Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * SPDX-License-Identifier: MIT
  3 *
  4 * Copyright © 2014-2016 Intel Corporation
  5 */
  6
  7#include <linux/pagevec.h>
  8#include <linux/shmem_fs.h>
  9#include <linux/swap.h>
 10
 11#include <drm/drm_cache.h>
 12
 13#include "gem/i915_gem_region.h"
 14#include "i915_drv.h"
 15#include "i915_gem_object.h"
 16#include "i915_gem_tiling.h"
 17#include "i915_gemfs.h"
 18#include "i915_scatterlist.h"
 19#include "i915_trace.h"
 20
 21/*
 22 * Move pages to appropriate lru and release the pagevec, decrementing the
 23 * ref count of those pages.
 24 */
 25static void check_release_pagevec(struct pagevec *pvec)
 26{
 27	check_move_unevictable_pages(pvec);
 28	__pagevec_release(pvec);
 29	cond_resched();
 30}
 31
 32void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
 33			 bool dirty, bool backup)
 34{
 35	struct sgt_iter sgt_iter;
 36	struct pagevec pvec;
 37	struct page *page;
 38
 39	mapping_clear_unevictable(mapping);
 40
 41	pagevec_init(&pvec);
 42	for_each_sgt_page(page, sgt_iter, st) {
 43		if (dirty)
 44			set_page_dirty(page);
 45
 46		if (backup)
 47			mark_page_accessed(page);
 48
 49		if (!pagevec_add(&pvec, page))
 50			check_release_pagevec(&pvec);
 51	}
 52	if (pagevec_count(&pvec))
 53		check_release_pagevec(&pvec);
 54
 55	sg_free_table(st);
 56}
 57
 58int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
 59			 size_t size, struct intel_memory_region *mr,
 60			 struct address_space *mapping,
 61			 unsigned int max_segment)
 62{
 63	const unsigned long page_count = size / PAGE_SIZE;
 64	unsigned long i;
 65	struct scatterlist *sg;
 66	struct page *page;
 67	unsigned long last_pfn = 0;	/* suppress gcc warning */
 68	gfp_t noreclaim;
 69	int ret;
 70
 71	/*
 72	 * If there's no chance of allocating enough pages for the whole
 73	 * object, bail early.
 74	 */
 75	if (size > resource_size(&mr->region))
 76		return -ENOMEM;
 77
 78	if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN))
 79		return -ENOMEM;
 80
 81	/*
 82	 * Get the list of pages out of our struct file.  They'll be pinned
 83	 * at this point until we release them.
 84	 *
 85	 * Fail silently without starting the shrinker
 86	 */
 87	mapping_set_unevictable(mapping);
 88	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
 89	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
 90
 91	sg = st->sgl;
 92	st->nents = 0;
 93	for (i = 0; i < page_count; i++) {
 94		const unsigned int shrink[] = {
 95			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
 96			0,
 97		}, *s = shrink;
 98		gfp_t gfp = noreclaim;
 99
100		do {
101			cond_resched();
102			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
103			if (!IS_ERR(page))
104				break;
105
106			if (!*s) {
107				ret = PTR_ERR(page);
108				goto err_sg;
109			}
110
111			i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
112
113			/*
114			 * We've tried hard to allocate the memory by reaping
115			 * our own buffer, now let the real VM do its job and
116			 * go down in flames if truly OOM.
117			 *
118			 * However, since graphics tend to be disposable,
119			 * defer the oom here by reporting the ENOMEM back
120			 * to userspace.
121			 */
122			if (!*s) {
123				/* reclaim and warn, but no oom */
124				gfp = mapping_gfp_mask(mapping);
125
126				/*
127				 * Our bo are always dirty and so we require
128				 * kswapd to reclaim our pages (direct reclaim
129				 * does not effectively begin pageout of our
130				 * buffers on its own). However, direct reclaim
131				 * only waits for kswapd when under allocation
132				 * congestion. So as a result __GFP_RECLAIM is
133				 * unreliable and fails to actually reclaim our
134				 * dirty pages -- unless you try over and over
135				 * again with !__GFP_NORETRY. However, we still
136				 * want to fail this allocation rather than
137				 * trigger the out-of-memory killer and for
138				 * this we want __GFP_RETRY_MAYFAIL.
