Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18
  19#include "send.h"
  20#include "backref.h"
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26#include "xattr.h"
  27
  28/*
  29 * Maximum number of references an extent can have in order for us to attempt to
  30 * issue clone operations instead of write operations. This currently exists to
  31 * avoid hitting limitations of the backreference walking code (taking a lot of
  32 * time and using too much memory for extents with large number of references).
  33 */
  34#define SEND_MAX_EXTENT_REFS	64
  35
  36/*
  37 * A fs_path is a helper to dynamically build path names with unknown size.
  38 * It reallocates the internal buffer on demand.
  39 * It allows fast adding of path elements on the right side (normal path) and
  40 * fast adding to the left side (reversed path). A reversed path can also be
  41 * unreversed if needed.
  42 */
  43struct fs_path {
  44	union {
  45		struct {
  46			char *start;
  47			char *end;
  48
  49			char *buf;
  50			unsigned short buf_len:15;
  51			unsigned short reversed:1;
  52			char inline_buf[];
  53		};
  54		/*
  55		 * Average path length does not exceed 200 bytes, we'll have
  56		 * better packing in the slab and higher chance to satisfy
  57		 * a allocation later during send.
  58		 */
  59		char pad[256];
  60	};
  61};
  62#define FS_PATH_INLINE_SIZE \
  63	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  64
  65
  66/* reused for each extent */
  67struct clone_root {
  68	struct btrfs_root *root;
  69	u64 ino;
  70	u64 offset;
  71
  72	u64 found_refs;
  73};
  74
  75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  77
  78struct send_ctx {
  79	struct file *send_filp;
  80	loff_t send_off;
  81	char *send_buf;
  82	u32 send_size;
  83	u32 send_max_size;
  84	u64 total_send_size;
  85	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  86	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
  87
  88	struct btrfs_root *send_root;
  89	struct btrfs_root *parent_root;
  90	struct clone_root *clone_roots;
  91	int clone_roots_cnt;
  92
  93	/* current state of the compare_tree call */
  94	struct btrfs_path *left_path;
  95	struct btrfs_path *right_path;
  96	struct btrfs_key *cmp_key;
  97
  98	/*
  99	 * infos of the currently processed inode. In case of deleted inodes,
 100	 * these are the values from the deleted inode.
 101	 */
 102	u64 cur_ino;
 103	u64 cur_inode_gen;
 104	int cur_inode_new;
 105	int cur_inode_new_gen;
 106	int cur_inode_deleted;
 107	u64 cur_inode_size;
 108	u64 cur_inode_mode;
 109	u64 cur_inode_rdev;
 110	u64 cur_inode_last_extent;
 111	u64 cur_inode_next_write_offset;
 112	bool ignore_cur_inode;
 113
 114	u64 send_progress;
 115
 116	struct list_head new_refs;
 117	struct list_head deleted_refs;
 118
 119	struct radix_tree_root name_cache;
 120	struct list_head name_cache_list;
 121	int name_cache_size;
 122
 123	struct file_ra_state ra;
 124
 125	char *read_buf;
 126
 127	/*
 128	 * We process inodes by their increasing order, so if before an
 129	 * incremental send we reverse the parent/child relationship of
 130	 * directories such that a directory with a lower inode number was
 131	 * the parent of a directory with a higher inode number, and the one
 132	 * becoming the new parent got renamed too, we can't rename/move the
 133	 * directory with lower inode number when we finish processing it - we
 134	 * must process the directory with higher inode number first, then
 135	 * rename/move it and then rename/move the directory with lower inode
 136	 * number. Example follows.
 137	 *
 138	 * Tree state when the first send was performed:
 139	 *
 140	 * .
 141	 * |-- a                   (ino 257)
 142	 *     |-- b               (ino 258)
 143	 *         |
 144	 *         |
 145	 *         |-- c           (ino 259)
 146	 *         |   |-- d       (ino 260)
 147	 *         |
 148	 *         |-- c2          (ino 261)
 149	 *
 150	 * Tree state when the second (incremental) send is performed:
 151	 *
 152	 * .
 153	 * |-- a                   (ino 257)
 154	 *     |-- b               (ino 258)
 155	 *         |-- c2          (ino 261)
 156	 *             |-- d2      (ino 260)
 157	 *                 |-- cc  (ino 259)
 158	 *
 159	 * The sequence of steps that lead to the second state was:
 160	 *
 161	 * mv /a/b/c/d /a/b/c2/d2
 162	 * mv /a/b/c /a/b/c2/d2/cc
 163	 *
 164	 * "c" has lower inode number, but we can't move it (2nd mv operation)
 165	 * before we move "d", which has higher inode number.
 166	 *
 167	 * So we just memorize which move/rename operations must be performed
 168	 * later when their respective parent is processed and moved/renamed.
 169	 */
 170
 171	/* Indexed by parent directory inode number. */
 172	struct rb_root pending_dir_moves;
 173
 174	/*
 175	 * Reverse index, indexed by the inode number of a directory that
 176	 * is waiting for the move/rename of its immediate parent before its
 177	 * own move/rename can be performed.
 178	 */
 179	struct rb_root waiting_dir_moves;
 180
 181	/*
 182	 * A directory that is going to be rm'ed might have a child directory
 183	 * which is in the pending directory moves index above. In this case,
 184	 * the directory can only be removed after the move/rename of its child
 185	 * is performed. Example:
 186	 *
 187	 * Parent snapshot:
 188	 *
 189	 * .                        (ino 256)
 190	 * |-- a/                   (ino 257)
 191	 *     |-- b/               (ino 258)
 192	 *         |-- c/           (ino 259)
 193	 *         |   |-- x/       (ino 260)
 194	 *         |
 195	 *         |-- y/           (ino 261)
 196	 *
 197	 * Send snapshot:
 198	 *
 199	 * .                        (ino 256)
 200	 * |-- a/                   (ino 257)
 201	 *     |-- b/               (ino 258)
 202	 *         |-- YY/          (ino 261)
 203	 *              |-- x/      (ino 260)
 204	 *
 205	 * Sequence of steps that lead to the send snapshot:
 206	 * rm -f /a/b/c/foo.txt
 207	 * mv /a/b/y /a/b/YY
 208	 * mv /a/b/c/x /a/b/YY
 209	 * rmdir /a/b/c
 210	 *
 211	 * When the child is processed, its move/rename is delayed until its
 212	 * parent is processed (as explained above), but all other operations
 213	 * like update utimes, chown, chgrp, etc, are performed and the paths
 214	 * that it uses for those operations must use the orphanized name of
 215	 * its parent (the directory we're going to rm later), so we need to
 216	 * memorize that name.
 217	 *
 218	 * Indexed by the inode number of the directory to be deleted.
 219	 */
 220	struct rb_root orphan_dirs;
 221};
 222
 223struct pending_dir_move {
 224	struct rb_node node;
 225	struct list_head list;
 226	u64 parent_ino;
 227	u64 ino;
 228	u64 gen;
 229	struct list_head update_refs;
 230};
 231
 232struct waiting_dir_move {
 233	struct rb_node node;
 234	u64 ino;
 235	/*
 236	 * There might be some directory that could not be removed because it
 237	 * was waiting for this directory inode to be moved first. Therefore
 238	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 239	 */
 240	u64 rmdir_ino;
 241	bool orphanized;
 242};
 243
 244struct orphan_dir_info {
 245	struct rb_node node;
 246	u64 ino;
 247	u64 gen;
 248	u64 last_dir_index_offset;
 249};
 250
 251struct name_cache_entry {
 252	struct list_head list;
 253	/*
 254	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
 255	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
 256	 * more then one inum would fall into the same entry, we use radix_list
 257	 * to store the additional entries. radix_list is also used to store
 258	 * entries where two entries have the same inum but different
 259	 * generations.
