Loading...
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
125 brelse(bh);
126
127 return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132{
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
208bail:
209 if (err < 0)
210 err = -EIO;
211
212 return err;
213}
214
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217{
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
283
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 ret = AOP_TRUNCATED_PAGE;
294 goto out_inode_unlock;
295 }
296
297 /*
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
304 *
305 * XXX sys_readahead() seems to get that wrong?
306 */
307 if (start >= i_size_read(inode)) {
308 zero_user(page, 0, PAGE_SIZE);
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
312 }
313
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
318 unlock = 0;
319
320out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
322out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
324out:
325 if (unlock)
326 unlock_page(page);
327 return ret;
328}
329
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 page->index);
402
403 return block_write_full_page(page, ocfs2_get_block, wbc);
404}
405
406/* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
410int walk_page_buffers( handle_t *handle,
411 struct buffer_head *head,
412 unsigned from,
413 unsigned to,
414 int *partial,
415 int (*fn)( handle_t *handle,
416 struct buffer_head *bh))
417{
418 struct buffer_head *bh;
419 unsigned block_start, block_end;
420 unsigned blocksize = head->b_size;
421 int err, ret = 0;
422 struct buffer_head *next;
423
424 for ( bh = head, block_start = 0;
425 ret == 0 && (bh != head || !block_start);
426 block_start = block_end, bh = next)
427 {
428 next = bh->b_this_page;
429 block_end = block_start + blocksize;
430 if (block_end <= from || block_start >= to) {
431 if (partial && !buffer_uptodate(bh))
432 *partial = 1;
433 continue;
434 }
435 err = (*fn)(handle, bh);
436 if (!ret)
437 ret = err;
438 }
439 return ret;
440}
441
442static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443{
444 sector_t status;
445 u64 p_blkno = 0;
446 int err = 0;
447 struct inode *inode = mapping->host;
448
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 (unsigned long long)block);
451
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
454 */
455 if (!INODE_JOURNAL(inode)) {
456 err = ocfs2_inode_lock(inode, NULL, 0);
457 if (err) {
458 if (err != -ENOENT)
459 mlog_errno(err);
460 goto bail;
461 }
462 down_read(&OCFS2_I(inode)->ip_alloc_sem);
463 }
464
465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 NULL);
468
469 if (!INODE_JOURNAL(inode)) {
470 up_read(&OCFS2_I(inode)->ip_alloc_sem);
471 ocfs2_inode_unlock(inode, 0);
472 }
473
474 if (err) {
475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block);
477 mlog_errno(err);
478 goto bail;
479 }
480
481bail:
482 status = err ? 0 : p_blkno;
483
484 return status;
485}
486
487/*
488 * TODO: Make this into a generic get_blocks function.
489 *
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
493 * this i_blkbits."
494 *
495 * This function is called directly from get_more_blocks in direct-io.c.
496 *
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
499 *
500 * Note that we never bother to allocate blocks here, and thus ignore the
501 * create argument.
502 */
503static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
504 struct buffer_head *bh_result, int create)
505{
506 int ret;
507 u64 p_blkno, inode_blocks, contig_blocks;
508 unsigned int ext_flags;
509 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
510 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
511
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
515
516 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
517
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
520 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
521 &contig_blocks, &ext_flags);
522 if (ret) {
523 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock);
525 ret = -EIO;
526 goto bail;
527 }
528
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531
532 /*
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
535 *
536 * Consider an unwritten extent as a hole.
537 */
538 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
539 map_bh(bh_result, inode->i_sb, p_blkno);
540 else
541 clear_buffer_mapped(bh_result);
542
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks < contig_blocks)
546 contig_blocks = max_blocks;
547 bh_result->b_size = contig_blocks << blocksize_bits;
548bail:
549 return ret;
550}
551
552/*
553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
554 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
555 * to protect io on one node from truncation on another.
556 */
557static void ocfs2_dio_end_io(struct kiocb *iocb,
558 loff_t offset,
559 ssize_t bytes,
560 void *private,
561 int ret,
562 bool is_async)
563{
564 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
565 int level;
566
567 /* this io's submitter should not have unlocked this before we could */
568 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
569
570 if (ocfs2_iocb_is_sem_locked(iocb))
571 ocfs2_iocb_clear_sem_locked(iocb);
572
573 ocfs2_iocb_clear_rw_locked(iocb);
574
575 level = ocfs2_iocb_rw_locked_level(iocb);
576 ocfs2_rw_unlock(inode, level);
577
578 if (is_async)
579 aio_complete(iocb, ret, 0);
580 inode_dio_done(inode);
581}
582
583/*
584 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
585 * from ext3. PageChecked() bits have been removed as OCFS2 does not
586 * do journalled data.
587 */
588static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
589{
590 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
591
592 jbd2_journal_invalidatepage(journal, page, offset);
593}
594
595static int ocfs2_releasepage(struct page *page, gfp_t wait)
596{
597 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598
599 if (!page_has_buffers(page))
600 return 0;
601 return jbd2_journal_try_to_free_buffers(journal, page, wait);
602}
603
604static ssize_t ocfs2_direct_IO(int rw,
605 struct kiocb *iocb,
606 const struct iovec *iov,
607 loff_t offset,
608 unsigned long nr_segs)
609{
610 struct file *file = iocb->ki_filp;
611 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
612
613 /*
614 * Fallback to buffered I/O if we see an inode without
615 * extents.
616 */
617 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618 return 0;
619
620 /* Fallback to buffered I/O if we are appending. */
621 if (i_size_read(inode) <= offset)
622 return 0;
623
624 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625 iov, offset, nr_segs,
626 ocfs2_direct_IO_get_blocks,
627 ocfs2_dio_end_io, NULL, 0);
628}
629
630static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631 u32 cpos,
632 unsigned int *start,
633 unsigned int *end)
634{
635 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636
637 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638 unsigned int cpp;
639
640 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641
642 cluster_start = cpos % cpp;
643 cluster_start = cluster_start << osb->s_clustersize_bits;
644
645 cluster_end = cluster_start + osb->s_clustersize;
646 }
647
648 BUG_ON(cluster_start > PAGE_SIZE);
649 BUG_ON(cluster_end > PAGE_SIZE);
650
651 if (start)
652 *start = cluster_start;
653 if (end)
654 *end = cluster_end;
655}
656
657/*
658 * 'from' and 'to' are the region in the page to avoid zeroing.
659 *
660 * If pagesize > clustersize, this function will avoid zeroing outside
661 * of the cluster boundary.
662 *
663 * from == to == 0 is code for "zero the entire cluster region"
664 */
665static void ocfs2_clear_page_regions(struct page *page,
666 struct ocfs2_super *osb, u32 cpos,
667 unsigned from, unsigned to)
668{
669 void *kaddr;
670 unsigned int cluster_start, cluster_end;
671
672 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673
674 kaddr = kmap_atomic(page, KM_USER0);
675
676 if (from || to) {
677 if (from > cluster_start)
678 memset(kaddr + cluster_start, 0, from - cluster_start);
679 if (to < cluster_end)
680 memset(kaddr + to, 0, cluster_end - to);
681 } else {
682 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683 }
684
685 kunmap_atomic(kaddr, KM_USER0);
686}
687
688/*
689 * Nonsparse file systems fully allocate before we get to the write
690 * code. This prevents ocfs2_write() from tagging the write as an
691 * allocating one, which means ocfs2_map_page_blocks() might try to
692 * read-in the blocks at the tail of our file. Avoid reading them by
693 * testing i_size against each block offset.
694 */
695static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696 unsigned int block_start)
697{
698 u64 offset = page_offset(page) + block_start;
699
700 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701 return 1;
702
703 if (i_size_read(inode) > offset)
704 return 1;
705
706 return 0;
707}
708
709/*
710 * Some of this taken from __block_write_begin(). We already have our
711 * mapping by now though, and the entire write will be allocating or
712 * it won't, so not much need to use BH_New.
713 *
714 * This will also skip zeroing, which is handled externally.
715 */
716int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717 struct inode *inode, unsigned int from,
718 unsigned int to, int new)
719{
720 int ret = 0;
721 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722 unsigned int block_end, block_start;
723 unsigned int bsize = 1 << inode->i_blkbits;
724
725 if (!page_has_buffers(page))
726 create_empty_buffers(page, bsize, 0);
727
728 head = page_buffers(page);
729 for (bh = head, block_start = 0; bh != head || !block_start;
730 bh = bh->b_this_page, block_start += bsize) {
731 block_end = block_start + bsize;
732
733 clear_buffer_new(bh);
734
735 /*
736 * Ignore blocks outside of our i/o range -
737 * they may belong to unallocated clusters.
738 */
739 if (block_start >= to || block_end <= from) {
740 if (PageUptodate(page))
741 set_buffer_uptodate(bh);
742 continue;
743 }
744
745 /*
746 * For an allocating write with cluster size >= page
747 * size, we always write the entire page.
748 */
749 if (new)
750 set_buffer_new(bh);
751
752 if (!buffer_mapped(bh)) {
753 map_bh(bh, inode->i_sb, *p_blkno);
754 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755 }
756
757 if (PageUptodate(page)) {
758 if (!buffer_uptodate(bh))
759 set_buffer_uptodate(bh);
760 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
761 !buffer_new(bh) &&
762 ocfs2_should_read_blk(inode, page, block_start) &&
763 (block_start < from || block_end > to)) {
764 ll_rw_block(READ, 1, &bh);
765 *wait_bh++=bh;
766 }
767
768 *p_blkno = *p_blkno + 1;
769 }
770
771 /*
772 * If we issued read requests - let them complete.
773 */
774 while(wait_bh > wait) {
775 wait_on_buffer(*--wait_bh);
776 if (!buffer_uptodate(*wait_bh))
777 ret = -EIO;
778 }
779
780 if (ret == 0 || !new)
781 return ret;
782
783 /*
784 * If we get -EIO above, zero out any newly allocated blocks
785 * to avoid exposing stale data.
786 */
787 bh = head;
788 block_start = 0;
789 do {
790 block_end = block_start + bsize;
791 if (block_end <= from)
792 goto next_bh;
793 if (block_start >= to)
794 break;
795
796 zero_user(page, block_start, bh->b_size);
797 set_buffer_uptodate(bh);
798 mark_buffer_dirty(bh);
799
800next_bh:
801 block_start = block_end;
802 bh = bh->b_this_page;
803 } while (bh != head);
804
805 return ret;
806}
807
808#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809#define OCFS2_MAX_CTXT_PAGES 1
810#else
811#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812#endif
813
814#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815
816/*
817 * Describe the state of a single cluster to be written to.
818 */
819struct ocfs2_write_cluster_desc {
820 u32 c_cpos;
821 u32 c_phys;
822 /*
823 * Give this a unique field because c_phys eventually gets
824 * filled.
825 */
826 unsigned c_new;
827 unsigned c_unwritten;
828 unsigned c_needs_zero;
829};
830
831struct ocfs2_write_ctxt {
832 /* Logical cluster position / len of write */
833 u32 w_cpos;
834 u32 w_clen;
835
836 /* First cluster allocated in a nonsparse extend */
837 u32 w_first_new_cpos;
838
839 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
840
841 /*
842 * This is true if page_size > cluster_size.
843 *
844 * It triggers a set of special cases during write which might
845 * have to deal with allocating writes to partial pages.
846 */
847 unsigned int w_large_pages;
848
849 /*
850 * Pages involved in this write.
851 *
852 * w_target_page is the page being written to by the user.
853 *
854 * w_pages is an array of pages which always contains
855 * w_target_page, and in the case of an allocating write with
856 * page_size < cluster size, it will contain zero'd and mapped
857 * pages adjacent to w_target_page which need to be written
858 * out in so that future reads from that region will get
859 * zero's.
860 */
861 unsigned int w_num_pages;
862 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
863 struct page *w_target_page;
864
865 /*
866 * ocfs2_write_end() uses this to know what the real range to
867 * write in the target should be.
868 */
869 unsigned int w_target_from;
870 unsigned int w_target_to;
871
872 /*
873 * We could use journal_current_handle() but this is cleaner,
874 * IMHO -Mark
875 */
876 handle_t *w_handle;
877
878 struct buffer_head *w_di_bh;
879
880 struct ocfs2_cached_dealloc_ctxt w_dealloc;
881};
882
883void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
884{
885 int i;
886
887 for(i = 0; i < num_pages; i++) {
888 if (pages[i]) {
889 unlock_page(pages[i]);
890 mark_page_accessed(pages[i]);
891 page_cache_release(pages[i]);
892 }
893 }
894}
895
896static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
897{
898 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
899
900 brelse(wc->w_di_bh);
901 kfree(wc);
902}
903
904static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
905 struct ocfs2_super *osb, loff_t pos,
906 unsigned len, struct buffer_head *di_bh)
907{
908 u32 cend;
909 struct ocfs2_write_ctxt *wc;
910
911 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
912 if (!wc)
913 return -ENOMEM;
914
915 wc->w_cpos = pos >> osb->s_clustersize_bits;
916 wc->w_first_new_cpos = UINT_MAX;
917 cend = (pos + len - 1) >> osb->s_clustersize_bits;
918 wc->w_clen = cend - wc->w_cpos + 1;
919 get_bh(di_bh);
920 wc->w_di_bh = di_bh;
921
922 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
923 wc->w_large_pages = 1;
924 else
925 wc->w_large_pages = 0;
926
927 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
928
929 *wcp = wc;
930
931 return 0;
932}
933
934/*
935 * If a page has any new buffers, zero them out here, and mark them uptodate
936 * and dirty so they'll be written out (in order to prevent uninitialised
937 * block data from leaking). And clear the new bit.