139				 */
140				gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
141			}
142		} while (1);
143
144		if (!i ||
145		    sg->length >= max_segment ||
146		    page_to_pfn(page) != last_pfn + 1) {
147			if (i)
148				sg = sg_next(sg);
149
150			st->nents++;
151			sg_set_page(sg, page, PAGE_SIZE, 0);
152		} else {
153			sg->length += PAGE_SIZE;
154		}
155		last_pfn = page_to_pfn(page);
156
157		/* Check that the i965g/gm workaround works. */
158		GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
159	}
160	if (sg) /* loop terminated early; short sg table */
161		sg_mark_end(sg);
162
163	/* Trim unused sg entries to avoid wasting memory. */
164	i915_sg_trim(st);
165
166	return 0;
167err_sg:
168	sg_mark_end(sg);
169	if (sg != st->sgl) {
170		shmem_sg_free_table(st, mapping, false, false);
171	} else {
172		mapping_clear_unevictable(mapping);
173		sg_free_table(st);
174	}
175
176	/*
177	 * shmemfs first checks if there is enough memory to allocate the page
178	 * and reports ENOSPC should there be insufficient, along with the usual
179	 * ENOMEM for a genuine allocation failure.
180	 *
181	 * We use ENOSPC in our driver to mean that we have run out of aperture
182	 * space and so want to translate the error from shmemfs back to our
183	 * usual understanding of ENOMEM.
184	 */
185	if (ret == -ENOSPC)
186		ret = -ENOMEM;
187
188	return ret;
189}
190
191static int shmem_get_pages(struct drm_i915_gem_object *obj)
192{
193	struct drm_i915_private *i915 = to_i915(obj->base.dev);
194	struct intel_memory_region *mem = obj->mm.region;
195	struct address_space *mapping = obj->base.filp->f_mapping;
196	const unsigned long page_count = obj->base.size / PAGE_SIZE;
197	unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
198	struct sg_table *st;
199	struct sgt_iter sgt_iter;
200	struct page *page;
201	int ret;
202
203	/*
204	 * Assert that the object is not currently in any GPU domain. As it
205	 * wasn't in the GTT, there shouldn't be any way it could have been in
206	 * a GPU cache
207	 */
208	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
209	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
210
211rebuild_st:
212	st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN);
213	if (!st)
214		return -ENOMEM;
215
216	ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
217				   max_segment);
218	if (ret)
219		goto err_st;
220
221	ret = i915_gem_gtt_prepare_pages(obj, st);
222	if (ret) {
223		/*
224		 * DMA remapping failed? One possible cause is that
225		 * it could not reserve enough large entries, asking
226		 * for PAGE_SIZE chunks instead may be helpful.
227		 */
228		if (max_segment > PAGE_SIZE) {
229			for_each_sgt_page(page, sgt_iter, st)
230				put_page(page);
231			sg_free_table(st);
232			kfree(st);
233
234			max_segment = PAGE_SIZE;
235			goto rebuild_st;
236		} else {
237			dev_warn(i915->drm.dev,
238				 "Failed to DMA remap %lu pages\n",
239				 page_count);
240			goto err_pages;
241		}
242	}
243
244	if (i915_gem_object_needs_bit17_swizzle(obj))
245		i915_gem_object_do_bit_17_swizzle(obj, st);
246
247	if (i915_gem_object_can_bypass_llc(obj))
248		obj->cache_dirty = true;
249
250	__i915_gem_object_set_pages(obj, st);
251
252	return 0;
253
254err_pages:
255	shmem_sg_free_table(st, mapping, false, false);
256	/*
257	 * shmemfs first checks if there is enough memory to allocate the page
258	 * and reports ENOSPC should there be insufficient, along with the usual
259	 * ENOMEM for a genuine allocation failure.
260	 *
261	 * We use ENOSPC in our driver to mean that we have run out of aperture
262	 * space and so want to translate the error from shmemfs back to our
263	 * usual understanding of ENOMEM.
