Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.1
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
 
 
  31
  32#include <cluster/masklog.h>
  33
  34#include "ocfs2.h"
  35
  36#include "alloc.h"
  37#include "aops.h"
  38#include "dlmglue.h"
  39#include "extent_map.h"
  40#include "file.h"
  41#include "inode.h"
  42#include "journal.h"
  43#include "suballoc.h"
  44#include "super.h"
  45#include "symlink.h"
  46#include "refcounttree.h"
  47#include "ocfs2_trace.h"
  48
  49#include "buffer_head_io.h"
 
 
 
  50
  51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  52				   struct buffer_head *bh_result, int create)
  53{
  54	int err = -EIO;
  55	int status;
  56	struct ocfs2_dinode *fe = NULL;
  57	struct buffer_head *bh = NULL;
  58	struct buffer_head *buffer_cache_bh = NULL;
  59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  60	void *kaddr;
  61
  62	trace_ocfs2_symlink_get_block(
  63			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  64			(unsigned long long)iblock, bh_result, create);
  65
  66	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  67
  68	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  69		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  70		     (unsigned long long)iblock);
  71		goto bail;
  72	}
  73
  74	status = ocfs2_read_inode_block(inode, &bh);
  75	if (status < 0) {
  76		mlog_errno(status);
  77		goto bail;
  78	}
  79	fe = (struct ocfs2_dinode *) bh->b_data;
  80
  81	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  82						    le32_to_cpu(fe->i_clusters))) {
 
  83		mlog(ML_ERROR, "block offset is outside the allocated size: "
  84		     "%llu\n", (unsigned long long)iblock);
  85		goto bail;
  86	}
  87
  88	/* We don't use the page cache to create symlink data, so if
  89	 * need be, copy it over from the buffer cache. */
  90	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  91		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  92			    iblock;
  93		buffer_cache_bh = sb_getblk(osb->sb, blkno);
  94		if (!buffer_cache_bh) {
 
  95			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  96			goto bail;
  97		}
  98
  99		/* we haven't locked out transactions, so a commit
 100		 * could've happened. Since we've got a reference on
 101		 * the bh, even if it commits while we're doing the
 102		 * copy, the data is still good. */
 103		if (buffer_jbd(buffer_cache_bh)
 104		    && ocfs2_inode_is_new(inode)) {
 105			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
 106			if (!kaddr) {
 107				mlog(ML_ERROR, "couldn't kmap!\n");
 108				goto bail;
 109			}
 110			memcpy(kaddr + (bh_result->b_size * iblock),
 111			       buffer_cache_bh->b_data,
 112			       bh_result->b_size);
 113			kunmap_atomic(kaddr, KM_USER0);
 114			set_buffer_uptodate(bh_result);
 115		}
 116		brelse(buffer_cache_bh);
 117	}
 118
 119	map_bh(bh_result, inode->i_sb,
 120	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 121
 122	err = 0;
 123
 124bail:
 125	brelse(bh);
 126
 127	return err;
 128}
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 130int ocfs2_get_block(struct inode *inode, sector_t iblock,
 131		    struct buffer_head *bh_result, int create)
 132{
 133	int err = 0;
 134	unsigned int ext_flags;
 135	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 136	u64 p_blkno, count, past_eof;
 137	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 138
 139	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 140			      (unsigned long long)iblock, bh_result, create);
 141
 142	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 143		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 144		     inode, inode->i_ino);
 145
 146	if (S_ISLNK(inode->i_mode)) {
 147		/* this always does I/O for some reason. */
 148		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 149		goto bail;
 150	}
 151
 152	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 153					  &ext_flags);
 154	if (err) {
 155		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 156		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 157		     (unsigned long long)p_blkno);
 158		goto bail;
 159	}
 160
 161	if (max_blocks < count)
 162		count = max_blocks;
 163
 164	/*
 165	 * ocfs2 never allocates in this function - the only time we
 166	 * need to use BH_New is when we're extending i_size on a file
 167	 * system which doesn't support holes, in which case BH_New
 168	 * allows __block_write_begin() to zero.
 169	 *
 170	 * If we see this on a sparse file system, then a truncate has
 171	 * raced us and removed the cluster. In this case, we clear
 172	 * the buffers dirty and uptodate bits and let the buffer code
 173	 * ignore it as a hole.
 174	 */
 175	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 176		clear_buffer_dirty(bh_result);
 177		clear_buffer_uptodate(bh_result);
 178		goto bail;
 179	}
 180
 181	/* Treat the unwritten extent as a hole for zeroing purposes. */
 182	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 183		map_bh(bh_result, inode->i_sb, p_blkno);
 184
 185	bh_result->b_size = count << inode->i_blkbits;
 186
 187	if (!ocfs2_sparse_alloc(osb)) {
 188		if (p_blkno == 0) {
 189			err = -EIO;
 190			mlog(ML_ERROR,
 191			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 192			     (unsigned long long)iblock,
 193			     (unsigned long long)p_blkno,
 194			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 195			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 196			dump_stack();
 197			goto bail;
 198		}
 199	}
 200
 201	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 202
 203	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 204				  (unsigned long long)past_eof);
 205	if (create && (iblock >= past_eof))
 206		set_buffer_new(bh_result);
 207
 208bail:
 209	if (err < 0)
 210		err = -EIO;
 211
 212	return err;
 213}
 214
 215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 216			   struct buffer_head *di_bh)
 217{
 218	void *kaddr;
 219	loff_t size;
 220	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 221
 222	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 223		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 224			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 225		return -EROFS;
 226	}
 227
 228	size = i_size_read(inode);
 229
 230	if (size > PAGE_CACHE_SIZE ||
 231	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 232		ocfs2_error(inode->i_sb,
 233			    "Inode %llu has with inline data has bad size: %Lu",
 234			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 235			    (unsigned long long)size);
 236		return -EROFS;
 237	}
 238
 239	kaddr = kmap_atomic(page, KM_USER0);
 240	if (size)
 241		memcpy(kaddr, di->id2.i_data.id_data, size);
 242	/* Clear the remaining part of the page */
 243	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 244	flush_dcache_page(page);
 245	kunmap_atomic(kaddr, KM_USER0);
 246
 247	SetPageUptodate(page);
 248
 249	return 0;
 250}
 251
 252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 253{
 254	int ret;
 255	struct buffer_head *di_bh = NULL;
 256
 257	BUG_ON(!PageLocked(page));
 258	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 259
 260	ret = ocfs2_read_inode_block(inode, &di_bh);
 261	if (ret) {
 262		mlog_errno(ret);
 263		goto out;
 264	}
 265
 266	ret = ocfs2_read_inline_data(inode, page, di_bh);
 267out:
 268	unlock_page(page);
 269
 270	brelse(di_bh);
 271	return ret;
 272}
 273
 274static int ocfs2_readpage(struct file *file, struct page *page)
 275{
 276	struct inode *inode = page->mapping->host;
 277	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 278	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 279	int ret, unlock = 1;
 280
 281	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 282			     (page ? page->index : 0));
 283
 284	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 285	if (ret != 0) {
 286		if (ret == AOP_TRUNCATED_PAGE)
 287			unlock = 0;
 288		mlog_errno(ret);
 289		goto out;
 290	}
 291
 292	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 
 
 
 
 293		ret = AOP_TRUNCATED_PAGE;
 
 
 
 
 294		goto out_inode_unlock;
 295	}
 296
 297	/*
 298	 * i_size might have just been updated as we grabed the meta lock.  We
 299	 * might now be discovering a truncate that hit on another node.
 300	 * block_read_full_page->get_block freaks out if it is asked to read
 301	 * beyond the end of a file, so we check here.  Callers
 302	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 303	 * and notice that the page they just read isn't needed.
 304	 *
 305	 * XXX sys_readahead() seems to get that wrong?
 306	 */
 307	if (start >= i_size_read(inode)) {
 308		zero_user(page, 0, PAGE_SIZE);
 309		SetPageUptodate(page);
 310		ret = 0;
 311		goto out_alloc;
 312	}
 313
 314	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 315		ret = ocfs2_readpage_inline(inode, page);
 316	else
 317		ret = block_read_full_page(page, ocfs2_get_block);
 318	unlock = 0;
 319
 320out_alloc:
 321	up_read(&OCFS2_I(inode)->ip_alloc_sem);
 322out_inode_unlock:
 323	ocfs2_inode_unlock(inode, 0);
 324out:
 325	if (unlock)
 326		unlock_page(page);
 327	return ret;
 328}
 329
 330/*
 331 * This is used only for read-ahead. Failures or difficult to handle
 332 * situations are safe to ignore.
 333 *
 334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 335 * are quite large (243 extents on 4k blocks), so most inodes don't
 336 * grow out to a tree. If need be, detecting boundary extents could
 337 * trivially be added in a future version of ocfs2_get_block().
 338 */
 339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 340			   struct list_head *pages, unsigned nr_pages)
 341{
 342	int ret, err = -EIO;
 343	struct inode *inode = mapping->host;
 344	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 345	loff_t start;
 346	struct page *last;
 347
 348	/*
 349	 * Use the nonblocking flag for the dlm code to avoid page
 350	 * lock inversion, but don't bother with retrying.
 351	 */
 352	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 353	if (ret)
 354		return err;
 355
 356	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 357		ocfs2_inode_unlock(inode, 0);
 358		return err;
 359	}
 360
 361	/*
 362	 * Don't bother with inline-data. There isn't anything
 363	 * to read-ahead in that case anyway...
 364	 */
 365	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 366		goto out_unlock;
 367
 368	/*
 369	 * Check whether a remote node truncated this file - we just
 370	 * drop out in that case as it's not worth handling here.
 371	 */
 372	last = list_entry(pages->prev, struct page, lru);
 373	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 374	if (start >= i_size_read(inode))
 375		goto out_unlock;
 376
 377	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 378
 379out_unlock:
 380	up_read(&oi->ip_alloc_sem);
 381	ocfs2_inode_unlock(inode, 0);
 382
 383	return err;
 384}
 385
 386/* Note: Because we don't support holes, our allocation has
 387 * already happened (allocation writes zeros to the file data)
 388 * so we don't have to worry about ordered writes in
 389 * ocfs2_writepage.
 390 *
 391 * ->writepage is called during the process of invalidating the page cache
 392 * during blocked lock processing.  It can't block on any cluster locks
 393 * to during block mapping.  It's relying on the fact that the block
 394 * mapping can't have disappeared under the dirty pages that it is
 395 * being asked to write back.
 396 */
 397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 398{
 399	trace_ocfs2_writepage(
 400		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 401		page->index);
 402
 403	return block_write_full_page(page, ocfs2_get_block, wbc);
 404}
 405
 406/* Taken from ext3. We don't necessarily need the full blown
 407 * functionality yet, but IMHO it's better to cut and paste the whole
 408 * thing so we can avoid introducing our own bugs (and easily pick up
 409 * their fixes when they happen) --Mark */
 410int walk_page_buffers(	handle_t *handle,
 411			struct buffer_head *head,
 412			unsigned from,
 413			unsigned to,
 414			int *partial,
 415			int (*fn)(	handle_t *handle,
 416					struct buffer_head *bh))
 417{
 418	struct buffer_head *bh;
 419	unsigned block_start, block_end;
 420	unsigned blocksize = head->b_size;
 421	int err, ret = 0;
 422	struct buffer_head *next;
 423
 424	for (	bh = head, block_start = 0;
 425		ret == 0 && (bh != head || !block_start);
 426	    	block_start = block_end, bh = next)
 427	{
 428		next = bh->b_this_page;
 429		block_end = block_start + blocksize;
 430		if (block_end <= from || block_start >= to) {
 431			if (partial && !buffer_uptodate(bh))
 432				*partial = 1;
 433			continue;
 434		}
 435		err = (*fn)(handle, bh);
 436		if (!ret)
 437			ret = err;
 438	}
 439	return ret;
 440}
 441
 442static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 443{
 444	sector_t status;
 445	u64 p_blkno = 0;
 446	int err = 0;
 447	struct inode *inode = mapping->host;
 448
 449	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 450			 (unsigned long long)block);
 451
 
 
 
 
 
 
 
 
 