938 */
939static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
940{
941 unsigned int block_start, block_end;
942 struct buffer_head *head, *bh;
943
944 BUG_ON(!PageLocked(page));
945 if (!page_has_buffers(page))
946 return;
947
948 bh = head = page_buffers(page);
949 block_start = 0;
950 do {
951 block_end = block_start + bh->b_size;
952
953 if (buffer_new(bh)) {
954 if (block_end > from && block_start < to) {
955 if (!PageUptodate(page)) {
956 unsigned start, end;
957
958 start = max(from, block_start);
959 end = min(to, block_end);
960
961 zero_user_segment(page, start, end);
962 set_buffer_uptodate(bh);
963 }
964
965 clear_buffer_new(bh);
966 mark_buffer_dirty(bh);
967 }
968 }
969
970 block_start = block_end;
971 bh = bh->b_this_page;
972 } while (bh != head);
973}
974
975/*
976 * Only called when we have a failure during allocating write to write
977 * zero's to the newly allocated region.
978 */
979static void ocfs2_write_failure(struct inode *inode,
980 struct ocfs2_write_ctxt *wc,
981 loff_t user_pos, unsigned user_len)
982{
983 int i;
984 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
985 to = user_pos + user_len;
986 struct page *tmppage;
987
988 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
989
990 for(i = 0; i < wc->w_num_pages; i++) {
991 tmppage = wc->w_pages[i];
992
993 if (page_has_buffers(tmppage)) {
994 if (ocfs2_should_order_data(inode))
995 ocfs2_jbd2_file_inode(wc->w_handle, inode);
996
997 block_commit_write(tmppage, from, to);
998 }
999 }
1000}
1001
1002static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1003 struct ocfs2_write_ctxt *wc,
1004 struct page *page, u32 cpos,
1005 loff_t user_pos, unsigned user_len,
1006 int new)
1007{
1008 int ret;
1009 unsigned int map_from = 0, map_to = 0;
1010 unsigned int cluster_start, cluster_end;
1011 unsigned int user_data_from = 0, user_data_to = 0;
1012
1013 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1014 &cluster_start, &cluster_end);
1015
1016 /* treat the write as new if the a hole/lseek spanned across
1017 * the page boundary.
1018 */
1019 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1020 (page_offset(page) <= user_pos));
1021
1022 if (page == wc->w_target_page) {
1023 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1024 map_to = map_from + user_len;
1025
1026 if (new)
1027 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1028 cluster_start, cluster_end,
1029 new);
1030 else
1031 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1032 map_from, map_to, new);
1033 if (ret) {
1034 mlog_errno(ret);
1035 goto out;
1036 }
1037
1038 user_data_from = map_from;
1039 user_data_to = map_to;
1040 if (new) {
1041 map_from = cluster_start;
1042 map_to = cluster_end;
1043 }
1044 } else {
1045 /*
1046 * If we haven't allocated the new page yet, we
1047 * shouldn't be writing it out without copying user
1048 * data. This is likely a math error from the caller.
1049 */
1050 BUG_ON(!new);
1051
1052 map_from = cluster_start;
1053 map_to = cluster_end;
1054
1055 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056 cluster_start, cluster_end, new);
1057 if (ret) {
1058 mlog_errno(ret);
1059 goto out;
1060 }
1061 }
1062
1063 /*
1064 * Parts of newly allocated pages need to be zero'd.
1065 *
1066 * Above, we have also rewritten 'to' and 'from' - as far as
1067 * the rest of the function is concerned, the entire cluster
1068 * range inside of a page needs to be written.
1069 *
1070 * We can skip this if the page is up to date - it's already
1071 * been zero'd from being read in as a hole.
1072 */
1073 if (new && !PageUptodate(page))
1074 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1075 cpos, user_data_from, user_data_to);
1076
1077 flush_dcache_page(page);
1078
1079out:
1080 return ret;
1081}
1082
1083/*
1084 * This function will only grab one clusters worth of pages.
1085 */
1086static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1087 struct ocfs2_write_ctxt *wc,
1088 u32 cpos, loff_t user_pos,
1089 unsigned user_len, int new,
1090 struct page *mmap_page)
1091{
1092 int ret = 0, i;
1093 unsigned long start, target_index, end_index, index;
1094 struct inode *inode = mapping->host;
1095 loff_t last_byte;
1096
1097 target_index = user_pos >> PAGE_CACHE_SHIFT;
1098
1099 /*
1100 * Figure out how many pages we'll be manipulating here. For
1101 * non allocating write, we just change the one
1102 * page. Otherwise, we'll need a whole clusters worth. If we're
1103 * writing past i_size, we only need enough pages to cover the
1104 * last page of the write.
1105 */
1106 if (new) {
1107 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1108 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1109 /*
1110 * We need the index *past* the last page we could possibly
1111 * touch. This is the page past the end of the write or
1112 * i_size, whichever is greater.
1113 */
1114 last_byte = max(user_pos + user_len, i_size_read(inode));
1115 BUG_ON(last_byte < 1);
1116 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1117 if ((start + wc->w_num_pages) > end_index)
1118 wc->w_num_pages = end_index - start;
1119 } else {
1120 wc->w_num_pages = 1;
1121 start = target_index;
1122 }
1123
1124 for(i = 0; i < wc->w_num_pages; i++) {
1125 index = start + i;
1126
1127 if (index == target_index && mmap_page) {
1128 /*
1129 * ocfs2_pagemkwrite() is a little different
1130 * and wants us to directly use the page
1131 * passed in.
1132 */
1133 lock_page(mmap_page);
1134
1135 if (mmap_page->mapping != mapping) {
1136 unlock_page(mmap_page);
1137 /*
1138 * Sanity check - the locking in
1139 * ocfs2_pagemkwrite() should ensure
1140 * that this code doesn't trigger.
1141 */
1142 ret = -EINVAL;
1143 mlog_errno(ret);
1144 goto out;
1145 }
1146
1147 page_cache_get(mmap_page);
1148 wc->w_pages[i] = mmap_page;
1149 } else {
1150 wc->w_pages[i] = find_or_create_page(mapping, index,
1151 GFP_NOFS);
1152 if (!wc->w_pages[i]) {
1153 ret = -ENOMEM;
1154 mlog_errno(ret);
1155 goto out;
1156 }
1157 }
1158
1159 if (index == target_index)
1160 wc->w_target_page = wc->w_pages[i];
1161 }
1162out:
1163 return ret;
1164}
1165
1166/*
1167 * Prepare a single cluster for write one cluster into the file.
1168 */
1169static int ocfs2_write_cluster(struct address_space *mapping,
1170 u32 phys, unsigned int unwritten,
1171 unsigned int should_zero,
1172 struct ocfs2_alloc_context *data_ac,
1173 struct ocfs2_alloc_context *meta_ac,
1174 struct ocfs2_write_ctxt *wc, u32 cpos,
1175 loff_t user_pos, unsigned user_len)
1176{
1177 int ret, i, new;
1178 u64 v_blkno, p_blkno;
1179 struct inode *inode = mapping->host;
1180 struct ocfs2_extent_tree et;
1181
1182 new = phys == 0 ? 1 : 0;
1183 if (new) {
1184 u32 tmp_pos;
1185
1186 /*
1187 * This is safe to call with the page locks - it won't take
1188 * any additional semaphores or cluster locks.
1189 */
1190 tmp_pos = cpos;
1191 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1192 &tmp_pos, 1, 0, wc->w_di_bh,
1193 wc->w_handle, data_ac,
1194 meta_ac, NULL);
1195 /*
1196 * This shouldn't happen because we must have already
1197 * calculated the correct meta data allocation required. The
1198 * internal tree allocation code should know how to increase
1199 * transaction credits itself.
1200 *
1201 * If need be, we could handle -EAGAIN for a
1202 * RESTART_TRANS here.
1203 */
1204 mlog_bug_on_msg(ret == -EAGAIN,
1205 "Inode %llu: EAGAIN return during allocation.\n",
1206 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1207 if (ret < 0) {
1208 mlog_errno(ret);
1209 goto out;
1210 }
1211 } else if (unwritten) {
1212 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1213 wc->w_di_bh);
1214 ret = ocfs2_mark_extent_written(inode, &et,
1215 wc->w_handle, cpos, 1, phys,
1216 meta_ac, &wc->w_dealloc);
1217 if (ret < 0) {
1218 mlog_errno(ret);
1219 goto out;
1220 }
1221 }
1222
1223 if (should_zero)
1224 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1225 else
1226 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1227
1228 /*
1229 * The only reason this should fail is due to an inability to
1230 * find the extent added.
1231 */
1232 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1233 NULL);
1234 if (ret < 0) {
1235 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1236 "at logical block %llu",
1237 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1238 (unsigned long long)v_blkno);
1239 goto out;
1240 }
1241
1242 BUG_ON(p_blkno == 0);
1243
1244 for(i = 0; i < wc->w_num_pages; i++) {
1245 int tmpret;
1246
1247 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1248 wc->w_pages[i], cpos,
1249 user_pos, user_len,
1250 should_zero);
1251 if (tmpret) {
1252 mlog_errno(tmpret);
1253 if (ret == 0)
1254 ret = tmpret;
1255 }
1256 }
1257
1258 /*
1259 * We only have cleanup to do in case of allocating write.
1260 */
1261 if (ret && new)
1262 ocfs2_write_failure(inode, wc, user_pos, user_len);
1263
1264out:
1265
1266 return ret;
1267}
1268
1269static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1270 struct ocfs2_alloc_context *data_ac,
1271 struct ocfs2_alloc_context *meta_ac,
1272 struct ocfs2_write_ctxt *wc,
1273 loff_t pos, unsigned len)
1274{
1275 int ret, i;
1276 loff_t cluster_off;
1277 unsigned int local_len = len;
1278 struct ocfs2_write_cluster_desc *desc;
1279 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1280
1281 for (i = 0; i < wc->w_clen; i++) {
1282 desc = &wc->w_desc[i];
1283
1284 /*
1285 * We have to make sure that the total write passed in
1286 * doesn't extend past a single cluster.
1287 */
1288 local_len = len;
1289 cluster_off = pos & (osb->s_clustersize - 1);
1290 if ((cluster_off + local_len) > osb->s_clustersize)
1291 local_len = osb->s_clustersize - cluster_off;
1292
1293 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1294 desc->c_unwritten,
1295 desc->c_needs_zero,
1296 data_ac, meta_ac,
1297 wc, desc->c_cpos, pos, local_len);
1298 if (ret) {
1299 mlog_errno(ret);
1300 goto out;
1301 }
1302
1303 len -= local_len;
1304 pos += local_len;
1305 }
1306
1307 ret = 0;
1308out:
1309 return ret;
1310}
1311
1312/*
1313 * ocfs2_write_end() wants to know which parts of the target page it
1314 * should complete the write on. It's easiest to compute them ahead of
1315 * time when a more complete view of the write is available.
1316 */
1317static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1318 struct ocfs2_write_ctxt *wc,
1319 loff_t pos, unsigned len, int alloc)
1320{
1321 struct ocfs2_write_cluster_desc *desc;
1322
1323 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1324 wc->w_target_to = wc->w_target_from + len;
1325
1326 if (alloc == 0)
1327 return;
1328
1329 /*
1330 * Allocating write - we may have different boundaries based
1331 * on page size and cluster size.
1332 *
1333 * NOTE: We can no longer compute one value from the other as
1334 * the actual write length and user provided length may be
1335 * different.
1336 */
1337
1338 if (wc->w_large_pages) {
1339 /*
1340 * We only care about the 1st and last cluster within
1341 * our range and whether they should be zero'd or not. Either
1342 * value may be extended out to the start/end of a
1343 * newly allocated cluster.
1344 */
1345 desc = &wc->w_desc[0];
1346 if (desc->c_needs_zero)
1347 ocfs2_figure_cluster_boundaries(osb,
1348 desc->c_cpos,
1349 &wc->w_target_from,
1350 NULL);
1351
1352 desc = &wc->w_desc[wc->w_clen - 1];
1353 if (desc->c_needs_zero)
1354 ocfs2_figure_cluster_boundaries(osb,
1355 desc->c_cpos,
1356 NULL,
1357 &wc->w_target_to);
1358 } else {
1359 wc->w_target_from = 0;
1360 wc->w_target_to = PAGE_CACHE_SIZE;
1361 }
1362}
1363
1364/*
1365 * Populate each single-cluster write descriptor in the write context
1366 * with information about the i/o to be done.
1367 *
1368 * Returns the number of clusters that will have to be allocated, as
1369 * well as a worst case estimate of the number of extent records that
1370 * would have to be created during a write to an unwritten region.
1371 */
1372static int ocfs2_populate_write_desc(struct inode *inode,
1373 struct ocfs2_write_ctxt *wc,
1374 unsigned int *clusters_to_alloc,
1375 unsigned int *extents_to_split)
1376{
1377 int ret;
1378 struct ocfs2_write_cluster_desc *desc;
1379 unsigned int num_clusters = 0;
1380 unsigned int ext_flags = 0;
1381 u32 phys = 0;
1382 int i;
1383
1384 *clusters_to_alloc = 0;
1385 *extents_to_split = 0;
1386
1387 for (i = 0; i < wc->w_clen; i++) {
1388 desc = &wc->w_desc[i];
1389 desc->c_cpos = wc->w_cpos + i;
1390
1391 if (num_clusters == 0) {
1392 /*
1393 * Need to look up the next extent record.
1394 */
1395 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1396 &num_clusters, &ext_flags);
1397 if (ret) {
1398 mlog_errno(ret);
1399 goto out;
1400 }
1401
1402 /* We should already CoW the refcountd extent. */
1403 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1404
1405 /*
1406 * Assume worst case - that we're writing in
1407 * the middle of the extent.
1408 *
1409 * We can assume that the write proceeds from
1410 * left to right, in which case the extent
1411 * insert code is smart enough to coalesce the
1412 * next splits into the previous records created.
1413 */
1414 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1415 *extents_to_split = *extents_to_split + 2;
1416 } else if (phys) {
1417 /*
1418 * Only increment phys if it doesn't describe
1419 * a hole.
