Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100				    __func__, __LINE__, #expr); \
 101			     panic(FORE200E "%s", __func__); \
 102			 }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183	alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191	return -ENOMEM;
 192
 193    if (alignment > 0)
 194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 210
 211    kfree(chunk->alloc_addr);
 212}
 213
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232	    break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239	       *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254	if ((ok = (fore200e->bus->read(addr) == val)))
 255	    break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262	       fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283		    struct chunk* data = &buffer[ nbr ].data;
 284
 285		    if (data->alloc_addr != NULL)
 286			fore200e_chunk_free(fore200e, data);
 287		}
 288	    }
 289	}
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304	    
 305	    if (status->alloc_addr)
 306		fore200e->bus->dma_chunk_free(fore200e, status);
 307	    
 308	    if (rbd_block->alloc_addr)
 309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310	}
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328	if (ok == 0) {
 329	    
 330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331	    return -ENODEV;
 332	}
 333
 334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335	
 336	fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347	   fore200e->name, fore200e->phys_base, 
 348	   fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351	/* first, reset the board to prevent further interrupts or data transfers */
 352	fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359	kfree(fore200e->stats);
 360
 361    case FORE200E_STATE_IRQ:
 362	free_irq(fore200e->irq, fore200e->atm_dev);
 363
 364    case FORE200E_STATE_ALLOC_BUF:
 365	fore200e_free_rx_buf(fore200e);
 366
 367    case FORE200E_STATE_INIT_BSQ:
 368	fore200e_uninit_bs_queue(fore200e);
 369
 370    case FORE200E_STATE_INIT_RXQ:
 371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 374    case FORE200E_STATE_INIT_TXQ:
 375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 378    case FORE200E_STATE_INIT_CMDQ:
 379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 381    case FORE200E_STATE_INITIALIZE:
 382	/* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385	/* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388	/* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391	fore200e->bus->unmap(fore200e);
 392
 393    case FORE200E_STATE_CONFIGURE:
 394	/* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397	/* XXX shouldn't we *start* by deregistering the device? */
 398	atm_dev_deregister(fore200e->atm_dev);
 399
 400    case FORE200E_STATE_BLANK:
 401	/* nothing to do for that state */
 402	break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431	    virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441	    dma_addr, size, direction);
 442
 443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469			     int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
 474					     chunk->alloc_size,
 475					     &chunk->dma_addr);
 