 452	/* We don't need to lock journal system files, since they aren't
 453	 * accessed concurrently from multiple nodes.
 454	 */
 455	if (!INODE_JOURNAL(inode)) {
 456		err = ocfs2_inode_lock(inode, NULL, 0);
 457		if (err) {
 458			if (err != -ENOENT)
 459				mlog_errno(err);
 460			goto bail;
 461		}
 462		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 463	}
 464
 465	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 466		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 467						  NULL);
 468
 469	if (!INODE_JOURNAL(inode)) {
 470		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 471		ocfs2_inode_unlock(inode, 0);
 472	}
 473
 474	if (err) {
 475		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 476		     (unsigned long long)block);
 477		mlog_errno(err);
 478		goto bail;
 479	}
 480
 481bail:
 482	status = err ? 0 : p_blkno;
 483
 484	return status;
 485}
 486
 487/*
 488 * TODO: Make this into a generic get_blocks function.
 489 *
 490 * From do_direct_io in direct-io.c:
 491 *  "So what we do is to permit the ->get_blocks function to populate
 492 *   bh.b_size with the size of IO which is permitted at this offset and
 493 *   this i_blkbits."
 494 *
 495 * This function is called directly from get_more_blocks in direct-io.c.
 496 *
 497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 498 * 					fs_count, map_bh, dio->rw == WRITE);
 499 *
 500 * Note that we never bother to allocate blocks here, and thus ignore the
 501 * create argument.
 502 */
 503static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 504				     struct buffer_head *bh_result, int create)
 505{
 506	int ret;
 507	u64 p_blkno, inode_blocks, contig_blocks;
 508	unsigned int ext_flags;
 509	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 510	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 511
 512	/* This function won't even be called if the request isn't all
 513	 * nicely aligned and of the right size, so there's no need
 514	 * for us to check any of that. */
 515
 516	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 517
 518	/* This figures out the size of the next contiguous block, and
 519	 * our logical offset */
 520	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 521					  &contig_blocks, &ext_flags);
 522	if (ret) {
 523		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 524		     (unsigned long long)iblock);
 525		ret = -EIO;
 526		goto bail;
 527	}
 528
 529	/* We should already CoW the refcounted extent in case of create. */
 530	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 531
 532	/*
 533	 * get_more_blocks() expects us to describe a hole by clearing
 534	 * the mapped bit on bh_result().
 535	 *
 536	 * Consider an unwritten extent as a hole.
 537	 */
 538	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 539		map_bh(bh_result, inode->i_sb, p_blkno);
 540	else
 541		clear_buffer_mapped(bh_result);
 542
 543	/* make sure we don't map more than max_blocks blocks here as
 544	   that's all the kernel will handle at this point. */
 545	if (max_blocks < contig_blocks)
 546		contig_blocks = max_blocks;
 547	bh_result->b_size = contig_blocks << blocksize_bits;
 548bail:
 549	return ret;
 550}
 551
 552/*
 553 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 554 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 555 * to protect io on one node from truncation on another.
 556 */
 557static void ocfs2_dio_end_io(struct kiocb *iocb,
 558			     loff_t offset,
 559			     ssize_t bytes,
 560			     void *private,
 561			     int ret,
 562			     bool is_async)
 563{
 564	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
 565	int level;
 566
 567	/* this io's submitter should not have unlocked this before we could */
 568	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 569
 570	if (ocfs2_iocb_is_sem_locked(iocb))
 571		ocfs2_iocb_clear_sem_locked(iocb);
 572
 573	ocfs2_iocb_clear_rw_locked(iocb);
 574
 575	level = ocfs2_iocb_rw_locked_level(iocb);
 576	ocfs2_rw_unlock(inode, level);
 577
 578	if (is_async)
 579		aio_complete(iocb, ret, 0);
 580	inode_dio_done(inode);
 581}
 582
 583/*
 584 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 585 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 586 * do journalled data.
 587 */
 588static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
 589{
 590	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 591
 592	jbd2_journal_invalidatepage(journal, page, offset);
 593}
 594
 595static int ocfs2_releasepage(struct page *page, gfp_t wait)
 596{
 597	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 598
 599	if (!page_has_buffers(page))
 600		return 0;
 601	return jbd2_journal_try_to_free_buffers(journal, page, wait);
 602}
 603
 604static ssize_t ocfs2_direct_IO(int rw,
 605			       struct kiocb *iocb,
 606			       const struct iovec *iov,
 607			       loff_t offset,
 608			       unsigned long nr_segs)
 609{
 610	struct file *file = iocb->ki_filp;
 611	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
 612
 613	/*
 614	 * Fallback to buffered I/O if we see an inode without
 615	 * extents.
 616	 */
 617	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 618		return 0;
 619
 620	/* Fallback to buffered I/O if we are appending. */
 621	if (i_size_read(inode) <= offset)
 622		return 0;
 623
 624	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
 625				    iov, offset, nr_segs,
 626				    ocfs2_direct_IO_get_blocks,
 627				    ocfs2_dio_end_io, NULL, 0);
 628}
 629
 630static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 631					    u32 cpos,
 632					    unsigned int *start,
 633					    unsigned int *end)
 634{
 635	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 636
 637	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 638		unsigned int cpp;
 639
 640		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 641
 642		cluster_start = cpos % cpp;
 643		cluster_start = cluster_start << osb->s_clustersize_bits;
 644
 645		cluster_end = cluster_start + osb->s_clustersize;
 646	}
 647
 648	BUG_ON(cluster_start > PAGE_SIZE);
 649	BUG_ON(cluster_end > PAGE_SIZE);
 650
 651	if (start)
 652		*start = cluster_start;
 653	if (end)
 654		*end = cluster_end;
 655}
 656
 657/*
 658 * 'from' and 'to' are the region in the page to avoid zeroing.
 659 *
 660 * If pagesize > clustersize, this function will avoid zeroing outside
 661 * of the cluster boundary.
 662 *
 663 * from == to == 0 is code for "zero the entire cluster region"
 664 */
 665static void ocfs2_clear_page_regions(struct page *page,
 666				     struct ocfs2_super *osb, u32 cpos,
 667				     unsigned from, unsigned to)
 668{
 669	void *kaddr;
 670	unsigned int cluster_start, cluster_end;
 671
 672	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 673
 674	kaddr = kmap_atomic(page, KM_USER0);
 675
 676	if (from || to) {
 677		if (from > cluster_start)
 678			memset(kaddr + cluster_start, 0, from - cluster_start);
 679		if (to < cluster_end)
 680			memset(kaddr + to, 0, cluster_end - to);
 681	} else {
 682		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 683	}
 684
 685	kunmap_atomic(kaddr, KM_USER0);
 686}
 687
 688/*
 689 * Nonsparse file systems fully allocate before we get to the write
 690 * code. This prevents ocfs2_write() from tagging the write as an
 691 * allocating one, which means ocfs2_map_page_blocks() might try to
 692 * read-in the blocks at the tail of our file. Avoid reading them by
 693 * testing i_size against each block offset.
 694 */
 695static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 696				 unsigned int block_start)
 697{
 698	u64 offset = page_offset(page) + block_start;
 699
 700	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 701		return 1;
 702
 703	if (i_size_read(inode) > offset)
 704		return 1;
 705
 706	return 0;
 707}
 708
 709/*
 710 * Some of this taken from __block_write_begin(). We already have our
 711 * mapping by now though, and the entire write will be allocating or
 712 * it won't, so not much need to use BH_New.
 713 *
 714 * This will also skip zeroing, which is handled externally.
 715 */
 716int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 717			  struct inode *inode, unsigned int from,
 718			  unsigned int to, int new)
 719{
 720	int ret = 0;
 721	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 722	unsigned int block_end, block_start;
 723	unsigned int bsize = 1 << inode->i_blkbits;
 724
 725	if (!page_has_buffers(page))
 726		create_empty_buffers(page, bsize, 0);
 727
 728	head = page_buffers(page);
 729	for (bh = head, block_start = 0; bh != head || !block_start;
 730	     bh = bh->b_this_page, block_start += bsize) {
 731		block_end = block_start + bsize;
 732
 733		clear_buffer_new(bh);
 734
 735		/*
 736		 * Ignore blocks outside of our i/o range -
 737		 * they may belong to unallocated clusters.
 738		 */
 739		if (block_start >= to || block_end <= from) {
 740			if (PageUptodate(page))
 741				set_buffer_uptodate(bh);
 742			continue;
 743		}
 744
 745		/*
 746		 * For an allocating write with cluster size >= page
 747		 * size, we always write the entire page.
 748		 */
 749		if (new)
 750			set_buffer_new(bh);
 751
 752		if (!buffer_mapped(bh)) {
 753			map_bh(bh, inode->i_sb, *p_blkno);
 754			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 755		}
 756
 757		if (PageUptodate(page)) {
 758			if (!buffer_uptodate(bh))
 759				set_buffer_uptodate(bh);
 760		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 761			   !buffer_new(bh) &&
 762			   ocfs2_should_read_blk(inode, page, block_start) &&
 763			   (block_start < from || block_end > to)) {
 764			ll_rw_block(READ, 1, &bh);
 765			*wait_bh++=bh;
 766		}
 767
 768		*p_blkno = *p_blkno + 1;
 769	}
 770
 771	/*
 772	 * If we issued read requests - let them complete.
 773	 */
 774	while(wait_bh > wait) {
 775		wait_on_buffer(*--wait_bh);
 776		if (!buffer_uptodate(*wait_bh))
 777			ret = -EIO;
 778	}
 779
 780	if (ret == 0 || !new)
 781		return ret;
 782
 783	/*
 784	 * If we get -EIO above, zero out any newly allocated blocks
 785	 * to avoid exposing stale data.
 786	 */
 787	bh = head;
 788	block_start = 0;
 789	do {
 790		block_end = block_start + bsize;
 791		if (block_end <= from)
 792			goto next_bh;
 793		if (block_start >= to)
 794			break;
 795
 796		zero_user(page, block_start, bh->b_size);
 797		set_buffer_uptodate(bh);
 798		mark_buffer_dirty(bh);
 799
 800next_bh:
 801		block_start = block_end;
 802		bh = bh->b_this_page;
 803	} while (bh != head);
 804
 805	return ret;
 806}
 807
 808#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 809#define OCFS2_MAX_CTXT_PAGES	1
 810#else
 811#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
 812#endif
 813
 814#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 
 
 
 
 
 
 
 815
 816/*
 817 * Describe the state of a single cluster to be written to.
 818 */
 819struct ocfs2_write_cluster_desc {
 820	u32		c_cpos;
 821	u32		c_phys;
 822	/*
 823	 * Give this a unique field because c_phys eventually gets
 824	 * filled.
 825	 */
 826	unsigned	c_new;
 827	unsigned	c_unwritten;
 828	unsigned	c_needs_zero;
 829};
 830
 831struct ocfs2_write_ctxt {
 832	/* Logical cluster position / len of write */
 833	u32				w_cpos;
 834	u32				w_clen;
 835
 836	/* First cluster allocated in a nonsparse extend */
 837	u32				w_first_new_cpos;
 838
 
 
 
 839	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 840
 841	/*
 842	 * This is true if page_size > cluster_size.
 843	 *
 844	 * It triggers a set of special cases during write which might
 845	 * have to deal with allocating writes to partial pages.
 846	 */
 847	unsigned int			w_large_pages;
 848
 849	/*
 850	 * Pages involved in this write.
 851	 *
 852	 * w_target_page is the page being written to by the user.
 853	 *
 854	 * w_pages is an array of pages which always contains
 855	 * w_target_page, and in the case of an allocating write with
 856	 * page_size < cluster size, it will contain zero'd and mapped
 857	 * pages adjacent to w_target_page which need to be written
 858	 * out in so that future reads from that region will get
 859	 * zero's.
 860	 */
 861	unsigned int			w_num_pages;
 862	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 863	struct page			*w_target_page;
 864
 865	/*
 
 
 
 
 
 
 866	 * ocfs2_write_end() uses this to know what the real range to
 867	 * write in the target should be.
 868	 */
 869	unsigned int			w_target_from;
 870	unsigned int			w_target_to;
 871
 872	/*
 873	 * We could use journal_current_handle() but this is cleaner,
 874	 * IMHO -Mark
 875	 */
 876	handle_t			*w_handle;
 877
 878	struct buffer_head		*w_di_bh;
 879
 880	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 
 
 
 881};
 882
 883void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 884{
 885	int i;
 886
 887	for(i = 0; i < num_pages; i++) {
 888		if (pages[i]) {
 889			unlock_page(pages[i]);
 890			mark_page_accessed(pages[i]);
 891			page_cache_release(pages[i]);
 892		}
 893	}
 894}
 895
 896static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
 897{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 
 
 
 
 
 900	brelse(wc->w_di_bh);
 901	kfree(wc);
 902}
 903
 904static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 905				  struct ocfs2_super *osb, loff_t pos,
 906				  unsigned len, struct buffer_head *di_bh)
 
 907{
 908	u32 cend;
 909	struct ocfs2_write_ctxt *wc;
 910
 911	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 912	if (!wc)
 913		return -ENOMEM;
 914
 915	wc->w_cpos = pos >> osb->s_clustersize_bits;
 916	wc->w_first_new_cpos = UINT_MAX;
 917	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 918	wc->w_clen = cend - wc->w_cpos + 1;
 919	get_bh(di_bh);
 920	wc->w_di_bh = di_bh;
 
 921
 922	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
 923		wc->w_large_pages = 1;
 924	else
 925		wc->w_large_pages = 0;
 926
 927	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 
 928
 929	*wcp = wc;
 930
 931	return 0;
 932}
 933
 934/*
 935 * If a page has any new buffers, zero them out here, and mark them uptodate
 936 * and dirty so they'll be written out (in order to prevent uninitialised
 937 * block data from leaking). And clear the new bit.
 938 */
 939static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 940{
 941	unsigned int block_start, block_end;
 942	struct buffer_head *head, *bh;
 943
 944	BUG_ON(!PageLocked(page));
 945	if (!page_has_buffers(page))
 946		return;
 947
 948	bh = head = page_buffers(page);
 949	block_start = 0;
 950	do {
 951		block_end = block_start + bh->b_size;
 952
 953		if (buffer_new(bh)) {
 954			if (block_end > from && block_start < to) {
 955				if (!PageUptodate(page)) {
 956					unsigned start, end;
 957
 958					start = max(from, block_start);
 959					end = min(to, block_end);
 960
 961					zero_user_segment(page, start, end);
 962					set_buffer_uptodate(bh);
 963				}
 964
 965				clear_buffer_new(bh);
 966				mark_buffer_dirty(bh);
 967			}
 968		}
 969
 970		block_start = block_end;
 971		bh = bh->b_this_page;
 972	} while (bh != head);
 973}
 974
 975/*
 976 * Only called when we have a failure during allocating write to write
 977 * zero's to the newly allocated region.
 978 */
 979static void ocfs2_write_failure(struct inode *inode,
 980				struct ocfs2_write_ctxt *wc,
 981				loff_t user_pos, unsigned user_len)
 982{
 983	int i;
 984	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
 985		to = user_pos + user_len;
 986	struct page *tmppage;
 987
 988	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 
 989
 990	for(i = 0; i < wc->w_num_pages; i++) {
 991		tmppage = wc->w_pages[i];
 992
 993		if (page_has_buffers(tmppage)) {
 994			if (ocfs2_should_order_data(inode))
 995				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 996
 997			block_commit_write(tmppage, from, to);
 998		}
 999	}
1000}
1001
1002static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1003					struct ocfs2_write_ctxt *wc,
1004					struct page *page, u32 cpos,
1005					loff_t user_pos, unsigned user_len,
1006					int new)
1007{
1008	int ret;
1009	unsigned int map_from = 0, map_to = 0;
1010	unsigned int cluster_start, cluster_end;
1011	unsigned int user_data_from = 0, user_data_to = 0;
1012
1013	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1014					&cluster_start, &cluster_end);
1015
1016	/* treat the write as new if the a hole/lseek spanned across
1017	 * the page boundary.
1018	 */
1019	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1020			(page_offset(page) <= user_pos));
1021
1022	if (page == wc->w_target_page) {
1023		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1024		map_to = map_from + user_len;
1025
1026		if (new)
1027			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1028						    cluster_start, cluster_end,
1029						    new);
1030		else
1031			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1032						    map_from, map_to, new);
1033		if (ret) {
1034			mlog_errno(ret);
1035			goto out;
1036		}
1037
1038		user_data_from = map_from;
1039		user_data_to = map_to;
1040		if (new) {
1041			map_from = cluster_start;
1042			map_to = cluster_end;
1043		}
1044	} else {
1045		/*
1046		 * If we haven't allocated the new page yet, we
1047		 * shouldn't be writing it out without copying user
1048		 * data. This is likely a math error from the caller.
1049		 */
1050		BUG_ON(!new);
1051
1052		map_from = cluster_start;
1053		map_to = cluster_end;
1054
1055		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056					    cluster_start, cluster_end, new);
1057		if (ret) {
1058			mlog_errno(ret);
1059			goto out;
1060		}
1061	}
1062
1063	/*
1064	 * Parts of newly allocated pages need to be zero'd.
1065	 *
1066	 * Above, we have also rewritten 'to' and 'from' - as far as
1067	 * the rest of the function is concerned, the entire cluster
1068	 * range inside of a page needs to be written.
1069	 *
1070	 * We can skip this if the page is up to date - it's already
1071	 * been zero'd from being read in as a hole.
1072	 */
1073	if (new && !PageUptodate(page))
1074		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1075					 cpos, user_data_from, user_data_to);
1076
1077	flush_dcache_page(page);
1078
1079out:
1080	return ret;
1081}
1082
1083/*
1084 * This function will only grab one clusters worth of pages.
1085 */
1086static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1087				      struct ocfs2_write_ctxt *wc,
1088				      u32 cpos, loff_t user_pos,
1089				      unsigned user_len, int new,
1090				      struct page *mmap_page)
1091{
1092	int ret = 0, i;
1093	unsigned long start, target_index, end_index, index;
1094	struct inode *inode = mapping->host;
1095	loff_t last_byte;
1096
1097	target_index = user_pos >> PAGE_CACHE_SHIFT;
1098
1099	/*
1100	 * Figure out how many pages we'll be manipulating here. For
1101	 * non allocating write, we just change the one
1102	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1103	 * writing past i_size, we only need enough pages to cover the
1104	 * last page of the write.
1105	 */
1106	if (new) {
1107		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1108		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1109		/*
1110		 * We need the index *past* the last page we could possibly
1111		 * touch.  This is the page past the end of the write or
1112		 * i_size, whichever is greater.
1113		 */
1114		last_byte = max(user_pos + user_len, i_size_read(inode));
1115		BUG_ON(last_byte < 1);
1116		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1117		if ((start + wc->w_num_pages) > end_index)
1118			wc->w_num_pages = end_index - start;
1119	} else {
1120		wc->w_num_pages = 1;
1121		start = target_index;
1122	}
 
1123
1124	for(i = 0; i < wc->w_num_pages; i++) {
1125		index = start + i;
1126
1127		if (index == target_index && mmap_page) {
 
1128			/*
1129			 * ocfs2_pagemkwrite() is a little different
1130			 * and wants us to directly use the page
1131			 * passed in.
1132			 */
1133			lock_page(mmap_page);
1134
 
1135			if (mmap_page->mapping != mapping) {
 
1136				unlock_page(mmap_page);
1137				/*
1138				 * Sanity check - the locking in
1139				 * ocfs2_pagemkwrite() should ensure
1140				 * that this code doesn't trigger.
1141				 */
1142				ret = -EINVAL;
1143				mlog_errno(ret);
1144				goto out;
1145			}
1146
1147			page_cache_get(mmap_page);
1148			wc->w_pages[i] = mmap_page;
 