1420 */
1421 phys++;
1422 }
1423
1424 /*
1425 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1426 * file that got extended. w_first_new_cpos tells us
1427 * where the newly allocated clusters are so we can
1428 * zero them.
1429 */
1430 if (desc->c_cpos >= wc->w_first_new_cpos) {
1431 BUG_ON(phys == 0);
1432 desc->c_needs_zero = 1;
1433 }
1434
1435 desc->c_phys = phys;
1436 if (phys == 0) {
1437 desc->c_new = 1;
1438 desc->c_needs_zero = 1;
1439 *clusters_to_alloc = *clusters_to_alloc + 1;
1440 }
1441
1442 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1443 desc->c_unwritten = 1;
1444 desc->c_needs_zero = 1;
1445 }
1446
1447 num_clusters--;
1448 }
1449
1450 ret = 0;
1451out:
1452 return ret;
1453}
1454
1455static int ocfs2_write_begin_inline(struct address_space *mapping,
1456 struct inode *inode,
1457 struct ocfs2_write_ctxt *wc)
1458{
1459 int ret;
1460 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1461 struct page *page;
1462 handle_t *handle;
1463 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1464
1465 page = find_or_create_page(mapping, 0, GFP_NOFS);
1466 if (!page) {
1467 ret = -ENOMEM;
1468 mlog_errno(ret);
1469 goto out;
1470 }
1471 /*
1472 * If we don't set w_num_pages then this page won't get unlocked
1473 * and freed on cleanup of the write context.
1474 */
1475 wc->w_pages[0] = wc->w_target_page = page;
1476 wc->w_num_pages = 1;
1477
1478 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1479 if (IS_ERR(handle)) {
1480 ret = PTR_ERR(handle);
1481 mlog_errno(ret);
1482 goto out;
1483 }
1484
1485 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1486 OCFS2_JOURNAL_ACCESS_WRITE);
1487 if (ret) {
1488 ocfs2_commit_trans(osb, handle);
1489
1490 mlog_errno(ret);
1491 goto out;
1492 }
1493
1494 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1495 ocfs2_set_inode_data_inline(inode, di);
1496
1497 if (!PageUptodate(page)) {
1498 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1499 if (ret) {
1500 ocfs2_commit_trans(osb, handle);
1501
1502 goto out;
1503 }
1504 }
1505
1506 wc->w_handle = handle;
1507out:
1508 return ret;
1509}
1510
1511int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1512{
1513 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1514
1515 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1516 return 1;
1517 return 0;
1518}
1519
1520static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1521 struct inode *inode, loff_t pos,
1522 unsigned len, struct page *mmap_page,
1523 struct ocfs2_write_ctxt *wc)
1524{
1525 int ret, written = 0;
1526 loff_t end = pos + len;
1527 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1528 struct ocfs2_dinode *di = NULL;
1529
1530 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1531 len, (unsigned long long)pos,
1532 oi->ip_dyn_features);
1533
1534 /*
1535 * Handle inodes which already have inline data 1st.
1536 */
1537 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1538 if (mmap_page == NULL &&
1539 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1540 goto do_inline_write;
1541
1542 /*
1543 * The write won't fit - we have to give this inode an
1544 * inline extent list now.
1545 */
1546 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1547 if (ret)
1548 mlog_errno(ret);
1549 goto out;
1550 }
1551
1552 /*
1553 * Check whether the inode can accept inline data.
1554 */
1555 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1556 return 0;
1557
1558 /*
1559 * Check whether the write can fit.
1560 */
1561 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1562 if (mmap_page ||
1563 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1564 return 0;
1565
1566do_inline_write:
1567 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1568 if (ret) {
1569 mlog_errno(ret);
1570 goto out;
1571 }
1572
1573 /*
1574 * This signals to the caller that the data can be written
1575 * inline.
1576 */
1577 written = 1;
1578out:
1579 return written ? written : ret;
1580}
1581
1582/*
1583 * This function only does anything for file systems which can't
1584 * handle sparse files.
1585 *
1586 * What we want to do here is fill in any hole between the current end
1587 * of allocation and the end of our write. That way the rest of the
1588 * write path can treat it as an non-allocating write, which has no
1589 * special case code for sparse/nonsparse files.
1590 */
1591static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1592 struct buffer_head *di_bh,
1593 loff_t pos, unsigned len,
1594 struct ocfs2_write_ctxt *wc)
1595{
1596 int ret;
1597 loff_t newsize = pos + len;
1598
1599 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1600
1601 if (newsize <= i_size_read(inode))
1602 return 0;
1603
1604 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1605 if (ret)
1606 mlog_errno(ret);
1607
1608 wc->w_first_new_cpos =
1609 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1610
1611 return ret;
1612}
1613
1614static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1615 loff_t pos)
1616{
1617 int ret = 0;
1618
1619 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620 if (pos > i_size_read(inode))
1621 ret = ocfs2_zero_extend(inode, di_bh, pos);
1622
1623 return ret;
1624}
1625
1626/*
1627 * Try to flush truncate logs if we can free enough clusters from it.
1628 * As for return value, "< 0" means error, "0" no space and "1" means
1629 * we have freed enough spaces and let the caller try to allocate again.
1630 */
1631static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1632 unsigned int needed)
1633{
1634 tid_t target;
1635 int ret = 0;
1636 unsigned int truncated_clusters;
1637
1638 mutex_lock(&osb->osb_tl_inode->i_mutex);
1639 truncated_clusters = osb->truncated_clusters;
1640 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1641
1642 /*
1643 * Check whether we can succeed in allocating if we free
1644 * the truncate log.
1645 */
1646 if (truncated_clusters < needed)
1647 goto out;
1648
1649 ret = ocfs2_flush_truncate_log(osb);
1650 if (ret) {
1651 mlog_errno(ret);
1652 goto out;
1653 }
1654
1655 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1656 jbd2_log_wait_commit(osb->journal->j_journal, target);
1657 ret = 1;
1658 }
1659out:
1660 return ret;
1661}
1662
1663int ocfs2_write_begin_nolock(struct file *filp,
1664 struct address_space *mapping,
1665 loff_t pos, unsigned len, unsigned flags,
1666 struct page **pagep, void **fsdata,
1667 struct buffer_head *di_bh, struct page *mmap_page)
1668{
1669 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1670 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1671 struct ocfs2_write_ctxt *wc;
1672 struct inode *inode = mapping->host;
1673 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1674 struct ocfs2_dinode *di;
1675 struct ocfs2_alloc_context *data_ac = NULL;
1676 struct ocfs2_alloc_context *meta_ac = NULL;
1677 handle_t *handle;
1678 struct ocfs2_extent_tree et;
1679 int try_free = 1, ret1;
1680
1681try_again:
1682 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1683 if (ret) {
1684 mlog_errno(ret);
1685 return ret;
1686 }
1687
1688 if (ocfs2_supports_inline_data(osb)) {
1689 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1690 mmap_page, wc);
1691 if (ret == 1) {
1692 ret = 0;
1693 goto success;
1694 }
1695 if (ret < 0) {
1696 mlog_errno(ret);
1697 goto out;
1698 }
1699 }
1700
1701 if (ocfs2_sparse_alloc(osb))
1702 ret = ocfs2_zero_tail(inode, di_bh, pos);
1703 else
1704 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1705 wc);
1706 if (ret) {
1707 mlog_errno(ret);
1708 goto out;
1709 }
1710
1711 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1712 if (ret < 0) {
1713 mlog_errno(ret);
1714 goto out;
1715 } else if (ret == 1) {
1716 clusters_need = wc->w_clen;
1717 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1718 wc->w_cpos, wc->w_clen, UINT_MAX);
1719 if (ret) {
1720 mlog_errno(ret);
1721 goto out;
1722 }
1723 }
1724
1725 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1726 &extents_to_split);
1727 if (ret) {
1728 mlog_errno(ret);
1729 goto out;
1730 }
1731 clusters_need += clusters_to_alloc;
1732
1733 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734
1735 trace_ocfs2_write_begin_nolock(
1736 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1737 (long long)i_size_read(inode),
1738 le32_to_cpu(di->i_clusters),
1739 pos, len, flags, mmap_page,
1740 clusters_to_alloc, extents_to_split);
1741
1742 /*
1743 * We set w_target_from, w_target_to here so that
1744 * ocfs2_write_end() knows which range in the target page to
1745 * write out. An allocation requires that we write the entire
1746 * cluster range.
1747 */
1748 if (clusters_to_alloc || extents_to_split) {
1749 /*
1750 * XXX: We are stretching the limits of
1751 * ocfs2_lock_allocators(). It greatly over-estimates
1752 * the work to be done.
1753 */
1754 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1755 wc->w_di_bh);
1756 ret = ocfs2_lock_allocators(inode, &et,
1757 clusters_to_alloc, extents_to_split,
1758 &data_ac, &meta_ac);
1759 if (ret) {
1760 mlog_errno(ret);
1761 goto out;
1762 }
1763
1764 if (data_ac)
1765 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1766
1767 credits = ocfs2_calc_extend_credits(inode->i_sb,
1768 &di->id2.i_list,
1769 clusters_to_alloc);
1770
1771 }
1772
1773 /*
1774 * We have to zero sparse allocated clusters, unwritten extent clusters,
1775 * and non-sparse clusters we just extended. For non-sparse writes,
1776 * we know zeros will only be needed in the first and/or last cluster.
1777 */
1778 if (clusters_to_alloc || extents_to_split ||
1779 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1780 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1781 cluster_of_pages = 1;
1782 else
1783 cluster_of_pages = 0;
1784
1785 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1786
1787 handle = ocfs2_start_trans(osb, credits);
1788 if (IS_ERR(handle)) {
1789 ret = PTR_ERR(handle);
1790 mlog_errno(ret);
1791 goto out;
1792 }
1793
1794 wc->w_handle = handle;
1795
1796 if (clusters_to_alloc) {
1797 ret = dquot_alloc_space_nodirty(inode,
1798 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1799 if (ret)
1800 goto out_commit;
1801 }
1802 /*
1803 * We don't want this to fail in ocfs2_write_end(), so do it
1804 * here.
1805 */
1806 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1807 OCFS2_JOURNAL_ACCESS_WRITE);
1808 if (ret) {
1809 mlog_errno(ret);
1810 goto out_quota;
1811 }
1812
1813 /*
1814 * Fill our page array first. That way we've grabbed enough so
1815 * that we can zero and flush if we error after adding the
1816 * extent.
1817 */
1818 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1819 cluster_of_pages, mmap_page);
1820 if (ret) {
1821 mlog_errno(ret);
1822 goto out_quota;
1823 }
1824
1825 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1826 len);
1827 if (ret) {
1828 mlog_errno(ret);
1829 goto out_quota;
1830 }
1831
1832 if (data_ac)
1833 ocfs2_free_alloc_context(data_ac);
1834 if (meta_ac)
1835 ocfs2_free_alloc_context(meta_ac);
1836
1837success:
1838 *pagep = wc->w_target_page;
1839 *fsdata = wc;
1840 return 0;
1841out_quota:
1842 if (clusters_to_alloc)
1843 dquot_free_space(inode,
1844 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1845out_commit:
1846 ocfs2_commit_trans(osb, handle);
1847
1848out:
1849 ocfs2_free_write_ctxt(wc);
1850
1851 if (data_ac)
1852 ocfs2_free_alloc_context(data_ac);
1853 if (meta_ac)
1854 ocfs2_free_alloc_context(meta_ac);
1855
1856 if (ret == -ENOSPC && try_free) {
1857 /*
1858 * Try to free some truncate log so that we can have enough
1859 * clusters to allocate.
1860 */
1861 try_free = 0;
1862
1863 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1864 if (ret1 == 1)
1865 goto try_again;
1866
1867 if (ret1 < 0)
1868 mlog_errno(ret1);
1869 }
1870
1871 return ret;
1872}
1873
1874static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1875 loff_t pos, unsigned len, unsigned flags,
1876 struct page **pagep, void **fsdata)
1877{
1878 int ret;
1879 struct buffer_head *di_bh = NULL;
1880 struct inode *inode = mapping->host;
1881
1882 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1883 if (ret) {
1884 mlog_errno(ret);
1885 return ret;
1886 }
1887
1888 /*
1889 * Take alloc sem here to prevent concurrent lookups. That way
1890 * the mapping, zeroing and tree manipulation within
1891 * ocfs2_write() will be safe against ->readpage(). This
1892 * should also serve to lock out allocation from a shared
1893 * writeable region.
1894 */
1895 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1896
1897 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1898 fsdata, di_bh, NULL);
1899 if (ret) {
1900 mlog_errno(ret);
1901 goto out_fail;
1902 }
1903
1904 brelse(di_bh);
1905
1906 return 0;
1907
1908out_fail:
1909 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1910
1911 brelse(di_bh);
1912 ocfs2_inode_unlock(inode, 1);
1913
1914 return ret;
1915}
1916
1917static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1918 unsigned len, unsigned *copied,
1919 struct ocfs2_dinode *di,
1920 struct ocfs2_write_ctxt *wc)
1921{
1922 void *kaddr;
1923
1924 if (unlikely(*copied < len)) {
1925 if (!PageUptodate(wc->w_target_page)) {
1926 *copied = 0;
1927 return;
1928 }
1929 }
1930
1931 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1932 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1933 kunmap_atomic(kaddr, KM_USER0);
1934
1935 trace_ocfs2_write_end_inline(
1936 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1937 (unsigned long long)pos, *copied,
1938 le16_to_cpu(di->id2.i_data.id_count),
1939 le16_to_cpu(di->i_dyn_features));
1940}
1941
1942int ocfs2_write_end_nolock(struct address_space *mapping,
1943 loff_t pos, unsigned len, unsigned copied,
1944 struct page *page, void *fsdata)
1945{
1946 int i;
1947 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1948 struct inode *inode = mapping->host;
1949 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1950 struct ocfs2_write_ctxt *wc = fsdata;
1951 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1952 handle_t *handle = wc->w_handle;
1953 struct page *tmppage;
1954
1955 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1956 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1957 goto out_write_size;
1958 }
1959
1960 if (unlikely(copied < len)) {
1961 if (!PageUptodate(wc->w_target_page))
1962 copied = 0;
1963
1964 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1965 start+len);
1966 }
1967 flush_dcache_page(wc->w_target_page);
1968
1969 for(i = 0; i < wc->w_num_pages; i++) {
1970 tmppage = wc->w_pages[i];
1971
1972 if (tmppage == wc->w_target_page) {
1973 from = wc->w_target_from;
1974 to = wc->w_target_to;
1975
1976 BUG_ON(from > PAGE_CACHE_SIZE ||
1977 to > PAGE_CACHE_SIZE ||
1978 to < from);
1979 } else {
1980 /*
1981 * Pages adjacent to the target (if any) imply
1982 * a hole-filling write in which case we want
1983 * to flush their entire range.