 476    
 477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 478	return -ENOMEM;
 479
 480    chunk->align_addr = chunk->alloc_addr;
 481    
 482    return 0;
 483}
 484
 485
 486/* free a DMA consistent chunk of memory */
 487
 488static void
 489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 490{
 491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
 492			chunk->alloc_size,
 493			chunk->alloc_addr,
 494			chunk->dma_addr);
 495}
 496
 497
 498static int
 499fore200e_pca_irq_check(struct fore200e* fore200e)
 500{
 501    /* this is a 1 bit register */
 502    int irq_posted = readl(fore200e->regs.pca.psr);
 503
 504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 506	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 507    }
 508#endif
 509
 510    return irq_posted;
 511}
 512
 513
 514static void
 515fore200e_pca_irq_ack(struct fore200e* fore200e)
 516{
 517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 518}
 519
 520
 521static void
 522fore200e_pca_reset(struct fore200e* fore200e)
 523{
 524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 525    fore200e_spin(10);
 526    writel(0, fore200e->regs.pca.hcr);
 527}
 528
 529
 530static int __devinit
 531fore200e_pca_map(struct fore200e* fore200e)
 532{
 533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 534
 535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 536    
 537    if (fore200e->virt_base == NULL) {
 538	printk(FORE200E "can't map device %s\n", fore200e->name);
 539	return -EFAULT;
 540    }
 541
 542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 543
 544    /* gain access to the PCA specific registers  */
 545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 548
 549    fore200e->state = FORE200E_STATE_MAP;
 550    return 0;
 551}
 552
 553
 554static void
 555fore200e_pca_unmap(struct fore200e* fore200e)
 556{
 557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 558
 559    if (fore200e->virt_base != NULL)
 560	iounmap(fore200e->virt_base);
 561}
 562
 563
 564static int __devinit
 565fore200e_pca_configure(struct fore200e* fore200e)
 566{
 567    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 568    u8              master_ctrl, latency;
 569
 570    DPRINTK(2, "device %s being configured\n", fore200e->name);
 571
 572    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 573	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 574	return -EIO;
 575    }
 576
 577    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 578
 579    master_ctrl = master_ctrl
 580#if defined(__BIG_ENDIAN)
 581	/* request the PCA board to convert the endianess of slave RAM accesses */
 582	| PCA200E_CTRL_CONVERT_ENDIAN
 583#endif
 584#if 0
 585        | PCA200E_CTRL_DIS_CACHE_RD
 586        | PCA200E_CTRL_DIS_WRT_INVAL
 587        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 588        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 589#endif
 590	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 591    
 592    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 593
 594    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 595       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 596       this may impact the performances of other PCI devices on the same bus, though */
 597    latency = 192;
 598    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 599
 600    fore200e->state = FORE200E_STATE_CONFIGURE;
 601    return 0;
 602}
 603
 604
 605static int __init
 606fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 607{
 608    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 609    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 610    struct prom_opcode      opcode;
 611    int                     ok;
 612    u32                     prom_dma;
 613
 614    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 615
 616    opcode.opcode = OPCODE_GET_PROM;
 617    opcode.pad    = 0;
 618
 619    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 620
 621    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 622    
 623    *entry->status = STATUS_PENDING;
 624
 625    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 626
 627    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 628
 629    *entry->status = STATUS_FREE;
 630
 631    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 632
 633    if (ok == 0) {
 634	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 635	return -EIO;
 636    }
 637
 638#if defined(__BIG_ENDIAN)
 639    
 640#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 641
 642    /* MAC address is stored as little-endian */
 643    swap_here(&prom->mac_addr[0]);
 644    swap_here(&prom->mac_addr[4]);
 645#endif
 646    
 647    return 0;
 648}
 649
 650
 651static int
 652fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 653{
 654    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 655
 656    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 657		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 658}
 659
 660#endif /* CONFIG_PCI */
 661
 662
 663#ifdef CONFIG_SBUS
 664
 665static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 666{
 667    return sbus_readl(addr);
 668}
 669
 670static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 671{
 672    sbus_writel(val, addr);
 673}
 674
 675static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 676{
 677	struct platform_device *op = fore200e->bus_dev;
 678	u32 dma_addr;
 679
 680	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 681
 682	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 683		virt_addr, size, direction, dma_addr);
 684    
 685	return dma_addr;
 686}
 687
 688static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 689{
 690	struct platform_device *op = fore200e->bus_dev;
 691
 692	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 693		dma_addr, size, direction);
 694
 695	dma_unmap_single(&op->dev, dma_addr, size, direction);
 696}
 697
 698static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 699{
 700	struct platform_device *op = fore200e->bus_dev;
 701
 702	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 703    
 704	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 705}
 706
 707static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 708{
 709	struct platform_device *op = fore200e->bus_dev;
 710
 711	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 712
 713	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 714}
 715
 716/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 717 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 718 */
 719static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 720					int size, int nbr, int alignment)
 721{
 722	struct platform_device *op = fore200e->bus_dev;
 723
 724	chunk->alloc_size = chunk->align_size = size * nbr;
 725
 726	/* returned chunks are page-aligned */
 727	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 728					       &chunk->dma_addr, GFP_ATOMIC);
 729
 730	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 731		return -ENOMEM;
 732
 733	chunk->align_addr = chunk->alloc_addr;
 734    
 735	return 0;
 736}
 737
 738/* free a DVMA consistent chunk of memory */
 739static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 740{
 741	struct platform_device *op = fore200e->bus_dev;
 742
 743	dma_free_coherent(&op->dev, chunk->alloc_size,
 744			  chunk->alloc_addr, chunk->dma_addr);
 745}
 746
 747static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 748{
 749	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 750	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 751}
 752
 753static int fore200e_sba_irq_check(struct fore200e *fore200e)
 754{
 755	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 756}
 757
 758static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 759{
 760	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 761	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 762}
 763
 764static void fore200e_sba_reset(struct fore200e *fore200e)
 765{
 766	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 767	fore200e_spin(10);
 768	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 769}
 770
 771static int __init fore200e_sba_map(struct fore200e *fore200e)
 772{
 773	struct platform_device *op = fore200e->bus_dev;
 774	unsigned int bursts;
 775
 776	/* gain access to the SBA specific registers  */
 777	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 778	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 779	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 780	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 781
 782	if (!fore200e->virt_base) {
 783		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 784		return -EFAULT;
 785	}
 786
 787	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 788    
 789	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 790
 791	/* get the supported DVMA burst sizes */
 792	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 793
 794	if (sbus_can_dma_64bit())
 795		sbus_set_sbus64(&op->dev, bursts);
 796
 797	fore200e->state = FORE200E_STATE_MAP;
 798	return 0;
 799}
 800
 801static void fore200e_sba_unmap(struct fore200e *fore200e)
 802{
 803	struct platform_device *op = fore200e->bus_dev;
 804
 805	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 806	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 807	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 808	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 809}
 810
 811static int __init fore200e_sba_configure(struct fore200e *fore200e)
 812{
 813	fore200e->state = FORE200E_STATE_CONFIGURE;
 814	return 0;
 815}
 816
 817static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 818{
 819	struct platform_device *op = fore200e->bus_dev;
 820	const u8 *prop;
 821	int len;
 822
 823	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 824	if (!prop)
 825		return -ENODEV;
 826	memcpy(&prom->mac_addr[4], prop, 4);
 827
 828	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 829	if (!prop)
 830		return -ENODEV;
 831	memcpy(&prom->mac_addr[2], prop, 4);
 832
 833	prom->serial_number = of_getintprop_default(op->dev.of_node,
 834						    "serialnumber", 0);
 835	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 836						  "promversion", 0);
 837    
 838	return 0;
 839}
 840
 841static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 842{
 843	struct platform_device *op = fore200e->bus_dev;
 844	const struct linux_prom_registers *regs;
 845
 846	regs = of_get_property(op->dev.of_node, "reg", NULL);
 847
 848	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 849		       (regs ? regs->which_io : 0), op->dev.of_node->name);
 850}
 851#endif /* CONFIG_SBUS */
 852
 853
 854static void
 855fore200e_tx_irq(struct fore200e* fore200e)
 856{
 857    struct host_txq*        txq = &fore200e->host_txq;
 858    struct host_txq_entry*  entry;
 859    struct atm_vcc*         vcc;
 860    struct fore200e_vc_map* vc_map;
 861
 862    if (fore200e->host_txq.txing == 0)
 863	return;
 864
 865    for (;;) {
 866	
 867	entry = &txq->host_entry[ txq->tail ];
 868
 869        if ((*entry->status & STATUS_COMPLETE) == 0) {
 870	    break;
 871	}
 872
 873	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 874		entry, txq->tail, entry->vc_map, entry->skb);
 875
 876	/* free copy of misaligned data */
 877	kfree(entry->data);
 878	
 879	/* remove DMA mapping */
 880	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 881				 DMA_TO_DEVICE);
 882
 883	vc_map = entry->vc_map;
 884
 885	/* vcc closed since the time the entry was submitted for tx? */
 886	if ((vc_map->vcc == NULL) ||
 887	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 888
 889	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 890		    fore200e->atm_dev->number);
 891
 892	    dev_kfree_skb_any(entry->skb);
 893	}
 894	else {
 895	    ASSERT(vc_map->vcc);
 896
 897	    /* vcc closed then immediately re-opened? */
 898	    if (vc_map->incarn != entry->incarn) {
 899
 900		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 901		   if the same vcc is immediately re-opened, those pending PDUs must
 902		   not be popped after the completion of their emission, as they refer
 903		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 904		   would be decremented by the size of the (unrelated) skb, possibly
 905		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 906		   we thus bind the tx entry to the current incarnation of the vcc
 907		   when the entry is submitted for tx. When the tx later completes,
 908		   if the incarnation number of the tx entry does not match the one
 909		   of the vcc, then this implies that the vcc has been closed then re-opened.
 910		   we thus just drop the skb here. */
 911
 912		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 913			fore200e->atm_dev->number);
 914
 915		dev_kfree_skb_any(entry->skb);
 916	    }
 917	    else {
 918		vcc = vc_map->vcc;
 919		ASSERT(vcc);
 920
 921		/* notify tx completion */
 922		if (vcc->pop) {
 923		    vcc->pop(vcc, entry->skb);
 924		}
 925		else {
 926		    dev_kfree_skb_any(entry->skb);
 927		}
 928#if 1
 929		/* race fixed by the above incarnation mechanism, but... */
 930		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 931		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 932		}
 933#endif
 934		/* check error condition */
 935		if (*entry->status & STATUS_ERROR)
 936		    atomic_inc(&vcc->stats->tx_err);
 937		else
 938		    atomic_inc(&vcc->stats->tx);
 939	    }
 940	}
 941
 942	*entry->status = STATUS_FREE;
 943
 944	fore200e->host_txq.txing--;
 945
 946	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 947    }
 948}
 949
 950
 951#ifdef FORE200E_BSQ_DEBUG
 952int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 953{
 954    struct buffer* buffer;
 955    int count = 0;
 956
 957    buffer = bsq->freebuf;
 958    while (buffer) {
 959
 960	if (buffer->supplied) {
 961	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 962		   where, scheme, magn, buffer->index);
 963	}
 964
 965	if (buffer->magn != magn) {
 966	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 967		   where, scheme, magn, buffer->index, buffer->magn);
 968	}
 969
 970	if (buffer->scheme != scheme) {
 971	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 972		   where, scheme, magn, buffer->index, buffer->scheme);
 973	}
 974
 975	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 976	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 977		   where, scheme, magn, buffer->index);
 978	}
 979
 980	count++;
 981	buffer = buffer->next;
 982    }
 983
 984    if (count != bsq->freebuf_count) {
 985	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 986	       where, scheme, magn, count, bsq->freebuf_count);
 987    }
 988    return 0;
 989}
 990#endif
 991
 992
 993static void
 994fore200e_supply(struct fore200e* fore200e)
 995{
 996    int  scheme, magn, i;
 997
 998    struct host_bsq*       bsq;
 999    struct host_bsq_entry* entry;
1000    struct buffer*         buffer;
1001
1002    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1003	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1004
1005	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1006
1007#ifdef FORE200E_BSQ_DEBUG
1008	    bsq_audit(1, bsq, scheme, magn);
1009#endif
1010	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1011
1012		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1013			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1014
1015		entry = &bsq->host_entry[ bsq->head ];
1016
1017		for (i = 0; i < RBD_BLK_SIZE; i++) {
1018
1019		    /* take the first buffer in the free buffer list */
1020		    buffer = bsq->freebuf;
1021		    if (!buffer) {
1022			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1023			       scheme, magn, bsq->freebuf_count);
1024			return;
1025		    }
1026		    bsq->freebuf = buffer->next;
1027		    
1028#ifdef FORE200E_BSQ_DEBUG
1029		    if (buffer->supplied)
1030			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1031			       scheme, magn, buffer->index);
1032		    buffer->supplied = 1;
1033#endif
1034		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1035		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1036		}
1037
1038		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1039
1040 		/* decrease accordingly the number of free rx buffers */
1041		bsq->freebuf_count -= RBD_BLK_SIZE;
1042
1043		*entry->status = STATUS_PENDING;
1044		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1045	    }
1046	}
1047    }
1048}
1049
1050
1051static int
1052fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1053{
1054    struct sk_buff*      skb;
1055    struct buffer*       buffer;
1056    struct fore200e_vcc* fore200e_vcc;
1057    int                  i, pdu_len = 0;
1058#ifdef FORE200E_52BYTE_AAL0_SDU
1059    u32                  cell_header = 0;
1060#endif
1061
1062    ASSERT(vcc);
1063    
1064    fore200e_vcc = FORE200E_VCC(vcc);
1065    ASSERT(fore200e_vcc);
1066
1067#ifdef FORE200E_52BYTE_AAL0_SDU
1068    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1069
1070	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1071	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1072                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1073                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1074                       rpd->atm_header.clp;
1075	pdu_len = 4;
1076    }
1077#endif
1078    
1079    /* compute total PDU length */
1080    for (i = 0; i < rpd->nseg; i++)
1081	pdu_len += rpd->rsd[ i ].length;
1082    
1083    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1084    if (skb == NULL) {
1085	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1086
1087	atomic_inc(&vcc->stats->rx_drop);
1088	return -ENOMEM;
1089    } 
1090
1091    __net_timestamp(skb);
1092    
1093#ifdef FORE200E_52BYTE_AAL0_SDU
1094    if (cell_header) {
1095	*((u32*)skb_put(skb, 4)) = cell_header;
1096    }
1097#endif
1098
1099    /* reassemble segments */
1100    for (i = 0; i < rpd->nseg; i++) {
1101	
1102	/* rebuild rx buffer address from rsd handle */
1103	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1104	
1105	/* Make device DMA transfer visible to CPU.  */
1106	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1107	
1108	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1109
1110	/* Now let the device get at it again.  */
1111	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1112    }
1113
1114    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1115    
1116    if (pdu_len < fore200e_vcc->rx_min_pdu)
1117	fore200e_vcc->rx_min_pdu = pdu_len;
1118    if (pdu_len > fore200e_vcc->rx_max_pdu)
1119	fore200e_vcc->rx_max_pdu = pdu_len;
1120    fore200e_vcc->rx_pdu++;
1121
1122    /* push PDU */
1123    if (atm_charge(vcc, skb->truesize) == 0) {
1124
1125	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1126		vcc->itf, vcc->vpi, vcc->vci);
1127
1128	dev_kfree_skb_any(skb);
1129
1130	atomic_inc(&vcc->stats->rx_drop);
1131	return -ENOMEM;
1132    }
1133
1134    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1135
1136    vcc->push(vcc, skb);
1137    atomic_inc(&vcc->stats->rx);
1138
1139    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1140
1141    return 0;
1142}
1143
1144
1145static void
1146fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1147{
1148    struct host_bsq* bsq;
1149    struct buffer*   buffer;
1150    int              i;
1151    
1152    for (i = 0; i < rpd->nseg; i++) {
1153
1154	/* rebuild rx buffer address from rsd handle */
1155	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1156
1157	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1158
1159#ifdef FORE200E_BSQ_DEBUG
1160	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1161
1162	if (buffer->supplied == 0)
1163	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1164		   buffer->scheme, buffer->magn, buffer->index);
1165	buffer->supplied = 0;
1166#endif
1167
1168	/* re-insert the buffer into the free buffer list */
1169	buffer->next = bsq->freebuf;
1170	bsq->freebuf = buffer;
1171
1172	/* then increment the number of free rx buffers */
1173	bsq->freebuf_count++;
1174    }
1175}
1176
1177
1178static void
1179fore200e_rx_irq(struct fore200e* fore200e)
1180{
1181    struct host_rxq*        rxq = &fore200e->host_rxq;
1182    struct host_rxq_entry*  entry;
1183    struct atm_vcc*         vcc;
1184    struct fore200e_vc_map* vc_map;
1185
1186    for (;;) {
1187	
1188	entry = &rxq->host_entry[ rxq->head ];
1189
1190	/* no more received PDUs */
1191	if ((*entry->status & STATUS_COMPLETE) == 0)
1192	    break;
1193
1194	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1195
1196	if ((vc_map->vcc == NULL) ||
1197	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1198
1199	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1200		    fore200e->atm_dev->number,
1201		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1202	}
1203	else {
1204	    vcc = vc_map->vcc;
1205	    ASSERT(vcc);
1206
1207	    if ((*entry->status & STATUS_ERROR) == 0) {
1208
1209		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1210	    }
1211	    else {
1212		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1213			fore200e->atm_dev->number,
1214			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1215		atomic_inc(&vcc->stats->rx_err);
1216	    }
1217	}
1218
1219	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1220
1221	fore200e_collect_rpd(fore200e, entry->rpd);
1222
1223	/* rewrite the rpd address to ack the received PDU */
1224	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1225	*entry->status = STATUS_FREE;
1226
1227	fore200e_supply(fore200e);
1228    }
1229}
1230
1231
1232#ifndef FORE200E_USE_TASKLET
1233static void
1234fore200e_irq(struct fore200e* fore200e)
1235{
1236    unsigned long flags;
1237
1238    spin_lock_irqsave(&fore200e->q_lock, flags);
