Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18#include <linux/fsverity.h>
  19
  20#include "send.h"
  21#include "ctree.h"
  22#include "backref.h"
  23#include "locking.h"
  24#include "disk-io.h"
  25#include "btrfs_inode.h"
  26#include "transaction.h"
  27#include "compression.h"
  28#include "xattr.h"
  29#include "print-tree.h"
  30#include "accessors.h"
  31#include "dir-item.h"
  32#include "file-item.h"
  33#include "ioctl.h"
  34#include "verity.h"
  35
  36/*
  37 * Maximum number of references an extent can have in order for us to attempt to
  38 * issue clone operations instead of write operations. This currently exists to
  39 * avoid hitting limitations of the backreference walking code (taking a lot of
  40 * time and using too much memory for extents with large number of references).
  41 */
  42#define SEND_MAX_EXTENT_REFS	1024
  43
  44/*
  45 * A fs_path is a helper to dynamically build path names with unknown size.
  46 * It reallocates the internal buffer on demand.
  47 * It allows fast adding of path elements on the right side (normal path) and
  48 * fast adding to the left side (reversed path). A reversed path can also be
  49 * unreversed if needed.
  50 */
  51struct fs_path {
  52	union {
  53		struct {
  54			char *start;
  55			char *end;
  56
  57			char *buf;
  58			unsigned short buf_len:15;
  59			unsigned short reversed:1;
  60			char inline_buf[];
  61		};
  62		/*
  63		 * Average path length does not exceed 200 bytes, we'll have
  64		 * better packing in the slab and higher chance to satisfy
  65		 * a allocation later during send.
  66		 */
  67		char pad[256];
  68	};
  69};
  70#define FS_PATH_INLINE_SIZE \
  71	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  72
  73
  74/* reused for each extent */
  75struct clone_root {
  76	struct btrfs_root *root;
  77	u64 ino;
  78	u64 offset;
  79	u64 num_bytes;
  80	bool found_ref;
  81};
  82
  83#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  84#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  85
  86/*
  87 * Limit the root_ids array of struct backref_cache_entry to 12 elements.
  88 * This makes the size of a cache entry to be exactly 128 bytes on x86_64.
  89 * The most common case is to have a single root for cloning, which corresponds
  90 * to the send root. Having the user specify more than 11 clone roots is not
  91 * common, and in such rare cases we simply don't use caching if the number of
  92 * cloning roots that lead down to a leaf is more than 12.
  93 */
  94#define SEND_MAX_BACKREF_CACHE_ROOTS 12
  95
  96/*
  97 * Max number of entries in the cache.
  98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, the size in bytes, excluding
  99 * maple tree's internal nodes, is 16K.
 100 */
 101#define SEND_MAX_BACKREF_CACHE_SIZE 128
 102
 103/*
 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
 105 * leaf is accessible and we can use for clone operations.
 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
 107 * x86_64).
 108 */
 109struct backref_cache_entry {
 110	/* List to link to the cache's lru list. */
 111	struct list_head list;
 112	/* The key for this entry in the cache. */
 113	u64 key;
 114	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
 115	/* Number of valid elements in the root_ids array. */
 116	int num_roots;
 117};
 118
 119struct send_ctx {
 120	struct file *send_filp;
 121	loff_t send_off;
 122	char *send_buf;
 123	u32 send_size;
 124	u32 send_max_size;
 125	/*
 126	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
 127	 * command (since protocol v2, data must be the last attribute).
 128	 */
 129	bool put_data;
 130	struct page **send_buf_pages;
 131	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
 132	/* Protocol version compatibility requested */
 133	u32 proto;
 134
 135	struct btrfs_root *send_root;
 136	struct btrfs_root *parent_root;
 137	struct clone_root *clone_roots;
 138	int clone_roots_cnt;
 139
 140	/* current state of the compare_tree call */
 141	struct btrfs_path *left_path;
 142	struct btrfs_path *right_path;
 143	struct btrfs_key *cmp_key;
 144
 145	/*
 146	 * Keep track of the generation of the last transaction that was used
 147	 * for relocating a block group. This is periodically checked in order
 148	 * to detect if a relocation happened since the last check, so that we
 149	 * don't operate on stale extent buffers for nodes (level >= 1) or on
 150	 * stale disk_bytenr values of file extent items.
 151	 */
 152	u64 last_reloc_trans;
 153
 154	/*
 155	 * infos of the currently processed inode. In case of deleted inodes,
 156	 * these are the values from the deleted inode.
 157	 */
 158	u64 cur_ino;
 159	u64 cur_inode_gen;
 160	u64 cur_inode_size;
 161	u64 cur_inode_mode;
 162	u64 cur_inode_rdev;
 163	u64 cur_inode_last_extent;
 164	u64 cur_inode_next_write_offset;
 165	bool cur_inode_new;
 166	bool cur_inode_new_gen;
 167	bool cur_inode_deleted;
 168	bool ignore_cur_inode;
 169	bool cur_inode_needs_verity;
 170	void *verity_descriptor;
 171
 172	u64 send_progress;
 173
 174	struct list_head new_refs;
 175	struct list_head deleted_refs;
 176
 177	struct radix_tree_root name_cache;
 178	struct list_head name_cache_list;
 179	int name_cache_size;
 180
 181	/*
 182	 * The inode we are currently processing. It's not NULL only when we
 183	 * need to issue write commands for data extents from this inode.
 184	 */
 185	struct inode *cur_inode;
 186	struct file_ra_state ra;
 187	u64 page_cache_clear_start;
 188	bool clean_page_cache;
 189
 190	/*
 191	 * We process inodes by their increasing order, so if before an
 192	 * incremental send we reverse the parent/child relationship of
 193	 * directories such that a directory with a lower inode number was
 194	 * the parent of a directory with a higher inode number, and the one
 195	 * becoming the new parent got renamed too, we can't rename/move the
 196	 * directory with lower inode number when we finish processing it - we
 197	 * must process the directory with higher inode number first, then
 198	 * rename/move it and then rename/move the directory with lower inode
 199	 * number. Example follows.
 200	 *
 201	 * Tree state when the first send was performed:
 202	 *
 203	 * .
 204	 * |-- a                   (ino 257)
 205	 *     |-- b               (ino 258)
 206	 *         |
 207	 *         |
 208	 *         |-- c           (ino 259)
 209	 *         |   |-- d       (ino 260)
 210	 *         |
 211	 *         |-- c2          (ino 261)
 212	 *
 213	 * Tree state when the second (incremental) send is performed:
 214	 *
 215	 * .
 216	 * |-- a                   (ino 257)
 217	 *     |-- b               (ino 258)
 218	 *         |-- c2          (ino 261)
 219	 *             |-- d2      (ino 260)
 220	 *                 |-- cc  (ino 259)
 221	 *
 222	 * The sequence of steps that lead to the second state was:
 223	 *
 224	 * mv /a/b/c/d /a/b/c2/d2
 225	 * mv /a/b/c /a/b/c2/d2/cc
 226	 *
 227	 * "c" has lower inode number, but we can't move it (2nd mv operation)
 228	 * before we move "d", which has higher inode number.
 229	 *
 230	 * So we just memorize which move/rename operations must be performed
 231	 * later when their respective parent is processed and moved/renamed.
 232	 */
 233
 234	/* Indexed by parent directory inode number. */
 235	struct rb_root pending_dir_moves;
 236
 237	/*
 238	 * Reverse index, indexed by the inode number of a directory that
 239	 * is waiting for the move/rename of its immediate parent before its
 240	 * own move/rename can be performed.
 241	 */
 242	struct rb_root waiting_dir_moves;
 243
 244	/*
 245	 * A directory that is going to be rm'ed might have a child directory
 246	 * which is in the pending directory moves index above. In this case,
 247	 * the directory can only be removed after the move/rename of its child
 248	 * is performed. Example:
 249	 *
 250	 * Parent snapshot:
 251	 *
 252	 * .                        (ino 256)
 253	 * |-- a/                   (ino 257)
 254	 *     |-- b/               (ino 258)
 255	 *         |-- c/           (ino 259)
 256	 *         |   |-- x/       (ino 260)
 257	 *         |
 258	 *         |-- y/           (ino 261)
 259	 *
 260	 * Send snapshot:
 261	 *
 262	 * .                        (ino 256)
 263	 * |-- a/                   (ino 257)
 264	 *     |-- b/               (ino 258)
 265	 *         |-- YY/          (ino 261)
 266	 *              |-- x/      (ino 260)
 267	 *
 268	 * Sequence of steps that lead to the send snapshot:
 269	 * rm -f /a/b/c/foo.txt
 270	 * mv /a/b/y /a/b/YY
 271	 * mv /a/b/c/x /a/b/YY
 272	 * rmdir /a/b/c
 273	 *
 274	 * When the child is processed, its move/rename is delayed until its
 275	 * parent is processed (as explained above), but all other operations
 276	 * like update utimes, chown, chgrp, etc, are performed and the paths
 277	 * that it uses for those operations must use the orphanized name of
 278	 * its parent (the directory we're going to rm later), so we need to
 279	 * memorize that name.
 280	 *
 281	 * Indexed by the inode number of the directory to be deleted.
 282	 */
 283	struct rb_root orphan_dirs;
 284
 285	struct rb_root rbtree_new_refs;
 286	struct rb_root rbtree_deleted_refs;
 287
 288	struct {
 289		u64 last_reloc_trans;
 290		struct list_head lru_list;
 291		struct maple_tree entries;
 292		/* Number of entries stored in the cache. */
 293		int size;
 294	} backref_cache;
 295};
 296
 297struct pending_dir_move {
 298	struct rb_node node;
 299	struct list_head list;
 300	u64 parent_ino;
 301	u64 ino;
 302	u64 gen;
 303	struct list_head update_refs;
 304};
 305
 306struct waiting_dir_move {
 307	struct rb_node node;
 308	u64 ino;
 309	/*
 310	 * There might be some directory that could not be removed because it
 311	 * was waiting for this directory inode to be moved first. Therefore
 312	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 313	 */
 314	u64 rmdir_ino;
 315	u64 rmdir_gen;
 316	bool orphanized;
 317};
 318
 319struct orphan_dir_info {
 320	struct rb_node node;
 321	u64 ino;
 322	u64 gen;
 323	u64 last_dir_index_offset;
 324};
 325
 326struct name_cache_entry {
 327	struct list_head list;
 328	/*
 329	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
 330	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
 331	 * more then one inum would fall into the same entry, we use radix_list
 332	 * to store the additional entries. radix_list is also used to store
 333	 * entries where two entries have the same inum but different
 334	 * generations.
 335	 */
 336	struct list_head radix_list;
 337	u64 ino;
 338	u64 gen;
 339	u64 parent_ino;
 340	u64 parent_gen;
 341	int ret;
 342	int need_later_update;
 343	int name_len;
 344	char name[];
 345};
 346
 347#define ADVANCE							1
 348#define ADVANCE_ONLY_NEXT					-1
 349
 350enum btrfs_compare_tree_result {
 351	BTRFS_COMPARE_TREE_NEW,
 352	BTRFS_COMPARE_TREE_DELETED,
 353	BTRFS_COMPARE_TREE_CHANGED,
 354	BTRFS_COMPARE_TREE_SAME,
 355};
 356
 357__cold
 358static void inconsistent_snapshot_error(struct send_ctx *sctx,
 359					enum btrfs_compare_tree_result result,
 360					const char *what)
 361{
 362	const char *result_string;
 363
 364	switch (result) {
 365	case BTRFS_COMPARE_TREE_NEW:
 366		result_string = "new";
 367		break;
 368	case BTRFS_COMPARE_TREE_DELETED:
 369		result_string = "deleted";
 370		break;
 371	case BTRFS_COMPARE_TREE_CHANGED:
 372		result_string = "updated";
 373		break;
 374	case BTRFS_COMPARE_TREE_SAME:
 375		ASSERT(0);
 376		result_string = "unchanged";
 377		break;
 378	default:
 379		ASSERT(0);
 380		result_string = "unexpected";
 381	}
 382
 383	btrfs_err(sctx->send_root->fs_info,
 384		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 385		  result_string, what, sctx->cmp_key->objectid,
 386		  sctx->send_root->root_key.objectid,
 387		  (sctx->parent_root ?
 388		   sctx->parent_root->root_key.objectid : 0));
 389}
 390
 391__maybe_unused
 392static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
 393{
 394	switch (sctx->proto) {
 395	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
 396	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
 397	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
 398	default: return false;
 399	}
 400}
 401
 402static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 403
 404static struct waiting_dir_move *
 405get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 406
 407static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
 408
 409static int need_send_hole(struct send_ctx *sctx)
 410{
 411	return (sctx->parent_root && !sctx->cur_inode_new &&
 412		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 413		S_ISREG(sctx->cur_inode_mode));
 414}
 415
 416static void fs_path_reset(struct fs_path *p)
 417{
 418	if (p->reversed) {
 419		p->start = p->buf + p->buf_len - 1;
 420		p->end = p->start;
 421		*p->start = 0;
 422	} else {
 423		p->start = p->buf;
 424		p->end = p->start;
 425		*p->start = 0;
 426	}
 427}
 428
 429static struct fs_path *fs_path_alloc(void)
 430{
 431	struct fs_path *p;
 432
 433	p = kmalloc(sizeof(*p), GFP_KERNEL);
 434	if (!p)
 435		return NULL;
 436	p->reversed = 0;
 437	p->buf = p->inline_buf;
 438	p->buf_len = FS_PATH_INLINE_SIZE;
 439	fs_path_reset(p);
 440	return p;
 441}
 442
 443static struct fs_path *fs_path_alloc_reversed(void)
 444{
 445	struct fs_path *p;
 446
 447	p = fs_path_alloc();
 448	if (!p)
 449		return NULL;
 450	p->reversed = 1;
 451	fs_path_reset(p);
 452	return p;
 453}
 454
 455static void fs_path_free(struct fs_path *p)
 456{
 457	if (!p)
 458		return;
 459	if (p->buf != p->inline_buf)
 460		kfree(p->buf);
 461	kfree(p);
 462}
 463
 464static int fs_path_len(struct fs_path *p)
 465{
 466	return p->end - p->start;
 467}
 468
 469static int fs_path_ensure_buf(struct fs_path *p, int len)
 470{
 471	char *tmp_buf;
 472	int path_len;
 473	int old_buf_len;
 474
 475	len++;
 476
 477	if (p->buf_len >= len)
 478		return 0;
 479
 480	if (len > PATH_MAX) {
 481		WARN_ON(1);
 482		return -ENOMEM;
 483	}
 484
 485	path_len = p->end - p->start;
 486	old_buf_len = p->buf_len;
 487
 488	/*
 489	 * Allocate to the next largest kmalloc bucket size, to let
 490	 * the fast path happen most of the time.
 491	 */
 492	len = kmalloc_size_roundup(len);
 493	/*
 494	 * First time the inline_buf does not suffice
 495	 */
 496	if (p->buf == p->inline_buf) {
 497		tmp_buf = kmalloc(len, GFP_KERNEL);
 498		if (tmp_buf)
 499			memcpy(tmp_buf, p->buf, old_buf_len);
 500	} else {
 501		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 502	}
 503	if (!tmp_buf)
 504		return -ENOMEM;
 505	p->buf = tmp_buf;
 506	p->buf_len = len;
 507
 508	if (p->reversed) {
 509		tmp_buf = p->buf + old_buf_len - path_len - 1;
 510		p->end = p->buf + p->buf_len - 1;
 511		p->start = p->end - path_len;
 512		memmove(p->start, tmp_buf, path_len + 1);
 513	} else {
 514		p->start = p->buf;
 515		p->end = p->start + path_len;
 516	}
 517	return 0;
 518}
 519
 520static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 521				   char **prepared)
 522{
 523	int ret;
 524	int new_len;
 525
 526	new_len = p->end - p->start + name_len;
 527	if (p->start != p->end)
 528		new_len++;
 529	ret = fs_path_ensure_buf(p, new_len);
 530	if (ret < 0)
 531		goto out;
 532
 533	if (p->reversed) {
 534		if (p->start != p->end)
 535			*--p->start = '/';
 536		p->start -= name_len;
 537		*prepared = p->start;
 538	} else {
 539		if (p->start != p->end)
 540			*p->end++ = '/';
 541		*prepared = p->end;
 542		p->end += name_len;
 543		*p->end = 0;
 544	}
 545
 546out:
 547	return ret;
 548}
 549
 550static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 551{
 552	int ret;
 553	char *prepared;
 554
 555	ret = fs_path_prepare_for_add(p, name_len, &prepared);
 556	if (ret < 0)
 557		goto out;
 558	memcpy(prepared, name, name_len);
 559
 560out:
 561	return ret;
 562}
 563
 564static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 565{
 566	int ret;
 567	char *prepared;
 568
 569	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 570	if (ret < 0)
 571		goto out;
 572	memcpy(prepared, p2->start, p2->end - p2->start);
 573
 574out:
 575	return ret;
 576}
 577
 578static int fs_path_add_from_extent_buffer(struct fs_path *p,
 579					  struct extent_buffer *eb,
 580					  unsigned long off, int len)
 581{
 582	int ret;
 583	char *prepared;
 584
 585	ret = fs_path_prepare_for_add(p, len, &prepared);
 586	if (ret < 0)
 587		goto out;
 588
 589	read_extent_buffer(eb, prepared, off, len);
 590
 591out:
 592	return ret;
 593}
 594
 595static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 596{
 597	p->reversed = from->reversed;
 598	fs_path_reset(p);
 599
 600	return fs_path_add_path(p, from);
 601}
 602
 603static void fs_path_unreverse(struct fs_path *p)
 604{
 605	char *tmp;
 606	int len;
 607
 608	if (!p->reversed)
 609		return;
 610
 611	tmp = p->start;
 612	len = p->end - p->start;
 613	p->start = p->buf;
 614	p->end = p->start + len;
 615	memmove(p->start, tmp, len + 1);
 616	p->reversed = 0;
 617}
 618
 619static struct btrfs_path *alloc_path_for_send(void)
 620{
 621	struct btrfs_path *path;
 622
 623	path = btrfs_alloc_path();
 624	if (!path)
 625		return NULL;
 626	path->search_commit_root = 1;
 627	path->skip_locking = 1;
 628	path->need_commit_sem = 1;
 629	return path;
 630}
 631
 632static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 633{
 634	int ret;
 635	u32 pos = 0;
 636
 637	while (pos < len) {
 638		ret = kernel_write(filp, buf + pos, len - pos, off);
 639		if (ret < 0)
 640			return ret;
 641		if (ret == 0)
 642			return -EIO;
 643		pos += ret;
 644	}
 645
 646	return 0;
 647}
 648
 649static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 650{
 651	struct btrfs_tlv_header *hdr;
 652	int total_len = sizeof(*hdr) + len;
 653	int left = sctx->send_max_size - sctx->send_size;
 654
 655	if (WARN_ON_ONCE(sctx->put_data))
 656		return -EINVAL;
 657
 658	if (unlikely(left < total_len))
 659		return -EOVERFLOW;
 660
 661	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 662	put_unaligned_le16(attr, &hdr->tlv_type);
 663	put_unaligned_le16(len, &hdr->tlv_len);
 664	memcpy(hdr + 1, data, len);
 665	sctx->send_size += total_len;
 666
 667	return 0;
 668}
 669
 670#define TLV_PUT_DEFINE_INT(bits) \
 671	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
 672			u##bits attr, u##bits value)			\
 673	{								\
 674		__le##bits __tmp = cpu_to_le##bits(value);		\
 675		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
 676	}
 677
 678TLV_PUT_DEFINE_INT(8)
 679TLV_PUT_DEFINE_INT(32)
 680TLV_PUT_DEFINE_INT(64)
 681
 682static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 683			  const char *str, int len)
 684{
 685	if (len == -1)
 686		len = strlen(str);
 687	return tlv_put(sctx, attr, str, len);
 688}
 689
 690static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 691			const u8 *uuid)
 692{
 693	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 694}
 695
 696static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 697				  struct extent_buffer *eb,
 698				  struct btrfs_timespec *ts)
 699{
 700	struct btrfs_timespec bts;
 701	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 702	return tlv_put(sctx, attr, &bts, sizeof(bts));
 703}
 704
 705
 706#define TLV_PUT(sctx, attrtype, data, attrlen) \
 707	do { \
 708		ret = tlv_put(sctx, attrtype, data, attrlen); \
 709		if (ret < 0) \
 710			goto tlv_put_failure; \
 711	} while (0)
 712
 713#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 714	do { \
 715		ret = tlv_put_u##bits(sctx, attrtype, value); \
 716		if (ret < 0) \
 717			goto tlv_put_failure; \
 718	} while (0)
 719
 720#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 721#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 722#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 723#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 724#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 725	do { \
 726		ret = tlv_put_string(sctx, attrtype, str, len); \
 727		if (ret < 0) \
 728			goto tlv_put_failure; \
 729	} while (0)
 730#define TLV_PUT_PATH(sctx, attrtype, p) \
 731	do { \
 732		ret = tlv_put_string(sctx, attrtype, p->start, \
 733			p->end - p->start); \
 734		if (ret < 0) \
 735			goto tlv_put_failure; \
 736	} while(0)
 737#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 738	do { \
 739		ret = tlv_put_uuid(sctx, attrtype, uuid); \
 740		if (ret < 0) \
 741			goto tlv_put_failure; \
 742	} while (0)
 743#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 744	do { \
 745		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 746		if (ret < 0) \
 747			goto tlv_put_failure; \
 748	} while (0)
 749
 750static int send_header(struct send_ctx *sctx)
 751{
 752	struct btrfs_stream_header hdr;
 753
 754	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 755	hdr.version = cpu_to_le32(sctx->proto);
 756	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 757					&sctx->send_off);
 758}
 759
 760/*
 761 * For each command/item we want to send to userspace, we call this function.
 762 */
 763static int begin_cmd(struct send_ctx *sctx, int cmd)
 764{
 765	struct btrfs_cmd_header *hdr;
 766
 767	if (WARN_ON(!sctx->send_buf))
 768		return -EINVAL;
 769
 770	BUG_ON(sctx->send_size);
 771
 772	sctx->send_size += sizeof(*hdr);
 773	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 774	put_unaligned_le16(cmd, &hdr->cmd);
 775
 776	return 0;
 777}
 778
 779static int send_cmd(struct send_ctx *sctx)
 780{
 781	int ret;
 782	struct btrfs_cmd_header *hdr;
 783	u32 crc;
 784
 785	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 786	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
 787	put_unaligned_le32(0, &hdr->crc);
 788
 789	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 790	put_unaligned_le32(crc, &hdr->crc);
 791
 792	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 793					&sctx->send_off);
 794
 795	sctx->send_size = 0;
 796	sctx->put_data = false;
 797
 798	return ret;
 799}
 800
 801/*
 802 * Sends a move instruction to user space
 803 */
 804static int send_rename(struct send_ctx *sctx,
 805		     struct fs_path *from, struct fs_path *to)
 806{
 807	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 808	int ret;
 809
 810	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 811
 812	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 813	if (ret < 0)
 814		goto out;
 815
 816	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 817	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 818
 819	ret = send_cmd(sctx);
 820
 821tlv_put_failure:
 822out:
 823	return ret;
 824}
 825
 826/*
 827 * Sends a link instruction to user space
 828 */
 829static int send_link(struct send_ctx *sctx,
 830		     struct fs_path *path, struct fs_path *lnk)
 831{
 832	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 833	int ret;
 834
 835	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 836
 837	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 838	if (ret < 0)
 839		goto out;
 840
 841	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 842	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 843
 844	ret = send_cmd(sctx);
 845
 846tlv_put_failure:
 847out:
 848	return ret;
 849}
 850
 851/*
 852 * Sends an unlink instruction to user space
 853 */
 854static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 855{
 856	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 857	int ret;
 858
 859	btrfs_debug(fs_info, "send_unlink %s", path->start);
 860
 861	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 862	if (ret < 0)
 863		goto out;
 864
 865	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 866
 867	ret = send_cmd(sctx);
 868
 869tlv_put_failure:
 870out:
 871	return ret;
 872}
 873
 874/*
 875 * Sends a rmdir instruction to user space
 876 */
 877static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 878{
 879	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 880	int ret;
 881
 882	btrfs_debug(fs_info, "send_rmdir %s", path->start);
 883
 884	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 885	if (ret < 0)
 886		goto out;
 887
 888	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 889
 890	ret = send_cmd(sctx);
 891
 892tlv_put_failure:
 893out:
 894	return ret;
 895}
 896
 897struct btrfs_inode_info {
 898	u64 size;
 899	u64 gen;
 900	u64 mode;
 901	u64 uid;
 902	u64 gid;
 903	u64 rdev;
 904	u64 fileattr;
 905	u64 nlink;
 906};
 907
 908/*
 909 * Helper function to retrieve some fields from an inode item.
 910 */
 911static int get_inode_info(struct btrfs_root *root, u64 ino,
 912			  struct btrfs_inode_info *info)
 913{
 914	int ret;
 915	struct btrfs_path *path;
 916	struct btrfs_inode_item *ii;
 917	struct btrfs_key key;
 918
 919	path = alloc_path_for_send();
 920	if (!path)
 921		return -ENOMEM;
 922
 923	key.objectid = ino;
 924	key.type = BTRFS_INODE_ITEM_KEY;
 925	key.offset = 0;
 926	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 927	if (ret) {
 928		if (ret > 0)
 929			ret = -ENOENT;
 930		goto out;
 931	}
 932
 933	if (!info)
 934		goto out;
 935
 936	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 937			struct btrfs_inode_item);
 938	info->size = btrfs_inode_size(path->nodes[0], ii);
 939	info->gen = btrfs_inode_generation(path->nodes[0], ii);
 940	info->mode = btrfs_inode_mode(path->nodes[0], ii);
 941	info->uid = btrfs_inode_uid(path->nodes[0], ii);
 942	info->gid = btrfs_inode_gid(path->nodes[0], ii);
 943	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
 944	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
 945	/*
 946	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
 947	 * otherwise logically split to 32/32 parts.
 948	 */
 949	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
 950
 951out:
 952	btrfs_free_path(path);
 953	return ret;
 954}
 955
 956static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
 957{
 958	int ret;
 959	struct btrfs_inode_info info;
 960
 961	if (!gen)
 962		return -EPERM;
 963
 964	ret = get_inode_info(root, ino, &info);
 965	if (!ret)
 966		*gen = info.gen;
 967	return ret;
 968}
 969
 970typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 971				   struct fs_path *p,
 972				   void *ctx);
 973
 974/*
 975 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 976 * btrfs_inode_extref.
 977 * The iterate callback may return a non zero value to stop iteration. This can
 978 * be a negative value for error codes or 1 to simply stop it.
 979 *
 980 * path must point to the INODE_REF or INODE_EXTREF when called.
 981 */
 982static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 983			     struct btrfs_key *found_key, int resolve,
 984			     iterate_inode_ref_t iterate, void *ctx)
 985{
 986	struct extent_buffer *eb = path->nodes[0];
 987	struct btrfs_inode_ref *iref;
 988	struct btrfs_inode_extref *extref;
 989	struct btrfs_path *tmp_path;
 990	struct fs_path *p;
 991	u32 cur = 0;
 992	u32 total;
 993	int slot = path->slots[0];
 994	u32 name_len;
 995	char *start;
 996	int ret = 0;
 997	int num = 0;
 998	int index;
 999	u64 dir;
1000	unsigned long name_off;
1001	unsigned long elem_size;
1002	unsigned long ptr;
1003
1004	p = fs_path_alloc_reversed();
1005	if (!p)
1006		return -ENOMEM;
1007
1008	tmp_path = alloc_path_for_send();
1009	if (!tmp_path) {
1010		fs_path_free(p);
1011		return -ENOMEM;
1012	}
1013
1014
1015	if (found_key->type == BTRFS_INODE_REF_KEY) {
1016		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1017						    struct btrfs_inode_ref);
1018		total = btrfs_item_size(eb, slot);
1019		elem_size = sizeof(*iref);
1020	} else {
1021		ptr = btrfs_item_ptr_offset(eb, slot);
1022		total = btrfs_item_size(eb, slot);
1023		elem_size = sizeof(*extref);
1024	}
1025
1026	while (cur < total) {
1027		fs_path_reset(p);
1028
1029		if (found_key->type == BTRFS_INODE_REF_KEY) {
1030			iref = (struct btrfs_inode_ref *)(ptr + cur);
1031			name_len = btrfs_inode_ref_name_len(eb, iref);
1032			name_off = (unsigned long)(iref + 1);
1033			index = btrfs_inode_ref_index(eb, iref);
1034			dir = found_key->offset;
1035		} else {
1036			extref = (struct btrfs_inode_extref *)(ptr + cur);
1037			name_len = btrfs_inode_extref_name_len(eb, extref);
1038			name_off = (unsigned long)&extref->name;
1039			index = btrfs_inode_extref_index(eb, extref);
1040			dir = btrfs_inode_extref_parent(eb, extref);
1041		}
1042
1043		if (resolve) {
1044			start = btrfs_ref_to_path(root, tmp_path, name_len,
1045						  name_off, eb, dir,
1046						  p->buf, p->buf_len);
1047			if (IS_ERR(start)) {
1048				ret = PTR_ERR(start);
1049				goto out;
1050			}
1051			if (start < p->buf) {
1052				/* overflow , try again with larger buffer */
1053				ret = fs_path_ensure_buf(p,
1054						p->buf_len + p->buf - start);
1055				if (ret < 0)
1056					goto out;
1057				start = btrfs_ref_to_path(root, tmp_path,
1058							  name_len, name_off,
1059							  eb, dir,
1060							  p->buf, p->buf_len);
1061				if (IS_ERR(start)) {
1062					ret = PTR_ERR(start);
1063					goto out;
1064				}
1065				BUG_ON(start < p->buf);
1066			}
1067			p->start = start;
1068		} else {
1069			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1070							     name_len);
1071			if (ret < 0)
1072				goto out;
1073		}
1074
1075		cur += elem_size + name_len;
1076		ret = iterate(num, dir, index, p, ctx);
1077		if (ret)
1078			goto out;
1079		num++;
1080	}
1081
1082out:
1083	btrfs_free_path(tmp_path);
1084	fs_path_free(p);
1085	return ret;
1086}
1087
1088typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1089				  const char *name, int name_len,
1090				  const char *data, int data_len,
1091				  void *ctx);
1092
1093/*
1094 * Helper function to iterate the entries in ONE btrfs_dir_item.
1095 * The iterate callback may return a non zero value to stop iteration. This can
1096 * be a negative value for error codes or 1 to simply stop it.
1097 *
1098 * path must point to the dir item when called.