 
 
 
 
 
1149		} else {
1150			wc->w_pages[i] = find_or_create_page(mapping, index,
1151							     GFP_NOFS);
1152			if (!wc->w_pages[i]) {
1153				ret = -ENOMEM;
1154				mlog_errno(ret);
1155				goto out;
1156			}
1157		}
 
1158
1159		if (index == target_index)
1160			wc->w_target_page = wc->w_pages[i];
1161	}
1162out:
 
 
1163	return ret;
1164}
1165
1166/*
1167 * Prepare a single cluster for write one cluster into the file.
1168 */
1169static int ocfs2_write_cluster(struct address_space *mapping,
1170			       u32 phys, unsigned int unwritten,
 
1171			       unsigned int should_zero,
1172			       struct ocfs2_alloc_context *data_ac,
1173			       struct ocfs2_alloc_context *meta_ac,
1174			       struct ocfs2_write_ctxt *wc, u32 cpos,
1175			       loff_t user_pos, unsigned user_len)
1176{
1177	int ret, i, new;
1178	u64 v_blkno, p_blkno;
1179	struct inode *inode = mapping->host;
1180	struct ocfs2_extent_tree et;
 
1181
1182	new = phys == 0 ? 1 : 0;
1183	if (new) {
1184		u32 tmp_pos;
1185
1186		/*
1187		 * This is safe to call with the page locks - it won't take
1188		 * any additional semaphores or cluster locks.
1189		 */
1190		tmp_pos = cpos;
1191		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1192					   &tmp_pos, 1, 0, wc->w_di_bh,
1193					   wc->w_handle, data_ac,
1194					   meta_ac, NULL);
1195		/*
1196		 * This shouldn't happen because we must have already
1197		 * calculated the correct meta data allocation required. The
1198		 * internal tree allocation code should know how to increase
1199		 * transaction credits itself.
1200		 *
1201		 * If need be, we could handle -EAGAIN for a
1202		 * RESTART_TRANS here.
1203		 */
1204		mlog_bug_on_msg(ret == -EAGAIN,
1205				"Inode %llu: EAGAIN return during allocation.\n",
1206				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1207		if (ret < 0) {
1208			mlog_errno(ret);
1209			goto out;
1210		}
1211	} else if (unwritten) {
1212		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1213					      wc->w_di_bh);
1214		ret = ocfs2_mark_extent_written(inode, &et,
1215						wc->w_handle, cpos, 1, phys,
1216						meta_ac, &wc->w_dealloc);
1217		if (ret < 0) {
1218			mlog_errno(ret);
1219			goto out;
1220		}
1221	}
1222
1223	if (should_zero)
1224		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1225	else
1226		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1227
1228	/*
1229	 * The only reason this should fail is due to an inability to
1230	 * find the extent added.
1231	 */
1232	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1233					  NULL);
1234	if (ret < 0) {
1235		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1236			    "at logical block %llu",
1237			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1238			    (unsigned long long)v_blkno);
1239		goto out;
1240	}
1241
1242	BUG_ON(p_blkno == 0);
 
 
 
 
1243
1244	for(i = 0; i < wc->w_num_pages; i++) {
1245		int tmpret;
1246
 
 
 
 
 
 
1247		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1248						      wc->w_pages[i], cpos,
1249						      user_pos, user_len,
1250						      should_zero);
1251		if (tmpret) {
1252			mlog_errno(tmpret);
1253			if (ret == 0)
1254				ret = tmpret;
1255		}
1256	}
1257
1258	/*
1259	 * We only have cleanup to do in case of allocating write.
1260	 */
1261	if (ret && new)
1262		ocfs2_write_failure(inode, wc, user_pos, user_len);
1263
1264out:
1265
1266	return ret;
1267}
1268
1269static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1270				       struct ocfs2_alloc_context *data_ac,
1271				       struct ocfs2_alloc_context *meta_ac,
1272				       struct ocfs2_write_ctxt *wc,
1273				       loff_t pos, unsigned len)
1274{
1275	int ret, i;
1276	loff_t cluster_off;
1277	unsigned int local_len = len;
1278	struct ocfs2_write_cluster_desc *desc;
1279	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1280
1281	for (i = 0; i < wc->w_clen; i++) {
1282		desc = &wc->w_desc[i];
1283
1284		/*
1285		 * We have to make sure that the total write passed in
1286		 * doesn't extend past a single cluster.
1287		 */
1288		local_len = len;
1289		cluster_off = pos & (osb->s_clustersize - 1);
1290		if ((cluster_off + local_len) > osb->s_clustersize)
1291			local_len = osb->s_clustersize - cluster_off;
1292
1293		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1294					  desc->c_unwritten,
 
1295					  desc->c_needs_zero,
1296					  data_ac, meta_ac,
1297					  wc, desc->c_cpos, pos, local_len);
1298		if (ret) {
1299			mlog_errno(ret);
1300			goto out;
1301		}
1302
1303		len -= local_len;
1304		pos += local_len;
1305	}
1306
1307	ret = 0;
1308out:
1309	return ret;
1310}
1311
1312/*
1313 * ocfs2_write_end() wants to know which parts of the target page it
1314 * should complete the write on. It's easiest to compute them ahead of
1315 * time when a more complete view of the write is available.
1316 */
1317static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1318					struct ocfs2_write_ctxt *wc,
1319					loff_t pos, unsigned len, int alloc)
1320{
1321	struct ocfs2_write_cluster_desc *desc;
1322
1323	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1324	wc->w_target_to = wc->w_target_from + len;
1325
1326	if (alloc == 0)
1327		return;
1328
1329	/*
1330	 * Allocating write - we may have different boundaries based
1331	 * on page size and cluster size.
1332	 *
1333	 * NOTE: We can no longer compute one value from the other as
1334	 * the actual write length and user provided length may be
1335	 * different.
1336	 */
1337
1338	if (wc->w_large_pages) {
1339		/*
1340		 * We only care about the 1st and last cluster within
1341		 * our range and whether they should be zero'd or not. Either
1342		 * value may be extended out to the start/end of a
1343		 * newly allocated cluster.
1344		 */
1345		desc = &wc->w_desc[0];
1346		if (desc->c_needs_zero)
1347			ocfs2_figure_cluster_boundaries(osb,
1348							desc->c_cpos,
1349							&wc->w_target_from,
1350							NULL);
1351
1352		desc = &wc->w_desc[wc->w_clen - 1];
1353		if (desc->c_needs_zero)
1354			ocfs2_figure_cluster_boundaries(osb,
1355							desc->c_cpos,
1356							NULL,
1357							&wc->w_target_to);
1358	} else {
1359		wc->w_target_from = 0;
1360		wc->w_target_to = PAGE_CACHE_SIZE;
1361	}
1362}
1363
1364/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365 * Populate each single-cluster write descriptor in the write context
1366 * with information about the i/o to be done.
1367 *
1368 * Returns the number of clusters that will have to be allocated, as
1369 * well as a worst case estimate of the number of extent records that
1370 * would have to be created during a write to an unwritten region.
1371 */
1372static int ocfs2_populate_write_desc(struct inode *inode,
1373				     struct ocfs2_write_ctxt *wc,
1374				     unsigned int *clusters_to_alloc,
1375				     unsigned int *extents_to_split)
1376{
1377	int ret;
1378	struct ocfs2_write_cluster_desc *desc;
1379	unsigned int num_clusters = 0;
1380	unsigned int ext_flags = 0;
1381	u32 phys = 0;
1382	int i;
1383
1384	*clusters_to_alloc = 0;
1385	*extents_to_split = 0;
1386
1387	for (i = 0; i < wc->w_clen; i++) {
1388		desc = &wc->w_desc[i];
1389		desc->c_cpos = wc->w_cpos + i;
1390
1391		if (num_clusters == 0) {
1392			/*
1393			 * Need to look up the next extent record.
1394			 */
1395			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1396						 &num_clusters, &ext_flags);
1397			if (ret) {
1398				mlog_errno(ret);
1399				goto out;
1400			}
1401
1402			/* We should already CoW the refcountd extent. */
1403			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1404
1405			/*
1406			 * Assume worst case - that we're writing in
1407			 * the middle of the extent.
1408			 *
1409			 * We can assume that the write proceeds from
1410			 * left to right, in which case the extent
1411			 * insert code is smart enough to coalesce the
1412			 * next splits into the previous records created.
1413			 */
1414			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1415				*extents_to_split = *extents_to_split + 2;
1416		} else if (phys) {
1417			/*
1418			 * Only increment phys if it doesn't describe
1419			 * a hole.
1420			 */
1421			phys++;
1422		}
1423
1424		/*
1425		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1426		 * file that got extended.  w_first_new_cpos tells us
1427		 * where the newly allocated clusters are so we can
1428		 * zero them.
1429		 */
1430		if (desc->c_cpos >= wc->w_first_new_cpos) {
1431			BUG_ON(phys == 0);
1432			desc->c_needs_zero = 1;
1433		}
1434
1435		desc->c_phys = phys;
1436		if (phys == 0) {
1437			desc->c_new = 1;
1438			desc->c_needs_zero = 1;
 
1439			*clusters_to_alloc = *clusters_to_alloc + 1;
1440		}
1441
1442		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1443			desc->c_unwritten = 1;
1444			desc->c_needs_zero = 1;
1445		}
1446
 
 
 
 
 
 
1447		num_clusters--;
1448	}
1449
1450	ret = 0;
1451out:
1452	return ret;
1453}
1454
1455static int ocfs2_write_begin_inline(struct address_space *mapping,
1456				    struct inode *inode,
1457				    struct ocfs2_write_ctxt *wc)
1458{
1459	int ret;
1460	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1461	struct page *page;
1462	handle_t *handle;
1463	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1464
 
 
 
 
 
 
 
1465	page = find_or_create_page(mapping, 0, GFP_NOFS);
1466	if (!page) {
 
1467		ret = -ENOMEM;
1468		mlog_errno(ret);
1469		goto out;
1470	}
1471	/*
1472	 * If we don't set w_num_pages then this page won't get unlocked
1473	 * and freed on cleanup of the write context.
1474	 */
1475	wc->w_pages[0] = wc->w_target_page = page;
1476	wc->w_num_pages = 1;
1477
1478	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1479	if (IS_ERR(handle)) {
1480		ret = PTR_ERR(handle);
1481		mlog_errno(ret);
1482		goto out;
1483	}
1484
1485	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1486				      OCFS2_JOURNAL_ACCESS_WRITE);
1487	if (ret) {
1488		ocfs2_commit_trans(osb, handle);
1489
1490		mlog_errno(ret);
1491		goto out;
1492	}
1493
1494	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1495		ocfs2_set_inode_data_inline(inode, di);
1496
1497	if (!PageUptodate(page)) {
1498		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1499		if (ret) {
1500			ocfs2_commit_trans(osb, handle);
1501
1502			goto out;
1503		}
1504	}
1505
1506	wc->w_handle = handle;
1507out:
1508	return ret;
1509}
1510
1511int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1512{
1513	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1514
1515	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1516		return 1;
1517	return 0;
1518}
1519
1520static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1521					  struct inode *inode, loff_t pos,
1522					  unsigned len, struct page *mmap_page,
1523					  struct ocfs2_write_ctxt *wc)
1524{
1525	int ret, written = 0;
1526	loff_t end = pos + len;
1527	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1528	struct ocfs2_dinode *di = NULL;
1529
1530	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1531					     len, (unsigned long long)pos,
1532					     oi->ip_dyn_features);
1533
1534	/*
1535	 * Handle inodes which already have inline data 1st.
1536	 */
1537	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1538		if (mmap_page == NULL &&
1539		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1540			goto do_inline_write;
1541
1542		/*
1543		 * The write won't fit - we have to give this inode an
1544		 * inline extent list now.
1545		 */
1546		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1547		if (ret)
1548			mlog_errno(ret);
1549		goto out;
1550	}
1551
1552	/*
1553	 * Check whether the inode can accept inline data.
1554	 */
1555	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1556		return 0;
1557
1558	/*
1559	 * Check whether the write can fit.
1560	 */
1561	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1562	if (mmap_page ||
1563	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1564		return 0;
1565
1566do_inline_write:
1567	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1568	if (ret) {
1569		mlog_errno(ret);
1570		goto out;
1571	}
1572
1573	/*
1574	 * This signals to the caller that the data can be written
1575	 * inline.
1576	 */
1577	written = 1;
1578out:
1579	return written ? written : ret;
1580}
1581
1582/*
1583 * This function only does anything for file systems which can't
1584 * handle sparse files.
1585 *
1586 * What we want to do here is fill in any hole between the current end
1587 * of allocation and the end of our write. That way the rest of the
1588 * write path can treat it as an non-allocating write, which has no
1589 * special case code for sparse/nonsparse files.
1590 */
1591static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1592					struct buffer_head *di_bh,
1593					loff_t pos, unsigned len,
1594					struct ocfs2_write_ctxt *wc)
1595{
1596	int ret;
1597	loff_t newsize = pos + len;
1598
1599	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1600
1601	if (newsize <= i_size_read(inode))
1602		return 0;
1603
1604	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1605	if (ret)
1606		mlog_errno(ret);
1607
1608	wc->w_first_new_cpos =
1609		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
 
 
1610
1611	return ret;
1612}
1613
1614static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1615			   loff_t pos)
1616{
1617	int ret = 0;
1618
1619	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620	if (pos > i_size_read(inode))
1621		ret = ocfs2_zero_extend(inode, di_bh, pos);
1622
1623	return ret;
1624}
1625
1626/*
1627 * Try to flush truncate logs if we can free enough clusters from it.
1628 * As for return value, "< 0" means error, "0" no space and "1" means
1629 * we have freed enough spaces and let the caller try to allocate again.
1630 */
1631static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1632					  unsigned int needed)
1633{
1634	tid_t target;
1635	int ret = 0;
1636	unsigned int truncated_clusters;
1637
1638	mutex_lock(&osb->osb_tl_inode->i_mutex);
1639	truncated_clusters = osb->truncated_clusters;
1640	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1641
1642	/*
1643	 * Check whether we can succeed in allocating if we free
1644	 * the truncate log.
1645	 */
1646	if (truncated_clusters < needed)
1647		goto out;
1648
1649	ret = ocfs2_flush_truncate_log(osb);
1650	if (ret) {
1651		mlog_errno(ret);
1652		goto out;
1653	}
1654
1655	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1656		jbd2_log_wait_commit(osb->journal->j_journal, target);
1657		ret = 1;
1658	}
1659out:
1660	return ret;
1661}
1662
1663int ocfs2_write_begin_nolock(struct file *filp,
1664			     struct address_space *mapping,
1665			     loff_t pos, unsigned len, unsigned flags,
1666			     struct page **pagep, void **fsdata,
1667			     struct buffer_head *di_bh, struct page *mmap_page)
1668{
1669	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1670	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1671	struct ocfs2_write_ctxt *wc;
1672	struct inode *inode = mapping->host;
1673	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1674	struct ocfs2_dinode *di;
1675	struct ocfs2_alloc_context *data_ac = NULL;
1676	struct ocfs2_alloc_context *meta_ac = NULL;
1677	handle_t *handle;
1678	struct ocfs2_extent_tree et;
1679	int try_free = 1, ret1;
1680
1681try_again:
1682	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1683	if (ret) {
1684		mlog_errno(ret);
1685		return ret;
1686	}
1687
1688	if (ocfs2_supports_inline_data(osb)) {
1689		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1690						     mmap_page, wc);
1691		if (ret == 1) {
1692			ret = 0;
1693			goto success;
1694		}
1695		if (ret < 0) {
1696			mlog_errno(ret);
1697			goto out;
1698		}
1699	}
1700
1701	if (ocfs2_sparse_alloc(osb))
1702		ret = ocfs2_zero_tail(inode, di_bh, pos);
1703	else
1704		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1705						   wc);
1706	if (ret) {
1707		mlog_errno(ret);
1708		goto out;
 