1239    fore200e_rx_irq(fore200e);
1240    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1241
1242    spin_lock_irqsave(&fore200e->q_lock, flags);
1243    fore200e_tx_irq(fore200e);
1244    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1245}
1246#endif
1247
1248
1249static irqreturn_t
1250fore200e_interrupt(int irq, void* dev)
1251{
1252    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1253
1254    if (fore200e->bus->irq_check(fore200e) == 0) {
1255	
1256	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1257	return IRQ_NONE;
1258    }
1259    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1260
1261#ifdef FORE200E_USE_TASKLET
1262    tasklet_schedule(&fore200e->tx_tasklet);
1263    tasklet_schedule(&fore200e->rx_tasklet);
1264#else
1265    fore200e_irq(fore200e);
1266#endif
1267    
1268    fore200e->bus->irq_ack(fore200e);
1269    return IRQ_HANDLED;
1270}
1271
1272
1273#ifdef FORE200E_USE_TASKLET
1274static void
1275fore200e_tx_tasklet(unsigned long data)
1276{
1277    struct fore200e* fore200e = (struct fore200e*) data;
1278    unsigned long flags;
1279
1280    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1281
1282    spin_lock_irqsave(&fore200e->q_lock, flags);
1283    fore200e_tx_irq(fore200e);
1284    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1285}
1286
1287
1288static void
1289fore200e_rx_tasklet(unsigned long data)
1290{
1291    struct fore200e* fore200e = (struct fore200e*) data;
1292    unsigned long    flags;
1293
1294    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1295
1296    spin_lock_irqsave(&fore200e->q_lock, flags);
1297    fore200e_rx_irq((struct fore200e*) data);
1298    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1299}
1300#endif
1301
1302
1303static int
1304fore200e_select_scheme(struct atm_vcc* vcc)
1305{
1306    /* fairly balance the VCs over (identical) buffer schemes */
1307    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1308
1309    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1310	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1311
1312    return scheme;
1313}
1314
1315
1316static int 
1317fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1318{
1319    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1320    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1321    struct activate_opcode   activ_opcode;
1322    struct deactivate_opcode deactiv_opcode;
1323    struct vpvc              vpvc;
1324    int                      ok;
1325    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1326
1327    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1328    
1329    if (activate) {
1330	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1331	
1332	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1333	activ_opcode.aal    = aal;
1334	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1335	activ_opcode.pad    = 0;
1336    }
1337    else {
1338	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1339	deactiv_opcode.pad    = 0;
1340    }
1341
1342    vpvc.vci = vcc->vci;
1343    vpvc.vpi = vcc->vpi;
1344
1345    *entry->status = STATUS_PENDING;
1346
1347    if (activate) {
1348
1349#ifdef FORE200E_52BYTE_AAL0_SDU
1350	mtu = 48;
1351#endif
1352	/* the MTU is not used by the cp, except in the case of AAL0 */
1353	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1354	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1355	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1356    }
1357    else {
1358	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1359	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1360    }
1361
1362    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1363
1364    *entry->status = STATUS_FREE;
1365
1366    if (ok == 0) {
1367	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1368	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1369	return -EIO;
1370    }
1371
1372    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1373	    activate ? "open" : "clos");
1374
1375    return 0;
1376}
1377
1378
1379#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1380
1381static void
1382fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1383{
1384    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1385    
1386	/* compute the data cells to idle cells ratio from the tx PCR */
1387	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1388	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1389    }
1390    else {
1391	/* disable rate control */
1392	rate->data_cells = rate->idle_cells = 0;
1393    }
1394}
1395
1396
1397static int
1398fore200e_open(struct atm_vcc *vcc)
1399{
1400    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1401    struct fore200e_vcc*    fore200e_vcc;
1402    struct fore200e_vc_map* vc_map;
1403    unsigned long	    flags;
1404    int			    vci = vcc->vci;
1405    short		    vpi = vcc->vpi;
1406
1407    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1408    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1409
1410    spin_lock_irqsave(&fore200e->q_lock, flags);
1411
1412    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1413    if (vc_map->vcc) {
1414
1415	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417	printk(FORE200E "VC %d.%d.%d already in use\n",
1418	       fore200e->atm_dev->number, vpi, vci);
1419
1420	return -EINVAL;
1421    }
1422
1423    vc_map->vcc = vcc;
1424
1425    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1426
1427    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1428    if (fore200e_vcc == NULL) {
1429	vc_map->vcc = NULL;
1430	return -ENOMEM;
1431    }
1432
1433    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1434	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1435	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1436	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1437	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1438	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1439	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1440    
1441    /* pseudo-CBR bandwidth requested? */
1442    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1443	
1444	mutex_lock(&fore200e->rate_mtx);
1445	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1446	    mutex_unlock(&fore200e->rate_mtx);
1447
1448	    kfree(fore200e_vcc);
1449	    vc_map->vcc = NULL;
1450	    return -EAGAIN;
1451	}
1452
1453	/* reserve bandwidth */
1454	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1455	mutex_unlock(&fore200e->rate_mtx);
1456    }
1457    
1458    vcc->itf = vcc->dev->number;
1459
1460    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1461    set_bit(ATM_VF_ADDR, &vcc->flags);
1462
1463    vcc->dev_data = fore200e_vcc;
1464    
1465    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1466
1467	vc_map->vcc = NULL;
1468
1469	clear_bit(ATM_VF_ADDR, &vcc->flags);
1470	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1471
1472	vcc->dev_data = NULL;
1473
1474	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1475
1476	kfree(fore200e_vcc);
1477	return -EINVAL;
1478    }
1479    
1480    /* compute rate control parameters */
1481    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1482	
1483	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1484	set_bit(ATM_VF_HASQOS, &vcc->flags);
1485
1486	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1487		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1488		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1489		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1490    }
1491    
1492    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1493    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1494    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1495
1496    /* new incarnation of the vcc */
1497    vc_map->incarn = ++fore200e->incarn_count;
1498
1499    /* VC unusable before this flag is set */
1500    set_bit(ATM_VF_READY, &vcc->flags);
1501
1502    return 0;
1503}
1504
1505
1506static void
1507fore200e_close(struct atm_vcc* vcc)
1508{
1509    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1510    struct fore200e_vcc*    fore200e_vcc;
1511    struct fore200e_vc_map* vc_map;
1512    unsigned long           flags;
1513
1514    ASSERT(vcc);
1515    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517
1518    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519
1520    clear_bit(ATM_VF_READY, &vcc->flags);
1521
1522    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523
1524    spin_lock_irqsave(&fore200e->q_lock, flags);
1525
1526    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527
1528    /* the vc is no longer considered as "in use" by fore200e_open() */
1529    vc_map->vcc = NULL;
1530
1531    vcc->itf = vcc->vci = vcc->vpi = 0;
1532
1533    fore200e_vcc = FORE200E_VCC(vcc);
1534    vcc->dev_data = NULL;
1535
1536    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537
1538    /* release reserved bandwidth, if any */
1539    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540
1541	mutex_lock(&fore200e->rate_mtx);
1542	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543	mutex_unlock(&fore200e->rate_mtx);
1544
1545	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546    }
1547
1548    clear_bit(ATM_VF_ADDR, &vcc->flags);
1549    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550
1551    ASSERT(fore200e_vcc);
1552    kfree(fore200e_vcc);
1553}
1554
1555
1556static int
1557fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558{
1559    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1560    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1561    struct fore200e_vc_map* vc_map;
1562    struct host_txq*        txq          = &fore200e->host_txq;
1563    struct host_txq_entry*  entry;
1564    struct tpd*             tpd;
1565    struct tpd_haddr        tpd_haddr;
1566    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1567    int                     tx_copy      = 0;
1568    int                     tx_len       = skb->len;
1569    u32*                    cell_header  = NULL;
1570    unsigned char*          skb_data;
1571    int                     skb_len;
1572    unsigned char*          data;
1573    unsigned long           flags;
1574
1575    ASSERT(vcc);
1576    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1577    ASSERT(fore200e);
1578    ASSERT(fore200e_vcc);
1579
1580    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1581	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1582	dev_kfree_skb_any(skb);
1583	return -EINVAL;
1584    }
1585
1586#ifdef FORE200E_52BYTE_AAL0_SDU
1587    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1588	cell_header = (u32*) skb->data;
1589	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1590	skb_len     = tx_len = skb->len  - 4;
1591
1592	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1593    }
1594    else 
1595#endif
1596    {
1597	skb_data = skb->data;
1598	skb_len  = skb->len;
1599    }
1600    
1601    if (((unsigned long)skb_data) & 0x3) {
1602
1603	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1604	tx_copy = 1;
1605	tx_len  = skb_len;
1606    }
1607
1608    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1609
1610        /* this simply NUKES the PCA board */
1611	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1612	tx_copy = 1;
1613	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1614    }
1615    
1616    if (tx_copy) {
1617	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1618	if (data == NULL) {
1619	    if (vcc->pop) {
1620		vcc->pop(vcc, skb);
1621	    }
1622	    else {
1623		dev_kfree_skb_any(skb);
1624	    }
1625	    return -ENOMEM;
1626	}
1627
1628	memcpy(data, skb_data, skb_len);
1629	if (skb_len < tx_len)
1630	    memset(data + skb_len, 0x00, tx_len - skb_len);
1631    }
1632    else {
1633	data = skb_data;
1634    }
1635
1636    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1637    ASSERT(vc_map->vcc == vcc);
1638
1639  retry_here:
1640
1641    spin_lock_irqsave(&fore200e->q_lock, flags);
1642
1643    entry = &txq->host_entry[ txq->head ];
1644
1645    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1646
1647	/* try to free completed tx queue entries */
1648	fore200e_tx_irq(fore200e);
1649
1650	if (*entry->status != STATUS_FREE) {
1651
1652	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1653
1654	    /* retry once again? */
1655	    if (--retry > 0) {
1656		udelay(50);
1657		goto retry_here;
1658	    }
1659
1660	    atomic_inc(&vcc->stats->tx_err);
1661
1662	    fore200e->tx_sat++;
1663	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1664		    fore200e->name, fore200e->cp_queues->heartbeat);
1665	    if (vcc->pop) {
1666		vcc->pop(vcc, skb);
1667	    }
1668	    else {
1669		dev_kfree_skb_any(skb);
1670	    }
1671
1672	    if (tx_copy)
1673		kfree(data);
1674
1675	    return -ENOBUFS;
1676	}
1677    }
1678
1679    entry->incarn = vc_map->incarn;
1680    entry->vc_map = vc_map;
1681    entry->skb    = skb;
1682    entry->data   = tx_copy ? data : NULL;
1683
1684    tpd = entry->tpd;
1685    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1686    tpd->tsd[ 0 ].length = tx_len;
1687
1688    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1689    txq->txing++;
1690
1691    /* The dma_map call above implies a dma_sync so the device can use it,
1692     * thus no explicit dma_sync call is necessary here.
1693     */
1694    
1695    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1696	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1697	    tpd->tsd[0].length, skb_len);
1698
1699    if (skb_len < fore200e_vcc->tx_min_pdu)
1700	fore200e_vcc->tx_min_pdu = skb_len;
1701    if (skb_len > fore200e_vcc->tx_max_pdu)
1702	fore200e_vcc->tx_max_pdu = skb_len;
1703    fore200e_vcc->tx_pdu++;
1704
1705    /* set tx rate control information */
1706    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1707    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1708
1709    if (cell_header) {
1710	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1711	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1712	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1713	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1714	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1715    }
1716    else {
1717	/* set the ATM header, common to all cells conveying the PDU */
1718	tpd->atm_header.clp = 0;
1719	tpd->atm_header.plt = 0;
1720	tpd->atm_header.vci = vcc->vci;
1721	tpd->atm_header.vpi = vcc->vpi;
1722	tpd->atm_header.gfc = 0;
1723    }
1724
1725    tpd->spec.length = tx_len;
1726    tpd->spec.nseg   = 1;
1727    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1728    tpd->spec.intr   = 1;
1729
1730    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1731    tpd_haddr.pad   = 0;
1732    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1733
1734    *entry->status = STATUS_PENDING;
1735    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1736
1737    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1738
1739    return 0;
1740}
1741
1742
1743static int
1744fore200e_getstats(struct fore200e* fore200e)
1745{
1746    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1747    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1748    struct stats_opcode     opcode;
1749    int                     ok;
1750    u32                     stats_dma_addr;
1751
1752    if (fore200e->stats == NULL) {
1753	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1754	if (fore200e->stats == NULL)
1755	    return -ENOMEM;
1756    }
1757    
1758    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1759					    sizeof(struct stats), DMA_FROM_DEVICE);
1760    
1761    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762
1763    opcode.opcode = OPCODE_GET_STATS;
1764    opcode.pad    = 0;
1765
1766    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1777    
1778    if (ok == 0) {
1779	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1780	return -EIO;
1781    }
1782
1783    return 0;
1784}
1785
1786
1787static int
1788fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1789{
1790    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1791
1792    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1793	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1794
1795    return -EINVAL;
1796}
1797
1798
1799static int
1800fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1801{
1802    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1803    
1804    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1805	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1806    
1807    return -EINVAL;
1808}
1809
1810
1811#if 0 /* currently unused */
1812static int
1813fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1814{
1815    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1816    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1817    struct oc3_opcode       opcode;
1818    int                     ok;
1819    u32                     oc3_regs_dma_addr;
1820
1821    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1822
1823    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1824
1825    opcode.opcode = OPCODE_GET_OC3;
1826    opcode.reg    = 0;
1827    opcode.value  = 0;
1828    opcode.mask   = 0;
1829
1830    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1831    
1832    *entry->status = STATUS_PENDING;
1833
1834    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1835
1836    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1837
1838    *entry->status = STATUS_FREE;
1839
1840    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1841    
1842    if (ok == 0) {
1843	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1844	return -EIO;
1845    }
1846
1847    return 0;
1848}
1849#endif
1850
1851
1852static int
1853fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1854{
1855    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1856    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1857    struct oc3_opcode       opcode;
1858    int                     ok;
1859
1860    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1861
1862    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1863
1864    opcode.opcode = OPCODE_SET_OC3;
1865    opcode.reg    = reg;
1866    opcode.value  = value;
1867    opcode.mask   = mask;
1868
1869    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1870    
1871    *entry->status = STATUS_PENDING;
1872
1873    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1874
1875    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1876
1877    *entry->status = STATUS_FREE;
1878
1879    if (ok == 0) {
1880	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1881	return -EIO;
1882    }
1883
1884    return 0;
1885}
1886
1887
1888static int
1889fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1890{
1891    u32 mct_value, mct_mask;
1892    int error;
1893
1894    if (!capable(CAP_NET_ADMIN))
1895	return -EPERM;
1896    
1897    switch (loop_mode) {
1898
1899    case ATM_LM_NONE:
1900	mct_value = 0; 
1901	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1902	break;
1903	
1904    case ATM_LM_LOC_PHY:
1905	mct_value = mct_mask = SUNI_MCT_DLE;
1906	break;
1907
1908    case ATM_LM_RMT_PHY:
1909	mct_value = mct_mask = SUNI_MCT_LLE;
1910	break;
1911
1912    default:
1913	return -EINVAL;
1914    }
1915
1916    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1917    if (error == 0)
1918	fore200e->loop_mode = loop_mode;
1919
1920    return error;
1921}
1922
1923
1924static int
1925fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1926{
1927    struct sonet_stats tmp;
1928
1929    if (fore200e_getstats(fore200e) < 0)
1930	return -EIO;
1931
1932    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1933    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1934    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1935    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1936    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1937    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1938    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1939    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1940	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1941	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1942    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1943	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1944	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1945
1946    if (arg)
1947	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1948    
1949    return 0;
1950}
1951
1952
1953static int
1954fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1955{
1956    struct fore200e* fore200e = FORE200E_DEV(dev);
1957    
1958    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1959
1960    switch (cmd) {
1961
1962    case SONET_GETSTAT:
1963	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1964
1965    case SONET_GETDIAG:
1966	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1967
1968    case ATM_SETLOOP:
1969	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1970
1971    case ATM_GETLOOP:
1972	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1973
1974    case ATM_QUERYLOOP:
1975	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1976    }
1977
1978    return -ENOSYS; /* not implemented */
1979}
1980
1981
1982static int
1983fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1984{
1985    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1986    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1987
1988    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1989	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1990	return -EINVAL;
1991    }
1992
1993    DPRINTK(2, "change_qos %d.%d.%d, "
1994	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1995	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1996	    "available_cell_rate = %u",