1984 */
1985 from = 0;
1986 to = PAGE_CACHE_SIZE;
1987 }
1988
1989 if (page_has_buffers(tmppage)) {
1990 if (ocfs2_should_order_data(inode))
1991 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1992 block_commit_write(tmppage, from, to);
1993 }
1994 }
1995
1996out_write_size:
1997 pos += copied;
1998 if (pos > inode->i_size) {
1999 i_size_write(inode, pos);
2000 mark_inode_dirty(inode);
2001 }
2002 inode->i_blocks = ocfs2_inode_sector_count(inode);
2003 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2004 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2005 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2006 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2007 ocfs2_journal_dirty(handle, wc->w_di_bh);
2008
2009 ocfs2_commit_trans(osb, handle);
2010
2011 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2012
2013 ocfs2_free_write_ctxt(wc);
2014
2015 return copied;
2016}
2017
2018static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2019 loff_t pos, unsigned len, unsigned copied,
2020 struct page *page, void *fsdata)
2021{
2022 int ret;
2023 struct inode *inode = mapping->host;
2024
2025 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2026
2027 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2028 ocfs2_inode_unlock(inode, 1);
2029
2030 return ret;
2031}
2032
2033const struct address_space_operations ocfs2_aops = {
2034 .readpage = ocfs2_readpage,
2035 .readpages = ocfs2_readpages,
2036 .writepage = ocfs2_writepage,
2037 .write_begin = ocfs2_write_begin,
2038 .write_end = ocfs2_write_end,
2039 .bmap = ocfs2_bmap,
2040 .direct_IO = ocfs2_direct_IO,
2041 .invalidatepage = ocfs2_invalidatepage,
2042 .releasepage = ocfs2_releasepage,
2043 .migratepage = buffer_migrate_page,
2044 .is_partially_uptodate = block_is_partially_uptodate,
2045 .error_remove_page = generic_error_remove_page,
2046};
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/highmem.h>
9#include <linux/pagemap.h>
10#include <asm/byteorder.h>
11#include <linux/swap.h>
12#include <linux/mpage.h>
13#include <linux/quotaops.h>
14#include <linux/blkdev.h>
15#include <linux/uio.h>
16#include <linux/mm.h>
17
18#include <cluster/masklog.h>
19
20#include "ocfs2.h"
21
22#include "alloc.h"
23#include "aops.h"
24#include "dlmglue.h"
25#include "extent_map.h"
26#include "file.h"
27#include "inode.h"
28#include "journal.h"
29#include "suballoc.h"
30#include "super.h"
31#include "symlink.h"
32#include "refcounttree.h"
33#include "ocfs2_trace.h"
34
35#include "buffer_head_io.h"
36#include "dir.h"
37#include "namei.h"
38#include "sysfile.h"
39
40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
42{
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
50
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
54
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
61 }
62
63 status = ocfs2_read_inode_block(inode, &bh);
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
67 }
68 fe = (struct ocfs2_dinode *) bh->b_data;
69
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
72 err = -ENOMEM;
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
76 }
77
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
85 err = -ENOMEM;
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
88 }
89
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
96 kaddr = kmap_atomic(bh_result->b_page);
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
100 }
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
104 kunmap_atomic(kaddr);
105 set_buffer_uptodate(bh_result);
106 }
107 brelse(buffer_cache_bh);
108 }
109
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113 err = 0;
114
115bail:
116 brelse(bh);
117
118 return err;
119}
120
121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
123{
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
130
131 return ret;
132}
133
134int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
136{
137 int err = 0;
138 unsigned int ext_flags;
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 &ext_flags);
158 if (err) {
159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 (unsigned long long)p_blkno);
162 goto bail;
163 }
164
165 if (max_blocks < count)
166 count = max_blocks;
167
168 /*
169 * ocfs2 never allocates in this function - the only time we
170 * need to use BH_New is when we're extending i_size on a file
171 * system which doesn't support holes, in which case BH_New
172 * allows __block_write_begin() to zero.
173 *
174 * If we see this on a sparse file system, then a truncate has
175 * raced us and removed the cluster. In this case, we clear
176 * the buffers dirty and uptodate bits and let the buffer code
177 * ignore it as a hole.
178 */
179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 clear_buffer_dirty(bh_result);
181 clear_buffer_uptodate(bh_result);
182 goto bail;
183 }
184
185 /* Treat the unwritten extent as a hole for zeroing purposes. */
186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 map_bh(bh_result, inode->i_sb, p_blkno);
188
189 bh_result->b_size = count << inode->i_blkbits;
190
191 if (!ocfs2_sparse_alloc(osb)) {
192 if (p_blkno == 0) {
193 err = -EIO;
194 mlog(ML_ERROR,
195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 (unsigned long long)iblock,
197 (unsigned long long)p_blkno,
198 (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 dump_stack();
201 goto bail;
202 }
203 }
204
205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206
207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 (unsigned long long)past_eof);
209 if (create && (iblock >= past_eof))
210 set_buffer_new(bh_result);
211
212bail:
213 if (err < 0)
214 err = -EIO;
215
216 return err;
217}
218
219int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 struct buffer_head *di_bh)
221{
222 void *kaddr;
223 loff_t size;
224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 return -EROFS;
230 }
231
232 size = i_size_read(inode);
233
234 if (size > PAGE_SIZE ||
235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 ocfs2_error(inode->i_sb,
237 "Inode %llu has with inline data has bad size: %Lu\n",
238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 (unsigned long long)size);
240 return -EROFS;
241 }
242
243 kaddr = kmap_atomic(page);
244 if (size)
245 memcpy(kaddr, di->id2.i_data.id_data, size);
246 /* Clear the remaining part of the page */
247 memset(kaddr + size, 0, PAGE_SIZE - size);
248 flush_dcache_page(page);
249 kunmap_atomic(kaddr);
250
251 SetPageUptodate(page);
252
253 return 0;
254}
255
256static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257{
258 int ret;
259 struct buffer_head *di_bh = NULL;
260
261 BUG_ON(!PageLocked(page));
262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263
264 ret = ocfs2_read_inode_block(inode, &di_bh);
265 if (ret) {
266 mlog_errno(ret);
267 goto out;
268 }
269
270 ret = ocfs2_read_inline_data(inode, page, di_bh);
271out:
272 unlock_page(page);
273
274 brelse(di_bh);
275 return ret;
276}
277
278static int ocfs2_read_folio(struct file *file, struct folio *folio)
279{
280 struct inode *inode = folio->mapping->host;
281 struct ocfs2_inode_info *oi = OCFS2_I(inode);
282 loff_t start = folio_pos(folio);
283 int ret, unlock = 1;
284
285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
286
287 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
288 if (ret != 0) {
289 if (ret == AOP_TRUNCATED_PAGE)
290 unlock = 0;
291 mlog_errno(ret);
292 goto out;
293 }
294
295 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296 /*
297 * Unlock the folio and cycle ip_alloc_sem so that we don't
298 * busyloop waiting for ip_alloc_sem to unlock
299 */
300 ret = AOP_TRUNCATED_PAGE;
301 folio_unlock(folio);
302 unlock = 0;
303 down_read(&oi->ip_alloc_sem);
304 up_read(&oi->ip_alloc_sem);
305 goto out_inode_unlock;
306 }
307
308 /*
309 * i_size might have just been updated as we grabed the meta lock. We
310 * might now be discovering a truncate that hit on another node.
311 * block_read_full_folio->get_block freaks out if it is asked to read
312 * beyond the end of a file, so we check here. Callers
313 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
314 * and notice that the folio they just read isn't needed.
315 *
316 * XXX sys_readahead() seems to get that wrong?
317 */
318 if (start >= i_size_read(inode)) {
319 folio_zero_segment(folio, 0, folio_size(folio));
320 folio_mark_uptodate(folio);
321 ret = 0;
322 goto out_alloc;
323 }
324
325 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
326 ret = ocfs2_readpage_inline(inode, &folio->page);
327 else
328 ret = block_read_full_folio(folio, ocfs2_get_block);
329 unlock = 0;
330
331out_alloc:
332 up_read(&oi->ip_alloc_sem);
333out_inode_unlock:
334 ocfs2_inode_unlock(inode, 0);
335out:
336 if (unlock)
337 folio_unlock(folio);
338 return ret;
339}
340
341/*
342 * This is used only for read-ahead. Failures or difficult to handle
343 * situations are safe to ignore.
344 *
345 * Right now, we don't bother with BH_Boundary - in-inode extent lists
346 * are quite large (243 extents on 4k blocks), so most inodes don't
347 * grow out to a tree. If need be, detecting boundary extents could
348 * trivially be added in a future version of ocfs2_get_block().
349 */
350static void ocfs2_readahead(struct readahead_control *rac)
351{
352 int ret;
353 struct inode *inode = rac->mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
365 goto out_unlock;
366
367 /*
368 * Don't bother with inline-data. There isn't anything
369 * to read-ahead in that case anyway...
370 */
371 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
372 goto out_up;
373
374 /*
375 * Check whether a remote node truncated this file - we just
376 * drop out in that case as it's not worth handling here.
377 */
378 if (readahead_pos(rac) >= i_size_read(inode))
379 goto out_up;
380
381 mpage_readahead(rac, ocfs2_get_block);
382
383out_up:
384 up_read(&oi->ip_alloc_sem);
385out_unlock:
386 ocfs2_inode_unlock(inode, 0);
387}
388
389/* Note: Because we don't support holes, our allocation has
390 * already happened (allocation writes zeros to the file data)
391 * so we don't have to worry about ordered writes in
392 * ocfs2_writepage.
393 *
394 * ->writepage is called during the process of invalidating the page cache
395 * during blocked lock processing. It can't block on any cluster locks
396 * to during block mapping. It's relying on the fact that the block
397 * mapping can't have disappeared under the dirty pages that it is
398 * being asked to write back.
399 */
400static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
401{
402 trace_ocfs2_writepage(
403 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
404 page->index);
405
406 return block_write_full_page(page, ocfs2_get_block, wbc);
407}
408
409/* Taken from ext3. We don't necessarily need the full blown
410 * functionality yet, but IMHO it's better to cut and paste the whole
411 * thing so we can avoid introducing our own bugs (and easily pick up
412 * their fixes when they happen) --Mark */
413int walk_page_buffers( handle_t *handle,
414 struct buffer_head *head,
415 unsigned from,
416 unsigned to,
417 int *partial,
418 int (*fn)( handle_t *handle,
419 struct buffer_head *bh))
420{
421 struct buffer_head *bh;
422 unsigned block_start, block_end;
423 unsigned blocksize = head->b_size;
424 int err, ret = 0;
425 struct buffer_head *next;
426
427 for ( bh = head, block_start = 0;
428 ret == 0 && (bh != head || !block_start);
429 block_start = block_end, bh = next)
430 {
431 next = bh->b_this_page;
432 block_end = block_start + blocksize;
433 if (block_end <= from || block_start >= to) {
434 if (partial && !buffer_uptodate(bh))
435 *partial = 1;
436 continue;
437 }
438 err = (*fn)(handle, bh);
439 if (!ret)
440 ret = err;
441 }
442 return ret;
443}
444
445static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
446{
447 sector_t status;
448 u64 p_blkno = 0;
449 int err = 0;
450 struct inode *inode = mapping->host;
451
452 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
453 (unsigned long long)block);
454
455 /*
456 * The swap code (ab-)uses ->bmap to get a block mapping and then
457 * bypasseѕ the file system for actual I/O. We really can't allow
458 * that on refcounted inodes, so we have to skip out here. And yes,
459 * 0 is the magic code for a bmap error..
460 */
461 if (ocfs2_is_refcount_inode(inode))
462 return 0;
463
464 /* We don't need to lock journal system files, since they aren't
465 * accessed concurrently from multiple nodes.
466 */
467 if (!INODE_JOURNAL(inode)) {
468 err = ocfs2_inode_lock(inode, NULL, 0);
469 if (err) {
470 if (err != -ENOENT)
471 mlog_errno(err);
472 goto bail;
473 }
474 down_read(&OCFS2_I(inode)->ip_alloc_sem);
475 }
476
477 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
478 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
479 NULL);
480
481 if (!INODE_JOURNAL(inode)) {
482 up_read(&OCFS2_I(inode)->ip_alloc_sem);
483 ocfs2_inode_unlock(inode, 0);
484 }
485
486 if (err) {
487 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
488 (unsigned long long)block);
489 mlog_errno(err);
490 goto bail;
491 }
492
493bail:
494 status = err ? 0 : p_blkno;
495
496 return status;
497}
498
499static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
500{
501 if (!folio_buffers(folio))
502 return false;
503 return try_to_free_buffers(folio);
504}
505
506static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
507 u32 cpos,
508 unsigned int *start,
509 unsigned int *end)
510{
511 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
512
513 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
514 unsigned int cpp;
515
516 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
517
518 cluster_start = cpos % cpp;
519 cluster_start = cluster_start << osb->s_clustersize_bits;
520
521 cluster_end = cluster_start + osb->s_clustersize;
522 }
523
524 BUG_ON(cluster_start > PAGE_SIZE);
525 BUG_ON(cluster_end > PAGE_SIZE);
526
527 if (start)
528 *start = cluster_start;
529 if (end)
530 *end = cluster_end;
531}
532
533/*
534 * 'from' and 'to' are the region in the page to avoid zeroing.