1099 */
1100static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1101			    iterate_dir_item_t iterate, void *ctx)
1102{
1103	int ret = 0;
1104	struct extent_buffer *eb;
1105	struct btrfs_dir_item *di;
1106	struct btrfs_key di_key;
1107	char *buf = NULL;
1108	int buf_len;
1109	u32 name_len;
1110	u32 data_len;
1111	u32 cur;
1112	u32 len;
1113	u32 total;
1114	int slot;
1115	int num;
1116
1117	/*
1118	 * Start with a small buffer (1 page). If later we end up needing more
1119	 * space, which can happen for xattrs on a fs with a leaf size greater
1120	 * then the page size, attempt to increase the buffer. Typically xattr
1121	 * values are small.
1122	 */
1123	buf_len = PATH_MAX;
1124	buf = kmalloc(buf_len, GFP_KERNEL);
1125	if (!buf) {
1126		ret = -ENOMEM;
1127		goto out;
1128	}
1129
1130	eb = path->nodes[0];
1131	slot = path->slots[0];
1132	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1133	cur = 0;
1134	len = 0;
1135	total = btrfs_item_size(eb, slot);
1136
1137	num = 0;
1138	while (cur < total) {
1139		name_len = btrfs_dir_name_len(eb, di);
1140		data_len = btrfs_dir_data_len(eb, di);
1141		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1142
1143		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1144			if (name_len > XATTR_NAME_MAX) {
1145				ret = -ENAMETOOLONG;
1146				goto out;
1147			}
1148			if (name_len + data_len >
1149					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1150				ret = -E2BIG;
1151				goto out;
1152			}
1153		} else {
1154			/*
1155			 * Path too long
1156			 */
1157			if (name_len + data_len > PATH_MAX) {
1158				ret = -ENAMETOOLONG;
1159				goto out;
1160			}
1161		}
1162
1163		if (name_len + data_len > buf_len) {
1164			buf_len = name_len + data_len;
1165			if (is_vmalloc_addr(buf)) {
1166				vfree(buf);
1167				buf = NULL;
1168			} else {
1169				char *tmp = krealloc(buf, buf_len,
1170						GFP_KERNEL | __GFP_NOWARN);
1171
1172				if (!tmp)
1173					kfree(buf);
1174				buf = tmp;
1175			}
1176			if (!buf) {
1177				buf = kvmalloc(buf_len, GFP_KERNEL);
1178				if (!buf) {
1179					ret = -ENOMEM;
1180					goto out;
1181				}
1182			}
1183		}
1184
1185		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1186				name_len + data_len);
1187
1188		len = sizeof(*di) + name_len + data_len;
1189		di = (struct btrfs_dir_item *)((char *)di + len);
1190		cur += len;
1191
1192		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1193			      data_len, ctx);
1194		if (ret < 0)
1195			goto out;
1196		if (ret) {
1197			ret = 0;
1198			goto out;
1199		}
1200
1201		num++;
1202	}
1203
1204out:
1205	kvfree(buf);
1206	return ret;
1207}
1208
1209static int __copy_first_ref(int num, u64 dir, int index,
1210			    struct fs_path *p, void *ctx)
1211{
1212	int ret;
1213	struct fs_path *pt = ctx;
1214
1215	ret = fs_path_copy(pt, p);
1216	if (ret < 0)
1217		return ret;
1218
1219	/* we want the first only */
1220	return 1;
1221}
1222
1223/*
1224 * Retrieve the first path of an inode. If an inode has more then one
1225 * ref/hardlink, this is ignored.
1226 */
1227static int get_inode_path(struct btrfs_root *root,
1228			  u64 ino, struct fs_path *path)
1229{
1230	int ret;
1231	struct btrfs_key key, found_key;
1232	struct btrfs_path *p;
1233
1234	p = alloc_path_for_send();
1235	if (!p)
1236		return -ENOMEM;
1237
1238	fs_path_reset(path);
1239
1240	key.objectid = ino;
1241	key.type = BTRFS_INODE_REF_KEY;
1242	key.offset = 0;
1243
1244	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1245	if (ret < 0)
1246		goto out;
1247	if (ret) {
1248		ret = 1;
1249		goto out;
1250	}
1251	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1252	if (found_key.objectid != ino ||
1253	    (found_key.type != BTRFS_INODE_REF_KEY &&
1254	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1255		ret = -ENOENT;
1256		goto out;
1257	}
1258
1259	ret = iterate_inode_ref(root, p, &found_key, 1,
1260				__copy_first_ref, path);
1261	if (ret < 0)
1262		goto out;
1263	ret = 0;
1264
1265out:
1266	btrfs_free_path(p);
1267	return ret;
1268}
1269
1270struct backref_ctx {
1271	struct send_ctx *sctx;
1272
1273	/* number of total found references */
1274	u64 found;
1275
1276	/*
1277	 * used for clones found in send_root. clones found behind cur_objectid
1278	 * and cur_offset are not considered as allowed clones.
1279	 */
1280	u64 cur_objectid;
1281	u64 cur_offset;
1282
1283	/* may be truncated in case it's the last extent in a file */
1284	u64 extent_len;
1285
1286	/* The bytenr the file extent item we are processing refers to. */
1287	u64 bytenr;
1288	/* The owner (root id) of the data backref for the current extent. */
1289	u64 backref_owner;
1290	/* The offset of the data backref for the current extent. */
1291	u64 backref_offset;
1292};
1293
1294static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1295{
1296	u64 root = (u64)(uintptr_t)key;
1297	const struct clone_root *cr = elt;
1298
1299	if (root < cr->root->root_key.objectid)
1300		return -1;
1301	if (root > cr->root->root_key.objectid)
1302		return 1;
1303	return 0;
1304}
1305
1306static int __clone_root_cmp_sort(const void *e1, const void *e2)
1307{
1308	const struct clone_root *cr1 = e1;
1309	const struct clone_root *cr2 = e2;
1310
1311	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1312		return -1;
1313	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1314		return 1;
1315	return 0;
1316}
1317
1318/*
1319 * Called for every backref that is found for the current extent.
1320 * Results are collected in sctx->clone_roots->ino/offset.
1321 */
1322static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1323			    void *ctx_)
1324{
1325	struct backref_ctx *bctx = ctx_;
1326	struct clone_root *clone_root;
1327
1328	/* First check if the root is in the list of accepted clone sources */
1329	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1330			     bctx->sctx->clone_roots_cnt,
1331			     sizeof(struct clone_root),
1332			     __clone_root_cmp_bsearch);
1333	if (!clone_root)
1334		return 0;
1335
1336	/* This is our own reference, bail out as we can't clone from it. */
1337	if (clone_root->root == bctx->sctx->send_root &&
1338	    ino == bctx->cur_objectid &&
1339	    offset == bctx->cur_offset)
1340		return 0;
1341
1342	/*
1343	 * Make sure we don't consider clones from send_root that are
1344	 * behind the current inode/offset.
1345	 */
1346	if (clone_root->root == bctx->sctx->send_root) {
1347		/*
1348		 * If the source inode was not yet processed we can't issue a
1349		 * clone operation, as the source extent does not exist yet at
1350		 * the destination of the stream.
1351		 */
1352		if (ino > bctx->cur_objectid)
1353			return 0;
1354		/*
1355		 * We clone from the inode currently being sent as long as the
1356		 * source extent is already processed, otherwise we could try
1357		 * to clone from an extent that does not exist yet at the
1358		 * destination of the stream.
1359		 */
1360		if (ino == bctx->cur_objectid &&
1361		    offset + bctx->extent_len >
1362		    bctx->sctx->cur_inode_next_write_offset)
1363			return 0;
1364	}
1365
1366	bctx->found++;
1367	clone_root->found_ref = true;
1368
1369	/*
1370	 * If the given backref refers to a file extent item with a larger
1371	 * number of bytes than what we found before, use the new one so that
1372	 * we clone more optimally and end up doing less writes and getting
1373	 * less exclusive, non-shared extents at the destination.
1374	 */
1375	if (num_bytes > clone_root->num_bytes) {
1376		clone_root->ino = ino;
1377		clone_root->offset = offset;
1378		clone_root->num_bytes = num_bytes;
1379
1380		/*
1381		 * Found a perfect candidate, so there's no need to continue
1382		 * backref walking.
1383		 */
1384		if (num_bytes >= bctx->extent_len)
1385			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1386	}
1387
1388	return 0;
1389}
1390
1391static void empty_backref_cache(struct send_ctx *sctx)
1392{
1393	struct backref_cache_entry *entry;
1394	struct backref_cache_entry *tmp;
1395
1396	list_for_each_entry_safe(entry, tmp, &sctx->backref_cache.lru_list, list)
1397		kfree(entry);
1398
1399	INIT_LIST_HEAD(&sctx->backref_cache.lru_list);
1400	mtree_destroy(&sctx->backref_cache.entries);
1401	sctx->backref_cache.size = 0;
1402}
1403
1404static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1405				 const u64 **root_ids_ret, int *root_count_ret)
1406{
1407	struct backref_ctx *bctx = ctx;
1408	struct send_ctx *sctx = bctx->sctx;
1409	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1410	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1411	struct backref_cache_entry *entry;
1412
1413	if (sctx->backref_cache.size == 0)
1414		return false;
1415
1416	/*
1417	 * If relocation happened since we first filled the cache, then we must
1418	 * empty the cache and can not use it, because even though we operate on
1419	 * read-only roots, their leaves and nodes may have been reallocated and
1420	 * now be used for different nodes/leaves of the same tree or some other
1421	 * tree.
1422	 *
1423	 * We are called from iterate_extent_inodes() while either holding a
1424	 * transaction handle or holding fs_info->commit_root_sem, so no need
1425	 * to take any lock here.
1426	 */
1427	if (fs_info->last_reloc_trans > sctx->backref_cache.last_reloc_trans) {
1428		empty_backref_cache(sctx);
1429		return false;
1430	}
1431
1432	entry = mtree_load(&sctx->backref_cache.entries, key);
1433	if (!entry)
1434		return false;
1435
1436	*root_ids_ret = entry->root_ids;
1437	*root_count_ret = entry->num_roots;
1438	list_move_tail(&entry->list, &sctx->backref_cache.lru_list);
1439
1440	return true;
1441}
1442
1443static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1444				void *ctx)
1445{
1446	struct backref_ctx *bctx = ctx;
1447	struct send_ctx *sctx = bctx->sctx;
1448	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1449	struct backref_cache_entry *new_entry;
1450	struct ulist_iterator uiter;
1451	struct ulist_node *node;
1452	int ret;
1453
1454	/*
1455	 * We're called while holding a transaction handle or while holding
1456	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1457	 * NOFS allocation.
1458	 */
1459	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1460	/* No worries, cache is optional. */
1461	if (!new_entry)
1462		return;
1463
1464	new_entry->key = leaf_bytenr >> fs_info->sectorsize_bits;
1465	new_entry->num_roots = 0;
1466	ULIST_ITER_INIT(&uiter);
1467	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1468		const u64 root_id = node->val;
1469		struct clone_root *root;
1470
1471		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1472			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1473			       __clone_root_cmp_bsearch);
1474		if (!root)
1475			continue;
1476
1477		/* Too many roots, just exit, no worries as caching is optional. */
1478		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1479			kfree(new_entry);
1480			return;
1481		}
1482
1483		new_entry->root_ids[new_entry->num_roots] = root_id;
1484		new_entry->num_roots++;
1485	}
1486
1487	/*
1488	 * We may have not added any roots to the new cache entry, which means
1489	 * none of the roots is part of the list of roots from which we are
1490	 * allowed to clone. Cache the new entry as it's still useful to avoid
1491	 * backref walking to determine which roots have a path to the leaf.
1492	 */
1493
1494	if (sctx->backref_cache.size >= SEND_MAX_BACKREF_CACHE_SIZE) {
1495		struct backref_cache_entry *lru_entry;
1496		struct backref_cache_entry *mt_entry;
1497
1498		lru_entry = list_first_entry(&sctx->backref_cache.lru_list,
1499					     struct backref_cache_entry, list);
1500		mt_entry = mtree_erase(&sctx->backref_cache.entries, lru_entry->key);
1501		ASSERT(mt_entry == lru_entry);
1502		list_del(&mt_entry->list);
1503		kfree(mt_entry);
1504		sctx->backref_cache.size--;
1505	}
1506
1507	ret = mtree_insert(&sctx->backref_cache.entries, new_entry->key,
1508			   new_entry, GFP_NOFS);
1509	ASSERT(ret == 0 || ret == -ENOMEM);
1510	if (ret) {
1511		/* Caching is optional, no worries. */
1512		kfree(new_entry);
1513		return;
1514	}
1515
1516	list_add_tail(&new_entry->list, &sctx->backref_cache.lru_list);
1517
1518	/*
1519	 * We are called from iterate_extent_inodes() while either holding a
1520	 * transaction handle or holding fs_info->commit_root_sem, so no need
1521	 * to take any lock here.
1522	 */
1523	if (sctx->backref_cache.size == 0)
1524		sctx->backref_cache.last_reloc_trans = fs_info->last_reloc_trans;
1525
1526	sctx->backref_cache.size++;
1527}
1528
1529static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1530			     const struct extent_buffer *leaf, void *ctx)
1531{
1532	const u64 refs = btrfs_extent_refs(leaf, ei);
1533	const struct backref_ctx *bctx = ctx;
1534	const struct send_ctx *sctx = bctx->sctx;
1535
1536	if (bytenr == bctx->bytenr) {
1537		const u64 flags = btrfs_extent_flags(leaf, ei);
1538
1539		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1540			return -EUCLEAN;
1541
1542		/*
1543		 * If we have only one reference and only the send root as a
1544		 * clone source - meaning no clone roots were given in the
1545		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1546		 * it's our reference and there's no point in doing backref
1547		 * walking which is expensive, so exit early.
1548		 */
1549		if (refs == 1 && sctx->clone_roots_cnt == 1)
1550			return -ENOENT;
1551	}
1552
1553	/*
1554	 * Backreference walking (iterate_extent_inodes() below) is currently
1555	 * too expensive when an extent has a large number of references, both
1556	 * in time spent and used memory. So for now just fallback to write
1557	 * operations instead of clone operations when an extent has more than
1558	 * a certain amount of references.
1559	 */
1560	if (refs > SEND_MAX_EXTENT_REFS)
1561		return -ENOENT;
1562
1563	return 0;
1564}
1565
1566static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1567{
1568	const struct backref_ctx *bctx = ctx;
1569
1570	if (ino == bctx->cur_objectid &&
1571	    root == bctx->backref_owner &&
1572	    offset == bctx->backref_offset)
1573		return true;
1574
1575	return false;
1576}
1577
1578/*
1579 * Given an inode, offset and extent item, it finds a good clone for a clone
1580 * instruction. Returns -ENOENT when none could be found. The function makes
1581 * sure that the returned clone is usable at the point where sending is at the
1582 * moment. This means, that no clones are accepted which lie behind the current
1583 * inode+offset.
1584 *
1585 * path must point to the extent item when called.
1586 */
1587static int find_extent_clone(struct send_ctx *sctx,
1588			     struct btrfs_path *path,
1589			     u64 ino, u64 data_offset,
1590			     u64 ino_size,
1591			     struct clone_root **found)
1592{
1593	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1594	int ret;
1595	int extent_type;
1596	u64 logical;
1597	u64 disk_byte;
1598	u64 num_bytes;
1599	struct btrfs_file_extent_item *fi;
1600	struct extent_buffer *eb = path->nodes[0];
1601	struct backref_ctx backref_ctx = { 0 };
1602	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1603	struct clone_root *cur_clone_root;
1604	int compressed;
1605	u32 i;
1606
1607	/*
1608	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1609	 * so we don't do anything here because clone operations can not clone
1610	 * to a range beyond i_size without increasing the i_size of the
1611	 * destination inode.
1612	 */
1613	if (data_offset >= ino_size)
1614		return 0;
1615
1616	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1617	extent_type = btrfs_file_extent_type(eb, fi);
1618	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1619		return -ENOENT;
1620
1621	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1622	if (disk_byte == 0)
1623		return -ENOENT;
1624
1625	compressed = btrfs_file_extent_compression(eb, fi);
1626	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1627	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1628
1629	/*
1630	 * Setup the clone roots.
1631	 */
1632	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1633		cur_clone_root = sctx->clone_roots + i;
1634		cur_clone_root->ino = (u64)-1;
1635		cur_clone_root->offset = 0;
1636		cur_clone_root->num_bytes = 0;
1637		cur_clone_root->found_ref = false;
1638	}
1639
1640	backref_ctx.sctx = sctx;
1641	backref_ctx.cur_objectid = ino;
1642	backref_ctx.cur_offset = data_offset;
1643	backref_ctx.bytenr = disk_byte;
1644	/*
1645	 * Use the header owner and not the send root's id, because in case of a
1646	 * snapshot we can have shared subtrees.
1647	 */
1648	backref_ctx.backref_owner = btrfs_header_owner(eb);
1649	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1650
1651	/*
1652	 * The last extent of a file may be too large due to page alignment.
1653	 * We need to adjust extent_len in this case so that the checks in
1654	 * iterate_backrefs() work.
1655	 */
1656	if (data_offset + num_bytes >= ino_size)
1657		backref_ctx.extent_len = ino_size - data_offset;
1658	else
1659		backref_ctx.extent_len = num_bytes;
1660
1661	/*
1662	 * Now collect all backrefs.
1663	 */
1664	backref_walk_ctx.bytenr = disk_byte;
1665	if (compressed == BTRFS_COMPRESS_NONE)
1666		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1667	backref_walk_ctx.fs_info = fs_info;
1668	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1669	backref_walk_ctx.cache_store = store_backref_cache;
1670	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1671	backref_walk_ctx.check_extent_item = check_extent_item;
1672	backref_walk_ctx.user_ctx = &backref_ctx;
1673
1674	/*
1675	 * If have a single clone root, then it's the send root and we can tell
1676	 * the backref walking code to skip our own backref and not resolve it,
1677	 * since we can not use it for cloning - the source and destination
1678	 * ranges can't overlap and in case the leaf is shared through a subtree
1679	 * due to snapshots, we can't use those other roots since they are not
1680	 * in the list of clone roots.
1681	 */
1682	if (sctx->clone_roots_cnt == 1)
1683		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1684
1685	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1686				    &backref_ctx);
1687	if (ret < 0)
1688		return ret;
1689
1690	down_read(&fs_info->commit_root_sem);
1691	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1692		/*
1693		 * A transaction commit for a transaction in which block group
1694		 * relocation was done just happened.
1695		 * The disk_bytenr of the file extent item we processed is
1696		 * possibly stale, referring to the extent's location before
1697		 * relocation. So act as if we haven't found any clone sources
1698		 * and fallback to write commands, which will read the correct
1699		 * data from the new extent location. Otherwise we will fail
1700		 * below because we haven't found our own back reference or we
1701		 * could be getting incorrect sources in case the old extent
1702		 * was already reallocated after the relocation.
1703		 */
1704		up_read(&fs_info->commit_root_sem);
1705		return -ENOENT;
1706	}
1707	up_read(&fs_info->commit_root_sem);
1708
1709	btrfs_debug(fs_info,
1710		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1711		    data_offset, ino, num_bytes, logical);
1712
1713	if (!backref_ctx.found) {
1714		btrfs_debug(fs_info, "no clones found");
1715		return -ENOENT;
1716	}
1717
1718	cur_clone_root = NULL;
1719	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1720		struct clone_root *clone_root = &sctx->clone_roots[i];
1721
1722		if (!clone_root->found_ref)
1723			continue;
1724
1725		/*
1726		 * Choose the root from which we can clone more bytes, to
1727		 * minimize write operations and therefore have more extent
1728		 * sharing at the destination (the same as in the source).
1729		 */
1730		if (!cur_clone_root ||
1731		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1732			cur_clone_root = clone_root;
1733
1734			/*
1735			 * We found an optimal clone candidate (any inode from
1736			 * any root is fine), so we're done.
1737			 */
1738			if (clone_root->num_bytes >= backref_ctx.extent_len)
1739				break;
1740		}
1741	}
1742
1743	if (cur_clone_root) {
1744		*found = cur_clone_root;
1745		ret = 0;
1746	} else {
1747		ret = -ENOENT;
1748	}
1749
1750	return ret;
1751}
1752
1753static int read_symlink(struct btrfs_root *root,
1754			u64 ino,
1755			struct fs_path *dest)
1756{
1757	int ret;
1758	struct btrfs_path *path;
1759	struct btrfs_key key;
1760	struct btrfs_file_extent_item *ei;
1761	u8 type;
1762	u8 compression;
1763	unsigned long off;
1764	int len;
1765
1766	path = alloc_path_for_send();
1767	if (!path)
1768		return -ENOMEM;
1769
1770	key.objectid = ino;
1771	key.type = BTRFS_EXTENT_DATA_KEY;
1772	key.offset = 0;
1773	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1774	if (ret < 0)
1775		goto out;
1776	if (ret) {
1777		/*
1778		 * An empty symlink inode. Can happen in rare error paths when
1779		 * creating a symlink (transaction committed before the inode
1780		 * eviction handler removed the symlink inode items and a crash
1781		 * happened in between or the subvol was snapshoted in between).
1782		 * Print an informative message to dmesg/syslog so that the user
1783		 * can delete the symlink.
1784		 */
1785		btrfs_err(root->fs_info,
1786			  "Found empty symlink inode %llu at root %llu",
1787			  ino, root->root_key.objectid);
1788		ret = -EIO;
1789		goto out;
1790	}
1791
1792	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1793			struct btrfs_file_extent_item);
1794	type = btrfs_file_extent_type(path->nodes[0], ei);
1795	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1796	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1797	BUG_ON(compression);
1798
1799	off = btrfs_file_extent_inline_start(ei);
1800	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1801
1802	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1803
1804out:
1805	btrfs_free_path(path);
1806	return ret;
1807}
1808
1809/*
1810 * Helper function to generate a file name that is unique in the root of
1811 * send_root and parent_root. This is used to generate names for orphan inodes.
1812 */
1813static int gen_unique_name(struct send_ctx *sctx,
1814			   u64 ino, u64 gen,
1815			   struct fs_path *dest)
1816{
1817	int ret = 0;
1818	struct btrfs_path *path;
1819	struct btrfs_dir_item *di;
1820	char tmp[64];
1821	int len;
1822	u64 idx = 0;
1823
1824	path = alloc_path_for_send();
1825	if (!path)
1826		return -ENOMEM;
1827
1828	while (1) {
1829		struct fscrypt_str tmp_name;
1830
1831		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1832				ino, gen, idx);
1833		ASSERT(len < sizeof(tmp));
1834		tmp_name.name = tmp;
1835		tmp_name.len = strlen(tmp);
1836
1837		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1838				path, BTRFS_FIRST_FREE_OBJECTID,
1839				&tmp_name, 0);
1840		btrfs_release_path(path);
1841		if (IS_ERR(di)) {
1842			ret = PTR_ERR(di);
1843			goto out;
1844		}
1845		if (di) {
1846			/* not unique, try again */
1847			idx++;
1848			continue;
1849		}
1850
1851		if (!sctx->parent_root) {
1852			/* unique */
1853			ret = 0;
1854			break;
1855		}
1856
1857		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1858				path, BTRFS_FIRST_FREE_OBJECTID,
1859				&tmp_name, 0);
1860		btrfs_release_path(path);
1861		if (IS_ERR(di)) {
1862			ret = PTR_ERR(di);
1863			goto out;
1864		}
1865		if (di) {
1866			/* not unique, try again */
1867			idx++;
1868			continue;
1869		}
1870		/* unique */
1871		break;
1872	}
1873
1874	ret = fs_path_add(dest, tmp, strlen(tmp));
1875
1876out:
1877	btrfs_free_path(path);
1878	return ret;
1879}
1880
1881enum inode_state {
1882	inode_state_no_change,
1883	inode_state_will_create,
1884	inode_state_did_create,
1885	inode_state_will_delete,
1886	inode_state_did_delete,
1887};
1888
1889static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1890{
1891	int ret;
1892	int left_ret;
1893	int right_ret;
1894	u64 left_gen;
1895	u64 right_gen;
1896	struct btrfs_inode_info info;
1897
1898	ret = get_inode_info(sctx->send_root, ino, &info);
1899	if (ret < 0 && ret != -ENOENT)
1900		goto out;
1901	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1902	left_gen = info.gen;
1903
1904	if (!sctx->parent_root) {
1905		right_ret = -ENOENT;
1906	} else {
1907		ret = get_inode_info(sctx->parent_root, ino, &info);
1908		if (ret < 0 && ret != -ENOENT)
1909			goto out;
1910		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1911		right_gen = info.gen;
1912	}
1913
1914	if (!left_ret && !right_ret) {
1915		if (left_gen == gen && right_gen == gen) {
1916			ret = inode_state_no_change;
1917		} else if (left_gen == gen) {
1918			if (ino < sctx->send_progress)
1919				ret = inode_state_did_create;
1920			else
1921				ret = inode_state_will_create;
1922		} else if (right_gen == gen) {
1923			if (ino < sctx->send_progress)
1924				ret = inode_state_did_delete;
1925			else
1926				ret = inode_state_will_delete;
1927		} else  {
1928			ret = -ENOENT;
1929		}
1930	} else if (!left_ret) {
1931		if (left_gen == gen) {
1932			if (ino < sctx->send_progress)
1933				ret = inode_state_did_create;
1934			else
1935				ret = inode_state_will_create;
1936		} else {
1937			ret = -ENOENT;
1938		}
1939	} else if (!right_ret) {
1940		if (right_gen == gen) {
1941			if (ino < sctx->send_progress)
1942				ret = inode_state_did_delete;
1943			else
1944				ret = inode_state_will_delete;
1945		} else {
1946			ret = -ENOENT;
1947		}
1948	} else {
1949		ret = -ENOENT;
1950	}
1951
1952out:
1953	return ret;
1954}
1955
1956static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1957{
1958	int ret;
1959
1960	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1961		return 1;
1962
1963	ret = get_cur_inode_state(sctx, ino, gen);
1964	if (ret < 0)
1965		goto out;
1966
1967	if (ret == inode_state_no_change ||
1968	    ret == inode_state_did_create ||
1969	    ret == inode_state_will_delete)
1970		ret = 1;
1971	else
1972		ret = 0;
1973
1974out:
1975	return ret;
1976}
1977
1978/*
1979 * Helper function to lookup a dir item in a dir.
1980 */
1981static int lookup_dir_item_inode(struct btrfs_root *root,
1982				 u64 dir, const char *name, int name_len,
1983				 u64 *found_inode)
1984{
1985	int ret = 0;
1986	struct btrfs_dir_item *di;
1987	struct btrfs_key key;
1988	struct btrfs_path *path;
1989	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1990
1991	path = alloc_path_for_send();
1992	if (!path)
1993		return -ENOMEM;
1994
1995	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1996	if (IS_ERR_OR_NULL(di)) {
1997		ret = di ? PTR_ERR(di) : -ENOENT;
1998		goto out;
1999	}
2000	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2001	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2002		ret = -ENOENT;
2003		goto out;
2004	}
2005	*found_inode = key.objectid;
2006
2007out:
2008	btrfs_free_path(path);
2009	return ret;
2010}
2011
2012/*
2013 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2014 * generation of the parent dir and the name of the dir entry.
2015 */
2016static int get_first_ref(struct btrfs_root *root, u64 ino,
2017			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2018{
2019	int ret;
2020	struct btrfs_key key;
2021	struct btrfs_key found_key;
2022	struct btrfs_path *path;
2023	int len;
2024	u64 parent_dir;
2025
2026	path = alloc_path_for_send();
2027	if (!path)
2028		return -ENOMEM;
2029
2030	key.objectid = ino;
2031	key.type = BTRFS_INODE_REF_KEY;
2032	key.offset = 0;
2033
2034	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2035	if (ret < 0)
2036		goto out;
2037	if (!ret)
2038		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2039				path->slots[0]);
2040	if (ret || found_key.objectid != ino ||
2041	    (found_key.type != BTRFS_INODE_REF_KEY &&
2042	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2043		ret = -ENOENT;
2044		goto out;
2045	}
2046
2047	if (found_key.type == BTRFS_INODE_REF_KEY) {
2048		struct btrfs_inode_ref *iref;
2049		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2050				      struct btrfs_inode_ref);
2051		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2052		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2053						     (unsigned long)(iref + 1),
2054						     len);
2055		parent_dir = found_key.offset;
2056	} else {
2057		struct btrfs_inode_extref *extref;
2058		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2059					struct btrfs_inode_extref);
2060		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2061		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2062					(unsigned long)&extref->name, len);
2063		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2064	}
2065	if (ret < 0)
2066		goto out;
2067	btrfs_release_path(path);
2068
2069	if (dir_gen) {
2070		ret = get_inode_gen(root, parent_dir, dir_gen);
2071		if (ret < 0)
2072			goto out;
2073	}
2074
2075	*dir = parent_dir;
2076
2077out:
2078	btrfs_free_path(path);
2079	return ret;
2080}
2081
2082static int is_first_ref(struct btrfs_root *root,
2083			u64 ino, u64 dir,
2084			const char *name, int name_len)
2085{
2086	int ret;
2087	struct fs_path *tmp_name;
2088	u64 tmp_dir;
2089
2090	tmp_name = fs_path_alloc();
2091	if (!tmp_name)
2092		return -ENOMEM;
2093
2094	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2095	if (ret < 0)
2096		goto out;
2097
2098	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2099		ret = 0;
2100		goto out;
2101	}
2102
2103	ret = !memcmp(tmp_name->start, name, name_len);
2104
2105out:
2106	fs_path_free(tmp_name);
2107	return ret;
2108}
2109
2110/*
2111 * Used by process_recorded_refs to determine if a new ref would overwrite an
2112 * already existing ref. In case it detects an overwrite, it returns the
2113 * inode/gen in who_ino/who_gen.
2114 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2115 * to make sure later references to the overwritten inode are possible.
2116 * Orphanizing is however only required for the first ref of an inode.
2117 * process_recorded_refs does an additional is_first_ref check to see if
2118 * orphanizing is really required.
2119 */
2120static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2121			      const char *name, int name_len,
2122			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2123{
2124	int ret = 0;
2125	u64 gen;
2126	u64 other_inode = 0;
2127	struct btrfs_inode_info info;
2128
2129	if (!sctx->parent_root)
2130		goto out;
2131
2132	ret = is_inode_existent(sctx, dir, dir_gen);
2133	if (ret <= 0)
2134		goto out;
2135
2136	/*
2137	 * If we have a parent root we need to verify that the parent dir was
2138	 * not deleted and then re-created, if it was then we have no overwrite
2139	 * and we can just unlink this entry.