1997	    vcc->itf, vcc->vpi, vcc->vci,
1998	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1999	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2000	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2001	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2002	    flags, fore200e->available_cell_rate);
2003
2004    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2005
2006	mutex_lock(&fore200e->rate_mtx);
2007	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2008	    mutex_unlock(&fore200e->rate_mtx);
2009	    return -EAGAIN;
2010	}
2011
2012	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2013	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2014
2015	mutex_unlock(&fore200e->rate_mtx);
2016	
2017	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2018	
2019	/* update rate control parameters */
2020	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2021
2022	set_bit(ATM_VF_HASQOS, &vcc->flags);
2023
2024	return 0;
2025    }
2026    
2027    return -EINVAL;
2028}
2029    
2030
2031static int __devinit
2032fore200e_irq_request(struct fore200e* fore200e)
2033{
2034    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2035
2036	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2037	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2038	return -EBUSY;
2039    }
2040
2041    printk(FORE200E "IRQ %s reserved for device %s\n",
2042	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2043
2044#ifdef FORE200E_USE_TASKLET
2045    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2046    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2047#endif
2048
2049    fore200e->state = FORE200E_STATE_IRQ;
2050    return 0;
2051}
2052
2053
2054static int __devinit
2055fore200e_get_esi(struct fore200e* fore200e)
2056{
2057    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2058    int ok, i;
2059
2060    if (!prom)
2061	return -ENOMEM;
2062
2063    ok = fore200e->bus->prom_read(fore200e, prom);
2064    if (ok < 0) {
2065	kfree(prom);
2066	return -EBUSY;
2067    }
2068	
2069    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2070	   fore200e->name, 
2071	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2072	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2073	
2074    for (i = 0; i < ESI_LEN; i++) {
2075	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2076    }
2077    
2078    kfree(prom);
2079
2080    return 0;
2081}
2082
2083
2084static int __devinit
2085fore200e_alloc_rx_buf(struct fore200e* fore200e)
2086{
2087    int scheme, magn, nbr, size, i;
2088
2089    struct host_bsq* bsq;
2090    struct buffer*   buffer;
2091
2092    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2093	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2094
2095	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2096
2097	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2098	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2099
2100	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2101
2102	    /* allocate the array of receive buffers */
2103	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2104
2105	    if (buffer == NULL)
2106		return -ENOMEM;
2107
2108	    bsq->freebuf = NULL;
2109
2110	    for (i = 0; i < nbr; i++) {
2111
2112		buffer[ i ].scheme = scheme;
2113		buffer[ i ].magn   = magn;
2114#ifdef FORE200E_BSQ_DEBUG
2115		buffer[ i ].index  = i;
2116		buffer[ i ].supplied = 0;
2117#endif
2118
2119		/* allocate the receive buffer body */
2120		if (fore200e_chunk_alloc(fore200e,
2121					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2122					 DMA_FROM_DEVICE) < 0) {
2123		    
2124		    while (i > 0)
2125			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2126		    kfree(buffer);
2127		    
2128		    return -ENOMEM;
2129		}
2130
2131		/* insert the buffer into the free buffer list */
2132		buffer[ i ].next = bsq->freebuf;
2133		bsq->freebuf = &buffer[ i ];
2134	    }
2135	    /* all the buffers are free, initially */
2136	    bsq->freebuf_count = nbr;
2137
2138#ifdef FORE200E_BSQ_DEBUG
2139	    bsq_audit(3, bsq, scheme, magn);
2140#endif
2141	}
2142    }
2143
2144    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2145    return 0;
2146}
2147
2148
2149static int __devinit
2150fore200e_init_bs_queue(struct fore200e* fore200e)
2151{
2152    int scheme, magn, i;
2153
2154    struct host_bsq*     bsq;
2155    struct cp_bsq_entry __iomem * cp_entry;
2156
2157    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2158	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2159
2160	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2161
2162	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2163
2164	    /* allocate and align the array of status words */
2165	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2166					       &bsq->status,
2167					       sizeof(enum status), 
2168					       QUEUE_SIZE_BS,
2169					       fore200e->bus->status_alignment) < 0) {
2170		return -ENOMEM;
2171	    }
2172
2173	    /* allocate and align the array of receive buffer descriptors */
2174	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2175					       &bsq->rbd_block,
2176					       sizeof(struct rbd_block),
2177					       QUEUE_SIZE_BS,
2178					       fore200e->bus->descr_alignment) < 0) {
2179		
2180		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2181		return -ENOMEM;
2182	    }
2183	    
2184	    /* get the base address of the cp resident buffer supply queue entries */
2185	    cp_entry = fore200e->virt_base + 
2186		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2187	    
2188	    /* fill the host resident and cp resident buffer supply queue entries */
2189	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2190		
2191		bsq->host_entry[ i ].status = 
2192		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2193	        bsq->host_entry[ i ].rbd_block =
2194		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2195		bsq->host_entry[ i ].rbd_block_dma =
2196		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2197		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2198		
2199		*bsq->host_entry[ i ].status = STATUS_FREE;
2200		
2201		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2202				     &cp_entry[ i ].status_haddr);
2203	    }
2204	}
2205    }
2206
2207    fore200e->state = FORE200E_STATE_INIT_BSQ;
2208    return 0;
2209}
2210
2211
2212static int __devinit
2213fore200e_init_rx_queue(struct fore200e* fore200e)
2214{
2215    struct host_rxq*     rxq =  &fore200e->host_rxq;
2216    struct cp_rxq_entry __iomem * cp_entry;
2217    int i;
2218
2219    DPRINTK(2, "receive queue is being initialized\n");
2220
2221    /* allocate and align the array of status words */
2222    if (fore200e->bus->dma_chunk_alloc(fore200e,
2223				       &rxq->status,
2224				       sizeof(enum status), 
2225				       QUEUE_SIZE_RX,
2226				       fore200e->bus->status_alignment) < 0) {
2227	return -ENOMEM;
2228    }
2229
2230    /* allocate and align the array of receive PDU descriptors */
2231    if (fore200e->bus->dma_chunk_alloc(fore200e,
2232				       &rxq->rpd,
2233				       sizeof(struct rpd), 
2234				       QUEUE_SIZE_RX,
2235				       fore200e->bus->descr_alignment) < 0) {
2236	
2237	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2238	return -ENOMEM;
2239    }
2240
2241    /* get the base address of the cp resident rx queue entries */
2242    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2243
2244    /* fill the host resident and cp resident rx entries */
2245    for (i=0; i < QUEUE_SIZE_RX; i++) {
2246	
2247	rxq->host_entry[ i ].status = 
2248	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2249	rxq->host_entry[ i ].rpd = 
2250	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2251	rxq->host_entry[ i ].rpd_dma = 
2252	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2253	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2254
2255	*rxq->host_entry[ i ].status = STATUS_FREE;
2256
2257	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2258			     &cp_entry[ i ].status_haddr);
2259
2260	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2261			     &cp_entry[ i ].rpd_haddr);
2262    }
2263
2264    /* set the head entry of the queue */
2265    rxq->head = 0;
2266
2267    fore200e->state = FORE200E_STATE_INIT_RXQ;
2268    return 0;
2269}
2270
2271
2272static int __devinit
2273fore200e_init_tx_queue(struct fore200e* fore200e)
2274{
2275    struct host_txq*     txq =  &fore200e->host_txq;
2276    struct cp_txq_entry __iomem * cp_entry;
2277    int i;
2278
2279    DPRINTK(2, "transmit queue is being initialized\n");
2280
2281    /* allocate and align the array of status words */
2282    if (fore200e->bus->dma_chunk_alloc(fore200e,
2283				       &txq->status,
2284				       sizeof(enum status), 
2285				       QUEUE_SIZE_TX,
2286				       fore200e->bus->status_alignment) < 0) {
2287	return -ENOMEM;
2288    }
2289
2290    /* allocate and align the array of transmit PDU descriptors */
2291    if (fore200e->bus->dma_chunk_alloc(fore200e,
2292				       &txq->tpd,
2293				       sizeof(struct tpd), 
2294				       QUEUE_SIZE_TX,
2295				       fore200e->bus->descr_alignment) < 0) {
2296	
2297	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2298	return -ENOMEM;
2299    }
2300
2301    /* get the base address of the cp resident tx queue entries */
2302    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2303
2304    /* fill the host resident and cp resident tx entries */
2305    for (i=0; i < QUEUE_SIZE_TX; i++) {
2306	
2307	txq->host_entry[ i ].status = 
2308	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2309	txq->host_entry[ i ].tpd = 
2310	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2311	txq->host_entry[ i ].tpd_dma  = 
2312                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2313	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2314
2315	*txq->host_entry[ i ].status = STATUS_FREE;
2316	
2317	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2318			     &cp_entry[ i ].status_haddr);
2319	
2320        /* although there is a one-to-one mapping of tx queue entries and tpds,
2321	   we do not write here the DMA (physical) base address of each tpd into
2322	   the related cp resident entry, because the cp relies on this write
2323	   operation to detect that a new pdu has been submitted for tx */
2324    }
2325
2326    /* set the head and tail entries of the queue */
2327    txq->head = 0;
2328    txq->tail = 0;
2329
2330    fore200e->state = FORE200E_STATE_INIT_TXQ;
2331    return 0;
2332}
2333
2334
2335static int __devinit
2336fore200e_init_cmd_queue(struct fore200e* fore200e)
2337{
2338    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2339    struct cp_cmdq_entry __iomem * cp_entry;
2340    int i;
2341
2342    DPRINTK(2, "command queue is being initialized\n");
2343
2344    /* allocate and align the array of status words */
2345    if (fore200e->bus->dma_chunk_alloc(fore200e,
2346				       &cmdq->status,
2347				       sizeof(enum status), 
2348				       QUEUE_SIZE_CMD,
2349				       fore200e->bus->status_alignment) < 0) {
2350	return -ENOMEM;
2351    }
2352    
2353    /* get the base address of the cp resident cmd queue entries */
2354    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2355
2356    /* fill the host resident and cp resident cmd entries */
2357    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2358	
2359	cmdq->host_entry[ i ].status   = 
2360                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2361	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2362
2363	*cmdq->host_entry[ i ].status = STATUS_FREE;
2364
2365	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2366                             &cp_entry[ i ].status_haddr);
2367    }
2368
2369    /* set the head entry of the queue */
2370    cmdq->head = 0;
2371
2372    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2373    return 0;
2374}
2375
2376
2377static void __devinit
2378fore200e_param_bs_queue(struct fore200e* fore200e,
2379			enum buffer_scheme scheme, enum buffer_magn magn,
2380			int queue_length, int pool_size, int supply_blksize)
2381{
2382    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2383
2384    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2385    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2386    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2387    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2388}
2389
2390
2391static int __devinit
2392fore200e_initialize(struct fore200e* fore200e)
2393{
2394    struct cp_queues __iomem * cpq;
2395    int               ok, scheme, magn;
2396
2397    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2398
2399    mutex_init(&fore200e->rate_mtx);
2400    spin_lock_init(&fore200e->q_lock);
2401
2402    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2403
2404    /* enable cp to host interrupts */
2405    fore200e->bus->write(1, &cpq->imask);
2406
2407    if (fore200e->bus->irq_enable)
2408	fore200e->bus->irq_enable(fore200e);
2409    
2410    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2411
2412    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2413    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2414    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2415
2416    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2417    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2418
2419    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2420	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2421	    fore200e_param_bs_queue(fore200e, scheme, magn,
2422				    QUEUE_SIZE_BS, 
2423				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2424				    RBD_BLK_SIZE);
2425
2426    /* issue the initialize command */
2427    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2428    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2429
2430    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2431    if (ok == 0) {
2432	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2433	return -ENODEV;
2434    }
2435
2436    printk(FORE200E "device %s initialized\n", fore200e->name);
2437
2438    fore200e->state = FORE200E_STATE_INITIALIZE;
2439    return 0;
2440}
2441
2442
2443static void __devinit
2444fore200e_monitor_putc(struct fore200e* fore200e, char c)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447
2448#if 0
2449    printk("%c", c);
2450#endif
2451    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452}
2453
2454
2455static int __devinit
2456fore200e_monitor_getc(struct fore200e* fore200e)
2457{
2458    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2459    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2460    int                c;
2461
2462    while (time_before(jiffies, timeout)) {
2463
2464	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2465
2466	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2467
2468	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2469#if 0
2470	    printk("%c", c & 0xFF);
2471#endif
2472	    return c & 0xFF;
2473	}
2474    }
2475
2476    return -1;
2477}
2478
2479
2480static void __devinit
2481fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2482{
2483    while (*str) {
2484
2485	/* the i960 monitor doesn't accept any new character if it has something to say */
2486	while (fore200e_monitor_getc(fore200e) >= 0);
2487	
2488	fore200e_monitor_putc(fore200e, *str++);
2489    }
2490
2491    while (fore200e_monitor_getc(fore200e) >= 0);
2492}
2493
2494#ifdef __LITTLE_ENDIAN
2495#define FW_EXT ".bin"
2496#else
2497#define FW_EXT "_ecd.bin2"
2498#endif
2499
2500static int __devinit
2501fore200e_load_and_start_fw(struct fore200e* fore200e)
2502{
2503    const struct firmware *firmware;
2504    struct device *device;
2505    struct fw_header *fw_header;
2506    const __le32 *fw_data;
2507    u32 fw_size;
2508    u32 __iomem *load_addr;
2509    char buf[48];
2510    int err = -ENODEV;
2511
2512    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2513	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2514#ifdef CONFIG_SBUS
2515    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2516	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2517#endif
2518    else
2519	return err;
2520
2521    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2522    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2523	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2524	return err;
2525    }
2526
2527    fw_data = (__le32 *) firmware->data;
2528    fw_size = firmware->size / sizeof(u32);
2529    fw_header = (struct fw_header *) firmware->data;
2530    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2531
2532    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2533	    fore200e->name, load_addr, fw_size);
2534
2535    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2536	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2537	goto release;
2538    }
2539
2540    for (; fw_size--; fw_data++, load_addr++)
2541	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2542
2543    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2544
2545#if defined(__sparc_v9__)
2546    /* reported to be required by SBA cards on some sparc64 hosts */
2547    fore200e_spin(100);
2548#endif
2549
2550    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2551    fore200e_monitor_puts(fore200e, buf);
2552
2553    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2554	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2555	goto release;
2556    }
2557
2558    printk(FORE200E "device %s firmware started\n", fore200e->name);
2559
2560    fore200e->state = FORE200E_STATE_START_FW;
2561    err = 0;
2562
2563release:
2564    release_firmware(firmware);
2565    return err;
2566}
2567
2568
2569static int __devinit
2570fore200e_register(struct fore200e* fore200e, struct device *parent)
2571{
2572    struct atm_dev* atm_dev;
2573
2574    DPRINTK(2, "device %s being registered\n", fore200e->name);
2575
2576    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2577                               -1, NULL);
2578    if (atm_dev == NULL) {
2579	printk(FORE200E "unable to register device %s\n", fore200e->name);
2580	return -ENODEV;
2581    }
2582
2583    atm_dev->dev_data = fore200e;
2584    fore200e->atm_dev = atm_dev;
2585
2586    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2587    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2588
2589    fore200e->available_cell_rate = ATM_OC3_PCR;
2590
2591    fore200e->state = FORE200E_STATE_REGISTER;
2592    return 0;
2593}
2594
2595
2596static int __devinit
2597fore200e_init(struct fore200e* fore200e, struct device *parent)
2598{
2599    if (fore200e_register(fore200e, parent) < 0)
2600	return -ENODEV;
2601    
2602    if (fore200e->bus->configure(fore200e) < 0)
2603	return -ENODEV;
2604
2605    if (fore200e->bus->map(fore200e) < 0)
2606	return -ENODEV;
2607
2608    if (fore200e_reset(fore200e, 1) < 0)
2609	return -ENODEV;
2610
2611    if (fore200e_load_and_start_fw(fore200e) < 0)
2612	return -ENODEV;
2613
2614    if (fore200e_initialize(fore200e) < 0)
2615	return -ENODEV;
2616
2617    if (fore200e_init_cmd_queue(fore200e) < 0)
2618	return -ENOMEM;
2619
2620    if (fore200e_init_tx_queue(fore200e) < 0)
2621	return -ENOMEM;
2622
2623    if (fore200e_init_rx_queue(fore200e) < 0)
2624	return -ENOMEM;
2625
2626    if (fore200e_init_bs_queue(fore200e) < 0)
2627	return -ENOMEM;
2628
2629    if (fore200e_alloc_rx_buf(fore200e) < 0)
2630	return -ENOMEM;
2631
2632    if (fore200e_get_esi(fore200e) < 0)
2633	return -EIO;
2634
2635    if (fore200e_irq_request(fore200e) < 0)
2636	return -EBUSY;
2637
2638    fore200e_supply(fore200e);
2639
2640    /* all done, board initialization is now complete */
2641    fore200e->state = FORE200E_STATE_COMPLETE;
2642    return 0;
2643}
2644
2645#ifdef CONFIG_SBUS
2646static const struct of_device_id fore200e_sba_match[];
2647static int __devinit fore200e_sba_probe(struct platform_device *op)
2648{
2649	const struct of_device_id *match;
2650	const struct fore200e_bus *bus;
2651	struct fore200e *fore200e;
2652	static int index = 0;
2653	int err;
2654
2655	match = of_match_device(fore200e_sba_match, &op->dev);
2656	if (!match)
2657		return -EINVAL;
2658	bus = match->data;
2659
2660	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2661	if (!fore200e)
2662		return -ENOMEM;
2663
2664	fore200e->bus = bus;
2665	fore200e->bus_dev = op;
2666	fore200e->irq = op->archdata.irqs[0];
2667	fore200e->phys_base = op->resource[0].start;
2668
2669	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2670
2671	err = fore200e_init(fore200e, &op->dev);
2672	if (err < 0) {
2673		fore200e_shutdown(fore200e);
2674		kfree(fore200e);
2675		return err;
2676	}
2677
2678	index++;
2679	dev_set_drvdata(&op->dev, fore200e);
2680
2681	return 0;
2682}
2683
2684static int __devexit fore200e_sba_remove(struct platform_device *op)
2685{
2686	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2687
2688	fore200e_shutdown(fore200e);
2689	kfree(fore200e);
2690
2691	return 0;
2692}
2693
2694static const struct of_device_id fore200e_sba_match[] = {
2695	{
2696		.name = SBA200E_PROM_NAME,
2697		.data = (void *) &fore200e_bus[1],
2698	},
2699	{},
2700};
2701MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2702
2703static struct platform_driver fore200e_sba_driver = {
2704	.driver = {
2705		.name = "fore_200e",
2706		.owner = THIS_MODULE,
2707		.of_match_table = fore200e_sba_match,
2708	},
2709	.probe		= fore200e_sba_probe,
2710	.remove		= __devexit_p(fore200e_sba_remove),
2711};
2712#endif
2713
2714#ifdef CONFIG_PCI
2715static int __devinit
2716fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2717{
2718    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2719    struct fore200e* fore200e;
2720    int err = 0;
2721    static int index = 0;
2722
2723    if (pci_enable_device(pci_dev)) {
2724	err = -EINVAL;
2725	goto out;
2726    }
 