264	 */
265err_st:
266	if (ret == -ENOSPC)
267		ret = -ENOMEM;
268
269	kfree(st);
270
271	return ret;
272}
273
274static int
275shmem_truncate(struct drm_i915_gem_object *obj)
276{
277	/*
278	 * Our goal here is to return as much of the memory as
279	 * is possible back to the system as we are called from OOM.
280	 * To do this we must instruct the shmfs to drop all of its
281	 * backing pages, *now*.
282	 */
283	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
284	obj->mm.madv = __I915_MADV_PURGED;
285	obj->mm.pages = ERR_PTR(-EFAULT);
286
287	return 0;
288}
289
290void __shmem_writeback(size_t size, struct address_space *mapping)
291{
292	struct writeback_control wbc = {
293		.sync_mode = WB_SYNC_NONE,
294		.nr_to_write = SWAP_CLUSTER_MAX,
295		.range_start = 0,
296		.range_end = LLONG_MAX,
297		.for_reclaim = 1,
298	};
299	unsigned long i;
300
301	/*
302	 * Leave mmapings intact (GTT will have been revoked on unbinding,
303	 * leaving only CPU mmapings around) and add those pages to the LRU
304	 * instead of invoking writeback so they are aged and paged out
305	 * as normal.
306	 */
307
308	/* Begin writeback on each dirty page */
309	for (i = 0; i < size >> PAGE_SHIFT; i++) {
310		struct page *page;
311
312		page = find_lock_page(mapping, i);
313		if (!page)
314			continue;
315
316		if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
317			int ret;
318
319			SetPageReclaim(page);
320			ret = mapping->a_ops->writepage(page, &wbc);
321			if (!PageWriteback(page))
322				ClearPageReclaim(page);
323			if (!ret)
324				goto put;
325		}
326		unlock_page(page);
327put:
328		put_page(page);
329	}
330}
331
332static void
333shmem_writeback(struct drm_i915_gem_object *obj)
334{
335	__shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
336}
337
338static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
339{
340	switch (obj->mm.madv) {
341	case I915_MADV_DONTNEED:
342		return i915_gem_object_truncate(obj);
343	case __I915_MADV_PURGED:
344		return 0;
345	}
346
347	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
348		shmem_writeback(obj);
349
350	return 0;
351}
352
353void
354__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
355				struct sg_table *pages,
356				bool needs_clflush)
357{
358	struct drm_i915_private *i915 = to_i915(obj->base.dev);
359
360	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
361
362	if (obj->mm.madv == I915_MADV_DONTNEED)
363		obj->mm.dirty = false;
364
365	if (needs_clflush &&
366	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
367	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
368		drm_clflush_sg(pages);
369
370	__start_cpu_write(obj);
371	/*
372	 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever
373	 * swapped-in. Our async flush path is not trust worthy enough yet(and
374	 * happens in the wrong order), and with some tricks it's conceivable
375	 * for userspace to change the cache-level to I915_CACHE_NONE after the
376	 * pages are swapped-in, and since execbuf binds the object before doing
377	 * the async flush, we have a race window.
378	 */
379	if (!HAS_LLC(i915) && !IS_DGFX(i915))
380		obj->cache_dirty = true;
381}
382
383void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
384{
385	__i915_gem_object_release_shmem(obj, pages, true);
386
387	i915_gem_gtt_finish_pages(obj, pages);
388
389	if (i915_gem_object_needs_bit17_swizzle(obj))
390		i915_gem_object_save_bit_17_swizzle(obj, pages);
391
392	shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
393			    obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
394	kfree(pages);
395	obj->mm.dirty = false;
396}
397
398static void
399shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
400{
401	if (likely(i915_gem_object_has_struct_page(obj)))
402		i915_gem_object_put_pages_shmem(obj, pages);
403	else
404		i915_gem_object_put_pages_phys(obj, pages);
405}
406
407static int
408shmem_pwrite(struct drm_i915_gem_object *obj,
409	     const struct drm_i915_gem_pwrite *arg)
410{
411	struct address_space *mapping = obj->base.filp->f_mapping;
412	const struct address_space_operations *aops = mapping->a_ops;
413	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
414	u64 remain, offset;
415	unsigned int pg;
416
417	/* Caller already validated user args */
418	GEM_BUG_ON(!access_ok(user_data, arg->size));
419
420	if (!i915_gem_object_has_struct_page(obj))
421		return i915_gem_object_pwrite_phys(obj, arg);
422
423	/*
424	 * Before we instantiate/pin the backing store for our use, we
425	 * can prepopulate the shmemfs filp efficiently using a write into
426	 * the pagecache. We avoid the penalty of instantiating all the
427	 * pages, important if the user is just writing to a few and never
428	 * uses the object on the GPU, and using a direct write into shmemfs
429	 * allows it to avoid the cost of retrieving a page (either swapin
430	 * or clearing-before-use) before it is overwritten.
