Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
 
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100				    __func__, __LINE__, #expr); \
 101			     panic(FORE200E "%s", __func__); \
 102			 }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183	alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191	return -ENOMEM;
 192
 193    if (alignment > 0)
 194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 
 
 
 
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 210
 211    kfree(chunk->alloc_addr);
 212}
 213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232	    break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239	       *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254	if ((ok = (fore200e->bus->read(addr) == val)))
 255	    break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262	       fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283		    struct chunk* data = &buffer[ nbr ].data;
 284
 285		    if (data->alloc_addr != NULL)
 286			fore200e_chunk_free(fore200e, data);
 287		}
 288	    }
 289	}
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304	    
 305	    if (status->alloc_addr)
 306		fore200e->bus->dma_chunk_free(fore200e, status);
 307	    
 308	    if (rbd_block->alloc_addr)
 309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310	}
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328	if (ok == 0) {
 329	    
 330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331	    return -ENODEV;
 332	}
 333
 334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335	
 336	fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347	   fore200e->name, fore200e->phys_base, 
 348	   fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351	/* first, reset the board to prevent further interrupts or data transfers */
 352	fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359	kfree(fore200e->stats);
 360
 
 361    case FORE200E_STATE_IRQ:
 362	free_irq(fore200e->irq, fore200e->atm_dev);
 363
 
 364    case FORE200E_STATE_ALLOC_BUF:
 365	fore200e_free_rx_buf(fore200e);
 366
 
 367    case FORE200E_STATE_INIT_BSQ:
 368	fore200e_uninit_bs_queue(fore200e);
 369
 
 370    case FORE200E_STATE_INIT_RXQ:
 371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 
 374    case FORE200E_STATE_INIT_TXQ:
 375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 
 378    case FORE200E_STATE_INIT_CMDQ:
 379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 
 381    case FORE200E_STATE_INITIALIZE:
 382	/* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385	/* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388	/* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391	fore200e->bus->unmap(fore200e);
 392
 
 393    case FORE200E_STATE_CONFIGURE:
 394	/* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397	/* XXX shouldn't we *start* by deregistering the device? */
 398	atm_dev_deregister(fore200e->atm_dev);
 399
 
 400    case FORE200E_STATE_BLANK:
 401	/* nothing to do for that state */
 402	break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431	    virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441	    dma_addr, size, direction);
 442
 443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469			     int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
 474					     chunk->alloc_size,
 475					     &chunk->dma_addr);
 476    
 477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 478	return -ENOMEM;
 479
 480    chunk->align_addr = chunk->alloc_addr;
 481    
 482    return 0;
 483}
 484
 485
 486/* free a DMA consistent chunk of memory */
 487
 488static void
 489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 490{
 491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
 492			chunk->alloc_size,
 493			chunk->alloc_addr,
 494			chunk->dma_addr);
 495}
 496
 497
 498static int
 499fore200e_pca_irq_check(struct fore200e* fore200e)
 500{
 501    /* this is a 1 bit register */
 502    int irq_posted = readl(fore200e->regs.pca.psr);
 503
 504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 506	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 507    }
 508#endif
 509
 510    return irq_posted;
 511}
 512
 513
 514static void
 515fore200e_pca_irq_ack(struct fore200e* fore200e)
 516{
 517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 518}
 519
 520
 521static void
 522fore200e_pca_reset(struct fore200e* fore200e)
 523{
 524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 525    fore200e_spin(10);
 526    writel(0, fore200e->regs.pca.hcr);
 527}
 528
 529
 530static int __devinit
 531fore200e_pca_map(struct fore200e* fore200e)
 532{
 533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 534
 535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 536    
 537    if (fore200e->virt_base == NULL) {
 538	printk(FORE200E "can't map device %s\n", fore200e->name);
 539	return -EFAULT;
 540    }
 541
 542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 543
 544    /* gain access to the PCA specific registers  */
 545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 548
 549    fore200e->state = FORE200E_STATE_MAP;
 550    return 0;
 551}
 552
 553
 554static void
 555fore200e_pca_unmap(struct fore200e* fore200e)
 556{
 557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 558
 559    if (fore200e->virt_base != NULL)
 560	iounmap(fore200e->virt_base);
 561}
 562
 563
 564static int __devinit
 565fore200e_pca_configure(struct fore200e* fore200e)
 566{
 567    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 568    u8              master_ctrl, latency;
 569
 570    DPRINTK(2, "device %s being configured\n", fore200e->name);
 571
 572    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 573	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 574	return -EIO;
 575    }
 576
 577    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 578
 579    master_ctrl = master_ctrl
 580#if defined(__BIG_ENDIAN)
 581	/* request the PCA board to convert the endianess of slave RAM accesses */
 582	| PCA200E_CTRL_CONVERT_ENDIAN
 583#endif
 584#if 0
 585        | PCA200E_CTRL_DIS_CACHE_RD
 586        | PCA200E_CTRL_DIS_WRT_INVAL
 587        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 588        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 589#endif
 590	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 591    
 592    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 593
 594    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 595       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 596       this may impact the performances of other PCI devices on the same bus, though */
 597    latency = 192;
 598    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 599
 600    fore200e->state = FORE200E_STATE_CONFIGURE;
 601    return 0;
 602}
 603
 604
 605static int __init
 606fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 607{
 608    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 609    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 610    struct prom_opcode      opcode;
 611    int                     ok;
 612    u32                     prom_dma;
 613
 614    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 615
 616    opcode.opcode = OPCODE_GET_PROM;
 617    opcode.pad    = 0;
 618
 619    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 
 
 
 620
 621    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 622    
 623    *entry->status = STATUS_PENDING;
 624
 625    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 626
 627    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 628
 629    *entry->status = STATUS_FREE;
 630
 631    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 632
 633    if (ok == 0) {
 634	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 635	return -EIO;
 636    }
 637
 638#if defined(__BIG_ENDIAN)
 639    
 640#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 641
 642    /* MAC address is stored as little-endian */
 643    swap_here(&prom->mac_addr[0]);
 644    swap_here(&prom->mac_addr[4]);
 645#endif
 646    
 647    return 0;
 648}
 649
 650
 651static int
 652fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 653{
 654    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 655
 656    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 657		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 658}
 659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660#endif /* CONFIG_PCI */
 661
 662
 663#ifdef CONFIG_SBUS
 664
 665static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 666{
 667    return sbus_readl(addr);
 668}
 669
 670static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 671{
 672    sbus_writel(val, addr);
 673}
 674
 675static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 676{
 677	struct platform_device *op = fore200e->bus_dev;
 678	u32 dma_addr;
 679
 680	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 681
 682	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 683		virt_addr, size, direction, dma_addr);
 684    
 685	return dma_addr;
 686}
 687
 688static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 689{
 690	struct platform_device *op = fore200e->bus_dev;
 691
 692	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 693		dma_addr, size, direction);
 694
 695	dma_unmap_single(&op->dev, dma_addr, size, direction);
 696}
 697
 698static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 699{
 700	struct platform_device *op = fore200e->bus_dev;
 701
 702	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 703    
 704	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 705}
 706
 707static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 708{
 709	struct platform_device *op = fore200e->bus_dev;
 710
 711	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 712
 713	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 714}
 715
 716/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 717 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 718 */
 719static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 720					int size, int nbr, int alignment)
 721{
 722	struct platform_device *op = fore200e->bus_dev;
 723
 724	chunk->alloc_size = chunk->align_size = size * nbr;
 725
 726	/* returned chunks are page-aligned */
 727	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 728					       &chunk->dma_addr, GFP_ATOMIC);
 729
 730	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 731		return -ENOMEM;
 732
 733	chunk->align_addr = chunk->alloc_addr;
 734    
 735	return 0;
 736}
 737
 738/* free a DVMA consistent chunk of memory */
 739static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 740{
 741	struct platform_device *op = fore200e->bus_dev;
 742
 743	dma_free_coherent(&op->dev, chunk->alloc_size,
 744			  chunk->alloc_addr, chunk->dma_addr);
 745}
 746
 747static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 748{
 749	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 750	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 751}
 752
 753static int fore200e_sba_irq_check(struct fore200e *fore200e)
 754{
 755	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 756}
 757
 758static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 759{
 760	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 761	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 762}
 763
 764static void fore200e_sba_reset(struct fore200e *fore200e)
 765{
 766	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 767	fore200e_spin(10);
 768	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 769}
 770
 771static int __init fore200e_sba_map(struct fore200e *fore200e)
 772{
 773	struct platform_device *op = fore200e->bus_dev;
 774	unsigned int bursts;
 775
 776	/* gain access to the SBA specific registers  */
 777	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 778	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 779	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 780	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 781
 782	if (!fore200e->virt_base) {
 783		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 784		return -EFAULT;
 785	}
 786
 787	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 788    
 789	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 790
 791	/* get the supported DVMA burst sizes */
 792	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 793
 794	if (sbus_can_dma_64bit())
 795		sbus_set_sbus64(&op->dev, bursts);
 796
 797	fore200e->state = FORE200E_STATE_MAP;
 798	return 0;
 799}
 800
 801static void fore200e_sba_unmap(struct fore200e *fore200e)
 802{
 803	struct platform_device *op = fore200e->bus_dev;
 804
 805	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 806	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 807	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 808	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 809}
 810
 811static int __init fore200e_sba_configure(struct fore200e *fore200e)
 812{
 813	fore200e->state = FORE200E_STATE_CONFIGURE;
 814	return 0;
 815}
 816
 817static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 818{
 819	struct platform_device *op = fore200e->bus_dev;
 820	const u8 *prop;
 821	int len;
 822
 823	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 824	if (!prop)
 825		return -ENODEV;
 826	memcpy(&prom->mac_addr[4], prop, 4);
 827
 828	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 829	if (!prop)
 830		return -ENODEV;
 831	memcpy(&prom->mac_addr[2], prop, 4);
 832
 833	prom->serial_number = of_getintprop_default(op->dev.of_node,
 834						    "serialnumber", 0);
 835	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 836						  "promversion", 0);
 837    
 838	return 0;
 839}
 840
 841static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 842{
 843	struct platform_device *op = fore200e->bus_dev;
 844	const struct linux_prom_registers *regs;
 845
 846	regs = of_get_property(op->dev.of_node, "reg", NULL);
 847
 848	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 849		       (regs ? regs->which_io : 0), op->dev.of_node->name);
 850}
 851#endif /* CONFIG_SBUS */
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853
 854static void
 855fore200e_tx_irq(struct fore200e* fore200e)
 856{
 857    struct host_txq*        txq = &fore200e->host_txq;
 858    struct host_txq_entry*  entry;
 859    struct atm_vcc*         vcc;
 860    struct fore200e_vc_map* vc_map;
 861
 862    if (fore200e->host_txq.txing == 0)
 863	return;
 864
 865    for (;;) {
 866	
 867	entry = &txq->host_entry[ txq->tail ];
 868
 869        if ((*entry->status & STATUS_COMPLETE) == 0) {
 870	    break;
 871	}
 872
 873	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 874		entry, txq->tail, entry->vc_map, entry->skb);
 875
 876	/* free copy of misaligned data */
 877	kfree(entry->data);
 878	
 879	/* remove DMA mapping */
 880	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 881				 DMA_TO_DEVICE);
 882
 883	vc_map = entry->vc_map;
 884
 885	/* vcc closed since the time the entry was submitted for tx? */
 886	if ((vc_map->vcc == NULL) ||
 887	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 888
 889	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 890		    fore200e->atm_dev->number);
 891
 892	    dev_kfree_skb_any(entry->skb);
 893	}
 894	else {
 895	    ASSERT(vc_map->vcc);
 896
 897	    /* vcc closed then immediately re-opened? */
 898	    if (vc_map->incarn != entry->incarn) {
 899
 900		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 901		   if the same vcc is immediately re-opened, those pending PDUs must
 902		   not be popped after the completion of their emission, as they refer
 903		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 904		   would be decremented by the size of the (unrelated) skb, possibly
 905		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 906		   we thus bind the tx entry to the current incarnation of the vcc
 907		   when the entry is submitted for tx. When the tx later completes,
 908		   if the incarnation number of the tx entry does not match the one
 909		   of the vcc, then this implies that the vcc has been closed then re-opened.
 910		   we thus just drop the skb here. */
 911
 912		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 913			fore200e->atm_dev->number);
 914
 915		dev_kfree_skb_any(entry->skb);
 916	    }
 917	    else {
 918		vcc = vc_map->vcc;
 919		ASSERT(vcc);
 920
 921		/* notify tx completion */
 922		if (vcc->pop) {
 923		    vcc->pop(vcc, entry->skb);
 924		}
 925		else {
 926		    dev_kfree_skb_any(entry->skb);
 927		}
 928#if 1
 929		/* race fixed by the above incarnation mechanism, but... */
 930		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 931		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 932		}
 933#endif
 934		/* check error condition */
 935		if (*entry->status & STATUS_ERROR)
 936		    atomic_inc(&vcc->stats->tx_err);
 937		else
 938		    atomic_inc(&vcc->stats->tx);
 939	    }
 940	}
 941
 942	*entry->status = STATUS_FREE;
 943
 944	fore200e->host_txq.txing--;
 945
 946	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 947    }
 948}
 949
 950
 951#ifdef FORE200E_BSQ_DEBUG
 952int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 953{
 954    struct buffer* buffer;
 955    int count = 0;
 956
 957    buffer = bsq->freebuf;
 958    while (buffer) {
 959
 960	if (buffer->supplied) {
 961	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 962		   where, scheme, magn, buffer->index);
 963	}
 964
 965	if (buffer->magn != magn) {
 966	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 967		   where, scheme, magn, buffer->index, buffer->magn);
 968	}
 969
 970	if (buffer->scheme != scheme) {
 971	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 972		   where, scheme, magn, buffer->index, buffer->scheme);
 973	}
 974
 975	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 976	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 977		   where, scheme, magn, buffer->index);
 978	}
 979
 980	count++;
 981	buffer = buffer->next;
 982    }
 983
 984    if (count != bsq->freebuf_count) {
 985	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 986	       where, scheme, magn, count, bsq->freebuf_count);
 987    }
 988    return 0;
 989}
 990#endif
 991
 992
 993static void
 994fore200e_supply(struct fore200e* fore200e)
 995{
 996    int  scheme, magn, i;
 997
 998    struct host_bsq*       bsq;
 999    struct host_bsq_entry* entry;
1000    struct buffer*         buffer;
1001
1002    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1003	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1004
1005	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1006
1007#ifdef FORE200E_BSQ_DEBUG
1008	    bsq_audit(1, bsq, scheme, magn);
1009#endif
1010	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1011
1012		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1013			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1014
1015		entry = &bsq->host_entry[ bsq->head ];
1016
1017		for (i = 0; i < RBD_BLK_SIZE; i++) {
1018
1019		    /* take the first buffer in the free buffer list */
1020		    buffer = bsq->freebuf;
1021		    if (!buffer) {
1022			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1023			       scheme, magn, bsq->freebuf_count);
1024			return;
1025		    }
1026		    bsq->freebuf = buffer->next;
1027		    
1028#ifdef FORE200E_BSQ_DEBUG
1029		    if (buffer->supplied)
1030			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1031			       scheme, magn, buffer->index);
1032		    buffer->supplied = 1;
1033#endif
1034		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1035		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1036		}
1037
1038		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1039
1040 		/* decrease accordingly the number of free rx buffers */
1041		bsq->freebuf_count -= RBD_BLK_SIZE;
1042
1043		*entry->status = STATUS_PENDING;
1044		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1045	    }
1046	}
1047    }
1048}
1049
1050
1051static int
1052fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1053{
1054    struct sk_buff*      skb;
1055    struct buffer*       buffer;
1056    struct fore200e_vcc* fore200e_vcc;
1057    int                  i, pdu_len = 0;
1058#ifdef FORE200E_52BYTE_AAL0_SDU
1059    u32                  cell_header = 0;
1060#endif
1061
1062    ASSERT(vcc);
1063    
1064    fore200e_vcc = FORE200E_VCC(vcc);
1065    ASSERT(fore200e_vcc);
1066
1067#ifdef FORE200E_52BYTE_AAL0_SDU
1068    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1069
1070	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1071	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1072                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1073                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1074                       rpd->atm_header.clp;
1075	pdu_len = 4;
1076    }
1077#endif
1078    
1079    /* compute total PDU length */
1080    for (i = 0; i < rpd->nseg; i++)
1081	pdu_len += rpd->rsd[ i ].length;
1082    
1083    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1084    if (skb == NULL) {
1085	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1086
1087	atomic_inc(&vcc->stats->rx_drop);
1088	return -ENOMEM;
1089    } 
1090
1091    __net_timestamp(skb);
1092    
1093#ifdef FORE200E_52BYTE_AAL0_SDU
1094    if (cell_header) {
1095	*((u32*)skb_put(skb, 4)) = cell_header;
1096    }
1097#endif
1098
1099    /* reassemble segments */
1100    for (i = 0; i < rpd->nseg; i++) {
1101	
1102	/* rebuild rx buffer address from rsd handle */
1103	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1104	
1105	/* Make device DMA transfer visible to CPU.  */
1106	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1107	
1108	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1109
1110	/* Now let the device get at it again.  */
1111	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1112    }
1113
1114    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1115    
1116    if (pdu_len < fore200e_vcc->rx_min_pdu)
1117	fore200e_vcc->rx_min_pdu = pdu_len;
1118    if (pdu_len > fore200e_vcc->rx_max_pdu)
1119	fore200e_vcc->rx_max_pdu = pdu_len;
1120    fore200e_vcc->rx_pdu++;
1121
1122    /* push PDU */
1123    if (atm_charge(vcc, skb->truesize) == 0) {
1124
1125	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1126		vcc->itf, vcc->vpi, vcc->vci);
1127
1128	dev_kfree_skb_any(skb);
1129
1130	atomic_inc(&vcc->stats->rx_drop);
1131	return -ENOMEM;
1132    }
1133
1134    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1135
1136    vcc->push(vcc, skb);
1137    atomic_inc(&vcc->stats->rx);
1138
1139    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1140
1141    return 0;
1142}
1143
1144
1145static void
1146fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1147{
1148    struct host_bsq* bsq;
1149    struct buffer*   buffer;
1150    int              i;
1151    
1152    for (i = 0; i < rpd->nseg; i++) {
1153
1154	/* rebuild rx buffer address from rsd handle */
1155	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1156
1157	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1158
1159#ifdef FORE200E_BSQ_DEBUG
1160	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1161
1162	if (buffer->supplied == 0)
1163	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1164		   buffer->scheme, buffer->magn, buffer->index);
1165	buffer->supplied = 0;
1166#endif
1167
1168	/* re-insert the buffer into the free buffer list */
1169	buffer->next = bsq->freebuf;
1170	bsq->freebuf = buffer;
1171
1172	/* then increment the number of free rx buffers */
1173	bsq->freebuf_count++;
1174    }
1175}
1176
1177
1178static void
1179fore200e_rx_irq(struct fore200e* fore200e)
1180{
1181    struct host_rxq*        rxq = &fore200e->host_rxq;
1182    struct host_rxq_entry*  entry;
1183    struct atm_vcc*         vcc;
1184    struct fore200e_vc_map* vc_map;
1185
1186    for (;;) {
1187	
1188	entry = &rxq->host_entry[ rxq->head ];
1189
1190	/* no more received PDUs */
1191	if ((*entry->status & STATUS_COMPLETE) == 0)
1192	    break;
1193
1194	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1195
1196	if ((vc_map->vcc == NULL) ||
1197	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1198
1199	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1200		    fore200e->atm_dev->number,
1201		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1202	}
1203	else {
1204	    vcc = vc_map->vcc;
1205	    ASSERT(vcc);
1206
1207	    if ((*entry->status & STATUS_ERROR) == 0) {
1208
1209		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1210	    }
1211	    else {
1212		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1213			fore200e->atm_dev->number,
1214			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1215		atomic_inc(&vcc->stats->rx_err);
1216	    }
1217	}
1218
1219	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1220
1221	fore200e_collect_rpd(fore200e, entry->rpd);
1222
1223	/* rewrite the rpd address to ack the received PDU */
1224	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1225	*entry->status = STATUS_FREE;
1226
1227	fore200e_supply(fore200e);
1228    }
1229}
1230
1231
1232#ifndef FORE200E_USE_TASKLET
1233static void
1234fore200e_irq(struct fore200e* fore200e)
1235{
1236    unsigned long flags;
1237
1238    spin_lock_irqsave(&fore200e->q_lock, flags);
1239    fore200e_rx_irq(fore200e);
1240    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1241
1242    spin_lock_irqsave(&fore200e->q_lock, flags);
1243    fore200e_tx_irq(fore200e);
1244    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1245}
1246#endif
1247
1248
1249static irqreturn_t
1250fore200e_interrupt(int irq, void* dev)
1251{
1252    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1253
1254    if (fore200e->bus->irq_check(fore200e) == 0) {
1255	
1256	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1257	return IRQ_NONE;
1258    }
1259    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1260
1261#ifdef FORE200E_USE_TASKLET
1262    tasklet_schedule(&fore200e->tx_tasklet);
1263    tasklet_schedule(&fore200e->rx_tasklet);
1264#else
1265    fore200e_irq(fore200e);
1266#endif
1267    
1268    fore200e->bus->irq_ack(fore200e);
1269    return IRQ_HANDLED;
1270}
1271
1272
1273#ifdef FORE200E_USE_TASKLET
1274static void
1275fore200e_tx_tasklet(unsigned long data)
1276{
1277    struct fore200e* fore200e = (struct fore200e*) data;
1278    unsigned long flags;
1279
1280    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1281
1282    spin_lock_irqsave(&fore200e->q_lock, flags);
1283    fore200e_tx_irq(fore200e);
1284    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1285}
1286
1287
1288static void
1289fore200e_rx_tasklet(unsigned long data)
1290{
1291    struct fore200e* fore200e = (struct fore200e*) data;
1292    unsigned long    flags;
1293
1294    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1295
1296    spin_lock_irqsave(&fore200e->q_lock, flags);
1297    fore200e_rx_irq((struct fore200e*) data);
1298    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1299}
1300#endif
1301
1302
1303static int
1304fore200e_select_scheme(struct atm_vcc* vcc)
1305{
1306    /* fairly balance the VCs over (identical) buffer schemes */
1307    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1308
1309    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1310	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1311
1312    return scheme;
1313}
1314
1315
1316static int 
1317fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1318{
1319    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1320    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1321    struct activate_opcode   activ_opcode;
1322    struct deactivate_opcode deactiv_opcode;
1323    struct vpvc              vpvc;
1324    int                      ok;
1325    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1326
1327    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1328    
1329    if (activate) {
1330	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1331	
1332	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1333	activ_opcode.aal    = aal;
1334	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1335	activ_opcode.pad    = 0;
1336    }
1337    else {
1338	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1339	deactiv_opcode.pad    = 0;
1340    }
1341
1342    vpvc.vci = vcc->vci;
1343    vpvc.vpi = vcc->vpi;
1344
1345    *entry->status = STATUS_PENDING;
1346
1347    if (activate) {
1348
1349#ifdef FORE200E_52BYTE_AAL0_SDU
1350	mtu = 48;
1351#endif
1352	/* the MTU is not used by the cp, except in the case of AAL0 */
1353	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1354	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1355	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1356    }
1357    else {
1358	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1359	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1360    }
1361
1362    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1363
1364    *entry->status = STATUS_FREE;
1365
1366    if (ok == 0) {
1367	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1368	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1369	return -EIO;
1370    }
1371
1372    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1373	    activate ? "open" : "clos");
1374
1375    return 0;
1376}
1377
1378
1379#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1380
1381static void
1382fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1383{
1384    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1385    
1386	/* compute the data cells to idle cells ratio from the tx PCR */
1387	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1388	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1389    }
1390    else {
1391	/* disable rate control */
1392	rate->data_cells = rate->idle_cells = 0;
1393    }
1394}
1395
1396
1397static int
1398fore200e_open(struct atm_vcc *vcc)
1399{
1400    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1401    struct fore200e_vcc*    fore200e_vcc;
1402    struct fore200e_vc_map* vc_map;
1403    unsigned long	    flags;
1404    int			    vci = vcc->vci;
1405    short		    vpi = vcc->vpi;
1406
1407    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1408    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1409
1410    spin_lock_irqsave(&fore200e->q_lock, flags);
1411
1412    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1413    if (vc_map->vcc) {
1414
1415	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417	printk(FORE200E "VC %d.%d.%d already in use\n",
1418	       fore200e->atm_dev->number, vpi, vci);
1419
1420	return -EINVAL;
1421    }
1422
1423    vc_map->vcc = vcc;
1424
1425    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1426
1427    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1428    if (fore200e_vcc == NULL) {
1429	vc_map->vcc = NULL;
1430	return -ENOMEM;
1431    }
1432
1433    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1434	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1435	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1436	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1437	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1438	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1439	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1440    
1441    /* pseudo-CBR bandwidth requested? */
1442    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1443	
1444	mutex_lock(&fore200e->rate_mtx);
1445	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1446	    mutex_unlock(&fore200e->rate_mtx);
1447
1448	    kfree(fore200e_vcc);
1449	    vc_map->vcc = NULL;
1450	    return -EAGAIN;
1451	}
1452
1453	/* reserve bandwidth */
1454	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1455	mutex_unlock(&fore200e->rate_mtx);
1456    }
1457    
1458    vcc->itf = vcc->dev->number;
1459
1460    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1461    set_bit(ATM_VF_ADDR, &vcc->flags);
1462
1463    vcc->dev_data = fore200e_vcc;
1464    
1465    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1466
1467	vc_map->vcc = NULL;
1468
1469	clear_bit(ATM_VF_ADDR, &vcc->flags);
1470	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1471
1472	vcc->dev_data = NULL;
1473
1474	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1475
1476	kfree(fore200e_vcc);
1477	return -EINVAL;
1478    }
1479    
1480    /* compute rate control parameters */
1481    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1482	
1483	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1484	set_bit(ATM_VF_HASQOS, &vcc->flags);
1485
1486	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1487		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1488		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1489		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1490    }
1491    
1492    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1493    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1494    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1495
1496    /* new incarnation of the vcc */
1497    vc_map->incarn = ++fore200e->incarn_count;
1498
1499    /* VC unusable before this flag is set */
1500    set_bit(ATM_VF_READY, &vcc->flags);
1501
1502    return 0;
1503}
1504
1505
1506static void
1507fore200e_close(struct atm_vcc* vcc)
1508{
1509    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1510    struct fore200e_vcc*    fore200e_vcc;
 