 260	 */
 261	struct list_head radix_list;
 262	u64 ino;
 263	u64 gen;
 264	u64 parent_ino;
 265	u64 parent_gen;
 266	int ret;
 267	int need_later_update;
 268	int name_len;
 269	char name[];
 270};
 271
 272#define ADVANCE							1
 273#define ADVANCE_ONLY_NEXT					-1
 274
 275enum btrfs_compare_tree_result {
 276	BTRFS_COMPARE_TREE_NEW,
 277	BTRFS_COMPARE_TREE_DELETED,
 278	BTRFS_COMPARE_TREE_CHANGED,
 279	BTRFS_COMPARE_TREE_SAME,
 280};
 281typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
 282				  struct btrfs_path *right_path,
 283				  struct btrfs_key *key,
 284				  enum btrfs_compare_tree_result result,
 285				  void *ctx);
 286
 287__cold
 288static void inconsistent_snapshot_error(struct send_ctx *sctx,
 289					enum btrfs_compare_tree_result result,
 290					const char *what)
 291{
 292	const char *result_string;
 293
 294	switch (result) {
 295	case BTRFS_COMPARE_TREE_NEW:
 296		result_string = "new";
 297		break;
 298	case BTRFS_COMPARE_TREE_DELETED:
 299		result_string = "deleted";
 300		break;
 301	case BTRFS_COMPARE_TREE_CHANGED:
 302		result_string = "updated";
 303		break;
 304	case BTRFS_COMPARE_TREE_SAME:
 305		ASSERT(0);
 306		result_string = "unchanged";
 307		break;
 308	default:
 309		ASSERT(0);
 310		result_string = "unexpected";
 311	}
 312
 313	btrfs_err(sctx->send_root->fs_info,
 314		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 315		  result_string, what, sctx->cmp_key->objectid,
 316		  sctx->send_root->root_key.objectid,
 317		  (sctx->parent_root ?
 318		   sctx->parent_root->root_key.objectid : 0));
 319}
 320
 321static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 322
 323static struct waiting_dir_move *
 324get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 325
 326static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 327
 328static int need_send_hole(struct send_ctx *sctx)
 329{
 330	return (sctx->parent_root && !sctx->cur_inode_new &&
 331		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 332		S_ISREG(sctx->cur_inode_mode));
 333}
 334
 335static void fs_path_reset(struct fs_path *p)
 336{
 337	if (p->reversed) {
 338		p->start = p->buf + p->buf_len - 1;
 339		p->end = p->start;
 340		*p->start = 0;
 341	} else {
 342		p->start = p->buf;
 343		p->end = p->start;
 344		*p->start = 0;
 345	}
 346}
 347
 348static struct fs_path *fs_path_alloc(void)
 349{
 350	struct fs_path *p;
 351
 352	p = kmalloc(sizeof(*p), GFP_KERNEL);
 353	if (!p)
 354		return NULL;
 355	p->reversed = 0;
 356	p->buf = p->inline_buf;
 357	p->buf_len = FS_PATH_INLINE_SIZE;
 358	fs_path_reset(p);
 359	return p;
 360}
 361
 362static struct fs_path *fs_path_alloc_reversed(void)
 363{
 364	struct fs_path *p;
 365
 366	p = fs_path_alloc();
 367	if (!p)
 368		return NULL;
 369	p->reversed = 1;
 370	fs_path_reset(p);
 371	return p;
 372}
 373
 374static void fs_path_free(struct fs_path *p)
 375{
 376	if (!p)
 377		return;
 378	if (p->buf != p->inline_buf)
 379		kfree(p->buf);
 380	kfree(p);
 381}
 382
 383static int fs_path_len(struct fs_path *p)
 384{
 385	return p->end - p->start;
 386}
 387
 388static int fs_path_ensure_buf(struct fs_path *p, int len)
 389{
 390	char *tmp_buf;
 391	int path_len;
 392	int old_buf_len;
 393
 394	len++;
 395
 396	if (p->buf_len >= len)
 397		return 0;
 398
 399	if (len > PATH_MAX) {
 400		WARN_ON(1);
 401		return -ENOMEM;
 402	}
 403
 404	path_len = p->end - p->start;
 405	old_buf_len = p->buf_len;
 406
 407	/*
 408	 * First time the inline_buf does not suffice
 409	 */
 410	if (p->buf == p->inline_buf) {
 411		tmp_buf = kmalloc(len, GFP_KERNEL);
 412		if (tmp_buf)
 413			memcpy(tmp_buf, p->buf, old_buf_len);
 414	} else {
 415		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 416	}
 417	if (!tmp_buf)
 418		return -ENOMEM;
 419	p->buf = tmp_buf;
 420	/*
 421	 * The real size of the buffer is bigger, this will let the fast path
 422	 * happen most of the time
 423	 */
 424	p->buf_len = ksize(p->buf);
 425
 426	if (p->reversed) {
 427		tmp_buf = p->buf + old_buf_len - path_len - 1;
 428		p->end = p->buf + p->buf_len - 1;
 429		p->start = p->end - path_len;
 430		memmove(p->start, tmp_buf, path_len + 1);
 431	} else {
 432		p->start = p->buf;
 433		p->end = p->start + path_len;
 434	}
 435	return 0;
 436}
 437
 438static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 439				   char **prepared)
 440{
 441	int ret;
 442	int new_len;
 443
 444	new_len = p->end - p->start + name_len;
 445	if (p->start != p->end)
 446		new_len++;
 447	ret = fs_path_ensure_buf(p, new_len);
 448	if (ret < 0)
 449		goto out;
 450
 451	if (p->reversed) {
 452		if (p->start != p->end)
 453			*--p->start = '/';
 454		p->start -= name_len;
 455		*prepared = p->start;
 456	} else {
 457		if (p->start != p->end)
 458			*p->end++ = '/';
 459		*prepared = p->end;
 460		p->end += name_len;
 461		*p->end = 0;
 462	}
 463
 464out:
 465	return ret;
 466}
 467
 468static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 469{
 470	int ret;
 471	char *prepared;
 472
 473	ret = fs_path_prepare_for_add(p, name_len, &prepared);
 474	if (ret < 0)
 475		goto out;
 476	memcpy(prepared, name, name_len);
 477
 478out:
 479	return ret;
 480}
 481
 482static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 483{
 484	int ret;
 485	char *prepared;
 486
 487	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 488	if (ret < 0)
 489		goto out;
 490	memcpy(prepared, p2->start, p2->end - p2->start);
 491
 492out:
 493	return ret;
 494}
 495
 496static int fs_path_add_from_extent_buffer(struct fs_path *p,
 497					  struct extent_buffer *eb,
 498					  unsigned long off, int len)
 499{
 500	int ret;
 501	char *prepared;
 502
 503	ret = fs_path_prepare_for_add(p, len, &prepared);
 504	if (ret < 0)
 505		goto out;
 506
 507	read_extent_buffer(eb, prepared, off, len);
 508
 509out:
 510	return ret;
 511}
 512
 513static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 514{
 515	int ret;
 516
 517	p->reversed = from->reversed;
 518	fs_path_reset(p);
 519
 520	ret = fs_path_add_path(p, from);
 521
 522	return ret;
 523}
 524
 525
 526static void fs_path_unreverse(struct fs_path *p)
 527{
 528	char *tmp;
 529	int len;
 530
 531	if (!p->reversed)
 532		return;
 533
 534	tmp = p->start;
 535	len = p->end - p->start;
 536	p->start = p->buf;
 537	p->end = p->start + len;
 538	memmove(p->start, tmp, len + 1);
 539	p->reversed = 0;
 540}
 541
 542static struct btrfs_path *alloc_path_for_send(void)
 543{
 544	struct btrfs_path *path;
 545
 546	path = btrfs_alloc_path();
 547	if (!path)
 548		return NULL;
 549	path->search_commit_root = 1;
 550	path->skip_locking = 1;
 551	path->need_commit_sem = 1;
 552	return path;
 553}
 554
 555static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 556{
 557	int ret;
 558	u32 pos = 0;
 559
 560	while (pos < len) {
 561		ret = kernel_write(filp, buf + pos, len - pos, off);
 562		/* TODO handle that correctly */
 563		/*if (ret == -ERESTARTSYS) {
 564			continue;
 565		}*/
 566		if (ret < 0)
 567			return ret;
 568		if (ret == 0) {
 569			return -EIO;
 570		}
 571		pos += ret;
 572	}
 573
 574	return 0;
 575}
 576
 577static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 578{
 579	struct btrfs_tlv_header *hdr;
 580	int total_len = sizeof(*hdr) + len;
 581	int left = sctx->send_max_size - sctx->send_size;
 582
 583	if (unlikely(left < total_len))
 584		return -EOVERFLOW;
 585
 586	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 587	hdr->tlv_type = cpu_to_le16(attr);
 588	hdr->tlv_len = cpu_to_le16(len);
 589	memcpy(hdr + 1, data, len);
 590	sctx->send_size += total_len;
 591
 592	return 0;
 593}
 594
 595#define TLV_PUT_DEFINE_INT(bits) \
 596	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
 597			u##bits attr, u##bits value)			\
 598	{								\
