Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/export.h>
  3#include <linux/kref.h>
  4#include <linux/list.h>
  5#include <linux/mutex.h>
  6#include <linux/phylink.h>
  7#include <linux/property.h>
  8#include <linux/rtnetlink.h>
  9#include <linux/slab.h>
 10
 11#include "sfp.h"
 12
 13/**
 14 * struct sfp_bus - internal representation of a sfp bus
 15 */
 16struct sfp_bus {
 17	/* private: */
 18	struct kref kref;
 19	struct list_head node;
 20	struct fwnode_handle *fwnode;
 21
 22	const struct sfp_socket_ops *socket_ops;
 23	struct device *sfp_dev;
 24	struct sfp *sfp;
 25	const struct sfp_quirk *sfp_quirk;
 26
 27	const struct sfp_upstream_ops *upstream_ops;
 28	void *upstream;
 29	struct phy_device *phydev;
 30
 31	bool registered;
 32	bool started;
 33};
 34
 35/**
 36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
 37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 38 * @id: a pointer to the module's &struct sfp_eeprom_id
 39 * @support: optional pointer to an array of unsigned long for the
 40 *   ethtool support mask
 41 *
 42 * Parse the EEPROM identification given in @id, and return one of
 43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
 44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
 45 * the connector type.
 46 *
 47 * If the port type is not known, returns %PORT_OTHER.
 48 */
 49int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
 50		   unsigned long *support)
 51{
 52	int port;
 53
 54	/* port is the physical connector, set this from the connector field. */
 55	switch (id->base.connector) {
 56	case SFF8024_CONNECTOR_SC:
 57	case SFF8024_CONNECTOR_FIBERJACK:
 58	case SFF8024_CONNECTOR_LC:
 59	case SFF8024_CONNECTOR_MT_RJ:
 60	case SFF8024_CONNECTOR_MU:
 61	case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
 62	case SFF8024_CONNECTOR_MPO_1X12:
 63	case SFF8024_CONNECTOR_MPO_2X16:
 64		port = PORT_FIBRE;
 65		break;
 66
 67	case SFF8024_CONNECTOR_RJ45:
 68		port = PORT_TP;
 69		break;
 70
 71	case SFF8024_CONNECTOR_COPPER_PIGTAIL:
 72		port = PORT_DA;
 73		break;
 74
 75	case SFF8024_CONNECTOR_UNSPEC:
 76		if (id->base.e1000_base_t) {
 77			port = PORT_TP;
 78			break;
 79		}
 80		fallthrough;
 81	case SFF8024_CONNECTOR_SG: /* guess */
 82	case SFF8024_CONNECTOR_HSSDC_II:
 83	case SFF8024_CONNECTOR_NOSEPARATE:
 84	case SFF8024_CONNECTOR_MXC_2X16:
 85		port = PORT_OTHER;
 86		break;
 87	default:
 88		dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
 89			 id->base.connector);
 90		port = PORT_OTHER;
 91		break;
 92	}
 93
 94	if (support) {
 95		switch (port) {
 96		case PORT_FIBRE:
 97			phylink_set(support, FIBRE);
 98			break;
 99
100		case PORT_TP:
101			phylink_set(support, TP);
102			break;
103		}
104	}
105
106	return port;
107}
108EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110/**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
118bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119{
120	if (id->base.e1000_base_t)
121		return true;
122
123	if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124		switch (id->base.extended_cc) {
125		case SFF8024_ECC_10GBASE_T_SFI:
126		case SFF8024_ECC_10GBASE_T_SR:
127		case SFF8024_ECC_5GBASE_T:
128		case SFF8024_ECC_2_5GBASE_T:
129			return true;
130		}
131	}
132
133	return false;
134}
135EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137/**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 *		mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
148void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149		       unsigned long *support, unsigned long *interfaces)
150{
151	unsigned int br_min, br_nom, br_max;
152	__ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154	/* Decode the bitrate information to MBd */
155	br_min = br_nom = br_max = 0;
156	if (id->base.br_nominal) {
157		if (id->base.br_nominal != 255) {
158			br_nom = id->base.br_nominal * 100;
159			br_min = br_nom - id->base.br_nominal * id->ext.br_min;
160			br_max = br_nom + id->base.br_nominal * id->ext.br_max;
161		} else if (id->ext.br_max) {
162			br_nom = 250 * id->ext.br_max;
163			br_max = br_nom + br_nom * id->ext.br_min / 100;
164			br_min = br_nom - br_nom * id->ext.br_min / 100;
165		}
166
167		/* When using passive cables, in case neither BR,min nor BR,max
168		 * are specified, set br_min to 0 as the nominal value is then
169		 * used as the maximum.