1511    struct fore200e_vc_map* vc_map;
1512    unsigned long           flags;
1513
1514    ASSERT(vcc);
 
 
1515    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517
1518    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519
1520    clear_bit(ATM_VF_READY, &vcc->flags);
1521
1522    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523
1524    spin_lock_irqsave(&fore200e->q_lock, flags);
1525
1526    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527
1528    /* the vc is no longer considered as "in use" by fore200e_open() */
1529    vc_map->vcc = NULL;
1530
1531    vcc->itf = vcc->vci = vcc->vpi = 0;
1532
1533    fore200e_vcc = FORE200E_VCC(vcc);
1534    vcc->dev_data = NULL;
1535
1536    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537
1538    /* release reserved bandwidth, if any */
1539    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540
1541	mutex_lock(&fore200e->rate_mtx);
1542	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543	mutex_unlock(&fore200e->rate_mtx);
1544
1545	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546    }
1547
1548    clear_bit(ATM_VF_ADDR, &vcc->flags);
1549    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550
1551    ASSERT(fore200e_vcc);
1552    kfree(fore200e_vcc);
1553}
1554
1555
1556static int
1557fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558{
1559    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1560    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1561    struct fore200e_vc_map* vc_map;
1562    struct host_txq*        txq          = &fore200e->host_txq;
1563    struct host_txq_entry*  entry;
1564    struct tpd*             tpd;
1565    struct tpd_haddr        tpd_haddr;
1566    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1567    int                     tx_copy      = 0;
1568    int                     tx_len       = skb->len;
1569    u32*                    cell_header  = NULL;
1570    unsigned char*          skb_data;
1571    int                     skb_len;
1572    unsigned char*          data;
1573    unsigned long           flags;
1574
1575    ASSERT(vcc);
1576    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1577    ASSERT(fore200e);
1578    ASSERT(fore200e_vcc);
 
 
 
 
 
 
 
 
1579
1580    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1581	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1582	dev_kfree_skb_any(skb);
1583	return -EINVAL;
1584    }
1585
1586#ifdef FORE200E_52BYTE_AAL0_SDU
1587    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1588	cell_header = (u32*) skb->data;
1589	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1590	skb_len     = tx_len = skb->len  - 4;
1591
1592	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1593    }
1594    else 
1595#endif
1596    {
1597	skb_data = skb->data;
1598	skb_len  = skb->len;
1599    }
1600    
1601    if (((unsigned long)skb_data) & 0x3) {
1602
1603	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1604	tx_copy = 1;
1605	tx_len  = skb_len;
1606    }
1607
1608    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1609
1610        /* this simply NUKES the PCA board */
1611	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1612	tx_copy = 1;
1613	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1614    }
1615    
1616    if (tx_copy) {
1617	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1618	if (data == NULL) {
1619	    if (vcc->pop) {
1620		vcc->pop(vcc, skb);
1621	    }
1622	    else {
1623		dev_kfree_skb_any(skb);
1624	    }
1625	    return -ENOMEM;
1626	}
1627
1628	memcpy(data, skb_data, skb_len);
1629	if (skb_len < tx_len)
1630	    memset(data + skb_len, 0x00, tx_len - skb_len);
1631    }
1632    else {
1633	data = skb_data;
1634    }
1635
1636    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1637    ASSERT(vc_map->vcc == vcc);
1638
1639  retry_here:
1640
1641    spin_lock_irqsave(&fore200e->q_lock, flags);
1642
1643    entry = &txq->host_entry[ txq->head ];
1644
1645    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1646
1647	/* try to free completed tx queue entries */
1648	fore200e_tx_irq(fore200e);
1649
1650	if (*entry->status != STATUS_FREE) {
1651
1652	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1653
1654	    /* retry once again? */
1655	    if (--retry > 0) {
1656		udelay(50);
1657		goto retry_here;
1658	    }
1659
1660	    atomic_inc(&vcc->stats->tx_err);
1661
1662	    fore200e->tx_sat++;
1663	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1664		    fore200e->name, fore200e->cp_queues->heartbeat);
1665	    if (vcc->pop) {
1666		vcc->pop(vcc, skb);
1667	    }
1668	    else {
1669		dev_kfree_skb_any(skb);
1670	    }
1671
1672	    if (tx_copy)
1673		kfree(data);
1674
1675	    return -ENOBUFS;
1676	}
1677    }
1678
1679    entry->incarn = vc_map->incarn;
1680    entry->vc_map = vc_map;
1681    entry->skb    = skb;
1682    entry->data   = tx_copy ? data : NULL;
1683
1684    tpd = entry->tpd;
1685    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
 
 
 
 
 
 
 
1686    tpd->tsd[ 0 ].length = tx_len;
1687
1688    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1689    txq->txing++;
1690
1691    /* The dma_map call above implies a dma_sync so the device can use it,
1692     * thus no explicit dma_sync call is necessary here.
1693     */
1694    
1695    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1696	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1697	    tpd->tsd[0].length, skb_len);
1698
1699    if (skb_len < fore200e_vcc->tx_min_pdu)
1700	fore200e_vcc->tx_min_pdu = skb_len;
1701    if (skb_len > fore200e_vcc->tx_max_pdu)
1702	fore200e_vcc->tx_max_pdu = skb_len;
1703    fore200e_vcc->tx_pdu++;
1704
1705    /* set tx rate control information */
1706    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1707    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1708
1709    if (cell_header) {
1710	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1711	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1712	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1713	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1714	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1715    }
1716    else {
1717	/* set the ATM header, common to all cells conveying the PDU */
1718	tpd->atm_header.clp = 0;
1719	tpd->atm_header.plt = 0;
1720	tpd->atm_header.vci = vcc->vci;
1721	tpd->atm_header.vpi = vcc->vpi;
1722	tpd->atm_header.gfc = 0;
1723    }
1724
1725    tpd->spec.length = tx_len;
1726    tpd->spec.nseg   = 1;
1727    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1728    tpd->spec.intr   = 1;
1729
1730    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1731    tpd_haddr.pad   = 0;
1732    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1733
1734    *entry->status = STATUS_PENDING;
1735    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1736
1737    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1738
1739    return 0;
1740}
1741
1742
1743static int
1744fore200e_getstats(struct fore200e* fore200e)
1745{
1746    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1747    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1748    struct stats_opcode     opcode;
1749    int                     ok;
1750    u32                     stats_dma_addr;
1751
1752    if (fore200e->stats == NULL) {
1753	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1754	if (fore200e->stats == NULL)
1755	    return -ENOMEM;
1756    }
1757    
1758    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1759					    sizeof(struct stats), DMA_FROM_DEVICE);
 
 
1760    
1761    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762
1763    opcode.opcode = OPCODE_GET_STATS;
1764    opcode.pad    = 0;
1765
1766    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1777    
1778    if (ok == 0) {
1779	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1780	return -EIO;
1781    }
1782
1783    return 0;
1784}
1785
1786
1787static int
1788fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1789{
1790    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1791
1792    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1793	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1794
1795    return -EINVAL;
1796}
1797
1798
1799static int
1800fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1801{
1802    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1803    
1804    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1805	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1806    
1807    return -EINVAL;
1808}
1809
1810
1811#if 0 /* currently unused */
1812static int
1813fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1814{
1815    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1816    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1817    struct oc3_opcode       opcode;
1818    int                     ok;
1819    u32                     oc3_regs_dma_addr;
1820
1821    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1822
1823    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1824
1825    opcode.opcode = OPCODE_GET_OC3;
1826    opcode.reg    = 0;
1827    opcode.value  = 0;
1828    opcode.mask   = 0;
1829
1830    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1831    
1832    *entry->status = STATUS_PENDING;
1833
1834    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1835
1836    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1837
1838    *entry->status = STATUS_FREE;
1839
1840    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1841    
1842    if (ok == 0) {
1843	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1844	return -EIO;
1845    }
1846
1847    return 0;
1848}
1849#endif
1850
1851
1852static int
1853fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1854{
1855    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1856    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1857    struct oc3_opcode       opcode;
1858    int                     ok;
1859
1860    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1861
1862    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1863
1864    opcode.opcode = OPCODE_SET_OC3;
1865    opcode.reg    = reg;
1866    opcode.value  = value;
1867    opcode.mask   = mask;
1868
1869    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1870    
1871    *entry->status = STATUS_PENDING;
1872
1873    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1874
1875    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1876
1877    *entry->status = STATUS_FREE;
1878
1879    if (ok == 0) {
1880	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1881	return -EIO;
1882    }
1883
1884    return 0;
1885}
1886
1887
1888static int
1889fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1890{
1891    u32 mct_value, mct_mask;
1892    int error;
1893
1894    if (!capable(CAP_NET_ADMIN))
1895	return -EPERM;
1896    
1897    switch (loop_mode) {
1898
1899    case ATM_LM_NONE:
1900	mct_value = 0; 
1901	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1902	break;
1903	
1904    case ATM_LM_LOC_PHY:
1905	mct_value = mct_mask = SUNI_MCT_DLE;
1906	break;
1907
1908    case ATM_LM_RMT_PHY:
1909	mct_value = mct_mask = SUNI_MCT_LLE;
1910	break;
1911
1912    default:
1913	return -EINVAL;
1914    }
1915
1916    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1917    if (error == 0)
1918	fore200e->loop_mode = loop_mode;
1919
1920    return error;
1921}
1922
1923
1924static int
1925fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1926{
1927    struct sonet_stats tmp;
1928
1929    if (fore200e_getstats(fore200e) < 0)
1930	return -EIO;
1931
1932    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1933    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1934    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1935    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1936    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1937    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1938    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1939    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1940	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1941	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1942    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1943	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1944	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1945
1946    if (arg)
1947	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1948    
1949    return 0;
1950}
1951
1952
1953static int
1954fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1955{
1956    struct fore200e* fore200e = FORE200E_DEV(dev);
1957    
1958    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1959
1960    switch (cmd) {
1961
1962    case SONET_GETSTAT:
1963	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1964
1965    case SONET_GETDIAG:
1966	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1967
1968    case ATM_SETLOOP:
1969	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1970
1971    case ATM_GETLOOP:
1972	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1973
1974    case ATM_QUERYLOOP:
1975	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1976    }
1977
1978    return -ENOSYS; /* not implemented */
1979}
1980
1981
1982static int
1983fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1984{
1985    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1986    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1987
1988    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1989	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1990	return -EINVAL;
1991    }
1992
1993    DPRINTK(2, "change_qos %d.%d.%d, "
1994	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1995	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1996	    "available_cell_rate = %u",
1997	    vcc->itf, vcc->vpi, vcc->vci,
1998	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1999	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2000	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2001	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2002	    flags, fore200e->available_cell_rate);
2003
2004    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2005
2006	mutex_lock(&fore200e->rate_mtx);
2007	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2008	    mutex_unlock(&fore200e->rate_mtx);
2009	    return -EAGAIN;
2010	}
2011
2012	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2013	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2014
2015	mutex_unlock(&fore200e->rate_mtx);
2016	
2017	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2018	
2019	/* update rate control parameters */
2020	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2021
2022	set_bit(ATM_VF_HASQOS, &vcc->flags);
2023
2024	return 0;
2025    }
2026    
2027    return -EINVAL;
2028}
2029    
2030
2031static int __devinit
2032fore200e_irq_request(struct fore200e* fore200e)
2033{
2034    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2035
2036	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2037	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2038	return -EBUSY;
2039    }
2040
2041    printk(FORE200E "IRQ %s reserved for device %s\n",
2042	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2043
2044#ifdef FORE200E_USE_TASKLET
2045    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2046    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2047#endif
2048
2049    fore200e->state = FORE200E_STATE_IRQ;
2050    return 0;
2051}
2052
2053
2054static int __devinit
2055fore200e_get_esi(struct fore200e* fore200e)
2056{
2057    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2058    int ok, i;
2059
2060    if (!prom)
2061	return -ENOMEM;
2062
2063    ok = fore200e->bus->prom_read(fore200e, prom);
2064    if (ok < 0) {
2065	kfree(prom);
2066	return -EBUSY;
2067    }
2068	
2069    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2070	   fore200e->name, 
2071	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2072	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2073	
2074    for (i = 0; i < ESI_LEN; i++) {
2075	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2076    }
2077    
2078    kfree(prom);
2079
2080    return 0;
2081}
2082
2083
2084static int __devinit
2085fore200e_alloc_rx_buf(struct fore200e* fore200e)
2086{
2087    int scheme, magn, nbr, size, i;
2088
2089    struct host_bsq* bsq;
2090    struct buffer*   buffer;
2091
2092    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2093	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2094
2095	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2096
2097	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2098	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2099
2100	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2101
2102	    /* allocate the array of receive buffers */
2103	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
 