 599		__le##bits __tmp = cpu_to_le##bits(value);		\
 600		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
 601	}
 602
 603TLV_PUT_DEFINE_INT(64)
 604
 605static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 606			  const char *str, int len)
 607{
 608	if (len == -1)
 609		len = strlen(str);
 610	return tlv_put(sctx, attr, str, len);
 611}
 612
 613static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 614			const u8 *uuid)
 615{
 616	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 617}
 618
 619static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 620				  struct extent_buffer *eb,
 621				  struct btrfs_timespec *ts)
 622{
 623	struct btrfs_timespec bts;
 624	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 625	return tlv_put(sctx, attr, &bts, sizeof(bts));
 626}
 627
 628
 629#define TLV_PUT(sctx, attrtype, data, attrlen) \
 630	do { \
 631		ret = tlv_put(sctx, attrtype, data, attrlen); \
 632		if (ret < 0) \
 633			goto tlv_put_failure; \
 634	} while (0)
 635
 636#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 637	do { \
 638		ret = tlv_put_u##bits(sctx, attrtype, value); \
 639		if (ret < 0) \
 640			goto tlv_put_failure; \
 641	} while (0)
 642
 643#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 644#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 645#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 646#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 647#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 648	do { \
 649		ret = tlv_put_string(sctx, attrtype, str, len); \
 650		if (ret < 0) \
 651			goto tlv_put_failure; \
 652	} while (0)
 653#define TLV_PUT_PATH(sctx, attrtype, p) \
 654	do { \
 655		ret = tlv_put_string(sctx, attrtype, p->start, \
 656			p->end - p->start); \
 657		if (ret < 0) \
 658			goto tlv_put_failure; \
 659	} while(0)
 660#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 661	do { \
 662		ret = tlv_put_uuid(sctx, attrtype, uuid); \
 663		if (ret < 0) \
 664			goto tlv_put_failure; \
 665	} while (0)
 666#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 667	do { \
 668		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 669		if (ret < 0) \
 670			goto tlv_put_failure; \
 671	} while (0)
 672
 673static int send_header(struct send_ctx *sctx)
 674{
 675	struct btrfs_stream_header hdr;
 676
 677	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 678	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 679
 680	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 681					&sctx->send_off);
 682}
 683
 684/*
 685 * For each command/item we want to send to userspace, we call this function.
 686 */
 687static int begin_cmd(struct send_ctx *sctx, int cmd)
 688{
 689	struct btrfs_cmd_header *hdr;
 690
 691	if (WARN_ON(!sctx->send_buf))
 692		return -EINVAL;
 693
 694	BUG_ON(sctx->send_size);
 695
 696	sctx->send_size += sizeof(*hdr);
 697	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 698	hdr->cmd = cpu_to_le16(cmd);
 699
 700	return 0;
 701}
 702
 703static int send_cmd(struct send_ctx *sctx)
 704{
 705	int ret;
 706	struct btrfs_cmd_header *hdr;
 707	u32 crc;
 708
 709	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 710	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 711	hdr->crc = 0;
 712
 713	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 714	hdr->crc = cpu_to_le32(crc);
 715
 716	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 717					&sctx->send_off);
 718
 719	sctx->total_send_size += sctx->send_size;
 720	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 721	sctx->send_size = 0;
 722
 723	return ret;
 724}
 725
 726/*
 727 * Sends a move instruction to user space
 728 */
 729static int send_rename(struct send_ctx *sctx,
 730		     struct fs_path *from, struct fs_path *to)
 731{
 732	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 733	int ret;
 734
 735	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 736
 737	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 738	if (ret < 0)
 739		goto out;
 740
 741	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 742	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 743
 744	ret = send_cmd(sctx);
 745
 746tlv_put_failure:
 747out:
 748	return ret;
 749}
 750
 751/*
 752 * Sends a link instruction to user space
 753 */
 754static int send_link(struct send_ctx *sctx,
 755		     struct fs_path *path, struct fs_path *lnk)
 756{
 757	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 758	int ret;
 759
 760	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 761
 762	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 763	if (ret < 0)
 764		goto out;
 765
 766	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 767	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 768
 769	ret = send_cmd(sctx);
 770
 771tlv_put_failure:
 772out:
 773	return ret;
 774}
 775
 776/*
 777 * Sends an unlink instruction to user space
 778 */
 779static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 780{
 781	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 782	int ret;
 783
 784	btrfs_debug(fs_info, "send_unlink %s", path->start);
 785
 786	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 787	if (ret < 0)
 788		goto out;
 789
 790	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 791
 792	ret = send_cmd(sctx);
 793
 794tlv_put_failure:
 795out:
 796	return ret;
 797}
 798
 799/*
 800 * Sends a rmdir instruction to user space
 801 */
 802static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 803{
 804	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 805	int ret;
 806
 807	btrfs_debug(fs_info, "send_rmdir %s", path->start);
 808
 809	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 810	if (ret < 0)
 811		goto out;
 812
 813	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 814
 815	ret = send_cmd(sctx);
 816
 817tlv_put_failure:
 818out:
 819	return ret;
 820}
 821
 822/*
 823 * Helper function to retrieve some fields from an inode item.
 824 */
 825static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 826			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 827			  u64 *gid, u64 *rdev)
 828{
 829	int ret;
 830	struct btrfs_inode_item *ii;
 831	struct btrfs_key key;
 832
 833	key.objectid = ino;
 834	key.type = BTRFS_INODE_ITEM_KEY;
 835	key.offset = 0;
 836	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 837	if (ret) {
 838		if (ret > 0)
 839			ret = -ENOENT;
 840		return ret;
 841	}
 842
 843	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 844			struct btrfs_inode_item);
 845	if (size)
 846		*size = btrfs_inode_size(path->nodes[0], ii);
 847	if (gen)
 848		*gen = btrfs_inode_generation(path->nodes[0], ii);
 849	if (mode)
 850		*mode = btrfs_inode_mode(path->nodes[0], ii);
 851	if (uid)
 852		*uid = btrfs_inode_uid(path->nodes[0], ii);
 853	if (gid)
 854		*gid = btrfs_inode_gid(path->nodes[0], ii);
 855	if (rdev)
 856		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
 857
 858	return ret;
 859}
 860
 861static int get_inode_info(struct btrfs_root *root,
 862			  u64 ino, u64 *size, u64 *gen,
 863			  u64 *mode, u64 *uid, u64 *gid,
 864			  u64 *rdev)
 865{
 866	struct btrfs_path *path;
 867	int ret;
 868
 869	path = alloc_path_for_send();
 870	if (!path)
 871		return -ENOMEM;
 872	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 873			       rdev);
 874	btrfs_free_path(path);
 875	return ret;
 876}
 877
 878typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 879				   struct fs_path *p,
 880				   void *ctx);
 881
 882/*
 883 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 884 * btrfs_inode_extref.
 885 * The iterate callback may return a non zero value to stop iteration. This can
 886 * be a negative value for error codes or 1 to simply stop it.