 
 
1709	}
1710
1711	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1712	if (ret < 0) {
1713		mlog_errno(ret);
1714		goto out;
1715	} else if (ret == 1) {
1716		clusters_need = wc->w_clen;
1717		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1718					 wc->w_cpos, wc->w_clen, UINT_MAX);
1719		if (ret) {
1720			mlog_errno(ret);
1721			goto out;
1722		}
1723	}
1724
1725	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1726					&extents_to_split);
1727	if (ret) {
1728		mlog_errno(ret);
1729		goto out;
1730	}
1731	clusters_need += clusters_to_alloc;
1732
1733	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734
1735	trace_ocfs2_write_begin_nolock(
1736			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1737			(long long)i_size_read(inode),
1738			le32_to_cpu(di->i_clusters),
1739			pos, len, flags, mmap_page,
1740			clusters_to_alloc, extents_to_split);
1741
1742	/*
1743	 * We set w_target_from, w_target_to here so that
1744	 * ocfs2_write_end() knows which range in the target page to
1745	 * write out. An allocation requires that we write the entire
1746	 * cluster range.
1747	 */
1748	if (clusters_to_alloc || extents_to_split) {
1749		/*
1750		 * XXX: We are stretching the limits of
1751		 * ocfs2_lock_allocators(). It greatly over-estimates
1752		 * the work to be done.
1753		 */
1754		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1755					      wc->w_di_bh);
1756		ret = ocfs2_lock_allocators(inode, &et,
1757					    clusters_to_alloc, extents_to_split,
1758					    &data_ac, &meta_ac);
1759		if (ret) {
1760			mlog_errno(ret);
1761			goto out;
1762		}
1763
1764		if (data_ac)
1765			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1766
1767		credits = ocfs2_calc_extend_credits(inode->i_sb,
1768						    &di->id2.i_list,
1769						    clusters_to_alloc);
1770
1771	}
1772
1773	/*
1774	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1775	 * and non-sparse clusters we just extended.  For non-sparse writes,
1776	 * we know zeros will only be needed in the first and/or last cluster.
1777	 */
1778	if (clusters_to_alloc || extents_to_split ||
1779	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1780			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1781		cluster_of_pages = 1;
1782	else
1783		cluster_of_pages = 0;
1784
1785	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1786
1787	handle = ocfs2_start_trans(osb, credits);
1788	if (IS_ERR(handle)) {
1789		ret = PTR_ERR(handle);
1790		mlog_errno(ret);
1791		goto out;
1792	}
1793
1794	wc->w_handle = handle;
1795
1796	if (clusters_to_alloc) {
1797		ret = dquot_alloc_space_nodirty(inode,
1798			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1799		if (ret)
1800			goto out_commit;
1801	}
1802	/*
1803	 * We don't want this to fail in ocfs2_write_end(), so do it
1804	 * here.
1805	 */
1806	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1807				      OCFS2_JOURNAL_ACCESS_WRITE);
1808	if (ret) {
1809		mlog_errno(ret);
1810		goto out_quota;
1811	}
1812
1813	/*
1814	 * Fill our page array first. That way we've grabbed enough so
1815	 * that we can zero and flush if we error after adding the
1816	 * extent.
1817	 */
1818	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1819					 cluster_of_pages, mmap_page);
1820	if (ret) {
1821		mlog_errno(ret);
1822		goto out_quota;
1823	}
1824
 
 
 
 
 
 
 
 
 
 
 
 
1825	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1826					  len);
1827	if (ret) {
1828		mlog_errno(ret);
1829		goto out_quota;
1830	}
1831
1832	if (data_ac)
1833		ocfs2_free_alloc_context(data_ac);
1834	if (meta_ac)
1835		ocfs2_free_alloc_context(meta_ac);
1836
1837success:
1838	*pagep = wc->w_target_page;
 
1839	*fsdata = wc;
1840	return 0;
1841out_quota:
1842	if (clusters_to_alloc)
1843		dquot_free_space(inode,
1844			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1845out_commit:
1846	ocfs2_commit_trans(osb, handle);
1847
1848out:
1849	ocfs2_free_write_ctxt(wc);
 
 
 
 
 
 
 
 
1850
1851	if (data_ac)
 
 
1852		ocfs2_free_alloc_context(data_ac);
1853	if (meta_ac)
 
 
1854		ocfs2_free_alloc_context(meta_ac);
 
 
1855
1856	if (ret == -ENOSPC && try_free) {
1857		/*
1858		 * Try to free some truncate log so that we can have enough
1859		 * clusters to allocate.
1860		 */
1861		try_free = 0;
1862
1863		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1864		if (ret1 == 1)
1865			goto try_again;
1866
1867		if (ret1 < 0)
1868			mlog_errno(ret1);
1869	}
1870
1871	return ret;
1872}
1873
1874static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1875			     loff_t pos, unsigned len, unsigned flags,
1876			     struct page **pagep, void **fsdata)
1877{
1878	int ret;
1879	struct buffer_head *di_bh = NULL;
1880	struct inode *inode = mapping->host;
1881
1882	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1883	if (ret) {
1884		mlog_errno(ret);
1885		return ret;
1886	}
1887
1888	/*
1889	 * Take alloc sem here to prevent concurrent lookups. That way
1890	 * the mapping, zeroing and tree manipulation within
1891	 * ocfs2_write() will be safe against ->readpage(). This
1892	 * should also serve to lock out allocation from a shared
1893	 * writeable region.
1894	 */
1895	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1896
1897	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1898				       fsdata, di_bh, NULL);
1899	if (ret) {
1900		mlog_errno(ret);
1901		goto out_fail;
1902	}
1903
1904	brelse(di_bh);
1905
1906	return 0;
1907
1908out_fail:
1909	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1910
1911	brelse(di_bh);
1912	ocfs2_inode_unlock(inode, 1);
1913
1914	return ret;
1915}
1916
1917static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1918				   unsigned len, unsigned *copied,
1919				   struct ocfs2_dinode *di,
1920				   struct ocfs2_write_ctxt *wc)
1921{
1922	void *kaddr;
1923
1924	if (unlikely(*copied < len)) {
1925		if (!PageUptodate(wc->w_target_page)) {
1926			*copied = 0;
1927			return;
1928		}
1929	}
1930
1931	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1932	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1933	kunmap_atomic(kaddr, KM_USER0);
1934
1935	trace_ocfs2_write_end_inline(
1936	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1937	     (unsigned long long)pos, *copied,
1938	     le16_to_cpu(di->id2.i_data.id_count),
1939	     le16_to_cpu(di->i_dyn_features));
1940}
1941
1942int ocfs2_write_end_nolock(struct address_space *mapping,
1943			   loff_t pos, unsigned len, unsigned copied,
1944			   struct page *page, void *fsdata)
1945{
1946	int i;
1947	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1948	struct inode *inode = mapping->host;
1949	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1950	struct ocfs2_write_ctxt *wc = fsdata;
1951	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1952	handle_t *handle = wc->w_handle;
1953	struct page *tmppage;
1954
 
 
 
 
 
 
 
 
 
 
 
 
1955	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1956		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1957		goto out_write_size;
1958	}
1959
1960	if (unlikely(copied < len)) {
1961		if (!PageUptodate(wc->w_target_page))
1962			copied = 0;
1963
1964		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1965				       start+len);
1966	}
1967	flush_dcache_page(wc->w_target_page);
 
1968
1969	for(i = 0; i < wc->w_num_pages; i++) {
1970		tmppage = wc->w_pages[i];
1971
 
 
 
 
1972		if (tmppage == wc->w_target_page) {
1973			from = wc->w_target_from;
1974			to = wc->w_target_to;
1975
1976			BUG_ON(from > PAGE_CACHE_SIZE ||
1977			       to > PAGE_CACHE_SIZE ||
1978			       to < from);
1979		} else {
1980			/*
1981			 * Pages adjacent to the target (if any) imply
1982			 * a hole-filling write in which case we want
1983			 * to flush their entire range.
1984			 */
1985			from = 0;
1986			to = PAGE_CACHE_SIZE;
1987		}
1988
1989		if (page_has_buffers(tmppage)) {
1990			if (ocfs2_should_order_data(inode))
1991				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1992			block_commit_write(tmppage, from, to);
1993		}
1994	}
1995
1996out_write_size:
1997	pos += copied;
1998	if (pos > inode->i_size) {
1999		i_size_write(inode, pos);
2000		mark_inode_dirty(inode);
2001	}
2002	inode->i_blocks = ocfs2_inode_sector_count(inode);
2003	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2004	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2005	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2006	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2007	ocfs2_journal_dirty(handle, wc->w_di_bh);
 
 
 
 
 
2008
2009	ocfs2_commit_trans(osb, handle);
 
 
 
 
 
 
 
 
 
2010
2011	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2012
2013	ocfs2_free_write_ctxt(wc);
 
