Loading...
Note: File does not exist in v3.1.
1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7#include <linux/pagevec.h>
8#include <linux/swap.h>
9
10#include "gem/i915_gem_region.h"
11#include "i915_drv.h"
12#include "i915_gemfs.h"
13#include "i915_gem_object.h"
14#include "i915_scatterlist.h"
15#include "i915_trace.h"
16
17/*
18 * Move pages to appropriate lru and release the pagevec, decrementing the
19 * ref count of those pages.
20 */
21static void check_release_pagevec(struct pagevec *pvec)
22{
23 check_move_unevictable_pages(pvec);
24 __pagevec_release(pvec);
25 cond_resched();
26}
27
28static int shmem_get_pages(struct drm_i915_gem_object *obj)
29{
30 struct drm_i915_private *i915 = to_i915(obj->base.dev);
31 struct intel_memory_region *mem = obj->mm.region;
32 const unsigned long page_count = obj->base.size / PAGE_SIZE;
33 unsigned long i;
34 struct address_space *mapping;
35 struct sg_table *st;
36 struct scatterlist *sg;
37 struct sgt_iter sgt_iter;
38 struct page *page;
39 unsigned long last_pfn = 0; /* suppress gcc warning */
40 unsigned int max_segment = i915_sg_segment_size();
41 unsigned int sg_page_sizes;
42 gfp_t noreclaim;
43 int ret;
44
45 /*
46 * Assert that the object is not currently in any GPU domain. As it
47 * wasn't in the GTT, there shouldn't be any way it could have been in
48 * a GPU cache
49 */
50 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
51 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
52
53 /*
54 * If there's no chance of allocating enough pages for the whole
55 * object, bail early.
56 */
57 if (obj->base.size > resource_size(&mem->region))
58 return -ENOMEM;
59
60 st = kmalloc(sizeof(*st), GFP_KERNEL);
61 if (!st)
62 return -ENOMEM;
63
64rebuild_st:
65 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
66 kfree(st);
67 return -ENOMEM;
68 }
69
70 /*
71 * Get the list of pages out of our struct file. They'll be pinned
72 * at this point until we release them.
73 *
74 * Fail silently without starting the shrinker
75 */
76 mapping = obj->base.filp->f_mapping;
77 mapping_set_unevictable(mapping);
78 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
79 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
80
81 sg = st->sgl;
82 st->nents = 0;
83 sg_page_sizes = 0;
84 for (i = 0; i < page_count; i++) {
85 const unsigned int shrink[] = {
86 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
87 0,
88 }, *s = shrink;
89 gfp_t gfp = noreclaim;
90
91 do {
92 cond_resched();
93 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
94 if (!IS_ERR(page))
95 break;
96
97 if (!*s) {
98 ret = PTR_ERR(page);
99 goto err_sg;
100 }
101
102 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
103
104 /*
105 * We've tried hard to allocate the memory by reaping
106 * our own buffer, now let the real VM do its job and
107 * go down in flames if truly OOM.
108 *
109 * However, since graphics tend to be disposable,
110 * defer the oom here by reporting the ENOMEM back
111 * to userspace.
112 */
113 if (!*s) {
114 /* reclaim and warn, but no oom */
115 gfp = mapping_gfp_mask(mapping);
116
117 /*
118 * Our bo are always dirty and so we require
119 * kswapd to reclaim our pages (direct reclaim
120 * does not effectively begin pageout of our
121 * buffers on its own). However, direct reclaim
122 * only waits for kswapd when under allocation
123 * congestion. So as a result __GFP_RECLAIM is
124 * unreliable and fails to actually reclaim our
125 * dirty pages -- unless you try over and over
126 * again with !__GFP_NORETRY. However, we still
127 * want to fail this allocation rather than
128 * trigger the out-of-memory killer and for
129 * this we want __GFP_RETRY_MAYFAIL.
130 */
131 gfp |= __GFP_RETRY_MAYFAIL;
132 }
133 } while (1);
134
135 if (!i ||
136 sg->length >= max_segment ||
137 page_to_pfn(page) != last_pfn + 1) {
138 if (i) {
139 sg_page_sizes |= sg->length;
140 sg = sg_next(sg);
141 }
142 st->nents++;
143 sg_set_page(sg, page, PAGE_SIZE, 0);
144 } else {
145 sg->length += PAGE_SIZE;
146 }
147 last_pfn = page_to_pfn(page);
148
149 /* Check that the i965g/gm workaround works. */
150 GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
151 }
152 if (sg) { /* loop terminated early; short sg table */
153 sg_page_sizes |= sg->length;
154 sg_mark_end(sg);
155 }
156
157 /* Trim unused sg entries to avoid wasting memory. */
158 i915_sg_trim(st);
159
160 ret = i915_gem_gtt_prepare_pages(obj, st);
161 if (ret) {
162 /*
163 * DMA remapping failed? One possible cause is that
164 * it could not reserve enough large entries, asking
165 * for PAGE_SIZE chunks instead may be helpful.