 887 *
 888 * path must point to the INODE_REF or INODE_EXTREF when called.
 889 */
 890static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 891			     struct btrfs_key *found_key, int resolve,
 892			     iterate_inode_ref_t iterate, void *ctx)
 893{
 894	struct extent_buffer *eb = path->nodes[0];
 895	struct btrfs_item *item;
 896	struct btrfs_inode_ref *iref;
 897	struct btrfs_inode_extref *extref;
 898	struct btrfs_path *tmp_path;
 899	struct fs_path *p;
 900	u32 cur = 0;
 901	u32 total;
 902	int slot = path->slots[0];
 903	u32 name_len;
 904	char *start;
 905	int ret = 0;
 906	int num = 0;
 907	int index;
 908	u64 dir;
 909	unsigned long name_off;
 910	unsigned long elem_size;
 911	unsigned long ptr;
 912
 913	p = fs_path_alloc_reversed();
 914	if (!p)
 915		return -ENOMEM;
 916
 917	tmp_path = alloc_path_for_send();
 918	if (!tmp_path) {
 919		fs_path_free(p);
 920		return -ENOMEM;
 921	}
 922
 923
 924	if (found_key->type == BTRFS_INODE_REF_KEY) {
 925		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 926						    struct btrfs_inode_ref);
 927		item = btrfs_item_nr(slot);
 928		total = btrfs_item_size(eb, item);
 929		elem_size = sizeof(*iref);
 930	} else {
 931		ptr = btrfs_item_ptr_offset(eb, slot);
 932		total = btrfs_item_size_nr(eb, slot);
 933		elem_size = sizeof(*extref);
 934	}
 935
 936	while (cur < total) {
 937		fs_path_reset(p);
 938
 939		if (found_key->type == BTRFS_INODE_REF_KEY) {
 940			iref = (struct btrfs_inode_ref *)(ptr + cur);
 941			name_len = btrfs_inode_ref_name_len(eb, iref);
 942			name_off = (unsigned long)(iref + 1);
 943			index = btrfs_inode_ref_index(eb, iref);
 944			dir = found_key->offset;
 945		} else {
 946			extref = (struct btrfs_inode_extref *)(ptr + cur);
 947			name_len = btrfs_inode_extref_name_len(eb, extref);
 948			name_off = (unsigned long)&extref->name;
 949			index = btrfs_inode_extref_index(eb, extref);
 950			dir = btrfs_inode_extref_parent(eb, extref);
 951		}
 952
 953		if (resolve) {
 954			start = btrfs_ref_to_path(root, tmp_path, name_len,
 955						  name_off, eb, dir,
 956						  p->buf, p->buf_len);
 957			if (IS_ERR(start)) {
 958				ret = PTR_ERR(start);
 959				goto out;
 960			}
 961			if (start < p->buf) {
 962				/* overflow , try again with larger buffer */
 963				ret = fs_path_ensure_buf(p,
 964						p->buf_len + p->buf - start);
 965				if (ret < 0)
 966					goto out;
 967				start = btrfs_ref_to_path(root, tmp_path,
 968							  name_len, name_off,
 969							  eb, dir,
 970							  p->buf, p->buf_len);
 971				if (IS_ERR(start)) {
 972					ret = PTR_ERR(start);
 973					goto out;
 974				}
 975				BUG_ON(start < p->buf);
 976			}
 977			p->start = start;
 978		} else {
 979			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 980							     name_len);
 981			if (ret < 0)
 982				goto out;
 983		}
 984
 985		cur += elem_size + name_len;
 986		ret = iterate(num, dir, index, p, ctx);
 987		if (ret)
 988			goto out;
 989		num++;
 990	}
 991
 992out:
 993	btrfs_free_path(tmp_path);
 994	fs_path_free(p);
 995	return ret;
 996}
 997
 998typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 999				  const char *name, int name_len,
1000				  const char *data, int data_len,
1001				  u8 type, void *ctx);
1002
1003/*
1004 * Helper function to iterate the entries in ONE btrfs_dir_item.
1005 * The iterate callback may return a non zero value to stop iteration. This can
1006 * be a negative value for error codes or 1 to simply stop it.
1007 *
1008 * path must point to the dir item when called.
1009 */
1010static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1011			    iterate_dir_item_t iterate, void *ctx)
1012{
1013	int ret = 0;
1014	struct extent_buffer *eb;
1015	struct btrfs_item *item;
1016	struct btrfs_dir_item *di;
1017	struct btrfs_key di_key;
1018	char *buf = NULL;
1019	int buf_len;
1020	u32 name_len;
1021	u32 data_len;
1022	u32 cur;
1023	u32 len;
1024	u32 total;
1025	int slot;
1026	int num;
1027	u8 type;
1028
1029	/*
1030	 * Start with a small buffer (1 page). If later we end up needing more
1031	 * space, which can happen for xattrs on a fs with a leaf size greater
1032	 * then the page size, attempt to increase the buffer. Typically xattr
1033	 * values are small.
1034	 */
1035	buf_len = PATH_MAX;
1036	buf = kmalloc(buf_len, GFP_KERNEL);
1037	if (!buf) {
1038		ret = -ENOMEM;
1039		goto out;
1040	}
1041
1042	eb = path->nodes[0];
1043	slot = path->slots[0];
1044	item = btrfs_item_nr(slot);
1045	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1046	cur = 0;
1047	len = 0;
1048	total = btrfs_item_size(eb, item);
1049
1050	num = 0;
1051	while (cur < total) {
1052		name_len = btrfs_dir_name_len(eb, di);
1053		data_len = btrfs_dir_data_len(eb, di);
1054		type = btrfs_dir_type(eb, di);
1055		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1056
1057		if (type == BTRFS_FT_XATTR) {
1058			if (name_len > XATTR_NAME_MAX) {
1059				ret = -ENAMETOOLONG;
1060				goto out;
1061			}
1062			if (name_len + data_len >
1063					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1064				ret = -E2BIG;
1065				goto out;
1066			}
1067		} else {
1068			/*
1069			 * Path too long
1070			 */
1071			if (name_len + data_len > PATH_MAX) {
1072				ret = -ENAMETOOLONG;
1073				goto out;
1074			}
1075		}
1076
1077		if (name_len + data_len > buf_len) {
1078			buf_len = name_len + data_len;
1079			if (is_vmalloc_addr(buf)) {
1080				vfree(buf);
1081				buf = NULL;
1082			} else {
1083				char *tmp = krealloc(buf, buf_len,
1084						GFP_KERNEL | __GFP_NOWARN);
1085
1086				if (!tmp)
1087					kfree(buf);
1088				buf = tmp;
1089			}
1090			if (!buf) {
1091				buf = kvmalloc(buf_len, GFP_KERNEL);
1092				if (!buf) {
1093					ret = -ENOMEM;
1094					goto out;
1095				}
1096			}
1097		}
1098
1099		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1100				name_len + data_len);
1101
1102		len = sizeof(*di) + name_len + data_len;
1103		di = (struct btrfs_dir_item *)((char *)di + len);
1104		cur += len;
1105
1106		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1107				data_len, type, ctx);
1108		if (ret < 0)
1109			goto out;
1110		if (ret) {
1111			ret = 0;
1112			goto out;
1113		}
1114
1115		num++;
1116	}
1117
1118out:
1119	kvfree(buf);
1120	return ret;
1121}
1122
1123static int __copy_first_ref(int num, u64 dir, int index,
1124			    struct fs_path *p, void *ctx)
1125{
1126	int ret;
1127	struct fs_path *pt = ctx;
1128
1129	ret = fs_path_copy(pt, p);
1130	if (ret < 0)
1131		return ret;
1132
1133	/* we want the first only */
1134	return 1;
1135}
1136
1137/*
1138 * Retrieve the first path of an inode. If an inode has more then one
1139 * ref/hardlink, this is ignored.