170		 */
171		if (br_min == br_max && id->base.sfp_ct_passive)
172			br_min = 0;
173	}
174
175	/* Set ethtool support from the compliance fields. */
176	if (id->base.e10g_base_sr) {
177		phylink_set(modes, 10000baseSR_Full);
178		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
179	}
180	if (id->base.e10g_base_lr) {
181		phylink_set(modes, 10000baseLR_Full);
182		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183	}
184	if (id->base.e10g_base_lrm) {
185		phylink_set(modes, 10000baseLRM_Full);
186		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187	}
188	if (id->base.e10g_base_er) {
189		phylink_set(modes, 10000baseER_Full);
190		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191	}
192	if (id->base.e1000_base_sx ||
193	    id->base.e1000_base_lx ||
194	    id->base.e1000_base_cx) {
195		phylink_set(modes, 1000baseX_Full);
196		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
197	}
198	if (id->base.e1000_base_t) {
199		phylink_set(modes, 1000baseT_Half);
200		phylink_set(modes, 1000baseT_Full);
201		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
202		__set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
203	}
204
205	/* 1000Base-PX or 1000Base-BX10 */
206	if ((id->base.e_base_px || id->base.e_base_bx10) &&
207	    br_min <= 1300 && br_max >= 1200) {
208		phylink_set(modes, 1000baseX_Full);
209		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
210	}
211
212	/* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
213	if (id->base.e100_base_fx || id->base.e100_base_lx) {
214		phylink_set(modes, 100baseFX_Full);
215		__set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
216	}
217	if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
218		phylink_set(modes, 100baseFX_Full);
219		__set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220	}
221
222	/* For active or passive cables, select the link modes
223	 * based on the bit rates and the cable compliance bytes.
224	 */
225	if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
226		/* This may look odd, but some manufacturers use 12000MBd */
227		if (br_min <= 12000 && br_max >= 10300) {
228			phylink_set(modes, 10000baseCR_Full);
229			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
230		}
231		if (br_min <= 3200 && br_max >= 3100) {
232			phylink_set(modes, 2500baseX_Full);
233			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
234		}
235		if (br_min <= 1300 && br_max >= 1200) {
236			phylink_set(modes, 1000baseX_Full);
237			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
238		}
239	}
240	if (id->base.sfp_ct_passive) {
241		if (id->base.passive.sff8431_app_e) {
242			phylink_set(modes, 10000baseCR_Full);
243			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
244		}
245	}
246	if (id->base.sfp_ct_active) {
247		if (id->base.active.sff8431_app_e ||
248		    id->base.active.sff8431_lim) {
249			phylink_set(modes, 10000baseCR_Full);
250			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
251		}
252	}
253
254	switch (id->base.extended_cc) {
255	case SFF8024_ECC_UNSPEC:
256		break;
257	case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
258		phylink_set(modes, 100000baseSR4_Full);
259		phylink_set(modes, 25000baseSR_Full);
260		__set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
261		break;
262	case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
263	case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
264		phylink_set(modes, 100000baseLR4_ER4_Full);
265		break;
266	case SFF8024_ECC_100GBASE_CR4:
267		phylink_set(modes, 100000baseCR4_Full);
268		fallthrough;
269	case SFF8024_ECC_25GBASE_CR_S:
270	case SFF8024_ECC_25GBASE_CR_N:
271		phylink_set(modes, 25000baseCR_Full);
272		__set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
273		break;
274	case SFF8024_ECC_10GBASE_T_SFI:
275	case SFF8024_ECC_10GBASE_T_SR:
276		phylink_set(modes, 10000baseT_Full);
277		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
278		break;
279	case SFF8024_ECC_5GBASE_T:
280		phylink_set(modes, 5000baseT_Full);
281		__set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
282		break;
283	case SFF8024_ECC_2_5GBASE_T:
284		phylink_set(modes, 2500baseT_Full);
285		__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
286		break;
287	default:
288		dev_warn(bus->sfp_dev,
289			 "Unknown/unsupported extended compliance code: 0x%02x\n",
290			 id->base.extended_cc);
291		break;
292	}
293
294	/* For fibre channel SFP, derive possible BaseX modes */
295	if (id->base.fc_speed_100 ||
296	    id->base.fc_speed_200 ||
297	    id->base.fc_speed_400) {
298		if (id->base.br_nominal >= 31) {
299			phylink_set(modes, 2500baseX_Full);
300			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
301		}
302		if (id->base.br_nominal >= 12) {
303			phylink_set(modes, 1000baseX_Full);
304			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
305		}
306	}
307
308	/* If we haven't discovered any modes that this module supports, try
309	 * the bitrate to determine supported modes. Some BiDi modules (eg,
310	 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
311	 * wavelengths, so do not set any transceiver bits.
