Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * SPDX-License-Identifier: MIT
  3 *
  4 * Copyright © 2014-2016 Intel Corporation
  5 */
  6
  7#include <linux/pagevec.h>
  8#include <linux/swap.h>
  9
 10#include "gem/i915_gem_region.h"
 11#include "i915_drv.h"
 12#include "i915_gemfs.h"
 13#include "i915_gem_object.h"
 14#include "i915_scatterlist.h"
 15#include "i915_trace.h"
 16
 17/*
 18 * Move pages to appropriate lru and release the pagevec, decrementing the
 19 * ref count of those pages.
 20 */
 21static void check_release_pagevec(struct pagevec *pvec)
 22{
 23	check_move_unevictable_pages(pvec);
 24	__pagevec_release(pvec);
 25	cond_resched();
 26}
 27
 28static int shmem_get_pages(struct drm_i915_gem_object *obj)
 29{
 30	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 31	struct intel_memory_region *mem = obj->mm.region;
 32	const unsigned long page_count = obj->base.size / PAGE_SIZE;
 33	unsigned long i;
 34	struct address_space *mapping;
 35	struct sg_table *st;
 36	struct scatterlist *sg;
 37	struct sgt_iter sgt_iter;
 38	struct page *page;
 39	unsigned long last_pfn = 0;	/* suppress gcc warning */
 40	unsigned int max_segment = i915_sg_segment_size();
 41	unsigned int sg_page_sizes;
 42	gfp_t noreclaim;
 43	int ret;
 44
 45	/*
 46	 * Assert that the object is not currently in any GPU domain. As it
 47	 * wasn't in the GTT, there shouldn't be any way it could have been in
 48	 * a GPU cache
 49	 */
 50	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
 51	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
 52
 53	/*
 54	 * If there's no chance of allocating enough pages for the whole
 55	 * object, bail early.
 56	 */
 57	if (obj->base.size > resource_size(&mem->region))
 58		return -ENOMEM;
 59
 60	st = kmalloc(sizeof(*st), GFP_KERNEL);
 61	if (!st)
 62		return -ENOMEM;
 63
 64rebuild_st:
 65	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
 66		kfree(st);
 67		return -ENOMEM;
 68	}
 69
 70	/*
 71	 * Get the list of pages out of our struct file.  They'll be pinned
 72	 * at this point until we release them.
 73	 *
 74	 * Fail silently without starting the shrinker
 75	 */
 76	mapping = obj->base.filp->f_mapping;
 77	mapping_set_unevictable(mapping);
 78	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
 79	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
 80
 81	sg = st->sgl;
 82	st->nents = 0;
 83	sg_page_sizes = 0;
 84	for (i = 0; i < page_count; i++) {
 85		const unsigned int shrink[] = {
 86			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
 87			0,
 88		}, *s = shrink;
 89		gfp_t gfp = noreclaim;
 90
 91		do {
 92			cond_resched();
 93			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
 94			if (!IS_ERR(page))
 95				break;
 96
 97			if (!*s) {
 98				ret = PTR_ERR(page);
 99				goto err_sg;
100			}
101
102			i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
103
104			/*
105			 * We've tried hard to allocate the memory by reaping
106			 * our own buffer, now let the real VM do its job and
107			 * go down in flames if truly OOM.
108			 *
109			 * However, since graphics tend to be disposable,
110			 * defer the oom here by reporting the ENOMEM back
111			 * to userspace.
112			 */
113			if (!*s) {
114				/* reclaim and warn, but no oom */
115				gfp = mapping_gfp_mask(mapping);
116
117				/*
118				 * Our bo are always dirty and so we require
119				 * kswapd to reclaim our pages (direct reclaim
120				 * does not effectively begin pageout of our
121				 * buffers on its own). However, direct reclaim
122				 * only waits for kswapd when under allocation
123				 * congestion. So as a result __GFP_RECLAIM is
124				 * unreliable and fails to actually reclaim our
125				 * dirty pages -- unless you try over and over
126				 * again with !__GFP_NORETRY. However, we still
127				 * want to fail this allocation rather than
128				 * trigger the out-of-memory killer and for
129				 * this we want __GFP_RETRY_MAYFAIL.
130				 */
131				gfp |= __GFP_RETRY_MAYFAIL;
132			}
133		} while (1);
134
135		if (!i ||
136		    sg->length >= max_segment ||
137		    page_to_pfn(page) != last_pfn + 1) {
138			if (i) {
139				sg_page_sizes |= sg->length;
140				sg = sg_next(sg);
141			}
142			st->nents++;
143			sg_set_page(sg, page, PAGE_SIZE, 0);
144		} else {
145			sg->length += PAGE_SIZE;
146		}
147		last_pfn = page_to_pfn(page);
148
149		/* Check that the i965g/gm workaround works. */
150		GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
151	}
152	if (sg) { /* loop terminated early; short sg table */
153		sg_page_sizes |= sg->length;
154		sg_mark_end(sg);
155	}
156
157	/* Trim unused sg entries to avoid wasting memory. */
158	i915_sg_trim(st);
159
160	ret = i915_gem_gtt_prepare_pages(obj, st);
161	if (ret) {
162		/*
163		 * DMA remapping failed? One possible cause is that
164		 * it could not reserve enough large entries, asking
165		 * for PAGE_SIZE chunks instead may be helpful.