166 */
167 if (max_segment > PAGE_SIZE) {
168 for_each_sgt_page(page, sgt_iter, st)
169 put_page(page);
170 sg_free_table(st);
171
172 max_segment = PAGE_SIZE;
173 goto rebuild_st;
174 } else {
175 dev_warn(i915->drm.dev,
176 "Failed to DMA remap %lu pages\n",
177 page_count);
178 goto err_pages;
179 }
180 }
181
182 if (i915_gem_object_needs_bit17_swizzle(obj))
183 i915_gem_object_do_bit_17_swizzle(obj, st);
184
185 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
186
187 return 0;
188
189err_sg:
190 sg_mark_end(sg);
191err_pages:
192 mapping_clear_unevictable(mapping);
193 if (sg != st->sgl) {
194 struct pagevec pvec;
195
196 pagevec_init(&pvec);
197 for_each_sgt_page(page, sgt_iter, st) {
198 if (!pagevec_add(&pvec, page))
199 check_release_pagevec(&pvec);
200 }
201 if (pagevec_count(&pvec))
202 check_release_pagevec(&pvec);
203 }
204 sg_free_table(st);
205 kfree(st);
206
207 /*
208 * shmemfs first checks if there is enough memory to allocate the page
209 * and reports ENOSPC should there be insufficient, along with the usual
210 * ENOMEM for a genuine allocation failure.
211 *
212 * We use ENOSPC in our driver to mean that we have run out of aperture
213 * space and so want to translate the error from shmemfs back to our
214 * usual understanding of ENOMEM.
215 */
216 if (ret == -ENOSPC)
217 ret = -ENOMEM;
218
219 return ret;
220}
221
222static void
223shmem_truncate(struct drm_i915_gem_object *obj)
224{
225 /*
226 * Our goal here is to return as much of the memory as
227 * is possible back to the system as we are called from OOM.
228 * To do this we must instruct the shmfs to drop all of its
229 * backing pages, *now*.
230 */
231 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
232 obj->mm.madv = __I915_MADV_PURGED;
233 obj->mm.pages = ERR_PTR(-EFAULT);
234}
235
236static void
237shmem_writeback(struct drm_i915_gem_object *obj)
238{
239 struct address_space *mapping;
240 struct writeback_control wbc = {
241 .sync_mode = WB_SYNC_NONE,
242 .nr_to_write = SWAP_CLUSTER_MAX,
243 .range_start = 0,
244 .range_end = LLONG_MAX,
245 .for_reclaim = 1,
246 };
247 unsigned long i;
248
249 /*
250 * Leave mmapings intact (GTT will have been revoked on unbinding,
251 * leaving only CPU mmapings around) and add those pages to the LRU
252 * instead of invoking writeback so they are aged and paged out
253 * as normal.
254 */
255 mapping = obj->base.filp->f_mapping;
256
257 /* Begin writeback on each dirty page */
258 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
259 struct page *page;
260
261 page = find_lock_page(mapping, i);
262 if (!page)
263 continue;
264
265 if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
266 int ret;
267
268 SetPageReclaim(page);
269 ret = mapping->a_ops->writepage(page, &wbc);
270 if (!PageWriteback(page))
271 ClearPageReclaim(page);
272 if (!ret)
273 goto put;
274 }
275 unlock_page(page);
276put:
277 put_page(page);
278 }
279}
280
281void
282__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
283 struct sg_table *pages,
284 bool needs_clflush)
285{
286 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
287
288 if (obj->mm.madv == I915_MADV_DONTNEED)
289 obj->mm.dirty = false;
290
291 if (needs_clflush &&
292 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
293 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
294 drm_clflush_sg(pages);
295
296 __start_cpu_write(obj);
297}
298
299void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
300{
301 struct sgt_iter sgt_iter;
302 struct pagevec pvec;
303 struct page *page;
304
305 __i915_gem_object_release_shmem(obj, pages, true);
306
307 i915_gem_gtt_finish_pages(obj, pages);
308
309 if (i915_gem_object_needs_bit17_swizzle(obj))
310 i915_gem_object_save_bit_17_swizzle(obj, pages);
311
312 mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
313
314 pagevec_init(&pvec);
315 for_each_sgt_page(page, sgt_iter, pages) {
316 if (obj->mm.dirty)
317 set_page_dirty(page);
318
319 if (obj->mm.madv == I915_MADV_WILLNEED)
320 mark_page_accessed(page);
321
322 if (!pagevec_add(&pvec, page))
323 check_release_pagevec(&pvec);
324 }
325 if (pagevec_count(&pvec))
326 check_release_pagevec(&pvec);