2014
2015	return copied;
2016}
2017
2018static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2019			   loff_t pos, unsigned len, unsigned copied,
2020			   struct page *page, void *fsdata)
2021{
2022	int ret;
2023	struct inode *inode = mapping->host;
2024
2025	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2026
2027	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2028	ocfs2_inode_unlock(inode, 1);
2029
2030	return ret;
2031}
2032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033const struct address_space_operations ocfs2_aops = {
2034	.readpage		= ocfs2_readpage,
2035	.readpages		= ocfs2_readpages,
2036	.writepage		= ocfs2_writepage,
2037	.write_begin		= ocfs2_write_begin,
2038	.write_end		= ocfs2_write_end,
2039	.bmap			= ocfs2_bmap,
2040	.direct_IO		= ocfs2_direct_IO,
2041	.invalidatepage		= ocfs2_invalidatepage,
2042	.releasepage		= ocfs2_releasepage,
2043	.migratepage		= buffer_migrate_page,
2044	.is_partially_uptodate	= block_is_partially_uptodate,
2045	.error_remove_page	= generic_error_remove_page,
2046};
v4.17
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57				   struct buffer_head *bh_result, int create)
  58{
  59	int err = -EIO;
  60	int status;
  61	struct ocfs2_dinode *fe = NULL;
  62	struct buffer_head *bh = NULL;
  63	struct buffer_head *buffer_cache_bh = NULL;
  64	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65	void *kaddr;
  66
  67	trace_ocfs2_symlink_get_block(
  68			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  69			(unsigned long long)iblock, bh_result, create);
  70
  71	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75		     (unsigned long long)iblock);
  76		goto bail;
  77	}
  78
  79	status = ocfs2_read_inode_block(inode, &bh);
  80	if (status < 0) {
  81		mlog_errno(status);
  82		goto bail;
  83	}
  84	fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87						    le32_to_cpu(fe->i_clusters))) {
  88		err = -ENOMEM;
  89		mlog(ML_ERROR, "block offset is outside the allocated size: "
  90		     "%llu\n", (unsigned long long)iblock);
  91		goto bail;
  92	}
  93
  94	/* We don't use the page cache to create symlink data, so if
  95	 * need be, copy it over from the buffer cache. */
  96	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98			    iblock;
  99		buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100		if (!buffer_cache_bh) {
 101			err = -ENOMEM;
 102			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103			goto bail;
 104		}
 105
 106		/* we haven't locked out transactions, so a commit
 107		 * could've happened. Since we've got a reference on
 108		 * the bh, even if it commits while we're doing the
 109		 * copy, the data is still good. */
 110		if (buffer_jbd(buffer_cache_bh)
 111		    && ocfs2_inode_is_new(inode)) {
 112			kaddr = kmap_atomic(bh_result->b_page);
 113			if (!kaddr) {
 114				mlog(ML_ERROR, "couldn't kmap!\n");
 115				goto bail;
 116			}
 117			memcpy(kaddr + (bh_result->b_size * iblock),
 118			       buffer_cache_bh->b_data,
 119			       bh_result->b_size);
 120			kunmap_atomic(kaddr);
 121			set_buffer_uptodate(bh_result);
 122		}
 123		brelse(buffer_cache_bh);
 124	}
 125
 126	map_bh(bh_result, inode->i_sb,
 127	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129	err = 0;
 130
 131bail:
 132	brelse(bh);
 133
 134	return err;
 135}
 136
 137static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 138		    struct buffer_head *bh_result, int create)
 139{
 140	int ret = 0;
 141	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 142
 143	down_read(&oi->ip_alloc_sem);
 144	ret = ocfs2_get_block(inode, iblock, bh_result, create);
 145	up_read(&oi->ip_alloc_sem);
 146
 147	return ret;
 148}
 149
 150int ocfs2_get_block(struct inode *inode, sector_t iblock,
 151		    struct buffer_head *bh_result, int create)
 152{
 153	int err = 0;
 154	unsigned int ext_flags;
 155	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 156	u64 p_blkno, count, past_eof;
 157	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 158
 159	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 160			      (unsigned long long)iblock, bh_result, create);
 161
 162	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 163		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 164		     inode, inode->i_ino);
 165
 166	if (S_ISLNK(inode->i_mode)) {
 167		/* this always does I/O for some reason. */
 168		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 169		goto bail;
 170	}
 171
 172	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 173					  &ext_flags);
 174	if (err) {
 175		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 176		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 177		     (unsigned long long)p_blkno);
 178		goto bail;
 179	}
 180
 181	if (max_blocks < count)
 182		count = max_blocks;
 183
 184	/*
 185	 * ocfs2 never allocates in this function - the only time we
 186	 * need to use BH_New is when we're extending i_size on a file
 187	 * system which doesn't support holes, in which case BH_New
 188	 * allows __block_write_begin() to zero.
 189	 *
 190	 * If we see this on a sparse file system, then a truncate has
 191	 * raced us and removed the cluster. In this case, we clear
 192	 * the buffers dirty and uptodate bits and let the buffer code
 193	 * ignore it as a hole.
 194	 */
 195	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 196		clear_buffer_dirty(bh_result);
 197		clear_buffer_uptodate(bh_result);
 198		goto bail;
 199	}
 200
 201	/* Treat the unwritten extent as a hole for zeroing purposes. */
 202	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 203		map_bh(bh_result, inode->i_sb, p_blkno);
 204
 205	bh_result->b_size = count << inode->i_blkbits;
 206
 207	if (!ocfs2_sparse_alloc(osb)) {
 208		if (p_blkno == 0) {
 209			err = -EIO;
 210			mlog(ML_ERROR,
 211			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 212			     (unsigned long long)iblock,
 213			     (unsigned long long)p_blkno,
 214			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 215			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 216			dump_stack();
 217			goto bail;
 218		}
 219	}
 220
 221	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 222
 223	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 224				  (unsigned long long)past_eof);
 225	if (create && (iblock >= past_eof))
 226		set_buffer_new(bh_result);
 227
 228bail:
 229	if (err < 0)
 230		err = -EIO;
 231
 232	return err;
 233}
 234
 235int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 236			   struct buffer_head *di_bh)
 237{
 238	void *kaddr;
 239	loff_t size;
 240	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 241
 242	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 243		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 244			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 245		return -EROFS;
 246	}
 247
 248	size = i_size_read(inode);
 249
 250	if (size > PAGE_SIZE ||
 251	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 252		ocfs2_error(inode->i_sb,
 253			    "Inode %llu has with inline data has bad size: %Lu\n",
 254			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 255			    (unsigned long long)size);
 256		return -EROFS;
 257	}
 258
 259	kaddr = kmap_atomic(page);
 260	if (size)
 261		memcpy(kaddr, di->id2.i_data.id_data, size);
 262	/* Clear the remaining part of the page */
 263	memset(kaddr + size, 0, PAGE_SIZE - size);
 264	flush_dcache_page(page);
 265	kunmap_atomic(kaddr);
 266
 267	SetPageUptodate(page);
 268
 269	return 0;
 270}
 271
 272static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 273{
 274	int ret;
 275	struct buffer_head *di_bh = NULL;
 276
 277	BUG_ON(!PageLocked(page));
 278	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 279
 280	ret = ocfs2_read_inode_block(inode, &di_bh);
 281	if (ret) {
 282		mlog_errno(ret);
 283		goto out;
 284	}
 285
 286	ret = ocfs2_read_inline_data(inode, page, di_bh);
 287out:
 288	unlock_page(page);
 289
 290	brelse(di_bh);
 291	return ret;
 292}
 293
 294static int ocfs2_readpage(struct file *file, struct page *page)
 295{
 296	struct inode *inode = page->mapping->host;
 297	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 298	loff_t start = (loff_t)page->index << PAGE_SHIFT;
 299	int ret, unlock = 1;
 300
 301	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 302			     (page ? page->index : 0));
 303
 304	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 305	if (ret != 0) {
 306		if (ret == AOP_TRUNCATED_PAGE)
 307			unlock = 0;
 308		mlog_errno(ret);
 309		goto out;
 310	}
 311
 312	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 313		/*
 314		 * Unlock the page and cycle ip_alloc_sem so that we don't
 315		 * busyloop waiting for ip_alloc_sem to unlock
 316		 */
 317		ret = AOP_TRUNCATED_PAGE;
 318		unlock_page(page);
 319		unlock = 0;
 320		down_read(&oi->ip_alloc_sem);
 321		up_read(&oi->ip_alloc_sem);
 322		goto out_inode_unlock;
 323	}
 324
 325	/*
 326	 * i_size might have just been updated as we grabed the meta lock.  We
 327	 * might now be discovering a truncate that hit on another node.
 328	 * block_read_full_page->get_block freaks out if it is asked to read
 329	 * beyond the end of a file, so we check here.  Callers
 330	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 331	 * and notice that the page they just read isn't needed.
 332	 *
 333	 * XXX sys_readahead() seems to get that wrong?
 334	 */
 335	if (start >= i_size_read(inode)) {
 336		zero_user(page, 0, PAGE_SIZE);
 337		SetPageUptodate(page);
 338		ret = 0;
 339		goto out_alloc;
 340	}
 341
 342	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 343		ret = ocfs2_readpage_inline(inode, page);
 344	else
 345		ret = block_read_full_page(page, ocfs2_get_block);
 346	unlock = 0;
 347
 348out_alloc:
 349	up_read(&oi->ip_alloc_sem);
 350out_inode_unlock:
 351	ocfs2_inode_unlock(inode, 0);
 352out:
 353	if (unlock)
 354		unlock_page(page);
 355	return ret;
 356}
 357
 358/*
 359 * This is used only for read-ahead. Failures or difficult to handle
 360 * situations are safe to ignore.
 361 *
 362 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 363 * are quite large (243 extents on 4k blocks), so most inodes don't
 364 * grow out to a tree. If need be, detecting boundary extents could
 365 * trivially be added in a future version of ocfs2_get_block().
 366 */
 367static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 368			   struct list_head *pages, unsigned nr_pages)
 369{
 370	int ret, err = -EIO;
 371	struct inode *inode = mapping->host;
 372	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 373	loff_t start;
 374	struct page *last;
 375
 376	/*
 377	 * Use the nonblocking flag for the dlm code to avoid page
 378	 * lock inversion, but don't bother with retrying.
 379	 */
 380	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 381	if (ret)
 382		return err;
 383
 384	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 385		ocfs2_inode_unlock(inode, 0);
 386		return err;
 387	}
 388
 389	/*
 390	 * Don't bother with inline-data. There isn't anything
 391	 * to read-ahead in that case anyway...
 392	 */
 393	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 394		goto out_unlock;
 395
 396	/*
 397	 * Check whether a remote node truncated this file - we just
 398	 * drop out in that case as it's not worth handling here.
 399	 */
 400	last = list_entry(pages->prev, struct page, lru);
 401	start = (loff_t)last->index << PAGE_SHIFT;
 402	if (start >= i_size_read(inode))
 403		goto out_unlock;
 404
 405	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 406
 407out_unlock:
 408	up_read(&oi->ip_alloc_sem);
 409	ocfs2_inode_unlock(inode, 0);
 410
 411	return err;
 412}
 413
 414/* Note: Because we don't support holes, our allocation has
 415 * already happened (allocation writes zeros to the file data)
 416 * so we don't have to worry about ordered writes in
 417 * ocfs2_writepage.
 418 *
 419 * ->writepage is called during the process of invalidating the page cache
 420 * during blocked lock processing.  It can't block on any cluster locks
 421 * to during block mapping.  It's relying on the fact that the block
 422 * mapping can't have disappeared under the dirty pages that it is
 423 * being asked to write back.
 424 */
 425static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 426{
 427	trace_ocfs2_writepage(
 428		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 429		page->index);
 430
 431	return block_write_full_page(page, ocfs2_get_block, wbc);
 432}
 433
 434/* Taken from ext3. We don't necessarily need the full blown
 435 * functionality yet, but IMHO it's better to cut and paste the whole
 436 * thing so we can avoid introducing our own bugs (and easily pick up
 437 * their fixes when they happen) --Mark */
 438int walk_page_buffers(	handle_t *handle,
 439			struct buffer_head *head,
 440			unsigned from,
 441			unsigned to,
 442			int *partial,
 443			int (*fn)(	handle_t *handle,
 444					struct buffer_head *bh))
 445{
 446	struct buffer_head *bh;
 447	unsigned block_start, block_end;
 448	unsigned blocksize = head->b_size;
 449	int err, ret = 0;
 450	struct buffer_head *next;
 451
 452	for (	bh = head, block_start = 0;
 453		ret == 0 && (bh != head || !block_start);
 454	    	block_start = block_end, bh = next)
 455	{
 456		next = bh->b_this_page;
 457		block_end = block_start + blocksize;
 458		if (block_end <= from || block_start >= to) {
 459			if (partial && !buffer_uptodate(bh))
 460				*partial = 1;
 461			continue;
 462		}
 463		err = (*fn)(handle, bh);
 464		if (!ret)
 465			ret = err;
 466	}
 467	return ret;
 468}
 469
 470static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 471{
 472	sector_t status;
 473	u64 p_blkno = 0;
 474	int err = 0;
 475	struct inode *inode = mapping->host;
 476
 477	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 478			 (unsigned long long)block);
 479
 480	/*
 481	 * The swap code (ab-)uses ->bmap to get a block mapping and then
 482	 * bypasseѕ the file system for actual I/O.  We really can't allow
 483	 * that on refcounted inodes, so we have to skip out here.  And yes,
 484	 * 0 is the magic code for a bmap error..
 485	 */
 486	if (ocfs2_is_refcount_inode(inode))
 487		return 0;
 488
 489	/* We don't need to lock journal system files, since they aren't
 490	 * accessed concurrently from multiple nodes.
 491	 */
 492	if (!INODE_JOURNAL(inode)) {
 493		err = ocfs2_inode_lock(inode, NULL, 0);
 494		if (err) {
 495			if (err != -ENOENT)
 496				mlog_errno(err);
 497			goto bail;
 498		}
 499		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 500	}
 501
 502	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 503		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 504						  NULL);
 505
 506	if (!INODE_JOURNAL(inode)) {
 507		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 508		ocfs2_inode_unlock(inode, 0);
 509	}
 510
 511	if (err) {
 512		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 513		     (unsigned long long)block);
 514		mlog_errno(err);
 515		goto bail;
 516	}
 517
 518bail:
 519	status = err ? 0 : p_blkno;
 520
 521	return status;
 522}
 523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524static int ocfs2_releasepage(struct page *page, gfp_t wait)
 525{
 
 
 526	if (!page_has_buffers(page))
 527		return 0;
 528	return try_to_free_buffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529}
 530
 531static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 532					    u32 cpos,
 533					    unsigned int *start,
 534					    unsigned int *end)
 535{
 536	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 537
 538	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 539		unsigned int cpp;
 540
 541		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 542
 543		cluster_start = cpos % cpp;
 544		cluster_start = cluster_start << osb->s_clustersize_bits;
 545
 546		cluster_end = cluster_start + osb->s_clustersize;
 547	}
 548
 549	BUG_ON(cluster_start > PAGE_SIZE);
 550	BUG_ON(cluster_end > PAGE_SIZE);
 551
 552	if (start)
 553		*start = cluster_start;
 554	if (end)
 555		*end = cluster_end;
 556}
 557
 558/*
 559 * 'from' and 'to' are the region in the page to avoid zeroing.
 560 *
 561 * If pagesize > clustersize, this function will avoid zeroing outside
 562 * of the cluster boundary.
 563 *
 564 * from == to == 0 is code for "zero the entire cluster region"
 565 */
 566static void ocfs2_clear_page_regions(struct page *page,
 567				     struct ocfs2_super *osb, u32 cpos,
 568				     unsigned from, unsigned to)
 569{
 570	void *kaddr;
 571	unsigned int cluster_start, cluster_end;
 572
 573	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 574
 575	kaddr = kmap_atomic(page);
 576
 577	if (from || to) {
 578		if (from > cluster_start)
 579			memset(kaddr + cluster_start, 0, from - cluster_start);
 580		if (to < cluster_end)
 581			memset(kaddr + to, 0, cluster_end - to);
 582	} else {
 583		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 584	}
 585
 586	kunmap_atomic(kaddr);
 587}
 588
 589/*
 590 * Nonsparse file systems fully allocate before we get to the write
 591 * code. This prevents ocfs2_write() from tagging the write as an
 592 * allocating one, which means ocfs2_map_page_blocks() might try to
 593 * read-in the blocks at the tail of our file. Avoid reading them by
 594 * testing i_size against each block offset.
 595 */
 596static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 597				 unsigned int block_start)
 598{
 599	u64 offset = page_offset(page) + block_start;
 600
 601	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 602		return 1;
 603
 604	if (i_size_read(inode) > offset)
 605		return 1;
 606
 607	return 0;
 608}
 609
 610/*
 611 * Some of this taken from __block_write_begin(). We already have our
 612 * mapping by now though, and the entire write will be allocating or
 613 * it won't, so not much need to use BH_New.
 614 *
 615 * This will also skip zeroing, which is handled externally.
 616 */
 617int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 618			  struct inode *inode, unsigned int from,
 619			  unsigned int to, int new)
 620{
 621	int ret = 0;
 622	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 623	unsigned int block_end, block_start;
 624	unsigned int bsize = i_blocksize(inode);
 625
 626	if (!page_has_buffers(page))
 627		create_empty_buffers(page, bsize, 0);
 628
 629	head = page_buffers(page);
 630	for (bh = head, block_start = 0; bh != head || !block_start;
 631	     bh = bh->b_this_page, block_start += bsize) {
 632		block_end = block_start + bsize;
 633
 634		clear_buffer_new(bh);
 635
 636		/*
 637		 * Ignore blocks outside of our i/o range -
 638		 * they may belong to unallocated clusters.
 639		 */
 640		if (block_start >= to || block_end <= from) {
 641			if (PageUptodate(page))
 642				set_buffer_uptodate(bh);
 643			continue;
 644		}
 645
 646		/*
 647		 * For an allocating write with cluster size >= page
 648		 * size, we always write the entire page.
 649		 */
 650		if (new)
 651			set_buffer_new(bh);
 652
 653		if (!buffer_mapped(bh)) {
 654			map_bh(bh, inode->i_sb, *p_blkno);
 655			clean_bdev_bh_alias(bh);
 656		}
 657
 658		if (PageUptodate(page)) {
 659			if (!buffer_uptodate(bh))
 660				set_buffer_uptodate(bh);
 661		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 662			   !buffer_new(bh) &&
 663			   ocfs2_should_read_blk(inode, page, block_start) &&
 664			   (block_start < from || block_end > to)) {
 665			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 666			*wait_bh++=bh;
 667		}
 668
 669		*p_blkno = *p_blkno + 1;
 670	}
 671
 672	/*
 673	 * If we issued read requests - let them complete.
 674	 */
 675	while(wait_bh > wait) {
 676		wait_on_buffer(*--wait_bh);
 677		if (!buffer_uptodate(*wait_bh))
 678			ret = -EIO;
 679	}
 680
 681	if (ret == 0 || !new)
 682		return ret;
 683
 684	/*
 685	 * If we get -EIO above, zero out any newly allocated blocks
 686	 * to avoid exposing stale data.
 687	 */
 688	bh = head;
 689	block_start = 0;
 690	do {
 691		block_end = block_start + bsize;
 692		if (block_end <= from)
 693			goto next_bh;
 694		if (block_start >= to)
 695			break;
 696
 697		zero_user(page, block_start, bh->b_size);
 698		set_buffer_uptodate(bh);
 699		mark_buffer_dirty(bh);
 700
 701next_bh:
 702		block_start = block_end;
 703		bh = bh->b_this_page;
 704	} while (bh != head);
 705
 706	return ret;
 707}
 708
 709#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 710#define OCFS2_MAX_CTXT_PAGES	1
 711#else
 712#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 713#endif
 714
 715#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 716
 717struct ocfs2_unwritten_extent {
 718	struct list_head	ue_node;
 719	struct list_head	ue_ip_node;
 720	u32			ue_cpos;
 721	u32			ue_phys;
 722};
 723
 724/*
 725 * Describe the state of a single cluster to be written to.
 726 */
 727struct ocfs2_write_cluster_desc {
 728	u32		c_cpos;
 729	u32		c_phys;
 730	/*
 731	 * Give this a unique field because c_phys eventually gets
 732	 * filled.
 733	 */
 734	unsigned	c_new;
 735	unsigned	c_clear_unwritten;
 736	unsigned	c_needs_zero;
 737};
 738
 739struct ocfs2_write_ctxt {
 740	/* Logical cluster position / len of write */
 741	u32				w_cpos;
 742	u32				w_clen;
 743
 744	/* First cluster allocated in a nonsparse extend */
 745	u32				w_first_new_cpos;
 746
 747	/* Type of caller. Must be one of buffer, mmap, direct.  */
 748	ocfs2_write_type_t		w_type;
 749
 750	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 751
 752	/*
 753	 * This is true if page_size > cluster_size.
 754	 *
 755	 * It triggers a set of special cases during write which might
 756	 * have to deal with allocating writes to partial pages.
 757	 */
 758	unsigned int			w_large_pages;
 759
 760	/*
 761	 * Pages involved in this write.
 762	 *
 763	 * w_target_page is the page being written to by the user.
 764	 *
 765	 * w_pages is an array of pages which always contains
 766	 * w_target_page, and in the case of an allocating write with
 767	 * page_size < cluster size, it will contain zero'd and mapped
 768	 * pages adjacent to w_target_page which need to be written
 769	 * out in so that future reads from that region will get
 770	 * zero's.
 771	 */
 772	unsigned int			w_num_pages;
 773	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 774	struct page			*w_target_page;
 775
 776	/*
 777	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 778	 * against w_target_page in ocfs2_write_end_nolock.
 779	 */
 780	unsigned int			w_target_locked:1;
 781
 782	/*
 783	 * ocfs2_write_end() uses this to know what the real range to
 784	 * write in the target should be.
 785	 */
 786	unsigned int			w_target_from;
 787	unsigned int			w_target_to;
 788
 789	/*
 790	 * We could use journal_current_handle() but this is cleaner,
 791	 * IMHO -Mark
 792	 */
 793	handle_t			*w_handle;
 794
 795	struct buffer_head		*w_di_bh;
 796
 797	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 798
 799	struct list_head		w_unwritten_list;
 800	unsigned int			w_unwritten_count;
 801};
 802
 803void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 804{
 805	int i;
 806
 807	for(i = 0; i < num_pages; i++) {
 808		if (pages[i]) {
 809			unlock_page(pages[i]);
 810			mark_page_accessed(pages[i]);
 811			put_page(pages[i]);
 812		}
 813	}
 814}
 815
 816static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 817{
 818	int i;
 819
 820	/*
 821	 * w_target_locked is only set to true in the page_mkwrite() case.
 822	 * The intent is to allow us to lock the target page from write_begin()
 823	 * to write_end(). The caller must hold a ref on w_target_page.
 824	 */
 825	if (wc->w_target_locked) {
 826		BUG_ON(!wc->w_target_page);
 827		for (i = 0; i < wc->w_num_pages; i++) {
 828			if (wc->w_target_page == wc->w_pages[i]) {
 829				wc->w_pages[i] = NULL;
 830				break;
 831			}
 832		}
 833		mark_page_accessed(wc->w_target_page);
 834		put_page(wc->w_target_page);
 835	}
 836	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 837}
 838
 839static void ocfs2_free_unwritten_list(struct inode *inode,
 840				 struct list_head *head)
 841{
 842	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 843	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 844
 845	list_for_each_entry_safe(ue, tmp, head, ue_node) {
 846		list_del(&ue->ue_node);
 847		spin_lock(&oi->ip_lock);
 848		list_del(&ue->ue_ip_node);
 849		spin_unlock(&oi->ip_lock);
 850		kfree(ue);
 851	}
 852}
 853
 854static void ocfs2_free_write_ctxt(struct inode *inode,
 855				  struct ocfs2_write_ctxt *wc)
 856{
 857	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 858	ocfs2_unlock_pages(wc);
 859	brelse(wc->w_di_bh);
 860	kfree(wc);
 861}
 862
 863static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 864				  struct ocfs2_super *osb, loff_t pos,
 865				  unsigned len, ocfs2_write_type_t type,
 866				  struct buffer_head *di_bh)
 867{
 868	u32 cend;
 869	struct ocfs2_write_ctxt *wc;
 870
 871	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 872	if (!wc)
 873		return -ENOMEM;
 874
 875	wc->w_cpos = pos >> osb->s_clustersize_bits;
 876	wc->w_first_new_cpos = UINT_MAX;
 877	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 878	wc->w_clen = cend - wc->w_cpos + 1;
 879	get_bh(di_bh);
 880	wc->w_di_bh = di_bh;
 881	wc->w_type = type;
 882
 883	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 884		wc->w_large_pages = 1;
 885	else
 886		wc->w_large_pages = 0;
 887
 888	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 889	INIT_LIST_HEAD(&wc->w_unwritten_list);
 890
 891	*wcp = wc;
 892
 893	return 0;
 894}
 895
 896/*
 897 * If a page has any new buffers, zero them out here, and mark them uptodate
 898 * and dirty so they'll be written out (in order to prevent uninitialised
 899 * block data from leaking). And clear the new bit.
 900 */
 901static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 902{
 903	unsigned int block_start, block_end;
 904	struct buffer_head *head, *bh;
 905
 906	BUG_ON(!PageLocked(page));
 907	if (!page_has_buffers(page))
 908		return;
 909
 910	bh = head = page_buffers(page);
 911	block_start = 0;
 912	do {
 913		block_end = block_start + bh->b_size;
 914
 915		if (buffer_new(bh)) {
 916			if (block_end > from && block_start < to) {
 917				if (!PageUptodate(page)) {
 918					unsigned start, end;
 919
 920					start = max(from, block_start);
 921					end = min(to, block_end);
 922
 923					zero_user_segment(page, start, end);
 924					set_buffer_uptodate(bh);
 925				}
 926
 927				clear_buffer_new(bh);
 928				mark_buffer_dirty(bh);
 929			}
 930		}
 931
 932		block_start = block_end;
 933		bh = bh->b_this_page;
 934	} while (bh != head);
 935}
 936
 937/*
 938 * Only called when we have a failure during allocating write to write
 939 * zero's to the newly allocated region.
 940 */
 941static void ocfs2_write_failure(struct inode *inode,
 942				struct ocfs2_write_ctxt *wc,
 943				loff_t user_pos, unsigned user_len)
 944{
 945	int i;
 946	unsigned from = user_pos & (PAGE_SIZE - 1),
 947		to = user_pos + user_len;
 948	struct page *tmppage;
 949
 950	if (wc->w_target_page)
 951		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 952
 953	for(i = 0; i < wc->w_num_pages; i++) {
 954		tmppage = wc->w_pages[i];
 955
 956		if (tmppage && page_has_buffers(tmppage)) {
 957			if (ocfs2_should_order_data(inode))
 958				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 959
 960			block_commit_write(tmppage, from, to);
 961		}
 962	}
 963}
 964
 965static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 966					struct ocfs2_write_ctxt *wc,
 967					struct page *page, u32 cpos,
 968					loff_t user_pos, unsigned user_len,
 969					int new)
 970{
 971	int ret;
 972	unsigned int map_from = 0, map_to = 0;
 973	unsigned int cluster_start, cluster_end;
 974	unsigned int user_data_from = 0, user_data_to = 0;
 975
 976	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 977					&cluster_start, &cluster_end);
 978
 979	/* treat the write as new if the a hole/lseek spanned across
 980	 * the page boundary.
 981	 */
 982	new = new | ((i_size_read(inode) <= page_offset(page)) &&
 983			(page_offset(page) <= user_pos));
 984
 985	if (page == wc->w_target_page) {
 986		map_from = user_pos & (PAGE_SIZE - 1);
 987		map_to = map_from + user_len;
 988
 989		if (new)
 990			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 991						    cluster_start, cluster_end,
 992						    new);
 993		else
 994			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 995						    map_from, map_to, new);
 996		if (ret) {
 997			mlog_errno(ret);
 998			goto out;
 999		}
1000
1001		user_data_from = map_from;
1002		user_data_to = map_to;
1003		if (new) {
1004			map_from = cluster_start;
1005			map_to = cluster_end;
1006		}
1007	} else {
1008		/*
1009		 * If we haven't allocated the new page yet, we
1010		 * shouldn't be writing it out without copying user
1011		 * data. This is likely a math error from the caller.
1012		 */
1013		BUG_ON(!new);
1014
1015		map_from = cluster_start;
1016		map_to = cluster_end;
1017
1018		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1019					    cluster_start, cluster_end, new);
1020		if (ret) {
1021			mlog_errno(ret);
1022			goto out;
1023		}
1024	}
1025
1026	/*
1027	 * Parts of newly allocated pages need to be zero'd.
1028	 *
1029	 * Above, we have also rewritten 'to' and 'from' - as far as
1030	 * the rest of the function is concerned, the entire cluster
1031	 * range inside of a page needs to be written.
1032	 *
1033	 * We can skip this if the page is up to date - it's already
1034	 * been zero'd from being read in as a hole.
1035	 */
1036	if (new && !PageUptodate(page))
1037		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1038					 cpos, user_data_from, user_data_to);
1039
1040	flush_dcache_page(page);
1041
1042out:
1043	return ret;
1044}
1045
1046/*
1047 * This function will only grab one clusters worth of pages.
1048 */
1049static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1050				      struct ocfs2_write_ctxt *wc,
1051				      u32 cpos, loff_t user_pos,
1052				      unsigned user_len, int new,
1053				      struct page *mmap_page)
1054{
1055	int ret = 0, i;
1056	unsigned long start, target_index, end_index, index;
1057	struct inode *inode = mapping->host;
1058	loff_t last_byte;
1059
1060	target_index = user_pos >> PAGE_SHIFT;
1061
1062	/*
1063	 * Figure out how many pages we'll be manipulating here. For
1064	 * non allocating write, we just change the one
1065	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1066	 * writing past i_size, we only need enough pages to cover the
1067	 * last page of the write.
1068	 */
1069	if (new) {
1070		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1071		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1072		/*
1073		 * We need the index *past* the last page we could possibly
1074		 * touch.  This is the page past the end of the write or
1075		 * i_size, whichever is greater.
1076		 */
1077		last_byte = max(user_pos + user_len, i_size_read(inode));
1078		BUG_ON(last_byte < 1);
1079		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1080		if ((start + wc->w_num_pages) > end_index)
1081			wc->w_num_pages = end_index - start;
1082	} else {
1083		wc->w_num_pages = 1;
1084		start = target_index;
1085	}
1086	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1087
1088	for(i = 0; i < wc->w_num_pages; i++) {
1089		index = start + i;
1090
1091		if (index >= target_index && index <= end_index &&
1092		    wc->w_type == OCFS2_WRITE_MMAP) {
1093			/*
1094			 * ocfs2_pagemkwrite() is a little different
1095			 * and wants us to directly use the page
1096			 * passed in.
1097			 */
1098			lock_page(mmap_page);
1099
1100			/* Exit and let the caller retry */
1101			if (mmap_page->mapping != mapping) {
1102				WARN_ON(mmap_page->mapping);
1103				unlock_page(mmap_page);
1104				ret = -EAGAIN;
 