166		 */
167		if (max_segment > PAGE_SIZE) {
168			for_each_sgt_page(page, sgt_iter, st)
169				put_page(page);
170			sg_free_table(st);
171
172			max_segment = PAGE_SIZE;
173			goto rebuild_st;
174		} else {
175			dev_warn(i915->drm.dev,
176				 "Failed to DMA remap %lu pages\n",
177				 page_count);
178			goto err_pages;
179		}
180	}
181
182	if (i915_gem_object_needs_bit17_swizzle(obj))
183		i915_gem_object_do_bit_17_swizzle(obj, st);
184
185	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
186
187	return 0;
188
189err_sg:
190	sg_mark_end(sg);
191err_pages:
192	mapping_clear_unevictable(mapping);
193	if (sg != st->sgl) {
194		struct pagevec pvec;
195
196		pagevec_init(&pvec);
197		for_each_sgt_page(page, sgt_iter, st) {
198			if (!pagevec_add(&pvec, page))
199				check_release_pagevec(&pvec);
200		}
201		if (pagevec_count(&pvec))
202			check_release_pagevec(&pvec);
203	}
204	sg_free_table(st);
205	kfree(st);
206
207	/*
208	 * shmemfs first checks if there is enough memory to allocate the page
209	 * and reports ENOSPC should there be insufficient, along with the usual
210	 * ENOMEM for a genuine allocation failure.
211	 *
212	 * We use ENOSPC in our driver to mean that we have run out of aperture
213	 * space and so want to translate the error from shmemfs back to our
214	 * usual understanding of ENOMEM.
215	 */
216	if (ret == -ENOSPC)
217		ret = -ENOMEM;
218
219	return ret;
220}
221
222static void
223shmem_truncate(struct drm_i915_gem_object *obj)
224{
225	/*
226	 * Our goal here is to return as much of the memory as
227	 * is possible back to the system as we are called from OOM.
228	 * To do this we must instruct the shmfs to drop all of its
229	 * backing pages, *now*.
230	 */
231	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
232	obj->mm.madv = __I915_MADV_PURGED;
233	obj->mm.pages = ERR_PTR(-EFAULT);
234}
235
236static void
237shmem_writeback(struct drm_i915_gem_object *obj)
238{
239	struct address_space *mapping;
240	struct writeback_control wbc = {
241		.sync_mode = WB_SYNC_NONE,
242		.nr_to_write = SWAP_CLUSTER_MAX,
243		.range_start = 0,
244		.range_end = LLONG_MAX,
245		.for_reclaim = 1,
246	};
247	unsigned long i;
248
249	/*
250	 * Leave mmapings intact (GTT will have been revoked on unbinding,
251	 * leaving only CPU mmapings around) and add those pages to the LRU
252	 * instead of invoking writeback so they are aged and paged out
253	 * as normal.