312	 *
313	 * Do the same for modules supporting 2500BASE-X. Note that some
314	 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
315	 * 2500BASE-X, so we allow some slack here.
316	 */
317	if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) {
318		if (br_min <= 1300 && br_max >= 1200) {
319			phylink_set(modes, 1000baseX_Full);
320			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
321		}
322		if (br_min <= 3200 && br_max >= 2500) {
323			phylink_set(modes, 2500baseX_Full);
324			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
325		}
326	}
327
328	if (bus->sfp_quirk && bus->sfp_quirk->modes)
329		bus->sfp_quirk->modes(id, modes, interfaces);
330
331	linkmode_or(support, support, modes);
332
333	phylink_set(support, Autoneg);
334	phylink_set(support, Pause);
335	phylink_set(support, Asym_Pause);
336}
337EXPORT_SYMBOL_GPL(sfp_parse_support);
338
339/**
340 * sfp_select_interface() - Select appropriate phy_interface_t mode
341 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
342 * @link_modes: ethtool link modes mask
343 *
344 * Derive the phy_interface_t mode for the SFP module from the link
345 * modes mask.
346 */
347phy_interface_t sfp_select_interface(struct sfp_bus *bus,
348				     unsigned long *link_modes)
349{
350	if (phylink_test(link_modes, 25000baseCR_Full) ||
351	    phylink_test(link_modes, 25000baseKR_Full) ||
352	    phylink_test(link_modes, 25000baseSR_Full))
353		return PHY_INTERFACE_MODE_25GBASER;
354
355	if (phylink_test(link_modes, 10000baseCR_Full) ||
356	    phylink_test(link_modes, 10000baseSR_Full) ||
357	    phylink_test(link_modes, 10000baseLR_Full) ||
358	    phylink_test(link_modes, 10000baseLRM_Full) ||
359	    phylink_test(link_modes, 10000baseER_Full) ||
360	    phylink_test(link_modes, 10000baseT_Full))
361		return PHY_INTERFACE_MODE_10GBASER;
362
363	if (phylink_test(link_modes, 5000baseT_Full))
364		return PHY_INTERFACE_MODE_5GBASER;
365
366	if (phylink_test(link_modes, 2500baseX_Full))
367		return PHY_INTERFACE_MODE_2500BASEX;
368
369	if (phylink_test(link_modes, 1000baseT_Half) ||
370	    phylink_test(link_modes, 1000baseT_Full))
371		return PHY_INTERFACE_MODE_SGMII;
372
373	if (phylink_test(link_modes, 1000baseX_Full))
374		return PHY_INTERFACE_MODE_1000BASEX;
375
376	if (phylink_test(link_modes, 100baseFX_Full))
377		return PHY_INTERFACE_MODE_100BASEX;
378
379	dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
380
381	return PHY_INTERFACE_MODE_NA;
382}
383EXPORT_SYMBOL_GPL(sfp_select_interface);
384
385static LIST_HEAD(sfp_buses);
386static DEFINE_MUTEX(sfp_mutex);
387
388static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
389{
390	return bus->registered ? bus->upstream_ops : NULL;
391}
392
393static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
394{
395	struct sfp_bus *sfp, *new, *found = NULL;
396
397	new = kzalloc(sizeof(*new), GFP_KERNEL);
398
399	mutex_lock(&sfp_mutex);
400
401	list_for_each_entry(sfp, &sfp_buses, node) {
402		if (sfp->fwnode == fwnode) {
403			kref_get(&sfp->kref);
404			found = sfp;
405			break;
406		}
407	}
408
409	if (!found && new) {
410		kref_init(&new->kref);
411		new->fwnode = fwnode;
412		list_add(&new->node, &sfp_buses);
413		found = new;
414		new = NULL;
415	}
416
417	mutex_unlock(&sfp_mutex);
418
419	kfree(new);
420
421	return found;
422}
423
424static void sfp_bus_release(struct kref *kref)
425{
426	struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
427
428	list_del(&bus->node);
429	mutex_unlock(&sfp_mutex);
430	kfree(bus);
431}
432
433/**
434 * sfp_bus_put() - put a reference on the &struct sfp_bus
435 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
436 *
437 * Put a reference on the &struct sfp_bus and free the underlying structure
438 * if this was the last reference.