2104
2105	    if (buffer == NULL)
2106		return -ENOMEM;
2107
2108	    bsq->freebuf = NULL;
2109
2110	    for (i = 0; i < nbr; i++) {
2111
2112		buffer[ i ].scheme = scheme;
2113		buffer[ i ].magn   = magn;
2114#ifdef FORE200E_BSQ_DEBUG
2115		buffer[ i ].index  = i;
2116		buffer[ i ].supplied = 0;
2117#endif
2118
2119		/* allocate the receive buffer body */
2120		if (fore200e_chunk_alloc(fore200e,
2121					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2122					 DMA_FROM_DEVICE) < 0) {
2123		    
2124		    while (i > 0)
2125			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2126		    kfree(buffer);
2127		    
2128		    return -ENOMEM;
2129		}
2130
2131		/* insert the buffer into the free buffer list */
2132		buffer[ i ].next = bsq->freebuf;
2133		bsq->freebuf = &buffer[ i ];
2134	    }
2135	    /* all the buffers are free, initially */
2136	    bsq->freebuf_count = nbr;
2137
2138#ifdef FORE200E_BSQ_DEBUG
2139	    bsq_audit(3, bsq, scheme, magn);
2140#endif
2141	}
2142    }
2143
2144    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2145    return 0;
2146}
2147
2148
2149static int __devinit
2150fore200e_init_bs_queue(struct fore200e* fore200e)
2151{
2152    int scheme, magn, i;
2153
2154    struct host_bsq*     bsq;
2155    struct cp_bsq_entry __iomem * cp_entry;
2156
2157    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2158	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2159
2160	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2161
2162	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2163
2164	    /* allocate and align the array of status words */
2165	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2166					       &bsq->status,
2167					       sizeof(enum status), 
2168					       QUEUE_SIZE_BS,
2169					       fore200e->bus->status_alignment) < 0) {
2170		return -ENOMEM;
2171	    }
2172
2173	    /* allocate and align the array of receive buffer descriptors */
2174	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2175					       &bsq->rbd_block,
2176					       sizeof(struct rbd_block),
2177					       QUEUE_SIZE_BS,
2178					       fore200e->bus->descr_alignment) < 0) {
2179		
2180		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2181		return -ENOMEM;
2182	    }
2183	    
2184	    /* get the base address of the cp resident buffer supply queue entries */
2185	    cp_entry = fore200e->virt_base + 
2186		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2187	    
2188	    /* fill the host resident and cp resident buffer supply queue entries */
2189	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2190		
2191		bsq->host_entry[ i ].status = 
2192		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2193	        bsq->host_entry[ i ].rbd_block =
2194		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2195		bsq->host_entry[ i ].rbd_block_dma =
2196		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2197		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2198		
2199		*bsq->host_entry[ i ].status = STATUS_FREE;
2200		
2201		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2202				     &cp_entry[ i ].status_haddr);
2203	    }
2204	}
2205    }
2206
2207    fore200e->state = FORE200E_STATE_INIT_BSQ;
2208    return 0;
2209}
2210
2211
2212static int __devinit
2213fore200e_init_rx_queue(struct fore200e* fore200e)
2214{
2215    struct host_rxq*     rxq =  &fore200e->host_rxq;
2216    struct cp_rxq_entry __iomem * cp_entry;
2217    int i;
2218
2219    DPRINTK(2, "receive queue is being initialized\n");
2220
2221    /* allocate and align the array of status words */
2222    if (fore200e->bus->dma_chunk_alloc(fore200e,
2223				       &rxq->status,
2224				       sizeof(enum status), 
2225				       QUEUE_SIZE_RX,
2226				       fore200e->bus->status_alignment) < 0) {
2227	return -ENOMEM;
2228    }
2229
2230    /* allocate and align the array of receive PDU descriptors */
2231    if (fore200e->bus->dma_chunk_alloc(fore200e,
2232				       &rxq->rpd,
2233				       sizeof(struct rpd), 
2234				       QUEUE_SIZE_RX,
2235				       fore200e->bus->descr_alignment) < 0) {
2236	
2237	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2238	return -ENOMEM;
2239    }
2240
2241    /* get the base address of the cp resident rx queue entries */
2242    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2243
2244    /* fill the host resident and cp resident rx entries */
2245    for (i=0; i < QUEUE_SIZE_RX; i++) {
2246	
2247	rxq->host_entry[ i ].status = 
2248	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2249	rxq->host_entry[ i ].rpd = 
2250	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2251	rxq->host_entry[ i ].rpd_dma = 
2252	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2253	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2254
2255	*rxq->host_entry[ i ].status = STATUS_FREE;
2256
2257	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2258			     &cp_entry[ i ].status_haddr);
2259
2260	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2261			     &cp_entry[ i ].rpd_haddr);
2262    }
2263
2264    /* set the head entry of the queue */
2265    rxq->head = 0;
2266
2267    fore200e->state = FORE200E_STATE_INIT_RXQ;
2268    return 0;
2269}
2270
2271
2272static int __devinit
2273fore200e_init_tx_queue(struct fore200e* fore200e)
2274{
2275    struct host_txq*     txq =  &fore200e->host_txq;
2276    struct cp_txq_entry __iomem * cp_entry;
2277    int i;
2278
2279    DPRINTK(2, "transmit queue is being initialized\n");
2280
2281    /* allocate and align the array of status words */
2282    if (fore200e->bus->dma_chunk_alloc(fore200e,
2283				       &txq->status,
2284				       sizeof(enum status), 
2285				       QUEUE_SIZE_TX,
2286				       fore200e->bus->status_alignment) < 0) {
2287	return -ENOMEM;
2288    }
2289
2290    /* allocate and align the array of transmit PDU descriptors */
2291    if (fore200e->bus->dma_chunk_alloc(fore200e,
2292				       &txq->tpd,
2293				       sizeof(struct tpd), 
2294				       QUEUE_SIZE_TX,
2295				       fore200e->bus->descr_alignment) < 0) {
2296	
2297	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2298	return -ENOMEM;
2299    }
2300
2301    /* get the base address of the cp resident tx queue entries */
2302    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2303
2304    /* fill the host resident and cp resident tx entries */
2305    for (i=0; i < QUEUE_SIZE_TX; i++) {
2306	
2307	txq->host_entry[ i ].status = 
2308	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2309	txq->host_entry[ i ].tpd = 
2310	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2311	txq->host_entry[ i ].tpd_dma  = 
2312                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2313	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2314
2315	*txq->host_entry[ i ].status = STATUS_FREE;
2316	
2317	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2318			     &cp_entry[ i ].status_haddr);
2319	
2320        /* although there is a one-to-one mapping of tx queue entries and tpds,
2321	   we do not write here the DMA (physical) base address of each tpd into
2322	   the related cp resident entry, because the cp relies on this write
2323	   operation to detect that a new pdu has been submitted for tx */
2324    }
2325
2326    /* set the head and tail entries of the queue */
2327    txq->head = 0;
2328    txq->tail = 0;
2329
2330    fore200e->state = FORE200E_STATE_INIT_TXQ;
2331    return 0;
2332}
2333
2334
2335static int __devinit
2336fore200e_init_cmd_queue(struct fore200e* fore200e)
2337{
2338    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2339    struct cp_cmdq_entry __iomem * cp_entry;
2340    int i;
2341
2342    DPRINTK(2, "command queue is being initialized\n");
2343
2344    /* allocate and align the array of status words */
2345    if (fore200e->bus->dma_chunk_alloc(fore200e,
2346				       &cmdq->status,
2347				       sizeof(enum status), 
2348				       QUEUE_SIZE_CMD,
2349				       fore200e->bus->status_alignment) < 0) {
2350	return -ENOMEM;
2351    }
2352    
2353    /* get the base address of the cp resident cmd queue entries */
2354    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2355
2356    /* fill the host resident and cp resident cmd entries */
2357    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2358	
2359	cmdq->host_entry[ i ].status   = 
2360                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2361	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2362
2363	*cmdq->host_entry[ i ].status = STATUS_FREE;
2364
2365	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2366                             &cp_entry[ i ].status_haddr);
2367    }
2368
2369    /* set the head entry of the queue */
2370    cmdq->head = 0;
2371
2372    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2373    return 0;
2374}
2375
2376
2377static void __devinit
2378fore200e_param_bs_queue(struct fore200e* fore200e,
2379			enum buffer_scheme scheme, enum buffer_magn magn,
2380			int queue_length, int pool_size, int supply_blksize)
2381{
2382    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2383
2384    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2385    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2386    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2387    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2388}
2389
2390
2391static int __devinit
2392fore200e_initialize(struct fore200e* fore200e)
2393{
2394    struct cp_queues __iomem * cpq;
2395    int               ok, scheme, magn;
2396
2397    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2398
2399    mutex_init(&fore200e->rate_mtx);
2400    spin_lock_init(&fore200e->q_lock);
2401
2402    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2403
2404    /* enable cp to host interrupts */
2405    fore200e->bus->write(1, &cpq->imask);
2406
2407    if (fore200e->bus->irq_enable)
2408	fore200e->bus->irq_enable(fore200e);
2409    
2410    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2411
2412    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2413    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2414    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2415
2416    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2417    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2418
2419    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2420	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2421	    fore200e_param_bs_queue(fore200e, scheme, magn,
2422				    QUEUE_SIZE_BS, 
2423				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2424				    RBD_BLK_SIZE);
2425
2426    /* issue the initialize command */
2427    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2428    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2429
2430    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2431    if (ok == 0) {
2432	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2433	return -ENODEV;
2434    }
2435
2436    printk(FORE200E "device %s initialized\n", fore200e->name);
2437
2438    fore200e->state = FORE200E_STATE_INITIALIZE;
2439    return 0;
2440}
2441
2442
2443static void __devinit
2444fore200e_monitor_putc(struct fore200e* fore200e, char c)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447
2448#if 0
2449    printk("%c", c);
2450#endif
2451    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452}
2453
2454
2455static int __devinit
2456fore200e_monitor_getc(struct fore200e* fore200e)
2457{
2458    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2459    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2460    int                c;
2461
2462    while (time_before(jiffies, timeout)) {
2463
2464	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2465
2466	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2467
2468	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2469#if 0
2470	    printk("%c", c & 0xFF);
2471#endif
2472	    return c & 0xFF;
2473	}
2474    }
2475
2476    return -1;
2477}
2478
2479
2480static void __devinit
2481fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2482{
2483    while (*str) {
2484
2485	/* the i960 monitor doesn't accept any new character if it has something to say */
2486	while (fore200e_monitor_getc(fore200e) >= 0);
2487	
2488	fore200e_monitor_putc(fore200e, *str++);
2489    }
2490
2491    while (fore200e_monitor_getc(fore200e) >= 0);
2492}
2493
2494#ifdef __LITTLE_ENDIAN
2495#define FW_EXT ".bin"
2496#else
2497#define FW_EXT "_ecd.bin2"
2498#endif
2499
2500static int __devinit
2501fore200e_load_and_start_fw(struct fore200e* fore200e)
2502{
2503    const struct firmware *firmware;
2504    struct device *device;
2505    struct fw_header *fw_header;
2506    const __le32 *fw_data;
2507    u32 fw_size;
2508    u32 __iomem *load_addr;
2509    char buf[48];
2510    int err = -ENODEV;
2511
2512    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2513	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2514#ifdef CONFIG_SBUS
2515    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2516	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2517#endif
2518    else
2519	return err;
2520
2521    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2522    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2523	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2524	return err;
2525    }
2526
2527    fw_data = (__le32 *) firmware->data;
2528    fw_size = firmware->size / sizeof(u32);
2529    fw_header = (struct fw_header *) firmware->data;
2530    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2531
2532    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2533	    fore200e->name, load_addr, fw_size);
2534
2535    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2536	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2537	goto release;
2538    }
2539
2540    for (; fw_size--; fw_data++, load_addr++)
2541	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2542
2543    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2544
2545#if defined(__sparc_v9__)
2546    /* reported to be required by SBA cards on some sparc64 hosts */
2547    fore200e_spin(100);
2548#endif
2549
2550    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2551    fore200e_monitor_puts(fore200e, buf);
2552
2553    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2554	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2555	goto release;
2556    }
2557
2558    printk(FORE200E "device %s firmware started\n", fore200e->name);
2559
2560    fore200e->state = FORE200E_STATE_START_FW;
2561    err = 0;
2562
2563release:
2564    release_firmware(firmware);
2565    return err;
2566}
2567
2568
2569static int __devinit
2570fore200e_register(struct fore200e* fore200e, struct device *parent)
2571{
2572    struct atm_dev* atm_dev;
2573
2574    DPRINTK(2, "device %s being registered\n", fore200e->name);
2575
2576    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2577                               -1, NULL);
2578    if (atm_dev == NULL) {
2579	printk(FORE200E "unable to register device %s\n", fore200e->name);
2580	return -ENODEV;
2581    }
2582
2583    atm_dev->dev_data = fore200e;
2584    fore200e->atm_dev = atm_dev;
2585
2586    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2587    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2588
2589    fore200e->available_cell_rate = ATM_OC3_PCR;
2590
2591    fore200e->state = FORE200E_STATE_REGISTER;
2592    return 0;
2593}
2594
2595
2596static int __devinit
2597fore200e_init(struct fore200e* fore200e, struct device *parent)
2598{
2599    if (fore200e_register(fore200e, parent) < 0)
2600	return -ENODEV;
2601    
2602    if (fore200e->bus->configure(fore200e) < 0)
2603	return -ENODEV;
2604
2605    if (fore200e->bus->map(fore200e) < 0)
2606	return -ENODEV;
2607
2608    if (fore200e_reset(fore200e, 1) < 0)
2609	return -ENODEV;
2610
2611    if (fore200e_load_and_start_fw(fore200e) < 0)
2612	return -ENODEV;
2613
2614    if (fore200e_initialize(fore200e) < 0)
2615	return -ENODEV;
2616
2617    if (fore200e_init_cmd_queue(fore200e) < 0)
2618	return -ENOMEM;
2619
2620    if (fore200e_init_tx_queue(fore200e) < 0)
2621	return -ENOMEM;
2622
2623    if (fore200e_init_rx_queue(fore200e) < 0)
2624	return -ENOMEM;
2625
2626    if (fore200e_init_bs_queue(fore200e) < 0)
2627	return -ENOMEM;
2628
2629    if (fore200e_alloc_rx_buf(fore200e) < 0)
2630	return -ENOMEM;
2631
2632    if (fore200e_get_esi(fore200e) < 0)
2633	return -EIO;
2634
2635    if (fore200e_irq_request(fore200e) < 0)
2636	return -EBUSY;
2637
2638    fore200e_supply(fore200e);
2639
2640    /* all done, board initialization is now complete */
2641    fore200e->state = FORE200E_STATE_COMPLETE;
2642    return 0;
2643}
2644
2645#ifdef CONFIG_SBUS
2646static const struct of_device_id fore200e_sba_match[];
2647static int __devinit fore200e_sba_probe(struct platform_device *op)
2648{
2649	const struct of_device_id *match;
2650	const struct fore200e_bus *bus;
2651	struct fore200e *fore200e;
2652	static int index = 0;
2653	int err;
2654
2655	match = of_match_device(fore200e_sba_match, &op->dev);
2656	if (!match)
2657		return -EINVAL;
2658	bus = match->data;
2659
2660	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2661	if (!fore200e)
2662		return -ENOMEM;
2663
2664	fore200e->bus = bus;
2665	fore200e->bus_dev = op;
2666	fore200e->irq = op->archdata.irqs[0];
2667	fore200e->phys_base = op->resource[0].start;
2668
2669	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2670
2671	err = fore200e_init(fore200e, &op->dev);
2672	if (err < 0) {
2673		fore200e_shutdown(fore200e);
2674		kfree(fore200e);
2675		return err;
2676	}
2677
2678	index++;
2679	dev_set_drvdata(&op->dev, fore200e);
2680
2681	return 0;
2682}
2683
2684static int __devexit fore200e_sba_remove(struct platform_device *op)
2685{
2686	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2687
2688	fore200e_shutdown(fore200e);
2689	kfree(fore200e);
2690
2691	return 0;
2692}
2693
2694static const struct of_device_id fore200e_sba_match[] = {
2695	{
2696		.name = SBA200E_PROM_NAME,
2697		.data = (void *) &fore200e_bus[1],
2698	},
2699	{},
2700};
2701MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2702
2703static struct platform_driver fore200e_sba_driver = {
2704	.driver = {
2705		.name = "fore_200e",
2706		.owner = THIS_MODULE,
2707		.of_match_table = fore200e_sba_match,
2708	},
2709	.probe		= fore200e_sba_probe,
2710	.remove		= __devexit_p(fore200e_sba_remove),
2711};
2712#endif
2713
2714#ifdef CONFIG_PCI
2715static int __devinit
2716fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2717{
2718    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2719    struct fore200e* fore200e;
2720    int err = 0;
2721    static int index = 0;
2722
2723    if (pci_enable_device(pci_dev)) {
2724	err = -EINVAL;
2725	goto out;
2726    }
 
