	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
337	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
338
339	return 0;
340}
341
342/*
343 * This function sets the RTC alarm based on passed in alrm.
344 */
345static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
346{
347	struct platform_device *pdev = to_platform_device(dev);
348	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
349	int ret;
350
351	ret = rtc_update_alarm(dev, &alrm->time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352	if (ret)
353		return ret;
354
355	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
356	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
357
358	return 0;
359}
360
361/* RTC layer */
362static struct rtc_class_ops mxc_rtc_ops = {
363	.release		= mxc_rtc_release,
364	.read_time		= mxc_rtc_read_time,
365	.set_mmss		= mxc_rtc_set_mmss,
366	.read_alarm		= mxc_rtc_read_alarm,
367	.set_alarm		= mxc_rtc_set_alarm,
368	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
369};
370
371static int mxc_rtc_probe(struct platform_device *pdev)
372{
373	struct resource *res;
374	struct rtc_device *rtc;
375	struct rtc_plat_data *pdata = NULL;
376	u32 reg;
377	unsigned long rate;
378	int ret;
379
 
 
 
 
380	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
381	if (!pdata)
382		return -ENOMEM;
383
384	pdata->devtype = pdev->id_entry->driver_data;
 
 
385
386	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
387	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
388	if (IS_ERR(pdata->ioaddr))
389		return PTR_ERR(pdata->ioaddr);
390
391	pdata->clk = devm_clk_get(&pdev->dev, NULL);
392	if (IS_ERR(pdata->clk)) {
393		dev_err(&pdev->dev, "unable to get clock!\n");
394		return PTR_ERR(pdata->clk);
 
395	}
396
397	ret = clk_prepare_enable(pdata->clk);
398	if (ret)
399		return ret;
400
401	rate = clk_get_rate(pdata->clk);
402
403	if (rate == 32768)
404		reg = RTC_INPUT_CLK_32768HZ;
405	else if (rate == 32000)
406		reg = RTC_INPUT_CLK_32000HZ;
407	else if (rate == 38400)
408		reg = RTC_INPUT_CLK_38400HZ;
409	else {
410		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
411		ret = -EINVAL;
412		goto exit_put_clk;
413	}
414
415	reg |= RTC_ENABLE_BIT;
416	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
417	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
418		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
419		ret = -EIO;
420		goto exit_put_clk;
421	}
422
423	platform_set_drvdata(pdev, pdata);
424
425	/* Configure and enable the RTC */
426	pdata->irq = platform_get_irq(pdev, 0);
427
428	if (pdata->irq >= 0 &&
429	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
430			     IRQF_SHARED, pdev->name, pdev) < 0) {
431		dev_warn(&pdev->dev, "interrupt not available.\n");
432		pdata->irq = -1;
433	}
434
435	if (pdata->irq >= 0)
436		device_init_wakeup(&pdev->dev, 1);
437
438	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
439				  THIS_MODULE);
440	if (IS_ERR(rtc)) {
441		ret = PTR_ERR(rtc);
442		goto exit_put_clk;
443	}
444
445	pdata->rtc = rtc;
446
447	return 0;
448
 
 
449exit_put_clk:
450	clk_disable_unprepare(pdata->clk);
 
 
 
451
452	return ret;
453}
454
455static int mxc_rtc_remove(struct platform_device *pdev)
456{
457	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
458
459	clk_disable_unprepare(pdata->clk);
460
461	return 0;
462}
463
464#ifdef CONFIG_PM_SLEEP
465static int mxc_rtc_suspend(struct device *dev)
466{
467	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
468
469	if (device_may_wakeup(dev))
470		enable_irq_wake(pdata->irq);
 
471
472	return 0;
473}
474
475static int mxc_rtc_resume(struct device *dev)
476{
477	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
478
479	if (device_may_wakeup(dev))
480		disable_irq_wake(pdata->irq);
481
482	return 0;
483}
484#endif
485
486static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
487
488static struct platform_driver mxc_rtc_driver = {
489	.driver = {
490		   .name	= "mxc_rtc",
491		   .pm		= &mxc_rtc_pm_ops,
492		   .owner	= THIS_MODULE,
493	},
494	.id_table = imx_rtc_devtype,
495	.probe = mxc_rtc_probe,
496	.remove = mxc_rtc_remove,
497};
498
499module_platform_driver(mxc_rtc_driver)
 
 
 
 
 
 
 
 
 
 
 
500
501MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
502MODULE_DESCRIPTION("RTC driver for Freescale MXC");
503MODULE_LICENSE("GPL");
504