2140	 */
2141	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
2142		ret = get_inode_gen(sctx->parent_root, dir, &gen);
2143		if (ret < 0 && ret != -ENOENT)
2144			goto out;
2145		if (ret) {
2146			ret = 0;
2147			goto out;
2148		}
2149		if (gen != dir_gen)
2150			goto out;
2151	}
2152
2153	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2154				    &other_inode);
2155	if (ret < 0 && ret != -ENOENT)
2156		goto out;
2157	if (ret) {
2158		ret = 0;
2159		goto out;
2160	}
2161
2162	/*
2163	 * Check if the overwritten ref was already processed. If yes, the ref
2164	 * was already unlinked/moved, so we can safely assume that we will not
2165	 * overwrite anything at this point in time.
2166	 */
2167	if (other_inode > sctx->send_progress ||
2168	    is_waiting_for_move(sctx, other_inode)) {
2169		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2170		if (ret < 0)
2171			goto out;
2172
2173		ret = 1;
2174		*who_ino = other_inode;
2175		*who_gen = info.gen;
2176		*who_mode = info.mode;
2177	} else {
2178		ret = 0;
2179	}
2180
2181out:
2182	return ret;
2183}
2184
2185/*
2186 * Checks if the ref was overwritten by an already processed inode. This is
2187 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2188 * thus the orphan name needs be used.
2189 * process_recorded_refs also uses it to avoid unlinking of refs that were
2190 * overwritten.
2191 */
2192static int did_overwrite_ref(struct send_ctx *sctx,
2193			    u64 dir, u64 dir_gen,
2194			    u64 ino, u64 ino_gen,
2195			    const char *name, int name_len)
2196{
2197	int ret = 0;
2198	u64 gen;
2199	u64 ow_inode;
2200
2201	if (!sctx->parent_root)
2202		goto out;
2203
2204	ret = is_inode_existent(sctx, dir, dir_gen);
2205	if (ret <= 0)
2206		goto out;
2207
2208	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
2209		ret = get_inode_gen(sctx->send_root, dir, &gen);
2210		if (ret < 0 && ret != -ENOENT)
2211			goto out;
2212		if (ret) {
2213			ret = 0;
2214			goto out;
2215		}
2216		if (gen != dir_gen)
2217			goto out;
2218	}
2219
2220	/* check if the ref was overwritten by another ref */
2221	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2222				    &ow_inode);
2223	if (ret < 0 && ret != -ENOENT)
2224		goto out;
2225	if (ret) {
2226		/* was never and will never be overwritten */
2227		ret = 0;
2228		goto out;
2229	}
2230
2231	ret = get_inode_gen(sctx->send_root, ow_inode, &gen);
2232	if (ret < 0)
2233		goto out;
2234
2235	if (ow_inode == ino && gen == ino_gen) {
2236		ret = 0;
2237		goto out;
2238	}
2239
2240	/*
2241	 * We know that it is or will be overwritten. Check this now.
2242	 * The current inode being processed might have been the one that caused
2243	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2244	 * the current inode being processed.
2245	 */
2246	if ((ow_inode < sctx->send_progress) ||
2247	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
2248	     gen == sctx->cur_inode_gen))
2249		ret = 1;
2250	else
2251		ret = 0;
2252
2253out:
2254	return ret;
2255}
2256
2257/*
2258 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2259 * that got overwritten. This is used by process_recorded_refs to determine
2260 * if it has to use the path as returned by get_cur_path or the orphan name.
2261 */
2262static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2263{
2264	int ret = 0;
2265	struct fs_path *name = NULL;
2266	u64 dir;
2267	u64 dir_gen;
2268
2269	if (!sctx->parent_root)
2270		goto out;
2271
2272	name = fs_path_alloc();
2273	if (!name)
2274		return -ENOMEM;
2275
2276	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2277	if (ret < 0)
2278		goto out;
2279
2280	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2281			name->start, fs_path_len(name));
2282
2283out:
2284	fs_path_free(name);
2285	return ret;
2286}
2287
2288/*
2289 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2290 * so we need to do some special handling in case we have clashes. This function
2291 * takes care of this with the help of name_cache_entry::radix_list.
2292 * In case of error, nce is kfreed.
2293 */
2294static int name_cache_insert(struct send_ctx *sctx,
2295			     struct name_cache_entry *nce)
2296{
2297	int ret = 0;
2298	struct list_head *nce_head;
2299
2300	nce_head = radix_tree_lookup(&sctx->name_cache,
2301			(unsigned long)nce->ino);
2302	if (!nce_head) {
2303		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2304		if (!nce_head) {
2305			kfree(nce);
2306			return -ENOMEM;
2307		}
2308		INIT_LIST_HEAD(nce_head);
2309
2310		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2311		if (ret < 0) {
2312			kfree(nce_head);
2313			kfree(nce);
2314			return ret;
2315		}
2316	}
2317	list_add_tail(&nce->radix_list, nce_head);
2318	list_add_tail(&nce->list, &sctx->name_cache_list);
2319	sctx->name_cache_size++;
2320
2321	return ret;
2322}
2323
2324static void name_cache_delete(struct send_ctx *sctx,
2325			      struct name_cache_entry *nce)
2326{
2327	struct list_head *nce_head;
2328
2329	nce_head = radix_tree_lookup(&sctx->name_cache,
2330			(unsigned long)nce->ino);
2331	if (!nce_head) {
2332		btrfs_err(sctx->send_root->fs_info,
2333	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2334			nce->ino, sctx->name_cache_size);
2335	}
2336
2337	list_del(&nce->radix_list);
2338	list_del(&nce->list);
2339	sctx->name_cache_size--;
2340
2341	/*
2342	 * We may not get to the final release of nce_head if the lookup fails
2343	 */
2344	if (nce_head && list_empty(nce_head)) {
2345		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2346		kfree(nce_head);
2347	}
2348}
2349
2350static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2351						    u64 ino, u64 gen)
2352{
2353	struct list_head *nce_head;
2354	struct name_cache_entry *cur;
2355
2356	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2357	if (!nce_head)
2358		return NULL;
2359
2360	list_for_each_entry(cur, nce_head, radix_list) {
2361		if (cur->ino == ino && cur->gen == gen)
2362			return cur;
2363	}
2364	return NULL;
2365}
2366
2367/*
2368 * Remove some entries from the beginning of name_cache_list.
2369 */
2370static void name_cache_clean_unused(struct send_ctx *sctx)
2371{
2372	struct name_cache_entry *nce;
2373
2374	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2375		return;
2376
2377	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2378		nce = list_entry(sctx->name_cache_list.next,
2379				struct name_cache_entry, list);
2380		name_cache_delete(sctx, nce);
2381		kfree(nce);
2382	}
2383}
2384
2385static void name_cache_free(struct send_ctx *sctx)
2386{
2387	struct name_cache_entry *nce;
2388
2389	while (!list_empty(&sctx->name_cache_list)) {
2390		nce = list_entry(sctx->name_cache_list.next,
2391				struct name_cache_entry, list);
2392		name_cache_delete(sctx, nce);
2393		kfree(nce);
2394	}
2395}
2396
2397/*
2398 * Used by get_cur_path for each ref up to the root.
2399 * Returns 0 if it succeeded.
2400 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2401 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2402 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2403 * Returns <0 in case of error.
2404 */
2405static int __get_cur_name_and_parent(struct send_ctx *sctx,
2406				     u64 ino, u64 gen,
2407				     u64 *parent_ino,
2408				     u64 *parent_gen,
2409				     struct fs_path *dest)
2410{
2411	int ret;
2412	int nce_ret;
2413	struct name_cache_entry *nce = NULL;
2414
2415	/*
2416	 * First check if we already did a call to this function with the same
2417	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2418	 * return the cached result.
2419	 */
2420	nce = name_cache_search(sctx, ino, gen);
2421	if (nce) {
2422		if (ino < sctx->send_progress && nce->need_later_update) {
2423			name_cache_delete(sctx, nce);
2424			kfree(nce);
2425			nce = NULL;
2426		} else {
2427			/*
2428			 * Removes the entry from the list and adds it back to
2429			 * the end.  This marks the entry as recently used so
2430			 * that name_cache_clean_unused does not remove it.
2431			 */
2432			list_move_tail(&nce->list, &sctx->name_cache_list);
2433
2434			*parent_ino = nce->parent_ino;
2435			*parent_gen = nce->parent_gen;
2436			ret = fs_path_add(dest, nce->name, nce->name_len);
2437			if (ret < 0)
2438				goto out;
2439			ret = nce->ret;
2440			goto out;
2441		}
2442	}
2443
2444	/*
2445	 * If the inode is not existent yet, add the orphan name and return 1.
2446	 * This should only happen for the parent dir that we determine in
2447	 * record_new_ref_if_needed().
2448	 */
2449	ret = is_inode_existent(sctx, ino, gen);
2450	if (ret < 0)
2451		goto out;
2452
2453	if (!ret) {
2454		ret = gen_unique_name(sctx, ino, gen, dest);
2455		if (ret < 0)
2456			goto out;
2457		ret = 1;
2458		goto out_cache;
2459	}
2460
2461	/*
2462	 * Depending on whether the inode was already processed or not, use
2463	 * send_root or parent_root for ref lookup.
2464	 */
2465	if (ino < sctx->send_progress)
2466		ret = get_first_ref(sctx->send_root, ino,
2467				    parent_ino, parent_gen, dest);
2468	else
2469		ret = get_first_ref(sctx->parent_root, ino,
2470				    parent_ino, parent_gen, dest);
2471	if (ret < 0)
2472		goto out;
2473
2474	/*
2475	 * Check if the ref was overwritten by an inode's ref that was processed
2476	 * earlier. If yes, treat as orphan and return 1.
2477	 */
2478	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2479			dest->start, dest->end - dest->start);
2480	if (ret < 0)
2481		goto out;
2482	if (ret) {
2483		fs_path_reset(dest);
2484		ret = gen_unique_name(sctx, ino, gen, dest);
2485		if (ret < 0)
2486			goto out;
2487		ret = 1;
2488	}
2489
2490out_cache:
2491	/*
2492	 * Store the result of the lookup in the name cache.
2493	 */
2494	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2495	if (!nce) {
2496		ret = -ENOMEM;
2497		goto out;
2498	}
2499
2500	nce->ino = ino;
2501	nce->gen = gen;
2502	nce->parent_ino = *parent_ino;
2503	nce->parent_gen = *parent_gen;
2504	nce->name_len = fs_path_len(dest);
2505	nce->ret = ret;
2506	strcpy(nce->name, dest->start);
2507
2508	if (ino < sctx->send_progress)
2509		nce->need_later_update = 0;
2510	else
2511		nce->need_later_update = 1;
2512
2513	nce_ret = name_cache_insert(sctx, nce);
2514	if (nce_ret < 0)
2515		ret = nce_ret;
2516	name_cache_clean_unused(sctx);
2517
2518out:
2519	return ret;
2520}
2521
2522/*
2523 * Magic happens here. This function returns the first ref to an inode as it
2524 * would look like while receiving the stream at this point in time.
2525 * We walk the path up to the root. For every inode in between, we check if it
2526 * was already processed/sent. If yes, we continue with the parent as found
2527 * in send_root. If not, we continue with the parent as found in parent_root.
2528 * If we encounter an inode that was deleted at this point in time, we use the
2529 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2530 * that were not created yet and overwritten inodes/refs.
2531 *
2532 * When do we have orphan inodes:
2533 * 1. When an inode is freshly created and thus no valid refs are available yet
2534 * 2. When a directory lost all it's refs (deleted) but still has dir items
2535 *    inside which were not processed yet (pending for move/delete). If anyone
2536 *    tried to get the path to the dir items, it would get a path inside that
2537 *    orphan directory.
2538 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2539 *    of an unprocessed inode. If in that case the first ref would be
2540 *    overwritten, the overwritten inode gets "orphanized". Later when we
2541 *    process this overwritten inode, it is restored at a new place by moving
2542 *    the orphan inode.
2543 *
2544 * sctx->send_progress tells this function at which point in time receiving
2545 * would be.
2546 */
2547static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2548			struct fs_path *dest)
2549{
2550	int ret = 0;
2551	struct fs_path *name = NULL;
2552	u64 parent_inode = 0;
2553	u64 parent_gen = 0;
2554	int stop = 0;
2555
2556	name = fs_path_alloc();
2557	if (!name) {
2558		ret = -ENOMEM;
2559		goto out;
2560	}
2561
2562	dest->reversed = 1;
2563	fs_path_reset(dest);
2564
2565	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2566		struct waiting_dir_move *wdm;
2567
2568		fs_path_reset(name);
2569
2570		if (is_waiting_for_rm(sctx, ino, gen)) {
2571			ret = gen_unique_name(sctx, ino, gen, name);
2572			if (ret < 0)
2573				goto out;
2574			ret = fs_path_add_path(dest, name);
2575			break;
2576		}
2577
2578		wdm = get_waiting_dir_move(sctx, ino);
2579		if (wdm && wdm->orphanized) {
2580			ret = gen_unique_name(sctx, ino, gen, name);
2581			stop = 1;
2582		} else if (wdm) {
2583			ret = get_first_ref(sctx->parent_root, ino,
2584					    &parent_inode, &parent_gen, name);
2585		} else {
2586			ret = __get_cur_name_and_parent(sctx, ino, gen,
2587							&parent_inode,
2588							&parent_gen, name);
2589			if (ret)
2590				stop = 1;
2591		}
2592
2593		if (ret < 0)
2594			goto out;
2595
2596		ret = fs_path_add_path(dest, name);
2597		if (ret < 0)
2598			goto out;
2599
2600		ino = parent_inode;
2601		gen = parent_gen;
2602	}
2603
2604out:
2605	fs_path_free(name);
2606	if (!ret)
2607		fs_path_unreverse(dest);
2608	return ret;
2609}
2610
2611/*
2612 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2613 */
2614static int send_subvol_begin(struct send_ctx *sctx)
2615{
2616	int ret;
2617	struct btrfs_root *send_root = sctx->send_root;
2618	struct btrfs_root *parent_root = sctx->parent_root;
2619	struct btrfs_path *path;
2620	struct btrfs_key key;
2621	struct btrfs_root_ref *ref;
2622	struct extent_buffer *leaf;
2623	char *name = NULL;
2624	int namelen;
2625
2626	path = btrfs_alloc_path();
2627	if (!path)
2628		return -ENOMEM;
2629
2630	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2631	if (!name) {
2632		btrfs_free_path(path);
2633		return -ENOMEM;
2634	}
2635
2636	key.objectid = send_root->root_key.objectid;
2637	key.type = BTRFS_ROOT_BACKREF_KEY;
2638	key.offset = 0;
2639
2640	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2641				&key, path, 1, 0);
2642	if (ret < 0)
2643		goto out;
2644	if (ret) {
2645		ret = -ENOENT;
2646		goto out;
2647	}
2648
2649	leaf = path->nodes[0];
2650	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2651	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2652	    key.objectid != send_root->root_key.objectid) {
2653		ret = -ENOENT;
2654		goto out;
2655	}
2656	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2657	namelen = btrfs_root_ref_name_len(leaf, ref);
2658	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2659	btrfs_release_path(path);
2660
2661	if (parent_root) {
2662		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2663		if (ret < 0)
2664			goto out;
2665	} else {
2666		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2667		if (ret < 0)
2668			goto out;
2669	}
2670
2671	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2672
2673	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2674		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2675			    sctx->send_root->root_item.received_uuid);
2676	else
2677		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2678			    sctx->send_root->root_item.uuid);
2679
2680	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2681		    btrfs_root_ctransid(&sctx->send_root->root_item));
2682	if (parent_root) {
2683		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2684			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2685				     parent_root->root_item.received_uuid);
2686		else
2687			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2688				     parent_root->root_item.uuid);
2689		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2690			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2691	}
2692
2693	ret = send_cmd(sctx);
2694
2695tlv_put_failure:
2696out:
2697	btrfs_free_path(path);
2698	kfree(name);
2699	return ret;
2700}
2701
2702static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2703{
2704	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2705	int ret = 0;
2706	struct fs_path *p;
2707
2708	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2709
2710	p = fs_path_alloc();
2711	if (!p)
2712		return -ENOMEM;
2713
2714	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2715	if (ret < 0)
2716		goto out;
2717
2718	ret = get_cur_path(sctx, ino, gen, p);
2719	if (ret < 0)
2720		goto out;
2721	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2722	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2723
2724	ret = send_cmd(sctx);
2725
2726tlv_put_failure:
2727out:
2728	fs_path_free(p);
2729	return ret;
2730}
2731
2732static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2733{
2734	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2735	int ret = 0;
2736	struct fs_path *p;
2737
2738	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2739
2740	p = fs_path_alloc();
2741	if (!p)
2742		return -ENOMEM;
2743
2744	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2745	if (ret < 0)
2746		goto out;
2747
2748	ret = get_cur_path(sctx, ino, gen, p);
2749	if (ret < 0)
2750		goto out;
2751	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2752	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2753
2754	ret = send_cmd(sctx);
2755
2756tlv_put_failure:
2757out:
2758	fs_path_free(p);
2759	return ret;
2760}
2761
2762static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2763{
2764	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2765	int ret = 0;
2766	struct fs_path *p;
2767
2768	if (sctx->proto < 2)
2769		return 0;
2770
2771	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2772
2773	p = fs_path_alloc();
2774	if (!p)
2775		return -ENOMEM;
2776
2777	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2778	if (ret < 0)
2779		goto out;
2780
2781	ret = get_cur_path(sctx, ino, gen, p);
2782	if (ret < 0)
2783		goto out;
2784	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2785	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2786
2787	ret = send_cmd(sctx);
2788
2789tlv_put_failure:
2790out:
2791	fs_path_free(p);
2792	return ret;
2793}
2794
2795static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2796{
2797	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2798	int ret = 0;
2799	struct fs_path *p;
2800
2801	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2802		    ino, uid, gid);
2803
2804	p = fs_path_alloc();
2805	if (!p)
2806		return -ENOMEM;
2807
2808	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2809	if (ret < 0)
2810		goto out;
2811
2812	ret = get_cur_path(sctx, ino, gen, p);
2813	if (ret < 0)
2814		goto out;
2815	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2816	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2817	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2818
2819	ret = send_cmd(sctx);
2820
2821tlv_put_failure:
2822out:
2823	fs_path_free(p);
2824	return ret;
2825}
2826
2827static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2828{
2829	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2830	int ret = 0;
2831	struct fs_path *p = NULL;
2832	struct btrfs_inode_item *ii;
2833	struct btrfs_path *path = NULL;
2834	struct extent_buffer *eb;
2835	struct btrfs_key key;
2836	int slot;
2837
2838	btrfs_debug(fs_info, "send_utimes %llu", ino);
2839
2840	p = fs_path_alloc();
2841	if (!p)
2842		return -ENOMEM;
2843
2844	path = alloc_path_for_send();
2845	if (!path) {
2846		ret = -ENOMEM;
2847		goto out;
2848	}
2849
2850	key.objectid = ino;
2851	key.type = BTRFS_INODE_ITEM_KEY;
2852	key.offset = 0;
2853	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2854	if (ret > 0)
2855		ret = -ENOENT;
2856	if (ret < 0)
2857		goto out;
2858
2859	eb = path->nodes[0];
2860	slot = path->slots[0];
2861	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2862
2863	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2864	if (ret < 0)
2865		goto out;
2866
2867	ret = get_cur_path(sctx, ino, gen, p);
2868	if (ret < 0)
2869		goto out;
2870	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2871	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2872	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2873	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2874	if (sctx->proto >= 2)
2875		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2876
2877	ret = send_cmd(sctx);
2878
2879tlv_put_failure:
2880out:
2881	fs_path_free(p);
2882	btrfs_free_path(path);
2883	return ret;
2884}
2885
2886/*
2887 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2888 * a valid path yet because we did not process the refs yet. So, the inode
2889 * is created as orphan.
2890 */
2891static int send_create_inode(struct send_ctx *sctx, u64 ino)
2892{
2893	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2894	int ret = 0;
2895	struct fs_path *p;
2896	int cmd;
2897	struct btrfs_inode_info info;
2898	u64 gen;
2899	u64 mode;
2900	u64 rdev;
2901
2902	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2903
2904	p = fs_path_alloc();
2905	if (!p)
2906		return -ENOMEM;
2907
2908	if (ino != sctx->cur_ino) {
2909		ret = get_inode_info(sctx->send_root, ino, &info);
2910		if (ret < 0)
2911			goto out;
2912		gen = info.gen;
2913		mode = info.mode;
2914		rdev = info.rdev;
2915	} else {
2916		gen = sctx->cur_inode_gen;
2917		mode = sctx->cur_inode_mode;
2918		rdev = sctx->cur_inode_rdev;
2919	}
2920
2921	if (S_ISREG(mode)) {
2922		cmd = BTRFS_SEND_C_MKFILE;
2923	} else if (S_ISDIR(mode)) {
2924		cmd = BTRFS_SEND_C_MKDIR;
2925	} else if (S_ISLNK(mode)) {
2926		cmd = BTRFS_SEND_C_SYMLINK;
2927	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2928		cmd = BTRFS_SEND_C_MKNOD;
2929	} else if (S_ISFIFO(mode)) {
2930		cmd = BTRFS_SEND_C_MKFIFO;
2931	} else if (S_ISSOCK(mode)) {
2932		cmd = BTRFS_SEND_C_MKSOCK;
2933	} else {
2934		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2935				(int)(mode & S_IFMT));
2936		ret = -EOPNOTSUPP;
2937		goto out;
2938	}
2939
2940	ret = begin_cmd(sctx, cmd);
2941	if (ret < 0)
2942		goto out;
2943
2944	ret = gen_unique_name(sctx, ino, gen, p);
2945	if (ret < 0)
2946		goto out;
2947
2948	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2949	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2950
2951	if (S_ISLNK(mode)) {
2952		fs_path_reset(p);
2953		ret = read_symlink(sctx->send_root, ino, p);
2954		if (ret < 0)
2955			goto out;
2956		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2957	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2958		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2959		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2960		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2961	}
2962
2963	ret = send_cmd(sctx);
2964	if (ret < 0)
2965		goto out;
2966
2967
2968tlv_put_failure:
2969out:
2970	fs_path_free(p);
2971	return ret;
2972}
2973
2974/*
2975 * We need some special handling for inodes that get processed before the parent
2976 * directory got created. See process_recorded_refs for details.
2977 * This function does the check if we already created the dir out of order.
2978 */
2979static int did_create_dir(struct send_ctx *sctx, u64 dir)
2980{
2981	int ret = 0;
2982	int iter_ret = 0;
2983	struct btrfs_path *path = NULL;
2984	struct btrfs_key key;
2985	struct btrfs_key found_key;
2986	struct btrfs_key di_key;
2987	struct btrfs_dir_item *di;
2988
2989	path = alloc_path_for_send();
2990	if (!path)
2991		return -ENOMEM;
2992
2993	key.objectid = dir;
2994	key.type = BTRFS_DIR_INDEX_KEY;
2995	key.offset = 0;
2996
2997	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2998		struct extent_buffer *eb = path->nodes[0];
2999
3000		if (found_key.objectid != key.objectid ||
3001		    found_key.type != key.type) {
3002			ret = 0;
3003			break;
3004		}
3005
3006		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
3007		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
3008
3009		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
3010		    di_key.objectid < sctx->send_progress) {
3011			ret = 1;
3012			break;
3013		}
3014	}
3015	/* Catch error found during iteration */
3016	if (iter_ret < 0)
3017		ret = iter_ret;
3018
3019	btrfs_free_path(path);
3020	return ret;
3021}
3022
3023/*
3024 * Only creates the inode if it is:
3025 * 1. Not a directory
3026 * 2. Or a directory which was not created already due to out of order
3027 *    directories. See did_create_dir and process_recorded_refs for details.
3028 */
3029static int send_create_inode_if_needed(struct send_ctx *sctx)
3030{
3031	int ret;
3032
3033	if (S_ISDIR(sctx->cur_inode_mode)) {
3034		ret = did_create_dir(sctx, sctx->cur_ino);
3035		if (ret < 0)
3036			return ret;
3037		else if (ret > 0)
3038			return 0;
3039	}
3040
3041	return send_create_inode(sctx, sctx->cur_ino);
3042}
3043
3044struct recorded_ref {
3045	struct list_head list;
3046	char *name;
3047	struct fs_path *full_path;
3048	u64 dir;
3049	u64 dir_gen;
3050	int name_len;
3051	struct rb_node node;
3052	struct rb_root *root;
3053};
3054
3055static struct recorded_ref *recorded_ref_alloc(void)
3056{
3057	struct recorded_ref *ref;
3058
3059	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3060	if (!ref)
3061		return NULL;
3062	RB_CLEAR_NODE(&ref->node);
3063	INIT_LIST_HEAD(&ref->list);
3064	return ref;
3065}
3066
3067static void recorded_ref_free(struct recorded_ref *ref)
3068{
3069	if (!ref)
3070		return;
3071	if (!RB_EMPTY_NODE(&ref->node))
3072		rb_erase(&ref->node, ref->root);
3073	list_del(&ref->list);
3074	fs_path_free(ref->full_path);
3075	kfree(ref);
3076}
3077
3078static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3079{
3080	ref->full_path = path;
3081	ref->name = (char *)kbasename(ref->full_path->start);
3082	ref->name_len = ref->full_path->end - ref->name;
3083}
3084
3085static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3086{
3087	struct recorded_ref *new;
3088
3089	new = recorded_ref_alloc();
3090	if (!new)
3091		return -ENOMEM;
3092
3093	new->dir = ref->dir;
3094	new->dir_gen = ref->dir_gen;
3095	list_add_tail(&new->list, list);
3096	return 0;
3097}
3098
3099static void __free_recorded_refs(struct list_head *head)
3100{
3101	struct recorded_ref *cur;
3102
3103	while (!list_empty(head)) {
3104		cur = list_entry(head->next, struct recorded_ref, list);
3105		recorded_ref_free(cur);
3106	}
3107}
3108
3109static void free_recorded_refs(struct send_ctx *sctx)
3110{
3111	__free_recorded_refs(&sctx->new_refs);
3112	__free_recorded_refs(&sctx->deleted_refs);
3113}
3114
3115/*
3116 * Renames/moves a file/dir to its orphan name. Used when the first
3117 * ref of an unprocessed inode gets overwritten and for all non empty
3118 * directories.
3119 */
3120static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3121			  struct fs_path *path)
3122{
3123	int ret;
3124	struct fs_path *orphan;
3125
3126	orphan = fs_path_alloc();
3127	if (!orphan)
3128		return -ENOMEM;
3129
3130	ret = gen_unique_name(sctx, ino, gen, orphan);
3131	if (ret < 0)
3132		goto out;
3133
3134	ret = send_rename(sctx, path, orphan);
3135
3136out:
3137	fs_path_free(orphan);
3138	return ret;
3139}
3140
3141static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3142						   u64 dir_ino, u64 dir_gen)
3143{
3144	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3145	struct rb_node *parent = NULL;
3146	struct orphan_dir_info *entry, *odi;
3147
3148	while (*p) {
3149		parent = *p;
3150		entry = rb_entry(parent, struct orphan_dir_info, node);
3151		if (dir_ino < entry->ino)
3152			p = &(*p)->rb_left;
3153		else if (dir_ino > entry->ino)
3154			p = &(*p)->rb_right;
3155		else if (dir_gen < entry->gen)
3156			p = &(*p)->rb_left;
3157		else if (dir_gen > entry->gen)
3158			p = &(*p)->rb_right;
3159		else
3160			return entry;
3161	}
3162
3163	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3164	if (!odi)
3165		return ERR_PTR(-ENOMEM);
3166	odi->ino = dir_ino;
3167	odi->gen = dir_gen;
3168	odi->last_dir_index_offset = 0;
3169
3170	rb_link_node(&odi->node, parent, p);
3171	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3172	return odi;
3173}
3174
3175static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3176						   u64 dir_ino, u64 gen)
3177{
3178	struct rb_node *n = sctx->orphan_dirs.rb_node;
3179	struct orphan_dir_info *entry;
3180
3181	while (n) {
3182		entry = rb_entry(n, struct orphan_dir_info, node);
3183		if (dir_ino < entry->ino)
3184			n = n->rb_left;
3185		else if (dir_ino > entry->ino)
3186			n = n->rb_right;
3187		else if (gen < entry->gen)
3188			n = n->rb_left;
3189		else if (gen > entry->gen)
3190			n = n->rb_right;
3191		else
3192			return entry;
3193	}
3194	return NULL;
3195}
3196
3197static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3198{
3199	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3200
3201	return odi != NULL;
3202}
3203
3204static void free_orphan_dir_info(struct send_ctx *sctx,
3205				 struct orphan_dir_info *odi)
3206{
3207	if (!odi)
3208		return;
3209	rb_erase(&odi->node, &sctx->orphan_dirs);
3210	kfree(odi);
3211}
3212
3213/*
3214 * Returns 1 if a directory can be removed at this point in time.
3215 * We check this by iterating all dir items and checking if the inode behind
3216 * the dir item was already processed.
3217 */
3218static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
3219		     u64 send_progress)
3220{
3221	int ret = 0;
3222	int iter_ret = 0;
3223	struct btrfs_root *root = sctx->parent_root;
3224	struct btrfs_path *path;
3225	struct btrfs_key key;
3226	struct btrfs_key found_key;
3227	struct btrfs_key loc;
3228	struct btrfs_dir_item *di;
3229	struct orphan_dir_info *odi = NULL;
3230
3231	/*
3232	 * Don't try to rmdir the top/root subvolume dir.