 
 
 
 
2727    
2728    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2729    if (fore200e == NULL) {
2730	err = -ENOMEM;
2731	goto out_disable;
2732    }
2733
2734    fore200e->bus       = bus;
2735    fore200e->bus_dev   = pci_dev;    
2736    fore200e->irq       = pci_dev->irq;
2737    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2738
2739    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2740
2741    pci_set_master(pci_dev);
2742
2743    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2744	   fore200e->bus->model_name, 
2745	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2746
2747    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2748
2749    err = fore200e_init(fore200e, &pci_dev->dev);
2750    if (err < 0) {
2751	fore200e_shutdown(fore200e);
2752	goto out_free;
2753    }
2754
2755    ++index;
2756    pci_set_drvdata(pci_dev, fore200e);
2757
2758out:
2759    return err;
2760
2761out_free:
2762    kfree(fore200e);
2763out_disable:
2764    pci_disable_device(pci_dev);
2765    goto out;
2766}
2767
2768
2769static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2770{
2771    struct fore200e *fore200e;
2772
2773    fore200e = pci_get_drvdata(pci_dev);
2774
2775    fore200e_shutdown(fore200e);
2776    kfree(fore200e);
2777    pci_disable_device(pci_dev);
2778}
2779
2780
2781static struct pci_device_id fore200e_pca_tbl[] = {
2782    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2783      0, 0, (unsigned long) &fore200e_bus[0] },
2784    { 0, }
2785};
2786
2787MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2788
2789static struct pci_driver fore200e_pca_driver = {
2790    .name =     "fore_200e",
2791    .probe =    fore200e_pca_detect,
2792    .remove =   __devexit_p(fore200e_pca_remove_one),
2793    .id_table = fore200e_pca_tbl,
2794};
2795#endif
2796
2797static int __init fore200e_module_init(void)
2798{
2799	int err;
2800
2801	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2802
2803#ifdef CONFIG_SBUS
2804	err = platform_driver_register(&fore200e_sba_driver);
2805	if (err)
2806		return err;
2807#endif
2808
2809#ifdef CONFIG_PCI
2810	err = pci_register_driver(&fore200e_pca_driver);
2811#endif
2812
2813#ifdef CONFIG_SBUS
2814	if (err)
2815		platform_driver_unregister(&fore200e_sba_driver);
2816#endif
2817
2818	return err;
2819}
2820
2821static void __exit fore200e_module_cleanup(void)
2822{
2823#ifdef CONFIG_PCI
2824	pci_unregister_driver(&fore200e_pca_driver);
2825#endif
2826#ifdef CONFIG_SBUS
2827	platform_driver_unregister(&fore200e_sba_driver);
2828#endif
2829}
2830
2831static int
2832fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2833{
2834    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2835    struct fore200e_vcc* fore200e_vcc;
2836    struct atm_vcc*      vcc;
2837    int                  i, len, left = *pos;
2838    unsigned long        flags;
2839
2840    if (!left--) {
2841
2842	if (fore200e_getstats(fore200e) < 0)
2843	    return -EIO;
2844
2845	len = sprintf(page,"\n"
2846		       " device:\n"
2847		       "   internal name:\t\t%s\n", fore200e->name);
2848
2849	/* print bus-specific information */
2850	if (fore200e->bus->proc_read)
2851	    len += fore200e->bus->proc_read(fore200e, page + len);
2852	
2853	len += sprintf(page + len,
2854		"   interrupt line:\t\t%s\n"
2855		"   physical base address:\t0x%p\n"
2856		"   virtual base address:\t0x%p\n"
2857		"   factory address (ESI):\t%pM\n"
2858		"   board serial number:\t\t%d\n\n",
2859		fore200e_irq_itoa(fore200e->irq),
2860		(void*)fore200e->phys_base,
2861		fore200e->virt_base,
2862		fore200e->esi,
2863		fore200e->esi[4] * 256 + fore200e->esi[5]);
2864
2865	return len;
2866    }
2867
2868    if (!left--)
2869	return sprintf(page,
2870		       "   free small bufs, scheme 1:\t%d\n"
2871		       "   free large bufs, scheme 1:\t%d\n"
2872		       "   free small bufs, scheme 2:\t%d\n"
2873		       "   free large bufs, scheme 2:\t%d\n",
2874		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2875		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2876		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2877		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2878
2879    if (!left--) {
2880	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2881
2882	len = sprintf(page,"\n\n"
2883		      " cell processor:\n"
2884		      "   heartbeat state:\t\t");
2885	
2886	if (hb >> 16 != 0xDEAD)
2887	    len += sprintf(page + len, "0x%08x\n", hb);
2888	else
2889	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2890
2891	return len;
2892    }
2893
2894    if (!left--) {
2895	static const char* media_name[] = {
2896	    "unshielded twisted pair",
2897	    "multimode optical fiber ST",
2898	    "multimode optical fiber SC",
2899	    "single-mode optical fiber ST",
2900	    "single-mode optical fiber SC",
2901	    "unknown"
2902	};
2903
2904	static const char* oc3_mode[] = {
2905	    "normal operation",
2906	    "diagnostic loopback",
2907	    "line loopback",
2908	    "unknown"
2909	};
2910
2911	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2912	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2913	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2914	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2915	u32 oc3_index;
2916
2917	if (media_index > 4)
2918		media_index = 5;
2919	
2920	switch (fore200e->loop_mode) {
2921	    case ATM_LM_NONE:    oc3_index = 0;
2922		                 break;
2923	    case ATM_LM_LOC_PHY: oc3_index = 1;
2924		                 break;
2925	    case ATM_LM_RMT_PHY: oc3_index = 2;
2926		                 break;
2927	    default:             oc3_index = 3;
2928	}
2929
2930	return sprintf(page,
2931		       "   firmware release:\t\t%d.%d.%d\n"
2932		       "   monitor release:\t\t%d.%d\n"
2933		       "   media type:\t\t\t%s\n"
2934		       "   OC-3 revision:\t\t0x%x\n"
2935                       "   OC-3 mode:\t\t\t%s",
2936		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2937		       mon960_release >> 16, mon960_release << 16 >> 16,
2938		       media_name[ media_index ],
2939		       oc3_revision,
2940		       oc3_mode[ oc3_index ]);
2941    }
2942
2943    if (!left--) {
2944	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2945
2946	return sprintf(page,
2947		       "\n\n"
2948		       " monitor:\n"
2949		       "   version number:\t\t%d\n"
2950		       "   boot status word:\t\t0x%08x\n",
2951		       fore200e->bus->read(&cp_monitor->mon_version),
2952		       fore200e->bus->read(&cp_monitor->bstat));
2953    }
2954
2955    if (!left--)
2956	return sprintf(page,
2957		       "\n"
2958		       " device statistics:\n"
2959		       "  4b5b:\n"
2960		       "     crc_header_errors:\t\t%10u\n"
2961		       "     framing_errors:\t\t%10u\n",
2962		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2963		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2964    
2965    if (!left--)
2966	return sprintf(page, "\n"
2967		       "  OC-3:\n"
2968		       "     section_bip8_errors:\t%10u\n"
2969		       "     path_bip8_errors:\t\t%10u\n"
2970		       "     line_bip24_errors:\t\t%10u\n"
2971		       "     line_febe_errors:\t\t%10u\n"
2972		       "     path_febe_errors:\t\t%10u\n"
2973		       "     corr_hcs_errors:\t\t%10u\n"
2974		       "     ucorr_hcs_errors:\t\t%10u\n",
2975		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2976		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2977		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2978		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2979		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2980		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2981		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2982
2983    if (!left--)
2984	return sprintf(page,"\n"
2985		       "   ATM:\t\t\t\t     cells\n"
2986		       "     TX:\t\t\t%10u\n"
2987		       "     RX:\t\t\t%10u\n"
2988		       "     vpi out of range:\t\t%10u\n"
2989		       "     vpi no conn:\t\t%10u\n"
2990		       "     vci out of range:\t\t%10u\n"
2991		       "     vci no conn:\t\t%10u\n",
2992		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2993		       be32_to_cpu(fore200e->stats->atm.cells_received),
2994		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2995		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2996		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2997		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2998    
2999    if (!left--)
3000	return sprintf(page,"\n"
3001		       "   AAL0:\t\t\t     cells\n"
3002		       "     TX:\t\t\t%10u\n"
3003		       "     RX:\t\t\t%10u\n"
3004		       "     dropped:\t\t\t%10u\n",
3005		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3006		       be32_to_cpu(fore200e->stats->aal0.cells_received),
3007		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3008    
3009    if (!left--)
3010	return sprintf(page,"\n"
3011		       "   AAL3/4:\n"
3012		       "     SAR sublayer:\t\t     cells\n"
3013		       "       TX:\t\t\t%10u\n"
3014		       "       RX:\t\t\t%10u\n"
3015		       "       dropped:\t\t\t%10u\n"
3016		       "       CRC errors:\t\t%10u\n"
3017		       "       protocol errors:\t\t%10u\n\n"
3018		       "     CS  sublayer:\t\t      PDUs\n"
3019		       "       TX:\t\t\t%10u\n"
3020		       "       RX:\t\t\t%10u\n"
3021		       "       dropped:\t\t\t%10u\n"
3022		       "       protocol errors:\t\t%10u\n",
3023		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3024		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3025		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3026		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3027		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3028		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3029		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3030		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3031		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3032    
3033    if (!left--)
3034	return sprintf(page,"\n"
3035		       "   AAL5:\n"
3036		       "     SAR sublayer:\t\t     cells\n"
3037		       "       TX:\t\t\t%10u\n"
3038		       "       RX:\t\t\t%10u\n"
3039		       "       dropped:\t\t\t%10u\n"
3040		       "       congestions:\t\t%10u\n\n"
3041		       "     CS  sublayer:\t\t      PDUs\n"
3042		       "       TX:\t\t\t%10u\n"
3043		       "       RX:\t\t\t%10u\n"
3044		       "       dropped:\t\t\t%10u\n"
3045		       "       CRC errors:\t\t%10u\n"
3046		       "       protocol errors:\t\t%10u\n",
3047		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3048		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3049		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3050		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3051		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3052		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3053		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3054		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3055		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3056    
3057    if (!left--)
3058	return sprintf(page,"\n"
3059		       "   AUX:\t\t       allocation failures\n"
3060		       "     small b1:\t\t\t%10u\n"
3061		       "     large b1:\t\t\t%10u\n"
3062		       "     small b2:\t\t\t%10u\n"
3063		       "     large b2:\t\t\t%10u\n"
3064		       "     RX PDUs:\t\t\t%10u\n"
3065		       "     TX PDUs:\t\t\t%10lu\n",
3066		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3067		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3068		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3069		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3070		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3071		       fore200e->tx_sat);
3072    
3073    if (!left--)
3074	return sprintf(page,"\n"
3075		       " receive carrier:\t\t\t%s\n",
3076		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3077    
3078    if (!left--) {
3079        return sprintf(page,"\n"
3080		       " VCCs:\n  address   VPI VCI   AAL "
3081		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3082    }
3083
3084    for (i = 0; i < NBR_CONNECT; i++) {
3085
3086	vcc = fore200e->vc_map[i].vcc;
3087
3088	if (vcc == NULL)
3089	    continue;
3090
3091	spin_lock_irqsave(&fore200e->q_lock, flags);
3092
3093	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3094
3095	    fore200e_vcc = FORE200E_VCC(vcc);
3096	    ASSERT(fore200e_vcc);
3097
3098	    len = sprintf(page,
3099			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3100			  (u32)(unsigned long)vcc,
3101			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3102			  fore200e_vcc->tx_pdu,
3103			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3104			  fore200e_vcc->tx_max_pdu,
3105			  fore200e_vcc->rx_pdu,
3106			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3107			  fore200e_vcc->rx_max_pdu);
3108
3109	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3110	    return len;
3111	}
3112
3113	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3114    }
3115    
3116    return 0;
3117}
3118
3119module_init(fore200e_module_init);
3120module_exit(fore200e_module_cleanup);
3121
3122
3123static const struct atmdev_ops fore200e_ops =
3124{
3125	.open       = fore200e_open,
3126	.close      = fore200e_close,
3127	.ioctl      = fore200e_ioctl,
3128	.getsockopt = fore200e_getsockopt,
3129	.setsockopt = fore200e_setsockopt,
3130	.send       = fore200e_send,
3131	.change_qos = fore200e_change_qos,
3132	.proc_read  = fore200e_proc_read,
3133	.owner      = THIS_MODULE
3134};
3135
3136
3137static const struct fore200e_bus fore200e_bus[] = {
3138#ifdef CONFIG_PCI
3139    { "PCA-200E", "pca200e", 32, 4, 32, 
3140      fore200e_pca_read,
3141      fore200e_pca_write,
3142      fore200e_pca_dma_map,
3143      fore200e_pca_dma_unmap,
3144      fore200e_pca_dma_sync_for_cpu,
3145      fore200e_pca_dma_sync_for_device,
3146      fore200e_pca_dma_chunk_alloc,
3147      fore200e_pca_dma_chunk_free,
3148      fore200e_pca_configure,
3149      fore200e_pca_map,
3150      fore200e_pca_reset,
3151      fore200e_pca_prom_read,
3152      fore200e_pca_unmap,
3153      NULL,
3154      fore200e_pca_irq_check,
3155      fore200e_pca_irq_ack,
3156      fore200e_pca_proc_read,
3157    },
3158#endif
3159#ifdef CONFIG_SBUS
3160    { "SBA-200E", "sba200e", 32, 64, 32,
3161      fore200e_sba_read,
3162      fore200e_sba_write,
3163      fore200e_sba_dma_map,
3164      fore200e_sba_dma_unmap,
3165      fore200e_sba_dma_sync_for_cpu,
3166      fore200e_sba_dma_sync_for_device,
3167      fore200e_sba_dma_chunk_alloc,
3168      fore200e_sba_dma_chunk_free,
3169      fore200e_sba_configure,
3170      fore200e_sba_map,
3171      fore200e_sba_reset,
3172      fore200e_sba_prom_read,
3173      fore200e_sba_unmap,
3174      fore200e_sba_irq_enable,
3175      fore200e_sba_irq_check,
3176      fore200e_sba_irq_ack,
3177      fore200e_sba_proc_read,
3178    },
3179#endif
3180    {}
3181};
3182
3183MODULE_LICENSE("GPL");
3184#ifdef CONFIG_PCI
3185#ifdef __LITTLE_ENDIAN__
3186MODULE_FIRMWARE("pca200e.bin");
3187#else
3188MODULE_FIRMWARE("pca200e_ecd.bin2");
3189#endif
3190#endif /* CONFIG_PCI */
3191#ifdef CONFIG_SBUS
3192MODULE_FIRMWARE("sba200e_ecd.bin2");
3193#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
 
 
 
 
 
 
 
 
 
 
 
 
 
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
 
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
 
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87				    __func__, __LINE__, #expr); \
  88			     panic(FORE200E "%s", __func__); \
  89			 }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
 
  96
  97static LIST_HEAD(fore200e_boards);
  98
  99
 100MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 101MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 
 
 102
 103static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 104    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 105    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 106};
 107
 108static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 109    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 110    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 111};
 112
 113
 114#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 115static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 116#endif
 117
 118
 119#if 0 /* currently unused */
 120static int 
 121fore200e_fore2atm_aal(enum fore200e_aal aal)
 122{
 123    switch(aal) {
 124    case FORE200E_AAL0:  return ATM_AAL0;
 125    case FORE200E_AAL34: return ATM_AAL34;
 126    case FORE200E_AAL5:  return ATM_AAL5;
 127    }
 128
 129    return -EINVAL;
 130}
 131#endif
 132
 133
 134static enum fore200e_aal
 135fore200e_atm2fore_aal(int aal)
 136{
 137    switch(aal) {
 138    case ATM_AAL0:  return FORE200E_AAL0;
 139    case ATM_AAL34: return FORE200E_AAL34;
 140    case ATM_AAL1:
 141    case ATM_AAL2:
 142    case ATM_AAL5:  return FORE200E_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147
 148
 149static char*
 150fore200e_irq_itoa(int irq)
 151{
 152    static char str[8];
 153    sprintf(str, "%d", irq);
 154    return str;
 155}
 156
 157
 158/* allocate and align a chunk of memory intended to hold the data behing exchanged
 159   between the driver and the adapter (using streaming DVMA) */
 160
 161static int
 162fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 163{
 164    unsigned long offset = 0;
 165
 166    if (alignment <= sizeof(int))
 167	alignment = 0;
 168
 169    chunk->alloc_size = size + alignment;
 