 
 
 
 
2727    
2728    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2729    if (fore200e == NULL) {
2730	err = -ENOMEM;
2731	goto out_disable;
2732    }
2733
2734    fore200e->bus       = bus;
2735    fore200e->bus_dev   = pci_dev;    
2736    fore200e->irq       = pci_dev->irq;
2737    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2738
2739    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2740
2741    pci_set_master(pci_dev);
2742
2743    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2744	   fore200e->bus->model_name, 
2745	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2746
2747    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2748
2749    err = fore200e_init(fore200e, &pci_dev->dev);
2750    if (err < 0) {
2751	fore200e_shutdown(fore200e);
2752	goto out_free;
2753    }
2754
2755    ++index;
2756    pci_set_drvdata(pci_dev, fore200e);
2757
2758out:
2759    return err;
2760
2761out_free:
2762    kfree(fore200e);
2763out_disable:
2764    pci_disable_device(pci_dev);
2765    goto out;
2766}
2767
2768
2769static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2770{
2771    struct fore200e *fore200e;
2772
2773    fore200e = pci_get_drvdata(pci_dev);
2774
2775    fore200e_shutdown(fore200e);
2776    kfree(fore200e);
2777    pci_disable_device(pci_dev);
2778}
2779
2780
2781static struct pci_device_id fore200e_pca_tbl[] = {
2782    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2783      0, 0, (unsigned long) &fore200e_bus[0] },
2784    { 0, }
2785};
2786
2787MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2788
2789static struct pci_driver fore200e_pca_driver = {
2790    .name =     "fore_200e",
2791    .probe =    fore200e_pca_detect,
2792    .remove =   __devexit_p(fore200e_pca_remove_one),
2793    .id_table = fore200e_pca_tbl,
2794};
2795#endif
2796
2797static int __init fore200e_module_init(void)
2798{
2799	int err;
2800
2801	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2802
2803#ifdef CONFIG_SBUS
2804	err = platform_driver_register(&fore200e_sba_driver);
2805	if (err)
2806		return err;
2807#endif
2808
2809#ifdef CONFIG_PCI
2810	err = pci_register_driver(&fore200e_pca_driver);
2811#endif
2812
2813#ifdef CONFIG_SBUS
2814	if (err)
2815		platform_driver_unregister(&fore200e_sba_driver);
2816#endif
2817
2818	return err;
2819}
2820
2821static void __exit fore200e_module_cleanup(void)
2822{
2823#ifdef CONFIG_PCI
2824	pci_unregister_driver(&fore200e_pca_driver);
2825#endif
2826#ifdef CONFIG_SBUS
2827	platform_driver_unregister(&fore200e_sba_driver);
2828#endif
2829}
2830
2831static int
2832fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2833{
2834    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2835    struct fore200e_vcc* fore200e_vcc;
2836    struct atm_vcc*      vcc;
2837    int                  i, len, left = *pos;
2838    unsigned long        flags;
2839
2840    if (!left--) {
2841
2842	if (fore200e_getstats(fore200e) < 0)
2843	    return -EIO;
2844
2845	len = sprintf(page,"\n"
2846		       " device:\n"
2847		       "   internal name:\t\t%s\n", fore200e->name);
2848
2849	/* print bus-specific information */
2850	if (fore200e->bus->proc_read)
2851	    len += fore200e->bus->proc_read(fore200e, page + len);
2852	
2853	len += sprintf(page + len,
2854		"   interrupt line:\t\t%s\n"
2855		"   physical base address:\t0x%p\n"
2856		"   virtual base address:\t0x%p\n"
2857		"   factory address (ESI):\t%pM\n"
2858		"   board serial number:\t\t%d\n\n",
2859		fore200e_irq_itoa(fore200e->irq),
2860		(void*)fore200e->phys_base,
2861		fore200e->virt_base,
2862		fore200e->esi,
2863		fore200e->esi[4] * 256 + fore200e->esi[5]);
2864
2865	return len;
2866    }
2867
2868    if (!left--)
2869	return sprintf(page,
2870		       "   free small bufs, scheme 1:\t%d\n"
2871		       "   free large bufs, scheme 1:\t%d\n"
2872		       "   free small bufs, scheme 2:\t%d\n"
2873		       "   free large bufs, scheme 2:\t%d\n",
2874		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2875		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2876		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2877		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2878
2879    if (!left--) {
2880	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2881
2882	len = sprintf(page,"\n\n"
2883		      " cell processor:\n"
2884		      "   heartbeat state:\t\t");
2885	
2886	if (hb >> 16 != 0xDEAD)
2887	    len += sprintf(page + len, "0x%08x\n", hb);
2888	else
2889	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2890
2891	return len;
2892    }
2893
2894    if (!left--) {
2895	static const char* media_name[] = {
2896	    "unshielded twisted pair",
2897	    "multimode optical fiber ST",
2898	    "multimode optical fiber SC",
2899	    "single-mode optical fiber ST",
2900	    "single-mode optical fiber SC",
2901	    "unknown"
2902	};
2903
2904	static const char* oc3_mode[] = {
2905	    "normal operation",
2906	    "diagnostic loopback",
2907	    "line loopback",
2908	    "unknown"
2909	};
2910
2911	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2912	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2913	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2914	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2915	u32 oc3_index;
2916
2917	if (media_index > 4)
2918		media_index = 5;
2919	
2920	switch (fore200e->loop_mode) {
2921	    case ATM_LM_NONE:    oc3_index = 0;
2922		                 break;
2923	    case ATM_LM_LOC_PHY: oc3_index = 1;
2924		                 break;
2925	    case ATM_LM_RMT_PHY: oc3_index = 2;
2926		                 break;
2927	    default:             oc3_index = 3;
2928	}
2929
2930	return sprintf(page,
2931		       "   firmware release:\t\t%d.%d.%d\n"
2932		       "   monitor release:\t\t%d.%d\n"
2933		       "   media type:\t\t\t%s\n"
2934		       "   OC-3 revision:\t\t0x%x\n"
2935                       "   OC-3 mode:\t\t\t%s",
2936		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2937		       mon960_release >> 16, mon960_release << 16 >> 16,
2938		       media_name[ media_index ],
2939		       oc3_revision,
2940		       oc3_mode[ oc3_index ]);
2941    }
2942
2943    if (!left--) {
2944	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2945
2946	return sprintf(page,
2947		       "\n\n"
2948		       " monitor:\n"
2949		       "   version number:\t\t%d\n"
2950		       "   boot status word:\t\t0x%08x\n",
2951		       fore200e->bus->read(&cp_monitor->mon_version),
2952		       fore200e->bus->read(&cp_monitor->bstat));
2953    }
2954
2955    if (!left--)
2956	return sprintf(page,
2957		       "\n"
2958		       " device statistics:\n"
2959		       "  4b5b:\n"
2960		       "     crc_header_errors:\t\t%10u\n"
2961		       "     framing_errors:\t\t%10u\n",
2962		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2963		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2964    
2965    if (!left--)
2966	return sprintf(page, "\n"
2967		       "  OC-3:\n"
2968		       "     section_bip8_errors:\t%10u\n"
2969		       "     path_bip8_errors:\t\t%10u\n"
2970		       "     line_bip24_errors:\t\t%10u\n"
2971		       "     line_febe_errors:\t\t%10u\n"
2972		       "     path_febe_errors:\t\t%10u\n"
2973		       "     corr_hcs_errors:\t\t%10u\n"
2974		       "     ucorr_hcs_errors:\t\t%10u\n",
2975		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2976		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2977		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2978		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2979		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2980		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2981		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2982
2983    if (!left--)
2984	return sprintf(page,"\n"
2985		       "   ATM:\t\t\t\t     cells\n"
2986		       "     TX:\t\t\t%10u\n"
2987		       "     RX:\t\t\t%10u\n"
2988		       "     vpi out of range:\t\t%10u\n"
2989		       "     vpi no conn:\t\t%10u\n"
2990		       "     vci out of range:\t\t%10u\n"
2991		       "     vci no conn:\t\t%10u\n",
2992		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2993		       be32_to_cpu(fore200e->stats->atm.cells_received),
2994		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2995		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2996		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2997		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2998    
2999    if (!left--)
3000	return sprintf(page,"\n"
3001		       "   AAL0:\t\t\t     cells\n"
3002		       "     TX:\t\t\t%10u\n"
3003		       "     RX:\t\t\t%10u\n"
3004		       "     dropped:\t\t\t%10u\n",
3005		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3006		       be32_to_cpu(fore200e->stats->aal0.cells_received),
3007		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3008    
3009    if (!left--)
3010	return sprintf(page,"\n"
3011		       "   AAL3/4:\n"
3012		       "     SAR sublayer:\t\t     cells\n"
3013		       "       TX:\t\t\t%10u\n"
3014		       "       RX:\t\t\t%10u\n"
3015		       "       dropped:\t\t\t%10u\n"
3016		       "       CRC errors:\t\t%10u\n"
3017		       "       protocol errors:\t\t%10u\n\n"
3018		       "     CS  sublayer:\t\t      PDUs\n"
3019		       "       TX:\t\t\t%10u\n"
3020		       "       RX:\t\t\t%10u\n"
3021		       "       dropped:\t\t\t%10u\n"
3022		       "       protocol errors:\t\t%10u\n",
3023		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3024		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3025		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3026		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3027		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3028		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3029		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3030		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3031		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3032    
3033    if (!left--)
3034	return sprintf(page,"\n"
3035		       "   AAL5:\n"
3036		       "     SAR sublayer:\t\t     cells\n"
3037		       "       TX:\t\t\t%10u\n"
3038		       "       RX:\t\t\t%10u\n"
3039		       "       dropped:\t\t\t%10u\n"
3040		       "       congestions:\t\t%10u\n\n"
3041		       "     CS  sublayer:\t\t      PDUs\n"
3042		       "       TX:\t\t\t%10u\n"
3043		       "       RX:\t\t\t%10u\n"
3044		       "       dropped:\t\t\t%10u\n"
3045		       "       CRC errors:\t\t%10u\n"
3046		       "       protocol errors:\t\t%10u\n",
3047		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3048		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3049		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3050		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3051		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3052		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3053		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3054		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3055		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3056    
3057    if (!left--)
3058	return sprintf(page,"\n"
3059		       "   AUX:\t\t       allocation failures\n"
3060		       "     small b1:\t\t\t%10u\n"
3061		       "     large b1:\t\t\t%10u\n"
3062		       "     small b2:\t\t\t%10u\n"
3063		       "     large b2:\t\t\t%10u\n"
3064		       "     RX PDUs:\t\t\t%10u\n"
3065		       "     TX PDUs:\t\t\t%10lu\n",
3066		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3067		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3068		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3069		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3070		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3071		       fore200e->tx_sat);
3072    
3073    if (!left--)
3074	return sprintf(page,"\n"
3075		       " receive carrier:\t\t\t%s\n",
3076		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3077    
3078    if (!left--) {
3079        return sprintf(page,"\n"
3080		       " VCCs:\n  address   VPI VCI   AAL "
3081		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3082    }
3083
3084    for (i = 0; i < NBR_CONNECT; i++) {
3085
3086	vcc = fore200e->vc_map[i].vcc;
3087
3088	if (vcc == NULL)
3089	    continue;
3090
3091	spin_lock_irqsave(&fore200e->q_lock, flags);
3092
3093	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3094
3095	    fore200e_vcc = FORE200E_VCC(vcc);
3096	    ASSERT(fore200e_vcc);
3097
3098	    len = sprintf(page,
3099			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3100			  (u32)(unsigned long)vcc,
3101			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3102			  fore200e_vcc->tx_pdu,
3103			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3104			  fore200e_vcc->tx_max_pdu,
3105			  fore200e_vcc->rx_pdu,
3106			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3107			  fore200e_vcc->rx_max_pdu);
3108
3109	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3110	    return len;
3111	}
3112
3113	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3114    }
3115    
3116    return 0;
3117}
3118
3119module_init(fore200e_module_init);
3120module_exit(fore200e_module_cleanup);
3121
3122
3123static const struct atmdev_ops fore200e_ops =
3124{
3125	.open       = fore200e_open,
3126	.close      = fore200e_close,
3127	.ioctl      = fore200e_ioctl,
3128	.getsockopt = fore200e_getsockopt,
3129	.setsockopt = fore200e_setsockopt,
3130	.send       = fore200e_send,
3131	.change_qos = fore200e_change_qos,
3132	.proc_read  = fore200e_proc_read,
3133	.owner      = THIS_MODULE
3134};
3135
3136
3137static const struct fore200e_bus fore200e_bus[] = {
3138#ifdef CONFIG_PCI
3139    { "PCA-200E", "pca200e", 32, 4, 32, 
3140      fore200e_pca_read,
3141      fore200e_pca_write,
3142      fore200e_pca_dma_map,
3143      fore200e_pca_dma_unmap,
3144      fore200e_pca_dma_sync_for_cpu,
3145      fore200e_pca_dma_sync_for_device,
3146      fore200e_pca_dma_chunk_alloc,
3147      fore200e_pca_dma_chunk_free,
3148      fore200e_pca_configure,
3149      fore200e_pca_map,
3150      fore200e_pca_reset,
3151      fore200e_pca_prom_read,
3152      fore200e_pca_unmap,
3153      NULL,
3154      fore200e_pca_irq_check,
3155      fore200e_pca_irq_ack,
3156      fore200e_pca_proc_read,
3157    },
3158#endif
3159#ifdef CONFIG_SBUS
3160    { "SBA-200E", "sba200e", 32, 64, 32,
3161      fore200e_sba_read,
3162      fore200e_sba_write,
3163      fore200e_sba_dma_map,
3164      fore200e_sba_dma_unmap,
3165      fore200e_sba_dma_sync_for_cpu,
3166      fore200e_sba_dma_sync_for_device,
3167      fore200e_sba_dma_chunk_alloc,
3168      fore200e_sba_dma_chunk_free,
3169      fore200e_sba_configure,
3170      fore200e_sba_map,
3171      fore200e_sba_reset,
3172      fore200e_sba_prom_read,
3173      fore200e_sba_unmap,
3174      fore200e_sba_irq_enable,
3175      fore200e_sba_irq_check,
3176      fore200e_sba_irq_ack,
3177      fore200e_sba_proc_read,
3178    },
3179#endif
3180    {}
3181};
3182
3183MODULE_LICENSE("GPL");
3184#ifdef CONFIG_PCI
3185#ifdef __LITTLE_ENDIAN__
3186MODULE_FIRMWARE("pca200e.bin");
3187#else
3188MODULE_FIRMWARE("pca200e_ecd.bin2");
3189#endif
3190#endif /* CONFIG_PCI */
3191#ifdef CONFIG_SBUS
3192MODULE_FIRMWARE("sba200e_ecd.bin2");
3193#endif
v4.6
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100				    __func__, __LINE__, #expr); \
 101			     panic(FORE200E "%s", __func__); \
 102			 }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183	alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191	return -ENOMEM;
 192
 193    if (alignment > 0)
 194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 210
 211    kfree(chunk->alloc_addr);
 212}
 213
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232	    break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239	       *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254	if ((ok = (fore200e->bus->read(addr) == val)))
 255	    break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262	       fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283		    struct chunk* data = &buffer[ nbr ].data;
 284
 285		    if (data->alloc_addr != NULL)
 286			fore200e_chunk_free(fore200e, data);
 287		}
 288	    }
 289	}
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304	    
 305	    if (status->alloc_addr)
 306		fore200e->bus->dma_chunk_free(fore200e, status);
 307	    
 308	    if (rbd_block->alloc_addr)
 309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310	}
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328	if (ok == 0) {
 329	    
 330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331	    return -ENODEV;
 332	}
 333
 334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335	
 336	fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347	   fore200e->name, fore200e->phys_base, 
 348	   fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351	/* first, reset the board to prevent further interrupts or data transfers */
 352	fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359	kfree(fore200e->stats);
 360
 361    case FORE200E_STATE_IRQ:
 362	free_irq(fore200e->irq, fore200e->atm_dev);
 363
 364    case FORE200E_STATE_ALLOC_BUF:
 365	fore200e_free_rx_buf(fore200e);
 366
 367    case FORE200E_STATE_INIT_BSQ:
 368	fore200e_uninit_bs_queue(fore200e);
 369
 370    case FORE200E_STATE_INIT_RXQ:
 371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 374    case FORE200E_STATE_INIT_TXQ:
 375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 378    case FORE200E_STATE_INIT_CMDQ:
 379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 381    case FORE200E_STATE_INITIALIZE:
 382	/* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385	/* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388	/* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391	fore200e->bus->unmap(fore200e);
 392
 393    case FORE200E_STATE_CONFIGURE:
 394	/* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397	/* XXX shouldn't we *start* by deregistering the device? */
 398	atm_dev_deregister(fore200e->atm_dev);
 399
 400    case FORE200E_STATE_BLANK:
 401	/* nothing to do for that state */
 402	break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431	    virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441	    dma_addr, size, direction);
 442
 443    dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469			     int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
 474					   chunk->alloc_size,
 475					   &chunk->dma_addr,
 476					   GFP_KERNEL);
 477    
 478    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 479	return -ENOMEM;
 480
 481    chunk->align_addr = chunk->alloc_addr;
 482    
 483    return 0;
 484}
 485
 486
 487/* free a DMA consistent chunk of memory */
 488
 489static void
 490fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 491{
 492    dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
 493			chunk->alloc_size,
 494			chunk->alloc_addr,
 495			chunk->dma_addr);
 496}
 497
 498
 499static int
 500fore200e_pca_irq_check(struct fore200e* fore200e)
 501{
 502    /* this is a 1 bit register */
 503    int irq_posted = readl(fore200e->regs.pca.psr);
 504
 505#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 506    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 507	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 508    }
 509#endif
 510
 511    return irq_posted;
 512}
 513
 514
 515static void
 516fore200e_pca_irq_ack(struct fore200e* fore200e)
 517{
 518    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 519}
 520
 521
 522static void
 523fore200e_pca_reset(struct fore200e* fore200e)
 524{
 525    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 526    fore200e_spin(10);
 527    writel(0, fore200e->regs.pca.hcr);
 528}
 529
 530
 531static int fore200e_pca_map(struct fore200e* fore200e)
 