439 */
440void sfp_bus_put(struct sfp_bus *bus)
441{
442	if (bus)
443		kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
444}
445EXPORT_SYMBOL_GPL(sfp_bus_put);
446
447static int sfp_register_bus(struct sfp_bus *bus)
448{
449	const struct sfp_upstream_ops *ops = bus->upstream_ops;
450	int ret;
451
452	if (ops) {
453		if (ops->link_down)
454			ops->link_down(bus->upstream);
455		if (ops->connect_phy && bus->phydev) {
456			ret = ops->connect_phy(bus->upstream, bus->phydev);
457			if (ret)
458				return ret;
459		}
460	}
461	bus->registered = true;
462	bus->socket_ops->attach(bus->sfp);
463	if (bus->started)
464		bus->socket_ops->start(bus->sfp);
465	bus->upstream_ops->attach(bus->upstream, bus);
466	return 0;
467}
468
469static void sfp_unregister_bus(struct sfp_bus *bus)
470{
471	const struct sfp_upstream_ops *ops = bus->upstream_ops;
472
473	if (bus->registered) {
474		bus->upstream_ops->detach(bus->upstream, bus);
475		if (bus->started)
476			bus->socket_ops->stop(bus->sfp);
477		bus->socket_ops->detach(bus->sfp);
478		if (bus->phydev && ops && ops->disconnect_phy)
479			ops->disconnect_phy(bus->upstream);
480	}
481	bus->registered = false;
482}
483
484/**
485 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
486 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
487 * @modinfo: a &struct ethtool_modinfo
488 *
489 * Fill in the type and eeprom_len parameters in @modinfo for a module on
490 * the sfp bus specified by @bus.
491 *
492 * Returns 0 on success or a negative errno number.
493 */
494int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
495{
496	return bus->socket_ops->module_info(bus->sfp, modinfo);
497}
498EXPORT_SYMBOL_GPL(sfp_get_module_info);
499
500/**
501 * sfp_get_module_eeprom() - Read the SFP module EEPROM
502 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
503 * @ee: a &struct ethtool_eeprom
504 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
505 *
506 * Read the EEPROM as specified by the supplied @ee. See the documentation
507 * for &struct ethtool_eeprom for the region to be read.
508 *
509 * Returns 0 on success or a negative errno number.
510 */
511int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
512			  u8 *data)
513{
514	return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
515}
516EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
517
518/**
519 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
520 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
521 * @page: a &struct ethtool_module_eeprom
522 * @extack: extack for reporting problems
523 *
524 * Read an EEPROM page as specified by the supplied @page. See the
525 * documentation for &struct ethtool_module_eeprom for the page to be read.
526 *
527 * Returns 0 on success or a negative errno number. More error
528 * information might be provided via extack
529 */
530int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
531				  const struct ethtool_module_eeprom *page,
532				  struct netlink_ext_ack *extack)
533{
534	return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
535}
536EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
537
538/**
539 * sfp_upstream_start() - Inform the SFP that the network device is up
540 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
541 *
542 * Inform the SFP socket that the network device is now up, so that the
543 * module can be enabled by allowing TX_DISABLE to be deasserted. This
544 * should be called from the network device driver's &struct net_device_ops
545 * ndo_open() method.