1140 */
1141static int get_inode_path(struct btrfs_root *root,
1142			  u64 ino, struct fs_path *path)
1143{
1144	int ret;
1145	struct btrfs_key key, found_key;
1146	struct btrfs_path *p;
1147
1148	p = alloc_path_for_send();
1149	if (!p)
1150		return -ENOMEM;
1151
1152	fs_path_reset(path);
1153
1154	key.objectid = ino;
1155	key.type = BTRFS_INODE_REF_KEY;
1156	key.offset = 0;
1157
1158	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1159	if (ret < 0)
1160		goto out;
1161	if (ret) {
1162		ret = 1;
1163		goto out;
1164	}
1165	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1166	if (found_key.objectid != ino ||
1167	    (found_key.type != BTRFS_INODE_REF_KEY &&
1168	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1169		ret = -ENOENT;
1170		goto out;
1171	}
1172
1173	ret = iterate_inode_ref(root, p, &found_key, 1,
1174				__copy_first_ref, path);
1175	if (ret < 0)
1176		goto out;
1177	ret = 0;
1178
1179out:
1180	btrfs_free_path(p);
1181	return ret;
1182}
1183
1184struct backref_ctx {
1185	struct send_ctx *sctx;
1186
1187	/* number of total found references */
1188	u64 found;
1189
1190	/*
1191	 * used for clones found in send_root. clones found behind cur_objectid
1192	 * and cur_offset are not considered as allowed clones.
1193	 */
1194	u64 cur_objectid;
1195	u64 cur_offset;
1196
1197	/* may be truncated in case it's the last extent in a file */
1198	u64 extent_len;
1199
1200	/* data offset in the file extent item */
1201	u64 data_offset;
1202
1203	/* Just to check for bugs in backref resolving */
1204	int found_itself;
1205};
1206
1207static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1208{
1209	u64 root = (u64)(uintptr_t)key;
1210	struct clone_root *cr = (struct clone_root *)elt;
1211
1212	if (root < cr->root->root_key.objectid)
1213		return -1;
1214	if (root > cr->root->root_key.objectid)
1215		return 1;
1216	return 0;
1217}
1218
1219static int __clone_root_cmp_sort(const void *e1, const void *e2)
1220{
1221	struct clone_root *cr1 = (struct clone_root *)e1;
1222	struct clone_root *cr2 = (struct clone_root *)e2;
1223
1224	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1225		return -1;
1226	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1227		return 1;
1228	return 0;
1229}
1230
1231/*
1232 * Called for every backref that is found for the current extent.
1233 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1234 */
1235static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1236{
1237	struct backref_ctx *bctx = ctx_;
1238	struct clone_root *found;
1239
1240	/* First check if the root is in the list of accepted clone sources */
1241	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1242			bctx->sctx->clone_roots_cnt,
1243			sizeof(struct clone_root),
1244			__clone_root_cmp_bsearch);
1245	if (!found)
1246		return 0;
1247
1248	if (found->root == bctx->sctx->send_root &&
1249	    ino == bctx->cur_objectid &&
1250	    offset == bctx->cur_offset) {
1251		bctx->found_itself = 1;
1252	}
1253
1254	/*
1255	 * Make sure we don't consider clones from send_root that are
1256	 * behind the current inode/offset.
1257	 */
1258	if (found->root == bctx->sctx->send_root) {
1259		/*
1260		 * If the source inode was not yet processed we can't issue a
1261		 * clone operation, as the source extent does not exist yet at
1262		 * the destination of the stream.
1263		 */
1264		if (ino > bctx->cur_objectid)
1265			return 0;
1266		/*
1267		 * We clone from the inode currently being sent as long as the
1268		 * source extent is already processed, otherwise we could try
1269		 * to clone from an extent that does not exist yet at the
1270		 * destination of the stream.
1271		 */
1272		if (ino == bctx->cur_objectid &&
1273		    offset + bctx->extent_len >
1274		    bctx->sctx->cur_inode_next_write_offset)
1275			return 0;
1276	}
1277
1278	bctx->found++;
1279	found->found_refs++;
1280	if (ino < found->ino) {
1281		found->ino = ino;
1282		found->offset = offset;
1283	} else if (found->ino == ino) {
1284		/*
1285		 * same extent found more then once in the same file.
1286		 */
1287		if (found->offset > offset + bctx->extent_len)
1288			found->offset = offset;
1289	}
1290
1291	return 0;
1292}
1293
1294/*
1295 * Given an inode, offset and extent item, it finds a good clone for a clone
1296 * instruction. Returns -ENOENT when none could be found. The function makes
1297 * sure that the returned clone is usable at the point where sending is at the
1298 * moment. This means, that no clones are accepted which lie behind the current
1299 * inode+offset.
1300 *
1301 * path must point to the extent item when called.
1302 */
1303static int find_extent_clone(struct send_ctx *sctx,
1304			     struct btrfs_path *path,
1305			     u64 ino, u64 data_offset,
1306			     u64 ino_size,
1307			     struct clone_root **found)
1308{
1309	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1310	int ret;
1311	int extent_type;
1312	u64 logical;
1313	u64 disk_byte;
1314	u64 num_bytes;
1315	u64 extent_item_pos;
1316	u64 flags = 0;
1317	struct btrfs_file_extent_item *fi;
1318	struct extent_buffer *eb = path->nodes[0];
1319	struct backref_ctx *backref_ctx = NULL;
1320	struct clone_root *cur_clone_root;
1321	struct btrfs_key found_key;
1322	struct btrfs_path *tmp_path;
1323	struct btrfs_extent_item *ei;
1324	int compressed;
1325	u32 i;
1326
1327	tmp_path = alloc_path_for_send();
1328	if (!tmp_path)
1329		return -ENOMEM;
1330
1331	/* We only use this path under the commit sem */
1332	tmp_path->need_commit_sem = 0;
1333
1334	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1335	if (!backref_ctx) {
1336		ret = -ENOMEM;
1337		goto out;
1338	}
1339
1340	if (data_offset >= ino_size) {
1341		/*
1342		 * There may be extents that lie behind the file's size.
1343		 * I at least had this in combination with snapshotting while
1344		 * writing large files.
1345		 */
1346		ret = 0;
1347		goto out;
1348	}
1349
1350	fi = btrfs_item_ptr(eb, path->slots[0],
1351			struct btrfs_file_extent_item);
1352	extent_type = btrfs_file_extent_type(eb, fi);
1353	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1354		ret = -ENOENT;
1355		goto out;
1356	}
1357	compressed = btrfs_file_extent_compression(eb, fi);
1358
1359	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1360	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1361	if (disk_byte == 0) {
1362		ret = -ENOENT;
1363		goto out;
1364	}
1365	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1366
1367	down_read(&fs_info->commit_root_sem);
1368	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1369				  &found_key, &flags);
1370	up_read(&fs_info->commit_root_sem);
1371
1372	if (ret < 0)
1373		goto out;
1374	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1375		ret = -EIO;
1376		goto out;
1377	}
1378
1379	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1380			    struct btrfs_extent_item);
1381	/*
1382	 * Backreference walking (iterate_extent_inodes() below) is currently
1383	 * too expensive when an extent has a large number of references, both
1384	 * in time spent and used memory. So for now just fallback to write
1385	 * operations instead of clone operations when an extent has more than
1386	 * a certain amount of references.
1387	 */
1388	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1389		ret = -ENOENT;
1390		goto out;
1391	}
1392	btrfs_release_path(tmp_path);
1393
1394	/*
1395	 * Setup the clone roots.
1396	 */
1397	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1398		cur_clone_root = sctx->clone_roots + i;
1399		cur_clone_root->ino = (u64)-1;
1400		cur_clone_root->offset = 0;
1401		cur_clone_root->found_refs = 0;
1402	}
1403
1404	backref_ctx->sctx = sctx;
1405	backref_ctx->found = 0;
1406	backref_ctx->cur_objectid = ino;
1407	backref_ctx->cur_offset = data_offset;
1408	backref_ctx->found_itself = 0;
1409	backref_ctx->extent_len = num_bytes;
1410	/*
1411	 * For non-compressed extents iterate_extent_inodes() gives us extent
1412	 * offsets that already take into account the data offset, but not for
1413	 * compressed extents, since the offset is logical and not relative to
1414	 * the physical extent locations. We must take this into account to
1415	 * avoid sending clone offsets that go beyond the source file's size,
1416	 * which would result in the clone ioctl failing with -EINVAL on the
1417	 * receiving end.