327 obj->mm.dirty = false;
328
329 sg_free_table(pages);
330 kfree(pages);
331}
332
333static void
334shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
335{
336 if (likely(i915_gem_object_has_struct_page(obj)))
337 i915_gem_object_put_pages_shmem(obj, pages);
338 else
339 i915_gem_object_put_pages_phys(obj, pages);
340}
341
342static int
343shmem_pwrite(struct drm_i915_gem_object *obj,
344 const struct drm_i915_gem_pwrite *arg)
345{
346 struct address_space *mapping = obj->base.filp->f_mapping;
347 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
348 u64 remain, offset;
349 unsigned int pg;
350
351 /* Caller already validated user args */
352 GEM_BUG_ON(!access_ok(user_data, arg->size));
353
354 if (!i915_gem_object_has_struct_page(obj))
355 return i915_gem_object_pwrite_phys(obj, arg);
356
357 /*
358 * Before we instantiate/pin the backing store for our use, we
359 * can prepopulate the shmemfs filp efficiently using a write into
360 * the pagecache. We avoid the penalty of instantiating all the
361 * pages, important if the user is just writing to a few and never
362 * uses the object on the GPU, and using a direct write into shmemfs
363 * allows it to avoid the cost of retrieving a page (either swapin
364 * or clearing-before-use) before it is overwritten.
365 */
366 if (i915_gem_object_has_pages(obj))
367 return -ENODEV;
368
369 if (obj->mm.madv != I915_MADV_WILLNEED)
370 return -EFAULT;
371
372 /*
373 * Before the pages are instantiated the object is treated as being
374 * in the CPU domain. The pages will be clflushed as required before
375 * use, and we can freely write into the pages directly. If userspace
376 * races pwrite with any other operation; corruption will ensue -
377 * that is userspace's prerogative!
378 */
379
380 remain = arg->size;
381 offset = arg->offset;
382 pg = offset_in_page(offset);
383
384 do {
385 unsigned int len, unwritten;
386 struct page *page;
387 void *data, *vaddr;
388 int err;
389 char c;
390
391 len = PAGE_SIZE - pg;
392 if (len > remain)
393 len = remain;
394
395 /* Prefault the user page to reduce potential recursion */
396 err = __get_user(c, user_data);
397 if (err)
398 return err;
399
400 err = __get_user(c, user_data + len - 1);
401 if (err)
402 return err;
403
404 err = pagecache_write_begin(obj->base.filp, mapping,
405 offset, len, 0,
406 &page, &data);
407 if (err < 0)
408 return err;
409
410 vaddr = kmap_atomic(page);
411 unwritten = __copy_from_user_inatomic(vaddr + pg,
412 user_data,
413 len);
414 kunmap_atomic(vaddr);
415
416 err = pagecache_write_end(obj->base.filp, mapping,
417 offset, len, len - unwritten,
418 page, data);
419 if (err < 0)
420 return err;
421
422 /* We don't handle -EFAULT, leave it to the caller to check */
423 if (unwritten)
424 return -ENODEV;
425
426 remain -= len;
427 user_data += len;
428 offset += len;
429 pg = 0;
430 } while (remain);
431
432 return 0;
433}
434
435static int
436shmem_pread(struct drm_i915_gem_object *obj,
437 const struct drm_i915_gem_pread *arg)
438{
439 if (!i915_gem_object_has_struct_page(obj))
440 return i915_gem_object_pread_phys(obj, arg);
441
442 return -ENODEV;
443}
444
445static void shmem_release(struct drm_i915_gem_object *obj)
446{
447 if (obj->flags & I915_BO_ALLOC_STRUCT_PAGE)
448 i915_gem_object_release_memory_region(obj);
449
450 fput(obj->base.filp);
451}
452
453const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
454 .name = "i915_gem_object_shmem",
455 .flags = I915_GEM_OBJECT_IS_SHRINKABLE,
456
457 .get_pages = shmem_get_pages,
458 .put_pages = shmem_put_pages,
459 .truncate = shmem_truncate,
460 .writeback = shmem_writeback,
461
462 .pwrite = shmem_pwrite,
463 .pread = shmem_pread,
464
465 .release = shmem_release,
466};
467
468static int __create_shmem(struct drm_i915_private *i915,
469 struct drm_gem_object *obj,
470 resource_size_t size)
471{
472 unsigned long flags = VM_NORESERVE;
473 struct file *filp;
474
475 drm_gem_private_object_init(&i915->drm, obj, size);
476
477 if (i915->mm.gemfs)
478 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
479 flags);
480 else
481 filp = shmem_file_setup("i915", size, flags);
482 if (IS_ERR(filp))
483 return PTR_ERR(filp);