 
 
 
 
 
1105				goto out;
1106			}
1107
1108			get_page(mmap_page);
1109			wc->w_pages[i] = mmap_page;
1110			wc->w_target_locked = true;
1111		} else if (index >= target_index && index <= end_index &&
1112			   wc->w_type == OCFS2_WRITE_DIRECT) {
1113			/* Direct write has no mapping page. */
1114			wc->w_pages[i] = NULL;
1115			continue;
1116		} else {
1117			wc->w_pages[i] = find_or_create_page(mapping, index,
1118							     GFP_NOFS);
1119			if (!wc->w_pages[i]) {
1120				ret = -ENOMEM;
1121				mlog_errno(ret);
1122				goto out;
1123			}
1124		}
1125		wait_for_stable_page(wc->w_pages[i]);
1126
1127		if (index == target_index)
1128			wc->w_target_page = wc->w_pages[i];
1129	}
1130out:
1131	if (ret)
1132		wc->w_target_locked = false;
1133	return ret;
1134}
1135
1136/*
1137 * Prepare a single cluster for write one cluster into the file.
1138 */
1139static int ocfs2_write_cluster(struct address_space *mapping,
1140			       u32 *phys, unsigned int new,
1141			       unsigned int clear_unwritten,
1142			       unsigned int should_zero,
1143			       struct ocfs2_alloc_context *data_ac,
1144			       struct ocfs2_alloc_context *meta_ac,
1145			       struct ocfs2_write_ctxt *wc, u32 cpos,
1146			       loff_t user_pos, unsigned user_len)
1147{
1148	int ret, i;
1149	u64 p_blkno;
1150	struct inode *inode = mapping->host;
1151	struct ocfs2_extent_tree et;
1152	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1153
 
1154	if (new) {
1155		u32 tmp_pos;
1156
1157		/*
1158		 * This is safe to call with the page locks - it won't take
1159		 * any additional semaphores or cluster locks.
1160		 */
1161		tmp_pos = cpos;
1162		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1163					   &tmp_pos, 1, !clear_unwritten,
1164					   wc->w_di_bh, wc->w_handle,
1165					   data_ac, meta_ac, NULL);
1166		/*
1167		 * This shouldn't happen because we must have already
1168		 * calculated the correct meta data allocation required. The
1169		 * internal tree allocation code should know how to increase
1170		 * transaction credits itself.
1171		 *
1172		 * If need be, we could handle -EAGAIN for a
1173		 * RESTART_TRANS here.
1174		 */
1175		mlog_bug_on_msg(ret == -EAGAIN,
1176				"Inode %llu: EAGAIN return during allocation.\n",
1177				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1178		if (ret < 0) {
1179			mlog_errno(ret);
1180			goto out;
1181		}
1182	} else if (clear_unwritten) {
1183		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1184					      wc->w_di_bh);
1185		ret = ocfs2_mark_extent_written(inode, &et,
1186						wc->w_handle, cpos, 1, *phys,
1187						meta_ac, &wc->w_dealloc);
1188		if (ret < 0) {
1189			mlog_errno(ret);
1190			goto out;
1191		}
1192	}
1193
 
 
 
 
 
1194	/*
1195	 * The only reason this should fail is due to an inability to
1196	 * find the extent added.
1197	 */
1198	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
 
1199	if (ret < 0) {
1200		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1201			    "at logical cluster %u",
1202			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
 