546 */
547void sfp_upstream_start(struct sfp_bus *bus)
548{
549	if (bus->registered)
550		bus->socket_ops->start(bus->sfp);
551	bus->started = true;
552}
553EXPORT_SYMBOL_GPL(sfp_upstream_start);
554
555/**
556 * sfp_upstream_stop() - Inform the SFP that the network device is down
557 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
558 *
559 * Inform the SFP socket that the network device is now up, so that the
560 * module can be disabled by asserting TX_DISABLE, disabling the laser
561 * in optical modules. This should be called from the network device
562 * driver's &struct net_device_ops ndo_stop() method.
563 */
564void sfp_upstream_stop(struct sfp_bus *bus)
565{
566	if (bus->registered)
567		bus->socket_ops->stop(bus->sfp);
568	bus->started = false;
569}
570EXPORT_SYMBOL_GPL(sfp_upstream_stop);
571
572static void sfp_upstream_clear(struct sfp_bus *bus)
573{
574	bus->upstream_ops = NULL;
575	bus->upstream = NULL;
576}
577
578/**
579 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
580 * @fwnode: firmware node for the parent device (MAC or PHY)
581 *
582 * Parse the parent device's firmware node for a SFP bus, and locate
583 * the sfp_bus structure, incrementing its reference count.  This must
584 * be put via sfp_bus_put() when done.
585 *
586 * Returns:
587 *	- on success, a pointer to the sfp_bus structure,
588 *	- %NULL if no SFP is specified,
589 *	- on failure, an error pointer value:
590 *
591 *	- corresponding to the errors detailed for
592 *	  fwnode_property_get_reference_args().
593 *	- %-ENOMEM if we failed to allocate the bus.
594 *	- an error from the upstream's connect_phy() method.
595 */
596struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
597{
598	struct fwnode_reference_args ref;
599	struct sfp_bus *bus;
600	int ret;
601
602	ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
603						 0, 0, &ref);
604	if (ret == -ENOENT)
605		return NULL;
606	else if (ret < 0)
607		return ERR_PTR(ret);
608
609	if (!fwnode_device_is_available(ref.fwnode)) {
610		fwnode_handle_put(ref.fwnode);
611		return NULL;
612	}
613
614	bus = sfp_bus_get(ref.fwnode);
615	fwnode_handle_put(ref.fwnode);
616	if (!bus)
617		return ERR_PTR(-ENOMEM);
618
619	return bus;
620}
621EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
622
623/**
624 * sfp_bus_add_upstream() - parse and register the neighbouring device
625 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
626 * @upstream: the upstream private data
627 * @ops: the upstream's &struct sfp_upstream_ops
628 *
629 * Add upstream driver for the SFP bus, and if the bus is complete, register
630 * the SFP bus using sfp_register_upstream().  This takes a reference on the
631 * bus, so it is safe to put the bus after this call.
632 *
633 * Returns:
634 *	- on success, a pointer to the sfp_bus structure,
635 *	- %NULL if no SFP is specified,
636 *	- on failure, an error pointer value:
637 *
638 *	- corresponding to the errors detailed for
639 *	  fwnode_property_get_reference_args().
640 *	- %-ENOMEM if we failed to allocate the bus.
641 *	- an error from the upstream's connect_phy() method.
642 */
643int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
644			 const struct sfp_upstream_ops *ops)
645{
646	int ret;
647
648	/* If no bus, return success */
649	if (!bus)
650		return 0;
651
652	rtnl_lock();
653	kref_get(&bus->kref);
654	bus->upstream_ops = ops;
655	bus->upstream = upstream;
656
657	if (bus->sfp) {
658		ret = sfp_register_bus(bus);
659		if (ret)
660			sfp_upstream_clear(bus);
661	} else {
662		ret = 0;
663	}
664	rtnl_unlock();
665
666	if (ret)
667		sfp_bus_put(bus);
668
669	return ret;
670}
671EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
672
673/**
674 * sfp_bus_del_upstream() - Delete a sfp bus
675 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
676 *
677 * Delete a previously registered upstream connection for the SFP
678 * module. @bus should have been added by sfp_bus_add_upstream().