 170    chunk->direction  = direction;
 171
 172    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 173    if (chunk->alloc_addr == NULL)
 174	return -ENOMEM;
 175
 176    if (alignment > 0)
 177	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 178    
 179    chunk->align_addr = chunk->alloc_addr + offset;
 180
 181    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 182				     size, direction);
 183    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 184	kfree(chunk->alloc_addr);
 185	return -ENOMEM;
 186    }
 187    return 0;
 188}
 189
 190
 191/* free a chunk of memory */
 192
 193static void
 194fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 195{
 196    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 197		     chunk->direction);
 198    kfree(chunk->alloc_addr);
 199}
 200
 201/*
 202 * Allocate a DMA consistent chunk of memory intended to act as a communication
 203 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 204 * and the adapter.
 205 */
 206static int
 207fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 208		int size, int nbr, int alignment)
 209{
 210	/* returned chunks are page-aligned */
 211	chunk->alloc_size = size * nbr;
 212	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 213					       &chunk->dma_addr, GFP_KERNEL);
 214	if (!chunk->alloc_addr)
 215		return -ENOMEM;
 216	chunk->align_addr = chunk->alloc_addr;
 217	return 0;
 218}
 219
 220/*
 221 * Free a DMA consistent chunk of memory.
 222 */
 223static void
 224fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 225{
 226	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 227			  chunk->dma_addr);
 228}
 229
 230static void
 231fore200e_spin(int msecs)
 232{
 233    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 234    while (time_before(jiffies, timeout));
 235}
 236
 237
 238static int
 239fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 240{
 241    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 242    int           ok;
 243
 244    mb();
 245    do {
 246	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 247	    break;
 248
 249    } while (time_before(jiffies, timeout));
 250
 251#if 1
 252    if (!ok) {
 253	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 254	       *addr, val);
 255    }
 256#endif
 257
 258    return ok;
 259}
 260
 261
 262static int
 263fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 264{
 265    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 266    int           ok;
 267
 268    do {
 269	if ((ok = (fore200e->bus->read(addr) == val)))
 270	    break;
 271
 272    } while (time_before(jiffies, timeout));
 273
 274#if 1
 275    if (!ok) {
 276	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 277	       fore200e->bus->read(addr), val);
 278    }
 279#endif
 280
 281    return ok;
 282}
 283
 284
 285static void
 286fore200e_free_rx_buf(struct fore200e* fore200e)
 287{
 288    int scheme, magn, nbr;
 289    struct buffer* buffer;
 290
 291    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 292	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 293
 294	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 295
 296		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 297
 298		    struct chunk* data = &buffer[ nbr ].data;
 299
 300		    if (data->alloc_addr != NULL)
 301			fore200e_chunk_free(fore200e, data);
 302		}
 303	    }
 304	}
 305    }
 306}
 307
 308
 309static void
 310fore200e_uninit_bs_queue(struct fore200e* fore200e)
 311{
 312    int scheme, magn;
 313    
 314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 315	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 316
 317	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 318	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 319	    
 320	    if (status->alloc_addr)
 321		fore200e_dma_chunk_free(fore200e, status);
 322	    
 323	    if (rbd_block->alloc_addr)
 324		fore200e_dma_chunk_free(fore200e, rbd_block);
 325	}
 326    }
 327}
 328
 329
 330static int
 331fore200e_reset(struct fore200e* fore200e, int diag)
 332{
 333    int ok;
 334
 335    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 336    
 337    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 338
 339    fore200e->bus->reset(fore200e);
 340
 341    if (diag) {
 342	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 343	if (ok == 0) {
 344	    
 345	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 346	    return -ENODEV;
 347	}
 348
 349	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 350	
 351	fore200e->state = FORE200E_STATE_RESET;
 352    }
 353
 354    return 0;
 355}
 356
 357
 358static void
 359fore200e_shutdown(struct fore200e* fore200e)
 360{
 361    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 362	   fore200e->name, fore200e->phys_base, 
 363	   fore200e_irq_itoa(fore200e->irq));
 364    
 365    if (fore200e->state > FORE200E_STATE_RESET) {
 366	/* first, reset the board to prevent further interrupts or data transfers */
 367	fore200e_reset(fore200e, 0);
 368    }
 369    
 370    /* then, release all allocated resources */
 371    switch(fore200e->state) {
 372
 373    case FORE200E_STATE_COMPLETE:
 374	kfree(fore200e->stats);
 375
 376	fallthrough;
 377    case FORE200E_STATE_IRQ:
 378	free_irq(fore200e->irq, fore200e->atm_dev);
 379
 380	fallthrough;
 381    case FORE200E_STATE_ALLOC_BUF:
 382	fore200e_free_rx_buf(fore200e);
 383
 384	fallthrough;
 385    case FORE200E_STATE_INIT_BSQ:
 386	fore200e_uninit_bs_queue(fore200e);
 387
 388	fallthrough;
 389    case FORE200E_STATE_INIT_RXQ:
 390	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 391	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 392
 393	fallthrough;
 394    case FORE200E_STATE_INIT_TXQ:
 395	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 396	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 397
 398	fallthrough;
 399    case FORE200E_STATE_INIT_CMDQ:
 400	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 401
 402	fallthrough;
 403    case FORE200E_STATE_INITIALIZE:
 404	/* nothing to do for that state */
 405
 406    case FORE200E_STATE_START_FW:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_RESET:
 410	/* nothing to do for that state */
 411
 412    case FORE200E_STATE_MAP:
 413	fore200e->bus->unmap(fore200e);
 414
 415	fallthrough;
 416    case FORE200E_STATE_CONFIGURE:
 417	/* nothing to do for that state */
 418
 419    case FORE200E_STATE_REGISTER:
 420	/* XXX shouldn't we *start* by deregistering the device? */
 421	atm_dev_deregister(fore200e->atm_dev);
 422
 423	fallthrough;
 424    case FORE200E_STATE_BLANK:
 425	/* nothing to do for that state */
 426	break;
 427    }
 428}
 429
 430
 431#ifdef CONFIG_PCI
 432
 433static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 434{
 435    /* on big-endian hosts, the board is configured to convert
 436       the endianess of slave RAM accesses  */
 437    return le32_to_cpu(readl(addr));
 438}
 439
 440
 441static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 442{
 443    /* on big-endian hosts, the board is configured to convert
 444       the endianess of slave RAM accesses  */
 445    writel(cpu_to_le32(val), addr);
 446}
 447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448static int
 449fore200e_pca_irq_check(struct fore200e* fore200e)
 450{
 451    /* this is a 1 bit register */
 452    int irq_posted = readl(fore200e->regs.pca.psr);
 453
 454#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 455    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 456	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 457    }
 458#endif
 459
 460    return irq_posted;
 461}
 462
 463
 464static void
 465fore200e_pca_irq_ack(struct fore200e* fore200e)
 466{
 467    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 468}
 469
 470
 471static void
 472fore200e_pca_reset(struct fore200e* fore200e)
 473{
 474    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 475    fore200e_spin(10);
 476    writel(0, fore200e->regs.pca.hcr);
 477}
 478
 479
 480static int fore200e_pca_map(struct fore200e* fore200e)
 
 481{
 482    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 483
 484    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 485    
 486    if (fore200e->virt_base == NULL) {
 487	printk(FORE200E "can't map device %s\n", fore200e->name);
 488	return -EFAULT;
 489    }
 490
 491    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 492
 493    /* gain access to the PCA specific registers  */
 494    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 495    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 496    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 497
 498    fore200e->state = FORE200E_STATE_MAP;
 499    return 0;
 500}
 501
 502
 503static void
 504fore200e_pca_unmap(struct fore200e* fore200e)
 505{
 506    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 507
 508    if (fore200e->virt_base != NULL)
 509	iounmap(fore200e->virt_base);
 510}
 511
 512
 513static int fore200e_pca_configure(struct fore200e *fore200e)
 
 514{
 515    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 516    u8              master_ctrl, latency;
 517
 518    DPRINTK(2, "device %s being configured\n", fore200e->name);
 519
 520    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 521	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 522	return -EIO;
 523    }
 524
 525    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 526
 527    master_ctrl = master_ctrl
 528#if defined(__BIG_ENDIAN)
 529	/* request the PCA board to convert the endianess of slave RAM accesses */
 530	| PCA200E_CTRL_CONVERT_ENDIAN
 531#endif
 532#if 0
 533        | PCA200E_CTRL_DIS_CACHE_RD
 534        | PCA200E_CTRL_DIS_WRT_INVAL
 535        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 536        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 537#endif
 538	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 539    
 540    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 541
 542    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 543       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 544       this may impact the performances of other PCI devices on the same bus, though */
 545    latency = 192;
 546    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 547
 548    fore200e->state = FORE200E_STATE_CONFIGURE;
 549    return 0;
 550}
 551
 552
 553static int __init
 554fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 555{
 556    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 557    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 558    struct prom_opcode      opcode;
 559    int                     ok;
 560    u32                     prom_dma;
 561
 562    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 563
 564    opcode.opcode = OPCODE_GET_PROM;
 565    opcode.pad    = 0;
 566
 567    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 568			      DMA_FROM_DEVICE);
 569    if (dma_mapping_error(fore200e->dev, prom_dma))
 570	return -ENOMEM;
 571
 572    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 573    
 574    *entry->status = STATUS_PENDING;
 575
 576    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 577
 578    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 579
 580    *entry->status = STATUS_FREE;
 581
 582    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 583
 584    if (ok == 0) {
 585	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 586	return -EIO;
 587    }
 588
 589#if defined(__BIG_ENDIAN)
 590    
 591#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 592
 593    /* MAC address is stored as little-endian */
 594    swap_here(&prom->mac_addr[0]);
 595    swap_here(&prom->mac_addr[4]);
 596#endif
 597    
 598    return 0;
 599}
 600
 601
 602static int
 603fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 604{
 605    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 606
 607    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 608		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 609}
 610
 611static const struct fore200e_bus fore200e_pci_ops = {
 612	.model_name		= "PCA-200E",
 613	.proc_name		= "pca200e",
 614	.descr_alignment	= 32,
 615	.buffer_alignment	= 4,
 616	.status_alignment	= 32,
 617	.read			= fore200e_pca_read,
 618	.write			= fore200e_pca_write,
 619	.configure		= fore200e_pca_configure,
 620	.map			= fore200e_pca_map,
 621	.reset			= fore200e_pca_reset,
 622	.prom_read		= fore200e_pca_prom_read,
 623	.unmap			= fore200e_pca_unmap,
 624	.irq_check		= fore200e_pca_irq_check,
 625	.irq_ack		= fore200e_pca_irq_ack,
 626	.proc_read		= fore200e_pca_proc_read,
 627};
 628#endif /* CONFIG_PCI */
 629
 
 630#ifdef CONFIG_SBUS
 631
 632static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 633{
 634    return sbus_readl(addr);
 635}
 636
 637static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 638{
 639    sbus_writel(val, addr);
 640}
 641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 643{
 644	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 645	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 646}
 647
 648static int fore200e_sba_irq_check(struct fore200e *fore200e)
 649{
 650	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 651}
 652
 653static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 654{
 655	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 656	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 657}
 658
 659static void fore200e_sba_reset(struct fore200e *fore200e)
 660{
 661	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 662	fore200e_spin(10);
 663	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 664}
 665
 666static int __init fore200e_sba_map(struct fore200e *fore200e)
 667{
 668	struct platform_device *op = to_platform_device(fore200e->dev);
 669	unsigned int bursts;
 670
 671	/* gain access to the SBA specific registers  */
 672	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 673	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 674	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 675	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 676
 677	if (!fore200e->virt_base) {
 678		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 679		return -EFAULT;
 680	}
 681
 682	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 683    
 684	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 685
 686	/* get the supported DVMA burst sizes */
 687	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 688
 689	if (sbus_can_dma_64bit())
 690		sbus_set_sbus64(&op->dev, bursts);
 691
 692	fore200e->state = FORE200E_STATE_MAP;
 693	return 0;
 694}
 695
 696static void fore200e_sba_unmap(struct fore200e *fore200e)
 697{
 698	struct platform_device *op = to_platform_device(fore200e->dev);
 699
 700	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 701	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 702	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 703	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 704}
 705
 706static int __init fore200e_sba_configure(struct fore200e *fore200e)
 707{
 708	fore200e->state = FORE200E_STATE_CONFIGURE;
 709	return 0;
 710}
 711
 712static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 713{
 714	struct platform_device *op = to_platform_device(fore200e->dev);
 715	const u8 *prop;
 716	int len;
 717
 718	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 719	if (!prop)
 720		return -ENODEV;
 721	memcpy(&prom->mac_addr[4], prop, 4);
 722
 723	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 724	if (!prop)
 725		return -ENODEV;
 726	memcpy(&prom->mac_addr[2], prop, 4);
 727
 728	prom->serial_number = of_getintprop_default(op->dev.of_node,
 729						    "serialnumber", 0);
 730	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 731						  "promversion", 0);
 732    
 733	return 0;
 734}
 735
 736static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 737{
 738	struct platform_device *op = to_platform_device(fore200e->dev);
 739	const struct linux_prom_registers *regs;
 740
 741	regs = of_get_property(op->dev.of_node, "reg", NULL);
 742
 743	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 744		       (regs ? regs->which_io : 0), op->dev.of_node);
 745}
 
 746
 747static const struct fore200e_bus fore200e_sbus_ops = {
 748	.model_name		= "SBA-200E",
 749	.proc_name		= "sba200e",
 750	.descr_alignment	= 32,
 751	.buffer_alignment	= 64,
 752	.status_alignment	= 32,
 753	.read			= fore200e_sba_read,
 754	.write			= fore200e_sba_write,
 755	.configure		= fore200e_sba_configure,
 756	.map			= fore200e_sba_map,
 757	.reset			= fore200e_sba_reset,
 758	.prom_read		= fore200e_sba_prom_read,
 759	.unmap			= fore200e_sba_unmap,
 760	.irq_enable		= fore200e_sba_irq_enable,
 761	.irq_check		= fore200e_sba_irq_check,
 762	.irq_ack		= fore200e_sba_irq_ack,
 763	.proc_read		= fore200e_sba_proc_read,
 764};
 765#endif /* CONFIG_SBUS */
 766
 767static void
 768fore200e_tx_irq(struct fore200e* fore200e)
 769{
 770    struct host_txq*        txq = &fore200e->host_txq;
 771    struct host_txq_entry*  entry;
 772    struct atm_vcc*         vcc;
 773    struct fore200e_vc_map* vc_map;
 774
 775    if (fore200e->host_txq.txing == 0)
 776	return;
 777
 778    for (;;) {
 779	
 780	entry = &txq->host_entry[ txq->tail ];
 781
 782        if ((*entry->status & STATUS_COMPLETE) == 0) {
 783	    break;
 784	}
 785
 786	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 787		entry, txq->tail, entry->vc_map, entry->skb);
 788
 789	/* free copy of misaligned data */
 790	kfree(entry->data);
 791	
 792	/* remove DMA mapping */
 793	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 794				 DMA_TO_DEVICE);
 795
 796	vc_map = entry->vc_map;
 797
 798	/* vcc closed since the time the entry was submitted for tx? */
 799	if ((vc_map->vcc == NULL) ||
 800	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 801
 802	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 803		    fore200e->atm_dev->number);
 804
 805	    dev_kfree_skb_any(entry->skb);
 806	}
 807	else {
 808	    ASSERT(vc_map->vcc);
 809
 810	    /* vcc closed then immediately re-opened? */
 811	    if (vc_map->incarn != entry->incarn) {
 812
 813		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 814		   if the same vcc is immediately re-opened, those pending PDUs must
 815		   not be popped after the completion of their emission, as they refer
 816		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 817		   would be decremented by the size of the (unrelated) skb, possibly
 818		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 819		   we thus bind the tx entry to the current incarnation of the vcc
 820		   when the entry is submitted for tx. When the tx later completes,
 821		   if the incarnation number of the tx entry does not match the one
 822		   of the vcc, then this implies that the vcc has been closed then re-opened.
 823		   we thus just drop the skb here. */
 824
 825		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 826			fore200e->atm_dev->number);
 827
 828		dev_kfree_skb_any(entry->skb);
 829	    }
 830	    else {
 831		vcc = vc_map->vcc;
 832		ASSERT(vcc);
 833
 834		/* notify tx completion */
 835		if (vcc->pop) {
 836		    vcc->pop(vcc, entry->skb);
 837		}
 838		else {
 839		    dev_kfree_skb_any(entry->skb);
 840		}
 841
 
 
 
 
 