 532{
 533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 534
 535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 536    
 537    if (fore200e->virt_base == NULL) {
 538	printk(FORE200E "can't map device %s\n", fore200e->name);
 539	return -EFAULT;
 540    }
 541
 542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 543
 544    /* gain access to the PCA specific registers  */
 545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 548
 549    fore200e->state = FORE200E_STATE_MAP;
 550    return 0;
 551}
 552
 553
 554static void
 555fore200e_pca_unmap(struct fore200e* fore200e)
 556{
 557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 558
 559    if (fore200e->virt_base != NULL)
 560	iounmap(fore200e->virt_base);
 561}
 562
 563
 564static int fore200e_pca_configure(struct fore200e *fore200e)
 
 565{
 566    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 567    u8              master_ctrl, latency;
 568
 569    DPRINTK(2, "device %s being configured\n", fore200e->name);
 570
 571    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 572	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 573	return -EIO;
 574    }
 575
 576    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 577
 578    master_ctrl = master_ctrl
 579#if defined(__BIG_ENDIAN)
 580	/* request the PCA board to convert the endianess of slave RAM accesses */
 581	| PCA200E_CTRL_CONVERT_ENDIAN
 582#endif
 583#if 0
 584        | PCA200E_CTRL_DIS_CACHE_RD
 585        | PCA200E_CTRL_DIS_WRT_INVAL
 586        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 587        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 588#endif
 589	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 590    
 591    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 592
 593    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 594       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 595       this may impact the performances of other PCI devices on the same bus, though */
 596    latency = 192;
 597    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 598
 599    fore200e->state = FORE200E_STATE_CONFIGURE;
 600    return 0;
 601}
 602
 603
 604static int __init
 605fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 606{
 607    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 608    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 609    struct prom_opcode      opcode;
 610    int                     ok;
 611    u32                     prom_dma;
 612
 613    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 614
 615    opcode.opcode = OPCODE_GET_PROM;
 616    opcode.pad    = 0;
 617
 618    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 619
 620    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 621    
 622    *entry->status = STATUS_PENDING;
 623
 624    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 625
 626    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 627
 628    *entry->status = STATUS_FREE;
 629
 630    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 631
 632    if (ok == 0) {
 633	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 634	return -EIO;
 635    }
 636
 637#if defined(__BIG_ENDIAN)
 638    
 639#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 640
 641    /* MAC address is stored as little-endian */
 642    swap_here(&prom->mac_addr[0]);
 643    swap_here(&prom->mac_addr[4]);
 644#endif
 645    
 646    return 0;
 647}
 648
 649
 650static int
 651fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 652{
 653    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 654
 655    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 656		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 657}
 658
 659#endif /* CONFIG_PCI */
 660
 661
 662#ifdef CONFIG_SBUS
 663
 664static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 665{
 666    return sbus_readl(addr);
 667}
 668
 669static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 670{
 671    sbus_writel(val, addr);
 672}
 673
 674static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 675{
 676	struct platform_device *op = fore200e->bus_dev;
 677	u32 dma_addr;
 678
 679	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 680
 681	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 682		virt_addr, size, direction, dma_addr);
 683    
 684	return dma_addr;
 685}
 686
 687static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 688{
 689	struct platform_device *op = fore200e->bus_dev;
 690
 691	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 692		dma_addr, size, direction);
 693
 694	dma_unmap_single(&op->dev, dma_addr, size, direction);
 695}
 696
 697static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 698{
 699	struct platform_device *op = fore200e->bus_dev;
 700
 701	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 702    
 703	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 704}
 705
 706static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 707{
 708	struct platform_device *op = fore200e->bus_dev;
 709
 710	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 711
 712	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 713}
 714
 715/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 716 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 717 */
 718static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 719					int size, int nbr, int alignment)
 720{
 721	struct platform_device *op = fore200e->bus_dev;
 722
 723	chunk->alloc_size = chunk->align_size = size * nbr;
 724
 725	/* returned chunks are page-aligned */
 726	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 727					       &chunk->dma_addr, GFP_ATOMIC);
 728
 729	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 730		return -ENOMEM;
 731
 732	chunk->align_addr = chunk->alloc_addr;
 733    
 734	return 0;
 735}
 736
 737/* free a DVMA consistent chunk of memory */
 738static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 739{
 740	struct platform_device *op = fore200e->bus_dev;
 741
 742	dma_free_coherent(&op->dev, chunk->alloc_size,
 743			  chunk->alloc_addr, chunk->dma_addr);
 744}
 745
 746static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 747{
 748	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 749	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 750}
 751
 752static int fore200e_sba_irq_check(struct fore200e *fore200e)
 753{
 754	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 755}
 756
 757static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 758{
 759	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 760	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 761}
 762
 763static void fore200e_sba_reset(struct fore200e *fore200e)
 764{
 765	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 766	fore200e_spin(10);
 767	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 768}
 769
 770static int __init fore200e_sba_map(struct fore200e *fore200e)
 771{
 772	struct platform_device *op = fore200e->bus_dev;
 773	unsigned int bursts;
 774
 775	/* gain access to the SBA specific registers  */
 776	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 777	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 778	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 779	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 780
 781	if (!fore200e->virt_base) {
 782		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 783		return -EFAULT;
 784	}
 785
 786	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 787    
 788	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 789
 790	/* get the supported DVMA burst sizes */
 791	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 792
 793	if (sbus_can_dma_64bit())
 794		sbus_set_sbus64(&op->dev, bursts);
 795
 796	fore200e->state = FORE200E_STATE_MAP;
 797	return 0;
 798}
 799
 800static void fore200e_sba_unmap(struct fore200e *fore200e)
 801{
 802	struct platform_device *op = fore200e->bus_dev;
 803
 804	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 805	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 806	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 807	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 808}
 809
 810static int __init fore200e_sba_configure(struct fore200e *fore200e)
 811{
 812	fore200e->state = FORE200E_STATE_CONFIGURE;
 813	return 0;
 814}
 815
 816static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 817{
 818	struct platform_device *op = fore200e->bus_dev;
 819	const u8 *prop;
 820	int len;
 821
 822	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 823	if (!prop)
 824		return -ENODEV;
 825	memcpy(&prom->mac_addr[4], prop, 4);
 826
 827	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 828	if (!prop)
 829		return -ENODEV;
 830	memcpy(&prom->mac_addr[2], prop, 4);
 831
 832	prom->serial_number = of_getintprop_default(op->dev.of_node,
 833						    "serialnumber", 0);
 834	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 835						  "promversion", 0);
 836    
 837	return 0;
 838}
 839
 840static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 841{
 842	struct platform_device *op = fore200e->bus_dev;
 843	const struct linux_prom_registers *regs;
 844
 845	regs = of_get_property(op->dev.of_node, "reg", NULL);
 846
 847	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 848		       (regs ? regs->which_io : 0), op->dev.of_node->name);
 849}
 850#endif /* CONFIG_SBUS */
 851
 852
 853static void
 854fore200e_tx_irq(struct fore200e* fore200e)
 855{
 856    struct host_txq*        txq = &fore200e->host_txq;
 857    struct host_txq_entry*  entry;
 858    struct atm_vcc*         vcc;
 859    struct fore200e_vc_map* vc_map;
 860
 861    if (fore200e->host_txq.txing == 0)
 862	return;
 863
 864    for (;;) {
 865	
 866	entry = &txq->host_entry[ txq->tail ];
 867
 868        if ((*entry->status & STATUS_COMPLETE) == 0) {
 869	    break;
 870	}
 871
 872	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 873		entry, txq->tail, entry->vc_map, entry->skb);
 874
 875	/* free copy of misaligned data */
 876	kfree(entry->data);
 877	
 878	/* remove DMA mapping */
 879	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 880				 DMA_TO_DEVICE);
 881
 882	vc_map = entry->vc_map;
 883
 884	/* vcc closed since the time the entry was submitted for tx? */
 885	if ((vc_map->vcc == NULL) ||
 886	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 887
 888	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 889		    fore200e->atm_dev->number);
 890
 891	    dev_kfree_skb_any(entry->skb);
 892	}
 893	else {
 894	    ASSERT(vc_map->vcc);
 895
 896	    /* vcc closed then immediately re-opened? */
 897	    if (vc_map->incarn != entry->incarn) {
 898
 899		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 900		   if the same vcc is immediately re-opened, those pending PDUs must
 901		   not be popped after the completion of their emission, as they refer
 902		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 903		   would be decremented by the size of the (unrelated) skb, possibly
 904		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 905		   we thus bind the tx entry to the current incarnation of the vcc
 906		   when the entry is submitted for tx. When the tx later completes,
 907		   if the incarnation number of the tx entry does not match the one
 908		   of the vcc, then this implies that the vcc has been closed then re-opened.
 909		   we thus just drop the skb here. */
 910
 911		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 912			fore200e->atm_dev->number);
 913
 914		dev_kfree_skb_any(entry->skb);
 915	    }
 916	    else {
 917		vcc = vc_map->vcc;
 918		ASSERT(vcc);
 919
 920		/* notify tx completion */
 921		if (vcc->pop) {
 922		    vcc->pop(vcc, entry->skb);
 923		}
 924		else {
 925		    dev_kfree_skb_any(entry->skb);
 926		}
 927#if 1
 928		/* race fixed by the above incarnation mechanism, but... */
 929		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 930		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 931		}
 932#endif
 933		/* check error condition */
 934		if (*entry->status & STATUS_ERROR)
 935		    atomic_inc(&vcc->stats->tx_err);
 936		else
 937		    atomic_inc(&vcc->stats->tx);
 938	    }
 939	}
 940
 941	*entry->status = STATUS_FREE;
 942
 943	fore200e->host_txq.txing--;
 944
 945	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 946    }
 947}
 948
 949
 950#ifdef FORE200E_BSQ_DEBUG
 951int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 952{
 953    struct buffer* buffer;
 954    int count = 0;
 955
 956    buffer = bsq->freebuf;
 957    while (buffer) {
 958
 959	if (buffer->supplied) {
 960	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 961		   where, scheme, magn, buffer->index);
 962	}
 963
 964	if (buffer->magn != magn) {
 965	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 966		   where, scheme, magn, buffer->index, buffer->magn);
 967	}
 968
 969	if (buffer->scheme != scheme) {
 970	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 971		   where, scheme, magn, buffer->index, buffer->scheme);
 972	}
 973
 974	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 975	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 976		   where, scheme, magn, buffer->index);
 977	}
 978
 979	count++;
 980	buffer = buffer->next;
 981    }
 982
 983    if (count != bsq->freebuf_count) {
 984	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 985	       where, scheme, magn, count, bsq->freebuf_count);
 986    }
 987    return 0;
 988}
 989#endif
 990
 991
 992static void
 993fore200e_supply(struct fore200e* fore200e)
 994{
 995    int  scheme, magn, i;
 996
 997    struct host_bsq*       bsq;
 998    struct host_bsq_entry* entry;
 999    struct buffer*         buffer;
1000
1001    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1002	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1003
1004	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1005
1006#ifdef FORE200E_BSQ_DEBUG
1007	    bsq_audit(1, bsq, scheme, magn);
1008#endif
1009	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1010
1011		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1012			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1013
1014		entry = &bsq->host_entry[ bsq->head ];
1015
1016		for (i = 0; i < RBD_BLK_SIZE; i++) {
1017
1018		    /* take the first buffer in the free buffer list */
1019		    buffer = bsq->freebuf;
1020		    if (!buffer) {
1021			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1022			       scheme, magn, bsq->freebuf_count);
1023			return;
1024		    }
1025		    bsq->freebuf = buffer->next;
1026		    
1027#ifdef FORE200E_BSQ_DEBUG
1028		    if (buffer->supplied)
1029			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1030			       scheme, magn, buffer->index);
1031		    buffer->supplied = 1;
1032#endif
1033		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1034		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1035		}
1036
1037		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1038
1039 		/* decrease accordingly the number of free rx buffers */
1040		bsq->freebuf_count -= RBD_BLK_SIZE;
1041
1042		*entry->status = STATUS_PENDING;
1043		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1044	    }
1045	}
1046    }
1047}
1048
1049
1050static int
1051fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1052{
1053    struct sk_buff*      skb;
1054    struct buffer*       buffer;
1055    struct fore200e_vcc* fore200e_vcc;
1056    int                  i, pdu_len = 0;
1057#ifdef FORE200E_52BYTE_AAL0_SDU
1058    u32                  cell_header = 0;
1059#endif
1060
1061    ASSERT(vcc);
1062    
1063    fore200e_vcc = FORE200E_VCC(vcc);
1064    ASSERT(fore200e_vcc);
1065
1066#ifdef FORE200E_52BYTE_AAL0_SDU
1067    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1068
1069	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1070	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1071                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1072                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1073                       rpd->atm_header.clp;
1074	pdu_len = 4;
1075    }
1076#endif
1077    
1078    /* compute total PDU length */
1079    for (i = 0; i < rpd->nseg; i++)
1080	pdu_len += rpd->rsd[ i ].length;
1081    
1082    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1083    if (skb == NULL) {
1084	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1085
1086	atomic_inc(&vcc->stats->rx_drop);
1087	return -ENOMEM;
1088    } 
1089
1090    __net_timestamp(skb);
1091    
1092#ifdef FORE200E_52BYTE_AAL0_SDU
1093    if (cell_header) {
1094	*((u32*)skb_put(skb, 4)) = cell_header;
1095    }
1096#endif
1097
1098    /* reassemble segments */
1099    for (i = 0; i < rpd->nseg; i++) {
1100	
1101	/* rebuild rx buffer address from rsd handle */
1102	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1103	
1104	/* Make device DMA transfer visible to CPU.  */
1105	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1106	
1107	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1108
1109	/* Now let the device get at it again.  */
1110	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1111    }
1112
1113    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1114    
1115    if (pdu_len < fore200e_vcc->rx_min_pdu)
1116	fore200e_vcc->rx_min_pdu = pdu_len;
1117    if (pdu_len > fore200e_vcc->rx_max_pdu)
1118	fore200e_vcc->rx_max_pdu = pdu_len;
1119    fore200e_vcc->rx_pdu++;
1120
1121    /* push PDU */
1122    if (atm_charge(vcc, skb->truesize) == 0) {
1123
1124	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1125		vcc->itf, vcc->vpi, vcc->vci);
1126
1127	dev_kfree_skb_any(skb);
1128
1129	atomic_inc(&vcc->stats->rx_drop);
1130	return -ENOMEM;
1131    }
1132
1133    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1134
1135    vcc->push(vcc, skb);
1136    atomic_inc(&vcc->stats->rx);
1137
1138    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1139
1140    return 0;
1141}
1142
1143
1144static void
1145fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1146{
1147    struct host_bsq* bsq;
1148    struct buffer*   buffer;
1149    int              i;
1150    
1151    for (i = 0; i < rpd->nseg; i++) {
1152
1153	/* rebuild rx buffer address from rsd handle */
1154	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1155
1156	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1157
1158#ifdef FORE200E_BSQ_DEBUG
1159	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1160
1161	if (buffer->supplied == 0)
1162	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1163		   buffer->scheme, buffer->magn, buffer->index);
1164	buffer->supplied = 0;
1165#endif
1166
1167	/* re-insert the buffer into the free buffer list */
1168	buffer->next = bsq->freebuf;
1169	bsq->freebuf = buffer;
1170
1171	/* then increment the number of free rx buffers */
1172	bsq->freebuf_count++;
1173    }
1174}
1175
1176
1177static void
1178fore200e_rx_irq(struct fore200e* fore200e)
1179{
1180    struct host_rxq*        rxq = &fore200e->host_rxq;
1181    struct host_rxq_entry*  entry;
1182    struct atm_vcc*         vcc;
1183    struct fore200e_vc_map* vc_map;
1184
1185    for (;;) {
1186	
1187	entry = &rxq->host_entry[ rxq->head ];
1188
1189	/* no more received PDUs */
1190	if ((*entry->status & STATUS_COMPLETE) == 0)
1191	    break;
1192
1193	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1194
1195	if ((vc_map->vcc == NULL) ||
1196	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1197
1198	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1199		    fore200e->atm_dev->number,
1200		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1201	}
1202	else {
1203	    vcc = vc_map->vcc;
1204	    ASSERT(vcc);
1205
1206	    if ((*entry->status & STATUS_ERROR) == 0) {
1207
1208		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1209	    }
1210	    else {
1211		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1212			fore200e->atm_dev->number,
1213			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1214		atomic_inc(&vcc->stats->rx_err);
1215	    }
1216	}
1217
1218	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1219
1220	fore200e_collect_rpd(fore200e, entry->rpd);
1221
1222	/* rewrite the rpd address to ack the received PDU */
1223	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1224	*entry->status = STATUS_FREE;
1225
1226	fore200e_supply(fore200e);
1227    }
1228}
1229
1230
1231#ifndef FORE200E_USE_TASKLET
1232static void
1233fore200e_irq(struct fore200e* fore200e)
1234{
1235    unsigned long flags;
1236
1237    spin_lock_irqsave(&fore200e->q_lock, flags);
1238    fore200e_rx_irq(fore200e);
1239    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1240
1241    spin_lock_irqsave(&fore200e->q_lock, flags);
1242    fore200e_tx_irq(fore200e);
1243    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1244}
1245#endif
1246
1247
1248static irqreturn_t
1249fore200e_interrupt(int irq, void* dev)
1250{
1251    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1252
1253    if (fore200e->bus->irq_check(fore200e) == 0) {
1254	
1255	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1256	return IRQ_NONE;
1257    }
1258    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1259
1260#ifdef FORE200E_USE_TASKLET
1261    tasklet_schedule(&fore200e->tx_tasklet);
1262    tasklet_schedule(&fore200e->rx_tasklet);
1263#else
1264    fore200e_irq(fore200e);
1265#endif
1266    
1267    fore200e->bus->irq_ack(fore200e);
1268    return IRQ_HANDLED;
1269}
1270
1271
1272#ifdef FORE200E_USE_TASKLET
1273static void
1274fore200e_tx_tasklet(unsigned long data)
1275{
1276    struct fore200e* fore200e = (struct fore200e*) data;
1277    unsigned long flags;
1278
1279    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1280
1281    spin_lock_irqsave(&fore200e->q_lock, flags);
1282    fore200e_tx_irq(fore200e);
1283    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1284}
1285
1286
1287static void
1288fore200e_rx_tasklet(unsigned long data)
1289{
1290    struct fore200e* fore200e = (struct fore200e*) data;
1291    unsigned long    flags;
1292
1293    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1294
1295    spin_lock_irqsave(&fore200e->q_lock, flags);
1296    fore200e_rx_irq((struct fore200e*) data);
1297    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1298}
1299#endif
1300
1301
1302static int
1303fore200e_select_scheme(struct atm_vcc* vcc)
1304{
1305    /* fairly balance the VCs over (identical) buffer schemes */
1306    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1307
1308    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1309	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1310
1311    return scheme;
1312}
1313
1314
1315static int 
1316fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1317{
1318    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1319    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1320    struct activate_opcode   activ_opcode;
1321    struct deactivate_opcode deactiv_opcode;
1322    struct vpvc              vpvc;
1323    int                      ok;
1324    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1325
1326    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1327    
1328    if (activate) {
1329	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1330	
1331	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1332	activ_opcode.aal    = aal;
1333	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1334	activ_opcode.pad    = 0;
1335    }
1336    else {
1337	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1338	deactiv_opcode.pad    = 0;
1339    }
1340
1341    vpvc.vci = vcc->vci;
1342    vpvc.vpi = vcc->vpi;
1343
1344    *entry->status = STATUS_PENDING;
1345
1346    if (activate) {
1347
1348#ifdef FORE200E_52BYTE_AAL0_SDU
1349	mtu = 48;
1350#endif
1351	/* the MTU is not used by the cp, except in the case of AAL0 */
1352	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1353	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1354	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1355    }
1356    else {
1357	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1358	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1359    }
1360
1361    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1362
1363    *entry->status = STATUS_FREE;
1364
1365    if (ok == 0) {
1366	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1367	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1368	return -EIO;
1369    }
1370
1371    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1372	    activate ? "open" : "clos");
1373
1374    return 0;
1375}
1376
1377
1378#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1379
1380static void
1381fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1382{
1383    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1384    
1385	/* compute the data cells to idle cells ratio from the tx PCR */
1386	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1387	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1388    }
1389    else {
1390	/* disable rate control */
1391	rate->data_cells = rate->idle_cells = 0;
1392    }
1393}
1394
1395
1396static int
1397fore200e_open(struct atm_vcc *vcc)
1398{
1399    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1400    struct fore200e_vcc*    fore200e_vcc;
1401    struct fore200e_vc_map* vc_map;
1402    unsigned long	    flags;
1403    int			    vci = vcc->vci;
1404    short		    vpi = vcc->vpi;
1405
1406    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1407    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1408
1409    spin_lock_irqsave(&fore200e->q_lock, flags);
1410
1411    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1412    if (vc_map->vcc) {
1413
1414	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1415
1416	printk(FORE200E "VC %d.%d.%d already in use\n",
1417	       fore200e->atm_dev->number, vpi, vci);
1418
1419	return -EINVAL;
1420    }
1421
1422    vc_map->vcc = vcc;
1423
1424    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1425
1426    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1427    if (fore200e_vcc == NULL) {
1428	vc_map->vcc = NULL;
1429	return -ENOMEM;
1430    }
1431
1432    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1433	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1434	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1435	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1436	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1437	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1438	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1439    
1440    /* pseudo-CBR bandwidth requested? */
1441    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1442	
1443	mutex_lock(&fore200e->rate_mtx);
1444	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1445	    mutex_unlock(&fore200e->rate_mtx);
1446
1447	    kfree(fore200e_vcc);
1448	    vc_map->vcc = NULL;
1449	    return -EAGAIN;
1450	}
1451
1452	/* reserve bandwidth */
1453	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1454	mutex_unlock(&fore200e->rate_mtx);
1455    }
1456    
1457    vcc->itf = vcc->dev->number;
1458
1459    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1460    set_bit(ATM_VF_ADDR, &vcc->flags);
1461
1462    vcc->dev_data = fore200e_vcc;
1463    
1464    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1465
1466	vc_map->vcc = NULL;
1467
1468	clear_bit(ATM_VF_ADDR, &vcc->flags);
1469	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1470
1471	vcc->dev_data = NULL;
1472
1473	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1474
1475	kfree(fore200e_vcc);
1476	return -EINVAL;
1477    }
1478    
1479    /* compute rate control parameters */
1480    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1481	
1482	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1483	set_bit(ATM_VF_HASQOS, &vcc->flags);
1484
1485	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1486		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1487		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1488		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1489    }
1490    
1491    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1492    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1493    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1494
1495    /* new incarnation of the vcc */
1496    vc_map->incarn = ++fore200e->incarn_count;
1497
1498    /* VC unusable before this flag is set */
1499    set_bit(ATM_VF_READY, &vcc->flags);
1500
1501    return 0;
1502}
1503
1504
1505static void
1506fore200e_close(struct atm_vcc* vcc)
1507{
1508    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1509    struct fore200e_vcc*    fore200e_vcc;
1510    struct fore200e_vc_map* vc_map;
1511    unsigned long           flags;
1512
1513    ASSERT(vcc);
1514    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1515    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1516
1517    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1518
1519    clear_bit(ATM_VF_READY, &vcc->flags);
1520
1521    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1522
1523    spin_lock_irqsave(&fore200e->q_lock, flags);
1524
1525    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1526
1527    /* the vc is no longer considered as "in use" by fore200e_open() */
1528    vc_map->vcc = NULL;
1529
1530    vcc->itf = vcc->vci = vcc->vpi = 0;
1531
1532    fore200e_vcc = FORE200E_VCC(vcc);
1533    vcc->dev_data = NULL;
1534
1535    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1536
1537    /* release reserved bandwidth, if any */
1538    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1539
1540	mutex_lock(&fore200e->rate_mtx);
1541	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1542	mutex_unlock(&fore200e->rate_mtx);
1543
1544	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1545    }
1546
1547    clear_bit(ATM_VF_ADDR, &vcc->flags);
1548    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1549
1550    ASSERT(fore200e_vcc);
1551    kfree(fore200e_vcc);
1552}
1553
1554
1555static int
1556fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1557{
1558    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1559    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1560    struct fore200e_vc_map* vc_map;
1561    struct host_txq*        txq          = &fore200e->host_txq;
1562    struct host_txq_entry*  entry;
1563    struct tpd*             tpd;
1564    struct tpd_haddr        tpd_haddr;
1565    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1566    int                     tx_copy      = 0;
1567    int                     tx_len       = skb->len;
1568    u32*                    cell_header  = NULL;
1569    unsigned char*          skb_data;
1570    int                     skb_len;
1571    unsigned char*          data;
1572    unsigned long           flags;
1573
1574    ASSERT(vcc);
1575    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1576    ASSERT(fore200e);
1577    ASSERT(fore200e_vcc);
1578
1579    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1580	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1581	dev_kfree_skb_any(skb);
1582	return -EINVAL;
1583    }
1584
1585#ifdef FORE200E_52BYTE_AAL0_SDU
1586    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1587	cell_header = (u32*) skb->data;
1588	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1589	skb_len     = tx_len = skb->len  - 4;
1590
1591	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1592    }
1593    else 
1594#endif
1595    {
1596	skb_data = skb->data;
1597	skb_len  = skb->len;
1598    }
1599    
1600    if (((unsigned long)skb_data) & 0x3) {
1601
1602	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1603	tx_copy = 1;
1604	tx_len  = skb_len;
1605    }
1606
1607    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1608
1609        /* this simply NUKES the PCA board */
1610	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1611	tx_copy = 1;
1612	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1613    }
1614    
1615    if (tx_copy) {
1616	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1617	if (data == NULL) {
1618	    if (vcc->pop) {
1619		vcc->pop(vcc, skb);
1620	    }
1621	    else {
1622		dev_kfree_skb_any(skb);
1623	    }
1624	    return -ENOMEM;
1625	}
1626
1627	memcpy(data, skb_data, skb_len);
1628	if (skb_len < tx_len)
1629	    memset(data + skb_len, 0x00, tx_len - skb_len);
1630    }
1631    else {
1632	data = skb_data;
1633    }
1634
1635    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1636    ASSERT(vc_map->vcc == vcc);
1637
1638  retry_here:
1639
1640    spin_lock_irqsave(&fore200e->q_lock, flags);
1641
1642    entry = &txq->host_entry[ txq->head ];
1643
1644    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1645
1646	/* try to free completed tx queue entries */
1647	fore200e_tx_irq(fore200e);
1648
1649	if (*entry->status != STATUS_FREE) {
1650
1651	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1652
1653	    /* retry once again? */
1654	    if (--retry > 0) {
1655		udelay(50);
1656		goto retry_here;
1657	    }
1658
1659	    atomic_inc(&vcc->stats->tx_err);
1660
1661	    fore200e->tx_sat++;
1662	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1663		    fore200e->name, fore200e->cp_queues->heartbeat);
1664	    if (vcc->pop) {
1665		vcc->pop(vcc, skb);
1666	    }
1667	    else {
1668		dev_kfree_skb_any(skb);
1669	    }
1670
1671	    if (tx_copy)
1672		kfree(data);
1673
1674	    return -ENOBUFS;
1675	}
1676    }
1677
1678    entry->incarn = vc_map->incarn;
1679    entry->vc_map = vc_map;
1680    entry->skb    = skb;
1681    entry->data   = tx_copy ? data : NULL;
1682
1683    tpd = entry->tpd;
1684    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1685    tpd->tsd[ 0 ].length = tx_len;
1686
1687    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1688    txq->txing++;
1689
1690    /* The dma_map call above implies a dma_sync so the device can use it,
1691     * thus no explicit dma_sync call is necessary here.
1692     */
1693    
1694    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1695	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1696	    tpd->tsd[0].length, skb_len);
1697
1698    if (skb_len < fore200e_vcc->tx_min_pdu)
1699	fore200e_vcc->tx_min_pdu = skb_len;
1700    if (skb_len > fore200e_vcc->tx_max_pdu)
1701	fore200e_vcc->tx_max_pdu = skb_len;
1702    fore200e_vcc->tx_pdu++;
1703
1704    /* set tx rate control information */
1705    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1706    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1707
1708    if (cell_header) {
1709	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1710	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1711	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1712	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1713	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1714    }
1715    else {
1716	/* set the ATM header, common to all cells conveying the PDU */
1717	tpd->atm_header.clp = 0;
1718	tpd->atm_header.plt = 0;
1719	tpd->atm_header.vci = vcc->vci;
1720	tpd->atm_header.vpi = vcc->vpi;
1721	tpd->atm_header.gfc = 0;
1722    }
1723
1724    tpd->spec.length = tx_len;
1725    tpd->spec.nseg   = 1;
1726    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1727    tpd->spec.intr   = 1;
1728
1729    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1730    tpd_haddr.pad   = 0;
1731    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1732
1733    *entry->status = STATUS_PENDING;
1734    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1735
1736    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1737
1738    return 0;
1739}
1740
1741
1742static int
1743fore200e_getstats(struct fore200e* fore200e)
1744{
1745    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1746    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1747    struct stats_opcode     opcode;
1748    int                     ok;
1749    u32                     stats_dma_addr;
1750
1751    if (fore200e->stats == NULL) {
1752	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1753	if (fore200e->stats == NULL)
1754	    return -ENOMEM;
1755    }
1756    
1757    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1758					    sizeof(struct stats), DMA_FROM_DEVICE);
1759    
1760    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1761
1762    opcode.opcode = OPCODE_GET_STATS;
1763    opcode.pad    = 0;
1764
1765    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1766    
1767    *entry->status = STATUS_PENDING;
1768
1769    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1770
1771    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1772
1773    *entry->status = STATUS_FREE;
1774
1775    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1776    
1777    if (ok == 0) {
1778	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1779	return -EIO;
1780    }
1781
1782    return 0;
1783}
1784
1785
1786static int
1787fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1788{
1789    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1790
1791    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1792	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1793
1794    return -EINVAL;
1795}
1796
1797
1798static int
1799fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1800{
1801    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1802    
1803    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1804	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1805    
1806    return -EINVAL;
1807}
1808
1809
1810#if 0 /* currently unused */
1811static int
1812fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1813{
1814    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1815    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1816    struct oc3_opcode       opcode;
1817    int                     ok;
1818    u32                     oc3_regs_dma_addr;
1819
1820    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1821
1822    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1823
1824    opcode.opcode = OPCODE_GET_OC3;
1825    opcode.reg    = 0;
1826    opcode.value  = 0;
1827    opcode.mask   = 0;
1828
1829    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1830    
1831    *entry->status = STATUS_PENDING;
1832
1833    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1834
1835    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1836
1837    *entry->status = STATUS_FREE;
1838
1839    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1840    
1841    if (ok == 0) {
1842	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1843	return -EIO;
1844    }
1845
1846    return 0;
1847}
1848#endif
1849
1850
1851static int
1852fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1853{
1854    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1855    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1856    struct oc3_opcode       opcode;
1857    int                     ok;
1858
1859    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1860
1861    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1862
1863    opcode.opcode = OPCODE_SET_OC3;
1864    opcode.reg    = reg;
1865    opcode.value  = value;
1866    opcode.mask   = mask;
1867
1868    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1869    
1870    *entry->status = STATUS_PENDING;
1871
1872    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1873
1874    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1875
1876    *entry->status = STATUS_FREE;
1877
1878    if (ok == 0) {
1879	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1880	return -EIO;
1881    }
1882
1883    return 0;
1884}
1885
1886
1887static int
1888fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1889{
1890    u32 mct_value, mct_mask;
1891    int error;
1892
1893    if (!capable(CAP_NET_ADMIN))
1894	return -EPERM;
1895    
1896    switch (loop_mode) {
1897
1898    case ATM_LM_NONE:
1899	mct_value = 0; 
1900	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1901	break;
1902	
1903    case ATM_LM_LOC_PHY:
1904	mct_value = mct_mask = SUNI_MCT_DLE;
1905	break;
1906
1907    case ATM_LM_RMT_PHY:
1908	mct_value = mct_mask = SUNI_MCT_LLE;
1909	break;
1910
1911    default:
1912	return -EINVAL;
1913    }
1914
1915    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1916    if (error == 0)
1917	fore200e->loop_mode = loop_mode;
1918
1919    return error;
1920}
1921
1922
1923static int
1924fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1925{
1926    struct sonet_stats tmp;
1927
1928    if (fore200e_getstats(fore200e) < 0)
1929	return -EIO;
1930
1931    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1932    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1933    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1934    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1935    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1936    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1937    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1938    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1939	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1940	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1941    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1942	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1943	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1944
1945    if (arg)
1946	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1947    
1948    return 0;
1949}
1950
1951
1952static int
1953fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1954{
1955    struct fore200e* fore200e = FORE200E_DEV(dev);
1956    
1957    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1958
1959    switch (cmd) {
1960
1961    case SONET_GETSTAT:
1962	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1963
1964    case SONET_GETDIAG:
1965	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1966
1967    case ATM_SETLOOP:
1968	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1969
1970    case ATM_GETLOOP:
1971	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1972
1973    case ATM_QUERYLOOP:
1974	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1975    }
1976
1977    return -ENOSYS; /* not implemented */
1978}
1979
1980
1981static int
1982fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1983{
1984    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1985    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1986
1987    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1988	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1989	return -EINVAL;
1990    }
1991
1992    DPRINTK(2, "change_qos %d.%d.%d, "
1993	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1994	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1995	    "available_cell_rate = %u",
1996	    vcc->itf, vcc->vpi, vcc->vci,
1997	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1998	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1999	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2000	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2001	    flags, fore200e->available_cell_rate);
2002
2003    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2004
2005	mutex_lock(&fore200e->rate_mtx);
2006	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2007	    mutex_unlock(&fore200e->rate_mtx);
2008	    return -EAGAIN;
2009	}
2010
2011	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2012	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2013
2014	mutex_unlock(&fore200e->rate_mtx);
2015	
2016	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2017	
2018	/* update rate control parameters */
2019	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2020
2021	set_bit(ATM_VF_HASQOS, &vcc->flags);
2022
2023	return 0;
2024    }
2025    
2026    return -EINVAL;
2027}
2028    
2029
2030static int fore200e_irq_request(struct fore200e *fore200e)
 