1418	 */
1419	if (compressed == BTRFS_COMPRESS_NONE)
1420		backref_ctx->data_offset = 0;
1421	else
1422		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1423
1424	/*
1425	 * The last extent of a file may be too large due to page alignment.
1426	 * We need to adjust extent_len in this case so that the checks in
1427	 * __iterate_backrefs work.
1428	 */
1429	if (data_offset + num_bytes >= ino_size)
1430		backref_ctx->extent_len = ino_size - data_offset;
1431
1432	/*
1433	 * Now collect all backrefs.
1434	 */
1435	if (compressed == BTRFS_COMPRESS_NONE)
1436		extent_item_pos = logical - found_key.objectid;
1437	else
1438		extent_item_pos = 0;
1439	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1440				    extent_item_pos, 1, __iterate_backrefs,
1441				    backref_ctx, false);
1442
1443	if (ret < 0)
1444		goto out;
1445
1446	if (!backref_ctx->found_itself) {
1447		/* found a bug in backref code? */
1448		ret = -EIO;
1449		btrfs_err(fs_info,
1450			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1451			  ino, data_offset, disk_byte, found_key.objectid);
1452		goto out;
1453	}
1454
1455	btrfs_debug(fs_info,
1456		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1457		    data_offset, ino, num_bytes, logical);
1458
1459	if (!backref_ctx->found)
1460		btrfs_debug(fs_info, "no clones found");
1461
1462	cur_clone_root = NULL;
1463	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1464		if (sctx->clone_roots[i].found_refs) {
1465			if (!cur_clone_root)
1466				cur_clone_root = sctx->clone_roots + i;
1467			else if (sctx->clone_roots[i].root == sctx->send_root)
1468				/* prefer clones from send_root over others */
1469				cur_clone_root = sctx->clone_roots + i;
1470		}
1471
1472	}
1473
1474	if (cur_clone_root) {
1475		*found = cur_clone_root;
1476		ret = 0;
1477	} else {
1478		ret = -ENOENT;
1479	}
1480
1481out:
1482	btrfs_free_path(tmp_path);
1483	kfree(backref_ctx);
1484	return ret;
1485}
1486
1487static int read_symlink(struct btrfs_root *root,
1488			u64 ino,
1489			struct fs_path *dest)
1490{
1491	int ret;
1492	struct btrfs_path *path;
1493	struct btrfs_key key;
1494	struct btrfs_file_extent_item *ei;
1495	u8 type;
1496	u8 compression;
1497	unsigned long off;
1498	int len;
1499
1500	path = alloc_path_for_send();
1501	if (!path)
1502		return -ENOMEM;
1503
1504	key.objectid = ino;
1505	key.type = BTRFS_EXTENT_DATA_KEY;
1506	key.offset = 0;
1507	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1508	if (ret < 0)
1509		goto out;
1510	if (ret) {
1511		/*
1512		 * An empty symlink inode. Can happen in rare error paths when
1513		 * creating a symlink (transaction committed before the inode
1514		 * eviction handler removed the symlink inode items and a crash
1515		 * happened in between or the subvol was snapshoted in between).
1516		 * Print an informative message to dmesg/syslog so that the user
1517		 * can delete the symlink.
1518		 */
1519		btrfs_err(root->fs_info,
1520			  "Found empty symlink inode %llu at root %llu",
1521			  ino, root->root_key.objectid);
1522		ret = -EIO;
1523		goto out;
1524	}
1525
1526	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1527			struct btrfs_file_extent_item);
1528	type = btrfs_file_extent_type(path->nodes[0], ei);
1529	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1530	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1531	BUG_ON(compression);
1532
1533	off = btrfs_file_extent_inline_start(ei);
1534	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1535
1536	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1537
1538out:
1539	btrfs_free_path(path);
1540	return ret;
1541}
1542
1543/*
1544 * Helper function to generate a file name that is unique in the root of
1545 * send_root and parent_root. This is used to generate names for orphan inodes.
1546 */
1547static int gen_unique_name(struct send_ctx *sctx,
1548			   u64 ino, u64 gen,
1549			   struct fs_path *dest)
1550{
1551	int ret = 0;
1552	struct btrfs_path *path;
1553	struct btrfs_dir_item *di;
1554	char tmp[64];
1555	int len;
1556	u64 idx = 0;
1557
1558	path = alloc_path_for_send();
1559	if (!path)
1560		return -ENOMEM;
1561
1562	while (1) {
1563		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1564				ino, gen, idx);
1565		ASSERT(len < sizeof(tmp));
1566
1567		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1568				path, BTRFS_FIRST_FREE_OBJECTID,
1569				tmp, strlen(tmp), 0);
1570		btrfs_release_path(path);
1571		if (IS_ERR(di)) {
1572			ret = PTR_ERR(di);
1573			goto out;
1574		}
1575		if (di) {
1576			/* not unique, try again */
1577			idx++;
1578			continue;
1579		}
1580
1581		if (!sctx->parent_root) {
1582			/* unique */
1583			ret = 0;
1584			break;
1585		}
1586
1587		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1588				path, BTRFS_FIRST_FREE_OBJECTID,
1589				tmp, strlen(tmp), 0);
1590		btrfs_release_path(path);
1591		if (IS_ERR(di)) {
1592			ret = PTR_ERR(di);
1593			goto out;
1594		}
1595		if (di) {
1596			/* not unique, try again */
1597			idx++;
1598			continue;
1599		}
1600		/* unique */
1601		break;
1602	}
1603
1604	ret = fs_path_add(dest, tmp, strlen(tmp));
1605
1606out:
1607	btrfs_free_path(path);
1608	return ret;
1609}
1610
1611enum inode_state {
1612	inode_state_no_change,
1613	inode_state_will_create,
1614	inode_state_did_create,
1615	inode_state_will_delete,
1616	inode_state_did_delete,
1617};
1618
1619static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1620{
1621	int ret;
1622	int left_ret;
1623	int right_ret;
1624	u64 left_gen;
1625	u64 right_gen;
1626
1627	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1628			NULL, NULL);
1629	if (ret < 0 && ret != -ENOENT)
1630		goto out;
1631	left_ret = ret;
1632
1633	if (!sctx->parent_root) {
1634		right_ret = -ENOENT;
1635	} else {
1636		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1637				NULL, NULL, NULL, NULL);
1638		if (ret < 0 && ret != -ENOENT)
1639			goto out;
1640		right_ret = ret;
1641	}
1642
1643	if (!left_ret && !right_ret) {
1644		if (left_gen == gen && right_gen == gen) {
1645			ret = inode_state_no_change;
1646		} else if (left_gen == gen) {
1647			if (ino < sctx->send_progress)
1648				ret = inode_state_did_create;
1649			else
1650				ret = inode_state_will_create;
1651		} else if (right_gen == gen) {
1652			if (ino < sctx->send_progress)
1653				ret = inode_state_did_delete;
1654			else
1655				ret = inode_state_will_delete;
1656		} else  {
1657			ret = -ENOENT;
1658		}
1659	} else if (!left_ret) {
1660		if (left_gen == gen) {
1661			if (ino < sctx->send_progress)
1662				ret = inode_state_did_create;
1663			else
1664				ret = inode_state_will_create;
1665		} else {
1666			ret = -ENOENT;
1667		}
1668	} else if (!right_ret) {
1669		if (right_gen == gen) {
1670			if (ino < sctx->send_progress)
1671				ret = inode_state_did_delete;
1672			else
1673				ret = inode_state_will_delete;
1674		} else {
1675			ret = -ENOENT;
1676		}
1677	} else {
1678		ret = -ENOENT;
1679	}
1680
1681out:
1682	return ret;
1683}
1684
1685static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1686{
1687	int ret;
1688
1689	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1690		return 1;
1691
1692	ret = get_cur_inode_state(sctx, ino, gen);
1693	if (ret < 0)
1694		goto out;
1695
1696	if (ret == inode_state_no_change ||
1697	    ret == inode_state_did_create ||
1698	    ret == inode_state_will_delete)
1699		ret = 1;
1700	else
1701		ret = 0;
1702
1703out:
1704	return ret;
1705}
1706
1707/*
1708 * Helper function to lookup a dir item in a dir.