3233	 */
3234	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3235		return 0;
3236
3237	path = alloc_path_for_send();
3238	if (!path)
3239		return -ENOMEM;
3240
3241	key.objectid = dir;
3242	key.type = BTRFS_DIR_INDEX_KEY;
3243	key.offset = 0;
3244
3245	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3246	if (odi)
3247		key.offset = odi->last_dir_index_offset;
3248
3249	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3250		struct waiting_dir_move *dm;
3251
3252		if (found_key.objectid != key.objectid ||
3253		    found_key.type != key.type)
3254			break;
3255
3256		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3257				struct btrfs_dir_item);
3258		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3259
3260		dm = get_waiting_dir_move(sctx, loc.objectid);
3261		if (dm) {
3262			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3263			if (IS_ERR(odi)) {
3264				ret = PTR_ERR(odi);
3265				goto out;
3266			}
3267			odi->gen = dir_gen;
3268			odi->last_dir_index_offset = found_key.offset;
3269			dm->rmdir_ino = dir;
3270			dm->rmdir_gen = dir_gen;
3271			ret = 0;
3272			goto out;
3273		}
3274
3275		if (loc.objectid > send_progress) {
3276			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3277			if (IS_ERR(odi)) {
3278				ret = PTR_ERR(odi);
3279				goto out;
3280			}
3281			odi->gen = dir_gen;
3282			odi->last_dir_index_offset = found_key.offset;
3283			ret = 0;
3284			goto out;
3285		}
3286	}
3287	if (iter_ret < 0) {
3288		ret = iter_ret;
3289		goto out;
3290	}
3291	free_orphan_dir_info(sctx, odi);
3292
3293	ret = 1;
3294
3295out:
3296	btrfs_free_path(path);
3297	return ret;
3298}
3299
3300static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3301{
3302	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3303
3304	return entry != NULL;
3305}
3306
3307static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3308{
3309	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3310	struct rb_node *parent = NULL;
3311	struct waiting_dir_move *entry, *dm;
3312
3313	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3314	if (!dm)
3315		return -ENOMEM;
3316	dm->ino = ino;
3317	dm->rmdir_ino = 0;
3318	dm->rmdir_gen = 0;
3319	dm->orphanized = orphanized;
3320
3321	while (*p) {
3322		parent = *p;
3323		entry = rb_entry(parent, struct waiting_dir_move, node);
3324		if (ino < entry->ino) {
3325			p = &(*p)->rb_left;
3326		} else if (ino > entry->ino) {
3327			p = &(*p)->rb_right;
3328		} else {
3329			kfree(dm);
3330			return -EEXIST;
3331		}
3332	}
3333
3334	rb_link_node(&dm->node, parent, p);
3335	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3336	return 0;
3337}
3338
3339static struct waiting_dir_move *
3340get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3341{
3342	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3343	struct waiting_dir_move *entry;
3344
3345	while (n) {
3346		entry = rb_entry(n, struct waiting_dir_move, node);
3347		if (ino < entry->ino)
3348			n = n->rb_left;
3349		else if (ino > entry->ino)
3350			n = n->rb_right;
3351		else
3352			return entry;
3353	}
3354	return NULL;
3355}
3356
3357static void free_waiting_dir_move(struct send_ctx *sctx,
3358				  struct waiting_dir_move *dm)
3359{
3360	if (!dm)
3361		return;
3362	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3363	kfree(dm);
3364}
3365
3366static int add_pending_dir_move(struct send_ctx *sctx,
3367				u64 ino,
3368				u64 ino_gen,
3369				u64 parent_ino,
3370				struct list_head *new_refs,
3371				struct list_head *deleted_refs,
3372				const bool is_orphan)
3373{
3374	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3375	struct rb_node *parent = NULL;
3376	struct pending_dir_move *entry = NULL, *pm;
3377	struct recorded_ref *cur;
3378	int exists = 0;
3379	int ret;
3380
3381	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3382	if (!pm)
3383		return -ENOMEM;
3384	pm->parent_ino = parent_ino;
3385	pm->ino = ino;
3386	pm->gen = ino_gen;
3387	INIT_LIST_HEAD(&pm->list);
3388	INIT_LIST_HEAD(&pm->update_refs);
3389	RB_CLEAR_NODE(&pm->node);
3390
3391	while (*p) {
3392		parent = *p;
3393		entry = rb_entry(parent, struct pending_dir_move, node);
3394		if (parent_ino < entry->parent_ino) {
3395			p = &(*p)->rb_left;
3396		} else if (parent_ino > entry->parent_ino) {
3397			p = &(*p)->rb_right;
3398		} else {
3399			exists = 1;
3400			break;
3401		}
3402	}
3403
3404	list_for_each_entry(cur, deleted_refs, list) {
3405		ret = dup_ref(cur, &pm->update_refs);
3406		if (ret < 0)
3407			goto out;
3408	}
3409	list_for_each_entry(cur, new_refs, list) {
3410		ret = dup_ref(cur, &pm->update_refs);
3411		if (ret < 0)
3412			goto out;
3413	}
3414
3415	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3416	if (ret)
3417		goto out;
3418
3419	if (exists) {
3420		list_add_tail(&pm->list, &entry->list);
3421	} else {
3422		rb_link_node(&pm->node, parent, p);
3423		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3424	}
3425	ret = 0;
3426out:
3427	if (ret) {
3428		__free_recorded_refs(&pm->update_refs);
3429		kfree(pm);
3430	}
3431	return ret;
3432}
3433
3434static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3435						      u64 parent_ino)
3436{
3437	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3438	struct pending_dir_move *entry;
3439
3440	while (n) {
3441		entry = rb_entry(n, struct pending_dir_move, node);
3442		if (parent_ino < entry->parent_ino)
3443			n = n->rb_left;
3444		else if (parent_ino > entry->parent_ino)
3445			n = n->rb_right;
3446		else
3447			return entry;
3448	}
3449	return NULL;
3450}
3451
3452static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3453		     u64 ino, u64 gen, u64 *ancestor_ino)
3454{
3455	int ret = 0;
3456	u64 parent_inode = 0;
3457	u64 parent_gen = 0;
3458	u64 start_ino = ino;
3459
3460	*ancestor_ino = 0;
3461	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3462		fs_path_reset(name);
3463
3464		if (is_waiting_for_rm(sctx, ino, gen))
3465			break;
3466		if (is_waiting_for_move(sctx, ino)) {
3467			if (*ancestor_ino == 0)
3468				*ancestor_ino = ino;
3469			ret = get_first_ref(sctx->parent_root, ino,
3470					    &parent_inode, &parent_gen, name);
3471		} else {
3472			ret = __get_cur_name_and_parent(sctx, ino, gen,
3473							&parent_inode,
3474							&parent_gen, name);
3475			if (ret > 0) {
3476				ret = 0;
3477				break;
3478			}
3479		}
3480		if (ret < 0)
3481			break;
3482		if (parent_inode == start_ino) {
3483			ret = 1;
3484			if (*ancestor_ino == 0)
3485				*ancestor_ino = ino;
3486			break;
3487		}
3488		ino = parent_inode;
3489		gen = parent_gen;
3490	}
3491	return ret;
3492}
3493
3494static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3495{
3496	struct fs_path *from_path = NULL;
3497	struct fs_path *to_path = NULL;
3498	struct fs_path *name = NULL;
3499	u64 orig_progress = sctx->send_progress;
3500	struct recorded_ref *cur;
3501	u64 parent_ino, parent_gen;
3502	struct waiting_dir_move *dm = NULL;
3503	u64 rmdir_ino = 0;
3504	u64 rmdir_gen;
3505	u64 ancestor;
3506	bool is_orphan;
3507	int ret;
3508
3509	name = fs_path_alloc();
3510	from_path = fs_path_alloc();
3511	if (!name || !from_path) {
3512		ret = -ENOMEM;
3513		goto out;
3514	}
3515
3516	dm = get_waiting_dir_move(sctx, pm->ino);
3517	ASSERT(dm);
3518	rmdir_ino = dm->rmdir_ino;
3519	rmdir_gen = dm->rmdir_gen;
3520	is_orphan = dm->orphanized;
3521	free_waiting_dir_move(sctx, dm);
3522
3523	if (is_orphan) {
3524		ret = gen_unique_name(sctx, pm->ino,
3525				      pm->gen, from_path);
3526	} else {
3527		ret = get_first_ref(sctx->parent_root, pm->ino,
3528				    &parent_ino, &parent_gen, name);
3529		if (ret < 0)
3530			goto out;
3531		ret = get_cur_path(sctx, parent_ino, parent_gen,
3532				   from_path);
3533		if (ret < 0)
3534			goto out;
3535		ret = fs_path_add_path(from_path, name);
3536	}
3537	if (ret < 0)
3538		goto out;
3539
3540	sctx->send_progress = sctx->cur_ino + 1;
3541	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3542	if (ret < 0)
3543		goto out;
3544	if (ret) {
3545		LIST_HEAD(deleted_refs);
3546		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3547		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3548					   &pm->update_refs, &deleted_refs,
3549					   is_orphan);
3550		if (ret < 0)
3551			goto out;
3552		if (rmdir_ino) {
3553			dm = get_waiting_dir_move(sctx, pm->ino);
3554			ASSERT(dm);
3555			dm->rmdir_ino = rmdir_ino;
3556			dm->rmdir_gen = rmdir_gen;
3557		}
3558		goto out;
3559	}
3560	fs_path_reset(name);
3561	to_path = name;
3562	name = NULL;
3563	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3564	if (ret < 0)
3565		goto out;
3566
3567	ret = send_rename(sctx, from_path, to_path);
3568	if (ret < 0)
3569		goto out;
3570
3571	if (rmdir_ino) {
3572		struct orphan_dir_info *odi;
3573		u64 gen;
3574
3575		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3576		if (!odi) {
3577			/* already deleted */
3578			goto finish;
3579		}
3580		gen = odi->gen;
3581
3582		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3583		if (ret < 0)
3584			goto out;
3585		if (!ret)
3586			goto finish;
3587
3588		name = fs_path_alloc();
3589		if (!name) {
3590			ret = -ENOMEM;
3591			goto out;
3592		}
3593		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3594		if (ret < 0)
3595			goto out;
3596		ret = send_rmdir(sctx, name);
3597		if (ret < 0)
3598			goto out;
3599	}
3600
3601finish:
3602	ret = send_utimes(sctx, pm->ino, pm->gen);
3603	if (ret < 0)
3604		goto out;
3605
3606	/*
3607	 * After rename/move, need to update the utimes of both new parent(s)
3608	 * and old parent(s).
3609	 */
3610	list_for_each_entry(cur, &pm->update_refs, list) {
3611		/*
3612		 * The parent inode might have been deleted in the send snapshot
3613		 */
3614		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3615		if (ret == -ENOENT) {
3616			ret = 0;
3617			continue;
3618		}
3619		if (ret < 0)
3620			goto out;
3621
3622		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3623		if (ret < 0)
3624			goto out;
3625	}
3626
3627out:
3628	fs_path_free(name);
3629	fs_path_free(from_path);
3630	fs_path_free(to_path);
3631	sctx->send_progress = orig_progress;
3632
3633	return ret;
3634}
3635
3636static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3637{
3638	if (!list_empty(&m->list))
3639		list_del(&m->list);
3640	if (!RB_EMPTY_NODE(&m->node))
3641		rb_erase(&m->node, &sctx->pending_dir_moves);
3642	__free_recorded_refs(&m->update_refs);
3643	kfree(m);
3644}
3645
3646static void tail_append_pending_moves(struct send_ctx *sctx,
3647				      struct pending_dir_move *moves,
3648				      struct list_head *stack)
3649{
3650	if (list_empty(&moves->list)) {
3651		list_add_tail(&moves->list, stack);
3652	} else {
3653		LIST_HEAD(list);
3654		list_splice_init(&moves->list, &list);
3655		list_add_tail(&moves->list, stack);
3656		list_splice_tail(&list, stack);
3657	}
3658	if (!RB_EMPTY_NODE(&moves->node)) {
3659		rb_erase(&moves->node, &sctx->pending_dir_moves);
3660		RB_CLEAR_NODE(&moves->node);
3661	}
3662}
3663
3664static int apply_children_dir_moves(struct send_ctx *sctx)
3665{
3666	struct pending_dir_move *pm;
3667	struct list_head stack;
3668	u64 parent_ino = sctx->cur_ino;
3669	int ret = 0;
3670
3671	pm = get_pending_dir_moves(sctx, parent_ino);
3672	if (!pm)
3673		return 0;
3674
3675	INIT_LIST_HEAD(&stack);
3676	tail_append_pending_moves(sctx, pm, &stack);
3677
3678	while (!list_empty(&stack)) {
3679		pm = list_first_entry(&stack, struct pending_dir_move, list);
3680		parent_ino = pm->ino;
3681		ret = apply_dir_move(sctx, pm);
3682		free_pending_move(sctx, pm);
3683		if (ret)
3684			goto out;
3685		pm = get_pending_dir_moves(sctx, parent_ino);
3686		if (pm)
3687			tail_append_pending_moves(sctx, pm, &stack);
3688	}
3689	return 0;
3690
3691out:
3692	while (!list_empty(&stack)) {
3693		pm = list_first_entry(&stack, struct pending_dir_move, list);
3694		free_pending_move(sctx, pm);
3695	}
3696	return ret;
3697}
3698
3699/*
3700 * We might need to delay a directory rename even when no ancestor directory
3701 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3702 * renamed. This happens when we rename a directory to the old name (the name
3703 * in the parent root) of some other unrelated directory that got its rename
3704 * delayed due to some ancestor with higher number that got renamed.
3705 *
3706 * Example:
3707 *
3708 * Parent snapshot:
3709 * .                                       (ino 256)
3710 * |---- a/                                (ino 257)
3711 * |     |---- file                        (ino 260)
3712 * |
3713 * |---- b/                                (ino 258)
3714 * |---- c/                                (ino 259)
3715 *
3716 * Send snapshot:
3717 * .                                       (ino 256)
3718 * |---- a/                                (ino 258)
3719 * |---- x/                                (ino 259)
3720 *       |---- y/                          (ino 257)
3721 *             |----- file                 (ino 260)
3722 *
3723 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3724 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3725 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3726 * must issue is:
3727 *
3728 * 1 - rename 259 from 'c' to 'x'
3729 * 2 - rename 257 from 'a' to 'x/y'
3730 * 3 - rename 258 from 'b' to 'a'
3731 *
3732 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3733 * be done right away and < 0 on error.
3734 */
3735static int wait_for_dest_dir_move(struct send_ctx *sctx,
3736				  struct recorded_ref *parent_ref,
3737				  const bool is_orphan)
3738{
3739	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3740	struct btrfs_path *path;
3741	struct btrfs_key key;
3742	struct btrfs_key di_key;
3743	struct btrfs_dir_item *di;
3744	u64 left_gen;
3745	u64 right_gen;
3746	int ret = 0;
3747	struct waiting_dir_move *wdm;
3748
3749	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3750		return 0;
3751
3752	path = alloc_path_for_send();
3753	if (!path)
3754		return -ENOMEM;
3755
3756	key.objectid = parent_ref->dir;
3757	key.type = BTRFS_DIR_ITEM_KEY;
3758	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3759
3760	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3761	if (ret < 0) {
3762		goto out;
3763	} else if (ret > 0) {
3764		ret = 0;
3765		goto out;
3766	}
3767
3768	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3769				       parent_ref->name_len);
3770	if (!di) {
3771		ret = 0;
3772		goto out;
3773	}
3774	/*
3775	 * di_key.objectid has the number of the inode that has a dentry in the
3776	 * parent directory with the same name that sctx->cur_ino is being
3777	 * renamed to. We need to check if that inode is in the send root as
3778	 * well and if it is currently marked as an inode with a pending rename,
3779	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3780	 * that it happens after that other inode is renamed.
3781	 */
3782	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3783	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3784		ret = 0;
3785		goto out;
3786	}
3787
3788	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3789	if (ret < 0)
3790		goto out;
3791	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3792	if (ret < 0) {
3793		if (ret == -ENOENT)
3794			ret = 0;
3795		goto out;
3796	}
3797
3798	/* Different inode, no need to delay the rename of sctx->cur_ino */
3799	if (right_gen != left_gen) {
3800		ret = 0;
3801		goto out;
3802	}
3803
3804	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3805	if (wdm && !wdm->orphanized) {
3806		ret = add_pending_dir_move(sctx,
3807					   sctx->cur_ino,
3808					   sctx->cur_inode_gen,
3809					   di_key.objectid,
3810					   &sctx->new_refs,
3811					   &sctx->deleted_refs,
3812					   is_orphan);
3813		if (!ret)
3814			ret = 1;
3815	}
3816out:
3817	btrfs_free_path(path);
3818	return ret;
3819}
3820
3821/*
3822 * Check if inode ino2, or any of its ancestors, is inode ino1.
3823 * Return 1 if true, 0 if false and < 0 on error.
3824 */
3825static int check_ino_in_path(struct btrfs_root *root,
3826			     const u64 ino1,
3827			     const u64 ino1_gen,
3828			     const u64 ino2,
3829			     const u64 ino2_gen,
3830			     struct fs_path *fs_path)
3831{
3832	u64 ino = ino2;
3833
3834	if (ino1 == ino2)
3835		return ino1_gen == ino2_gen;
3836
3837	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3838		u64 parent;
3839		u64 parent_gen;
3840		int ret;
3841
3842		fs_path_reset(fs_path);
3843		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3844		if (ret < 0)
3845			return ret;
3846		if (parent == ino1)
3847			return parent_gen == ino1_gen;
3848		ino = parent;
3849	}
3850	return 0;
3851}
3852
3853/*
3854 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3855 * possible path (in case ino2 is not a directory and has multiple hard links).
3856 * Return 1 if true, 0 if false and < 0 on error.
3857 */
3858static int is_ancestor(struct btrfs_root *root,
3859		       const u64 ino1,
3860		       const u64 ino1_gen,
3861		       const u64 ino2,
3862		       struct fs_path *fs_path)
3863{
3864	bool free_fs_path = false;
3865	int ret = 0;
3866	int iter_ret = 0;
3867	struct btrfs_path *path = NULL;
3868	struct btrfs_key key;
3869
3870	if (!fs_path) {
3871		fs_path = fs_path_alloc();
3872		if (!fs_path)
3873			return -ENOMEM;
3874		free_fs_path = true;
3875	}
3876
3877	path = alloc_path_for_send();
3878	if (!path) {
3879		ret = -ENOMEM;
3880		goto out;
3881	}
3882
3883	key.objectid = ino2;
3884	key.type = BTRFS_INODE_REF_KEY;
3885	key.offset = 0;
3886
3887	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3888		struct extent_buffer *leaf = path->nodes[0];
3889		int slot = path->slots[0];
3890		u32 cur_offset = 0;
3891		u32 item_size;
3892
3893		if (key.objectid != ino2)
3894			break;
3895		if (key.type != BTRFS_INODE_REF_KEY &&
3896		    key.type != BTRFS_INODE_EXTREF_KEY)
3897			break;
3898
3899		item_size = btrfs_item_size(leaf, slot);
3900		while (cur_offset < item_size) {
3901			u64 parent;
3902			u64 parent_gen;
3903
3904			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3905				unsigned long ptr;
3906				struct btrfs_inode_extref *extref;
3907
3908				ptr = btrfs_item_ptr_offset(leaf, slot);
3909				extref = (struct btrfs_inode_extref *)
3910					(ptr + cur_offset);
3911				parent = btrfs_inode_extref_parent(leaf,
3912								   extref);
3913				cur_offset += sizeof(*extref);
3914				cur_offset += btrfs_inode_extref_name_len(leaf,
3915								  extref);
3916			} else {
3917				parent = key.offset;
3918				cur_offset = item_size;
3919			}
3920
3921			ret = get_inode_gen(root, parent, &parent_gen);
3922			if (ret < 0)
3923				goto out;
3924			ret = check_ino_in_path(root, ino1, ino1_gen,
3925						parent, parent_gen, fs_path);
3926			if (ret)
3927				goto out;
3928		}
3929	}
3930	ret = 0;
3931	if (iter_ret < 0)
3932		ret = iter_ret;
3933
3934out:
3935	btrfs_free_path(path);
3936	if (free_fs_path)
3937		fs_path_free(fs_path);
3938	return ret;
3939}
3940
3941static int wait_for_parent_move(struct send_ctx *sctx,
3942				struct recorded_ref *parent_ref,
3943				const bool is_orphan)
3944{
3945	int ret = 0;
3946	u64 ino = parent_ref->dir;
3947	u64 ino_gen = parent_ref->dir_gen;
3948	u64 parent_ino_before, parent_ino_after;
3949	struct fs_path *path_before = NULL;
3950	struct fs_path *path_after = NULL;
3951	int len1, len2;
3952
3953	path_after = fs_path_alloc();
3954	path_before = fs_path_alloc();
3955	if (!path_after || !path_before) {
3956		ret = -ENOMEM;
3957		goto out;
3958	}
3959
3960	/*
3961	 * Our current directory inode may not yet be renamed/moved because some
3962	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3963	 * such ancestor exists and make sure our own rename/move happens after
3964	 * that ancestor is processed to avoid path build infinite loops (done
3965	 * at get_cur_path()).
3966	 */
3967	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3968		u64 parent_ino_after_gen;
3969
3970		if (is_waiting_for_move(sctx, ino)) {
3971			/*
3972			 * If the current inode is an ancestor of ino in the
3973			 * parent root, we need to delay the rename of the
3974			 * current inode, otherwise don't delayed the rename
3975			 * because we can end up with a circular dependency
3976			 * of renames, resulting in some directories never
3977			 * getting the respective rename operations issued in
3978			 * the send stream or getting into infinite path build
3979			 * loops.
3980			 */
3981			ret = is_ancestor(sctx->parent_root,
3982					  sctx->cur_ino, sctx->cur_inode_gen,
3983					  ino, path_before);
3984			if (ret)
3985				break;
3986		}
3987
3988		fs_path_reset(path_before);
3989		fs_path_reset(path_after);
3990
3991		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3992				    &parent_ino_after_gen, path_after);
3993		if (ret < 0)
3994			goto out;
3995		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3996				    NULL, path_before);
3997		if (ret < 0 && ret != -ENOENT) {
3998			goto out;
3999		} else if (ret == -ENOENT) {
4000			ret = 0;
4001			break;
4002		}
4003
4004		len1 = fs_path_len(path_before);
4005		len2 = fs_path_len(path_after);
4006		if (ino > sctx->cur_ino &&
4007		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4008		     memcmp(path_before->start, path_after->start, len1))) {
4009			u64 parent_ino_gen;
4010
4011			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4012			if (ret < 0)
4013				goto out;
4014			if (ino_gen == parent_ino_gen) {
4015				ret = 1;
4016				break;
4017			}
4018		}
4019		ino = parent_ino_after;
4020		ino_gen = parent_ino_after_gen;
4021	}
4022
4023out:
4024	fs_path_free(path_before);
4025	fs_path_free(path_after);
4026
4027	if (ret == 1) {
4028		ret = add_pending_dir_move(sctx,
4029					   sctx->cur_ino,
4030					   sctx->cur_inode_gen,
4031					   ino,
4032					   &sctx->new_refs,
4033					   &sctx->deleted_refs,
4034					   is_orphan);
4035		if (!ret)
4036			ret = 1;
4037	}
4038
4039	return ret;
4040}
4041
4042static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4043{
4044	int ret;
4045	struct fs_path *new_path;
4046
4047	/*
4048	 * Our reference's name member points to its full_path member string, so
4049	 * we use here a new path.
4050	 */
4051	new_path = fs_path_alloc();
4052	if (!new_path)
4053		return -ENOMEM;
4054
4055	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4056	if (ret < 0) {
4057		fs_path_free(new_path);
4058		return ret;
4059	}
4060	ret = fs_path_add(new_path, ref->name, ref->name_len);
4061	if (ret < 0) {
4062		fs_path_free(new_path);
4063		return ret;
4064	}
4065
4066	fs_path_free(ref->full_path);
4067	set_ref_path(ref, new_path);
4068
4069	return 0;
4070}
4071
4072/*
4073 * When processing the new references for an inode we may orphanize an existing
4074 * directory inode because its old name conflicts with one of the new references
4075 * of the current inode. Later, when processing another new reference of our
4076 * inode, we might need to orphanize another inode, but the path we have in the
4077 * reference reflects the pre-orphanization name of the directory we previously
4078 * orphanized. For example:
4079 *
4080 * parent snapshot looks like:
4081 *
4082 * .                                     (ino 256)
4083 * |----- f1                             (ino 257)
4084 * |----- f2                             (ino 258)
4085 * |----- d1/                            (ino 259)
4086 *        |----- d2/                     (ino 260)
4087 *
4088 * send snapshot looks like:
4089 *
4090 * .                                     (ino 256)
4091 * |----- d1                             (ino 258)
4092 * |----- f2/                            (ino 259)
4093 *        |----- f2_link/                (ino 260)
4094 *        |       |----- f1              (ino 257)
4095 *        |
4096 *        |----- d2                      (ino 258)
4097 *
4098 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4099 * cache it in the name cache. Later when we start processing inode 258, when
4100 * collecting all its new references we set a full path of "d1/d2" for its new
4101 * reference with name "d2". When we start processing the new references we
4102 * start by processing the new reference with name "d1", and this results in
4103 * orphanizing inode 259, since its old reference causes a conflict. Then we
4104 * move on the next new reference, with name "d2", and we find out we must
4105 * orphanize inode 260, as its old reference conflicts with ours - but for the
4106 * orphanization we use a source path corresponding to the path we stored in the
4107 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4108 * receiver fail since the path component "d1/" no longer exists, it was renamed
4109 * to "o259-6-0/" when processing the previous new reference. So in this case we
4110 * must recompute the path in the new reference and use it for the new
4111 * orphanization operation.
4112 */
4113static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4114{
4115	char *name;
4116	int ret;
4117
4118	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4119	if (!name)
4120		return -ENOMEM;
4121
4122	fs_path_reset(ref->full_path);
4123	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4124	if (ret < 0)
4125		goto out;
4126
4127	ret = fs_path_add(ref->full_path, name, ref->name_len);
4128	if (ret < 0)
4129		goto out;
4130
4131	/* Update the reference's base name pointer. */
4132	set_ref_path(ref, ref->full_path);
4133out:
4134	kfree(name);
4135	return ret;
4136}
4137
4138/*
4139 * This does all the move/link/unlink/rmdir magic.
4140 */
4141static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4142{
4143	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4144	int ret = 0;
4145	struct recorded_ref *cur;
4146	struct recorded_ref *cur2;
4147	struct list_head check_dirs;
4148	struct fs_path *valid_path = NULL;
4149	u64 ow_inode = 0;
4150	u64 ow_gen;
4151	u64 ow_mode;
4152	int did_overwrite = 0;
4153	int is_orphan = 0;
4154	u64 last_dir_ino_rm = 0;
4155	bool can_rename = true;
4156	bool orphanized_dir = false;
4157	bool orphanized_ancestor = false;
4158
4159	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4160
4161	/*
4162	 * This should never happen as the root dir always has the same ref
4163	 * which is always '..'
4164	 */
4165	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
4166	INIT_LIST_HEAD(&check_dirs);
4167
4168	valid_path = fs_path_alloc();
4169	if (!valid_path) {
4170		ret = -ENOMEM;
4171		goto out;
4172	}
4173
4174	/*
4175	 * First, check if the first ref of the current inode was overwritten
4176	 * before. If yes, we know that the current inode was already orphanized
4177	 * and thus use the orphan name. If not, we can use get_cur_path to
4178	 * get the path of the first ref as it would like while receiving at
4179	 * this point in time.
4180	 * New inodes are always orphan at the beginning, so force to use the
4181	 * orphan name in this case.
4182	 * The first ref is stored in valid_path and will be updated if it
4183	 * gets moved around.
4184	 */
4185	if (!sctx->cur_inode_new) {
4186		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4187				sctx->cur_inode_gen);
4188		if (ret < 0)
4189			goto out;
4190		if (ret)
4191			did_overwrite = 1;
4192	}
4193	if (sctx->cur_inode_new || did_overwrite) {
4194		ret = gen_unique_name(sctx, sctx->cur_ino,
4195				sctx->cur_inode_gen, valid_path);
4196		if (ret < 0)
4197			goto out;
4198		is_orphan = 1;
4199	} else {
4200		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4201				valid_path);
4202		if (ret < 0)
4203			goto out;
4204	}
4205
4206	/*
4207	 * Before doing any rename and link operations, do a first pass on the
4208	 * new references to orphanize any unprocessed inodes that may have a
4209	 * reference that conflicts with one of the new references of the current
4210	 * inode. This needs to happen first because a new reference may conflict
4211	 * with the old reference of a parent directory, so we must make sure
4212	 * that the path used for link and rename commands don't use an
4213	 * orphanized name when an ancestor was not yet orphanized.
4214	 *
4215	 * Example:
4216	 *
4217	 * Parent snapshot:
4218	 *
4219	 * .                                                      (ino 256)
4220	 * |----- testdir/                                        (ino 259)
4221	 * |          |----- a                                    (ino 257)
4222	 * |
4223	 * |----- b                                               (ino 258)
4224	 *
4225	 * Send snapshot:
4226	 *
4227	 * .                                                      (ino 256)
4228	 * |----- testdir_2/                                      (ino 259)
4229	 * |          |----- a                                    (ino 260)
4230	 * |
4231	 * |----- testdir                                         (ino 257)
4232	 * |----- b                                               (ino 257)
4233	 * |----- b2                                              (ino 258)
4234	 *
4235	 * Processing the new reference for inode 257 with name "b" may happen
4236	 * before processing the new reference with name "testdir". If so, we
4237	 * must make sure that by the time we send a link command to create the
4238	 * hard link "b", inode 259 was already orphanized, since the generated
4239	 * path in "valid_path" already contains the orphanized name for 259.
4240	 * We are processing inode 257, so only later when processing 259 we do
4241	 * the rename operation to change its temporary (orphanized) name to
4242	 * "testdir_2".
4243	 */
4244	list_for_each_entry(cur, &sctx->new_refs, list) {
4245		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4246		if (ret < 0)
4247			goto out;
4248		if (ret == inode_state_will_create)
4249			continue;
4250
4251		/*
4252		 * Check if this new ref would overwrite the first ref of another
4253		 * unprocessed inode. If yes, orphanize the overwritten inode.
4254		 * If we find an overwritten ref that is not the first ref,
4255		 * simply unlink it.
4256		 */
4257		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4258				cur->name, cur->name_len,
4259				&ow_inode, &ow_gen, &ow_mode);
4260		if (ret < 0)
4261			goto out;
4262		if (ret) {
4263			ret = is_first_ref(sctx->parent_root,
4264					   ow_inode, cur->dir, cur->name,
4265					   cur->name_len);
4266			if (ret < 0)
4267				goto out;
4268			if (ret) {
4269				struct name_cache_entry *nce;
4270				struct waiting_dir_move *wdm;
4271
4272				if (orphanized_dir) {
4273					ret = refresh_ref_path(sctx, cur);
4274					if (ret < 0)
4275						goto out;
4276				}
4277
4278				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4279						cur->full_path);
4280				if (ret < 0)
4281					goto out;
4282				if (S_ISDIR(ow_mode))
4283					orphanized_dir = true;
4284
4285				/*
4286				 * If ow_inode has its rename operation delayed
4287				 * make sure that its orphanized name is used in
4288				 * the source path when performing its rename
4289				 * operation.
4290				 */
4291				if (is_waiting_for_move(sctx, ow_inode)) {
4292					wdm = get_waiting_dir_move(sctx,
4293								   ow_inode);
4294					ASSERT(wdm);
4295					wdm->orphanized = true;
4296				}
4297
4298				/*
4299				 * Make sure we clear our orphanized inode's
4300				 * name from the name cache. This is because the
4301				 * inode ow_inode might be an ancestor of some
4302				 * other inode that will be orphanized as well
4303				 * later and has an inode number greater than
4304				 * sctx->send_progress. We need to prevent
4305				 * future name lookups from using the old name
4306				 * and get instead the orphan name.