 842		/* check error condition */
 843		if (*entry->status & STATUS_ERROR)
 844		    atomic_inc(&vcc->stats->tx_err);
 845		else
 846		    atomic_inc(&vcc->stats->tx);
 847	    }
 848	}
 849
 850	*entry->status = STATUS_FREE;
 851
 852	fore200e->host_txq.txing--;
 853
 854	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 855    }
 856}
 857
 858
 859#ifdef FORE200E_BSQ_DEBUG
 860int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 861{
 862    struct buffer* buffer;
 863    int count = 0;
 864
 865    buffer = bsq->freebuf;
 866    while (buffer) {
 867
 868	if (buffer->supplied) {
 869	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 870		   where, scheme, magn, buffer->index);
 871	}
 872
 873	if (buffer->magn != magn) {
 874	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 875		   where, scheme, magn, buffer->index, buffer->magn);
 876	}
 877
 878	if (buffer->scheme != scheme) {
 879	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 880		   where, scheme, magn, buffer->index, buffer->scheme);
 881	}
 882
 883	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 884	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 885		   where, scheme, magn, buffer->index);
 886	}
 887
 888	count++;
 889	buffer = buffer->next;
 890    }
 891
 892    if (count != bsq->freebuf_count) {
 893	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 894	       where, scheme, magn, count, bsq->freebuf_count);
 895    }
 896    return 0;
 897}
 898#endif
 899
 900
 901static void
 902fore200e_supply(struct fore200e* fore200e)
 903{
 904    int  scheme, magn, i;
 905
 906    struct host_bsq*       bsq;
 907    struct host_bsq_entry* entry;
 908    struct buffer*         buffer;
 909
 910    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 911	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 912
 913	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 914
 915#ifdef FORE200E_BSQ_DEBUG
 916	    bsq_audit(1, bsq, scheme, magn);
 917#endif
 918	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 919
 920		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 921			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 922
 923		entry = &bsq->host_entry[ bsq->head ];
 924
 925		for (i = 0; i < RBD_BLK_SIZE; i++) {
 926
 927		    /* take the first buffer in the free buffer list */
 928		    buffer = bsq->freebuf;
 929		    if (!buffer) {
 930			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 931			       scheme, magn, bsq->freebuf_count);
 932			return;
 933		    }
 934		    bsq->freebuf = buffer->next;
 935		    
 936#ifdef FORE200E_BSQ_DEBUG
 937		    if (buffer->supplied)
 938			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 939			       scheme, magn, buffer->index);
 940		    buffer->supplied = 1;
 941#endif
 942		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 943		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 944		}
 945
 946		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 947
 948 		/* decrease accordingly the number of free rx buffers */
 949		bsq->freebuf_count -= RBD_BLK_SIZE;
 950
 951		*entry->status = STATUS_PENDING;
 952		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 953	    }
 954	}
 955    }
 956}
 957
 958
 959static int
 960fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 961{
 962    struct sk_buff*      skb;
 963    struct buffer*       buffer;
 964    struct fore200e_vcc* fore200e_vcc;
 965    int                  i, pdu_len = 0;
 966#ifdef FORE200E_52BYTE_AAL0_SDU
 967    u32                  cell_header = 0;
 968#endif
 969
 970    ASSERT(vcc);
 971    
 972    fore200e_vcc = FORE200E_VCC(vcc);
 973    ASSERT(fore200e_vcc);
 974
 975#ifdef FORE200E_52BYTE_AAL0_SDU
 976    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 977
 978	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 979	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 980                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 981                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 982                       rpd->atm_header.clp;
 983	pdu_len = 4;
 984    }
 985#endif
 986    
 987    /* compute total PDU length */
 988    for (i = 0; i < rpd->nseg; i++)
 989	pdu_len += rpd->rsd[ i ].length;
 990    
 991    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 992    if (skb == NULL) {
 993	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 994
 995	atomic_inc(&vcc->stats->rx_drop);
 996	return -ENOMEM;
 997    } 
 998
 999    __net_timestamp(skb);
1000    
1001#ifdef FORE200E_52BYTE_AAL0_SDU
1002    if (cell_header) {
1003	*((u32*)skb_put(skb, 4)) = cell_header;
1004    }
1005#endif
1006
1007    /* reassemble segments */
1008    for (i = 0; i < rpd->nseg; i++) {
1009	
1010	/* rebuild rx buffer address from rsd handle */
1011	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1012	
1013	/* Make device DMA transfer visible to CPU.  */
1014	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1015				rpd->rsd[i].length, DMA_FROM_DEVICE);
1016	
1017	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1018
1019	/* Now let the device get at it again.  */
1020	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1021				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1022    }
1023
1024    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1025    
1026    if (pdu_len < fore200e_vcc->rx_min_pdu)
1027	fore200e_vcc->rx_min_pdu = pdu_len;
1028    if (pdu_len > fore200e_vcc->rx_max_pdu)
1029	fore200e_vcc->rx_max_pdu = pdu_len;
1030    fore200e_vcc->rx_pdu++;
1031
1032    /* push PDU */
1033    if (atm_charge(vcc, skb->truesize) == 0) {
1034
1035	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1036		vcc->itf, vcc->vpi, vcc->vci);
1037
1038	dev_kfree_skb_any(skb);
1039
1040	atomic_inc(&vcc->stats->rx_drop);
1041	return -ENOMEM;
1042    }
1043
 
 
1044    vcc->push(vcc, skb);
1045    atomic_inc(&vcc->stats->rx);
1046
 
 
1047    return 0;
1048}
1049
1050
1051static void
1052fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1053{
1054    struct host_bsq* bsq;
1055    struct buffer*   buffer;
1056    int              i;
1057    
1058    for (i = 0; i < rpd->nseg; i++) {
1059
1060	/* rebuild rx buffer address from rsd handle */
1061	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1062
1063	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1064
1065#ifdef FORE200E_BSQ_DEBUG
1066	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1067
1068	if (buffer->supplied == 0)
1069	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1070		   buffer->scheme, buffer->magn, buffer->index);
1071	buffer->supplied = 0;
1072#endif
1073
1074	/* re-insert the buffer into the free buffer list */
1075	buffer->next = bsq->freebuf;
1076	bsq->freebuf = buffer;
1077
1078	/* then increment the number of free rx buffers */
1079	bsq->freebuf_count++;
1080    }
1081}
1082
1083
1084static void
1085fore200e_rx_irq(struct fore200e* fore200e)
1086{
1087    struct host_rxq*        rxq = &fore200e->host_rxq;
1088    struct host_rxq_entry*  entry;
1089    struct atm_vcc*         vcc;
1090    struct fore200e_vc_map* vc_map;
1091
1092    for (;;) {
1093	
1094	entry = &rxq->host_entry[ rxq->head ];
1095
1096	/* no more received PDUs */
1097	if ((*entry->status & STATUS_COMPLETE) == 0)
1098	    break;
1099
1100	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1101
1102	if ((vc_map->vcc == NULL) ||
1103	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1104
1105	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1106		    fore200e->atm_dev->number,
1107		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1108	}
1109	else {
1110	    vcc = vc_map->vcc;
1111	    ASSERT(vcc);
1112
1113	    if ((*entry->status & STATUS_ERROR) == 0) {
1114
1115		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1116	    }
1117	    else {
1118		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1119			fore200e->atm_dev->number,
1120			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1121		atomic_inc(&vcc->stats->rx_err);
1122	    }
1123	}
1124
1125	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1126
1127	fore200e_collect_rpd(fore200e, entry->rpd);
1128
1129	/* rewrite the rpd address to ack the received PDU */
1130	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1131	*entry->status = STATUS_FREE;
1132
1133	fore200e_supply(fore200e);
1134    }
1135}
1136
1137
1138#ifndef FORE200E_USE_TASKLET
1139static void
1140fore200e_irq(struct fore200e* fore200e)
1141{
1142    unsigned long flags;
1143
1144    spin_lock_irqsave(&fore200e->q_lock, flags);
1145    fore200e_rx_irq(fore200e);
1146    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1147
1148    spin_lock_irqsave(&fore200e->q_lock, flags);
1149    fore200e_tx_irq(fore200e);
1150    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1151}
1152#endif
1153
1154
1155static irqreturn_t
1156fore200e_interrupt(int irq, void* dev)
1157{
1158    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1159
1160    if (fore200e->bus->irq_check(fore200e) == 0) {
1161	
1162	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1163	return IRQ_NONE;
1164    }
1165    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1166
1167#ifdef FORE200E_USE_TASKLET
1168    tasklet_schedule(&fore200e->tx_tasklet);
1169    tasklet_schedule(&fore200e->rx_tasklet);
1170#else
1171    fore200e_irq(fore200e);
1172#endif
1173    
1174    fore200e->bus->irq_ack(fore200e);
1175    return IRQ_HANDLED;
1176}
1177
1178
1179#ifdef FORE200E_USE_TASKLET
1180static void
1181fore200e_tx_tasklet(unsigned long data)
1182{
1183    struct fore200e* fore200e = (struct fore200e*) data;
1184    unsigned long flags;
1185
1186    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1187
1188    spin_lock_irqsave(&fore200e->q_lock, flags);
1189    fore200e_tx_irq(fore200e);
1190    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1191}
1192
1193
1194static void
1195fore200e_rx_tasklet(unsigned long data)
1196{
1197    struct fore200e* fore200e = (struct fore200e*) data;
1198    unsigned long    flags;
1199
1200    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1201
1202    spin_lock_irqsave(&fore200e->q_lock, flags);
1203    fore200e_rx_irq((struct fore200e*) data);
1204    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1205}
1206#endif
1207
1208
1209static int
1210fore200e_select_scheme(struct atm_vcc* vcc)
1211{
1212    /* fairly balance the VCs over (identical) buffer schemes */
1213    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1214
1215    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1216	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1217
1218    return scheme;
1219}
1220
1221
1222static int 
1223fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1224{
1225    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1226    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1227    struct activate_opcode   activ_opcode;
1228    struct deactivate_opcode deactiv_opcode;
1229    struct vpvc              vpvc;
1230    int                      ok;
1231    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1232
1233    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1234    
1235    if (activate) {
1236	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1237	
1238	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1239	activ_opcode.aal    = aal;
1240	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1241	activ_opcode.pad    = 0;
1242    }
1243    else {
1244	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1245	deactiv_opcode.pad    = 0;
1246    }
1247
1248    vpvc.vci = vcc->vci;
1249    vpvc.vpi = vcc->vpi;
1250
1251    *entry->status = STATUS_PENDING;
1252
1253    if (activate) {
1254
1255#ifdef FORE200E_52BYTE_AAL0_SDU
1256	mtu = 48;
1257#endif
1258	/* the MTU is not used by the cp, except in the case of AAL0 */
1259	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1260	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1261	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1262    }
1263    else {
1264	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1265	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1266    }
1267
1268    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1269
1270    *entry->status = STATUS_FREE;
1271
1272    if (ok == 0) {
1273	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1274	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1275	return -EIO;
1276    }
1277
1278    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1279	    activate ? "open" : "clos");
1280
1281    return 0;
1282}
1283
1284
1285#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1286
1287static void
1288fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1289{
1290    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1291    
1292	/* compute the data cells to idle cells ratio from the tx PCR */
1293	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1294	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1295    }
1296    else {
1297	/* disable rate control */
1298	rate->data_cells = rate->idle_cells = 0;
1299    }
1300}
1301
1302
1303static int
1304fore200e_open(struct atm_vcc *vcc)
1305{
1306    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1307    struct fore200e_vcc*    fore200e_vcc;
1308    struct fore200e_vc_map* vc_map;
1309    unsigned long	    flags;
1310    int			    vci = vcc->vci;
1311    short		    vpi = vcc->vpi;
1312
1313    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1314    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1315
1316    spin_lock_irqsave(&fore200e->q_lock, flags);
1317
1318    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1319    if (vc_map->vcc) {
1320
1321	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1322
1323	printk(FORE200E "VC %d.%d.%d already in use\n",
1324	       fore200e->atm_dev->number, vpi, vci);
1325
1326	return -EINVAL;
1327    }
1328
1329    vc_map->vcc = vcc;
1330
1331    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1332
1333    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1334    if (fore200e_vcc == NULL) {
1335	vc_map->vcc = NULL;
1336	return -ENOMEM;
1337    }
1338
1339    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1340	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1341	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1342	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1343	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1344	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1345	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1346    
1347    /* pseudo-CBR bandwidth requested? */
1348    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1349	
1350	mutex_lock(&fore200e->rate_mtx);
1351	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1352	    mutex_unlock(&fore200e->rate_mtx);
1353
1354	    kfree(fore200e_vcc);
1355	    vc_map->vcc = NULL;
1356	    return -EAGAIN;
1357	}
1358
1359	/* reserve bandwidth */
1360	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1361	mutex_unlock(&fore200e->rate_mtx);
1362    }
1363    
1364    vcc->itf = vcc->dev->number;
1365
1366    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1367    set_bit(ATM_VF_ADDR, &vcc->flags);
1368
1369    vcc->dev_data = fore200e_vcc;
1370    
1371    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1372
1373	vc_map->vcc = NULL;
1374
1375	clear_bit(ATM_VF_ADDR, &vcc->flags);
1376	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1377
1378	vcc->dev_data = NULL;
1379
1380	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1381
1382	kfree(fore200e_vcc);
1383	return -EINVAL;
1384    }
1385    
1386    /* compute rate control parameters */
1387    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1388	
1389	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1390	set_bit(ATM_VF_HASQOS, &vcc->flags);
1391
1392	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1393		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1394		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1395		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1396    }
1397    
1398    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1399    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1400    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1401
1402    /* new incarnation of the vcc */
1403    vc_map->incarn = ++fore200e->incarn_count;
1404
1405    /* VC unusable before this flag is set */
1406    set_bit(ATM_VF_READY, &vcc->flags);
1407
1408    return 0;
1409}
1410
1411
1412static void
1413fore200e_close(struct atm_vcc* vcc)
1414{
 
1415    struct fore200e_vcc*    fore200e_vcc;
1416    struct fore200e*        fore200e;
1417    struct fore200e_vc_map* vc_map;
1418    unsigned long           flags;
1419
1420    ASSERT(vcc);
1421    fore200e = FORE200E_DEV(vcc->dev);
1422
1423    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428    clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432    spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436    /* the vc is no longer considered as "in use" by fore200e_open() */
1437    vc_map->vcc = NULL;
1438
1439    vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441    fore200e_vcc = FORE200E_VCC(vcc);
1442    vcc->dev_data = NULL;
1443
1444    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446    /* release reserved bandwidth, if any */
1447    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449	mutex_lock(&fore200e->rate_mtx);
1450	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451	mutex_unlock(&fore200e->rate_mtx);
1452
1453	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454    }
1455
1456    clear_bit(ATM_VF_ADDR, &vcc->flags);
1457    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459    ASSERT(fore200e_vcc);
1460    kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467    struct fore200e*        fore200e;
1468    struct fore200e_vcc*    fore200e_vcc;
1469    struct fore200e_vc_map* vc_map;
1470    struct host_txq*        txq;
1471    struct host_txq_entry*  entry;
1472    struct tpd*             tpd;
1473    struct tpd_haddr        tpd_haddr;
1474    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1475    int                     tx_copy      = 0;
1476    int                     tx_len       = skb->len;
1477    u32*                    cell_header  = NULL;
1478    unsigned char*          skb_data;
1479    int                     skb_len;
1480    unsigned char*          data;
1481    unsigned long           flags;
1482
1483    if (!vcc)
1484        return -EINVAL;
1485
1486    fore200e = FORE200E_DEV(vcc->dev);
1487    fore200e_vcc = FORE200E_VCC(vcc);
1488
1489    if (!fore200e)
1490        return -EINVAL;
1491
1492    txq = &fore200e->host_txq;
1493    if (!fore200e_vcc)
1494        return -EINVAL;
1495
1496    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1497	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1498	dev_kfree_skb_any(skb);
1499	return -EINVAL;
1500    }
1501
1502#ifdef FORE200E_52BYTE_AAL0_SDU
1503    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1504	cell_header = (u32*) skb->data;
1505	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1506	skb_len     = tx_len = skb->len  - 4;
1507
1508	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1509    }
1510    else 
1511#endif
1512    {
1513	skb_data = skb->data;
1514	skb_len  = skb->len;
1515    }
1516    
1517    if (((unsigned long)skb_data) & 0x3) {
1518
1519	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1520	tx_copy = 1;
1521	tx_len  = skb_len;
1522    }
1523
1524    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1525
1526        /* this simply NUKES the PCA board */
1527	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1528	tx_copy = 1;
1529	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1530    }
1531    
1532    if (tx_copy) {
1533	data = kmalloc(tx_len, GFP_ATOMIC);
1534	if (data == NULL) {
1535	    if (vcc->pop) {
1536		vcc->pop(vcc, skb);
1537	    }
1538	    else {
1539		dev_kfree_skb_any(skb);
1540	    }
1541	    return -ENOMEM;
1542	}
1543
1544	memcpy(data, skb_data, skb_len);
1545	if (skb_len < tx_len)
1546	    memset(data + skb_len, 0x00, tx_len - skb_len);
1547    }
1548    else {
1549	data = skb_data;
1550    }
1551
1552    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1553    ASSERT(vc_map->vcc == vcc);
1554
1555  retry_here:
1556
1557    spin_lock_irqsave(&fore200e->q_lock, flags);
1558
1559    entry = &txq->host_entry[ txq->head ];
1560
1561    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1562
1563	/* try to free completed tx queue entries */
1564	fore200e_tx_irq(fore200e);
1565
1566	if (*entry->status != STATUS_FREE) {
1567
1568	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1569
1570	    /* retry once again? */
1571	    if (--retry > 0) {
1572		udelay(50);
1573		goto retry_here;
1574	    }
1575
1576	    atomic_inc(&vcc->stats->tx_err);
1577
1578	    fore200e->tx_sat++;
1579	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1580		    fore200e->name, fore200e->cp_queues->heartbeat);
1581	    if (vcc->pop) {
1582		vcc->pop(vcc, skb);
1583	    }
1584	    else {
1585		dev_kfree_skb_any(skb);
1586	    }
1587
1588	    if (tx_copy)
1589		kfree(data);
1590
1591	    return -ENOBUFS;
1592	}
1593    }
1594
1595    entry->incarn = vc_map->incarn;
1596    entry->vc_map = vc_map;
1597    entry->skb    = skb;
1598    entry->data   = tx_copy ? data : NULL;
1599
1600    tpd = entry->tpd;
1601    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1602					  DMA_TO_DEVICE);
1603    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1604	if (tx_copy)
1605	    kfree(data);
1606	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1607	return -ENOMEM;
1608    }
1609    tpd->tsd[ 0 ].length = tx_len;
1610
1611    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1612    txq->txing++;
1613
1614    /* The dma_map call above implies a dma_sync so the device can use it,
1615     * thus no explicit dma_sync call is necessary here.
1616     */
1617    
1618    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1619	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1620	    tpd->tsd[0].length, skb_len);
1621
1622    if (skb_len < fore200e_vcc->tx_min_pdu)
1623	fore200e_vcc->tx_min_pdu = skb_len;
1624    if (skb_len > fore200e_vcc->tx_max_pdu)
1625	fore200e_vcc->tx_max_pdu = skb_len;
1626    fore200e_vcc->tx_pdu++;
1627
1628    /* set tx rate control information */
1629    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1630    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1631
1632    if (cell_header) {
1633	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1634	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1635	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1636	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1637	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1638    }
1639    else {
1640	/* set the ATM header, common to all cells conveying the PDU */
1641	tpd->atm_header.clp = 0;
1642	tpd->atm_header.plt = 0;
1643	tpd->atm_header.vci = vcc->vci;
1644	tpd->atm_header.vpi = vcc->vpi;
1645	tpd->atm_header.gfc = 0;
1646    }
1647
1648    tpd->spec.length = tx_len;
1649    tpd->spec.nseg   = 1;
1650    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1651    tpd->spec.intr   = 1;
1652
1653    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1654    tpd_haddr.pad   = 0;
1655    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1656
1657    *entry->status = STATUS_PENDING;
1658    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1659
1660    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661
1662    return 0;
1663}
1664
1665
1666static int
1667fore200e_getstats(struct fore200e* fore200e)
1668{
1669    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1670    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1671    struct stats_opcode     opcode;
1672    int                     ok;
1673    u32                     stats_dma_addr;
1674
1675    if (fore200e->stats == NULL) {
1676	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1677	if (fore200e->stats == NULL)
1678	    return -ENOMEM;
1679    }
1680    
1681    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1682				    sizeof(struct stats), DMA_FROM_DEVICE);
1683    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1684    	return -ENOMEM;
1685    
1686    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1687
1688    opcode.opcode = OPCODE_GET_STATS;
1689    opcode.pad    = 0;
1690
1691    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1692    
1693    *entry->status = STATUS_PENDING;
1694
1695    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1696
1697    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1698
1699    *entry->status = STATUS_FREE;
1700
1701    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1702    
1703    if (ok == 0) {
1704	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1705	return -EIO;
1706    }
1707
1708    return 0;
1709}
1710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711#if 0 /* currently unused */
1712static int
1713fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1714{
1715    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1716    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1717    struct oc3_opcode       opcode;
1718    int                     ok;
1719    u32                     oc3_regs_dma_addr;
1720
1721    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1722
1723    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1724
1725    opcode.opcode = OPCODE_GET_OC3;
1726    opcode.reg    = 0;
1727    opcode.value  = 0;
1728    opcode.mask   = 0;
1729
1730    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1731    
1732    *entry->status = STATUS_PENDING;
1733
1734    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1735
1736    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1737
1738    *entry->status = STATUS_FREE;
1739
1740    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1741    
1742    if (ok == 0) {
1743	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1744	return -EIO;
1745    }
1746
1747    return 0;
1748}
1749#endif
1750
1751
1752static int
1753fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1754{
1755    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1756    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1757    struct oc3_opcode       opcode;
1758    int                     ok;
1759
1760    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1761
1762    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1763
1764    opcode.opcode = OPCODE_SET_OC3;
1765    opcode.reg    = reg;
1766    opcode.value  = value;
1767    opcode.mask   = mask;
1768
1769    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1770    
1771    *entry->status = STATUS_PENDING;
1772
1773    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1774
1775    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1776
1777    *entry->status = STATUS_FREE;
1778
1779    if (ok == 0) {
1780	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1781	return -EIO;
1782    }
1783
1784    return 0;
1785}
1786
1787
1788static int
1789fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1790{
1791    u32 mct_value, mct_mask;
1792    int error;
1793
1794    if (!capable(CAP_NET_ADMIN))
1795	return -EPERM;
1796    
1797    switch (loop_mode) {
1798
1799    case ATM_LM_NONE:
1800	mct_value = 0; 
1801	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1802	break;
1803	
1804    case ATM_LM_LOC_PHY:
1805	mct_value = mct_mask = SUNI_MCT_DLE;
1806	break;
1807
1808    case ATM_LM_RMT_PHY:
1809	mct_value = mct_mask = SUNI_MCT_LLE;
1810	break;
1811
1812    default:
1813	return -EINVAL;
1814    }
1815
1816    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1817    if (error == 0)
1818	fore200e->loop_mode = loop_mode;
1819
1820    return error;
1821}
1822
1823
1824static int
1825fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1826{
1827    struct sonet_stats tmp;
1828
1829    if (fore200e_getstats(fore200e) < 0)
1830	return -EIO;
1831
1832    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1833    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1834    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1835    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1836    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1837    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1838    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1839    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1840	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1841	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1842    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1843	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1844	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1845
1846    if (arg)
1847	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1848    
1849    return 0;
1850}
1851
1852
1853static int
1854fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1855{
1856    struct fore200e* fore200e = FORE200E_DEV(dev);
1857    
1858    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1859
1860    switch (cmd) {
1861
1862    case SONET_GETSTAT:
1863	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1864
1865    case SONET_GETDIAG:
1866	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1867
1868    case ATM_SETLOOP:
1869	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1870
1871    case ATM_GETLOOP:
1872	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1873
1874    case ATM_QUERYLOOP:
1875	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1876    }
1877
1878    return -ENOSYS; /* not implemented */
1879}
1880
1881
1882static int
1883fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1884{
1885    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1886    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1887
1888    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1889	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1890	return -EINVAL;
1891    }
1892
1893    DPRINTK(2, "change_qos %d.%d.%d, "
1894	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1895	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1896	    "available_cell_rate = %u",
1897	    vcc->itf, vcc->vpi, vcc->vci,
1898	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1899	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1900	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1901	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1902	    flags, fore200e->available_cell_rate);
1903
1904    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1905
1906	mutex_lock(&fore200e->rate_mtx);
1907	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1908	    mutex_unlock(&fore200e->rate_mtx);
1909	    return -EAGAIN;
1910	}
1911
1912	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1913	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1914
1915	mutex_unlock(&fore200e->rate_mtx);
1916	
1917	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1918	
1919	/* update rate control parameters */
1920	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1921
1922	set_bit(ATM_VF_HASQOS, &vcc->flags);
1923
1924	return 0;
1925    }
1926    
1927    return -EINVAL;
1928}
1929    
1930
1931static int fore200e_irq_request(struct fore200e *fore200e)
 