431	 */
432	if (i915_gem_object_has_pages(obj))
433		return -ENODEV;
434
435	if (obj->mm.madv != I915_MADV_WILLNEED)
436		return -EFAULT;
437
438	/*
439	 * Before the pages are instantiated the object is treated as being
440	 * in the CPU domain. The pages will be clflushed as required before
441	 * use, and we can freely write into the pages directly. If userspace
442	 * races pwrite with any other operation; corruption will ensue -
443	 * that is userspace's prerogative!
444	 */
445
446	remain = arg->size;
447	offset = arg->offset;
448	pg = offset_in_page(offset);
449
450	do {
451		unsigned int len, unwritten;
452		struct page *page;
453		void *data, *vaddr;
454		int err;
455		char c;
456
457		len = PAGE_SIZE - pg;
458		if (len > remain)
459			len = remain;
460
461		/* Prefault the user page to reduce potential recursion */
462		err = __get_user(c, user_data);
463		if (err)
464			return err;
465
466		err = __get_user(c, user_data + len - 1);
467		if (err)
468			return err;
469
470		err = aops->write_begin(obj->base.filp, mapping, offset, len,
471					&page, &data);
472		if (err < 0)
473			return err;
474
475		vaddr = kmap_atomic(page);
476		unwritten = __copy_from_user_inatomic(vaddr + pg,
477						      user_data,
478						      len);
479		kunmap_atomic(vaddr);
480
481		err = aops->write_end(obj->base.filp, mapping, offset, len,
482				      len - unwritten, page, data);
483		if (err < 0)
484			return err;
485
486		/* We don't handle -EFAULT, leave it to the caller to check */
487		if (unwritten)
488			return -ENODEV;
489
490		remain -= len;
491		user_data += len;
492		offset += len;
493		pg = 0;
494	} while (remain);
495
496	return 0;
497}
498
499static int
500shmem_pread(struct drm_i915_gem_object *obj,
501	    const struct drm_i915_gem_pread *arg)
502{
503	if (!i915_gem_object_has_struct_page(obj))
504		return i915_gem_object_pread_phys(obj, arg);
505
506	return -ENODEV;
507}
508
509static void shmem_release(struct drm_i915_gem_object *obj)
510{
511	if (i915_gem_object_has_struct_page(obj))
512		i915_gem_object_release_memory_region(obj);
513
514	fput(obj->base.filp);
515}
516
517const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
518	.name = "i915_gem_object_shmem",
519	.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
520
521	.get_pages = shmem_get_pages,
522	.put_pages = shmem_put_pages,
523	.truncate = shmem_truncate,
524	.shrink = shmem_shrink,
525
526	.pwrite = shmem_pwrite,
527	.pread = shmem_pread,
528
529	.release = shmem_release,
530};
531
532static int __create_shmem(struct drm_i915_private *i915,
533			  struct drm_gem_object *obj,
534			  resource_size_t size)
535{
536	unsigned long flags = VM_NORESERVE;
537	struct file *filp;
538
539	drm_gem_private_object_init(&i915->drm, obj, size);
540
541	if (i915->mm.gemfs)
542		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
543						 flags);
544	else
545		filp = shmem_file_setup("i915", size, flags);
546	if (IS_ERR(filp))
547		return PTR_ERR(filp);
548
549	obj->filp = filp;
550	return 0;
551}
552
553static int shmem_object_init(struct intel_memory_region *mem,
554			     struct drm_i915_gem_object *obj,
555			     resource_size_t offset,
556			     resource_size_t size,
557			     resource_size_t page_size,
558			     unsigned int flags)
559{
560	static struct lock_class_key lock_class;
561	struct drm_i915_private *i915 = mem->i915;
562	struct address_space *mapping;
563	unsigned int cache_level;
564	gfp_t mask;
565	int ret;
566
567	ret = __create_shmem(i915, &obj->base, size);
568	if (ret)
569		return ret;
570
571	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
572	if (IS_I965GM(i915) || IS_I965G(i915)) {
573		/* 965gm cannot relocate objects above 4GiB. */