2031{
2032    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2033
2034	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2035	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2036	return -EBUSY;
2037    }
2038
2039    printk(FORE200E "IRQ %s reserved for device %s\n",
2040	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2041
2042#ifdef FORE200E_USE_TASKLET
2043    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2044    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2045#endif
2046
2047    fore200e->state = FORE200E_STATE_IRQ;
2048    return 0;
2049}
2050
2051
2052static int fore200e_get_esi(struct fore200e *fore200e)
 
2053{
2054    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2055    int ok, i;
2056
2057    if (!prom)
2058	return -ENOMEM;
2059
2060    ok = fore200e->bus->prom_read(fore200e, prom);
2061    if (ok < 0) {
2062	kfree(prom);
2063	return -EBUSY;
2064    }
2065	
2066    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2067	   fore200e->name, 
2068	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2069	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2070	
2071    for (i = 0; i < ESI_LEN; i++) {
2072	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2073    }
2074    
2075    kfree(prom);
2076
2077    return 0;
2078}
2079
2080
2081static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
 
2082{
2083    int scheme, magn, nbr, size, i;
2084
2085    struct host_bsq* bsq;
2086    struct buffer*   buffer;
2087
2088    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2089	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2090
2091	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2092
2093	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2094	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2095
2096	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2097
2098	    /* allocate the array of receive buffers */
2099	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2100
2101	    if (buffer == NULL)
2102		return -ENOMEM;
2103
2104	    bsq->freebuf = NULL;
2105
2106	    for (i = 0; i < nbr; i++) {
2107
2108		buffer[ i ].scheme = scheme;
2109		buffer[ i ].magn   = magn;
2110#ifdef FORE200E_BSQ_DEBUG
2111		buffer[ i ].index  = i;
2112		buffer[ i ].supplied = 0;
2113#endif
2114
2115		/* allocate the receive buffer body */
2116		if (fore200e_chunk_alloc(fore200e,
2117					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2118					 DMA_FROM_DEVICE) < 0) {
2119		    
2120		    while (i > 0)
2121			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2122		    kfree(buffer);
2123		    
2124		    return -ENOMEM;
2125		}
2126
2127		/* insert the buffer into the free buffer list */
2128		buffer[ i ].next = bsq->freebuf;
2129		bsq->freebuf = &buffer[ i ];
2130	    }
2131	    /* all the buffers are free, initially */
2132	    bsq->freebuf_count = nbr;
2133
2134#ifdef FORE200E_BSQ_DEBUG
2135	    bsq_audit(3, bsq, scheme, magn);
2136#endif
2137	}
2138    }
2139
2140    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2141    return 0;
2142}
2143
2144
2145static int fore200e_init_bs_queue(struct fore200e *fore200e)
 
2146{
2147    int scheme, magn, i;
2148
2149    struct host_bsq*     bsq;
2150    struct cp_bsq_entry __iomem * cp_entry;
2151
2152    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2153	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2154
2155	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2156
2157	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2158
2159	    /* allocate and align the array of status words */
2160	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2161					       &bsq->status,
2162					       sizeof(enum status), 
2163					       QUEUE_SIZE_BS,
2164					       fore200e->bus->status_alignment) < 0) {
2165		return -ENOMEM;
2166	    }
2167
2168	    /* allocate and align the array of receive buffer descriptors */
2169	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2170					       &bsq->rbd_block,
2171					       sizeof(struct rbd_block),
2172					       QUEUE_SIZE_BS,
2173					       fore200e->bus->descr_alignment) < 0) {
2174		
2175		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2176		return -ENOMEM;
2177	    }
2178	    
2179	    /* get the base address of the cp resident buffer supply queue entries */
2180	    cp_entry = fore200e->virt_base + 
2181		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2182	    
2183	    /* fill the host resident and cp resident buffer supply queue entries */
2184	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2185		
2186		bsq->host_entry[ i ].status = 
2187		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2188	        bsq->host_entry[ i ].rbd_block =
2189		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2190		bsq->host_entry[ i ].rbd_block_dma =
2191		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2192		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2193		
2194		*bsq->host_entry[ i ].status = STATUS_FREE;
2195		
2196		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2197				     &cp_entry[ i ].status_haddr);
2198	    }
2199	}
2200    }
2201
2202    fore200e->state = FORE200E_STATE_INIT_BSQ;
2203    return 0;
2204}
2205
2206
2207static int fore200e_init_rx_queue(struct fore200e *fore200e)
 
2208{
2209    struct host_rxq*     rxq =  &fore200e->host_rxq;
2210    struct cp_rxq_entry __iomem * cp_entry;
2211    int i;
2212
2213    DPRINTK(2, "receive queue is being initialized\n");
2214
2215    /* allocate and align the array of status words */
2216    if (fore200e->bus->dma_chunk_alloc(fore200e,
2217				       &rxq->status,
2218				       sizeof(enum status), 
2219				       QUEUE_SIZE_RX,
2220				       fore200e->bus->status_alignment) < 0) {
2221	return -ENOMEM;
2222    }
2223
2224    /* allocate and align the array of receive PDU descriptors */
2225    if (fore200e->bus->dma_chunk_alloc(fore200e,
2226				       &rxq->rpd,
2227				       sizeof(struct rpd), 
2228				       QUEUE_SIZE_RX,
2229				       fore200e->bus->descr_alignment) < 0) {
2230	
2231	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2232	return -ENOMEM;
2233    }
2234
2235    /* get the base address of the cp resident rx queue entries */
2236    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2237
2238    /* fill the host resident and cp resident rx entries */
2239    for (i=0; i < QUEUE_SIZE_RX; i++) {
2240	
2241	rxq->host_entry[ i ].status = 
2242	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2243	rxq->host_entry[ i ].rpd = 
2244	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2245	rxq->host_entry[ i ].rpd_dma = 
2246	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2247	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2248
2249	*rxq->host_entry[ i ].status = STATUS_FREE;
2250
2251	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2252			     &cp_entry[ i ].status_haddr);
2253
2254	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2255			     &cp_entry[ i ].rpd_haddr);
2256    }
2257
2258    /* set the head entry of the queue */
2259    rxq->head = 0;
2260
2261    fore200e->state = FORE200E_STATE_INIT_RXQ;
2262    return 0;
2263}
2264
2265
2266static int fore200e_init_tx_queue(struct fore200e *fore200e)
 
2267{
2268    struct host_txq*     txq =  &fore200e->host_txq;
2269    struct cp_txq_entry __iomem * cp_entry;
2270    int i;
2271
2272    DPRINTK(2, "transmit queue is being initialized\n");
2273
2274    /* allocate and align the array of status words */
2275    if (fore200e->bus->dma_chunk_alloc(fore200e,
2276				       &txq->status,
2277				       sizeof(enum status), 
2278				       QUEUE_SIZE_TX,
2279				       fore200e->bus->status_alignment) < 0) {
2280	return -ENOMEM;
2281    }
2282
2283    /* allocate and align the array of transmit PDU descriptors */
2284    if (fore200e->bus->dma_chunk_alloc(fore200e,
2285				       &txq->tpd,
2286				       sizeof(struct tpd), 
2287				       QUEUE_SIZE_TX,
2288				       fore200e->bus->descr_alignment) < 0) {
2289	
2290	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2291	return -ENOMEM;
2292    }
2293
2294    /* get the base address of the cp resident tx queue entries */
2295    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2296
2297    /* fill the host resident and cp resident tx entries */
2298    for (i=0; i < QUEUE_SIZE_TX; i++) {
2299	
2300	txq->host_entry[ i ].status = 
2301	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2302	txq->host_entry[ i ].tpd = 
2303	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2304	txq->host_entry[ i ].tpd_dma  = 
2305                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2306	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2307
2308	*txq->host_entry[ i ].status = STATUS_FREE;
2309	
2310	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2311			     &cp_entry[ i ].status_haddr);
2312	
2313        /* although there is a one-to-one mapping of tx queue entries and tpds,
2314	   we do not write here the DMA (physical) base address of each tpd into
2315	   the related cp resident entry, because the cp relies on this write
2316	   operation to detect that a new pdu has been submitted for tx */
2317    }
2318
2319    /* set the head and tail entries of the queue */
2320    txq->head = 0;
2321    txq->tail = 0;
2322
2323    fore200e->state = FORE200E_STATE_INIT_TXQ;
2324    return 0;
2325}
2326
2327
2328static int fore200e_init_cmd_queue(struct fore200e *fore200e)
 
2329{
2330    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2331    struct cp_cmdq_entry __iomem * cp_entry;
2332    int i;
2333
2334    DPRINTK(2, "command queue is being initialized\n");
2335
2336    /* allocate and align the array of status words */
2337    if (fore200e->bus->dma_chunk_alloc(fore200e,
2338				       &cmdq->status,
2339				       sizeof(enum status), 
2340				       QUEUE_SIZE_CMD,
2341				       fore200e->bus->status_alignment) < 0) {
2342	return -ENOMEM;
2343    }
2344    
2345    /* get the base address of the cp resident cmd queue entries */
2346    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2347
2348    /* fill the host resident and cp resident cmd entries */
2349    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2350	
2351	cmdq->host_entry[ i ].status   = 
2352                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2353	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2354
2355	*cmdq->host_entry[ i ].status = STATUS_FREE;
2356
2357	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2358                             &cp_entry[ i ].status_haddr);
2359    }
2360
2361    /* set the head entry of the queue */
2362    cmdq->head = 0;
2363
2364    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2365    return 0;
2366}
2367
2368
2369static void fore200e_param_bs_queue(struct fore200e *fore200e,
2370				    enum buffer_scheme scheme,
2371				    enum buffer_magn magn, int queue_length,
2372				    int pool_size, int supply_blksize)
2373{
2374    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2375
2376    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2377    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2378    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2379    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2380}
2381
2382
2383static int fore200e_initialize(struct fore200e *fore200e)
 
2384{
2385    struct cp_queues __iomem * cpq;
2386    int               ok, scheme, magn;
2387
2388    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2389
2390    mutex_init(&fore200e->rate_mtx);
2391    spin_lock_init(&fore200e->q_lock);
2392
2393    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2394
2395    /* enable cp to host interrupts */
2396    fore200e->bus->write(1, &cpq->imask);
2397
2398    if (fore200e->bus->irq_enable)
2399	fore200e->bus->irq_enable(fore200e);
2400    
2401    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2402
2403    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2404    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2405    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2406
2407    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2408    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2409
2410    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2411	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2412	    fore200e_param_bs_queue(fore200e, scheme, magn,
2413				    QUEUE_SIZE_BS, 
2414				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2415				    RBD_BLK_SIZE);
2416
2417    /* issue the initialize command */
2418    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2419    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2420
2421    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2422    if (ok == 0) {
2423	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2424	return -ENODEV;
2425    }
2426
2427    printk(FORE200E "device %s initialized\n", fore200e->name);
2428
2429    fore200e->state = FORE200E_STATE_INITIALIZE;
2430    return 0;
2431}
2432
2433
2434static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
 
2435{
2436    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2437
2438#if 0
2439    printk("%c", c);
2440#endif
2441    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2442}
2443
2444
2445static int fore200e_monitor_getc(struct fore200e *fore200e)
 
2446{
2447    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2448    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2449    int                c;
2450
2451    while (time_before(jiffies, timeout)) {
2452
2453	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2454
2455	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2456
2457	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2458#if 0
2459	    printk("%c", c & 0xFF);
2460#endif
2461	    return c & 0xFF;
2462	}
2463    }
2464
2465    return -1;
2466}
2467
2468
2469static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
 
2470{
2471    while (*str) {
2472
2473	/* the i960 monitor doesn't accept any new character if it has something to say */
2474	while (fore200e_monitor_getc(fore200e) >= 0);
2475	
2476	fore200e_monitor_putc(fore200e, *str++);
2477    }
2478
2479    while (fore200e_monitor_getc(fore200e) >= 0);
2480}
2481
2482#ifdef __LITTLE_ENDIAN
2483#define FW_EXT ".bin"
2484#else
2485#define FW_EXT "_ecd.bin2"
2486#endif
2487
2488static int fore200e_load_and_start_fw(struct fore200e *fore200e)
 
2489{
2490    const struct firmware *firmware;
2491    struct device *device;
2492    struct fw_header *fw_header;
2493    const __le32 *fw_data;
2494    u32 fw_size;
2495    u32 __iomem *load_addr;
2496    char buf[48];
2497    int err = -ENODEV;
2498
2499    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2500	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2501#ifdef CONFIG_SBUS
2502    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2503	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2504#endif
2505    else
2506	return err;
2507
2508    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2509    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2510	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2511	return err;
2512    }
2513
2514    fw_data = (__le32 *) firmware->data;
2515    fw_size = firmware->size / sizeof(u32);
2516    fw_header = (struct fw_header *) firmware->data;
2517    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2518
2519    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2520	    fore200e->name, load_addr, fw_size);
2521
2522    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2523	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2524	goto release;
2525    }
2526
2527    for (; fw_size--; fw_data++, load_addr++)
2528	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2529
2530    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2531
2532#if defined(__sparc_v9__)
2533    /* reported to be required by SBA cards on some sparc64 hosts */
2534    fore200e_spin(100);
2535#endif
2536
2537    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2538    fore200e_monitor_puts(fore200e, buf);
2539
2540    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2541	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2542	goto release;
2543    }
2544
2545    printk(FORE200E "device %s firmware started\n", fore200e->name);
2546
2547    fore200e->state = FORE200E_STATE_START_FW;
2548    err = 0;
2549
2550release:
2551    release_firmware(firmware);
2552    return err;
2553}
2554
2555
2556static int fore200e_register(struct fore200e *fore200e, struct device *parent)
 
2557{
2558    struct atm_dev* atm_dev;
2559
2560    DPRINTK(2, "device %s being registered\n", fore200e->name);
2561
2562    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2563                               -1, NULL);
2564    if (atm_dev == NULL) {
2565	printk(FORE200E "unable to register device %s\n", fore200e->name);
2566	return -ENODEV;
2567    }
2568
2569    atm_dev->dev_data = fore200e;
2570    fore200e->atm_dev = atm_dev;
2571
2572    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2573    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2574
2575    fore200e->available_cell_rate = ATM_OC3_PCR;
2576
2577    fore200e->state = FORE200E_STATE_REGISTER;
2578    return 0;
2579}
2580
2581
2582static int fore200e_init(struct fore200e *fore200e, struct device *parent)
 