1932{
1933    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1934
1935	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1936	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1937	return -EBUSY;
1938    }
1939
1940    printk(FORE200E "IRQ %s reserved for device %s\n",
1941	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1942
1943#ifdef FORE200E_USE_TASKLET
1944    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1945    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1946#endif
1947
1948    fore200e->state = FORE200E_STATE_IRQ;
1949    return 0;
1950}
1951
1952
1953static int fore200e_get_esi(struct fore200e *fore200e)
 
1954{
1955    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1956    int ok, i;
1957
1958    if (!prom)
1959	return -ENOMEM;
1960
1961    ok = fore200e->bus->prom_read(fore200e, prom);
1962    if (ok < 0) {
1963	kfree(prom);
1964	return -EBUSY;
1965    }
1966	
1967    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1968	   fore200e->name, 
1969	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1970	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1971	
1972    for (i = 0; i < ESI_LEN; i++) {
1973	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1974    }
1975    
1976    kfree(prom);
1977
1978    return 0;
1979}
1980
1981
1982static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
 
1983{
1984    int scheme, magn, nbr, size, i;
1985
1986    struct host_bsq* bsq;
1987    struct buffer*   buffer;
1988
1989    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1990	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1991
1992	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1993
1994	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1995	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1996
1997	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1998
1999	    /* allocate the array of receive buffers */
2000	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2001                                           GFP_KERNEL);
2002
2003	    if (buffer == NULL)
2004		return -ENOMEM;
2005
2006	    bsq->freebuf = NULL;
2007
2008	    for (i = 0; i < nbr; i++) {
2009
2010		buffer[ i ].scheme = scheme;
2011		buffer[ i ].magn   = magn;
2012#ifdef FORE200E_BSQ_DEBUG
2013		buffer[ i ].index  = i;
2014		buffer[ i ].supplied = 0;
2015#endif
2016
2017		/* allocate the receive buffer body */
2018		if (fore200e_chunk_alloc(fore200e,
2019					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2020					 DMA_FROM_DEVICE) < 0) {
2021		    
2022		    while (i > 0)
2023			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2024		    kfree(buffer);
2025		    
2026		    return -ENOMEM;
2027		}
2028
2029		/* insert the buffer into the free buffer list */
2030		buffer[ i ].next = bsq->freebuf;
2031		bsq->freebuf = &buffer[ i ];
2032	    }
2033	    /* all the buffers are free, initially */
2034	    bsq->freebuf_count = nbr;
2035
2036#ifdef FORE200E_BSQ_DEBUG
2037	    bsq_audit(3, bsq, scheme, magn);
2038#endif
2039	}
2040    }
2041
2042    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2043    return 0;
2044}
2045
2046
2047static int fore200e_init_bs_queue(struct fore200e *fore200e)
 
2048{
2049    int scheme, magn, i;
2050
2051    struct host_bsq*     bsq;
2052    struct cp_bsq_entry __iomem * cp_entry;
2053
2054    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2055	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2056
2057	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2058
2059	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2060
2061	    /* allocate and align the array of status words */
2062	    if (fore200e_dma_chunk_alloc(fore200e,
2063					       &bsq->status,
2064					       sizeof(enum status), 
2065					       QUEUE_SIZE_BS,
2066					       fore200e->bus->status_alignment) < 0) {
2067		return -ENOMEM;
2068	    }
2069
2070	    /* allocate and align the array of receive buffer descriptors */
2071	    if (fore200e_dma_chunk_alloc(fore200e,
2072					       &bsq->rbd_block,
2073					       sizeof(struct rbd_block),
2074					       QUEUE_SIZE_BS,
2075					       fore200e->bus->descr_alignment) < 0) {
2076		
2077		fore200e_dma_chunk_free(fore200e, &bsq->status);
2078		return -ENOMEM;
2079	    }
2080	    
2081	    /* get the base address of the cp resident buffer supply queue entries */
2082	    cp_entry = fore200e->virt_base + 
2083		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2084	    
2085	    /* fill the host resident and cp resident buffer supply queue entries */
2086	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2087		
2088		bsq->host_entry[ i ].status = 
2089		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2090	        bsq->host_entry[ i ].rbd_block =
2091		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2092		bsq->host_entry[ i ].rbd_block_dma =
2093		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2094		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2095		
2096		*bsq->host_entry[ i ].status = STATUS_FREE;
2097		
2098		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2099				     &cp_entry[ i ].status_haddr);
2100	    }
2101	}
2102    }
2103
2104    fore200e->state = FORE200E_STATE_INIT_BSQ;
2105    return 0;
2106}
2107
2108
2109static int fore200e_init_rx_queue(struct fore200e *fore200e)
 
2110{
2111    struct host_rxq*     rxq =  &fore200e->host_rxq;
2112    struct cp_rxq_entry __iomem * cp_entry;
2113    int i;
2114
2115    DPRINTK(2, "receive queue is being initialized\n");
2116
2117    /* allocate and align the array of status words */
2118    if (fore200e_dma_chunk_alloc(fore200e,
2119				       &rxq->status,
2120				       sizeof(enum status), 
2121				       QUEUE_SIZE_RX,
2122				       fore200e->bus->status_alignment) < 0) {
2123	return -ENOMEM;
2124    }
2125
2126    /* allocate and align the array of receive PDU descriptors */
2127    if (fore200e_dma_chunk_alloc(fore200e,
2128				       &rxq->rpd,
2129				       sizeof(struct rpd), 
2130				       QUEUE_SIZE_RX,
2131				       fore200e->bus->descr_alignment) < 0) {
2132	
2133	fore200e_dma_chunk_free(fore200e, &rxq->status);
2134	return -ENOMEM;
2135    }
2136
2137    /* get the base address of the cp resident rx queue entries */
2138    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2139
2140    /* fill the host resident and cp resident rx entries */
2141    for (i=0; i < QUEUE_SIZE_RX; i++) {
2142	
2143	rxq->host_entry[ i ].status = 
2144	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2145	rxq->host_entry[ i ].rpd = 
2146	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2147	rxq->host_entry[ i ].rpd_dma = 
2148	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2149	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2150
2151	*rxq->host_entry[ i ].status = STATUS_FREE;
2152
2153	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2154			     &cp_entry[ i ].status_haddr);
2155
2156	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2157			     &cp_entry[ i ].rpd_haddr);
2158    }
2159
2160    /* set the head entry of the queue */
2161    rxq->head = 0;
2162
2163    fore200e->state = FORE200E_STATE_INIT_RXQ;
2164    return 0;
2165}
2166
2167
2168static int fore200e_init_tx_queue(struct fore200e *fore200e)
 
2169{
2170    struct host_txq*     txq =  &fore200e->host_txq;
2171    struct cp_txq_entry __iomem * cp_entry;
2172    int i;
2173
2174    DPRINTK(2, "transmit queue is being initialized\n");
2175
2176    /* allocate and align the array of status words */
2177    if (fore200e_dma_chunk_alloc(fore200e,
2178				       &txq->status,
2179				       sizeof(enum status), 
2180				       QUEUE_SIZE_TX,
2181				       fore200e->bus->status_alignment) < 0) {
2182	return -ENOMEM;
2183    }
2184
2185    /* allocate and align the array of transmit PDU descriptors */
2186    if (fore200e_dma_chunk_alloc(fore200e,
2187				       &txq->tpd,
2188				       sizeof(struct tpd), 
2189				       QUEUE_SIZE_TX,
2190				       fore200e->bus->descr_alignment) < 0) {
2191	
2192	fore200e_dma_chunk_free(fore200e, &txq->status);
2193	return -ENOMEM;
2194    }
2195
2196    /* get the base address of the cp resident tx queue entries */
2197    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2198
2199    /* fill the host resident and cp resident tx entries */
2200    for (i=0; i < QUEUE_SIZE_TX; i++) {
2201	
2202	txq->host_entry[ i ].status = 
2203	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2204	txq->host_entry[ i ].tpd = 
2205	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2206	txq->host_entry[ i ].tpd_dma  = 
2207                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2208	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2209
2210	*txq->host_entry[ i ].status = STATUS_FREE;
2211	
2212	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2213			     &cp_entry[ i ].status_haddr);
2214	
2215        /* although there is a one-to-one mapping of tx queue entries and tpds,
2216	   we do not write here the DMA (physical) base address of each tpd into
2217	   the related cp resident entry, because the cp relies on this write
2218	   operation to detect that a new pdu has been submitted for tx */
2219    }
2220
2221    /* set the head and tail entries of the queue */
2222    txq->head = 0;
2223    txq->tail = 0;
2224
2225    fore200e->state = FORE200E_STATE_INIT_TXQ;
2226    return 0;
2227}
2228
2229
2230static int fore200e_init_cmd_queue(struct fore200e *fore200e)
 
2231{
2232    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2233    struct cp_cmdq_entry __iomem * cp_entry;
2234    int i;
2235
2236    DPRINTK(2, "command queue is being initialized\n");
2237
2238    /* allocate and align the array of status words */
2239    if (fore200e_dma_chunk_alloc(fore200e,
2240				       &cmdq->status,
2241				       sizeof(enum status), 
2242				       QUEUE_SIZE_CMD,
2243				       fore200e->bus->status_alignment) < 0) {
2244	return -ENOMEM;
2245    }
2246    
2247    /* get the base address of the cp resident cmd queue entries */
2248    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2249
2250    /* fill the host resident and cp resident cmd entries */
2251    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2252	
2253	cmdq->host_entry[ i ].status   = 
2254                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2255	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2256
2257	*cmdq->host_entry[ i ].status = STATUS_FREE;
2258
2259	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2260                             &cp_entry[ i ].status_haddr);
2261    }
2262
2263    /* set the head entry of the queue */
2264    cmdq->head = 0;
2265
2266    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2267    return 0;
2268}
2269
2270
2271static void fore200e_param_bs_queue(struct fore200e *fore200e,
2272				    enum buffer_scheme scheme,
2273				    enum buffer_magn magn, int queue_length,
2274				    int pool_size, int supply_blksize)
2275{
2276    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2277
2278    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2279    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2280    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2281    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2282}
2283
2284
2285static int fore200e_initialize(struct fore200e *fore200e)
 
2286{
2287    struct cp_queues __iomem * cpq;
2288    int               ok, scheme, magn;
2289
2290    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2291
2292    mutex_init(&fore200e->rate_mtx);
2293    spin_lock_init(&fore200e->q_lock);
2294
2295    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2296
2297    /* enable cp to host interrupts */
2298    fore200e->bus->write(1, &cpq->imask);
2299
2300    if (fore200e->bus->irq_enable)
2301	fore200e->bus->irq_enable(fore200e);
2302    
2303    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2304
2305    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2306    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2307    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2308
2309    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2310    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2311
2312    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2313	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2314	    fore200e_param_bs_queue(fore200e, scheme, magn,
2315				    QUEUE_SIZE_BS, 
2316				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2317				    RBD_BLK_SIZE);
2318
2319    /* issue the initialize command */
2320    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2321    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2322
2323    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2324    if (ok == 0) {
2325	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2326	return -ENODEV;
2327    }
2328
2329    printk(FORE200E "device %s initialized\n", fore200e->name);
2330
2331    fore200e->state = FORE200E_STATE_INITIALIZE;
2332    return 0;
2333}
2334
2335
2336static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
 
2337{
2338    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2339
2340#if 0
2341    printk("%c", c);
2342#endif
2343    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2344}
2345
2346
2347static int fore200e_monitor_getc(struct fore200e *fore200e)
 
2348{
2349    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2350    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2351    int                c;
2352
2353    while (time_before(jiffies, timeout)) {
2354
2355	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2356
2357	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2358
2359	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2360#if 0
2361	    printk("%c", c & 0xFF);
2362#endif
2363	    return c & 0xFF;
2364	}
2365    }
2366
2367    return -1;
2368}
2369
2370
2371static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
 
2372{
2373    while (*str) {
2374
2375	/* the i960 monitor doesn't accept any new character if it has something to say */
2376	while (fore200e_monitor_getc(fore200e) >= 0);
2377	
2378	fore200e_monitor_putc(fore200e, *str++);
2379    }
2380
2381    while (fore200e_monitor_getc(fore200e) >= 0);
2382}
2383
2384#ifdef __LITTLE_ENDIAN
2385#define FW_EXT ".bin"
2386#else
2387#define FW_EXT "_ecd.bin2"
2388#endif
2389
2390static int fore200e_load_and_start_fw(struct fore200e *fore200e)
 
2391{
2392    const struct firmware *firmware;
2393    const struct fw_header *fw_header;
 
2394    const __le32 *fw_data;
2395    u32 fw_size;
2396    u32 __iomem *load_addr;
2397    char buf[48];
2398    int err;
 
 
 
 
 
 
 
 
 