535 *
536 * If pagesize > clustersize, this function will avoid zeroing outside
537 * of the cluster boundary.
538 *
539 * from == to == 0 is code for "zero the entire cluster region"
540 */
541static void ocfs2_clear_page_regions(struct page *page,
542 struct ocfs2_super *osb, u32 cpos,
543 unsigned from, unsigned to)
544{
545 void *kaddr;
546 unsigned int cluster_start, cluster_end;
547
548 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
549
550 kaddr = kmap_atomic(page);
551
552 if (from || to) {
553 if (from > cluster_start)
554 memset(kaddr + cluster_start, 0, from - cluster_start);
555 if (to < cluster_end)
556 memset(kaddr + to, 0, cluster_end - to);
557 } else {
558 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
559 }
560
561 kunmap_atomic(kaddr);
562}
563
564/*
565 * Nonsparse file systems fully allocate before we get to the write
566 * code. This prevents ocfs2_write() from tagging the write as an
567 * allocating one, which means ocfs2_map_page_blocks() might try to
568 * read-in the blocks at the tail of our file. Avoid reading them by
569 * testing i_size against each block offset.
570 */
571static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
572 unsigned int block_start)
573{
574 u64 offset = page_offset(page) + block_start;
575
576 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
577 return 1;
578
579 if (i_size_read(inode) > offset)
580 return 1;
581
582 return 0;
583}
584
585/*
586 * Some of this taken from __block_write_begin(). We already have our
587 * mapping by now though, and the entire write will be allocating or
588 * it won't, so not much need to use BH_New.
589 *
590 * This will also skip zeroing, which is handled externally.
591 */
592int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
593 struct inode *inode, unsigned int from,
594 unsigned int to, int new)
595{
596 int ret = 0;
597 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
598 unsigned int block_end, block_start;
599 unsigned int bsize = i_blocksize(inode);
600
601 if (!page_has_buffers(page))
602 create_empty_buffers(page, bsize, 0);
603
604 head = page_buffers(page);
605 for (bh = head, block_start = 0; bh != head || !block_start;
606 bh = bh->b_this_page, block_start += bsize) {
607 block_end = block_start + bsize;
608
609 clear_buffer_new(bh);
610
611 /*
612 * Ignore blocks outside of our i/o range -
613 * they may belong to unallocated clusters.
614 */
615 if (block_start >= to || block_end <= from) {
616 if (PageUptodate(page))
617 set_buffer_uptodate(bh);
618 continue;
619 }
620
621 /*
622 * For an allocating write with cluster size >= page
623 * size, we always write the entire page.
624 */
625 if (new)
626 set_buffer_new(bh);
627
628 if (!buffer_mapped(bh)) {
629 map_bh(bh, inode->i_sb, *p_blkno);
630 clean_bdev_bh_alias(bh);
631 }
632
633 if (PageUptodate(page)) {
634 set_buffer_uptodate(bh);
635 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
636 !buffer_new(bh) &&
637 ocfs2_should_read_blk(inode, page, block_start) &&
638 (block_start < from || block_end > to)) {
639 bh_read_nowait(bh, 0);
640 *wait_bh++=bh;
641 }
642
643 *p_blkno = *p_blkno + 1;
644 }
645
646 /*
647 * If we issued read requests - let them complete.
648 */
649 while(wait_bh > wait) {
650 wait_on_buffer(*--wait_bh);
651 if (!buffer_uptodate(*wait_bh))
652 ret = -EIO;
653 }
654
655 if (ret == 0 || !new)
656 return ret;
657
658 /*
659 * If we get -EIO above, zero out any newly allocated blocks
660 * to avoid exposing stale data.
661 */
662 bh = head;
663 block_start = 0;
664 do {
665 block_end = block_start + bsize;
666 if (block_end <= from)
667 goto next_bh;
668 if (block_start >= to)
669 break;
670
671 zero_user(page, block_start, bh->b_size);
672 set_buffer_uptodate(bh);
673 mark_buffer_dirty(bh);
674
675next_bh:
676 block_start = block_end;
677 bh = bh->b_this_page;
678 } while (bh != head);
679
680 return ret;
681}
682
683#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
684#define OCFS2_MAX_CTXT_PAGES 1
685#else
686#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
687#endif
688
689#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
690
691struct ocfs2_unwritten_extent {
692 struct list_head ue_node;
693 struct list_head ue_ip_node;
694 u32 ue_cpos;
695 u32 ue_phys;
696};
697
698/*
699 * Describe the state of a single cluster to be written to.
700 */
701struct ocfs2_write_cluster_desc {
702 u32 c_cpos;
703 u32 c_phys;
704 /*
705 * Give this a unique field because c_phys eventually gets
706 * filled.
707 */
708 unsigned c_new;
709 unsigned c_clear_unwritten;
710 unsigned c_needs_zero;
711};
712
713struct ocfs2_write_ctxt {
714 /* Logical cluster position / len of write */
715 u32 w_cpos;
716 u32 w_clen;
717
718 /* First cluster allocated in a nonsparse extend */
719 u32 w_first_new_cpos;
720
721 /* Type of caller. Must be one of buffer, mmap, direct. */
722 ocfs2_write_type_t w_type;
723
724 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
725
726 /*
727 * This is true if page_size > cluster_size.
728 *
729 * It triggers a set of special cases during write which might
730 * have to deal with allocating writes to partial pages.
731 */
732 unsigned int w_large_pages;
733
734 /*
735 * Pages involved in this write.
736 *
737 * w_target_page is the page being written to by the user.
738 *
739 * w_pages is an array of pages which always contains
740 * w_target_page, and in the case of an allocating write with
741 * page_size < cluster size, it will contain zero'd and mapped
742 * pages adjacent to w_target_page which need to be written
743 * out in so that future reads from that region will get
744 * zero's.
745 */
746 unsigned int w_num_pages;
747 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
748 struct page *w_target_page;
749
750 /*
751 * w_target_locked is used for page_mkwrite path indicating no unlocking
752 * against w_target_page in ocfs2_write_end_nolock.
753 */
754 unsigned int w_target_locked:1;
755
756 /*
757 * ocfs2_write_end() uses this to know what the real range to
758 * write in the target should be.
759 */
760 unsigned int w_target_from;
761 unsigned int w_target_to;
762
763 /*
764 * We could use journal_current_handle() but this is cleaner,
765 * IMHO -Mark
766 */
767 handle_t *w_handle;
768
769 struct buffer_head *w_di_bh;
770
771 struct ocfs2_cached_dealloc_ctxt w_dealloc;
772
773 struct list_head w_unwritten_list;
774 unsigned int w_unwritten_count;
775};
776
777void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
778{
779 int i;
780
781 for(i = 0; i < num_pages; i++) {
782 if (pages[i]) {
783 unlock_page(pages[i]);
784 mark_page_accessed(pages[i]);
785 put_page(pages[i]);
786 }
787 }
788}
789
790static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
791{
792 int i;
793
794 /*
795 * w_target_locked is only set to true in the page_mkwrite() case.
796 * The intent is to allow us to lock the target page from write_begin()
797 * to write_end(). The caller must hold a ref on w_target_page.
798 */
799 if (wc->w_target_locked) {
800 BUG_ON(!wc->w_target_page);
801 for (i = 0; i < wc->w_num_pages; i++) {
802 if (wc->w_target_page == wc->w_pages[i]) {
803 wc->w_pages[i] = NULL;
804 break;
805 }
806 }
807 mark_page_accessed(wc->w_target_page);
808 put_page(wc->w_target_page);
809 }
810 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
811}
812
813static void ocfs2_free_unwritten_list(struct inode *inode,
814 struct list_head *head)
815{
816 struct ocfs2_inode_info *oi = OCFS2_I(inode);
817 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
818
819 list_for_each_entry_safe(ue, tmp, head, ue_node) {
820 list_del(&ue->ue_node);
821 spin_lock(&oi->ip_lock);
822 list_del(&ue->ue_ip_node);
823 spin_unlock(&oi->ip_lock);
824 kfree(ue);
825 }
826}
827
828static void ocfs2_free_write_ctxt(struct inode *inode,
829 struct ocfs2_write_ctxt *wc)
830{
831 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
832 ocfs2_unlock_pages(wc);
833 brelse(wc->w_di_bh);
834 kfree(wc);
835}
836
837static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
838 struct ocfs2_super *osb, loff_t pos,
839 unsigned len, ocfs2_write_type_t type,
840 struct buffer_head *di_bh)
841{
842 u32 cend;
843 struct ocfs2_write_ctxt *wc;
844
845 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
846 if (!wc)
847 return -ENOMEM;
848
849 wc->w_cpos = pos >> osb->s_clustersize_bits;
850 wc->w_first_new_cpos = UINT_MAX;
851 cend = (pos + len - 1) >> osb->s_clustersize_bits;
852 wc->w_clen = cend - wc->w_cpos + 1;
853 get_bh(di_bh);
854 wc->w_di_bh = di_bh;
855 wc->w_type = type;
856
857 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
858 wc->w_large_pages = 1;
859 else
860 wc->w_large_pages = 0;
861
862 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
863 INIT_LIST_HEAD(&wc->w_unwritten_list);
864
865 *wcp = wc;
866
867 return 0;
868}
869
870/*
871 * If a page has any new buffers, zero them out here, and mark them uptodate
872 * and dirty so they'll be written out (in order to prevent uninitialised
873 * block data from leaking). And clear the new bit.
874 */
875static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
876{
877 unsigned int block_start, block_end;
878 struct buffer_head *head, *bh;
879
880 BUG_ON(!PageLocked(page));
881 if (!page_has_buffers(page))
882 return;
883
884 bh = head = page_buffers(page);
885 block_start = 0;
886 do {
887 block_end = block_start + bh->b_size;
888
889 if (buffer_new(bh)) {
890 if (block_end > from && block_start < to) {
891 if (!PageUptodate(page)) {
892 unsigned start, end;
893
894 start = max(from, block_start);
895 end = min(to, block_end);
896
897 zero_user_segment(page, start, end);
898 set_buffer_uptodate(bh);
899 }
900
901 clear_buffer_new(bh);
902 mark_buffer_dirty(bh);
903 }
904 }
905
906 block_start = block_end;
907 bh = bh->b_this_page;
908 } while (bh != head);
909}
910
911/*
912 * Only called when we have a failure during allocating write to write
913 * zero's to the newly allocated region.
914 */
915static void ocfs2_write_failure(struct inode *inode,
916 struct ocfs2_write_ctxt *wc,
917 loff_t user_pos, unsigned user_len)
918{
919 int i;
920 unsigned from = user_pos & (PAGE_SIZE - 1),
921 to = user_pos + user_len;
922 struct page *tmppage;
923
924 if (wc->w_target_page)
925 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
926
927 for(i = 0; i < wc->w_num_pages; i++) {
928 tmppage = wc->w_pages[i];
929
930 if (tmppage && page_has_buffers(tmppage)) {
931 if (ocfs2_should_order_data(inode))
932 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
933 user_pos, user_len);
934
935 block_commit_write(tmppage, from, to);
936 }
937 }
938}
939
940static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
941 struct ocfs2_write_ctxt *wc,
942 struct page *page, u32 cpos,
943 loff_t user_pos, unsigned user_len,
944 int new)
945{
946 int ret;
947 unsigned int map_from = 0, map_to = 0;
948 unsigned int cluster_start, cluster_end;
949 unsigned int user_data_from = 0, user_data_to = 0;
950
951 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
952 &cluster_start, &cluster_end);
953
954 /* treat the write as new if the a hole/lseek spanned across
955 * the page boundary.
956 */
957 new = new | ((i_size_read(inode) <= page_offset(page)) &&
958 (page_offset(page) <= user_pos));
959
960 if (page == wc->w_target_page) {
961 map_from = user_pos & (PAGE_SIZE - 1);
962 map_to = map_from + user_len;
963
964 if (new)
965 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
966 cluster_start, cluster_end,
967 new);
968 else
969 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
970 map_from, map_to, new);
971 if (ret) {
972 mlog_errno(ret);
973 goto out;
974 }
975
976 user_data_from = map_from;
977 user_data_to = map_to;
978 if (new) {
979 map_from = cluster_start;
980 map_to = cluster_end;
981 }
982 } else {
983 /*
984 * If we haven't allocated the new page yet, we
985 * shouldn't be writing it out without copying user
986 * data. This is likely a math error from the caller.
987 */
988 BUG_ON(!new);
989
990 map_from = cluster_start;
991 map_to = cluster_end;
992
993 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
994 cluster_start, cluster_end, new);
995 if (ret) {
996 mlog_errno(ret);
997 goto out;
998 }
999 }
1000
1001 /*
1002 * Parts of newly allocated pages need to be zero'd.
1003 *
1004 * Above, we have also rewritten 'to' and 'from' - as far as
1005 * the rest of the function is concerned, the entire cluster
1006 * range inside of a page needs to be written.
1007 *
1008 * We can skip this if the page is up to date - it's already
1009 * been zero'd from being read in as a hole.
1010 */
1011 if (new && !PageUptodate(page))
1012 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1013 cpos, user_data_from, user_data_to);
1014
1015 flush_dcache_page(page);
1016
1017out:
1018 return ret;
1019}
1020
1021/*
1022 * This function will only grab one clusters worth of pages.