484
485 obj->filp = filp;
486 return 0;
487}
488
489static int shmem_object_init(struct intel_memory_region *mem,
490 struct drm_i915_gem_object *obj,
491 resource_size_t size,
492 unsigned int flags)
493{
494 static struct lock_class_key lock_class;
495 struct drm_i915_private *i915 = mem->i915;
496 struct address_space *mapping;
497 unsigned int cache_level;
498 gfp_t mask;
499 int ret;
500
501 ret = __create_shmem(i915, &obj->base, size);
502 if (ret)
503 return ret;
504
505 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
506 if (IS_I965GM(i915) || IS_I965G(i915)) {
507 /* 965gm cannot relocate objects above 4GiB. */
508 mask &= ~__GFP_HIGHMEM;
509 mask |= __GFP_DMA32;
510 }
511
512 mapping = obj->base.filp->f_mapping;
513 mapping_set_gfp_mask(mapping, mask);
514 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
515
516 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class,
517 I915_BO_ALLOC_STRUCT_PAGE);
518
519 obj->write_domain = I915_GEM_DOMAIN_CPU;
520 obj->read_domains = I915_GEM_DOMAIN_CPU;
521
522 if (HAS_LLC(i915))
523 /* On some devices, we can have the GPU use the LLC (the CPU
524 * cache) for about a 10% performance improvement
525 * compared to uncached. Graphics requests other than
526 * display scanout are coherent with the CPU in
527 * accessing this cache. This means in this mode we
528 * don't need to clflush on the CPU side, and on the
529 * GPU side we only need to flush internal caches to
530 * get data visible to the CPU.
531 *
532 * However, we maintain the display planes as UC, and so
533 * need to rebind when first used as such.
534 */
535 cache_level = I915_CACHE_LLC;
536 else
537 cache_level = I915_CACHE_NONE;
538
539 i915_gem_object_set_cache_coherency(obj, cache_level);
540
541 i915_gem_object_init_memory_region(obj, mem);
542
543 return 0;
544}
545
546struct drm_i915_gem_object *
547i915_gem_object_create_shmem(struct drm_i915_private *i915,
548 resource_size_t size)
549{
550 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
551 size, 0);
552}
553
554/* Allocate a new GEM object and fill it with the supplied data */
555struct drm_i915_gem_object *
556i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
557 const void *data, resource_size_t size)
558{
559 struct drm_i915_gem_object *obj;
560 struct file *file;
561 resource_size_t offset;
562 int err;
563
564 obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
565 if (IS_ERR(obj))
566 return obj;
567
568 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
569
570 file = obj->base.filp;
571 offset = 0;
572 do {
573 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
574 struct page *page;
575 void *pgdata, *vaddr;
576
577 err = pagecache_write_begin(file, file->f_mapping,
578 offset, len, 0,
579 &page, &pgdata);
580 if (err < 0)
581 goto fail;
582
583 vaddr = kmap(page);
584 memcpy(vaddr, data, len);
585 kunmap(page);
586
587 err = pagecache_write_end(file, file->f_mapping,
588 offset, len, len,
589 page, pgdata);
590 if (err < 0)
591 goto fail;
592
593 size -= len;
594 data += len;
595 offset += len;
596 } while (size);
597
598 return obj;
599
600fail:
601 i915_gem_object_put(obj);
602 return ERR_PTR(err);
603}
604
605static int init_shmem(struct intel_memory_region *mem)
606{
607 int err;
608
609 err = i915_gemfs_init(mem->i915);
610 if (err) {
611 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n",
612 err);
613 }
614
615 intel_memory_region_set_name(mem, "system");
616
617 return 0; /* Don't error, we can simply fallback to the kernel mnt */
618}
619
620static void release_shmem(struct intel_memory_region *mem)
621{
622 i915_gemfs_fini(mem->i915);
623}
624
625static const struct intel_memory_region_ops shmem_region_ops = {
626 .init = init_shmem,
627 .release = release_shmem,
628 .init_object = shmem_object_init,
629};
630
631struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
632 u16 type, u16 instance)
633{
634 return intel_memory_region_create(i915, 0,
635 totalram_pages() << PAGE_SHIFT,
636 PAGE_SIZE, 0,
637 type, instance,
638 &shmem_region_ops);
639}
640
641bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
642{
643 return obj->ops == &i915_gem_shmem_ops;
644}