254	 */
255	mapping = obj->base.filp->f_mapping;
256
257	/* Begin writeback on each dirty page */
258	for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
259		struct page *page;
260
261		page = find_lock_page(mapping, i);
262		if (!page)
263			continue;
264
265		if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
266			int ret;
267
268			SetPageReclaim(page);
269			ret = mapping->a_ops->writepage(page, &wbc);
270			if (!PageWriteback(page))
271				ClearPageReclaim(page);
272			if (!ret)
273				goto put;
274		}
275		unlock_page(page);
276put:
277		put_page(page);
278	}
279}
280
281void
282__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
283				struct sg_table *pages,
284				bool needs_clflush)
285{
286	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
287
288	if (obj->mm.madv == I915_MADV_DONTNEED)
289		obj->mm.dirty = false;
290
291	if (needs_clflush &&
292	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
293	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
294		drm_clflush_sg(pages);
295
296	__start_cpu_write(obj);
297}
298
299void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
300{
301	struct sgt_iter sgt_iter;
302	struct pagevec pvec;
303	struct page *page;
304
305	__i915_gem_object_release_shmem(obj, pages, true);
306
307	i915_gem_gtt_finish_pages(obj, pages);
308
309	if (i915_gem_object_needs_bit17_swizzle(obj))
310		i915_gem_object_save_bit_17_swizzle(obj, pages);
311
312	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
313
314	pagevec_init(&pvec);
315	for_each_sgt_page(page, sgt_iter, pages) {
316		if (obj->mm.dirty)
317			set_page_dirty(page);
318
319		if (obj->mm.madv == I915_MADV_WILLNEED)
320			mark_page_accessed(page);
321
322		if (!pagevec_add(&pvec, page))
323			check_release_pagevec(&pvec);
324	}
325	if (pagevec_count(&pvec))
326		check_release_pagevec(&pvec);
327	obj->mm.dirty = false;
328
329	sg_free_table(pages);
330	kfree(pages);
331}
332
333static void
334shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
335{
336	if (likely(i915_gem_object_has_struct_page(obj)))
337		i915_gem_object_put_pages_shmem(obj, pages);
338	else
339		i915_gem_object_put_pages_phys(obj, pages);
340}
341
342static int
343shmem_pwrite(struct drm_i915_gem_object *obj,
344	     const struct drm_i915_gem_pwrite *arg)
345{
346	struct address_space *mapping = obj->base.filp->f_mapping;
347	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
348	u64 remain, offset;
349	unsigned int pg;
350
351	/* Caller already validated user args */
352	GEM_BUG_ON(!access_ok(user_data, arg->size));
353
354	if (!i915_gem_object_has_struct_page(obj))
355		return i915_gem_object_pwrite_phys(obj, arg);
356
357	/*
358	 * Before we instantiate/pin the backing store for our use, we
359	 * can prepopulate the shmemfs filp efficiently using a write into
360	 * the pagecache. We avoid the penalty of instantiating all the
361	 * pages, important if the user is just writing to a few and never
362	 * uses the object on the GPU, and using a direct write into shmemfs
363	 * allows it to avoid the cost of retrieving a page (either swapin
364	 * or clearing-before-use) before it is overwritten.
365	 */
366	if (i915_gem_object_has_pages(obj))
367		return -ENODEV;
368
369	if (obj->mm.madv != I915_MADV_WILLNEED)
370		return -EFAULT;
371
372	/*
373	 * Before the pages are instantiated the object is treated as being
374	 * in the CPU domain. The pages will be clflushed as required before
375	 * use, and we can freely write into the pages directly. If userspace
376	 * races pwrite with any other operation; corruption will ensue -
377	 * that is userspace's prerogative!
378	 */
379
380	remain = arg->size;
381	offset = arg->offset;
382	pg = offset_in_page(offset);
383
384	do {
385		unsigned int len, unwritten;
386		struct page *page;
387		void *data, *vaddr;
388		int err;
389		char c;
390
391		len = PAGE_SIZE - pg;
392		if (len > remain)
393			len = remain;
394
395		/* Prefault the user page to reduce potential recursion */
396		err = __get_user(c, user_data);
397		if (err)
398			return err;
399
400		err = __get_user(c, user_data + len - 1);
401		if (err)
402			return err;
403
404		err = pagecache_write_begin(obj->base.filp, mapping,
405					    offset, len, 0,
406					    &page, &data);
407		if (err < 0)
408			return err;
409
410		vaddr = kmap_atomic(page);
411		unwritten = __copy_from_user_inatomic(vaddr + pg,
412						      user_data,
413						      len);
414		kunmap_atomic(vaddr);
415
416		err = pagecache_write_end(obj->base.filp, mapping,
417					  offset, len, len - unwritten,
418					  page, data);
419		if (err < 0)
420			return err;
421
422		/* We don't handle -EFAULT, leave it to the caller to check */
423		if (unwritten)
424			return -ENODEV;
425
426		remain -= len;
427		user_data += len;
428		offset += len;
429		pg = 0;
430	} while (remain);
431
432	return 0;
433}
434
435static int
436shmem_pread(struct drm_i915_gem_object *obj,
437	    const struct drm_i915_gem_pread *arg)
438{
439	if (!i915_gem_object_has_struct_page(obj))
440		return i915_gem_object_pread_phys(obj, arg);
441
442	return -ENODEV;
443}
444
445static void shmem_release(struct drm_i915_gem_object *obj)
446{
447	if (obj->flags & I915_BO_ALLOC_STRUCT_PAGE)
448		i915_gem_object_release_memory_region(obj);