2583{
2584    if (fore200e_register(fore200e, parent) < 0)
2585	return -ENODEV;
2586    
2587    if (fore200e->bus->configure(fore200e) < 0)
2588	return -ENODEV;
2589
2590    if (fore200e->bus->map(fore200e) < 0)
2591	return -ENODEV;
2592
2593    if (fore200e_reset(fore200e, 1) < 0)
2594	return -ENODEV;
2595
2596    if (fore200e_load_and_start_fw(fore200e) < 0)
2597	return -ENODEV;
2598
2599    if (fore200e_initialize(fore200e) < 0)
2600	return -ENODEV;
2601
2602    if (fore200e_init_cmd_queue(fore200e) < 0)
2603	return -ENOMEM;
2604
2605    if (fore200e_init_tx_queue(fore200e) < 0)
2606	return -ENOMEM;
2607
2608    if (fore200e_init_rx_queue(fore200e) < 0)
2609	return -ENOMEM;
2610
2611    if (fore200e_init_bs_queue(fore200e) < 0)
2612	return -ENOMEM;
2613
2614    if (fore200e_alloc_rx_buf(fore200e) < 0)
2615	return -ENOMEM;
2616
2617    if (fore200e_get_esi(fore200e) < 0)
2618	return -EIO;
2619
2620    if (fore200e_irq_request(fore200e) < 0)
2621	return -EBUSY;
2622
2623    fore200e_supply(fore200e);
2624
2625    /* all done, board initialization is now complete */
2626    fore200e->state = FORE200E_STATE_COMPLETE;
2627    return 0;
2628}
2629
2630#ifdef CONFIG_SBUS
2631static const struct of_device_id fore200e_sba_match[];
2632static int fore200e_sba_probe(struct platform_device *op)
2633{
2634	const struct of_device_id *match;
2635	const struct fore200e_bus *bus;
2636	struct fore200e *fore200e;
2637	static int index = 0;
2638	int err;
2639
2640	match = of_match_device(fore200e_sba_match, &op->dev);
2641	if (!match)
2642		return -EINVAL;
2643	bus = match->data;
2644
2645	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2646	if (!fore200e)
2647		return -ENOMEM;
2648
2649	fore200e->bus = bus;
2650	fore200e->bus_dev = op;
2651	fore200e->irq = op->archdata.irqs[0];
2652	fore200e->phys_base = op->resource[0].start;
2653
2654	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2655
2656	err = fore200e_init(fore200e, &op->dev);
2657	if (err < 0) {
2658		fore200e_shutdown(fore200e);
2659		kfree(fore200e);
2660		return err;
2661	}
2662
2663	index++;
2664	dev_set_drvdata(&op->dev, fore200e);
2665
2666	return 0;
2667}
2668
2669static int fore200e_sba_remove(struct platform_device *op)
2670{
2671	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2672
2673	fore200e_shutdown(fore200e);
2674	kfree(fore200e);
2675
2676	return 0;
2677}
2678
2679static const struct of_device_id fore200e_sba_match[] = {
2680	{
2681		.name = SBA200E_PROM_NAME,
2682		.data = (void *) &fore200e_bus[1],
2683	},
2684	{},
2685};
2686MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2687
2688static struct platform_driver fore200e_sba_driver = {
2689	.driver = {
2690		.name = "fore_200e",
 
2691		.of_match_table = fore200e_sba_match,
2692	},
2693	.probe		= fore200e_sba_probe,
2694	.remove		= fore200e_sba_remove,
2695};
2696#endif
2697
2698#ifdef CONFIG_PCI
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700			       const struct pci_device_id *pci_ent)
2701{
2702    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703    struct fore200e* fore200e;
2704    int err = 0;
2705    static int index = 0;
2706
2707    if (pci_enable_device(pci_dev)) {
2708	err = -EINVAL;
2709	goto out;
2710    }
2711
2712    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2713	err = -EINVAL;
2714	goto out;
2715    }
2716    
2717    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2718    if (fore200e == NULL) {
2719	err = -ENOMEM;
2720	goto out_disable;
2721    }
2722
2723    fore200e->bus       = bus;
2724    fore200e->bus_dev   = pci_dev;    
2725    fore200e->irq       = pci_dev->irq;
2726    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2727
2728    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2729
2730    pci_set_master(pci_dev);
2731
2732    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2733	   fore200e->bus->model_name, 
2734	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2735
2736    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2737
2738    err = fore200e_init(fore200e, &pci_dev->dev);
2739    if (err < 0) {
2740	fore200e_shutdown(fore200e);
2741	goto out_free;
2742    }
2743
2744    ++index;
2745    pci_set_drvdata(pci_dev, fore200e);
2746
2747out:
2748    return err;
2749
2750out_free:
2751    kfree(fore200e);
2752out_disable:
2753    pci_disable_device(pci_dev);
2754    goto out;
2755}
2756
2757
2758static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2759{
2760    struct fore200e *fore200e;
2761
2762    fore200e = pci_get_drvdata(pci_dev);
2763
2764    fore200e_shutdown(fore200e);
2765    kfree(fore200e);
2766    pci_disable_device(pci_dev);
2767}
2768
2769
2770static struct pci_device_id fore200e_pca_tbl[] = {
2771    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2772      0, 0, (unsigned long) &fore200e_bus[0] },
2773    { 0, }
2774};
2775
2776MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2777
2778static struct pci_driver fore200e_pca_driver = {
2779    .name =     "fore_200e",
2780    .probe =    fore200e_pca_detect,
2781    .remove =   fore200e_pca_remove_one,
2782    .id_table = fore200e_pca_tbl,
2783};
2784#endif
2785
2786static int __init fore200e_module_init(void)
2787{
2788	int err = 0;
2789
2790	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2791
2792#ifdef CONFIG_SBUS
2793	err = platform_driver_register(&fore200e_sba_driver);
2794	if (err)
2795		return err;
2796#endif
2797
2798#ifdef CONFIG_PCI
2799	err = pci_register_driver(&fore200e_pca_driver);
2800#endif
2801
2802#ifdef CONFIG_SBUS
2803	if (err)
2804		platform_driver_unregister(&fore200e_sba_driver);
2805#endif
2806
2807	return err;
2808}
2809
2810static void __exit fore200e_module_cleanup(void)
2811{
2812#ifdef CONFIG_PCI
2813	pci_unregister_driver(&fore200e_pca_driver);
2814#endif
2815#ifdef CONFIG_SBUS
2816	platform_driver_unregister(&fore200e_sba_driver);
2817#endif
2818}
2819
2820static int
2821fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2822{
2823    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2824    struct fore200e_vcc* fore200e_vcc;
2825    struct atm_vcc*      vcc;
2826    int                  i, len, left = *pos;
2827    unsigned long        flags;
2828
2829    if (!left--) {
2830
2831	if (fore200e_getstats(fore200e) < 0)
2832	    return -EIO;
2833
2834	len = sprintf(page,"\n"
2835		       " device:\n"
2836		       "   internal name:\t\t%s\n", fore200e->name);
2837
2838	/* print bus-specific information */
2839	if (fore200e->bus->proc_read)
2840	    len += fore200e->bus->proc_read(fore200e, page + len);
2841	
2842	len += sprintf(page + len,
2843		"   interrupt line:\t\t%s\n"
2844		"   physical base address:\t0x%p\n"
2845		"   virtual base address:\t0x%p\n"
2846		"   factory address (ESI):\t%pM\n"
2847		"   board serial number:\t\t%d\n\n",
2848		fore200e_irq_itoa(fore200e->irq),
2849		(void*)fore200e->phys_base,
2850		fore200e->virt_base,
2851		fore200e->esi,
2852		fore200e->esi[4] * 256 + fore200e->esi[5]);
2853
2854	return len;
2855    }
2856
2857    if (!left--)
2858	return sprintf(page,
2859		       "   free small bufs, scheme 1:\t%d\n"
2860		       "   free large bufs, scheme 1:\t%d\n"
2861		       "   free small bufs, scheme 2:\t%d\n"
2862		       "   free large bufs, scheme 2:\t%d\n",
2863		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2865		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2866		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2867
2868    if (!left--) {
2869	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2870
2871	len = sprintf(page,"\n\n"
2872		      " cell processor:\n"
2873		      "   heartbeat state:\t\t");
2874	
2875	if (hb >> 16 != 0xDEAD)
2876	    len += sprintf(page + len, "0x%08x\n", hb);
2877	else
2878	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2879
2880	return len;
2881    }
2882
2883    if (!left--) {
2884	static const char* media_name[] = {
2885	    "unshielded twisted pair",
2886	    "multimode optical fiber ST",
2887	    "multimode optical fiber SC",
2888	    "single-mode optical fiber ST",
2889	    "single-mode optical fiber SC",
2890	    "unknown"
2891	};
2892
2893	static const char* oc3_mode[] = {
2894	    "normal operation",
2895	    "diagnostic loopback",
2896	    "line loopback",
2897	    "unknown"
2898	};
2899
2900	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2901	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2902	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2903	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2904	u32 oc3_index;
2905
2906	if (media_index > 4)
2907		media_index = 5;
2908	
2909	switch (fore200e->loop_mode) {
2910	    case ATM_LM_NONE:    oc3_index = 0;
2911		                 break;
2912	    case ATM_LM_LOC_PHY: oc3_index = 1;
2913		                 break;
2914	    case ATM_LM_RMT_PHY: oc3_index = 2;
2915		                 break;
2916	    default:             oc3_index = 3;
2917	}
2918
2919	return sprintf(page,
2920		       "   firmware release:\t\t%d.%d.%d\n"
2921		       "   monitor release:\t\t%d.%d\n"
2922		       "   media type:\t\t\t%s\n"
2923		       "   OC-3 revision:\t\t0x%x\n"
2924                       "   OC-3 mode:\t\t\t%s",
2925		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2926		       mon960_release >> 16, mon960_release << 16 >> 16,
2927		       media_name[ media_index ],
2928		       oc3_revision,
2929		       oc3_mode[ oc3_index ]);
2930    }
2931
2932    if (!left--) {
2933	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2934
2935	return sprintf(page,
2936		       "\n\n"
2937		       " monitor:\n"
2938		       "   version number:\t\t%d\n"
2939		       "   boot status word:\t\t0x%08x\n",
2940		       fore200e->bus->read(&cp_monitor->mon_version),
2941		       fore200e->bus->read(&cp_monitor->bstat));
2942    }
2943
2944    if (!left--)
2945	return sprintf(page,
2946		       "\n"
2947		       " device statistics:\n"
2948		       "  4b5b:\n"
2949		       "     crc_header_errors:\t\t%10u\n"
2950		       "     framing_errors:\t\t%10u\n",
2951		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2952		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2953    
2954    if (!left--)
2955	return sprintf(page, "\n"
2956		       "  OC-3:\n"
2957		       "     section_bip8_errors:\t%10u\n"
2958		       "     path_bip8_errors:\t\t%10u\n"
2959		       "     line_bip24_errors:\t\t%10u\n"
2960		       "     line_febe_errors:\t\t%10u\n"
2961		       "     path_febe_errors:\t\t%10u\n"
2962		       "     corr_hcs_errors:\t\t%10u\n"
2963		       "     ucorr_hcs_errors:\t\t%10u\n",
2964		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2965		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2966		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2967		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2968		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2969		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2970		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2971
2972    if (!left--)
2973	return sprintf(page,"\n"
2974		       "   ATM:\t\t\t\t     cells\n"
2975		       "     TX:\t\t\t%10u\n"
2976		       "     RX:\t\t\t%10u\n"
2977		       "     vpi out of range:\t\t%10u\n"
2978		       "     vpi no conn:\t\t%10u\n"
2979		       "     vci out of range:\t\t%10u\n"
2980		       "     vci no conn:\t\t%10u\n",
2981		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2982		       be32_to_cpu(fore200e->stats->atm.cells_received),
2983		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2984		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2985		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2986		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2987    
2988    if (!left--)
2989	return sprintf(page,"\n"
2990		       "   AAL0:\t\t\t     cells\n"
2991		       "     TX:\t\t\t%10u\n"
2992		       "     RX:\t\t\t%10u\n"
2993		       "     dropped:\t\t\t%10u\n",
2994		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2995		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2996		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2997    
2998    if (!left--)
2999	return sprintf(page,"\n"
3000		       "   AAL3/4:\n"
3001		       "     SAR sublayer:\t\t     cells\n"
3002		       "       TX:\t\t\t%10u\n"
3003		       "       RX:\t\t\t%10u\n"
3004		       "       dropped:\t\t\t%10u\n"
3005		       "       CRC errors:\t\t%10u\n"
3006		       "       protocol errors:\t\t%10u\n\n"
3007		       "     CS  sublayer:\t\t      PDUs\n"
3008		       "       TX:\t\t\t%10u\n"
3009		       "       RX:\t\t\t%10u\n"
3010		       "       dropped:\t\t\t%10u\n"
3011		       "       protocol errors:\t\t%10u\n",
3012		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3013		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3014		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3015		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3016		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3017		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3018		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3019		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3020		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3021    
3022    if (!left--)
3023	return sprintf(page,"\n"
3024		       "   AAL5:\n"
3025		       "     SAR sublayer:\t\t     cells\n"
3026		       "       TX:\t\t\t%10u\n"
3027		       "       RX:\t\t\t%10u\n"
3028		       "       dropped:\t\t\t%10u\n"
3029		       "       congestions:\t\t%10u\n\n"
3030		       "     CS  sublayer:\t\t      PDUs\n"
3031		       "       TX:\t\t\t%10u\n"
3032		       "       RX:\t\t\t%10u\n"
3033		       "       dropped:\t\t\t%10u\n"
3034		       "       CRC errors:\t\t%10u\n"
3035		       "       protocol errors:\t\t%10u\n",
3036		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3037		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3038		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3039		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3040		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3041		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3042		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3043		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3044		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3045    
3046    if (!left--)
3047	return sprintf(page,"\n"
3048		       "   AUX:\t\t       allocation failures\n"
3049		       "     small b1:\t\t\t%10u\n"
3050		       "     large b1:\t\t\t%10u\n"
3051		       "     small b2:\t\t\t%10u\n"
3052		       "     large b2:\t\t\t%10u\n"
3053		       "     RX PDUs:\t\t\t%10u\n"
3054		       "     TX PDUs:\t\t\t%10lu\n",
3055		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3056		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3057		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3058		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3059		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3060		       fore200e->tx_sat);
3061    
3062    if (!left--)
3063	return sprintf(page,"\n"
3064		       " receive carrier:\t\t\t%s\n",
3065		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3066    
3067    if (!left--) {
3068        return sprintf(page,"\n"
3069		       " VCCs:\n  address   VPI VCI   AAL "
3070		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3071    }
3072
3073    for (i = 0; i < NBR_CONNECT; i++) {
3074
3075	vcc = fore200e->vc_map[i].vcc;
3076
3077	if (vcc == NULL)
3078	    continue;
3079
3080	spin_lock_irqsave(&fore200e->q_lock, flags);
3081
3082	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3083
3084	    fore200e_vcc = FORE200E_VCC(vcc);
3085	    ASSERT(fore200e_vcc);
3086
3087	    len = sprintf(page,
3088			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3089			  (u32)(unsigned long)vcc,
3090			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3091			  fore200e_vcc->tx_pdu,
3092			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3093			  fore200e_vcc->tx_max_pdu,
3094			  fore200e_vcc->rx_pdu,
3095			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3096			  fore200e_vcc->rx_max_pdu);
3097
3098	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3099	    return len;
3100	}
3101
3102	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3103    }
3104    
3105    return 0;
3106}
3107
3108module_init(fore200e_module_init);
3109module_exit(fore200e_module_cleanup);
3110
3111
3112static const struct atmdev_ops fore200e_ops =
3113{
3114	.open       = fore200e_open,
3115	.close      = fore200e_close,
3116	.ioctl      = fore200e_ioctl,
3117	.getsockopt = fore200e_getsockopt,
3118	.setsockopt = fore200e_setsockopt,
3119	.send       = fore200e_send,
3120	.change_qos = fore200e_change_qos,
3121	.proc_read  = fore200e_proc_read,
3122	.owner      = THIS_MODULE
3123};
3124
3125
3126static const struct fore200e_bus fore200e_bus[] = {
3127#ifdef CONFIG_PCI
3128    { "PCA-200E", "pca200e", 32, 4, 32, 
3129      fore200e_pca_read,
3130      fore200e_pca_write,
3131      fore200e_pca_dma_map,
3132      fore200e_pca_dma_unmap,
3133      fore200e_pca_dma_sync_for_cpu,
3134      fore200e_pca_dma_sync_for_device,
3135      fore200e_pca_dma_chunk_alloc,
3136      fore200e_pca_dma_chunk_free,
3137      fore200e_pca_configure,
3138      fore200e_pca_map,
3139      fore200e_pca_reset,
3140      fore200e_pca_prom_read,
3141      fore200e_pca_unmap,
3142      NULL,
3143      fore200e_pca_irq_check,
3144      fore200e_pca_irq_ack,
3145      fore200e_pca_proc_read,
3146    },
3147#endif
3148#ifdef CONFIG_SBUS
3149    { "SBA-200E", "sba200e", 32, 64, 32,
3150      fore200e_sba_read,
3151      fore200e_sba_write,
3152      fore200e_sba_dma_map,
3153      fore200e_sba_dma_unmap,
3154      fore200e_sba_dma_sync_for_cpu,
3155      fore200e_sba_dma_sync_for_device,
3156      fore200e_sba_dma_chunk_alloc,
3157      fore200e_sba_dma_chunk_free,
3158      fore200e_sba_configure,
3159      fore200e_sba_map,
3160      fore200e_sba_reset,
3161      fore200e_sba_prom_read,
3162      fore200e_sba_unmap,
3163      fore200e_sba_irq_enable,
3164      fore200e_sba_irq_check,
3165      fore200e_sba_irq_ack,
3166      fore200e_sba_proc_read,
3167    },
3168#endif
3169    {}
3170};
3171
3172MODULE_LICENSE("GPL");
3173#ifdef CONFIG_PCI
3174#ifdef __LITTLE_ENDIAN__
3175MODULE_FIRMWARE("pca200e.bin");
3176#else
3177MODULE_FIRMWARE("pca200e_ecd.bin2");
3178#endif
3179#endif /* CONFIG_PCI */
3180#ifdef CONFIG_SBUS
3181MODULE_FIRMWARE("sba200e_ecd.bin2");
3182#endif