2399
2400    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2401    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2402	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2403	return err;
2404    }
2405
2406    fw_data = (const __le32 *)firmware->data;
2407    fw_size = firmware->size / sizeof(u32);
2408    fw_header = (const struct fw_header *)firmware->data;
2409    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2410
2411    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2412	    fore200e->name, load_addr, fw_size);
2413
2414    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2415	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2416	goto release;
2417    }
2418
2419    for (; fw_size--; fw_data++, load_addr++)
2420	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2421
2422    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2423
2424#if defined(__sparc_v9__)
2425    /* reported to be required by SBA cards on some sparc64 hosts */
2426    fore200e_spin(100);
2427#endif
2428
2429    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2430    fore200e_monitor_puts(fore200e, buf);
2431
2432    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2433	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2434	goto release;
2435    }
2436
2437    printk(FORE200E "device %s firmware started\n", fore200e->name);
2438
2439    fore200e->state = FORE200E_STATE_START_FW;
2440    err = 0;
2441
2442release:
2443    release_firmware(firmware);
2444    return err;
2445}
2446
2447
2448static int fore200e_register(struct fore200e *fore200e, struct device *parent)
 
2449{
2450    struct atm_dev* atm_dev;
2451
2452    DPRINTK(2, "device %s being registered\n", fore200e->name);
2453
2454    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2455                               -1, NULL);
2456    if (atm_dev == NULL) {
2457	printk(FORE200E "unable to register device %s\n", fore200e->name);
2458	return -ENODEV;
2459    }
2460
2461    atm_dev->dev_data = fore200e;
2462    fore200e->atm_dev = atm_dev;
2463
2464    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2465    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2466
2467    fore200e->available_cell_rate = ATM_OC3_PCR;
2468
2469    fore200e->state = FORE200E_STATE_REGISTER;
2470    return 0;
2471}
2472
2473
2474static int fore200e_init(struct fore200e *fore200e, struct device *parent)
 
2475{
2476    if (fore200e_register(fore200e, parent) < 0)
2477	return -ENODEV;
2478    
2479    if (fore200e->bus->configure(fore200e) < 0)
2480	return -ENODEV;
2481
2482    if (fore200e->bus->map(fore200e) < 0)
2483	return -ENODEV;
2484
2485    if (fore200e_reset(fore200e, 1) < 0)
2486	return -ENODEV;
2487
2488    if (fore200e_load_and_start_fw(fore200e) < 0)
2489	return -ENODEV;
2490
2491    if (fore200e_initialize(fore200e) < 0)
2492	return -ENODEV;
2493
2494    if (fore200e_init_cmd_queue(fore200e) < 0)
2495	return -ENOMEM;
2496
2497    if (fore200e_init_tx_queue(fore200e) < 0)
2498	return -ENOMEM;
2499
2500    if (fore200e_init_rx_queue(fore200e) < 0)
2501	return -ENOMEM;
2502
2503    if (fore200e_init_bs_queue(fore200e) < 0)
2504	return -ENOMEM;
2505
2506    if (fore200e_alloc_rx_buf(fore200e) < 0)
2507	return -ENOMEM;
2508
2509    if (fore200e_get_esi(fore200e) < 0)
2510	return -EIO;
2511
2512    if (fore200e_irq_request(fore200e) < 0)
2513	return -EBUSY;
2514
2515    fore200e_supply(fore200e);
2516
2517    /* all done, board initialization is now complete */
2518    fore200e->state = FORE200E_STATE_COMPLETE;
2519    return 0;
2520}
2521
2522#ifdef CONFIG_SBUS
2523static const struct of_device_id fore200e_sba_match[];
2524static int fore200e_sba_probe(struct platform_device *op)
2525{
2526	const struct of_device_id *match;
 
2527	struct fore200e *fore200e;
2528	static int index = 0;
2529	int err;
2530
2531	match = of_match_device(fore200e_sba_match, &op->dev);
2532	if (!match)
2533		return -EINVAL;
 
2534
2535	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2536	if (!fore200e)
2537		return -ENOMEM;
2538
2539	fore200e->bus = &fore200e_sbus_ops;
2540	fore200e->dev = &op->dev;
2541	fore200e->irq = op->archdata.irqs[0];
2542	fore200e->phys_base = op->resource[0].start;
2543
2544	sprintf(fore200e->name, "SBA-200E-%d", index);
2545
2546	err = fore200e_init(fore200e, &op->dev);
2547	if (err < 0) {
2548		fore200e_shutdown(fore200e);
2549		kfree(fore200e);
2550		return err;
2551	}
2552
2553	index++;
2554	dev_set_drvdata(&op->dev, fore200e);
2555
2556	return 0;
2557}
2558
2559static int fore200e_sba_remove(struct platform_device *op)
2560{
2561	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2562
2563	fore200e_shutdown(fore200e);
2564	kfree(fore200e);
2565
2566	return 0;
2567}
2568
2569static const struct of_device_id fore200e_sba_match[] = {
2570	{
2571		.name = SBA200E_PROM_NAME,
 
2572	},
2573	{},
2574};
2575MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2576
2577static struct platform_driver fore200e_sba_driver = {
2578	.driver = {
2579		.name = "fore_200e",
 
2580		.of_match_table = fore200e_sba_match,
2581	},
2582	.probe		= fore200e_sba_probe,
2583	.remove		= fore200e_sba_remove,
2584};
2585#endif
2586
2587#ifdef CONFIG_PCI
2588static int fore200e_pca_detect(struct pci_dev *pci_dev,
2589			       const struct pci_device_id *pci_ent)
2590{
 
2591    struct fore200e* fore200e;
2592    int err = 0;
2593    static int index = 0;
2594
2595    if (pci_enable_device(pci_dev)) {
2596	err = -EINVAL;
2597	goto out;
2598    }
2599
2600    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2601	err = -EINVAL;
2602	goto out;
2603    }
2604    
2605    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2606    if (fore200e == NULL) {
2607	err = -ENOMEM;
2608	goto out_disable;
2609    }
2610
2611    fore200e->bus       = &fore200e_pci_ops;
2612    fore200e->dev	= &pci_dev->dev;
2613    fore200e->irq       = pci_dev->irq;
2614    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2615
2616    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2617
2618    pci_set_master(pci_dev);
2619
2620    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
 
2621	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2622
2623    sprintf(fore200e->name, "PCA-200E-%d", index);
2624
2625    err = fore200e_init(fore200e, &pci_dev->dev);
2626    if (err < 0) {
2627	fore200e_shutdown(fore200e);
2628	goto out_free;
2629    }
2630
2631    ++index;
2632    pci_set_drvdata(pci_dev, fore200e);
2633
2634out:
2635    return err;
2636
2637out_free:
2638    kfree(fore200e);
2639out_disable:
2640    pci_disable_device(pci_dev);
2641    goto out;
2642}
2643
2644
2645static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2646{
2647    struct fore200e *fore200e;
2648
2649    fore200e = pci_get_drvdata(pci_dev);
2650
2651    fore200e_shutdown(fore200e);
2652    kfree(fore200e);
2653    pci_disable_device(pci_dev);
2654}
2655
2656
2657static const struct pci_device_id fore200e_pca_tbl[] = {
2658    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
 
2659    { 0, }
2660};
2661
2662MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2663
2664static struct pci_driver fore200e_pca_driver = {
2665    .name =     "fore_200e",
2666    .probe =    fore200e_pca_detect,
2667    .remove =   fore200e_pca_remove_one,
2668    .id_table = fore200e_pca_tbl,
2669};
2670#endif
2671
2672static int __init fore200e_module_init(void)
2673{
2674	int err = 0;
2675
2676	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2677
2678#ifdef CONFIG_SBUS
2679	err = platform_driver_register(&fore200e_sba_driver);
2680	if (err)
2681		return err;
2682#endif
2683
2684#ifdef CONFIG_PCI
2685	err = pci_register_driver(&fore200e_pca_driver);
2686#endif
2687
2688#ifdef CONFIG_SBUS
2689	if (err)
2690		platform_driver_unregister(&fore200e_sba_driver);
2691#endif
2692
2693	return err;
2694}
2695
2696static void __exit fore200e_module_cleanup(void)
2697{
2698#ifdef CONFIG_PCI
2699	pci_unregister_driver(&fore200e_pca_driver);
2700#endif
2701#ifdef CONFIG_SBUS
2702	platform_driver_unregister(&fore200e_sba_driver);
2703#endif
2704}
2705
2706static int
2707fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2708{
2709    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2710    struct fore200e_vcc* fore200e_vcc;
2711    struct atm_vcc*      vcc;
2712    int                  i, len, left = *pos;
2713    unsigned long        flags;
2714
2715    if (!left--) {
2716
2717	if (fore200e_getstats(fore200e) < 0)
2718	    return -EIO;
2719
2720	len = sprintf(page,"\n"
2721		       " device:\n"
2722		       "   internal name:\t\t%s\n", fore200e->name);
2723
2724	/* print bus-specific information */
2725	if (fore200e->bus->proc_read)
2726	    len += fore200e->bus->proc_read(fore200e, page + len);
2727	
2728	len += sprintf(page + len,
2729		"   interrupt line:\t\t%s\n"
2730		"   physical base address:\t0x%p\n"
2731		"   virtual base address:\t0x%p\n"
2732		"   factory address (ESI):\t%pM\n"
2733		"   board serial number:\t\t%d\n\n",
2734		fore200e_irq_itoa(fore200e->irq),
2735		(void*)fore200e->phys_base,
2736		fore200e->virt_base,
2737		fore200e->esi,
2738		fore200e->esi[4] * 256 + fore200e->esi[5]);
2739
2740	return len;
2741    }
2742
2743    if (!left--)
2744	return sprintf(page,
2745		       "   free small bufs, scheme 1:\t%d\n"
2746		       "   free large bufs, scheme 1:\t%d\n"
2747		       "   free small bufs, scheme 2:\t%d\n"
2748		       "   free large bufs, scheme 2:\t%d\n",
2749		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2750		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2751		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2753
2754    if (!left--) {
2755	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2756
2757	len = sprintf(page,"\n\n"
2758		      " cell processor:\n"
2759		      "   heartbeat state:\t\t");
2760	
2761	if (hb >> 16 != 0xDEAD)
2762	    len += sprintf(page + len, "0x%08x\n", hb);
2763	else
2764	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2765
2766	return len;
2767    }
2768
2769    if (!left--) {
2770	static const char* media_name[] = {
2771	    "unshielded twisted pair",
2772	    "multimode optical fiber ST",
2773	    "multimode optical fiber SC",
2774	    "single-mode optical fiber ST",
2775	    "single-mode optical fiber SC",
2776	    "unknown"
2777	};
2778
2779	static const char* oc3_mode[] = {
2780	    "normal operation",
2781	    "diagnostic loopback",
2782	    "line loopback",
2783	    "unknown"
2784	};
2785
2786	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2787	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2788	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2789	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2790	u32 oc3_index;
2791
2792	if (media_index > 4)
2793		media_index = 5;
2794	
2795	switch (fore200e->loop_mode) {
2796	    case ATM_LM_NONE:    oc3_index = 0;
2797		                 break;
2798	    case ATM_LM_LOC_PHY: oc3_index = 1;
2799		                 break;
2800	    case ATM_LM_RMT_PHY: oc3_index = 2;
2801		                 break;
2802	    default:             oc3_index = 3;
2803	}
2804
2805	return sprintf(page,
2806		       "   firmware release:\t\t%d.%d.%d\n"
2807		       "   monitor release:\t\t%d.%d\n"
2808		       "   media type:\t\t\t%s\n"
2809		       "   OC-3 revision:\t\t0x%x\n"
2810                       "   OC-3 mode:\t\t\t%s",
2811		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2812		       mon960_release >> 16, mon960_release << 16 >> 16,
2813		       media_name[ media_index ],
2814		       oc3_revision,
2815		       oc3_mode[ oc3_index ]);
2816    }
2817
2818    if (!left--) {
2819	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2820
2821	return sprintf(page,
2822		       "\n\n"
2823		       " monitor:\n"
2824		       "   version number:\t\t%d\n"
2825		       "   boot status word:\t\t0x%08x\n",
2826		       fore200e->bus->read(&cp_monitor->mon_version),
2827		       fore200e->bus->read(&cp_monitor->bstat));
2828    }
2829
2830    if (!left--)
2831	return sprintf(page,
2832		       "\n"
2833		       " device statistics:\n"
2834		       "  4b5b:\n"
2835		       "     crc_header_errors:\t\t%10u\n"
2836		       "     framing_errors:\t\t%10u\n",
2837		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2838		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2839    
2840    if (!left--)
2841	return sprintf(page, "\n"
2842		       "  OC-3:\n"
2843		       "     section_bip8_errors:\t%10u\n"
2844		       "     path_bip8_errors:\t\t%10u\n"
2845		       "     line_bip24_errors:\t\t%10u\n"
2846		       "     line_febe_errors:\t\t%10u\n"
2847		       "     path_febe_errors:\t\t%10u\n"
2848		       "     corr_hcs_errors:\t\t%10u\n"
2849		       "     ucorr_hcs_errors:\t\t%10u\n",
2850		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2851		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2852		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2853		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2854		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2855		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2856		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2857
2858    if (!left--)
2859	return sprintf(page,"\n"
2860		       "   ATM:\t\t\t\t     cells\n"
2861		       "     TX:\t\t\t%10u\n"
2862		       "     RX:\t\t\t%10u\n"
2863		       "     vpi out of range:\t\t%10u\n"
2864		       "     vpi no conn:\t\t%10u\n"
2865		       "     vci out of range:\t\t%10u\n"
2866		       "     vci no conn:\t\t%10u\n",
2867		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2868		       be32_to_cpu(fore200e->stats->atm.cells_received),
2869		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2870		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2871		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2872		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2873    
2874    if (!left--)
2875	return sprintf(page,"\n"
2876		       "   AAL0:\t\t\t     cells\n"
2877		       "     TX:\t\t\t%10u\n"
2878		       "     RX:\t\t\t%10u\n"
2879		       "     dropped:\t\t\t%10u\n",
2880		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2881		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2882		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2883    
2884    if (!left--)
2885	return sprintf(page,"\n"
2886		       "   AAL3/4:\n"
2887		       "     SAR sublayer:\t\t     cells\n"
2888		       "       TX:\t\t\t%10u\n"
2889		       "       RX:\t\t\t%10u\n"
2890		       "       dropped:\t\t\t%10u\n"
2891		       "       CRC errors:\t\t%10u\n"
2892		       "       protocol errors:\t\t%10u\n\n"
2893		       "     CS  sublayer:\t\t      PDUs\n"
2894		       "       TX:\t\t\t%10u\n"
2895		       "       RX:\t\t\t%10u\n"
2896		       "       dropped:\t\t\t%10u\n"
2897		       "       protocol errors:\t\t%10u\n",
2898		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2899		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2900		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2901		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2902		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2903		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2904		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2905		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2906		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2907    
2908    if (!left--)
2909	return sprintf(page,"\n"
2910		       "   AAL5:\n"
2911		       "     SAR sublayer:\t\t     cells\n"
2912		       "       TX:\t\t\t%10u\n"
2913		       "       RX:\t\t\t%10u\n"
2914		       "       dropped:\t\t\t%10u\n"
2915		       "       congestions:\t\t%10u\n\n"
2916		       "     CS  sublayer:\t\t      PDUs\n"
2917		       "       TX:\t\t\t%10u\n"
2918		       "       RX:\t\t\t%10u\n"
2919		       "       dropped:\t\t\t%10u\n"
2920		       "       CRC errors:\t\t%10u\n"
2921		       "       protocol errors:\t\t%10u\n",
2922		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2923		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2924		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2925		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2926		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2927		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2928		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2929		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2930		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2931    
2932    if (!left--)
2933	return sprintf(page,"\n"
2934		       "   AUX:\t\t       allocation failures\n"
2935		       "     small b1:\t\t\t%10u\n"
2936		       "     large b1:\t\t\t%10u\n"
2937		       "     small b2:\t\t\t%10u\n"
2938		       "     large b2:\t\t\t%10u\n"
2939		       "     RX PDUs:\t\t\t%10u\n"
2940		       "     TX PDUs:\t\t\t%10lu\n",
2941		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2942		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2943		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2944		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2945		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2946		       fore200e->tx_sat);
2947    
2948    if (!left--)
2949	return sprintf(page,"\n"
2950		       " receive carrier:\t\t\t%s\n",
2951		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2952    
2953    if (!left--) {
2954        return sprintf(page,"\n"
2955		       " VCCs:\n  address   VPI VCI   AAL "
2956		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2957    }
2958
2959    for (i = 0; i < NBR_CONNECT; i++) {
2960
2961	vcc = fore200e->vc_map[i].vcc;
2962
2963	if (vcc == NULL)
2964	    continue;
2965
2966	spin_lock_irqsave(&fore200e->q_lock, flags);
2967
2968	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2969
2970	    fore200e_vcc = FORE200E_VCC(vcc);
2971	    ASSERT(fore200e_vcc);
2972
2973	    len = sprintf(page,
2974			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2975			  vcc,
2976			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2977			  fore200e_vcc->tx_pdu,
2978			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2979			  fore200e_vcc->tx_max_pdu,
2980			  fore200e_vcc->rx_pdu,
2981			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2982			  fore200e_vcc->rx_max_pdu);
2983
2984	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2985	    return len;
2986	}
2987
2988	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2989    }
2990    
2991    return 0;
2992}
2993
2994module_init(fore200e_module_init);
2995module_exit(fore200e_module_cleanup);
2996
2997
2998static const struct atmdev_ops fore200e_ops = {
 
2999	.open       = fore200e_open,
3000	.close      = fore200e_close,
3001	.ioctl      = fore200e_ioctl,
 
 
3002	.send       = fore200e_send,
3003	.change_qos = fore200e_change_qos,
3004	.proc_read  = fore200e_proc_read,
3005	.owner      = THIS_MODULE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006};
3007
3008MODULE_LICENSE("GPL");
3009#ifdef CONFIG_PCI
3010#ifdef __LITTLE_ENDIAN__
3011MODULE_FIRMWARE("pca200e.bin");
3012#else
3013MODULE_FIRMWARE("pca200e_ecd.bin2");
3014#endif
3015#endif /* CONFIG_PCI */
3016#ifdef CONFIG_SBUS
3017MODULE_FIRMWARE("sba200e_ecd.bin2");
3018#endif