679 */
680void sfp_bus_del_upstream(struct sfp_bus *bus)
681{
682	if (bus) {
683		rtnl_lock();
684		if (bus->sfp)
685			sfp_unregister_bus(bus);
686		sfp_upstream_clear(bus);
687		rtnl_unlock();
688
689		sfp_bus_put(bus);
690	}
691}
692EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
693
694/* Socket driver entry points */
695int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
696{
697	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
698	int ret = 0;
699
700	if (ops && ops->connect_phy)
701		ret = ops->connect_phy(bus->upstream, phydev);
702
703	if (ret == 0)
704		bus->phydev = phydev;
705
706	return ret;
707}
708EXPORT_SYMBOL_GPL(sfp_add_phy);
709
710void sfp_remove_phy(struct sfp_bus *bus)
711{
712	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
713
714	if (ops && ops->disconnect_phy)
715		ops->disconnect_phy(bus->upstream);
716	bus->phydev = NULL;
717}
718EXPORT_SYMBOL_GPL(sfp_remove_phy);
719
720void sfp_link_up(struct sfp_bus *bus)
721{
722	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
723
724	if (ops && ops->link_up)
725		ops->link_up(bus->upstream);
726}
727EXPORT_SYMBOL_GPL(sfp_link_up);
728
729void sfp_link_down(struct sfp_bus *bus)
730{
731	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
732
733	if (ops && ops->link_down)
734		ops->link_down(bus->upstream);
735}
736EXPORT_SYMBOL_GPL(sfp_link_down);
737
738int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
739		      const struct sfp_quirk *quirk)
740{
741	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
742	int ret = 0;
743
744	bus->sfp_quirk = quirk;
745
746	if (ops && ops->module_insert)
747		ret = ops->module_insert(bus->upstream, id);
748
749	return ret;
750}
751EXPORT_SYMBOL_GPL(sfp_module_insert);
752
753void sfp_module_remove(struct sfp_bus *bus)
754{
755	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
756
757	if (ops && ops->module_remove)
758		ops->module_remove(bus->upstream);
759
760	bus->sfp_quirk = NULL;
761}
762EXPORT_SYMBOL_GPL(sfp_module_remove);
763
764int sfp_module_start(struct sfp_bus *bus)
765{
766	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
767	int ret = 0;
768
769	if (ops && ops->module_start)
770		ret = ops->module_start(bus->upstream);
771
772	return ret;
773}
774EXPORT_SYMBOL_GPL(sfp_module_start);
775
776void sfp_module_stop(struct sfp_bus *bus)
777{
778	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
779
780	if (ops && ops->module_stop)
781		ops->module_stop(bus->upstream);
782}
783EXPORT_SYMBOL_GPL(sfp_module_stop);
784
785static void sfp_socket_clear(struct sfp_bus *bus)
786{
787	bus->sfp_dev = NULL;
788	bus->sfp = NULL;
789	bus->socket_ops = NULL;
790}
791
792struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
793				    const struct sfp_socket_ops *ops)
794{
795	struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
796	int ret = 0;
797
798	if (bus) {
799		rtnl_lock();
800		bus->sfp_dev = dev;
801		bus->sfp = sfp;
802		bus->socket_ops = ops;
803
804		if (bus->upstream_ops) {
805			ret = sfp_register_bus(bus);
806			if (ret)
807				sfp_socket_clear(bus);
808		}
809		rtnl_unlock();
810	}
811
812	if (ret) {
813		sfp_bus_put(bus);
814		bus = NULL;
815	}
816
817	return bus;
818}
819EXPORT_SYMBOL_GPL(sfp_register_socket);
820
821void sfp_unregister_socket(struct sfp_bus *bus)
822{
823	rtnl_lock();
824	if (bus->upstream_ops)
825		sfp_unregister_bus(bus);
826	sfp_socket_clear(bus);
827	rtnl_unlock();
828
829	sfp_bus_put(bus);
830}
831EXPORT_SYMBOL_GPL(sfp_unregister_socket);