4307				 */
4308				nce = name_cache_search(sctx, ow_inode, ow_gen);
4309				if (nce) {
4310					name_cache_delete(sctx, nce);
4311					kfree(nce);
4312				}
4313
4314				/*
4315				 * ow_inode might currently be an ancestor of
4316				 * cur_ino, therefore compute valid_path (the
4317				 * current path of cur_ino) again because it
4318				 * might contain the pre-orphanization name of
4319				 * ow_inode, which is no longer valid.
4320				 */
4321				ret = is_ancestor(sctx->parent_root,
4322						  ow_inode, ow_gen,
4323						  sctx->cur_ino, NULL);
4324				if (ret > 0) {
4325					orphanized_ancestor = true;
4326					fs_path_reset(valid_path);
4327					ret = get_cur_path(sctx, sctx->cur_ino,
4328							   sctx->cur_inode_gen,
4329							   valid_path);
4330				}
4331				if (ret < 0)
4332					goto out;
4333			} else {
4334				/*
4335				 * If we previously orphanized a directory that
4336				 * collided with a new reference that we already
4337				 * processed, recompute the current path because
4338				 * that directory may be part of the path.
4339				 */
4340				if (orphanized_dir) {
4341					ret = refresh_ref_path(sctx, cur);
4342					if (ret < 0)
4343						goto out;
4344				}
4345				ret = send_unlink(sctx, cur->full_path);
4346				if (ret < 0)
4347					goto out;
4348			}
4349		}
4350
4351	}
4352
4353	list_for_each_entry(cur, &sctx->new_refs, list) {
4354		/*
4355		 * We may have refs where the parent directory does not exist
4356		 * yet. This happens if the parent directories inum is higher
4357		 * than the current inum. To handle this case, we create the
4358		 * parent directory out of order. But we need to check if this
4359		 * did already happen before due to other refs in the same dir.
4360		 */
4361		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4362		if (ret < 0)
4363			goto out;
4364		if (ret == inode_state_will_create) {
4365			ret = 0;
4366			/*
4367			 * First check if any of the current inodes refs did
4368			 * already create the dir.
4369			 */
4370			list_for_each_entry(cur2, &sctx->new_refs, list) {
4371				if (cur == cur2)
4372					break;
4373				if (cur2->dir == cur->dir) {
4374					ret = 1;
4375					break;
4376				}
4377			}
4378
4379			/*
4380			 * If that did not happen, check if a previous inode
4381			 * did already create the dir.
4382			 */
4383			if (!ret)
4384				ret = did_create_dir(sctx, cur->dir);
4385			if (ret < 0)
4386				goto out;
4387			if (!ret) {
4388				ret = send_create_inode(sctx, cur->dir);
4389				if (ret < 0)
4390					goto out;
4391			}
4392		}
4393
4394		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4395			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4396			if (ret < 0)
4397				goto out;
4398			if (ret == 1) {
4399				can_rename = false;
4400				*pending_move = 1;
4401			}
4402		}
4403
4404		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4405		    can_rename) {
4406			ret = wait_for_parent_move(sctx, cur, is_orphan);
4407			if (ret < 0)
4408				goto out;
4409			if (ret == 1) {
4410				can_rename = false;
4411				*pending_move = 1;
4412			}
4413		}
4414
4415		/*
4416		 * link/move the ref to the new place. If we have an orphan
4417		 * inode, move it and update valid_path. If not, link or move
4418		 * it depending on the inode mode.
4419		 */
4420		if (is_orphan && can_rename) {
4421			ret = send_rename(sctx, valid_path, cur->full_path);
4422			if (ret < 0)
4423				goto out;
4424			is_orphan = 0;
4425			ret = fs_path_copy(valid_path, cur->full_path);
4426			if (ret < 0)
4427				goto out;
4428		} else if (can_rename) {
4429			if (S_ISDIR(sctx->cur_inode_mode)) {
4430				/*
4431				 * Dirs can't be linked, so move it. For moved
4432				 * dirs, we always have one new and one deleted
4433				 * ref. The deleted ref is ignored later.
4434				 */
4435				ret = send_rename(sctx, valid_path,
4436						  cur->full_path);
4437				if (!ret)
4438					ret = fs_path_copy(valid_path,
4439							   cur->full_path);
4440				if (ret < 0)
4441					goto out;
4442			} else {
4443				/*
4444				 * We might have previously orphanized an inode
4445				 * which is an ancestor of our current inode,
4446				 * so our reference's full path, which was
4447				 * computed before any such orphanizations, must
4448				 * be updated.
4449				 */
4450				if (orphanized_dir) {
4451					ret = update_ref_path(sctx, cur);
4452					if (ret < 0)
4453						goto out;
4454				}
4455				ret = send_link(sctx, cur->full_path,
4456						valid_path);
4457				if (ret < 0)
4458					goto out;
4459			}
4460		}
4461		ret = dup_ref(cur, &check_dirs);
4462		if (ret < 0)
4463			goto out;
4464	}
4465
4466	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4467		/*
4468		 * Check if we can already rmdir the directory. If not,
4469		 * orphanize it. For every dir item inside that gets deleted
4470		 * later, we do this check again and rmdir it then if possible.
4471		 * See the use of check_dirs for more details.
4472		 */
4473		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4474				sctx->cur_ino);
4475		if (ret < 0)
4476			goto out;
4477		if (ret) {
4478			ret = send_rmdir(sctx, valid_path);
4479			if (ret < 0)
4480				goto out;
4481		} else if (!is_orphan) {
4482			ret = orphanize_inode(sctx, sctx->cur_ino,
4483					sctx->cur_inode_gen, valid_path);
4484			if (ret < 0)
4485				goto out;
4486			is_orphan = 1;
4487		}
4488
4489		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4490			ret = dup_ref(cur, &check_dirs);
4491			if (ret < 0)
4492				goto out;
4493		}
4494	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4495		   !list_empty(&sctx->deleted_refs)) {
4496		/*
4497		 * We have a moved dir. Add the old parent to check_dirs
4498		 */
4499		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4500				list);
4501		ret = dup_ref(cur, &check_dirs);
4502		if (ret < 0)
4503			goto out;
4504	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4505		/*
4506		 * We have a non dir inode. Go through all deleted refs and
4507		 * unlink them if they were not already overwritten by other
4508		 * inodes.
4509		 */
4510		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4511			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4512					sctx->cur_ino, sctx->cur_inode_gen,
4513					cur->name, cur->name_len);
4514			if (ret < 0)
4515				goto out;
4516			if (!ret) {
4517				/*
4518				 * If we orphanized any ancestor before, we need
4519				 * to recompute the full path for deleted names,
4520				 * since any such path was computed before we
4521				 * processed any references and orphanized any
4522				 * ancestor inode.
4523				 */
4524				if (orphanized_ancestor) {
4525					ret = update_ref_path(sctx, cur);
4526					if (ret < 0)
4527						goto out;
4528				}
4529				ret = send_unlink(sctx, cur->full_path);
4530				if (ret < 0)
4531					goto out;
4532			}
4533			ret = dup_ref(cur, &check_dirs);
4534			if (ret < 0)
4535				goto out;
4536		}
4537		/*
4538		 * If the inode is still orphan, unlink the orphan. This may
4539		 * happen when a previous inode did overwrite the first ref
4540		 * of this inode and no new refs were added for the current
4541		 * inode. Unlinking does not mean that the inode is deleted in
4542		 * all cases. There may still be links to this inode in other
4543		 * places.
4544		 */
4545		if (is_orphan) {
4546			ret = send_unlink(sctx, valid_path);
4547			if (ret < 0)
4548				goto out;
4549		}
4550	}
4551
4552	/*
4553	 * We did collect all parent dirs where cur_inode was once located. We
4554	 * now go through all these dirs and check if they are pending for
4555	 * deletion and if it's finally possible to perform the rmdir now.
4556	 * We also update the inode stats of the parent dirs here.
4557	 */
4558	list_for_each_entry(cur, &check_dirs, list) {
4559		/*
4560		 * In case we had refs into dirs that were not processed yet,
4561		 * we don't need to do the utime and rmdir logic for these dirs.
4562		 * The dir will be processed later.
4563		 */
4564		if (cur->dir > sctx->cur_ino)
4565			continue;
4566
4567		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4568		if (ret < 0)
4569			goto out;
4570
4571		if (ret == inode_state_did_create ||
4572		    ret == inode_state_no_change) {
4573			/* TODO delayed utimes */
4574			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4575			if (ret < 0)
4576				goto out;
4577		} else if (ret == inode_state_did_delete &&
4578			   cur->dir != last_dir_ino_rm) {
4579			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4580					sctx->cur_ino);
4581			if (ret < 0)
4582				goto out;
4583			if (ret) {
4584				ret = get_cur_path(sctx, cur->dir,
4585						   cur->dir_gen, valid_path);
4586				if (ret < 0)
4587					goto out;
4588				ret = send_rmdir(sctx, valid_path);
4589				if (ret < 0)
4590					goto out;
4591				last_dir_ino_rm = cur->dir;
4592			}
4593		}
4594	}
4595
4596	ret = 0;
4597
4598out:
4599	__free_recorded_refs(&check_dirs);
4600	free_recorded_refs(sctx);
4601	fs_path_free(valid_path);
4602	return ret;
4603}
4604
4605static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4606{
4607	const struct recorded_ref *data = k;
4608	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4609	int result;
4610
4611	if (data->dir > ref->dir)
4612		return 1;
4613	if (data->dir < ref->dir)
4614		return -1;
4615	if (data->dir_gen > ref->dir_gen)
4616		return 1;
4617	if (data->dir_gen < ref->dir_gen)
4618		return -1;
4619	if (data->name_len > ref->name_len)
4620		return 1;
4621	if (data->name_len < ref->name_len)
4622		return -1;
4623	result = strcmp(data->name, ref->name);
4624	if (result > 0)
4625		return 1;
4626	if (result < 0)
4627		return -1;
4628	return 0;
4629}
4630
4631static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4632{
4633	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4634
4635	return rbtree_ref_comp(entry, parent) < 0;
4636}
4637
4638static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4639			      struct fs_path *name, u64 dir, u64 dir_gen,
4640			      struct send_ctx *sctx)
4641{
4642	int ret = 0;
4643	struct fs_path *path = NULL;
4644	struct recorded_ref *ref = NULL;
4645
4646	path = fs_path_alloc();
4647	if (!path) {
4648		ret = -ENOMEM;
4649		goto out;
4650	}
4651
4652	ref = recorded_ref_alloc();
4653	if (!ref) {
4654		ret = -ENOMEM;
4655		goto out;
4656	}
4657
4658	ret = get_cur_path(sctx, dir, dir_gen, path);
4659	if (ret < 0)
4660		goto out;
4661	ret = fs_path_add_path(path, name);
4662	if (ret < 0)
4663		goto out;
4664
4665	ref->dir = dir;
4666	ref->dir_gen = dir_gen;
4667	set_ref_path(ref, path);
4668	list_add_tail(&ref->list, refs);
4669	rb_add(&ref->node, root, rbtree_ref_less);
4670	ref->root = root;
4671out:
4672	if (ret) {
4673		if (path && (!ref || !ref->full_path))
4674			fs_path_free(path);
4675		recorded_ref_free(ref);
4676	}
4677	return ret;
4678}
4679
4680static int record_new_ref_if_needed(int num, u64 dir, int index,
4681				    struct fs_path *name, void *ctx)
4682{
4683	int ret = 0;
4684	struct send_ctx *sctx = ctx;
4685	struct rb_node *node = NULL;
4686	struct recorded_ref data;
4687	struct recorded_ref *ref;
4688	u64 dir_gen;
4689
4690	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4691	if (ret < 0)
4692		goto out;
4693
4694	data.dir = dir;
4695	data.dir_gen = dir_gen;
4696	set_ref_path(&data, name);
4697	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4698	if (node) {
4699		ref = rb_entry(node, struct recorded_ref, node);
4700		recorded_ref_free(ref);
4701	} else {
4702		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4703					 &sctx->new_refs, name, dir, dir_gen,
4704					 sctx);
4705	}
4706out:
4707	return ret;
4708}
4709
4710static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4711					struct fs_path *name, void *ctx)
4712{
4713	int ret = 0;
4714	struct send_ctx *sctx = ctx;
4715	struct rb_node *node = NULL;
4716	struct recorded_ref data;
4717	struct recorded_ref *ref;
4718	u64 dir_gen;
4719
4720	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4721	if (ret < 0)
4722		goto out;
4723
4724	data.dir = dir;
4725	data.dir_gen = dir_gen;
4726	set_ref_path(&data, name);
4727	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4728	if (node) {
4729		ref = rb_entry(node, struct recorded_ref, node);
4730		recorded_ref_free(ref);
4731	} else {
4732		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4733					 &sctx->deleted_refs, name, dir,
4734					 dir_gen, sctx);
4735	}
4736out:
4737	return ret;
4738}
4739
4740static int record_new_ref(struct send_ctx *sctx)
4741{
4742	int ret;
4743
4744	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4745				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4746	if (ret < 0)
4747		goto out;
4748	ret = 0;
4749
4750out:
4751	return ret;
4752}
4753
4754static int record_deleted_ref(struct send_ctx *sctx)
4755{
4756	int ret;
4757
4758	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4759				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4760				sctx);
4761	if (ret < 0)
4762		goto out;
4763	ret = 0;
4764
4765out:
4766	return ret;
4767}
4768
4769static int record_changed_ref(struct send_ctx *sctx)
4770{
4771	int ret = 0;
4772
4773	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4774			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4775	if (ret < 0)
4776		goto out;
4777	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4778			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4779	if (ret < 0)
4780		goto out;
4781	ret = 0;
4782
4783out:
4784	return ret;
4785}
4786
4787/*
4788 * Record and process all refs at once. Needed when an inode changes the
4789 * generation number, which means that it was deleted and recreated.
4790 */
4791static int process_all_refs(struct send_ctx *sctx,
4792			    enum btrfs_compare_tree_result cmd)
4793{
4794	int ret = 0;
4795	int iter_ret = 0;
4796	struct btrfs_root *root;
4797	struct btrfs_path *path;
4798	struct btrfs_key key;
4799	struct btrfs_key found_key;
4800	iterate_inode_ref_t cb;
4801	int pending_move = 0;
4802
4803	path = alloc_path_for_send();
4804	if (!path)
4805		return -ENOMEM;
4806
4807	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4808		root = sctx->send_root;
4809		cb = record_new_ref_if_needed;
4810	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4811		root = sctx->parent_root;
4812		cb = record_deleted_ref_if_needed;
4813	} else {
4814		btrfs_err(sctx->send_root->fs_info,
4815				"Wrong command %d in process_all_refs", cmd);
4816		ret = -EINVAL;
4817		goto out;
4818	}
4819
4820	key.objectid = sctx->cmp_key->objectid;
4821	key.type = BTRFS_INODE_REF_KEY;
4822	key.offset = 0;
4823	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4824		if (found_key.objectid != key.objectid ||
4825		    (found_key.type != BTRFS_INODE_REF_KEY &&
4826		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4827			break;
4828
4829		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4830		if (ret < 0)
4831			goto out;
4832	}
4833	/* Catch error found during iteration */
4834	if (iter_ret < 0) {
4835		ret = iter_ret;
4836		goto out;
4837	}
4838	btrfs_release_path(path);
4839
4840	/*
4841	 * We don't actually care about pending_move as we are simply
4842	 * re-creating this inode and will be rename'ing it into place once we
4843	 * rename the parent directory.
4844	 */
4845	ret = process_recorded_refs(sctx, &pending_move);
4846out:
4847	btrfs_free_path(path);
4848	return ret;
4849}
4850
4851static int send_set_xattr(struct send_ctx *sctx,
4852			  struct fs_path *path,
4853			  const char *name, int name_len,
4854			  const char *data, int data_len)
4855{
4856	int ret = 0;
4857
4858	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4859	if (ret < 0)
4860		goto out;
4861
4862	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4863	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4864	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4865
4866	ret = send_cmd(sctx);
4867
4868tlv_put_failure:
4869out:
4870	return ret;
4871}
4872
4873static int send_remove_xattr(struct send_ctx *sctx,
4874			  struct fs_path *path,
4875			  const char *name, int name_len)
4876{
4877	int ret = 0;
4878
4879	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4880	if (ret < 0)
4881		goto out;
4882
4883	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4884	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4885
4886	ret = send_cmd(sctx);
4887
4888tlv_put_failure:
4889out:
4890	return ret;
4891}
4892
4893static int __process_new_xattr(int num, struct btrfs_key *di_key,
4894			       const char *name, int name_len, const char *data,
4895			       int data_len, void *ctx)
4896{
4897	int ret;
4898	struct send_ctx *sctx = ctx;
4899	struct fs_path *p;
4900	struct posix_acl_xattr_header dummy_acl;
4901
4902	/* Capabilities are emitted by finish_inode_if_needed */
4903	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4904		return 0;
4905
4906	p = fs_path_alloc();
4907	if (!p)
4908		return -ENOMEM;
4909
4910	/*
4911	 * This hack is needed because empty acls are stored as zero byte
4912	 * data in xattrs. Problem with that is, that receiving these zero byte
4913	 * acls will fail later. To fix this, we send a dummy acl list that
4914	 * only contains the version number and no entries.
4915	 */
4916	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4917	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4918		if (data_len == 0) {
4919			dummy_acl.a_version =
4920					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4921			data = (char *)&dummy_acl;
4922			data_len = sizeof(dummy_acl);
4923		}
4924	}
4925
4926	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4927	if (ret < 0)
4928		goto out;
4929
4930	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4931
4932out:
4933	fs_path_free(p);
4934	return ret;
4935}
4936
4937static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4938				   const char *name, int name_len,
4939				   const char *data, int data_len, void *ctx)
4940{
4941	int ret;
4942	struct send_ctx *sctx = ctx;
4943	struct fs_path *p;
4944
4945	p = fs_path_alloc();
4946	if (!p)
4947		return -ENOMEM;
4948
4949	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4950	if (ret < 0)
4951		goto out;
4952
4953	ret = send_remove_xattr(sctx, p, name, name_len);
4954
4955out:
4956	fs_path_free(p);
4957	return ret;
4958}
4959
4960static int process_new_xattr(struct send_ctx *sctx)
4961{
4962	int ret = 0;
4963
4964	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4965			       __process_new_xattr, sctx);
4966
4967	return ret;
4968}
4969
4970static int process_deleted_xattr(struct send_ctx *sctx)
4971{
4972	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4973				__process_deleted_xattr, sctx);
4974}
4975
4976struct find_xattr_ctx {
4977	const char *name;
4978	int name_len;
4979	int found_idx;
4980	char *found_data;
4981	int found_data_len;
4982};
4983
4984static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4985			int name_len, const char *data, int data_len, void *vctx)
4986{
4987	struct find_xattr_ctx *ctx = vctx;
4988
4989	if (name_len == ctx->name_len &&
4990	    strncmp(name, ctx->name, name_len) == 0) {
4991		ctx->found_idx = num;
4992		ctx->found_data_len = data_len;
4993		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4994		if (!ctx->found_data)
4995			return -ENOMEM;
4996		return 1;
4997	}
4998	return 0;
4999}
5000
5001static int find_xattr(struct btrfs_root *root,
5002		      struct btrfs_path *path,
5003		      struct btrfs_key *key,
5004		      const char *name, int name_len,
5005		      char **data, int *data_len)
5006{
5007	int ret;
5008	struct find_xattr_ctx ctx;
5009
5010	ctx.name = name;
5011	ctx.name_len = name_len;
5012	ctx.found_idx = -1;
5013	ctx.found_data = NULL;
5014	ctx.found_data_len = 0;
5015
5016	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5017	if (ret < 0)
5018		return ret;
5019
5020	if (ctx.found_idx == -1)
5021		return -ENOENT;
5022	if (data) {
5023		*data = ctx.found_data;
5024		*data_len = ctx.found_data_len;
5025	} else {
5026		kfree(ctx.found_data);
5027	}
5028	return ctx.found_idx;
5029}
5030
5031
5032static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5033				       const char *name, int name_len,
5034				       const char *data, int data_len,
5035				       void *ctx)
5036{
5037	int ret;
5038	struct send_ctx *sctx = ctx;
5039	char *found_data = NULL;
5040	int found_data_len  = 0;
5041
5042	ret = find_xattr(sctx->parent_root, sctx->right_path,
5043			 sctx->cmp_key, name, name_len, &found_data,
5044			 &found_data_len);
5045	if (ret == -ENOENT) {
5046		ret = __process_new_xattr(num, di_key, name, name_len, data,
5047					  data_len, ctx);
5048	} else if (ret >= 0) {
5049		if (data_len != found_data_len ||
5050		    memcmp(data, found_data, data_len)) {
5051			ret = __process_new_xattr(num, di_key, name, name_len,
5052						  data, data_len, ctx);
5053		} else {
5054			ret = 0;
5055		}
5056	}
5057
5058	kfree(found_data);
5059	return ret;
5060}
5061
5062static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5063					   const char *name, int name_len,
5064					   const char *data, int data_len,
5065					   void *ctx)
5066{
5067	int ret;
5068	struct send_ctx *sctx = ctx;
5069
5070	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5071			 name, name_len, NULL, NULL);
5072	if (ret == -ENOENT)
5073		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5074					      data_len, ctx);
5075	else if (ret >= 0)
5076		ret = 0;
5077
5078	return ret;
5079}
5080
5081static int process_changed_xattr(struct send_ctx *sctx)
5082{
5083	int ret = 0;
5084
5085	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5086			__process_changed_new_xattr, sctx);
5087	if (ret < 0)
5088		goto out;
5089	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5090			__process_changed_deleted_xattr, sctx);
5091
5092out:
5093	return ret;
5094}
5095
5096static int process_all_new_xattrs(struct send_ctx *sctx)
5097{
5098	int ret = 0;
5099	int iter_ret = 0;
5100	struct btrfs_root *root;
5101	struct btrfs_path *path;
5102	struct btrfs_key key;
5103	struct btrfs_key found_key;
5104
5105	path = alloc_path_for_send();
5106	if (!path)
5107		return -ENOMEM;
5108
5109	root = sctx->send_root;
5110
5111	key.objectid = sctx->cmp_key->objectid;
5112	key.type = BTRFS_XATTR_ITEM_KEY;
5113	key.offset = 0;
5114	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5115		if (found_key.objectid != key.objectid ||
5116		    found_key.type != key.type) {
5117			ret = 0;
5118			break;
5119		}
5120
5121		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5122		if (ret < 0)
5123			break;
5124	}
5125	/* Catch error found during iteration */
5126	if (iter_ret < 0)
5127		ret = iter_ret;
5128
5129	btrfs_free_path(path);
5130	return ret;
5131}
5132
5133static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5134		       struct fsverity_descriptor *desc)
5135{
5136	int ret;
5137
5138	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5139	if (ret < 0)
5140		goto out;
5141
5142	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5143	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5144			le8_to_cpu(desc->hash_algorithm));
5145	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5146			1U << le8_to_cpu(desc->log_blocksize));
5147	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5148			le8_to_cpu(desc->salt_size));
5149	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5150			le32_to_cpu(desc->sig_size));
5151
5152	ret = send_cmd(sctx);
5153
5154tlv_put_failure:
5155out:
5156	return ret;
5157}
5158
5159static int process_verity(struct send_ctx *sctx)
5160{
5161	int ret = 0;
5162	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5163	struct inode *inode;
5164	struct fs_path *p;
5165
5166	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5167	if (IS_ERR(inode))
5168		return PTR_ERR(inode);
5169
5170	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5171	if (ret < 0)
5172		goto iput;
5173
5174	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5175		ret = -EMSGSIZE;
5176		goto iput;
5177	}
5178	if (!sctx->verity_descriptor) {
5179		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5180						   GFP_KERNEL);
5181		if (!sctx->verity_descriptor) {
5182			ret = -ENOMEM;
5183			goto iput;
5184		}
5185	}
5186
5187	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5188	if (ret < 0)
5189		goto iput;
5190
5191	p = fs_path_alloc();
5192	if (!p) {
5193		ret = -ENOMEM;
5194		goto iput;
5195	}
5196	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5197	if (ret < 0)
5198		goto free_path;
5199
5200	ret = send_verity(sctx, p, sctx->verity_descriptor);
5201	if (ret < 0)
5202		goto free_path;
5203
5204free_path:
5205	fs_path_free(p);
5206iput:
5207	iput(inode);
5208	return ret;
5209}
5210
5211static inline u64 max_send_read_size(const struct send_ctx *sctx)
5212{
5213	return sctx->send_max_size - SZ_16K;
5214}
5215
5216static int put_data_header(struct send_ctx *sctx, u32 len)
5217{
5218	if (WARN_ON_ONCE(sctx->put_data))
5219		return -EINVAL;
5220	sctx->put_data = true;
5221	if (sctx->proto >= 2) {
5222		/*
5223		 * Since v2, the data attribute header doesn't include a length,
5224		 * it is implicitly to the end of the command.
5225		 */
5226		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5227			return -EOVERFLOW;
5228		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5229		sctx->send_size += sizeof(__le16);
5230	} else {
5231		struct btrfs_tlv_header *hdr;
5232
5233		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5234			return -EOVERFLOW;
5235		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5236		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5237		put_unaligned_le16(len, &hdr->tlv_len);
5238		sctx->send_size += sizeof(*hdr);
5239	}
5240	return 0;
5241}
5242
5243static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5244{
5245	struct btrfs_root *root = sctx->send_root;
5246	struct btrfs_fs_info *fs_info = root->fs_info;
5247	struct page *page;
5248	pgoff_t index = offset >> PAGE_SHIFT;
5249	pgoff_t last_index;
5250	unsigned pg_offset = offset_in_page(offset);
5251	int ret;
5252
5253	ret = put_data_header(sctx, len);
5254	if (ret)
5255		return ret;
5256
5257	last_index = (offset + len - 1) >> PAGE_SHIFT;
5258
5259	while (index <= last_index) {
5260		unsigned cur_len = min_t(unsigned, len,
5261					 PAGE_SIZE - pg_offset);
5262
5263		page = find_lock_page(sctx->cur_inode->i_mapping, index);
5264		if (!page) {
5265			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5266						  &sctx->ra, NULL, index,
5267						  last_index + 1 - index);
5268
5269			page = find_or_create_page(sctx->cur_inode->i_mapping,
5270						   index, GFP_KERNEL);
5271			if (!page) {
5272				ret = -ENOMEM;
5273				break;
5274			}
5275		}
5276
5277		if (PageReadahead(page))
5278			page_cache_async_readahead(sctx->cur_inode->i_mapping,
5279						   &sctx->ra, NULL, page_folio(page),
5280						   index, last_index + 1 - index);
5281
5282		if (!PageUptodate(page)) {
5283			btrfs_read_folio(NULL, page_folio(page));
5284			lock_page(page);
5285			if (!PageUptodate(page)) {
5286				unlock_page(page);
5287				btrfs_err(fs_info,
5288			"send: IO error at offset %llu for inode %llu root %llu",
5289					page_offset(page), sctx->cur_ino,
5290					sctx->send_root->root_key.objectid);
5291				put_page(page);
5292				ret = -EIO;
5293				break;
5294			}
5295		}
5296
5297		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5298				 pg_offset, cur_len);
5299		unlock_page(page);
5300		put_page(page);
5301		index++;
5302		pg_offset = 0;
5303		len -= cur_len;
5304		sctx->send_size += cur_len;
5305	}
5306
5307	return ret;
5308}
5309
5310/*
5311 * Read some bytes from the current inode/file and send a write command to
5312 * user space.
5313 */
5314static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5315{
5316	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5317	int ret = 0;
5318	struct fs_path *p;
5319
5320	p = fs_path_alloc();
5321	if (!p)
5322		return -ENOMEM;
5323
5324	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5325
5326	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5327	if (ret < 0)
5328		goto out;
5329
5330	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5331	if (ret < 0)
5332		goto out;
5333
5334	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5335	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5336	ret = put_file_data(sctx, offset, len);
5337	if (ret < 0)
5338		goto out;
5339
5340	ret = send_cmd(sctx);
5341
5342tlv_put_failure:
5343out:
5344	fs_path_free(p);
5345	return ret;
5346}
5347
5348/*
5349 * Send a clone command to user space.
5350 */
5351static int send_clone(struct send_ctx *sctx,
5352		      u64 offset, u32 len,
5353		      struct clone_root *clone_root)
5354{
5355	int ret = 0;
5356	struct fs_path *p;
5357	u64 gen;
5358
5359	btrfs_debug(sctx->send_root->fs_info,
5360		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5361		    offset, len, clone_root->root->root_key.objectid,
5362		    clone_root->ino, clone_root->offset);
5363
5364	p = fs_path_alloc();
5365	if (!p)
5366		return -ENOMEM;
5367
5368	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5369	if (ret < 0)
5370		goto out;
5371
5372	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5373	if (ret < 0)
5374		goto out;
5375
5376	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5377	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5378	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5379
5380	if (clone_root->root == sctx->send_root) {
5381		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5382		if (ret < 0)
5383			goto out;
5384		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5385	} else {
5386		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5387	}
5388	if (ret < 0)
5389		goto out;
5390
5391	/*
5392	 * If the parent we're using has a received_uuid set then use that as
5393	 * our clone source as that is what we will look for when doing a
5394	 * receive.
5395	 *
5396	 * This covers the case that we create a snapshot off of a received
5397	 * subvolume and then use that as the parent and try to receive on a
5398	 * different host.
5399	 */
5400	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5401		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5402			     clone_root->root->root_item.received_uuid);
5403	else
5404		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5405			     clone_root->root->root_item.uuid);
5406	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5407		    btrfs_root_ctransid(&clone_root->root->root_item));
5408	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5409	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5410			clone_root->offset);
5411
5412	ret = send_cmd(sctx);
5413
5414tlv_put_failure:
5415out:
5416	fs_path_free(p);
5417	return ret;
5418}
5419
5420/*
5421 * Send an update extent command to user space.