1023 */
1024static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1025 struct ocfs2_write_ctxt *wc,
1026 u32 cpos, loff_t user_pos,
1027 unsigned user_len, int new,
1028 struct page *mmap_page)
1029{
1030 int ret = 0, i;
1031 unsigned long start, target_index, end_index, index;
1032 struct inode *inode = mapping->host;
1033 loff_t last_byte;
1034
1035 target_index = user_pos >> PAGE_SHIFT;
1036
1037 /*
1038 * Figure out how many pages we'll be manipulating here. For
1039 * non allocating write, we just change the one
1040 * page. Otherwise, we'll need a whole clusters worth. If we're
1041 * writing past i_size, we only need enough pages to cover the
1042 * last page of the write.
1043 */
1044 if (new) {
1045 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1046 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1047 /*
1048 * We need the index *past* the last page we could possibly
1049 * touch. This is the page past the end of the write or
1050 * i_size, whichever is greater.
1051 */
1052 last_byte = max(user_pos + user_len, i_size_read(inode));
1053 BUG_ON(last_byte < 1);
1054 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1055 if ((start + wc->w_num_pages) > end_index)
1056 wc->w_num_pages = end_index - start;
1057 } else {
1058 wc->w_num_pages = 1;
1059 start = target_index;
1060 }
1061 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1062
1063 for(i = 0; i < wc->w_num_pages; i++) {
1064 index = start + i;
1065
1066 if (index >= target_index && index <= end_index &&
1067 wc->w_type == OCFS2_WRITE_MMAP) {
1068 /*
1069 * ocfs2_pagemkwrite() is a little different
1070 * and wants us to directly use the page
1071 * passed in.
1072 */
1073 lock_page(mmap_page);
1074
1075 /* Exit and let the caller retry */
1076 if (mmap_page->mapping != mapping) {
1077 WARN_ON(mmap_page->mapping);
1078 unlock_page(mmap_page);
1079 ret = -EAGAIN;
1080 goto out;
1081 }
1082
1083 get_page(mmap_page);
1084 wc->w_pages[i] = mmap_page;
1085 wc->w_target_locked = true;
1086 } else if (index >= target_index && index <= end_index &&
1087 wc->w_type == OCFS2_WRITE_DIRECT) {
1088 /* Direct write has no mapping page. */
1089 wc->w_pages[i] = NULL;
1090 continue;
1091 } else {
1092 wc->w_pages[i] = find_or_create_page(mapping, index,
1093 GFP_NOFS);
1094 if (!wc->w_pages[i]) {
1095 ret = -ENOMEM;
1096 mlog_errno(ret);
1097 goto out;
1098 }
1099 }
1100 wait_for_stable_page(wc->w_pages[i]);
1101
1102 if (index == target_index)
1103 wc->w_target_page = wc->w_pages[i];
1104 }
1105out:
1106 if (ret)
1107 wc->w_target_locked = false;
1108 return ret;
1109}
1110
1111/*
1112 * Prepare a single cluster for write one cluster into the file.
1113 */
1114static int ocfs2_write_cluster(struct address_space *mapping,
1115 u32 *phys, unsigned int new,
1116 unsigned int clear_unwritten,
1117 unsigned int should_zero,
1118 struct ocfs2_alloc_context *data_ac,
1119 struct ocfs2_alloc_context *meta_ac,
1120 struct ocfs2_write_ctxt *wc, u32 cpos,
1121 loff_t user_pos, unsigned user_len)
1122{
1123 int ret, i;
1124 u64 p_blkno;
1125 struct inode *inode = mapping->host;
1126 struct ocfs2_extent_tree et;
1127 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1128
1129 if (new) {
1130 u32 tmp_pos;
1131
1132 /*
1133 * This is safe to call with the page locks - it won't take
1134 * any additional semaphores or cluster locks.
1135 */
1136 tmp_pos = cpos;
1137 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1138 &tmp_pos, 1, !clear_unwritten,
1139 wc->w_di_bh, wc->w_handle,
1140 data_ac, meta_ac, NULL);
1141 /*
1142 * This shouldn't happen because we must have already
1143 * calculated the correct meta data allocation required. The
1144 * internal tree allocation code should know how to increase
1145 * transaction credits itself.
1146 *
1147 * If need be, we could handle -EAGAIN for a
1148 * RESTART_TRANS here.
1149 */
1150 mlog_bug_on_msg(ret == -EAGAIN,
1151 "Inode %llu: EAGAIN return during allocation.\n",
1152 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1153 if (ret < 0) {
1154 mlog_errno(ret);
1155 goto out;
1156 }
1157 } else if (clear_unwritten) {
1158 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1159 wc->w_di_bh);
1160 ret = ocfs2_mark_extent_written(inode, &et,
1161 wc->w_handle, cpos, 1, *phys,
1162 meta_ac, &wc->w_dealloc);
1163 if (ret < 0) {
1164 mlog_errno(ret);
1165 goto out;
1166 }
1167 }
1168
1169 /*
1170 * The only reason this should fail is due to an inability to
1171 * find the extent added.
1172 */
1173 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1174 if (ret < 0) {
1175 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1176 "at logical cluster %u",
1177 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1178 goto out;
1179 }
1180
1181 BUG_ON(*phys == 0);
1182
1183 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1184 if (!should_zero)
1185 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1186
1187 for(i = 0; i < wc->w_num_pages; i++) {
1188 int tmpret;
1189
1190 /* This is the direct io target page. */
1191 if (wc->w_pages[i] == NULL) {
1192 p_blkno++;
1193 continue;
1194 }
1195
1196 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1197 wc->w_pages[i], cpos,
1198 user_pos, user_len,
1199 should_zero);
1200 if (tmpret) {
1201 mlog_errno(tmpret);
1202 if (ret == 0)
1203 ret = tmpret;
1204 }
1205 }
1206
1207 /*
1208 * We only have cleanup to do in case of allocating write.
1209 */
1210 if (ret && new)
1211 ocfs2_write_failure(inode, wc, user_pos, user_len);
1212
1213out:
1214
1215 return ret;
1216}
1217
1218static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1219 struct ocfs2_alloc_context *data_ac,
1220 struct ocfs2_alloc_context *meta_ac,
1221 struct ocfs2_write_ctxt *wc,
1222 loff_t pos, unsigned len)
1223{
1224 int ret, i;
1225 loff_t cluster_off;
1226 unsigned int local_len = len;
1227 struct ocfs2_write_cluster_desc *desc;
1228 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1229
1230 for (i = 0; i < wc->w_clen; i++) {
1231 desc = &wc->w_desc[i];
1232
1233 /*
1234 * We have to make sure that the total write passed in
1235 * doesn't extend past a single cluster.
1236 */
1237 local_len = len;
1238 cluster_off = pos & (osb->s_clustersize - 1);
1239 if ((cluster_off + local_len) > osb->s_clustersize)
1240 local_len = osb->s_clustersize - cluster_off;
1241
1242 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1243 desc->c_new,
1244 desc->c_clear_unwritten,
1245 desc->c_needs_zero,
1246 data_ac, meta_ac,
1247 wc, desc->c_cpos, pos, local_len);
1248 if (ret) {
1249 mlog_errno(ret);
1250 goto out;
1251 }
1252
1253 len -= local_len;
1254 pos += local_len;
1255 }
1256
1257 ret = 0;
1258out:
1259 return ret;
1260}
1261
1262/*
1263 * ocfs2_write_end() wants to know which parts of the target page it
1264 * should complete the write on. It's easiest to compute them ahead of
1265 * time when a more complete view of the write is available.
1266 */
1267static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1268 struct ocfs2_write_ctxt *wc,
1269 loff_t pos, unsigned len, int alloc)
1270{
1271 struct ocfs2_write_cluster_desc *desc;
1272
1273 wc->w_target_from = pos & (PAGE_SIZE - 1);
1274 wc->w_target_to = wc->w_target_from + len;
1275
1276 if (alloc == 0)
1277 return;
1278
1279 /*
1280 * Allocating write - we may have different boundaries based
1281 * on page size and cluster size.
1282 *
1283 * NOTE: We can no longer compute one value from the other as
1284 * the actual write length and user provided length may be
1285 * different.
1286 */
1287
1288 if (wc->w_large_pages) {
1289 /*
1290 * We only care about the 1st and last cluster within
1291 * our range and whether they should be zero'd or not. Either
1292 * value may be extended out to the start/end of a
1293 * newly allocated cluster.
1294 */
1295 desc = &wc->w_desc[0];
1296 if (desc->c_needs_zero)
1297 ocfs2_figure_cluster_boundaries(osb,
1298 desc->c_cpos,
1299 &wc->w_target_from,
1300 NULL);
1301
1302 desc = &wc->w_desc[wc->w_clen - 1];
1303 if (desc->c_needs_zero)
1304 ocfs2_figure_cluster_boundaries(osb,
1305 desc->c_cpos,
1306 NULL,
1307 &wc->w_target_to);
1308 } else {
1309 wc->w_target_from = 0;
1310 wc->w_target_to = PAGE_SIZE;
1311 }
1312}
1313
1314/*
1315 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1316 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1317 * by the direct io procedure.
1318 * If this is a new extent that allocated by direct io, we should mark it in
1319 * the ip_unwritten_list.
1320 */
1321static int ocfs2_unwritten_check(struct inode *inode,
1322 struct ocfs2_write_ctxt *wc,
1323 struct ocfs2_write_cluster_desc *desc)
1324{
1325 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1326 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1327 int ret = 0;
1328
1329 if (!desc->c_needs_zero)
1330 return 0;
1331
1332retry:
1333 spin_lock(&oi->ip_lock);
1334 /* Needs not to zero no metter buffer or direct. The one who is zero
1335 * the cluster is doing zero. And he will clear unwritten after all
1336 * cluster io finished. */
1337 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1338 if (desc->c_cpos == ue->ue_cpos) {
1339 BUG_ON(desc->c_new);
1340 desc->c_needs_zero = 0;
1341 desc->c_clear_unwritten = 0;
1342 goto unlock;
1343 }
1344 }
1345
1346 if (wc->w_type != OCFS2_WRITE_DIRECT)
1347 goto unlock;
1348
1349 if (new == NULL) {
1350 spin_unlock(&oi->ip_lock);
1351 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1352 GFP_NOFS);
1353 if (new == NULL) {
1354 ret = -ENOMEM;
1355 goto out;
1356 }
1357 goto retry;
1358 }
1359 /* This direct write will doing zero. */
1360 new->ue_cpos = desc->c_cpos;
1361 new->ue_phys = desc->c_phys;
1362 desc->c_clear_unwritten = 0;
1363 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1364 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1365 wc->w_unwritten_count++;
1366 new = NULL;
1367unlock:
1368 spin_unlock(&oi->ip_lock);
1369out:
1370 kfree(new);
1371 return ret;
1372}
1373
1374/*
1375 * Populate each single-cluster write descriptor in the write context
1376 * with information about the i/o to be done.
1377 *
1378 * Returns the number of clusters that will have to be allocated, as
1379 * well as a worst case estimate of the number of extent records that
1380 * would have to be created during a write to an unwritten region.
1381 */
1382static int ocfs2_populate_write_desc(struct inode *inode,
1383 struct ocfs2_write_ctxt *wc,
1384 unsigned int *clusters_to_alloc,
1385 unsigned int *extents_to_split)
1386{
1387 int ret;
1388 struct ocfs2_write_cluster_desc *desc;
1389 unsigned int num_clusters = 0;
1390 unsigned int ext_flags = 0;
1391 u32 phys = 0;
1392 int i;
1393
1394 *clusters_to_alloc = 0;
1395 *extents_to_split = 0;
1396
1397 for (i = 0; i < wc->w_clen; i++) {
1398 desc = &wc->w_desc[i];
1399 desc->c_cpos = wc->w_cpos + i;
1400
1401 if (num_clusters == 0) {
1402 /*
1403 * Need to look up the next extent record.
1404 */
1405 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1406 &num_clusters, &ext_flags);
1407 if (ret) {
1408 mlog_errno(ret);
1409 goto out;
1410 }
1411
1412 /* We should already CoW the refcountd extent. */
1413 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1414
1415 /*
1416 * Assume worst case - that we're writing in
1417 * the middle of the extent.
1418 *
1419 * We can assume that the write proceeds from
1420 * left to right, in which case the extent
1421 * insert code is smart enough to coalesce the
1422 * next splits into the previous records created.
1423 */
1424 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1425 *extents_to_split = *extents_to_split + 2;
1426 } else if (phys) {
1427 /*
1428 * Only increment phys if it doesn't describe
1429 * a hole.
1430 */
1431 phys++;
1432 }
1433
1434 /*
1435 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1436 * file that got extended. w_first_new_cpos tells us
1437 * where the newly allocated clusters are so we can
1438 * zero them.
1439 */
1440 if (desc->c_cpos >= wc->w_first_new_cpos) {
1441 BUG_ON(phys == 0);
1442 desc->c_needs_zero = 1;
1443 }
1444
1445 desc->c_phys = phys;
1446 if (phys == 0) {
1447 desc->c_new = 1;
1448 desc->c_needs_zero = 1;
1449 desc->c_clear_unwritten = 1;
1450 *clusters_to_alloc = *clusters_to_alloc + 1;
1451 }
1452
1453 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1454 desc->c_clear_unwritten = 1;
1455 desc->c_needs_zero = 1;
1456 }
1457
1458 ret = ocfs2_unwritten_check(inode, wc, desc);
1459 if (ret) {
1460 mlog_errno(ret);
1461 goto out;
1462 }
1463
1464 num_clusters--;
1465 }
1466
1467 ret = 0;
1468out:
1469 return ret;
1470}
1471
1472static int ocfs2_write_begin_inline(struct address_space *mapping,
1473 struct inode *inode,
1474 struct ocfs2_write_ctxt *wc)
1475{
1476 int ret;
1477 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1478 struct page *page;
1479 handle_t *handle;
1480 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1481
1482 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1483 if (IS_ERR(handle)) {
1484 ret = PTR_ERR(handle);
1485 mlog_errno(ret);
1486 goto out;
1487 }
1488
1489 page = find_or_create_page(mapping, 0, GFP_NOFS);
1490 if (!page) {
1491 ocfs2_commit_trans(osb, handle);
1492 ret = -ENOMEM;
1493 mlog_errno(ret);
1494 goto out;
1495 }
1496 /*
1497 * If we don't set w_num_pages then this page won't get unlocked
1498 * and freed on cleanup of the write context.