1709 */
1710static int lookup_dir_item_inode(struct btrfs_root *root,
1711				 u64 dir, const char *name, int name_len,
1712				 u64 *found_inode,
1713				 u8 *found_type)
1714{
1715	int ret = 0;
1716	struct btrfs_dir_item *di;
1717	struct btrfs_key key;
1718	struct btrfs_path *path;
1719
1720	path = alloc_path_for_send();
1721	if (!path)
1722		return -ENOMEM;
1723
1724	di = btrfs_lookup_dir_item(NULL, root, path,
1725			dir, name, name_len, 0);
1726	if (IS_ERR_OR_NULL(di)) {
1727		ret = di ? PTR_ERR(di) : -ENOENT;
1728		goto out;
1729	}
1730	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1731	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1732		ret = -ENOENT;
1733		goto out;
1734	}
1735	*found_inode = key.objectid;
1736	*found_type = btrfs_dir_type(path->nodes[0], di);
1737
1738out:
1739	btrfs_free_path(path);
1740	return ret;
1741}
1742
1743/*
1744 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1745 * generation of the parent dir and the name of the dir entry.
1746 */
1747static int get_first_ref(struct btrfs_root *root, u64 ino,
1748			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1749{
1750	int ret;
1751	struct btrfs_key key;
1752	struct btrfs_key found_key;
1753	struct btrfs_path *path;
1754	int len;
1755	u64 parent_dir;
1756
1757	path = alloc_path_for_send();
1758	if (!path)
1759		return -ENOMEM;
1760
1761	key.objectid = ino;
1762	key.type = BTRFS_INODE_REF_KEY;
1763	key.offset = 0;
1764
1765	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1766	if (ret < 0)
1767		goto out;
1768	if (!ret)
1769		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1770				path->slots[0]);
1771	if (ret || found_key.objectid != ino ||
1772	    (found_key.type != BTRFS_INODE_REF_KEY &&
1773	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1774		ret = -ENOENT;
1775		goto out;
1776	}
1777
1778	if (found_key.type == BTRFS_INODE_REF_KEY) {
1779		struct btrfs_inode_ref *iref;
1780		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1781				      struct btrfs_inode_ref);
1782		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1783		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1784						     (unsigned long)(iref + 1),
1785						     len);
1786		parent_dir = found_key.offset;
1787	} else {
1788		struct btrfs_inode_extref *extref;
1789		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1790					struct btrfs_inode_extref);
1791		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1792		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1793					(unsigned long)&extref->name, len);
1794		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1795	}
1796	if (ret < 0)
1797		goto out;
1798	btrfs_release_path(path);
1799
1800	if (dir_gen) {
1801		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1802				     NULL, NULL, NULL);
1803		if (ret < 0)
1804			goto out;
1805	}
1806
1807	*dir = parent_dir;
1808
1809out:
1810	btrfs_free_path(path);
1811	return ret;
1812}
1813
1814static int is_first_ref(struct btrfs_root *root,
1815			u64 ino, u64 dir,
1816			const char *name, int name_len)
1817{
1818	int ret;
1819	struct fs_path *tmp_name;
1820	u64 tmp_dir;
1821
1822	tmp_name = fs_path_alloc();
1823	if (!tmp_name)
1824		return -ENOMEM;
1825
1826	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1827	if (ret < 0)
1828		goto out;
1829
1830	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1831		ret = 0;
1832		goto out;
1833	}
1834
1835	ret = !memcmp(tmp_name->start, name, name_len);
1836
1837out:
1838	fs_path_free(tmp_name);
1839	return ret;
1840}
1841
1842/*
1843 * Used by process_recorded_refs to determine if a new ref would overwrite an
1844 * already existing ref. In case it detects an overwrite, it returns the
1845 * inode/gen in who_ino/who_gen.
1846 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1847 * to make sure later references to the overwritten inode are possible.
1848 * Orphanizing is however only required for the first ref of an inode.
1849 * process_recorded_refs does an additional is_first_ref check to see if
1850 * orphanizing is really required.
1851 */
1852static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1853			      const char *name, int name_len,
1854			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1855{
1856	int ret = 0;
1857	u64 gen;
1858	u64 other_inode = 0;
1859	u8 other_type = 0;
1860
1861	if (!sctx->parent_root)
1862		goto out;
1863
1864	ret = is_inode_existent(sctx, dir, dir_gen);
1865	if (ret <= 0)
1866		goto out;
1867
1868	/*
1869	 * If we have a parent root we need to verify that the parent dir was
1870	 * not deleted and then re-created, if it was then we have no overwrite
1871	 * and we can just unlink this entry.
1872	 */
1873	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1874		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1875				     NULL, NULL, NULL);
1876		if (ret < 0 && ret != -ENOENT)
1877			goto out;
1878		if (ret) {
1879			ret = 0;
1880			goto out;
1881		}
1882		if (gen != dir_gen)
1883			goto out;
1884	}
1885
1886	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1887			&other_inode, &other_type);
1888	if (ret < 0 && ret != -ENOENT)
1889		goto out;
1890	if (ret) {
1891		ret = 0;
1892		goto out;
1893	}
1894
1895	/*
1896	 * Check if the overwritten ref was already processed. If yes, the ref
1897	 * was already unlinked/moved, so we can safely assume that we will not
1898	 * overwrite anything at this point in time.
1899	 */
1900	if (other_inode > sctx->send_progress ||
1901	    is_waiting_for_move(sctx, other_inode)) {
1902		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1903				who_gen, who_mode, NULL, NULL, NULL);
1904		if (ret < 0)
1905			goto out;
1906
1907		ret = 1;
1908		*who_ino = other_inode;
1909	} else {
1910		ret = 0;
1911	}
1912
1913out:
1914	return ret;
1915}
1916
1917/*
1918 * Checks if the ref was overwritten by an already processed inode. This is
1919 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1920 * thus the orphan name needs be used.
1921 * process_recorded_refs also uses it to avoid unlinking of refs that were
1922 * overwritten.
1923 */
1924static int did_overwrite_ref(struct send_ctx *sctx,
1925			    u64 dir, u64 dir_gen,
1926			    u64 ino, u64 ino_gen,
1927			    const char *name, int name_len)
1928{
1929	int ret = 0;
1930	u64 gen;
1931	u64 ow_inode;
1932	u8 other_type;
1933
1934	if (!sctx->parent_root)
1935		goto out;
1936
1937	ret = is_inode_existent(sctx, dir, dir_gen);
1938	if (ret <= 0)
1939		goto out;
1940
1941	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1942		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1943				     NULL, NULL, NULL);
1944		if (ret < 0 && ret != -ENOENT)
1945			goto out;
1946		if (ret) {
1947			ret = 0;
1948			goto out;
1949		}
1950		if (gen != dir_gen)
1951			goto out;
1952	}
1953
1954	/* check if the ref was overwritten by another ref */
1955	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1956			&ow_inode, &other_type);
1957	if (ret < 0 && ret != -ENOENT)
1958		goto out;
1959	if (ret) {
1960		/* was never and will never be overwritten */
1961		ret = 0;
1962		goto out;
1963	}
1964
1965	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1966			NULL, NULL);
1967	if (ret < 0)
1968		goto out;
1969
1970	if (ow_inode == ino && gen == ino_gen) {
1971		ret = 0;
1972		goto out;
1973	}
1974
1975	/*
1976	 * We know that it is or will be overwritten. Check this now.
1977	 * The current inode being processed might have been the one that caused
1978	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1979	 * the current inode being processed.