5422 */
5423static int send_update_extent(struct send_ctx *sctx,
5424			      u64 offset, u32 len)
5425{
5426	int ret = 0;
5427	struct fs_path *p;
5428
5429	p = fs_path_alloc();
5430	if (!p)
5431		return -ENOMEM;
5432
5433	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5434	if (ret < 0)
5435		goto out;
5436
5437	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5438	if (ret < 0)
5439		goto out;
5440
5441	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5442	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5443	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5444
5445	ret = send_cmd(sctx);
5446
5447tlv_put_failure:
5448out:
5449	fs_path_free(p);
5450	return ret;
5451}
5452
5453static int send_hole(struct send_ctx *sctx, u64 end)
5454{
5455	struct fs_path *p = NULL;
5456	u64 read_size = max_send_read_size(sctx);
5457	u64 offset = sctx->cur_inode_last_extent;
5458	int ret = 0;
5459
5460	/*
5461	 * A hole that starts at EOF or beyond it. Since we do not yet support
5462	 * fallocate (for extent preallocation and hole punching), sending a
5463	 * write of zeroes starting at EOF or beyond would later require issuing
5464	 * a truncate operation which would undo the write and achieve nothing.
5465	 */
5466	if (offset >= sctx->cur_inode_size)
5467		return 0;
5468
5469	/*
5470	 * Don't go beyond the inode's i_size due to prealloc extents that start
5471	 * after the i_size.
5472	 */
5473	end = min_t(u64, end, sctx->cur_inode_size);
5474
5475	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5476		return send_update_extent(sctx, offset, end - offset);
5477
5478	p = fs_path_alloc();
5479	if (!p)
5480		return -ENOMEM;
5481	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5482	if (ret < 0)
5483		goto tlv_put_failure;
5484	while (offset < end) {
5485		u64 len = min(end - offset, read_size);
5486
5487		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5488		if (ret < 0)
5489			break;
5490		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5491		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5492		ret = put_data_header(sctx, len);
5493		if (ret < 0)
5494			break;
5495		memset(sctx->send_buf + sctx->send_size, 0, len);
5496		sctx->send_size += len;
5497		ret = send_cmd(sctx);
5498		if (ret < 0)
5499			break;
5500		offset += len;
5501	}
5502	sctx->cur_inode_next_write_offset = offset;
5503tlv_put_failure:
5504	fs_path_free(p);
5505	return ret;
5506}
5507
5508static int send_encoded_inline_extent(struct send_ctx *sctx,
5509				      struct btrfs_path *path, u64 offset,
5510				      u64 len)
5511{
5512	struct btrfs_root *root = sctx->send_root;
5513	struct btrfs_fs_info *fs_info = root->fs_info;
5514	struct inode *inode;
5515	struct fs_path *fspath;
5516	struct extent_buffer *leaf = path->nodes[0];
5517	struct btrfs_key key;
5518	struct btrfs_file_extent_item *ei;
5519	u64 ram_bytes;
5520	size_t inline_size;
5521	int ret;
5522
5523	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5524	if (IS_ERR(inode))
5525		return PTR_ERR(inode);
5526
5527	fspath = fs_path_alloc();
5528	if (!fspath) {
5529		ret = -ENOMEM;
5530		goto out;
5531	}
5532
5533	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5534	if (ret < 0)
5535		goto out;
5536
5537	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5538	if (ret < 0)
5539		goto out;
5540
5541	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5542	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5543	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5544	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5545
5546	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5547	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5548	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5549		    min(key.offset + ram_bytes - offset, len));
5550	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5551	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5552	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5553				btrfs_file_extent_compression(leaf, ei));
5554	if (ret < 0)
5555		goto out;
5556	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5557
5558	ret = put_data_header(sctx, inline_size);
5559	if (ret < 0)
5560		goto out;
5561	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5562			   btrfs_file_extent_inline_start(ei), inline_size);
5563	sctx->send_size += inline_size;
5564
5565	ret = send_cmd(sctx);
5566
5567tlv_put_failure:
5568out:
5569	fs_path_free(fspath);
5570	iput(inode);
5571	return ret;
5572}
5573
5574static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5575			       u64 offset, u64 len)
5576{
5577	struct btrfs_root *root = sctx->send_root;
5578	struct btrfs_fs_info *fs_info = root->fs_info;
5579	struct inode *inode;
5580	struct fs_path *fspath;
5581	struct extent_buffer *leaf = path->nodes[0];
5582	struct btrfs_key key;
5583	struct btrfs_file_extent_item *ei;
5584	u64 disk_bytenr, disk_num_bytes;
5585	u32 data_offset;
5586	struct btrfs_cmd_header *hdr;
5587	u32 crc;
5588	int ret;
5589
5590	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5591	if (IS_ERR(inode))
5592		return PTR_ERR(inode);
5593
5594	fspath = fs_path_alloc();
5595	if (!fspath) {
5596		ret = -ENOMEM;
5597		goto out;
5598	}
5599
5600	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5601	if (ret < 0)
5602		goto out;
5603
5604	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5605	if (ret < 0)
5606		goto out;
5607
5608	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5609	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5610	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5611	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5612
5613	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5614	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5615	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5616		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5617			len));
5618	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5619		    btrfs_file_extent_ram_bytes(leaf, ei));
5620	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5621		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5622	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5623				btrfs_file_extent_compression(leaf, ei));
5624	if (ret < 0)
5625		goto out;
5626	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5627	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5628
5629	ret = put_data_header(sctx, disk_num_bytes);
5630	if (ret < 0)
5631		goto out;
5632
5633	/*
5634	 * We want to do I/O directly into the send buffer, so get the next page
5635	 * boundary in the send buffer. This means that there may be a gap
5636	 * between the beginning of the command and the file data.
5637	 */
5638	data_offset = ALIGN(sctx->send_size, PAGE_SIZE);
5639	if (data_offset > sctx->send_max_size ||
5640	    sctx->send_max_size - data_offset < disk_num_bytes) {
5641		ret = -EOVERFLOW;
5642		goto out;
5643	}
5644
5645	/*
5646	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5647	 * reading into send_buf.
5648	 */
5649	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5650						    disk_bytenr, disk_num_bytes,
5651						    sctx->send_buf_pages +
5652						    (data_offset >> PAGE_SHIFT));
5653	if (ret)
5654		goto out;
5655
5656	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5657	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5658	hdr->crc = 0;
5659	crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5660	crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5661	hdr->crc = cpu_to_le32(crc);
5662
5663	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5664			&sctx->send_off);
5665	if (!ret) {
5666		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5667				disk_num_bytes, &sctx->send_off);
5668	}
5669	sctx->send_size = 0;
5670	sctx->put_data = false;
5671
5672tlv_put_failure:
5673out:
5674	fs_path_free(fspath);
5675	iput(inode);
5676	return ret;
5677}
5678
5679static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5680			    const u64 offset, const u64 len)
5681{
5682	const u64 end = offset + len;
5683	struct extent_buffer *leaf = path->nodes[0];
5684	struct btrfs_file_extent_item *ei;
5685	u64 read_size = max_send_read_size(sctx);
5686	u64 sent = 0;
5687
5688	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5689		return send_update_extent(sctx, offset, len);
5690
5691	ei = btrfs_item_ptr(leaf, path->slots[0],
5692			    struct btrfs_file_extent_item);
5693	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5694	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5695		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5696				  BTRFS_FILE_EXTENT_INLINE);
5697
5698		/*
5699		 * Send the compressed extent unless the compressed data is
5700		 * larger than the decompressed data. This can happen if we're
5701		 * not sending the entire extent, either because it has been
5702		 * partially overwritten/truncated or because this is a part of
5703		 * the extent that we couldn't clone in clone_range().
5704		 */
5705		if (is_inline &&
5706		    btrfs_file_extent_inline_item_len(leaf,
5707						      path->slots[0]) <= len) {
5708			return send_encoded_inline_extent(sctx, path, offset,
5709							  len);
5710		} else if (!is_inline &&
5711			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5712			return send_encoded_extent(sctx, path, offset, len);
5713		}
5714	}
5715
5716	if (sctx->cur_inode == NULL) {
5717		struct btrfs_root *root = sctx->send_root;
5718
5719		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5720		if (IS_ERR(sctx->cur_inode)) {
5721			int err = PTR_ERR(sctx->cur_inode);
5722
5723			sctx->cur_inode = NULL;
5724			return err;
5725		}
5726		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5727		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5728
5729		/*
5730		 * It's very likely there are no pages from this inode in the page
5731		 * cache, so after reading extents and sending their data, we clean
5732		 * the page cache to avoid trashing the page cache (adding pressure
5733		 * to the page cache and forcing eviction of other data more useful
5734		 * for applications).
5735		 *
5736		 * We decide if we should clean the page cache simply by checking
5737		 * if the inode's mapping nrpages is 0 when we first open it, and
5738		 * not by using something like filemap_range_has_page() before
5739		 * reading an extent because when we ask the readahead code to
5740		 * read a given file range, it may (and almost always does) read
5741		 * pages from beyond that range (see the documentation for
5742		 * page_cache_sync_readahead()), so it would not be reliable,
5743		 * because after reading the first extent future calls to
5744		 * filemap_range_has_page() would return true because the readahead
5745		 * on the previous extent resulted in reading pages of the current
5746		 * extent as well.
5747		 */
5748		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5749		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5750	}
5751
5752	while (sent < len) {
5753		u64 size = min(len - sent, read_size);
5754		int ret;
5755
5756		ret = send_write(sctx, offset + sent, size);
5757		if (ret < 0)
5758			return ret;
5759		sent += size;
5760	}
5761
5762	if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) {
5763		/*
5764		 * Always operate only on ranges that are a multiple of the page
5765		 * size. This is not only to prevent zeroing parts of a page in
5766		 * the case of subpage sector size, but also to guarantee we evict
5767		 * pages, as passing a range that is smaller than page size does
5768		 * not evict the respective page (only zeroes part of its content).
5769		 *
5770		 * Always start from the end offset of the last range cleared.
5771		 * This is because the readahead code may (and very often does)
5772		 * reads pages beyond the range we request for readahead. So if
5773		 * we have an extent layout like this:
5774		 *
5775		 *            [ extent A ] [ extent B ] [ extent C ]
5776		 *
5777		 * When we ask page_cache_sync_readahead() to read extent A, it
5778		 * may also trigger reads for pages of extent B. If we are doing
5779		 * an incremental send and extent B has not changed between the
5780		 * parent and send snapshots, some or all of its pages may end
5781		 * up being read and placed in the page cache. So when truncating
5782		 * the page cache we always start from the end offset of the
5783		 * previously processed extent up to the end of the current
5784		 * extent.
5785		 */
5786		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5787					   sctx->page_cache_clear_start,
5788					   end - 1);
5789		sctx->page_cache_clear_start = end;
5790	}
5791
5792	return 0;
5793}
5794
5795/*
5796 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5797 * found, call send_set_xattr function to emit it.
5798 *
5799 * Return 0 if there isn't a capability, or when the capability was emitted
5800 * successfully, or < 0 if an error occurred.
5801 */
5802static int send_capabilities(struct send_ctx *sctx)
5803{
5804	struct fs_path *fspath = NULL;
5805	struct btrfs_path *path;
5806	struct btrfs_dir_item *di;
5807	struct extent_buffer *leaf;
5808	unsigned long data_ptr;
5809	char *buf = NULL;
5810	int buf_len;
5811	int ret = 0;
5812
5813	path = alloc_path_for_send();
5814	if (!path)
5815		return -ENOMEM;
5816
5817	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5818				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5819	if (!di) {
5820		/* There is no xattr for this inode */
5821		goto out;
5822	} else if (IS_ERR(di)) {
5823		ret = PTR_ERR(di);
5824		goto out;
5825	}
5826
5827	leaf = path->nodes[0];
5828	buf_len = btrfs_dir_data_len(leaf, di);
5829
5830	fspath = fs_path_alloc();
5831	buf = kmalloc(buf_len, GFP_KERNEL);
5832	if (!fspath || !buf) {
5833		ret = -ENOMEM;
5834		goto out;
5835	}
5836
5837	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5838	if (ret < 0)
5839		goto out;
5840
5841	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5842	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5843
5844	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5845			strlen(XATTR_NAME_CAPS), buf, buf_len);
5846out:
5847	kfree(buf);
5848	fs_path_free(fspath);
5849	btrfs_free_path(path);
5850	return ret;
5851}
5852
5853static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5854		       struct clone_root *clone_root, const u64 disk_byte,
5855		       u64 data_offset, u64 offset, u64 len)
5856{
5857	struct btrfs_path *path;
5858	struct btrfs_key key;
5859	int ret;
5860	struct btrfs_inode_info info;
5861	u64 clone_src_i_size = 0;
5862
5863	/*
5864	 * Prevent cloning from a zero offset with a length matching the sector
5865	 * size because in some scenarios this will make the receiver fail.
5866	 *
5867	 * For example, if in the source filesystem the extent at offset 0
5868	 * has a length of sectorsize and it was written using direct IO, then
5869	 * it can never be an inline extent (even if compression is enabled).
5870	 * Then this extent can be cloned in the original filesystem to a non
5871	 * zero file offset, but it may not be possible to clone in the
5872	 * destination filesystem because it can be inlined due to compression
5873	 * on the destination filesystem (as the receiver's write operations are
5874	 * always done using buffered IO). The same happens when the original
5875	 * filesystem does not have compression enabled but the destination
5876	 * filesystem has.
5877	 */
5878	if (clone_root->offset == 0 &&
5879	    len == sctx->send_root->fs_info->sectorsize)
5880		return send_extent_data(sctx, dst_path, offset, len);
5881
5882	path = alloc_path_for_send();
5883	if (!path)
5884		return -ENOMEM;
5885
5886	/*
5887	 * There are inodes that have extents that lie behind its i_size. Don't
5888	 * accept clones from these extents.
5889	 */
5890	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5891	btrfs_release_path(path);
5892	if (ret < 0)
5893		goto out;
5894	clone_src_i_size = info.size;
5895
5896	/*
5897	 * We can't send a clone operation for the entire range if we find
5898	 * extent items in the respective range in the source file that
5899	 * refer to different extents or if we find holes.
5900	 * So check for that and do a mix of clone and regular write/copy
5901	 * operations if needed.
5902	 *
5903	 * Example:
5904	 *
5905	 * mkfs.btrfs -f /dev/sda
5906	 * mount /dev/sda /mnt
5907	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5908	 * cp --reflink=always /mnt/foo /mnt/bar
5909	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5910	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5911	 *
5912	 * If when we send the snapshot and we are processing file bar (which
5913	 * has a higher inode number than foo) we blindly send a clone operation
5914	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5915	 * a file bar that matches the content of file foo - iow, doesn't match
5916	 * the content from bar in the original filesystem.
5917	 */
5918	key.objectid = clone_root->ino;
5919	key.type = BTRFS_EXTENT_DATA_KEY;
5920	key.offset = clone_root->offset;
5921	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5922	if (ret < 0)
5923		goto out;
5924	if (ret > 0 && path->slots[0] > 0) {
5925		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5926		if (key.objectid == clone_root->ino &&
5927		    key.type == BTRFS_EXTENT_DATA_KEY)
5928			path->slots[0]--;
5929	}
5930
5931	while (true) {
5932		struct extent_buffer *leaf = path->nodes[0];
5933		int slot = path->slots[0];
5934		struct btrfs_file_extent_item *ei;
5935		u8 type;
5936		u64 ext_len;
5937		u64 clone_len;
5938		u64 clone_data_offset;
5939		bool crossed_src_i_size = false;
5940
5941		if (slot >= btrfs_header_nritems(leaf)) {
5942			ret = btrfs_next_leaf(clone_root->root, path);
5943			if (ret < 0)
5944				goto out;
5945			else if (ret > 0)
5946				break;
5947			continue;
5948		}
5949
5950		btrfs_item_key_to_cpu(leaf, &key, slot);
5951
5952		/*
5953		 * We might have an implicit trailing hole (NO_HOLES feature
5954		 * enabled). We deal with it after leaving this loop.
5955		 */
5956		if (key.objectid != clone_root->ino ||
5957		    key.type != BTRFS_EXTENT_DATA_KEY)
5958			break;
5959
5960		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5961		type = btrfs_file_extent_type(leaf, ei);
5962		if (type == BTRFS_FILE_EXTENT_INLINE) {
5963			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5964			ext_len = PAGE_ALIGN(ext_len);
5965		} else {
5966			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5967		}
5968
5969		if (key.offset + ext_len <= clone_root->offset)
5970			goto next;
5971
5972		if (key.offset > clone_root->offset) {
5973			/* Implicit hole, NO_HOLES feature enabled. */
5974			u64 hole_len = key.offset - clone_root->offset;
5975
5976			if (hole_len > len)
5977				hole_len = len;
5978			ret = send_extent_data(sctx, dst_path, offset,
5979					       hole_len);
5980			if (ret < 0)
5981				goto out;
5982
5983			len -= hole_len;
5984			if (len == 0)
5985				break;
5986			offset += hole_len;
5987			clone_root->offset += hole_len;
5988			data_offset += hole_len;
5989		}
5990
5991		if (key.offset >= clone_root->offset + len)
5992			break;
5993
5994		if (key.offset >= clone_src_i_size)
5995			break;
5996
5997		if (key.offset + ext_len > clone_src_i_size) {
5998			ext_len = clone_src_i_size - key.offset;
5999			crossed_src_i_size = true;
6000		}
6001
6002		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6003		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6004			clone_root->offset = key.offset;
6005			if (clone_data_offset < data_offset &&
6006				clone_data_offset + ext_len > data_offset) {
6007				u64 extent_offset;
6008
6009				extent_offset = data_offset - clone_data_offset;
6010				ext_len -= extent_offset;
6011				clone_data_offset += extent_offset;
6012				clone_root->offset += extent_offset;
6013			}
6014		}
6015
6016		clone_len = min_t(u64, ext_len, len);
6017
6018		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6019		    clone_data_offset == data_offset) {
6020			const u64 src_end = clone_root->offset + clone_len;
6021			const u64 sectorsize = SZ_64K;
6022
6023			/*
6024			 * We can't clone the last block, when its size is not
6025			 * sector size aligned, into the middle of a file. If we
6026			 * do so, the receiver will get a failure (-EINVAL) when
6027			 * trying to clone or will silently corrupt the data in
6028			 * the destination file if it's on a kernel without the
6029			 * fix introduced by commit ac765f83f1397646
6030			 * ("Btrfs: fix data corruption due to cloning of eof
6031			 * block).
6032			 *
6033			 * So issue a clone of the aligned down range plus a
6034			 * regular write for the eof block, if we hit that case.
6035			 *
6036			 * Also, we use the maximum possible sector size, 64K,
6037			 * because we don't know what's the sector size of the
6038			 * filesystem that receives the stream, so we have to
6039			 * assume the largest possible sector size.
6040			 */
6041			if (src_end == clone_src_i_size &&
6042			    !IS_ALIGNED(src_end, sectorsize) &&
6043			    offset + clone_len < sctx->cur_inode_size) {
6044				u64 slen;
6045
6046				slen = ALIGN_DOWN(src_end - clone_root->offset,
6047						  sectorsize);
6048				if (slen > 0) {
6049					ret = send_clone(sctx, offset, slen,
6050							 clone_root);
6051					if (ret < 0)
6052						goto out;
6053				}
6054				ret = send_extent_data(sctx, dst_path,
6055						       offset + slen,
6056						       clone_len - slen);
6057			} else {
6058				ret = send_clone(sctx, offset, clone_len,
6059						 clone_root);
6060			}
6061		} else if (crossed_src_i_size && clone_len < len) {
6062			/*
6063			 * If we are at i_size of the clone source inode and we
6064			 * can not clone from it, terminate the loop. This is
6065			 * to avoid sending two write operations, one with a
6066			 * length matching clone_len and the final one after
6067			 * this loop with a length of len - clone_len.
6068			 *
6069			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6070			 * was passed to the send ioctl), this helps avoid
6071			 * sending an encoded write for an offset that is not
6072			 * sector size aligned, in case the i_size of the source
6073			 * inode is not sector size aligned. That will make the
6074			 * receiver fallback to decompression of the data and
6075			 * writing it using regular buffered IO, therefore while
6076			 * not incorrect, it's not optimal due decompression and
6077			 * possible re-compression at the receiver.
6078			 */
6079			break;
6080		} else {
6081			ret = send_extent_data(sctx, dst_path, offset,
6082					       clone_len);
6083		}
6084
6085		if (ret < 0)
6086			goto out;
6087
6088		len -= clone_len;
6089		if (len == 0)
6090			break;
6091		offset += clone_len;
6092		clone_root->offset += clone_len;
6093
6094		/*
6095		 * If we are cloning from the file we are currently processing,
6096		 * and using the send root as the clone root, we must stop once
6097		 * the current clone offset reaches the current eof of the file
6098		 * at the receiver, otherwise we would issue an invalid clone
6099		 * operation (source range going beyond eof) and cause the
6100		 * receiver to fail. So if we reach the current eof, bail out
6101		 * and fallback to a regular write.
6102		 */
6103		if (clone_root->root == sctx->send_root &&
6104		    clone_root->ino == sctx->cur_ino &&
6105		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6106			break;
6107
6108		data_offset += clone_len;
6109next:
6110		path->slots[0]++;
6111	}
6112
6113	if (len > 0)
6114		ret = send_extent_data(sctx, dst_path, offset, len);
6115	else
6116		ret = 0;
6117out:
6118	btrfs_free_path(path);
6119	return ret;
6120}
6121
6122static int send_write_or_clone(struct send_ctx *sctx,
6123			       struct btrfs_path *path,
6124			       struct btrfs_key *key,
6125			       struct clone_root *clone_root)
6126{
6127	int ret = 0;
6128	u64 offset = key->offset;
6129	u64 end;
6130	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6131
6132	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6133	if (offset >= end)
6134		return 0;
6135
6136	if (clone_root && IS_ALIGNED(end, bs)) {
6137		struct btrfs_file_extent_item *ei;
6138		u64 disk_byte;
6139		u64 data_offset;
6140
6141		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6142				    struct btrfs_file_extent_item);
6143		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6144		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6145		ret = clone_range(sctx, path, clone_root, disk_byte,
6146				  data_offset, offset, end - offset);
6147	} else {
6148		ret = send_extent_data(sctx, path, offset, end - offset);
6149	}
6150	sctx->cur_inode_next_write_offset = end;
6151	return ret;
6152}
6153
6154static int is_extent_unchanged(struct send_ctx *sctx,
6155			       struct btrfs_path *left_path,
6156			       struct btrfs_key *ekey)
6157{
6158	int ret = 0;
6159	struct btrfs_key key;
6160	struct btrfs_path *path = NULL;
6161	struct extent_buffer *eb;
6162	int slot;
6163	struct btrfs_key found_key;
6164	struct btrfs_file_extent_item *ei;
6165	u64 left_disknr;
6166	u64 right_disknr;
6167	u64 left_offset;
6168	u64 right_offset;
6169	u64 left_offset_fixed;
6170	u64 left_len;
6171	u64 right_len;
6172	u64 left_gen;
6173	u64 right_gen;
6174	u8 left_type;
6175	u8 right_type;
6176
6177	path = alloc_path_for_send();
6178	if (!path)
6179		return -ENOMEM;
6180
6181	eb = left_path->nodes[0];
6182	slot = left_path->slots[0];
6183	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6184	left_type = btrfs_file_extent_type(eb, ei);
6185
6186	if (left_type != BTRFS_FILE_EXTENT_REG) {
6187		ret = 0;
6188		goto out;
6189	}
6190	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6191	left_len = btrfs_file_extent_num_bytes(eb, ei);
6192	left_offset = btrfs_file_extent_offset(eb, ei);
6193	left_gen = btrfs_file_extent_generation(eb, ei);
6194
6195	/*
6196	 * Following comments will refer to these graphics. L is the left
6197	 * extents which we are checking at the moment. 1-8 are the right
6198	 * extents that we iterate.
6199	 *
6200	 *       |-----L-----|
6201	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6202	 *
6203	 *       |-----L-----|
6204	 * |--1--|-2b-|...(same as above)
6205	 *
6206	 * Alternative situation. Happens on files where extents got split.
6207	 *       |-----L-----|
6208	 * |-----------7-----------|-6-|
6209	 *
6210	 * Alternative situation. Happens on files which got larger.
6211	 *       |-----L-----|
6212	 * |-8-|
6213	 * Nothing follows after 8.
6214	 */
6215
6216	key.objectid = ekey->objectid;
6217	key.type = BTRFS_EXTENT_DATA_KEY;
6218	key.offset = ekey->offset;
6219	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6220	if (ret < 0)
6221		goto out;
6222	if (ret) {
6223		ret = 0;
6224		goto out;
6225	}
6226
6227	/*
6228	 * Handle special case where the right side has no extents at all.
6229	 */
6230	eb = path->nodes[0];
6231	slot = path->slots[0];
6232	btrfs_item_key_to_cpu(eb, &found_key, slot);
6233	if (found_key.objectid != key.objectid ||
6234	    found_key.type != key.type) {
6235		/* If we're a hole then just pretend nothing changed */
6236		ret = (left_disknr) ? 0 : 1;
6237		goto out;
6238	}
6239
6240	/*
6241	 * We're now on 2a, 2b or 7.
6242	 */
6243	key = found_key;
6244	while (key.offset < ekey->offset + left_len) {
6245		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6246		right_type = btrfs_file_extent_type(eb, ei);
6247		if (right_type != BTRFS_FILE_EXTENT_REG &&
6248		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6249			ret = 0;
6250			goto out;
6251		}
6252
6253		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6254			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6255			right_len = PAGE_ALIGN(right_len);
6256		} else {
6257			right_len = btrfs_file_extent_num_bytes(eb, ei);
6258		}
6259
6260		/*
6261		 * Are we at extent 8? If yes, we know the extent is changed.
6262		 * This may only happen on the first iteration.
6263		 */
6264		if (found_key.offset + right_len <= ekey->offset) {
6265			/* If we're a hole just pretend nothing changed */
6266			ret = (left_disknr) ? 0 : 1;
6267			goto out;
6268		}
6269
6270		/*
6271		 * We just wanted to see if when we have an inline extent, what
6272		 * follows it is a regular extent (wanted to check the above
6273		 * condition for inline extents too). This should normally not
6274		 * happen but it's possible for example when we have an inline
6275		 * compressed extent representing data with a size matching
6276		 * the page size (currently the same as sector size).
6277		 */
6278		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6279			ret = 0;
6280			goto out;
6281		}
6282
6283		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6284		right_offset = btrfs_file_extent_offset(eb, ei);
6285		right_gen = btrfs_file_extent_generation(eb, ei);
6286
6287		left_offset_fixed = left_offset;
6288		if (key.offset < ekey->offset) {
6289			/* Fix the right offset for 2a and 7. */
6290			right_offset += ekey->offset - key.offset;
6291		} else {
6292			/* Fix the left offset for all behind 2a and 2b */
6293			left_offset_fixed += key.offset - ekey->offset;
6294		}
6295
6296		/*
6297		 * Check if we have the same extent.
6298		 */
6299		if (left_disknr != right_disknr ||
6300		    left_offset_fixed != right_offset ||
6301		    left_gen != right_gen) {
6302			ret = 0;
6303			goto out;
6304		}
6305
6306		/*
6307		 * Go to the next extent.
6308		 */
6309		ret = btrfs_next_item(sctx->parent_root, path);
6310		if (ret < 0)
6311			goto out;
6312		if (!ret) {
6313			eb = path->nodes[0];
6314			slot = path->slots[0];
6315			btrfs_item_key_to_cpu(eb, &found_key, slot);
6316		}
6317		if (ret || found_key.objectid != key.objectid ||
6318		    found_key.type != key.type) {
6319			key.offset += right_len;
6320			break;
6321		}
6322		if (found_key.offset != key.offset + right_len) {
6323			ret = 0;
6324			goto out;
6325		}
6326		key = found_key;
6327	}
6328
6329	/*
6330	 * We're now behind the left extent (treat as unchanged) or at the end
6331	 * of the right side (treat as changed).
6332	 */
6333	if (key.offset >= ekey->offset + left_len)
6334		ret = 1;
6335	else
6336		ret = 0;
6337
6338
6339out:
6340	btrfs_free_path(path);
6341	return ret;
6342}
6343
6344static int get_last_extent(struct send_ctx *sctx, u64 offset)
6345{
6346	struct btrfs_path *path;
6347	struct btrfs_root *root = sctx->send_root;
6348	struct btrfs_key key;
6349	int ret;
6350
6351	path = alloc_path_for_send();
6352	if (!path)
6353		return -ENOMEM;
6354
6355	sctx->cur_inode_last_extent = 0;
6356
6357	key.objectid = sctx->cur_ino;
6358	key.type = BTRFS_EXTENT_DATA_KEY;
6359	key.offset = offset;
6360	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6361	if (ret < 0)
6362		goto out;
6363	ret = 0;
6364	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6365	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6366		goto out;
6367
6368	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6369out:
6370	btrfs_free_path(path);
6371	return ret;
6372}
6373
6374static int range_is_hole_in_parent(struct send_ctx *sctx,
6375				   const u64 start,
6376				   const u64 end)
6377{
6378	struct btrfs_path *path;
6379	struct btrfs_key key;
6380	struct btrfs_root *root = sctx->parent_root;
6381	u64 search_start = start;
6382	int ret;
6383
6384	path = alloc_path_for_send();
6385	if (!path)
6386		return -ENOMEM;
6387
6388	key.objectid = sctx->cur_ino;
6389	key.type = BTRFS_EXTENT_DATA_KEY;
6390	key.offset = search_start;
6391	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6392	if (ret < 0)
6393		goto out;
6394	if (ret > 0 && path->slots[0] > 0)
6395		path->slots[0]--;
6396
6397	while (search_start < end) {
6398		struct extent_buffer *leaf = path->nodes[0];
6399		int slot = path->slots[0];
6400		struct btrfs_file_extent_item *fi;
6401		u64 extent_end;
6402
6403		if (slot >= btrfs_header_nritems(leaf)) {
6404			ret = btrfs_next_leaf(root, path);
6405			if (ret < 0)
6406				goto out;
6407			else if (ret > 0)
6408				break;
6409			continue;
6410		}
6411
6412		btrfs_item_key_to_cpu(leaf, &key, slot);
6413		if (key.objectid < sctx->cur_ino ||
6414		    key.type < BTRFS_EXTENT_DATA_KEY)
6415			goto next;
6416		if (key.objectid > sctx->cur_ino ||
6417		    key.type > BTRFS_EXTENT_DATA_KEY ||
6418		    key.offset >= end)
6419			break;
6420
6421		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6422		extent_end = btrfs_file_extent_end(path);
6423		if (extent_end <= start)
6424			goto next;
6425		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6426			search_start = extent_end;
6427			goto next;
6428		}
6429		ret = 0;
6430		goto out;
6431next:
6432		path->slots[0]++;
6433	}
6434	ret = 1;
6435out:
6436	btrfs_free_path(path);
6437	return ret;
6438}
6439
6440static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6441			   struct btrfs_key *key)
6442{
6443	int ret = 0;
6444
6445	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6446		return 0;
6447
6448	if (sctx->cur_inode_last_extent == (u64)-1) {
6449		ret = get_last_extent(sctx, key->offset - 1);
6450		if (ret)
6451			return ret;
6452	}
6453
6454	if (path->slots[0] == 0 &&
6455	    sctx->cur_inode_last_extent < key->offset) {
6456		/*
6457		 * We might have skipped entire leafs that contained only
6458		 * file extent items for our current inode. These leafs have
6459		 * a generation number smaller (older) than the one in the
6460		 * current leaf and the leaf our last extent came from, and
6461		 * are located between these 2 leafs.