1499 */
1500 wc->w_pages[0] = wc->w_target_page = page;
1501 wc->w_num_pages = 1;
1502
1503 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1504 OCFS2_JOURNAL_ACCESS_WRITE);
1505 if (ret) {
1506 ocfs2_commit_trans(osb, handle);
1507
1508 mlog_errno(ret);
1509 goto out;
1510 }
1511
1512 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1513 ocfs2_set_inode_data_inline(inode, di);
1514
1515 if (!PageUptodate(page)) {
1516 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1517 if (ret) {
1518 ocfs2_commit_trans(osb, handle);
1519
1520 goto out;
1521 }
1522 }
1523
1524 wc->w_handle = handle;
1525out:
1526 return ret;
1527}
1528
1529int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1530{
1531 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1532
1533 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1534 return 1;
1535 return 0;
1536}
1537
1538static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1539 struct inode *inode, loff_t pos,
1540 unsigned len, struct page *mmap_page,
1541 struct ocfs2_write_ctxt *wc)
1542{
1543 int ret, written = 0;
1544 loff_t end = pos + len;
1545 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1546 struct ocfs2_dinode *di = NULL;
1547
1548 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1549 len, (unsigned long long)pos,
1550 oi->ip_dyn_features);
1551
1552 /*
1553 * Handle inodes which already have inline data 1st.
1554 */
1555 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1556 if (mmap_page == NULL &&
1557 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1558 goto do_inline_write;
1559
1560 /*
1561 * The write won't fit - we have to give this inode an
1562 * inline extent list now.
1563 */
1564 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1565 if (ret)
1566 mlog_errno(ret);
1567 goto out;
1568 }
1569
1570 /*
1571 * Check whether the inode can accept inline data.
1572 */
1573 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1574 return 0;
1575
1576 /*
1577 * Check whether the write can fit.
1578 */
1579 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1580 if (mmap_page ||
1581 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1582 return 0;
1583
1584do_inline_write:
1585 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1586 if (ret) {
1587 mlog_errno(ret);
1588 goto out;
1589 }
1590
1591 /*
1592 * This signals to the caller that the data can be written
1593 * inline.
1594 */
1595 written = 1;
1596out:
1597 return written ? written : ret;
1598}
1599
1600/*
1601 * This function only does anything for file systems which can't
1602 * handle sparse files.
1603 *
1604 * What we want to do here is fill in any hole between the current end
1605 * of allocation and the end of our write. That way the rest of the
1606 * write path can treat it as an non-allocating write, which has no
1607 * special case code for sparse/nonsparse files.
1608 */
1609static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1610 struct buffer_head *di_bh,
1611 loff_t pos, unsigned len,
1612 struct ocfs2_write_ctxt *wc)
1613{
1614 int ret;
1615 loff_t newsize = pos + len;
1616
1617 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1618
1619 if (newsize <= i_size_read(inode))
1620 return 0;
1621
1622 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1623 if (ret)
1624 mlog_errno(ret);
1625
1626 /* There is no wc if this is call from direct. */
1627 if (wc)
1628 wc->w_first_new_cpos =
1629 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630
1631 return ret;
1632}
1633
1634static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635 loff_t pos)
1636{
1637 int ret = 0;
1638
1639 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640 if (pos > i_size_read(inode))
1641 ret = ocfs2_zero_extend(inode, di_bh, pos);
1642
1643 return ret;
1644}
1645
1646int ocfs2_write_begin_nolock(struct address_space *mapping,
1647 loff_t pos, unsigned len, ocfs2_write_type_t type,
1648 struct page **pagep, void **fsdata,
1649 struct buffer_head *di_bh, struct page *mmap_page)
1650{
1651 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1652 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1653 struct ocfs2_write_ctxt *wc;
1654 struct inode *inode = mapping->host;
1655 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1656 struct ocfs2_dinode *di;
1657 struct ocfs2_alloc_context *data_ac = NULL;
1658 struct ocfs2_alloc_context *meta_ac = NULL;
1659 handle_t *handle;
1660 struct ocfs2_extent_tree et;
1661 int try_free = 1, ret1;
1662
1663try_again:
1664 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1665 if (ret) {
1666 mlog_errno(ret);
1667 return ret;
1668 }
1669
1670 if (ocfs2_supports_inline_data(osb)) {
1671 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1672 mmap_page, wc);
1673 if (ret == 1) {
1674 ret = 0;
1675 goto success;
1676 }
1677 if (ret < 0) {
1678 mlog_errno(ret);
1679 goto out;
1680 }
1681 }
1682
1683 /* Direct io change i_size late, should not zero tail here. */
1684 if (type != OCFS2_WRITE_DIRECT) {
1685 if (ocfs2_sparse_alloc(osb))
1686 ret = ocfs2_zero_tail(inode, di_bh, pos);
1687 else
1688 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1689 len, wc);
1690 if (ret) {
1691 mlog_errno(ret);
1692 goto out;
1693 }
1694 }
1695
1696 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1697 if (ret < 0) {
1698 mlog_errno(ret);
1699 goto out;
1700 } else if (ret == 1) {
1701 clusters_need = wc->w_clen;
1702 ret = ocfs2_refcount_cow(inode, di_bh,
1703 wc->w_cpos, wc->w_clen, UINT_MAX);
1704 if (ret) {
1705 mlog_errno(ret);
1706 goto out;
1707 }
1708 }
1709
1710 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1711 &extents_to_split);
1712 if (ret) {
1713 mlog_errno(ret);
1714 goto out;
1715 }
1716 clusters_need += clusters_to_alloc;
1717
1718 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1719
1720 trace_ocfs2_write_begin_nolock(
1721 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1722 (long long)i_size_read(inode),
1723 le32_to_cpu(di->i_clusters),
1724 pos, len, type, mmap_page,
1725 clusters_to_alloc, extents_to_split);
1726
1727 /*
1728 * We set w_target_from, w_target_to here so that
1729 * ocfs2_write_end() knows which range in the target page to
1730 * write out. An allocation requires that we write the entire
1731 * cluster range.
1732 */
1733 if (clusters_to_alloc || extents_to_split) {
1734 /*
1735 * XXX: We are stretching the limits of
1736 * ocfs2_lock_allocators(). It greatly over-estimates
1737 * the work to be done.
1738 */
1739 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1740 wc->w_di_bh);
1741 ret = ocfs2_lock_allocators(inode, &et,
1742 clusters_to_alloc, extents_to_split,
1743 &data_ac, &meta_ac);
1744 if (ret) {
1745 mlog_errno(ret);
1746 goto out;
1747 }
1748
1749 if (data_ac)
1750 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1751
1752 credits = ocfs2_calc_extend_credits(inode->i_sb,
1753 &di->id2.i_list);
1754 } else if (type == OCFS2_WRITE_DIRECT)
1755 /* direct write needs not to start trans if no extents alloc. */
1756 goto success;
1757
1758 /*
1759 * We have to zero sparse allocated clusters, unwritten extent clusters,
1760 * and non-sparse clusters we just extended. For non-sparse writes,
1761 * we know zeros will only be needed in the first and/or last cluster.
1762 */
1763 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1764 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1765 cluster_of_pages = 1;
1766 else
1767 cluster_of_pages = 0;
1768
1769 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1770
1771 handle = ocfs2_start_trans(osb, credits);
1772 if (IS_ERR(handle)) {
1773 ret = PTR_ERR(handle);
1774 mlog_errno(ret);
1775 goto out;
1776 }
1777
1778 wc->w_handle = handle;
1779
1780 if (clusters_to_alloc) {
1781 ret = dquot_alloc_space_nodirty(inode,
1782 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1783 if (ret)
1784 goto out_commit;
1785 }
1786
1787 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1788 OCFS2_JOURNAL_ACCESS_WRITE);
1789 if (ret) {
1790 mlog_errno(ret);
1791 goto out_quota;
1792 }
1793
1794 /*
1795 * Fill our page array first. That way we've grabbed enough so
1796 * that we can zero and flush if we error after adding the
1797 * extent.
1798 */
1799 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1800 cluster_of_pages, mmap_page);
1801 if (ret) {
1802 /*
1803 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1804 * the target page. In this case, we exit with no error and no target
1805 * page. This will trigger the caller, page_mkwrite(), to re-try
1806 * the operation.
1807 */
1808 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1809 BUG_ON(wc->w_target_page);
1810 ret = 0;
1811 goto out_quota;
1812 }
1813
1814 mlog_errno(ret);
1815 goto out_quota;
1816 }
1817
1818 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1819 len);
1820 if (ret) {
1821 mlog_errno(ret);
1822 goto out_quota;
1823 }
1824
1825 if (data_ac)
1826 ocfs2_free_alloc_context(data_ac);
1827 if (meta_ac)
1828 ocfs2_free_alloc_context(meta_ac);
1829
1830success:
1831 if (pagep)
1832 *pagep = wc->w_target_page;
1833 *fsdata = wc;
1834 return 0;
1835out_quota:
1836 if (clusters_to_alloc)
1837 dquot_free_space(inode,
1838 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1839out_commit:
1840 ocfs2_commit_trans(osb, handle);
1841
1842out:
1843 /*
1844 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1845 * even in case of error here like ENOSPC and ENOMEM. So, we need
1846 * to unlock the target page manually to prevent deadlocks when
1847 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1848 * to VM code.
1849 */
1850 if (wc->w_target_locked)
1851 unlock_page(mmap_page);
1852
1853 ocfs2_free_write_ctxt(inode, wc);
1854
1855 if (data_ac) {
1856 ocfs2_free_alloc_context(data_ac);
1857 data_ac = NULL;
1858 }
1859 if (meta_ac) {
1860 ocfs2_free_alloc_context(meta_ac);
1861 meta_ac = NULL;
1862 }
1863
1864 if (ret == -ENOSPC && try_free) {
1865 /*
1866 * Try to free some truncate log so that we can have enough
1867 * clusters to allocate.
1868 */
1869 try_free = 0;
1870
1871 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1872 if (ret1 == 1)
1873 goto try_again;
1874
1875 if (ret1 < 0)
1876 mlog_errno(ret1);
1877 }
1878
1879 return ret;
1880}
1881
1882static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1883 loff_t pos, unsigned len,
1884 struct page **pagep, void **fsdata)
1885{
1886 int ret;
1887 struct buffer_head *di_bh = NULL;
1888 struct inode *inode = mapping->host;
1889
1890 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1891 if (ret) {
1892 mlog_errno(ret);
1893 return ret;
1894 }
1895
1896 /*
1897 * Take alloc sem here to prevent concurrent lookups. That way
1898 * the mapping, zeroing and tree manipulation within
1899 * ocfs2_write() will be safe against ->read_folio(). This
1900 * should also serve to lock out allocation from a shared
1901 * writeable region.
1902 */
1903 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1904
1905 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1906 pagep, fsdata, di_bh, NULL);
1907 if (ret) {
1908 mlog_errno(ret);
1909 goto out_fail;
1910 }
1911
1912 brelse(di_bh);
1913
1914 return 0;
1915
1916out_fail:
1917 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1918
1919 brelse(di_bh);
1920 ocfs2_inode_unlock(inode, 1);
1921
1922 return ret;
1923}
1924
1925static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1926 unsigned len, unsigned *copied,
1927 struct ocfs2_dinode *di,
1928 struct ocfs2_write_ctxt *wc)
1929{
1930 void *kaddr;
1931
1932 if (unlikely(*copied < len)) {
1933 if (!PageUptodate(wc->w_target_page)) {
1934 *copied = 0;
1935 return;
1936 }
1937 }
1938
1939 kaddr = kmap_atomic(wc->w_target_page);
1940 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1941 kunmap_atomic(kaddr);
1942
1943 trace_ocfs2_write_end_inline(
1944 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1945 (unsigned long long)pos, *copied,
1946 le16_to_cpu(di->id2.i_data.id_count),
1947 le16_to_cpu(di->i_dyn_features));
1948}
1949
1950int ocfs2_write_end_nolock(struct address_space *mapping,
1951 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1952{
1953 int i, ret;
1954 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1955 struct inode *inode = mapping->host;
1956 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1957 struct ocfs2_write_ctxt *wc = fsdata;
1958 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1959 handle_t *handle = wc->w_handle;
1960 struct page *tmppage;
1961
1962 BUG_ON(!list_empty(&wc->w_unwritten_list));
1963
1964 if (handle) {
1965 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1966 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1967 if (ret) {
1968 copied = ret;
1969 mlog_errno(ret);
1970 goto out;
1971 }
1972 }
1973
1974 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1975 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1976 goto out_write_size;
1977 }
1978
1979 if (unlikely(copied < len) && wc->w_target_page) {
1980 if (!PageUptodate(wc->w_target_page))
1981 copied = 0;
1982
1983 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1984 start+len);
1985 }
1986 if (wc->w_target_page)
1987 flush_dcache_page(wc->w_target_page);
1988
1989 for(i = 0; i < wc->w_num_pages; i++) {
1990 tmppage = wc->w_pages[i];
1991
1992 /* This is the direct io target page. */
1993 if (tmppage == NULL)
1994 continue;
1995
1996 if (tmppage == wc->w_target_page) {
1997 from = wc->w_target_from;
1998 to = wc->w_target_to;
1999
2000 BUG_ON(from > PAGE_SIZE ||
2001 to > PAGE_SIZE ||
2002 to < from);
2003 } else {
2004 /*
2005 * Pages adjacent to the target (if any) imply
2006 * a hole-filling write in which case we want
2007 * to flush their entire range.