1203		goto out;
1204	}
1205
1206	BUG_ON(*phys == 0);
1207
1208	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1209	if (!should_zero)
1210		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1211
1212	for(i = 0; i < wc->w_num_pages; i++) {
1213		int tmpret;
1214
1215		/* This is the direct io target page. */
1216		if (wc->w_pages[i] == NULL) {
1217			p_blkno++;
1218			continue;
1219		}
1220
1221		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1222						      wc->w_pages[i], cpos,
1223						      user_pos, user_len,
1224						      should_zero);
1225		if (tmpret) {
1226			mlog_errno(tmpret);
1227			if (ret == 0)
1228				ret = tmpret;
1229		}
1230	}
1231
1232	/*
1233	 * We only have cleanup to do in case of allocating write.
1234	 */
1235	if (ret && new)
1236		ocfs2_write_failure(inode, wc, user_pos, user_len);
1237
1238out:
1239
1240	return ret;
1241}
1242
1243static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1244				       struct ocfs2_alloc_context *data_ac,
1245				       struct ocfs2_alloc_context *meta_ac,
1246				       struct ocfs2_write_ctxt *wc,
1247				       loff_t pos, unsigned len)
1248{
1249	int ret, i;
1250	loff_t cluster_off;
1251	unsigned int local_len = len;
1252	struct ocfs2_write_cluster_desc *desc;
1253	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1254
1255	for (i = 0; i < wc->w_clen; i++) {
1256		desc = &wc->w_desc[i];
1257
1258		/*
1259		 * We have to make sure that the total write passed in
1260		 * doesn't extend past a single cluster.
1261		 */
1262		local_len = len;
1263		cluster_off = pos & (osb->s_clustersize - 1);
1264		if ((cluster_off + local_len) > osb->s_clustersize)
1265			local_len = osb->s_clustersize - cluster_off;
1266
1267		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1268					  desc->c_new,
1269					  desc->c_clear_unwritten,
1270					  desc->c_needs_zero,
1271					  data_ac, meta_ac,
1272					  wc, desc->c_cpos, pos, local_len);
1273		if (ret) {
1274			mlog_errno(ret);
1275			goto out;
1276		}
1277
1278		len -= local_len;
1279		pos += local_len;
1280	}
1281
1282	ret = 0;
1283out:
1284	return ret;
1285}
1286
1287/*
1288 * ocfs2_write_end() wants to know which parts of the target page it
1289 * should complete the write on. It's easiest to compute them ahead of
1290 * time when a more complete view of the write is available.
1291 */
1292static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1293					struct ocfs2_write_ctxt *wc,
1294					loff_t pos, unsigned len, int alloc)
1295{
1296	struct ocfs2_write_cluster_desc *desc;
1297
1298	wc->w_target_from = pos & (PAGE_SIZE - 1);
1299	wc->w_target_to = wc->w_target_from + len;
1300
1301	if (alloc == 0)
1302		return;
1303
1304	/*
1305	 * Allocating write - we may have different boundaries based
1306	 * on page size and cluster size.
1307	 *
1308	 * NOTE: We can no longer compute one value from the other as
1309	 * the actual write length and user provided length may be
1310	 * different.
1311	 */
1312
1313	if (wc->w_large_pages) {
1314		/*
1315		 * We only care about the 1st and last cluster within
1316		 * our range and whether they should be zero'd or not. Either
1317		 * value may be extended out to the start/end of a
1318		 * newly allocated cluster.
1319		 */
1320		desc = &wc->w_desc[0];
1321		if (desc->c_needs_zero)
1322			ocfs2_figure_cluster_boundaries(osb,
1323							desc->c_cpos,
1324							&wc->w_target_from,
1325							NULL);
1326
1327		desc = &wc->w_desc[wc->w_clen - 1];
1328		if (desc->c_needs_zero)
1329			ocfs2_figure_cluster_boundaries(osb,
1330							desc->c_cpos,
1331							NULL,
1332							&wc->w_target_to);
1333	} else {
1334		wc->w_target_from = 0;
1335		wc->w_target_to = PAGE_SIZE;
1336	}
1337}
1338
1339/*
1340 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1341 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1342 * by the direct io procedure.
1343 * If this is a new extent that allocated by direct io, we should mark it in
1344 * the ip_unwritten_list.
1345 */
1346static int ocfs2_unwritten_check(struct inode *inode,
1347				 struct ocfs2_write_ctxt *wc,
1348				 struct ocfs2_write_cluster_desc *desc)
1349{
1350	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1351	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1352	int ret = 0;
1353
1354	if (!desc->c_needs_zero)
1355		return 0;
1356
1357retry:
1358	spin_lock(&oi->ip_lock);
1359	/* Needs not to zero no metter buffer or direct. The one who is zero
1360	 * the cluster is doing zero. And he will clear unwritten after all
1361	 * cluster io finished. */
1362	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1363		if (desc->c_cpos == ue->ue_cpos) {
1364			BUG_ON(desc->c_new);
1365			desc->c_needs_zero = 0;
1366			desc->c_clear_unwritten = 0;
1367			goto unlock;
1368		}
1369	}
1370
1371	if (wc->w_type != OCFS2_WRITE_DIRECT)
1372		goto unlock;
1373
1374	if (new == NULL) {
1375		spin_unlock(&oi->ip_lock);
1376		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1377			     GFP_NOFS);
1378		if (new == NULL) {
1379			ret = -ENOMEM;
1380			goto out;
1381		}
1382		goto retry;
1383	}
1384	/* This direct write will doing zero. */
1385	new->ue_cpos = desc->c_cpos;
1386	new->ue_phys = desc->c_phys;
1387	desc->c_clear_unwritten = 0;
1388	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1389	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1390	wc->w_unwritten_count++;
1391	new = NULL;
1392unlock:
1393	spin_unlock(&oi->ip_lock);
1394out:
1395	if (new)
1396		kfree(new);
1397	return ret;
1398}
1399
1400/*
1401 * Populate each single-cluster write descriptor in the write context
1402 * with information about the i/o to be done.
1403 *
1404 * Returns the number of clusters that will have to be allocated, as
1405 * well as a worst case estimate of the number of extent records that
1406 * would have to be created during a write to an unwritten region.
1407 */
1408static int ocfs2_populate_write_desc(struct inode *inode,
1409				     struct ocfs2_write_ctxt *wc,
1410				     unsigned int *clusters_to_alloc,
1411				     unsigned int *extents_to_split)
1412{
1413	int ret;
1414	struct ocfs2_write_cluster_desc *desc;
1415	unsigned int num_clusters = 0;
1416	unsigned int ext_flags = 0;
1417	u32 phys = 0;
1418	int i;
1419
1420	*clusters_to_alloc = 0;
1421	*extents_to_split = 0;
1422
1423	for (i = 0; i < wc->w_clen; i++) {
1424		desc = &wc->w_desc[i];
1425		desc->c_cpos = wc->w_cpos + i;
1426
1427		if (num_clusters == 0) {
1428			/*
1429			 * Need to look up the next extent record.
1430			 */
1431			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1432						 &num_clusters, &ext_flags);
1433			if (ret) {
1434				mlog_errno(ret);
1435				goto out;
1436			}
1437
1438			/* We should already CoW the refcountd extent. */
1439			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1440
1441			/*
1442			 * Assume worst case - that we're writing in
1443			 * the middle of the extent.
1444			 *
1445			 * We can assume that the write proceeds from
1446			 * left to right, in which case the extent
1447			 * insert code is smart enough to coalesce the
1448			 * next splits into the previous records created.
1449			 */
1450			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1451				*extents_to_split = *extents_to_split + 2;
1452		} else if (phys) {
1453			/*
1454			 * Only increment phys if it doesn't describe
1455			 * a hole.
1456			 */
1457			phys++;
1458		}
1459
1460		/*
1461		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1462		 * file that got extended.  w_first_new_cpos tells us
1463		 * where the newly allocated clusters are so we can
1464		 * zero them.
1465		 */
1466		if (desc->c_cpos >= wc->w_first_new_cpos) {
1467			BUG_ON(phys == 0);
1468			desc->c_needs_zero = 1;
1469		}
1470
1471		desc->c_phys = phys;
1472		if (phys == 0) {
1473			desc->c_new = 1;
1474			desc->c_needs_zero = 1;
1475			desc->c_clear_unwritten = 1;
1476			*clusters_to_alloc = *clusters_to_alloc + 1;
1477		}
1478
1479		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480			desc->c_clear_unwritten = 1;
1481			desc->c_needs_zero = 1;
1482		}
1483
1484		ret = ocfs2_unwritten_check(inode, wc, desc);
1485		if (ret) {
1486			mlog_errno(ret);
1487			goto out;
1488		}
1489
1490		num_clusters--;
1491	}
1492
1493	ret = 0;
1494out:
1495	return ret;
1496}
1497
1498static int ocfs2_write_begin_inline(struct address_space *mapping,
1499				    struct inode *inode,
1500				    struct ocfs2_write_ctxt *wc)
1501{
1502	int ret;
1503	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504	struct page *page;
1505	handle_t *handle;
1506	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507
1508	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509	if (IS_ERR(handle)) {
1510		ret = PTR_ERR(handle);
1511		mlog_errno(ret);
1512		goto out;
1513	}
1514
1515	page = find_or_create_page(mapping, 0, GFP_NOFS);
1516	if (!page) {
1517		ocfs2_commit_trans(osb, handle);
1518		ret = -ENOMEM;
1519		mlog_errno(ret);
1520		goto out;
1521	}
1522	/*
1523	 * If we don't set w_num_pages then this page won't get unlocked
1524	 * and freed on cleanup of the write context.
1525	 */
1526	wc->w_pages[0] = wc->w_target_page = page;
1527	wc->w_num_pages = 1;
1528
 
 
 
 
 
 
 
1529	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1530				      OCFS2_JOURNAL_ACCESS_WRITE);
1531	if (ret) {
1532		ocfs2_commit_trans(osb, handle);
1533
1534		mlog_errno(ret);
1535		goto out;
1536	}
1537
1538	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1539		ocfs2_set_inode_data_inline(inode, di);
1540
1541	if (!PageUptodate(page)) {
1542		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1543		if (ret) {
1544			ocfs2_commit_trans(osb, handle);
1545
1546			goto out;
1547		}
1548	}
1549
1550	wc->w_handle = handle;
1551out:
1552	return ret;
1553}
1554
1555int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1556{
1557	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1558
1559	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1560		return 1;
1561	return 0;
1562}
1563
1564static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1565					  struct inode *inode, loff_t pos,
1566					  unsigned len, struct page *mmap_page,
1567					  struct ocfs2_write_ctxt *wc)
1568{
1569	int ret, written = 0;
1570	loff_t end = pos + len;
1571	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1572	struct ocfs2_dinode *di = NULL;
1573
1574	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1575					     len, (unsigned long long)pos,
1576					     oi->ip_dyn_features);
1577
1578	/*
1579	 * Handle inodes which already have inline data 1st.
1580	 */
1581	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1582		if (mmap_page == NULL &&
1583		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1584			goto do_inline_write;
1585
1586		/*
1587		 * The write won't fit - we have to give this inode an
1588		 * inline extent list now.
1589		 */
1590		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1591		if (ret)
1592			mlog_errno(ret);
1593		goto out;
1594	}
1595
1596	/*
1597	 * Check whether the inode can accept inline data.
1598	 */
1599	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1600		return 0;
1601
1602	/*
1603	 * Check whether the write can fit.
1604	 */
1605	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1606	if (mmap_page ||
1607	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1608		return 0;
1609
1610do_inline_write:
1611	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1612	if (ret) {
1613		mlog_errno(ret);
1614		goto out;
1615	}
1616
1617	/*
1618	 * This signals to the caller that the data can be written
1619	 * inline.
1620	 */
1621	written = 1;
1622out:
1623	return written ? written : ret;
1624}
1625
1626/*
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1629 *
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1634 */
1635static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1636					struct buffer_head *di_bh,
1637					loff_t pos, unsigned len,
1638					struct ocfs2_write_ctxt *wc)
1639{
1640	int ret;
1641	loff_t newsize = pos + len;
1642
1643	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644
1645	if (newsize <= i_size_read(inode))
1646		return 0;
1647
1648	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1649	if (ret)
1650		mlog_errno(ret);
1651
1652	/* There is no wc if this is call from direct. */
1653	if (wc)
1654		wc->w_first_new_cpos =
1655			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1656
1657	return ret;
1658}
1659
1660static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1661			   loff_t pos)
1662{
1663	int ret = 0;
1664
1665	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1666	if (pos > i_size_read(inode))
1667		ret = ocfs2_zero_extend(inode, di_bh, pos);
1668
1669	return ret;
1670}
1671
1672int ocfs2_write_begin_nolock(struct address_space *mapping,
1673			     loff_t pos, unsigned len, ocfs2_write_type_t type,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674			     struct page **pagep, void **fsdata,
1675			     struct buffer_head *di_bh, struct page *mmap_page)
1676{
1677	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1678	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1679	struct ocfs2_write_ctxt *wc;
1680	struct inode *inode = mapping->host;
1681	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682	struct ocfs2_dinode *di;
1683	struct ocfs2_alloc_context *data_ac = NULL;
1684	struct ocfs2_alloc_context *meta_ac = NULL;
1685	handle_t *handle;
1686	struct ocfs2_extent_tree et;
1687	int try_free = 1, ret1;
1688
1689try_again:
1690	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1691	if (ret) {
1692		mlog_errno(ret);
1693		return ret;
1694	}
1695
1696	if (ocfs2_supports_inline_data(osb)) {
1697		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1698						     mmap_page, wc);
1699		if (ret == 1) {
1700			ret = 0;
1701			goto success;
1702		}
1703		if (ret < 0) {
1704			mlog_errno(ret);
1705			goto out;
1706		}
1707	}
1708
1709	/* Direct io change i_size late, should not zero tail here. */
1710	if (type != OCFS2_WRITE_DIRECT) {
1711		if (ocfs2_sparse_alloc(osb))
1712			ret = ocfs2_zero_tail(inode, di_bh, pos);
1713		else
1714			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1715							   len, wc);
1716		if (ret) {
1717			mlog_errno(ret);
1718			goto out;
1719		}
1720	}
1721
1722	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1723	if (ret < 0) {
1724		mlog_errno(ret);
1725		goto out;
1726	} else if (ret == 1) {
1727		clusters_need = wc->w_clen;
1728		ret = ocfs2_refcount_cow(inode, di_bh,
1729					 wc->w_cpos, wc->w_clen, UINT_MAX);
1730		if (ret) {
1731			mlog_errno(ret);
1732			goto out;
1733		}
1734	}
1735
1736	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1737					&extents_to_split);
1738	if (ret) {
1739		mlog_errno(ret);
1740		goto out;
1741	}
1742	clusters_need += clusters_to_alloc;
1743
1744	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1745
1746	trace_ocfs2_write_begin_nolock(
1747			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1748			(long long)i_size_read(inode),
1749			le32_to_cpu(di->i_clusters),
1750			pos, len, type, mmap_page,
1751			clusters_to_alloc, extents_to_split);
1752
1753	/*
1754	 * We set w_target_from, w_target_to here so that
1755	 * ocfs2_write_end() knows which range in the target page to
1756	 * write out. An allocation requires that we write the entire
1757	 * cluster range.
1758	 */
1759	if (clusters_to_alloc || extents_to_split) {
1760		/*
1761		 * XXX: We are stretching the limits of
1762		 * ocfs2_lock_allocators(). It greatly over-estimates
1763		 * the work to be done.
1764		 */
1765		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1766					      wc->w_di_bh);
1767		ret = ocfs2_lock_allocators(inode, &et,
1768					    clusters_to_alloc, extents_to_split,
1769					    &data_ac, &meta_ac);
1770		if (ret) {
1771			mlog_errno(ret);
1772			goto out;
1773		}
1774
1775		if (data_ac)
1776			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1777
1778		credits = ocfs2_calc_extend_credits(inode->i_sb,
1779						    &di->id2.i_list);
1780	} else if (type == OCFS2_WRITE_DIRECT)
1781		/* direct write needs not to start trans if no extents alloc. */
1782		goto success;
1783
1784	/*
1785	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1786	 * and non-sparse clusters we just extended.  For non-sparse writes,
1787	 * we know zeros will only be needed in the first and/or last cluster.
1788	 */
1789	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1790			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
 
1791		cluster_of_pages = 1;
1792	else
1793		cluster_of_pages = 0;
1794
1795	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1796
1797	handle = ocfs2_start_trans(osb, credits);
1798	if (IS_ERR(handle)) {
1799		ret = PTR_ERR(handle);
1800		mlog_errno(ret);
1801		goto out;
1802	}
1803
1804	wc->w_handle = handle;
1805
1806	if (clusters_to_alloc) {
1807		ret = dquot_alloc_space_nodirty(inode,
1808			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1809		if (ret)
1810			goto out_commit;
1811	}
1812
 
 
 
1813	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1814				      OCFS2_JOURNAL_ACCESS_WRITE);
1815	if (ret) {
1816		mlog_errno(ret);
1817		goto out_quota;
1818	}
1819
1820	/*
1821	 * Fill our page array first. That way we've grabbed enough so
1822	 * that we can zero and flush if we error after adding the
1823	 * extent.
1824	 */
1825	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1826					 cluster_of_pages, mmap_page);
1827	if (ret && ret != -EAGAIN) {
1828		mlog_errno(ret);
1829		goto out_quota;
1830	}
1831
1832	/*
1833	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1834	 * the target page. In this case, we exit with no error and no target
1835	 * page. This will trigger the caller, page_mkwrite(), to re-try
1836	 * the operation.
1837	 */
1838	if (ret == -EAGAIN) {
1839		BUG_ON(wc->w_target_page);
1840		ret = 0;
1841		goto out_quota;
1842	}
1843
1844	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1845					  len);
1846	if (ret) {
1847		mlog_errno(ret);
1848		goto out_quota;
1849	}
1850
1851	if (data_ac)
1852		ocfs2_free_alloc_context(data_ac);
1853	if (meta_ac)
1854		ocfs2_free_alloc_context(meta_ac);
1855
1856success:
1857	if (pagep)
1858		*pagep = wc->w_target_page;
1859	*fsdata = wc;
1860	return 0;
1861out_quota:
1862	if (clusters_to_alloc)
1863		dquot_free_space(inode,
1864			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1865out_commit:
1866	ocfs2_commit_trans(osb, handle);
1867
1868out:
1869	/*
1870	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1871	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1872	 * to unlock the target page manually to prevent deadlocks when
1873	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1874	 * to VM code.
1875	 */
1876	if (wc->w_target_locked)
1877		unlock_page(mmap_page);
1878
1879	ocfs2_free_write_ctxt(inode, wc);
1880
1881	if (data_ac) {
1882		ocfs2_free_alloc_context(data_ac);
1883		data_ac = NULL;
1884	}
1885	if (meta_ac) {
1886		ocfs2_free_alloc_context(meta_ac);
1887		meta_ac = NULL;
1888	}
1889
1890	if (ret == -ENOSPC && try_free) {
1891		/*
1892		 * Try to free some truncate log so that we can have enough
1893		 * clusters to allocate.
1894		 */
1895		try_free = 0;
1896
1897		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898		if (ret1 == 1)
1899			goto try_again;
1900
1901		if (ret1 < 0)
1902			mlog_errno(ret1);
1903	}
1904
1905	return ret;
1906}
1907
1908static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909			     loff_t pos, unsigned len, unsigned flags,
1910			     struct page **pagep, void **fsdata)
1911{
1912	int ret;
1913	struct buffer_head *di_bh = NULL;
1914	struct inode *inode = mapping->host;
1915
1916	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1917	if (ret) {
1918		mlog_errno(ret);
1919		return ret;
1920	}
1921
1922	/*
1923	 * Take alloc sem here to prevent concurrent lookups. That way
1924	 * the mapping, zeroing and tree manipulation within
1925	 * ocfs2_write() will be safe against ->readpage(). This
1926	 * should also serve to lock out allocation from a shared
1927	 * writeable region.
1928	 */
1929	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
1931	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1932				       pagep, fsdata, di_bh, NULL);
1933	if (ret) {
1934		mlog_errno(ret);
1935		goto out_fail;
1936	}
1937
1938	brelse(di_bh);
1939
1940	return 0;
1941
1942out_fail:
1943	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945	brelse(di_bh);
1946	ocfs2_inode_unlock(inode, 1);
1947
1948	return ret;
1949}
1950
1951static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952				   unsigned len, unsigned *copied,
1953				   struct ocfs2_dinode *di,
1954				   struct ocfs2_write_ctxt *wc)
1955{
1956	void *kaddr;
1957
1958	if (unlikely(*copied < len)) {
1959		if (!PageUptodate(wc->w_target_page)) {
1960			*copied = 0;
1961			return;
1962		}
1963	}
1964
1965	kaddr = kmap_atomic(wc->w_target_page);
1966	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1967	kunmap_atomic(kaddr);
1968
1969	trace_ocfs2_write_end_inline(
1970	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1971	     (unsigned long long)pos, *copied,
1972	     le16_to_cpu(di->id2.i_data.id_count),
1973	     le16_to_cpu(di->i_dyn_features));
1974}
1975
1976int ocfs2_write_end_nolock(struct address_space *mapping,
1977			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
 