574		mask &= ~__GFP_HIGHMEM;
575		mask |= __GFP_DMA32;
576	}
577
578	mapping = obj->base.filp->f_mapping;
579	mapping_set_gfp_mask(mapping, mask);
580	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
581
582	i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
583	obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
584	obj->write_domain = I915_GEM_DOMAIN_CPU;
585	obj->read_domains = I915_GEM_DOMAIN_CPU;
586
587	if (HAS_LLC(i915))
588		/* On some devices, we can have the GPU use the LLC (the CPU
589		 * cache) for about a 10% performance improvement
590		 * compared to uncached.  Graphics requests other than
591		 * display scanout are coherent with the CPU in
592		 * accessing this cache.  This means in this mode we
593		 * don't need to clflush on the CPU side, and on the
594		 * GPU side we only need to flush internal caches to
595		 * get data visible to the CPU.
596		 *
597		 * However, we maintain the display planes as UC, and so
598		 * need to rebind when first used as such.
599		 */
600		cache_level = I915_CACHE_LLC;
601	else
602		cache_level = I915_CACHE_NONE;
603
604	i915_gem_object_set_cache_coherency(obj, cache_level);
605
606	i915_gem_object_init_memory_region(obj, mem);
607
608	return 0;
609}
610
611struct drm_i915_gem_object *
612i915_gem_object_create_shmem(struct drm_i915_private *i915,
613			     resource_size_t size)
614{
615	return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
616					     size, 0, 0);
617}
618
619/* Allocate a new GEM object and fill it with the supplied data */
620struct drm_i915_gem_object *
621i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
622				       const void *data, resource_size_t size)
623{
624	struct drm_i915_gem_object *obj;
625	struct file *file;
626	const struct address_space_operations *aops;
627	resource_size_t offset;
628	int err;
629
630	GEM_WARN_ON(IS_DGFX(dev_priv));
631	obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
632	if (IS_ERR(obj))
633		return obj;
634
635	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
636
637	file = obj->base.filp;
638	aops = file->f_mapping->a_ops;
639	offset = 0;
640	do {
641		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
642		struct page *page;
643		void *pgdata, *vaddr;
644
645		err = aops->write_begin(file, file->f_mapping, offset, len,
646					&page, &pgdata);
647		if (err < 0)
648			goto fail;
649
650		vaddr = kmap(page);
651		memcpy(vaddr, data, len);
652		kunmap(page);
653
654		err = aops->write_end(file, file->f_mapping, offset, len, len,
655				      page, pgdata);
656		if (err < 0)
657			goto fail;
658
659		size -= len;
660		data += len;
661		offset += len;
662	} while (size);
663
664	return obj;
665
666fail:
667	i915_gem_object_put(obj);
668	return ERR_PTR(err);
669}
670
671static int init_shmem(struct intel_memory_region *mem)
672{
673	i915_gemfs_init(mem->i915);
674	intel_memory_region_set_name(mem, "system");
675
676	return 0; /* We have fallback to the kernel mnt if gemfs init failed. */
677}
678
679static int release_shmem(struct intel_memory_region *mem)
680{
681	i915_gemfs_fini(mem->i915);
682	return 0;
683}
684
685static const struct intel_memory_region_ops shmem_region_ops = {
686	.init = init_shmem,
687	.release = release_shmem,
688	.init_object = shmem_object_init,
689};
690
691struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
692						 u16 type, u16 instance)
693{
694	return intel_memory_region_create(i915, 0,
695					  totalram_pages() << PAGE_SHIFT,
696					  PAGE_SIZE, 0, 0,
697					  type, instance,
698					  &shmem_region_ops);
699}
700
701bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
702{
703	return obj->ops == &i915_gem_shmem_ops;
704}