2008 */
2009 from = 0;
2010 to = PAGE_SIZE;
2011 }
2012
2013 if (page_has_buffers(tmppage)) {
2014 if (handle && ocfs2_should_order_data(inode)) {
2015 loff_t start_byte =
2016 ((loff_t)tmppage->index << PAGE_SHIFT) +
2017 from;
2018 loff_t length = to - from;
2019 ocfs2_jbd2_inode_add_write(handle, inode,
2020 start_byte, length);
2021 }
2022 block_commit_write(tmppage, from, to);
2023 }
2024 }
2025
2026out_write_size:
2027 /* Direct io do not update i_size here. */
2028 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2029 pos += copied;
2030 if (pos > i_size_read(inode)) {
2031 i_size_write(inode, pos);
2032 mark_inode_dirty(inode);
2033 }
2034 inode->i_blocks = ocfs2_inode_sector_count(inode);
2035 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2036 inode->i_mtime = inode->i_ctime = current_time(inode);
2037 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2038 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2039 if (handle)
2040 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2041 }
2042 if (handle)
2043 ocfs2_journal_dirty(handle, wc->w_di_bh);
2044
2045out:
2046 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2047 * lock, or it will cause a deadlock since journal commit threads holds
2048 * this lock and will ask for the page lock when flushing the data.
2049 * put it here to preserve the unlock order.
2050 */
2051 ocfs2_unlock_pages(wc);
2052
2053 if (handle)
2054 ocfs2_commit_trans(osb, handle);
2055
2056 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2057
2058 brelse(wc->w_di_bh);
2059 kfree(wc);
2060
2061 return copied;
2062}
2063
2064static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2065 loff_t pos, unsigned len, unsigned copied,
2066 struct page *page, void *fsdata)
2067{
2068 int ret;
2069 struct inode *inode = mapping->host;
2070
2071 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2072
2073 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2074 ocfs2_inode_unlock(inode, 1);
2075
2076 return ret;
2077}
2078
2079struct ocfs2_dio_write_ctxt {
2080 struct list_head dw_zero_list;
2081 unsigned dw_zero_count;
2082 int dw_orphaned;
2083 pid_t dw_writer_pid;
2084};
2085
2086static struct ocfs2_dio_write_ctxt *
2087ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2088{
2089 struct ocfs2_dio_write_ctxt *dwc = NULL;
2090
2091 if (bh->b_private)
2092 return bh->b_private;
2093
2094 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2095 if (dwc == NULL)
2096 return NULL;
2097 INIT_LIST_HEAD(&dwc->dw_zero_list);
2098 dwc->dw_zero_count = 0;
2099 dwc->dw_orphaned = 0;
2100 dwc->dw_writer_pid = task_pid_nr(current);
2101 bh->b_private = dwc;
2102 *alloc = 1;
2103
2104 return dwc;
2105}
2106
2107static void ocfs2_dio_free_write_ctx(struct inode *inode,
2108 struct ocfs2_dio_write_ctxt *dwc)
2109{
2110 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2111 kfree(dwc);
2112}
2113
2114/*
2115 * TODO: Make this into a generic get_blocks function.
2116 *
2117 * From do_direct_io in direct-io.c:
2118 * "So what we do is to permit the ->get_blocks function to populate
2119 * bh.b_size with the size of IO which is permitted at this offset and
2120 * this i_blkbits."
2121 *
2122 * This function is called directly from get_more_blocks in direct-io.c.
2123 *
2124 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2125 * fs_count, map_bh, dio->rw == WRITE);
2126 */
2127static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2128 struct buffer_head *bh_result, int create)
2129{
2130 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2131 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2132 struct ocfs2_write_ctxt *wc;
2133 struct ocfs2_write_cluster_desc *desc = NULL;
2134 struct ocfs2_dio_write_ctxt *dwc = NULL;
2135 struct buffer_head *di_bh = NULL;
2136 u64 p_blkno;
2137 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2138 loff_t pos = iblock << i_blkbits;
2139 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2140 unsigned len, total_len = bh_result->b_size;
2141 int ret = 0, first_get_block = 0;
2142
2143 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2144 len = min(total_len, len);
2145
2146 /*
2147 * bh_result->b_size is count in get_more_blocks according to write
2148 * "pos" and "end", we need map twice to return different buffer state:
2149 * 1. area in file size, not set NEW;
2150 * 2. area out file size, set NEW.
2151 *
2152 * iblock endblk
2153 * |--------|---------|---------|---------
2154 * |<-------area in file------->|
2155 */
2156
2157 if ((iblock <= endblk) &&
2158 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2159 len = (endblk - iblock + 1) << i_blkbits;
2160
2161 mlog(0, "get block of %lu at %llu:%u req %u\n",
2162 inode->i_ino, pos, len, total_len);
2163
2164 /*
2165 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2166 * we may need to add it to orphan dir. So can not fall to fast path
2167 * while file size will be changed.
2168 */
2169 if (pos + total_len <= i_size_read(inode)) {
2170
2171 /* This is the fast path for re-write. */
2172 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2173 if (buffer_mapped(bh_result) &&
2174 !buffer_new(bh_result) &&
2175 ret == 0)
2176 goto out;
2177
2178 /* Clear state set by ocfs2_get_block. */
2179 bh_result->b_state = 0;
2180 }
2181
2182 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2183 if (unlikely(dwc == NULL)) {
2184 ret = -ENOMEM;
2185 mlog_errno(ret);
2186 goto out;
2187 }
2188
2189 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2190 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2191 !dwc->dw_orphaned) {
2192 /*
2193 * when we are going to alloc extents beyond file size, add the
2194 * inode to orphan dir, so we can recall those spaces when
2195 * system crashed during write.
2196 */
2197 ret = ocfs2_add_inode_to_orphan(osb, inode);
2198 if (ret < 0) {
2199 mlog_errno(ret);
2200 goto out;
2201 }
2202 dwc->dw_orphaned = 1;
2203 }
2204
2205 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2206 if (ret) {
2207 mlog_errno(ret);
2208 goto out;
2209 }
2210
2211 down_write(&oi->ip_alloc_sem);
2212
2213 if (first_get_block) {
2214 if (ocfs2_sparse_alloc(osb))
2215 ret = ocfs2_zero_tail(inode, di_bh, pos);
2216 else
2217 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2218 total_len, NULL);
2219 if (ret < 0) {
2220 mlog_errno(ret);
2221 goto unlock;
2222 }
2223 }
2224
2225 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2226 OCFS2_WRITE_DIRECT, NULL,
2227 (void **)&wc, di_bh, NULL);
2228 if (ret) {
2229 mlog_errno(ret);
2230 goto unlock;
2231 }
2232
2233 desc = &wc->w_desc[0];
2234
2235 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2236 BUG_ON(p_blkno == 0);
2237 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2238
2239 map_bh(bh_result, inode->i_sb, p_blkno);
2240 bh_result->b_size = len;
2241 if (desc->c_needs_zero)
2242 set_buffer_new(bh_result);
2243
2244 if (iblock > endblk)
2245 set_buffer_new(bh_result);
2246
2247 /* May sleep in end_io. It should not happen in a irq context. So defer
2248 * it to dio work queue. */
2249 set_buffer_defer_completion(bh_result);
2250
2251 if (!list_empty(&wc->w_unwritten_list)) {
2252 struct ocfs2_unwritten_extent *ue = NULL;
2253
2254 ue = list_first_entry(&wc->w_unwritten_list,
2255 struct ocfs2_unwritten_extent,
2256 ue_node);
2257 BUG_ON(ue->ue_cpos != desc->c_cpos);
2258 /* The physical address may be 0, fill it. */
2259 ue->ue_phys = desc->c_phys;
2260
2261 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2262 dwc->dw_zero_count += wc->w_unwritten_count;
2263 }
2264
2265 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2266 BUG_ON(ret != len);
2267 ret = 0;
2268unlock:
2269 up_write(&oi->ip_alloc_sem);
2270 ocfs2_inode_unlock(inode, 1);
2271 brelse(di_bh);
2272out:
2273 if (ret < 0)
2274 ret = -EIO;
2275 return ret;
2276}
2277
2278static int ocfs2_dio_end_io_write(struct inode *inode,
2279 struct ocfs2_dio_write_ctxt *dwc,
2280 loff_t offset,
2281 ssize_t bytes)
2282{
2283 struct ocfs2_cached_dealloc_ctxt dealloc;
2284 struct ocfs2_extent_tree et;
2285 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2286 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2287 struct ocfs2_unwritten_extent *ue = NULL;
2288 struct buffer_head *di_bh = NULL;
2289 struct ocfs2_dinode *di;
2290 struct ocfs2_alloc_context *data_ac = NULL;
2291 struct ocfs2_alloc_context *meta_ac = NULL;
2292 handle_t *handle = NULL;
2293 loff_t end = offset + bytes;
2294 int ret = 0, credits = 0;
2295
2296 ocfs2_init_dealloc_ctxt(&dealloc);
2297
2298 /* We do clear unwritten, delete orphan, change i_size here. If neither
2299 * of these happen, we can skip all this. */
2300 if (list_empty(&dwc->dw_zero_list) &&
2301 end <= i_size_read(inode) &&
2302 !dwc->dw_orphaned)
2303 goto out;
2304
2305 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2306 if (ret < 0) {
2307 mlog_errno(ret);
2308 goto out;
2309 }
2310
2311 down_write(&oi->ip_alloc_sem);
2312
2313 /* Delete orphan before acquire i_rwsem. */
2314 if (dwc->dw_orphaned) {
2315 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2316
2317 end = end > i_size_read(inode) ? end : 0;
2318
2319 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2320 !!end, end);
2321 if (ret < 0)
2322 mlog_errno(ret);
2323 }
2324
2325 di = (struct ocfs2_dinode *)di_bh->b_data;
2326
2327 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2328
2329 /* Attach dealloc with extent tree in case that we may reuse extents
2330 * which are already unlinked from current extent tree due to extent
2331 * rotation and merging.
2332 */
2333 et.et_dealloc = &dealloc;
2334
2335 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2336 &data_ac, &meta_ac);
2337 if (ret) {
2338 mlog_errno(ret);
2339 goto unlock;
2340 }
2341
2342 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2343
2344 handle = ocfs2_start_trans(osb, credits);
2345 if (IS_ERR(handle)) {
2346 ret = PTR_ERR(handle);
2347 mlog_errno(ret);
2348 goto unlock;
2349 }
2350 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2351 OCFS2_JOURNAL_ACCESS_WRITE);
2352 if (ret) {
2353 mlog_errno(ret);
2354 goto commit;
2355 }
2356
2357 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2358 ret = ocfs2_mark_extent_written(inode, &et, handle,
2359 ue->ue_cpos, 1,
2360 ue->ue_phys,
2361 meta_ac, &dealloc);
2362 if (ret < 0) {
2363 mlog_errno(ret);
2364 break;
2365 }
2366 }
2367
2368 if (end > i_size_read(inode)) {
2369 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2370 if (ret < 0)
2371 mlog_errno(ret);
2372 }
2373commit:
2374 ocfs2_commit_trans(osb, handle);
2375unlock:
2376 up_write(&oi->ip_alloc_sem);
2377 ocfs2_inode_unlock(inode, 1);
2378 brelse(di_bh);
2379out:
2380 if (data_ac)
2381 ocfs2_free_alloc_context(data_ac);
2382 if (meta_ac)
2383 ocfs2_free_alloc_context(meta_ac);
2384 ocfs2_run_deallocs(osb, &dealloc);
2385 ocfs2_dio_free_write_ctx(inode, dwc);
2386
2387 return ret;
2388}
2389
2390/*
2391 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2392 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2393 * to protect io on one node from truncation on another.
2394 */
2395static int ocfs2_dio_end_io(struct kiocb *iocb,
2396 loff_t offset,
2397 ssize_t bytes,
2398 void *private)
2399{
2400 struct inode *inode = file_inode(iocb->ki_filp);
2401 int level;
2402 int ret = 0;
2403
2404 /* this io's submitter should not have unlocked this before we could */
2405 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2406
2407 if (bytes <= 0)
2408 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2409 (long long)bytes);
2410 if (private) {
2411 if (bytes > 0)
2412 ret = ocfs2_dio_end_io_write(inode, private, offset,
2413 bytes);
2414 else
2415 ocfs2_dio_free_write_ctx(inode, private);
2416 }
2417
2418 ocfs2_iocb_clear_rw_locked(iocb);
2419
2420 level = ocfs2_iocb_rw_locked_level(iocb);
2421 ocfs2_rw_unlock(inode, level);
2422 return ret;
2423}
2424
2425static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426{
2427 struct file *file = iocb->ki_filp;
2428 struct inode *inode = file->f_mapping->host;
2429 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430 get_block_t *get_block;
2431
2432 /*
2433 * Fallback to buffered I/O if we see an inode without
2434 * extents.
2435 */
2436 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437 return 0;
2438
2439 /* Fallback to buffered I/O if we do not support append dio. */
2440 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441 !ocfs2_supports_append_dio(osb))
2442 return 0;
2443
2444 if (iov_iter_rw(iter) == READ)
2445 get_block = ocfs2_lock_get_block;
2446 else
2447 get_block = ocfs2_dio_wr_get_block;
2448
2449 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450 iter, get_block,
2451 ocfs2_dio_end_io, NULL, 0);
2452}
2453
2454const struct address_space_operations ocfs2_aops = {
2455 .dirty_folio = block_dirty_folio,
2456 .read_folio = ocfs2_read_folio,
2457 .readahead = ocfs2_readahead,
2458 .writepage = ocfs2_writepage,
2459 .write_begin = ocfs2_write_begin,
2460 .write_end = ocfs2_write_end,
2461 .bmap = ocfs2_bmap,
2462 .direct_IO = ocfs2_direct_IO,
2463 .invalidate_folio = block_invalidate_folio,
2464 .release_folio = ocfs2_release_folio,
2465 .migrate_folio = buffer_migrate_folio,
2466 .is_partially_uptodate = block_is_partially_uptodate,
2467 .error_remove_page = generic_error_remove_page,
2468};