1978{
1979	int i, ret;
1980	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1981	struct inode *inode = mapping->host;
1982	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1983	struct ocfs2_write_ctxt *wc = fsdata;
1984	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1985	handle_t *handle = wc->w_handle;
1986	struct page *tmppage;
1987
1988	BUG_ON(!list_empty(&wc->w_unwritten_list));
1989
1990	if (handle) {
1991		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1992				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1993		if (ret) {
1994			copied = ret;
1995			mlog_errno(ret);
1996			goto out;
1997		}
1998	}
1999
2000	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2001		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2002		goto out_write_size;
2003	}
2004
2005	if (unlikely(copied < len) && wc->w_target_page) {
2006		if (!PageUptodate(wc->w_target_page))
2007			copied = 0;
2008
2009		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2010				       start+len);
2011	}
2012	if (wc->w_target_page)
2013		flush_dcache_page(wc->w_target_page);
2014
2015	for(i = 0; i < wc->w_num_pages; i++) {
2016		tmppage = wc->w_pages[i];
2017
2018		/* This is the direct io target page. */
2019		if (tmppage == NULL)
2020			continue;
2021
2022		if (tmppage == wc->w_target_page) {
2023			from = wc->w_target_from;
2024			to = wc->w_target_to;
2025
2026			BUG_ON(from > PAGE_SIZE ||
2027			       to > PAGE_SIZE ||
2028			       to < from);
2029		} else {
2030			/*
2031			 * Pages adjacent to the target (if any) imply
2032			 * a hole-filling write in which case we want
2033			 * to flush their entire range.
2034			 */
2035			from = 0;
2036			to = PAGE_SIZE;
2037		}
2038
2039		if (page_has_buffers(tmppage)) {
2040			if (handle && ocfs2_should_order_data(inode))
2041				ocfs2_jbd2_file_inode(handle, inode);
2042			block_commit_write(tmppage, from, to);
2043		}
2044	}
2045
2046out_write_size:
2047	/* Direct io do not update i_size here. */
2048	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2049		pos += copied;
2050		if (pos > i_size_read(inode)) {
2051			i_size_write(inode, pos);
2052			mark_inode_dirty(inode);
2053		}
2054		inode->i_blocks = ocfs2_inode_sector_count(inode);
2055		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2056		inode->i_mtime = inode->i_ctime = current_time(inode);
2057		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2058		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2059		ocfs2_update_inode_fsync_trans(handle, inode, 1);
2060	}
2061	if (handle)
2062		ocfs2_journal_dirty(handle, wc->w_di_bh);
2063
2064out:
2065	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2066	 * lock, or it will cause a deadlock since journal commit threads holds
2067	 * this lock and will ask for the page lock when flushing the data.
2068	 * put it here to preserve the unlock order.
2069	 */
2070	ocfs2_unlock_pages(wc);
2071
2072	if (handle)
2073		ocfs2_commit_trans(osb, handle);
2074
2075	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2076
2077	brelse(wc->w_di_bh);
2078	kfree(wc);
2079
2080	return copied;
2081}
2082
2083static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2084			   loff_t pos, unsigned len, unsigned copied,
2085			   struct page *page, void *fsdata)
2086{
2087	int ret;
2088	struct inode *inode = mapping->host;
2089
2090	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2091
2092	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2093	ocfs2_inode_unlock(inode, 1);
2094
2095	return ret;
2096}
2097
2098struct ocfs2_dio_write_ctxt {
2099	struct list_head	dw_zero_list;
2100	unsigned		dw_zero_count;
2101	int			dw_orphaned;
2102	pid_t			dw_writer_pid;
2103};
2104
2105static struct ocfs2_dio_write_ctxt *
2106ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2107{
2108	struct ocfs2_dio_write_ctxt *dwc = NULL;
2109
2110	if (bh->b_private)
2111		return bh->b_private;
2112
2113	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2114	if (dwc == NULL)
2115		return NULL;
2116	INIT_LIST_HEAD(&dwc->dw_zero_list);
2117	dwc->dw_zero_count = 0;
2118	dwc->dw_orphaned = 0;
2119	dwc->dw_writer_pid = task_pid_nr(current);
2120	bh->b_private = dwc;
2121	*alloc = 1;
2122
2123	return dwc;
2124}
2125
2126static void ocfs2_dio_free_write_ctx(struct inode *inode,
2127				     struct ocfs2_dio_write_ctxt *dwc)
2128{
2129	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2130	kfree(dwc);
2131}
2132
2133/*
2134 * TODO: Make this into a generic get_blocks function.
2135 *
2136 * From do_direct_io in direct-io.c:
2137 *  "So what we do is to permit the ->get_blocks function to populate
2138 *   bh.b_size with the size of IO which is permitted at this offset and
2139 *   this i_blkbits."
2140 *
2141 * This function is called directly from get_more_blocks in direct-io.c.
2142 *
2143 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2144 * 					fs_count, map_bh, dio->rw == WRITE);
2145 */
2146static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2147			       struct buffer_head *bh_result, int create)
2148{
2149	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2150	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2151	struct ocfs2_write_ctxt *wc;
2152	struct ocfs2_write_cluster_desc *desc = NULL;
2153	struct ocfs2_dio_write_ctxt *dwc = NULL;
2154	struct buffer_head *di_bh = NULL;
2155	u64 p_blkno;
2156	loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2157	unsigned len, total_len = bh_result->b_size;
2158	int ret = 0, first_get_block = 0;
2159
2160	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2161	len = min(total_len, len);
2162
2163	mlog(0, "get block of %lu at %llu:%u req %u\n",
2164			inode->i_ino, pos, len, total_len);
2165
2166	/*
2167	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168	 * we may need to add it to orphan dir. So can not fall to fast path
2169	 * while file size will be changed.
2170	 */
2171	if (pos + total_len <= i_size_read(inode)) {
2172
2173		/* This is the fast path for re-write. */
2174		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2175		if (buffer_mapped(bh_result) &&
2176		    !buffer_new(bh_result) &&
2177		    ret == 0)
2178			goto out;
2179
2180		/* Clear state set by ocfs2_get_block. */
2181		bh_result->b_state = 0;
2182	}
2183
2184	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185	if (unlikely(dwc == NULL)) {
2186		ret = -ENOMEM;
2187		mlog_errno(ret);
2188		goto out;
2189	}
2190
2191	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193	    !dwc->dw_orphaned) {
2194		/*
2195		 * when we are going to alloc extents beyond file size, add the
2196		 * inode to orphan dir, so we can recall those spaces when
2197		 * system crashed during write.
2198		 */
2199		ret = ocfs2_add_inode_to_orphan(osb, inode);
2200		if (ret < 0) {
2201			mlog_errno(ret);
2202			goto out;
2203		}
2204		dwc->dw_orphaned = 1;
2205	}
2206
2207	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208	if (ret) {
2209		mlog_errno(ret);
2210		goto out;
2211	}
2212
2213	down_write(&oi->ip_alloc_sem);
2214
2215	if (first_get_block) {
2216		if (ocfs2_sparse_alloc(osb))
2217			ret = ocfs2_zero_tail(inode, di_bh, pos);
2218		else
2219			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220							   total_len, NULL);
2221		if (ret < 0) {
2222			mlog_errno(ret);
2223			goto unlock;
2224		}
2225	}
2226
2227	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228				       OCFS2_WRITE_DIRECT, NULL,
2229				       (void **)&wc, di_bh, NULL);
2230	if (ret) {
2231		mlog_errno(ret);
2232		goto unlock;
2233	}
2234
2235	desc = &wc->w_desc[0];
2236
2237	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238	BUG_ON(p_blkno == 0);
2239	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241	map_bh(bh_result, inode->i_sb, p_blkno);
2242	bh_result->b_size = len;
2243	if (desc->c_needs_zero)
2244		set_buffer_new(bh_result);
2245
2246	/* May sleep in end_io. It should not happen in a irq context. So defer
2247	 * it to dio work queue. */
2248	set_buffer_defer_completion(bh_result);
2249
2250	if (!list_empty(&wc->w_unwritten_list)) {
2251		struct ocfs2_unwritten_extent *ue = NULL;
2252
2253		ue = list_first_entry(&wc->w_unwritten_list,
2254				      struct ocfs2_unwritten_extent,
2255				      ue_node);
2256		BUG_ON(ue->ue_cpos != desc->c_cpos);
2257		/* The physical address may be 0, fill it. */
2258		ue->ue_phys = desc->c_phys;
2259
2260		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2261		dwc->dw_zero_count += wc->w_unwritten_count;
2262	}
2263
2264	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2265	BUG_ON(ret != len);
2266	ret = 0;
2267unlock:
2268	up_write(&oi->ip_alloc_sem);
2269	ocfs2_inode_unlock(inode, 1);
2270	brelse(di_bh);
2271out:
2272	if (ret < 0)
2273		ret = -EIO;
2274	return ret;
2275}
2276
2277static int ocfs2_dio_end_io_write(struct inode *inode,
2278				  struct ocfs2_dio_write_ctxt *dwc,
2279				  loff_t offset,
2280				  ssize_t bytes)
2281{
2282	struct ocfs2_cached_dealloc_ctxt dealloc;
2283	struct ocfs2_extent_tree et;
2284	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2285	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2286	struct ocfs2_unwritten_extent *ue = NULL;
2287	struct buffer_head *di_bh = NULL;
2288	struct ocfs2_dinode *di;
2289	struct ocfs2_alloc_context *data_ac = NULL;
2290	struct ocfs2_alloc_context *meta_ac = NULL;
2291	handle_t *handle = NULL;
2292	loff_t end = offset + bytes;
2293	int ret = 0, credits = 0, locked = 0;
2294
2295	ocfs2_init_dealloc_ctxt(&dealloc);
2296
2297	/* We do clear unwritten, delete orphan, change i_size here. If neither
2298	 * of these happen, we can skip all this. */
2299	if (list_empty(&dwc->dw_zero_list) &&
2300	    end <= i_size_read(inode) &&
2301	    !dwc->dw_orphaned)
2302		goto out;
2303
2304	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2305	 * are in that context. */
2306	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2307		inode_lock(inode);
2308		locked = 1;
2309	}
2310
2311	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312	if (ret < 0) {
2313		mlog_errno(ret);
2314		goto out;
2315	}
2316
2317	down_write(&oi->ip_alloc_sem);
2318
2319	/* Delete orphan before acquire i_mutex. */
2320	if (dwc->dw_orphaned) {
2321		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2322
2323		end = end > i_size_read(inode) ? end : 0;
2324
2325		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2326				!!end, end);
2327		if (ret < 0)
2328			mlog_errno(ret);
2329	}
2330
2331	di = (struct ocfs2_dinode *)di_bh->b_data;
2332
2333	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2334
2335	/* Attach dealloc with extent tree in case that we may reuse extents
2336	 * which are already unlinked from current extent tree due to extent
2337	 * rotation and merging.
2338	 */
2339	et.et_dealloc = &dealloc;
2340
2341	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2342				    &data_ac, &meta_ac);
2343	if (ret) {
2344		mlog_errno(ret);
2345		goto unlock;
2346	}
2347
2348	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2349
2350	handle = ocfs2_start_trans(osb, credits);
2351	if (IS_ERR(handle)) {
2352		ret = PTR_ERR(handle);
2353		mlog_errno(ret);
2354		goto unlock;
2355	}
2356	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2357				      OCFS2_JOURNAL_ACCESS_WRITE);
2358	if (ret) {
2359		mlog_errno(ret);
2360		goto commit;
2361	}
2362
2363	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2364		ret = ocfs2_mark_extent_written(inode, &et, handle,
2365						ue->ue_cpos, 1,
2366						ue->ue_phys,
2367						meta_ac, &dealloc);
2368		if (ret < 0) {
2369			mlog_errno(ret);
2370			break;
2371		}
2372	}
2373
2374	if (end > i_size_read(inode)) {
2375		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2376		if (ret < 0)
2377			mlog_errno(ret);
2378	}
2379commit:
2380	ocfs2_commit_trans(osb, handle);
2381unlock:
2382	up_write(&oi->ip_alloc_sem);
2383	ocfs2_inode_unlock(inode, 1);
2384	brelse(di_bh);
2385out:
2386	if (data_ac)
2387		ocfs2_free_alloc_context(data_ac);
2388	if (meta_ac)
2389		ocfs2_free_alloc_context(meta_ac);
2390	ocfs2_run_deallocs(osb, &dealloc);
2391	if (locked)
2392		inode_unlock(inode);
2393	ocfs2_dio_free_write_ctx(inode, dwc);
2394
2395	return ret;
2396}
2397
2398/*
2399 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2400 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2401 * to protect io on one node from truncation on another.
2402 */
2403static int ocfs2_dio_end_io(struct kiocb *iocb,
2404			    loff_t offset,
2405			    ssize_t bytes,
2406			    void *private)
2407{
2408	struct inode *inode = file_inode(iocb->ki_filp);
2409	int level;
2410	int ret = 0;
2411
2412	/* this io's submitter should not have unlocked this before we could */
2413	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2414
2415	if (bytes > 0 && private)
2416		ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
2417
2418	ocfs2_iocb_clear_rw_locked(iocb);
2419
2420	level = ocfs2_iocb_rw_locked_level(iocb);
2421	ocfs2_rw_unlock(inode, level);
2422	return ret;
2423}
2424
2425static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426{
2427	struct file *file = iocb->ki_filp;
2428	struct inode *inode = file->f_mapping->host;
2429	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430	get_block_t *get_block;
2431
2432	/*
2433	 * Fallback to buffered I/O if we see an inode without
2434	 * extents.
2435	 */
2436	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437		return 0;
2438
2439	/* Fallback to buffered I/O if we do not support append dio. */
2440	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441	    !ocfs2_supports_append_dio(osb))
2442		return 0;
2443
2444	if (iov_iter_rw(iter) == READ)
2445		get_block = ocfs2_lock_get_block;
2446	else
2447		get_block = ocfs2_dio_wr_get_block;
2448
2449	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450				    iter, get_block,
2451				    ocfs2_dio_end_io, NULL, 0);
2452}
2453
2454const struct address_space_operations ocfs2_aops = {
2455	.readpage		= ocfs2_readpage,
2456	.readpages		= ocfs2_readpages,
2457	.writepage		= ocfs2_writepage,
2458	.write_begin		= ocfs2_write_begin,
2459	.write_end		= ocfs2_write_end,
2460	.bmap			= ocfs2_bmap,
2461	.direct_IO		= ocfs2_direct_IO,
2462	.invalidatepage		= block_invalidatepage,
2463	.releasepage		= ocfs2_releasepage,
2464	.migratepage		= buffer_migrate_page,
2465	.is_partially_uptodate	= block_is_partially_uptodate,
2466	.error_remove_page	= generic_error_remove_page,
2467};