449
450	fput(obj->base.filp);
451}
452
453const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
454	.name = "i915_gem_object_shmem",
455	.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
456
457	.get_pages = shmem_get_pages,
458	.put_pages = shmem_put_pages,
459	.truncate = shmem_truncate,
460	.writeback = shmem_writeback,
461
462	.pwrite = shmem_pwrite,
463	.pread = shmem_pread,
464
465	.release = shmem_release,
466};
467
468static int __create_shmem(struct drm_i915_private *i915,
469			  struct drm_gem_object *obj,
470			  resource_size_t size)
471{
472	unsigned long flags = VM_NORESERVE;
473	struct file *filp;
474
475	drm_gem_private_object_init(&i915->drm, obj, size);
476
477	if (i915->mm.gemfs)
478		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
479						 flags);
480	else
481		filp = shmem_file_setup("i915", size, flags);
482	if (IS_ERR(filp))
483		return PTR_ERR(filp);
484
485	obj->filp = filp;
486	return 0;
487}
488
489static int shmem_object_init(struct intel_memory_region *mem,
490			     struct drm_i915_gem_object *obj,
491			     resource_size_t size,
492			     unsigned int flags)
493{
494	static struct lock_class_key lock_class;
495	struct drm_i915_private *i915 = mem->i915;
496	struct address_space *mapping;
497	unsigned int cache_level;
498	gfp_t mask;
499	int ret;
500
501	ret = __create_shmem(i915, &obj->base, size);
502	if (ret)
503		return ret;
504
505	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
506	if (IS_I965GM(i915) || IS_I965G(i915)) {
507		/* 965gm cannot relocate objects above 4GiB. */
508		mask &= ~__GFP_HIGHMEM;
509		mask |= __GFP_DMA32;
510	}
511
512	mapping = obj->base.filp->f_mapping;
513	mapping_set_gfp_mask(mapping, mask);
514	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
515
516	i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class,
517			     I915_BO_ALLOC_STRUCT_PAGE);
518
519	obj->write_domain = I915_GEM_DOMAIN_CPU;
520	obj->read_domains = I915_GEM_DOMAIN_CPU;
521
522	if (HAS_LLC(i915))
523		/* On some devices, we can have the GPU use the LLC (the CPU
524		 * cache) for about a 10% performance improvement
525		 * compared to uncached.  Graphics requests other than
526		 * display scanout are coherent with the CPU in
527		 * accessing this cache.  This means in this mode we
528		 * don't need to clflush on the CPU side, and on the
529		 * GPU side we only need to flush internal caches to
530		 * get data visible to the CPU.
531		 *
532		 * However, we maintain the display planes as UC, and so
533		 * need to rebind when first used as such.
534		 */
535		cache_level = I915_CACHE_LLC;
536	else
537		cache_level = I915_CACHE_NONE;
538
539	i915_gem_object_set_cache_coherency(obj, cache_level);
540
541	i915_gem_object_init_memory_region(obj, mem);
542
543	return 0;
544}
545
546struct drm_i915_gem_object *
547i915_gem_object_create_shmem(struct drm_i915_private *i915,
548			     resource_size_t size)
549{
550	return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
551					     size, 0);
552}
553
554/* Allocate a new GEM object and fill it with the supplied data */
555struct drm_i915_gem_object *
556i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
557				       const void *data, resource_size_t size)
558{
559	struct drm_i915_gem_object *obj;
560	struct file *file;
561	resource_size_t offset;
562	int err;
563
564	obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
565	if (IS_ERR(obj))
566		return obj;
567
568	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
569
570	file = obj->base.filp;
571	offset = 0;
572	do {
573		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
574		struct page *page;
575		void *pgdata, *vaddr;
576
577		err = pagecache_write_begin(file, file->f_mapping,
578					    offset, len, 0,
579					    &page, &pgdata);
580		if (err < 0)
581			goto fail;
582
583		vaddr = kmap(page);
584		memcpy(vaddr, data, len);
585		kunmap(page);
586
587		err = pagecache_write_end(file, file->f_mapping,
588					  offset, len, len,
589					  page, pgdata);
590		if (err < 0)
591			goto fail;
592
593		size -= len;
594		data += len;
595		offset += len;
596	} while (size);
597
598	return obj;
599
600fail:
601	i915_gem_object_put(obj);
602	return ERR_PTR(err);
603}
604
605static int init_shmem(struct intel_memory_region *mem)
606{
607	int err;
608
609	err = i915_gemfs_init(mem->i915);
610	if (err) {
611		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n",
612			 err);
613	}
614
615	intel_memory_region_set_name(mem, "system");
616
617	return 0; /* Don't error, we can simply fallback to the kernel mnt */
618}
619
620static void release_shmem(struct intel_memory_region *mem)
621{
622	i915_gemfs_fini(mem->i915);
623}
624
625static const struct intel_memory_region_ops shmem_region_ops = {
626	.init = init_shmem,
627	.release = release_shmem,
628	.init_object = shmem_object_init,
629};
630
631struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
632						 u16 type, u16 instance)
633{
634	return intel_memory_region_create(i915, 0,
635					  totalram_pages() << PAGE_SHIFT,
636					  PAGE_SIZE, 0,
637					  type, instance,
638					  &shmem_region_ops);
639}
640
641bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
642{
643	return obj->ops == &i915_gem_shmem_ops;
644}