6462		 */
6463		ret = get_last_extent(sctx, key->offset - 1);
6464		if (ret)
6465			return ret;
6466	}
6467
6468	if (sctx->cur_inode_last_extent < key->offset) {
6469		ret = range_is_hole_in_parent(sctx,
6470					      sctx->cur_inode_last_extent,
6471					      key->offset);
6472		if (ret < 0)
6473			return ret;
6474		else if (ret == 0)
6475			ret = send_hole(sctx, key->offset);
6476		else
6477			ret = 0;
6478	}
6479	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6480	return ret;
6481}
6482
6483static int process_extent(struct send_ctx *sctx,
6484			  struct btrfs_path *path,
6485			  struct btrfs_key *key)
6486{
6487	struct clone_root *found_clone = NULL;
6488	int ret = 0;
6489
6490	if (S_ISLNK(sctx->cur_inode_mode))
6491		return 0;
6492
6493	if (sctx->parent_root && !sctx->cur_inode_new) {
6494		ret = is_extent_unchanged(sctx, path, key);
6495		if (ret < 0)
6496			goto out;
6497		if (ret) {
6498			ret = 0;
6499			goto out_hole;
6500		}
6501	} else {
6502		struct btrfs_file_extent_item *ei;
6503		u8 type;
6504
6505		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6506				    struct btrfs_file_extent_item);
6507		type = btrfs_file_extent_type(path->nodes[0], ei);
6508		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6509		    type == BTRFS_FILE_EXTENT_REG) {
6510			/*
6511			 * The send spec does not have a prealloc command yet,
6512			 * so just leave a hole for prealloc'ed extents until
6513			 * we have enough commands queued up to justify rev'ing
6514			 * the send spec.
6515			 */
6516			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6517				ret = 0;
6518				goto out;
6519			}
6520
6521			/* Have a hole, just skip it. */
6522			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6523				ret = 0;
6524				goto out;
6525			}
6526		}
6527	}
6528
6529	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6530			sctx->cur_inode_size, &found_clone);
6531	if (ret != -ENOENT && ret < 0)
6532		goto out;
6533
6534	ret = send_write_or_clone(sctx, path, key, found_clone);
6535	if (ret)
6536		goto out;
6537out_hole:
6538	ret = maybe_send_hole(sctx, path, key);
6539out:
6540	return ret;
6541}
6542
6543static int process_all_extents(struct send_ctx *sctx)
6544{
6545	int ret = 0;
6546	int iter_ret = 0;
6547	struct btrfs_root *root;
6548	struct btrfs_path *path;
6549	struct btrfs_key key;
6550	struct btrfs_key found_key;
6551
6552	root = sctx->send_root;
6553	path = alloc_path_for_send();
6554	if (!path)
6555		return -ENOMEM;
6556
6557	key.objectid = sctx->cmp_key->objectid;
6558	key.type = BTRFS_EXTENT_DATA_KEY;
6559	key.offset = 0;
6560	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6561		if (found_key.objectid != key.objectid ||
6562		    found_key.type != key.type) {
6563			ret = 0;
6564			break;
6565		}
6566
6567		ret = process_extent(sctx, path, &found_key);
6568		if (ret < 0)
6569			break;
6570	}
6571	/* Catch error found during iteration */
6572	if (iter_ret < 0)
6573		ret = iter_ret;
6574
6575	btrfs_free_path(path);
6576	return ret;
6577}
6578
6579static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6580					   int *pending_move,
6581					   int *refs_processed)
6582{
6583	int ret = 0;
6584
6585	if (sctx->cur_ino == 0)
6586		goto out;
6587	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6588	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6589		goto out;
6590	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6591		goto out;
6592
6593	ret = process_recorded_refs(sctx, pending_move);
6594	if (ret < 0)
6595		goto out;
6596
6597	*refs_processed = 1;
6598out:
6599	return ret;
6600}
6601
6602static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6603{
6604	int ret = 0;
6605	struct btrfs_inode_info info;
6606	u64 left_mode;
6607	u64 left_uid;
6608	u64 left_gid;
6609	u64 left_fileattr;
6610	u64 right_mode;
6611	u64 right_uid;
6612	u64 right_gid;
6613	u64 right_fileattr;
6614	int need_chmod = 0;
6615	int need_chown = 0;
6616	bool need_fileattr = false;
6617	int need_truncate = 1;
6618	int pending_move = 0;
6619	int refs_processed = 0;
6620
6621	if (sctx->ignore_cur_inode)
6622		return 0;
6623
6624	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6625					      &refs_processed);
6626	if (ret < 0)
6627		goto out;
6628
6629	/*
6630	 * We have processed the refs and thus need to advance send_progress.
6631	 * Now, calls to get_cur_xxx will take the updated refs of the current
6632	 * inode into account.
6633	 *
6634	 * On the other hand, if our current inode is a directory and couldn't
6635	 * be moved/renamed because its parent was renamed/moved too and it has
6636	 * a higher inode number, we can only move/rename our current inode
6637	 * after we moved/renamed its parent. Therefore in this case operate on
6638	 * the old path (pre move/rename) of our current inode, and the
6639	 * move/rename will be performed later.
6640	 */
6641	if (refs_processed && !pending_move)
6642		sctx->send_progress = sctx->cur_ino + 1;
6643
6644	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6645		goto out;
6646	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6647		goto out;
6648	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6649	if (ret < 0)
6650		goto out;
6651	left_mode = info.mode;
6652	left_uid = info.uid;
6653	left_gid = info.gid;
6654	left_fileattr = info.fileattr;
6655
6656	if (!sctx->parent_root || sctx->cur_inode_new) {
6657		need_chown = 1;
6658		if (!S_ISLNK(sctx->cur_inode_mode))
6659			need_chmod = 1;
6660		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6661			need_truncate = 0;
6662	} else {
6663		u64 old_size;
6664
6665		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6666		if (ret < 0)
6667			goto out;
6668		old_size = info.size;
6669		right_mode = info.mode;
6670		right_uid = info.uid;
6671		right_gid = info.gid;
6672		right_fileattr = info.fileattr;
6673
6674		if (left_uid != right_uid || left_gid != right_gid)
6675			need_chown = 1;
6676		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6677			need_chmod = 1;
6678		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6679			need_fileattr = true;
6680		if ((old_size == sctx->cur_inode_size) ||
6681		    (sctx->cur_inode_size > old_size &&
6682		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6683			need_truncate = 0;
6684	}
6685
6686	if (S_ISREG(sctx->cur_inode_mode)) {
6687		if (need_send_hole(sctx)) {
6688			if (sctx->cur_inode_last_extent == (u64)-1 ||
6689			    sctx->cur_inode_last_extent <
6690			    sctx->cur_inode_size) {
6691				ret = get_last_extent(sctx, (u64)-1);
6692				if (ret)
6693					goto out;
6694			}
6695			if (sctx->cur_inode_last_extent <
6696			    sctx->cur_inode_size) {
6697				ret = send_hole(sctx, sctx->cur_inode_size);
6698				if (ret)
6699					goto out;
6700			}
6701		}
6702		if (need_truncate) {
6703			ret = send_truncate(sctx, sctx->cur_ino,
6704					    sctx->cur_inode_gen,
6705					    sctx->cur_inode_size);
6706			if (ret < 0)
6707				goto out;
6708		}
6709	}
6710
6711	if (need_chown) {
6712		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6713				left_uid, left_gid);
6714		if (ret < 0)
6715			goto out;
6716	}
6717	if (need_chmod) {
6718		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6719				left_mode);
6720		if (ret < 0)
6721			goto out;
6722	}
6723	if (need_fileattr) {
6724		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6725				    left_fileattr);
6726		if (ret < 0)
6727			goto out;
6728	}
6729
6730	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6731	    && sctx->cur_inode_needs_verity) {
6732		ret = process_verity(sctx);
6733		if (ret < 0)
6734			goto out;
6735	}
6736
6737	ret = send_capabilities(sctx);
6738	if (ret < 0)
6739		goto out;
6740
6741	/*
6742	 * If other directory inodes depended on our current directory
6743	 * inode's move/rename, now do their move/rename operations.
6744	 */
6745	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6746		ret = apply_children_dir_moves(sctx);
6747		if (ret)
6748			goto out;
6749		/*
6750		 * Need to send that every time, no matter if it actually
6751		 * changed between the two trees as we have done changes to
6752		 * the inode before. If our inode is a directory and it's
6753		 * waiting to be moved/renamed, we will send its utimes when
6754		 * it's moved/renamed, therefore we don't need to do it here.
6755		 */
6756		sctx->send_progress = sctx->cur_ino + 1;
6757		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6758		if (ret < 0)
6759			goto out;
6760	}
6761
6762out:
6763	return ret;
6764}
6765
6766static void close_current_inode(struct send_ctx *sctx)
6767{
6768	u64 i_size;
6769
6770	if (sctx->cur_inode == NULL)
6771		return;
6772
6773	i_size = i_size_read(sctx->cur_inode);
6774
6775	/*
6776	 * If we are doing an incremental send, we may have extents between the
6777	 * last processed extent and the i_size that have not been processed
6778	 * because they haven't changed but we may have read some of their pages
6779	 * through readahead, see the comments at send_extent_data().
6780	 */
6781	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6782		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6783					   sctx->page_cache_clear_start,
6784					   round_up(i_size, PAGE_SIZE) - 1);
6785
6786	iput(sctx->cur_inode);
6787	sctx->cur_inode = NULL;
6788}
6789
6790static int changed_inode(struct send_ctx *sctx,
6791			 enum btrfs_compare_tree_result result)
6792{
6793	int ret = 0;
6794	struct btrfs_key *key = sctx->cmp_key;
6795	struct btrfs_inode_item *left_ii = NULL;
6796	struct btrfs_inode_item *right_ii = NULL;
6797	u64 left_gen = 0;
6798	u64 right_gen = 0;
6799
6800	close_current_inode(sctx);
6801
6802	sctx->cur_ino = key->objectid;
6803	sctx->cur_inode_new_gen = false;
6804	sctx->cur_inode_last_extent = (u64)-1;
6805	sctx->cur_inode_next_write_offset = 0;
6806	sctx->ignore_cur_inode = false;
6807
6808	/*
6809	 * Set send_progress to current inode. This will tell all get_cur_xxx
6810	 * functions that the current inode's refs are not updated yet. Later,
6811	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6812	 */
6813	sctx->send_progress = sctx->cur_ino;
6814
6815	if (result == BTRFS_COMPARE_TREE_NEW ||
6816	    result == BTRFS_COMPARE_TREE_CHANGED) {
6817		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6818				sctx->left_path->slots[0],
6819				struct btrfs_inode_item);
6820		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6821				left_ii);
6822	} else {
6823		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6824				sctx->right_path->slots[0],
6825				struct btrfs_inode_item);
6826		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6827				right_ii);
6828	}
6829	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6830		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6831				sctx->right_path->slots[0],
6832				struct btrfs_inode_item);
6833
6834		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6835				right_ii);
6836
6837		/*
6838		 * The cur_ino = root dir case is special here. We can't treat
6839		 * the inode as deleted+reused because it would generate a
6840		 * stream that tries to delete/mkdir the root dir.
6841		 */
6842		if (left_gen != right_gen &&
6843		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6844			sctx->cur_inode_new_gen = true;
6845	}
6846
6847	/*
6848	 * Normally we do not find inodes with a link count of zero (orphans)
6849	 * because the most common case is to create a snapshot and use it
6850	 * for a send operation. However other less common use cases involve
6851	 * using a subvolume and send it after turning it to RO mode just
6852	 * after deleting all hard links of a file while holding an open
6853	 * file descriptor against it or turning a RO snapshot into RW mode,
6854	 * keep an open file descriptor against a file, delete it and then
6855	 * turn the snapshot back to RO mode before using it for a send
6856	 * operation. The former is what the receiver operation does.
6857	 * Therefore, if we want to send these snapshots soon after they're
6858	 * received, we need to handle orphan inodes as well. Moreover, orphans
6859	 * can appear not only in the send snapshot but also in the parent
6860	 * snapshot. Here are several cases:
6861	 *
6862	 * Case 1: BTRFS_COMPARE_TREE_NEW
6863	 *       |  send snapshot  | action
6864	 * --------------------------------
6865	 * nlink |        0        | ignore
6866	 *
6867	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6868	 *       | parent snapshot | action
6869	 * ----------------------------------
6870	 * nlink |        0        | as usual
6871	 * Note: No unlinks will be sent because there're no paths for it.
6872	 *
6873	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6874	 *           |       | parent snapshot | send snapshot | action
6875	 * -----------------------------------------------------------------------
6876	 * subcase 1 | nlink |        0        |       0       | ignore
6877	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6878	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6879	 *
6880	 */
6881	if (result == BTRFS_COMPARE_TREE_NEW) {
6882		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6883			sctx->ignore_cur_inode = true;
6884			goto out;
6885		}
6886		sctx->cur_inode_gen = left_gen;
6887		sctx->cur_inode_new = true;
6888		sctx->cur_inode_deleted = false;
6889		sctx->cur_inode_size = btrfs_inode_size(
6890				sctx->left_path->nodes[0], left_ii);
6891		sctx->cur_inode_mode = btrfs_inode_mode(
6892				sctx->left_path->nodes[0], left_ii);
6893		sctx->cur_inode_rdev = btrfs_inode_rdev(
6894				sctx->left_path->nodes[0], left_ii);
6895		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6896			ret = send_create_inode_if_needed(sctx);
6897	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6898		sctx->cur_inode_gen = right_gen;
6899		sctx->cur_inode_new = false;
6900		sctx->cur_inode_deleted = true;
6901		sctx->cur_inode_size = btrfs_inode_size(
6902				sctx->right_path->nodes[0], right_ii);
6903		sctx->cur_inode_mode = btrfs_inode_mode(
6904				sctx->right_path->nodes[0], right_ii);
6905	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6906		u32 new_nlinks, old_nlinks;
6907
6908		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6909		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6910		if (new_nlinks == 0 && old_nlinks == 0) {
6911			sctx->ignore_cur_inode = true;
6912			goto out;
6913		} else if (new_nlinks == 0 || old_nlinks == 0) {
6914			sctx->cur_inode_new_gen = 1;
6915		}
6916		/*
6917		 * We need to do some special handling in case the inode was
6918		 * reported as changed with a changed generation number. This
6919		 * means that the original inode was deleted and new inode
6920		 * reused the same inum. So we have to treat the old inode as
6921		 * deleted and the new one as new.
6922		 */
6923		if (sctx->cur_inode_new_gen) {
6924			/*
6925			 * First, process the inode as if it was deleted.
6926			 */
6927			if (old_nlinks > 0) {
6928				sctx->cur_inode_gen = right_gen;
6929				sctx->cur_inode_new = false;
6930				sctx->cur_inode_deleted = true;
6931				sctx->cur_inode_size = btrfs_inode_size(
6932						sctx->right_path->nodes[0], right_ii);
6933				sctx->cur_inode_mode = btrfs_inode_mode(
6934						sctx->right_path->nodes[0], right_ii);
6935				ret = process_all_refs(sctx,
6936						BTRFS_COMPARE_TREE_DELETED);
6937				if (ret < 0)
6938					goto out;
6939			}
6940
6941			/*
6942			 * Now process the inode as if it was new.
6943			 */
6944			if (new_nlinks > 0) {
6945				sctx->cur_inode_gen = left_gen;
6946				sctx->cur_inode_new = true;
6947				sctx->cur_inode_deleted = false;
6948				sctx->cur_inode_size = btrfs_inode_size(
6949						sctx->left_path->nodes[0],
6950						left_ii);
6951				sctx->cur_inode_mode = btrfs_inode_mode(
6952						sctx->left_path->nodes[0],
6953						left_ii);
6954				sctx->cur_inode_rdev = btrfs_inode_rdev(
6955						sctx->left_path->nodes[0],
6956						left_ii);
6957				ret = send_create_inode_if_needed(sctx);
6958				if (ret < 0)
6959					goto out;
6960
6961				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6962				if (ret < 0)
6963					goto out;
6964				/*
6965				 * Advance send_progress now as we did not get
6966				 * into process_recorded_refs_if_needed in the
6967				 * new_gen case.
6968				 */
6969				sctx->send_progress = sctx->cur_ino + 1;
6970
6971				/*
6972				 * Now process all extents and xattrs of the
6973				 * inode as if they were all new.
6974				 */
6975				ret = process_all_extents(sctx);
6976				if (ret < 0)
6977					goto out;
6978				ret = process_all_new_xattrs(sctx);
6979				if (ret < 0)
6980					goto out;
6981			}
6982		} else {
6983			sctx->cur_inode_gen = left_gen;
6984			sctx->cur_inode_new = false;
6985			sctx->cur_inode_new_gen = false;
6986			sctx->cur_inode_deleted = false;
6987			sctx->cur_inode_size = btrfs_inode_size(
6988					sctx->left_path->nodes[0], left_ii);
6989			sctx->cur_inode_mode = btrfs_inode_mode(
6990					sctx->left_path->nodes[0], left_ii);
6991		}
6992	}
6993
6994out:
6995	return ret;
6996}
6997
6998/*
6999 * We have to process new refs before deleted refs, but compare_trees gives us
7000 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7001 * first and later process them in process_recorded_refs.
7002 * For the cur_inode_new_gen case, we skip recording completely because
7003 * changed_inode did already initiate processing of refs. The reason for this is
7004 * that in this case, compare_tree actually compares the refs of 2 different
7005 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7006 * refs of the right tree as deleted and all refs of the left tree as new.
7007 */
7008static int changed_ref(struct send_ctx *sctx,
7009		       enum btrfs_compare_tree_result result)
7010{
7011	int ret = 0;
7012
7013	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7014		inconsistent_snapshot_error(sctx, result, "reference");
7015		return -EIO;
7016	}
7017
7018	if (!sctx->cur_inode_new_gen &&
7019	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7020		if (result == BTRFS_COMPARE_TREE_NEW)
7021			ret = record_new_ref(sctx);
7022		else if (result == BTRFS_COMPARE_TREE_DELETED)
7023			ret = record_deleted_ref(sctx);
7024		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7025			ret = record_changed_ref(sctx);
7026	}
7027
7028	return ret;
7029}
7030
7031/*
7032 * Process new/deleted/changed xattrs. We skip processing in the
7033 * cur_inode_new_gen case because changed_inode did already initiate processing
7034 * of xattrs. The reason is the same as in changed_ref
7035 */
7036static int changed_xattr(struct send_ctx *sctx,
7037			 enum btrfs_compare_tree_result result)
7038{
7039	int ret = 0;
7040
7041	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7042		inconsistent_snapshot_error(sctx, result, "xattr");
7043		return -EIO;
7044	}
7045
7046	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7047		if (result == BTRFS_COMPARE_TREE_NEW)
7048			ret = process_new_xattr(sctx);
7049		else if (result == BTRFS_COMPARE_TREE_DELETED)
7050			ret = process_deleted_xattr(sctx);
7051		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7052			ret = process_changed_xattr(sctx);
7053	}
7054
7055	return ret;
7056}
7057
7058/*
7059 * Process new/deleted/changed extents. We skip processing in the
7060 * cur_inode_new_gen case because changed_inode did already initiate processing
7061 * of extents. The reason is the same as in changed_ref
7062 */
7063static int changed_extent(struct send_ctx *sctx,
7064			  enum btrfs_compare_tree_result result)
7065{
7066	int ret = 0;
7067
7068	/*
7069	 * We have found an extent item that changed without the inode item
7070	 * having changed. This can happen either after relocation (where the
7071	 * disk_bytenr of an extent item is replaced at
7072	 * relocation.c:replace_file_extents()) or after deduplication into a
7073	 * file in both the parent and send snapshots (where an extent item can
7074	 * get modified or replaced with a new one). Note that deduplication
7075	 * updates the inode item, but it only changes the iversion (sequence
7076	 * field in the inode item) of the inode, so if a file is deduplicated
7077	 * the same amount of times in both the parent and send snapshots, its
7078	 * iversion becomes the same in both snapshots, whence the inode item is
7079	 * the same on both snapshots.
7080	 */
7081	if (sctx->cur_ino != sctx->cmp_key->objectid)
7082		return 0;
7083
7084	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7085		if (result != BTRFS_COMPARE_TREE_DELETED)
7086			ret = process_extent(sctx, sctx->left_path,
7087					sctx->cmp_key);
7088	}
7089
7090	return ret;
7091}
7092
7093static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7094{
7095	int ret = 0;
7096
7097	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7098		if (result == BTRFS_COMPARE_TREE_NEW)
7099			sctx->cur_inode_needs_verity = true;
7100	}
7101	return ret;
7102}
7103
7104static int dir_changed(struct send_ctx *sctx, u64 dir)
7105{
7106	u64 orig_gen, new_gen;
7107	int ret;
7108
7109	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7110	if (ret)
7111		return ret;
7112
7113	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7114	if (ret)
7115		return ret;
7116
7117	return (orig_gen != new_gen) ? 1 : 0;
7118}
7119
7120static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7121			struct btrfs_key *key)
7122{
7123	struct btrfs_inode_extref *extref;
7124	struct extent_buffer *leaf;
7125	u64 dirid = 0, last_dirid = 0;
7126	unsigned long ptr;
7127	u32 item_size;
7128	u32 cur_offset = 0;
7129	int ref_name_len;
7130	int ret = 0;
7131
7132	/* Easy case, just check this one dirid */
7133	if (key->type == BTRFS_INODE_REF_KEY) {
7134		dirid = key->offset;
7135
7136		ret = dir_changed(sctx, dirid);
7137		goto out;
7138	}
7139
7140	leaf = path->nodes[0];
7141	item_size = btrfs_item_size(leaf, path->slots[0]);
7142	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7143	while (cur_offset < item_size) {
7144		extref = (struct btrfs_inode_extref *)(ptr +
7145						       cur_offset);
7146		dirid = btrfs_inode_extref_parent(leaf, extref);
7147		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7148		cur_offset += ref_name_len + sizeof(*extref);
7149		if (dirid == last_dirid)
7150			continue;
7151		ret = dir_changed(sctx, dirid);
7152		if (ret)
7153			break;
7154		last_dirid = dirid;
7155	}
7156out:
7157	return ret;
7158}
7159
7160/*
7161 * Updates compare related fields in sctx and simply forwards to the actual
7162 * changed_xxx functions.
7163 */
7164static int changed_cb(struct btrfs_path *left_path,
7165		      struct btrfs_path *right_path,
7166		      struct btrfs_key *key,
7167		      enum btrfs_compare_tree_result result,
7168		      struct send_ctx *sctx)
7169{
7170	int ret = 0;
7171
7172	/*
7173	 * We can not hold the commit root semaphore here. This is because in
7174	 * the case of sending and receiving to the same filesystem, using a
7175	 * pipe, could result in a deadlock:
7176	 *
7177	 * 1) The task running send blocks on the pipe because it's full;
7178	 *
7179	 * 2) The task running receive, which is the only consumer of the pipe,
7180	 *    is waiting for a transaction commit (for example due to a space
7181	 *    reservation when doing a write or triggering a transaction commit
7182	 *    when creating a subvolume);
7183	 *
7184	 * 3) The transaction is waiting to write lock the commit root semaphore,
7185	 *    but can not acquire it since it's being held at 1).
7186	 *
7187	 * Down this call chain we write to the pipe through kernel_write().
7188	 * The same type of problem can also happen when sending to a file that
7189	 * is stored in the same filesystem - when reserving space for a write
7190	 * into the file, we can trigger a transaction commit.
7191	 *
7192	 * Our caller has supplied us with clones of leaves from the send and
7193	 * parent roots, so we're safe here from a concurrent relocation and
7194	 * further reallocation of metadata extents while we are here. Below we
7195	 * also assert that the leaves are clones.
7196	 */
7197	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7198
7199	/*
7200	 * We always have a send root, so left_path is never NULL. We will not
7201	 * have a leaf when we have reached the end of the send root but have
7202	 * not yet reached the end of the parent root.
7203	 */
7204	if (left_path->nodes[0])
7205		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7206				&left_path->nodes[0]->bflags));
7207	/*
7208	 * When doing a full send we don't have a parent root, so right_path is
7209	 * NULL. When doing an incremental send, we may have reached the end of
7210	 * the parent root already, so we don't have a leaf at right_path.
7211	 */
7212	if (right_path && right_path->nodes[0])
7213		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7214				&right_path->nodes[0]->bflags));
7215
7216	if (result == BTRFS_COMPARE_TREE_SAME) {
7217		if (key->type == BTRFS_INODE_REF_KEY ||
7218		    key->type == BTRFS_INODE_EXTREF_KEY) {
7219			ret = compare_refs(sctx, left_path, key);
7220			if (!ret)
7221				return 0;
7222			if (ret < 0)
7223				return ret;
7224		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7225			return maybe_send_hole(sctx, left_path, key);
7226		} else {
7227			return 0;
7228		}
7229		result = BTRFS_COMPARE_TREE_CHANGED;
7230		ret = 0;
7231	}
7232
7233	sctx->left_path = left_path;
7234	sctx->right_path = right_path;
7235	sctx->cmp_key = key;
7236
7237	ret = finish_inode_if_needed(sctx, 0);
7238	if (ret < 0)
7239		goto out;
7240
7241	/* Ignore non-FS objects */
7242	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7243	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7244		goto out;
7245
7246	if (key->type == BTRFS_INODE_ITEM_KEY) {
7247		ret = changed_inode(sctx, result);
7248	} else if (!sctx->ignore_cur_inode) {
7249		if (key->type == BTRFS_INODE_REF_KEY ||
7250		    key->type == BTRFS_INODE_EXTREF_KEY)
7251			ret = changed_ref(sctx, result);
7252		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7253			ret = changed_xattr(sctx, result);
7254		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7255			ret = changed_extent(sctx, result);
7256		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7257			 key->offset == 0)
7258			ret = changed_verity(sctx, result);
7259	}
7260
7261out:
7262	return ret;
7263}
7264
7265static int search_key_again(const struct send_ctx *sctx,
7266			    struct btrfs_root *root,
7267			    struct btrfs_path *path,
7268			    const struct btrfs_key *key)
7269{
7270	int ret;
7271
7272	if (!path->need_commit_sem)
7273		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7274
7275	/*
7276	 * Roots used for send operations are readonly and no one can add,
7277	 * update or remove keys from them, so we should be able to find our
7278	 * key again. The only exception is deduplication, which can operate on
7279	 * readonly roots and add, update or remove keys to/from them - but at
7280	 * the moment we don't allow it to run in parallel with send.
7281	 */
7282	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7283	ASSERT(ret <= 0);
7284	if (ret > 0) {
7285		btrfs_print_tree(path->nodes[path->lowest_level], false);
7286		btrfs_err(root->fs_info,
7287"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7288			  key->objectid, key->type, key->offset,
7289			  (root == sctx->parent_root ? "parent" : "send"),
7290			  root->root_key.objectid, path->lowest_level,
7291			  path->slots[path->lowest_level]);
7292		return -EUCLEAN;
7293	}
7294
7295	return ret;
7296}
7297
7298static int full_send_tree(struct send_ctx *sctx)
7299{
7300	int ret;
7301	struct btrfs_root *send_root = sctx->send_root;
7302	struct btrfs_key key;
7303	struct btrfs_fs_info *fs_info = send_root->fs_info;
7304	struct btrfs_path *path;
7305
7306	path = alloc_path_for_send();
7307	if (!path)
7308		return -ENOMEM;
7309	path->reada = READA_FORWARD_ALWAYS;
7310
7311	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7312	key.type = BTRFS_INODE_ITEM_KEY;
7313	key.offset = 0;
7314
7315	down_read(&fs_info->commit_root_sem);
7316	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7317	up_read(&fs_info->commit_root_sem);
7318
7319	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7320	if (ret < 0)
7321		goto out;
7322	if (ret)
7323		goto out_finish;
7324
7325	while (1) {
7326		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7327
7328		ret = changed_cb(path, NULL, &key,
7329				 BTRFS_COMPARE_TREE_NEW, sctx);
7330		if (ret < 0)
7331			goto out;
7332
7333		down_read(&fs_info->commit_root_sem);
7334		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7335			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7336			up_read(&fs_info->commit_root_sem);
7337			/*
7338			 * A transaction used for relocating a block group was
7339			 * committed or is about to finish its commit. Release
7340			 * our path (leaf) and restart the search, so that we
7341			 * avoid operating on any file extent items that are
7342			 * stale, with a disk_bytenr that reflects a pre
7343			 * relocation value. This way we avoid as much as
7344			 * possible to fallback to regular writes when checking
7345			 * if we can clone file ranges.
7346			 */
7347			btrfs_release_path(path);
7348			ret = search_key_again(sctx, send_root, path, &key);
7349			if (ret < 0)
7350				goto out;
7351		} else {
7352			up_read(&fs_info->commit_root_sem);
7353		}
7354
7355		ret = btrfs_next_item(send_root, path);
7356		if (ret < 0)
7357			goto out;
7358		if (ret) {
7359			ret  = 0;
7360			break;
7361		}
7362	}
7363
7364out_finish:
7365	ret = finish_inode_if_needed(sctx, 1);
7366
7367out:
7368	btrfs_free_path(path);
7369	return ret;
7370}
7371
7372static int replace_node_with_clone(struct btrfs_path *path, int level)
7373{
7374	struct extent_buffer *clone;
7375
7376	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7377	if (!clone)
7378		return -ENOMEM;
7379
7380	free_extent_buffer(path->nodes[level]);
7381	path->nodes[level] = clone;
7382
7383	return 0;
7384}
7385
7386static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7387{
7388	struct extent_buffer *eb;
7389	struct extent_buffer *parent = path->nodes[*level];
7390	int slot = path->slots[*level];
7391	const int nritems = btrfs_header_nritems(parent);
7392	u64 reada_max;
7393	u64 reada_done = 0;
7394
7395	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7396
7397	BUG_ON(*level == 0);
7398	eb = btrfs_read_node_slot(parent, slot);
7399	if (IS_ERR(eb))
7400		return PTR_ERR(eb);
7401
7402	/*
7403	 * Trigger readahead for the next leaves we will process, so that it is
7404	 * very likely that when we need them they are already in memory and we
7405	 * will not block on disk IO. For nodes we only do readahead for one,
7406	 * since the time window between processing nodes is typically larger.
7407	 */
7408	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7409
7410	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7411		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7412			btrfs_readahead_node_child(parent, slot);
7413			reada_done += eb->fs_info->nodesize;
7414		}
7415	}
7416
7417	path->nodes[*level - 1] = eb;
7418	path->slots[*level - 1] = 0;
7419	(*level)--;
7420
7421	if (*level == 0)
7422		return replace_node_with_clone(path, 0);
7423
7424	return 0;
7425}
7426
7427static int tree_move_next_or_upnext(struct btrfs_path *path,
7428				    int *level, int root_level)
7429{
7430	int ret = 0;
7431	int nritems;
7432	nritems = btrfs_header_nritems(path->nodes[*level]);
7433
7434	path->slots[*level]++;
7435
7436	while (path->slots[*level] >= nritems) {
7437		if (*level == root_level) {
7438			path->slots[*level] = nritems - 1;
7439			return -1;
7440		}
7441
7442		/* move upnext */
7443		path->slots[*level] = 0;
7444		free_extent_buffer(path->nodes[*level]);
7445		path->nodes[*level] = NULL;
7446		(*level)++;
7447		path->slots[*level]++;
7448
7449		nritems = btrfs_header_nritems(path->nodes[*level]);
7450		ret = 1;
7451	}
7452	return ret;
7453}
7454
7455/*
7456 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7457 * or down.
7458 */
7459static int tree_advance(struct btrfs_path *path,
7460			int *level, int root_level,
7461			int allow_down,
7462			struct btrfs_key *key,
7463			u64 reada_min_gen)
7464{
7465	int ret;
7466
7467	if (*level == 0 || !allow_down) {
7468		ret = tree_move_next_or_upnext(path, level, root_level);
7469	} else {
7470		ret = tree_move_down(path, level, reada_min_gen);
7471	}
7472
7473	/*
7474	 * Even if we have reached the end of a tree, ret is -1, update the key
7475	 * anyway, so that in case we need to restart due to a block group
7476	 * relocation, we can assert that the last key of the root node still
7477	 * exists in the tree.
7478	 */
7479	if (*level == 0)
7480		btrfs_item_key_to_cpu(path->nodes[*level], key,
7481				      path->slots[*level]);
7482	else
7483		btrfs_node_key_to_cpu(path->nodes[*level], key,
7484				      path->slots[*level]);
7485
7486	return ret;
7487}
7488
7489static int tree_compare_item(struct btrfs_path *left_path,
7490			     struct btrfs_path *right_path,
7491			     char *tmp_buf)
7492{
7493	int cmp;
7494	int len1, len2;
7495	unsigned long off1, off2;
7496
7497	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7498	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7499	if (len1 != len2)
7500		return 1;
7501
7502	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7503	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7504				right_path->slots[0]);
7505
7506	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7507
7508	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7509	if (cmp)
7510		return 1;
7511	return 0;
7512}
7513
7514/*
7515 * A transaction used for relocating a block group was committed or is about to
7516 * finish its commit. Release our paths and restart the search, so that we are
7517 * not using stale extent buffers:
7518 *
7519 * 1) For levels > 0, we are only holding references of extent buffers, without
7520 *    any locks on them, which does not prevent them from having been relocated
7521 *    and reallocated after the last time we released the commit root semaphore.
7522 *    The exception are the root nodes, for which we always have a clone, see
7523 *    the comment at btrfs_compare_trees();
7524 *
7525 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7526 *    we are safe from the concurrent relocation and reallocation. However they
7527 *    can have file extent items with a pre relocation disk_bytenr value, so we
7528 *    restart the start from the current commit roots and clone the new leaves so
7529 *    that we get the post relocation disk_bytenr values. Not doing so, could
7530 *    make us clone the wrong data in case there are new extents using the old
7531 *    disk_bytenr that happen to be shared.
7532 */
7533static int restart_after_relocation(struct btrfs_path *left_path,
7534				    struct btrfs_path *right_path,
7535				    const struct btrfs_key *left_key,
7536				    const struct btrfs_key *right_key,
7537				    int left_level,
7538				    int right_level,
7539				    const struct send_ctx *sctx)
7540{
7541	int root_level;
7542	int ret;
7543
7544	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7545
7546	btrfs_release_path(left_path);
7547	btrfs_release_path(right_path);
7548
7549	/*
7550	 * Since keys can not be added or removed to/from our roots because they
7551	 * are readonly and we do not allow deduplication to run in parallel
7552	 * (which can add, remove or change keys), the layout of the trees should
7553	 * not change.
7554	 */
7555	left_path->lowest_level = left_level;
7556	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7557	if (ret < 0)
7558		return ret;
7559
7560	right_path->lowest_level = right_level;
7561	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7562	if (ret < 0)
7563		return ret;
7564
7565	/*
7566	 * If the lowest level nodes are leaves, clone them so that they can be
7567	 * safely used by changed_cb() while not under the protection of the
7568	 * commit root semaphore, even if relocation and reallocation happens in
7569	 * parallel.
7570	 */
7571	if (left_level == 0) {
7572		ret = replace_node_with_clone(left_path, 0);
7573		if (ret < 0)
7574			return ret;
7575	}
7576
7577	if (right_level == 0) {
7578		ret = replace_node_with_clone(right_path, 0);
7579		if (ret < 0)
7580			return ret;
7581	}
7582
7583	/*
7584	 * Now clone the root nodes (unless they happen to be the leaves we have
7585	 * already cloned). This is to protect against concurrent snapshotting of
7586	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7587	 */
7588	root_level = btrfs_header_level(sctx->send_root->commit_root);
7589	if (root_level > 0) {
7590		ret = replace_node_with_clone(left_path, root_level);
7591		if (ret < 0)
7592			return ret;
7593	}
7594
7595	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7596	if (root_level > 0) {
7597		ret = replace_node_with_clone(right_path, root_level);
7598		if (ret < 0)
7599			return ret;
7600	}
7601
7602	return 0;
7603}
7604
7605/*
7606 * This function compares two trees and calls the provided callback for
7607 * every changed/new/deleted item it finds.
7608 * If shared tree blocks are encountered, whole subtrees are skipped, making
7609 * the compare pretty fast on snapshotted subvolumes.
7610 *
7611 * This currently works on commit roots only. As commit roots are read only,
7612 * we don't do any locking. The commit roots are protected with transactions.
7613 * Transactions are ended and rejoined when a commit is tried in between.
7614 *
7615 * This function checks for modifications done to the trees while comparing.
7616 * If it detects a change, it aborts immediately.
7617 */
7618static int btrfs_compare_trees(struct btrfs_root *left_root,
7619			struct btrfs_root *right_root, struct send_ctx *sctx)
7620{
7621	struct btrfs_fs_info *fs_info = left_root->fs_info;
7622	int ret;
7623	int cmp;
7624	struct btrfs_path *left_path = NULL;
7625	struct btrfs_path *right_path = NULL;
7626	struct btrfs_key left_key;
7627	struct btrfs_key right_key;
7628	char *tmp_buf = NULL;
7629	int left_root_level;
7630	int right_root_level;
7631	int left_level;
7632	int right_level;
7633	int left_end_reached = 0;
7634	int right_end_reached = 0;
7635	int advance_left = 0;
7636	int advance_right = 0;
7637	u64 left_blockptr;
7638	u64 right_blockptr;
7639	u64 left_gen;
7640	u64 right_gen;
7641	u64 reada_min_gen;
7642
7643	left_path = btrfs_alloc_path();
7644	if (!left_path) {
7645		ret = -ENOMEM;
7646		goto out;
7647	}
7648	right_path = btrfs_alloc_path();
7649	if (!right_path) {
7650		ret = -ENOMEM;
7651		goto out;
7652	}
7653
7654	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7655	if (!tmp_buf) {
7656		ret = -ENOMEM;
7657		goto out;
7658	}
7659
7660	left_path->search_commit_root = 1;
7661	left_path->skip_locking = 1;
7662	right_path->search_commit_root = 1;
7663	right_path->skip_locking = 1;
7664
7665	/*
7666	 * Strategy: Go to the first items of both trees. Then do
7667	 *
7668	 * If both trees are at level 0
7669	 *   Compare keys of current items
7670	 *     If left < right treat left item as new, advance left tree
7671	 *       and repeat
7672	 *     If left > right treat right item as deleted, advance right tree
7673	 *       and repeat
7674	 *     If left == right do deep compare of items, treat as changed if
7675	 *       needed, advance both trees and repeat
7676	 * If both trees are at the same level but not at level 0
7677	 *   Compare keys of current nodes/leafs
7678	 *     If left < right advance left tree and repeat
7679	 *     If left > right advance right tree and repeat
7680	 *     If left == right compare blockptrs of the next nodes/leafs
7681	 *       If they match advance both trees but stay at the same level
7682	 *         and repeat
7683	 *       If they don't match advance both trees while allowing to go
7684	 *         deeper and repeat
7685	 * If tree levels are different
7686	 *   Advance the tree that needs it and repeat
7687	 *
7688	 * Advancing a tree means:
7689	 *   If we are at level 0, try to go to the next slot. If that's not
7690	 *   possible, go one level up and repeat. Stop when we found a level
7691	 *   where we could go to the next slot. We may at this point be on a
7692	 *   node or a leaf.
7693	 *
7694	 *   If we are not at level 0 and not on shared tree blocks, go one
7695	 *   level deeper.
7696	 *
7697	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7698	 *   the right if possible or go up and right.
7699	 */
7700
7701	down_read(&fs_info->commit_root_sem);
7702	left_level = btrfs_header_level(left_root->commit_root);
7703	left_root_level = left_level;
7704	/*
7705	 * We clone the root node of the send and parent roots to prevent races
7706	 * with snapshot creation of these roots. Snapshot creation COWs the
7707	 * root node of a tree, so after the transaction is committed the old
7708	 * extent can be reallocated while this send operation is still ongoing.
7709	 * So we clone them, under the commit root semaphore, to be race free.
7710	 */
7711	left_path->nodes[left_level] =
7712			btrfs_clone_extent_buffer(left_root->commit_root);
7713	if (!left_path->nodes[left_level]) {
7714		ret = -ENOMEM;
7715		goto out_unlock;
7716	}
7717
7718	right_level = btrfs_header_level(right_root->commit_root);
7719	right_root_level = right_level;
7720	right_path->nodes[right_level] =
7721			btrfs_clone_extent_buffer(right_root->commit_root);
7722	if (!right_path->nodes[right_level]) {
7723		ret = -ENOMEM;
7724		goto out_unlock;
7725	}
7726	/*
7727	 * Our right root is the parent root, while the left root is the "send"
7728	 * root. We know that all new nodes/leaves in the left root must have
7729	 * a generation greater than the right root's generation, so we trigger
7730	 * readahead for those nodes and leaves of the left root, as we know we
7731	 * will need to read them at some point.
7732	 */
7733	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7734
7735	if (left_level == 0)
7736		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7737				&left_key, left_path->slots[left_level]);
7738	else
7739		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7740				&left_key, left_path->slots[left_level]);
7741	if (right_level == 0)
7742		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7743				&right_key, right_path->slots[right_level]);
7744	else
7745		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7746				&right_key, right_path->slots[right_level]);
7747
7748	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7749
7750	while (1) {
7751		if (need_resched() ||
7752		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7753			up_read(&fs_info->commit_root_sem);
7754			cond_resched();
7755			down_read(&fs_info->commit_root_sem);
7756		}
7757
7758		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7759			ret = restart_after_relocation(left_path, right_path,
7760						       &left_key, &right_key,
7761						       left_level, right_level,
7762						       sctx);
7763			if (ret < 0)
7764				goto out_unlock;
7765			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7766		}
7767
7768		if (advance_left && !left_end_reached) {
7769			ret = tree_advance(left_path, &left_level,
7770					left_root_level,
7771					advance_left != ADVANCE_ONLY_NEXT,
7772					&left_key, reada_min_gen);
7773			if (ret == -1)
7774				left_end_reached = ADVANCE;
7775			else if (ret < 0)
7776				goto out_unlock;
7777			advance_left = 0;
7778		}
7779		if (advance_right && !right_end_reached) {
7780			ret = tree_advance(right_path, &right_level,
7781					right_root_level,
7782					advance_right != ADVANCE_ONLY_NEXT,
7783					&right_key, reada_min_gen);
7784			if (ret == -1)
7785				right_end_reached = ADVANCE;
7786			else if (ret < 0)
7787				goto out_unlock;
7788			advance_right = 0;
7789		}
7790
7791		if (left_end_reached && right_end_reached) {
7792			ret = 0;
7793			goto out_unlock;
7794		} else if (left_end_reached) {
7795			if (right_level == 0) {
7796				up_read(&fs_info->commit_root_sem);
7797				ret = changed_cb(left_path, right_path,
7798						&right_key,
7799						BTRFS_COMPARE_TREE_DELETED,
7800						sctx);
7801				if (ret < 0)
7802					goto out;
7803				down_read(&fs_info->commit_root_sem);
7804			}
7805			advance_right = ADVANCE;
7806			continue;
7807		} else if (right_end_reached) {
7808			if (left_level == 0) {
7809				up_read(&fs_info->commit_root_sem);
7810				ret = changed_cb(left_path, right_path,
7811						&left_key,
7812						BTRFS_COMPARE_TREE_NEW,
7813						sctx);
7814				if (ret < 0)
7815					goto out;
7816				down_read(&fs_info->commit_root_sem);
7817			}
7818			advance_left = ADVANCE;
7819			continue;
7820		}
7821
7822		if (left_level == 0 && right_level == 0) {
7823			up_read(&fs_info->commit_root_sem);
7824			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7825			if (cmp < 0) {
7826				ret = changed_cb(left_path, right_path,
7827						&left_key,
7828						BTRFS_COMPARE_TREE_NEW,
7829						sctx);
7830				advance_left = ADVANCE;
7831			} else if (cmp > 0) {
7832				ret = changed_cb(left_path, right_path,
7833						&right_key,
7834						BTRFS_COMPARE_TREE_DELETED,
7835						sctx);
7836				advance_right = ADVANCE;
7837			} else {
7838				enum btrfs_compare_tree_result result;
7839
7840				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7841				ret = tree_compare_item(left_path, right_path,
7842							tmp_buf);
7843				if (ret)
7844					result = BTRFS_COMPARE_TREE_CHANGED;
7845				else
7846					result = BTRFS_COMPARE_TREE_SAME;
7847				ret = changed_cb(left_path, right_path,
7848						 &left_key, result, sctx);
7849				advance_left = ADVANCE;
7850				advance_right = ADVANCE;
7851			}
7852
7853			if (ret < 0)
7854				goto out;
7855			down_read(&fs_info->commit_root_sem);
7856		} else if (left_level == right_level) {
7857			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7858			if (cmp < 0) {
7859				advance_left = ADVANCE;
7860			} else if (cmp > 0) {
7861				advance_right = ADVANCE;
7862			} else {
7863				left_blockptr = btrfs_node_blockptr(
7864						left_path->nodes[left_level],
7865						left_path->slots[left_level]);
7866				right_blockptr = btrfs_node_blockptr(
7867						right_path->nodes[right_level],
7868						right_path->slots[right_level]);
7869				left_gen = btrfs_node_ptr_generation(
7870						left_path->nodes[left_level],
7871						left_path->slots[left_level]);
7872				right_gen = btrfs_node_ptr_generation(
7873						right_path->nodes[right_level],
7874						right_path->slots[right_level]);
7875				if (left_blockptr == right_blockptr &&
7876				    left_gen == right_gen) {
7877					/*
7878					 * As we're on a shared block, don't
7879					 * allow to go deeper.
7880					 */
7881					advance_left = ADVANCE_ONLY_NEXT;
7882					advance_right = ADVANCE_ONLY_NEXT;
7883				} else {
7884					advance_left = ADVANCE;
7885					advance_right = ADVANCE;
7886				}
7887			}
7888		} else if (left_level < right_level) {
7889			advance_right = ADVANCE;
7890		} else {
7891			advance_left = ADVANCE;
7892		}
7893	}
7894
7895out_unlock:
7896	up_read(&fs_info->commit_root_sem);
7897out:
7898	btrfs_free_path(left_path);
7899	btrfs_free_path(right_path);
7900	kvfree(tmp_buf);
7901	return ret;
7902}
7903
7904static int send_subvol(struct send_ctx *sctx)
7905{
7906	int ret;
7907
7908	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7909		ret = send_header(sctx);
7910		if (ret < 0)
7911			goto out;
7912	}
7913
7914	ret = send_subvol_begin(sctx);
7915	if (ret < 0)
7916		goto out;
7917
7918	if (sctx->parent_root) {
7919		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7920		if (ret < 0)
7921			goto out;
7922		ret = finish_inode_if_needed(sctx, 1);
7923		if (ret < 0)
7924			goto out;
7925	} else {
7926		ret = full_send_tree(sctx);
7927		if (ret < 0)
7928			goto out;
7929	}
7930
7931out:
7932	free_recorded_refs(sctx);
7933	return ret;
7934}
7935
7936/*
7937 * If orphan cleanup did remove any orphans from a root, it means the tree
7938 * was modified and therefore the commit root is not the same as the current
7939 * root anymore. This is a problem, because send uses the commit root and
7940 * therefore can see inode items that don't exist in the current root anymore,
7941 * and for example make calls to btrfs_iget, which will do tree lookups based
7942 * on the current root and not on the commit root. Those lookups will fail,
7943 * returning a -ESTALE error, and making send fail with that error. So make
7944 * sure a send does not see any orphans we have just removed, and that it will
7945 * see the same inodes regardless of whether a transaction commit happened
7946 * before it started (meaning that the commit root will be the same as the
7947 * current root) or not.
7948 */
7949static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7950{
7951	int i;
7952	struct btrfs_trans_handle *trans = NULL;
7953
7954again:
7955	if (sctx->parent_root &&
7956	    sctx->parent_root->node != sctx->parent_root->commit_root)
7957		goto commit_trans;
7958
7959	for (i = 0; i < sctx->clone_roots_cnt; i++)
7960		if (sctx->clone_roots[i].root->node !=
7961		    sctx->clone_roots[i].root->commit_root)
7962			goto commit_trans;
7963
7964	if (trans)
7965		return btrfs_end_transaction(trans);
7966
7967	return 0;
7968
7969commit_trans:
7970	/* Use any root, all fs roots will get their commit roots updated. */
7971	if (!trans) {
7972		trans = btrfs_join_transaction(sctx->send_root);
7973		if (IS_ERR(trans))
7974			return PTR_ERR(trans);
7975		goto again;
7976	}
7977
7978	return btrfs_commit_transaction(trans);
7979}
7980
7981/*
7982 * Make sure any existing dellaloc is flushed for any root used by a send
7983 * operation so that we do not miss any data and we do not race with writeback
7984 * finishing and changing a tree while send is using the tree. This could
7985 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7986 * a send operation then uses the subvolume.
7987 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7988 */
7989static int flush_delalloc_roots(struct send_ctx *sctx)
7990{
7991	struct btrfs_root *root = sctx->parent_root;
7992	int ret;
7993	int i;
7994
7995	if (root) {
7996		ret = btrfs_start_delalloc_snapshot(root, false);
7997		if (ret)
7998			return ret;
7999		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8000	}
8001
8002	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8003		root = sctx->clone_roots[i].root;
8004		ret = btrfs_start_delalloc_snapshot(root, false);
8005		if (ret)
8006			return ret;
8007		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8008	}
8009
8010	return 0;
8011}
8012
8013static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8014{
8015	spin_lock(&root->root_item_lock);
8016	root->send_in_progress--;
8017	/*
8018	 * Not much left to do, we don't know why it's unbalanced and
8019	 * can't blindly reset it to 0.
8020	 */
8021	if (root->send_in_progress < 0)
8022		btrfs_err(root->fs_info,
8023			  "send_in_progress unbalanced %d root %llu",
8024			  root->send_in_progress, root->root_key.objectid);
8025	spin_unlock(&root->root_item_lock);
8026}
8027
8028static void dedupe_in_progress_warn(const struct btrfs_root *root)
8029{
8030	btrfs_warn_rl(root->fs_info,
8031"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8032		      root->root_key.objectid, root->dedupe_in_progress);
8033}
8034
8035long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8036{
8037	int ret = 0;
8038	struct btrfs_root *send_root = BTRFS_I(inode)->root;
8039	struct btrfs_fs_info *fs_info = send_root->fs_info;
8040	struct btrfs_root *clone_root;
8041	struct send_ctx *sctx = NULL;
8042	u32 i;
8043	u64 *clone_sources_tmp = NULL;
8044	int clone_sources_to_rollback = 0;
8045	size_t alloc_size;
8046	int sort_clone_roots = 0;
8047
8048	if (!capable(CAP_SYS_ADMIN))
8049		return -EPERM;
8050
8051	/*
8052	 * The subvolume must remain read-only during send, protect against
8053	 * making it RW. This also protects against deletion.
8054	 */
8055	spin_lock(&send_root->root_item_lock);
8056	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8057		dedupe_in_progress_warn(send_root);
8058		spin_unlock(&send_root->root_item_lock);
8059		return -EAGAIN;
8060	}
8061	send_root->send_in_progress++;
8062	spin_unlock(&send_root->root_item_lock);
8063
8064	/*
8065	 * Userspace tools do the checks and warn the user if it's
8066	 * not RO.
8067	 */
8068	if (!btrfs_root_readonly(send_root)) {
8069		ret = -EPERM;
8070		goto out;
8071	}
8072
8073	/*
8074	 * Check that we don't overflow at later allocations, we request
8075	 * clone_sources_count + 1 items, and compare to unsigned long inside
8076	 * access_ok. Also set an upper limit for allocation size so this can't
8077	 * easily exhaust memory. Max number of clone sources is about 200K.
8078	 */
8079	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8080		ret = -EINVAL;
8081		goto out;
8082	}
8083
8084	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8085		ret = -EINVAL;
8086		goto out;
8087	}
8088
8089	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8090	if (!sctx) {
8091		ret = -ENOMEM;
8092		goto out;
8093	}
8094
8095	INIT_LIST_HEAD(&sctx->new_refs);
8096	INIT_LIST_HEAD(&sctx->deleted_refs);
8097	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
8098	INIT_LIST_HEAD(&sctx->name_cache_list);
8099
8100	INIT_LIST_HEAD(&sctx->backref_cache.lru_list);
8101	mt_init(&sctx->backref_cache.entries);
8102
8103	sctx->flags = arg->flags;
8104
8105	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8106		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8107			ret = -EPROTO;
8108			goto out;
8109		}
8110		/* Zero means "use the highest version" */
8111		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8112	} else {
8113		sctx->proto = 1;
8114	}
8115	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8116		ret = -EINVAL;
8117		goto out;
8118	}
8119
8120	sctx->send_filp = fget(arg->send_fd);
8121	if (!sctx->send_filp) {
8122		ret = -EBADF;
8123		goto out;
8124	}
8125
8126	sctx->send_root = send_root;
8127	/*
8128	 * Unlikely but possible, if the subvolume is marked for deletion but
8129	 * is slow to remove the directory entry, send can still be started
8130	 */
8131	if (btrfs_root_dead(sctx->send_root)) {
8132		ret = -EPERM;
8133		goto out;
8134	}
8135
8136	sctx->clone_roots_cnt = arg->clone_sources_count;
8137
8138	if (sctx->proto >= 2) {
8139		u32 send_buf_num_pages;
8140
8141		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8142		sctx->send_buf = vmalloc(sctx->send_max_size);
8143		if (!sctx->send_buf) {
8144			ret = -ENOMEM;
8145			goto out;
8146		}
8147		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8148		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8149					       sizeof(*sctx->send_buf_pages),
8150					       GFP_KERNEL);
8151		if (!sctx->send_buf_pages) {
8152			ret = -ENOMEM;
8153			goto out;
8154		}
8155		for (i = 0; i < send_buf_num_pages; i++) {
8156			sctx->send_buf_pages[i] =
8157				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8158		}
8159	} else {
8160		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8161		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8162	}
8163	if (!sctx->send_buf) {
8164		ret = -ENOMEM;
8165		goto out;
8166	}
8167
8168	sctx->pending_dir_moves = RB_ROOT;
8169	sctx->waiting_dir_moves = RB_ROOT;
8170	sctx->orphan_dirs = RB_ROOT;
8171	sctx->rbtree_new_refs = RB_ROOT;
8172	sctx->rbtree_deleted_refs = RB_ROOT;
8173
8174	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
8175				     arg->clone_sources_count + 1,
8176				     GFP_KERNEL);
8177	if (!sctx->clone_roots) {
8178		ret = -ENOMEM;
8179		goto out;
8180	}
8181
8182	alloc_size = array_size(sizeof(*arg->clone_sources),
8183				arg->clone_sources_count);
8184
8185	if (arg->clone_sources_count) {
8186		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8187		if (!clone_sources_tmp) {
8188			ret = -ENOMEM;
8189			goto out;
8190		}
8191
8192		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8193				alloc_size);
8194		if (ret) {
8195			ret = -EFAULT;
8196			goto out;
8197		}
8198
8199		for (i = 0; i < arg->clone_sources_count; i++) {
8200			clone_root = btrfs_get_fs_root(fs_info,
8201						clone_sources_tmp[i], true);
8202			if (IS_ERR(clone_root)) {
8203				ret = PTR_ERR(clone_root);
8204				goto out;
8205			}
8206			spin_lock(&clone_root->root_item_lock);
8207			if (!btrfs_root_readonly(clone_root) ||
8208			    btrfs_root_dead(clone_root)) {
8209				spin_unlock(&clone_root->root_item_lock);
8210				btrfs_put_root(clone_root);
8211				ret = -EPERM;
8212				goto out;
8213			}
8214			if (clone_root->dedupe_in_progress) {
8215				dedupe_in_progress_warn(clone_root);
8216				spin_unlock(&clone_root->root_item_lock);
8217				btrfs_put_root(clone_root);
8218				ret = -EAGAIN;
8219				goto out;
8220			}
8221			clone_root->send_in_progress++;
8222			spin_unlock(&clone_root->root_item_lock);
8223
8224			sctx->clone_roots[i].root = clone_root;
8225			clone_sources_to_rollback = i + 1;
8226		}
8227		kvfree(clone_sources_tmp);
8228		clone_sources_tmp = NULL;
8229	}
8230
8231	if (arg->parent_root) {
8232		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8233						      true);
8234		if (IS_ERR(sctx->parent_root)) {
8235			ret = PTR_ERR(sctx->parent_root);
8236			goto out;
8237		}
8238
8239		spin_lock(&sctx->parent_root->root_item_lock);
8240		sctx->parent_root->send_in_progress++;
8241		if (!btrfs_root_readonly(sctx->parent_root) ||
8242				btrfs_root_dead(sctx->parent_root)) {
8243			spin_unlock(&sctx->parent_root->root_item_lock);
8244			ret = -EPERM;
8245			goto out;
8246		}
8247		if (sctx->parent_root->dedupe_in_progress) {
8248			dedupe_in_progress_warn(sctx->parent_root);
8249			spin_unlock(&sctx->parent_root->root_item_lock);
8250			ret = -EAGAIN;
8251			goto out;
8252		}
8253		spin_unlock(&sctx->parent_root->root_item_lock);
8254	}
8255
8256	/*
8257	 * Clones from send_root are allowed, but only if the clone source
8258	 * is behind the current send position. This is checked while searching
8259	 * for possible clone sources.
8260	 */
8261	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8262		btrfs_grab_root(sctx->send_root);
8263
8264	/* We do a bsearch later */
8265	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8266			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8267			NULL);
8268	sort_clone_roots = 1;
8269
8270	ret = flush_delalloc_roots(sctx);
8271	if (ret)
8272		goto out;
8273
8274	ret = ensure_commit_roots_uptodate(sctx);
8275	if (ret)
8276		goto out;
8277
8278	ret = send_subvol(sctx);
8279	if (ret < 0)
8280		goto out;
8281
8282	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8283		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8284		if (ret < 0)
8285			goto out;
8286		ret = send_cmd(sctx);
8287		if (ret < 0)
8288			goto out;
8289	}
8290
8291out:
8292	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8293	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8294		struct rb_node *n;
8295		struct pending_dir_move *pm;
8296
8297		n = rb_first(&sctx->pending_dir_moves);
8298		pm = rb_entry(n, struct pending_dir_move, node);
8299		while (!list_empty(&pm->list)) {
8300			struct pending_dir_move *pm2;
8301
8302			pm2 = list_first_entry(&pm->list,
8303					       struct pending_dir_move, list);
8304			free_pending_move(sctx, pm2);
8305		}
8306		free_pending_move(sctx, pm);
8307	}
8308
8309	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8310	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8311		struct rb_node *n;
8312		struct waiting_dir_move *dm;
8313
8314		n = rb_first(&sctx->waiting_dir_moves);
8315		dm = rb_entry(n, struct waiting_dir_move, node);
8316		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8317		kfree(dm);
8318	}
8319
8320	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8321	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8322		struct rb_node *n;
8323		struct orphan_dir_info *odi;
8324
8325		n = rb_first(&sctx->orphan_dirs);
8326		odi = rb_entry(n, struct orphan_dir_info, node);
8327		free_orphan_dir_info(sctx, odi);
8328	}
8329
8330	if (sort_clone_roots) {
8331		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8332			btrfs_root_dec_send_in_progress(
8333					sctx->clone_roots[i].root);
8334			btrfs_put_root(sctx->clone_roots[i].root);
8335		}
8336	} else {
8337		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8338			btrfs_root_dec_send_in_progress(
8339					sctx->clone_roots[i].root);
8340			btrfs_put_root(sctx->clone_roots[i].root);
8341		}
8342
8343		btrfs_root_dec_send_in_progress(send_root);
8344	}
8345	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8346		btrfs_root_dec_send_in_progress(sctx->parent_root);
8347		btrfs_put_root(sctx->parent_root);
8348	}
8349
8350	kvfree(clone_sources_tmp);
8351
8352	if (sctx) {
8353		if (sctx->send_filp)
8354			fput(sctx->send_filp);
8355
8356		kvfree(sctx->clone_roots);
8357		kfree(sctx->send_buf_pages);
8358		kvfree(sctx->send_buf);
8359		kvfree(sctx->verity_descriptor);
8360
8361		name_cache_free(sctx);
8362
8363		close_current_inode(sctx);
8364
8365		empty_backref_cache(sctx);
8366
8367		kfree(sctx);
8368	}
8369
8370	return ret;
8371}