1980	 */
1981	if ((ow_inode < sctx->send_progress) ||
1982	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1983	     gen == sctx->cur_inode_gen))
1984		ret = 1;
1985	else
1986		ret = 0;
1987
1988out:
1989	return ret;
1990}
1991
1992/*
1993 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1994 * that got overwritten. This is used by process_recorded_refs to determine
1995 * if it has to use the path as returned by get_cur_path or the orphan name.
1996 */
1997static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1998{
1999	int ret = 0;
2000	struct fs_path *name = NULL;
2001	u64 dir;
2002	u64 dir_gen;
2003
2004	if (!sctx->parent_root)
2005		goto out;
2006
2007	name = fs_path_alloc();
2008	if (!name)
2009		return -ENOMEM;
2010
2011	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2012	if (ret < 0)
2013		goto out;
2014
2015	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2016			name->start, fs_path_len(name));
2017
2018out:
2019	fs_path_free(name);
2020	return ret;
2021}
2022
2023/*
2024 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2025 * so we need to do some special handling in case we have clashes. This function
2026 * takes care of this with the help of name_cache_entry::radix_list.
2027 * In case of error, nce is kfreed.
2028 */
2029static int name_cache_insert(struct send_ctx *sctx,
2030			     struct name_cache_entry *nce)
2031{
2032	int ret = 0;
2033	struct list_head *nce_head;
2034
2035	nce_head = radix_tree_lookup(&sctx->name_cache,
2036			(unsigned long)nce->ino);
2037	if (!nce_head) {
2038		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2039		if (!nce_head) {
2040			kfree(nce);
2041			return -ENOMEM;
2042		}
2043		INIT_LIST_HEAD(nce_head);
2044
2045		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2046		if (ret < 0) {
2047			kfree(nce_head);
2048			kfree(nce);
2049			return ret;
2050		}
2051	}
2052	list_add_tail(&nce->radix_list, nce_head);
2053	list_add_tail(&nce->list, &sctx->name_cache_list);
2054	sctx->name_cache_size++;
2055
2056	return ret;
2057}
2058
2059static void name_cache_delete(struct send_ctx *sctx,
2060			      struct name_cache_entry *nce)
2061{
2062	struct list_head *nce_head;
2063
2064	nce_head = radix_tree_lookup(&sctx->name_cache,
2065			(unsigned long)nce->ino);
2066	if (!nce_head) {
2067		btrfs_err(sctx->send_root->fs_info,
2068	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2069			nce->ino, sctx->name_cache_size);
2070	}
2071
2072	list_del(&nce->radix_list);
2073	list_del(&nce->list);
2074	sctx->name_cache_size--;
2075
2076	/*
2077	 * We may not get to the final release of nce_head if the lookup fails
2078	 */
2079	if (nce_head && list_empty(nce_head)) {
2080		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2081		kfree(nce_head);
2082	}
2083}
2084
2085static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2086						    u64 ino, u64 gen)
2087{
2088	struct list_head *nce_head;
2089	struct name_cache_entry *cur;
2090
2091	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2092	if (!nce_head)
2093		return NULL;
2094
2095	list_for_each_entry(cur, nce_head, radix_list) {
2096		if (cur->ino == ino && cur->gen == gen)
2097			return cur;
2098	}
2099	return NULL;
2100}
2101
2102/*
2103 * Removes the entry from the list and adds it back to the end. This marks the
2104 * entry as recently used so that name_cache_clean_unused does not remove it.
2105 */
2106static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2107{
2108	list_del(&nce->list);
2109	list_add_tail(&nce->list, &sctx->name_cache_list);
2110}
2111
2112/*
2113 * Remove some entries from the beginning of name_cache_list.
2114 */
2115static void name_cache_clean_unused(struct send_ctx *sctx)
2116{
2117	struct name_cache_entry *nce;
2118
2119	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2120		return;
2121
2122	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2123		nce = list_entry(sctx->name_cache_list.next,
2124				struct name_cache_entry, list);
2125		name_cache_delete(sctx, nce);
2126		kfree(nce);
2127	}
2128}
2129
2130static void name_cache_free(struct send_ctx *sctx)
2131{
2132	struct name_cache_entry *nce;
2133
2134	while (!list_empty(&sctx->name_cache_list)) {
2135		nce = list_entry(sctx->name_cache_list.next,
2136				struct name_cache_entry, list);
2137		name_cache_delete(sctx, nce);
2138		kfree(nce);
2139	}
2140}
2141
2142/*
2143 * Used by get_cur_path for each ref up to the root.
2144 * Returns 0 if it succeeded.
2145 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2146 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2147 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2148 * Returns <0 in case of error.
2149 */
2150static int __get_cur_name_and_parent(struct send_ctx *sctx,
2151				     u64 ino, u64 gen,
2152				     u64 *parent_ino,
2153				     u64 *parent_gen,
2154				     struct fs_path *dest)
2155{
2156	int ret;
2157	int nce_ret;
2158	struct name_cache_entry *nce = NULL;
2159
2160	/*
2161	 * First check if we already did a call to this function with the same
2162	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2163	 * return the cached result.
2164	 */
2165	nce = name_cache_search(sctx, ino, gen);
2166	if (nce) {
2167		if (ino < sctx->send_progress && nce->need_later_update) {
2168			name_cache_delete(sctx, nce);
2169			kfree(nce);
2170			nce = NULL;
2171		} else {
2172			name_cache_used(sctx, nce);
2173			*parent_ino = nce->parent_ino;
2174			*parent_gen = nce->parent_gen;
2175			ret = fs_path_add(dest, nce->name, nce->name_len);
2176			if (ret < 0)
2177				goto out;
2178			ret = nce->ret;
2179			goto out;
2180		}
2181	}
2182
2183	/*
2184	 * If the inode is not existent yet, add the orphan name and return 1.
2185	 * This should only happen for the parent dir that we determine in
2186	 * __record_new_ref
2187	 */
2188	ret = is_inode_existent(sctx, ino, gen);
2189	if (ret < 0)
2190		goto out;
2191
2192	if (!ret) {
2193		ret = gen_unique_name(sctx, ino, gen, dest);
2194		if (ret < 0)
2195			goto out;
2196		ret = 1;
2197		goto out_cache;
2198	}
2199
2200	/*
2201	 * Depending on whether the inode was already processed or not, use
2202	 * send_root or parent_root for ref lookup.
2203	 */
2204	if (ino < sctx->send_progress)
2205		ret = get_first_ref(sctx->send_root, ino,
2206				    parent_ino, parent_gen, dest);
2207	else
2208		ret = get_first_ref(sctx->parent_root, ino,
2209				    parent_ino, parent_gen, dest);
2210	if (ret < 0)
2211		goto out;
2212
2213	/*
2214	 * Check if the ref was overwritten by an inode's ref that was processed
2215	 * earlier. If yes, treat as orphan and return 1.
2216	 */
2217	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2218			dest->start, dest->end - dest->start);
2219	if (ret < 0)
2220		goto out;
2221	if (ret) {
2222		fs_path_reset(dest);
2223		ret = gen_unique_name(sctx, ino, gen, dest);
2224		if (ret < 0)
2225			goto out;
2226		ret = 1;
2227	}
2228
2229out_cache:
2230	/*
2231	 * Store the result of the lookup in the name cache.
2232	 */
2233	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2234	if (!nce) {
2235		ret = -ENOMEM;
2236		goto out;
2237	}
2238
2239	nce->ino = ino;
2240	nce->gen = gen;
2241	nce->parent_ino = *parent_ino;
2242	nce->parent_gen = *parent_gen;
2243	nce->name_len = fs_path_len(dest);
2244	nce->ret = ret;
2245	strcpy(nce->name, dest->start);
2246
2247	if (ino < sctx->send_progress)
2248		nce->need_later_update = 0;
2249	else
2250		nce->need_later_update = 1;
2251
2252	nce_ret = name_cache_insert(sctx, nce);
2253	if (nce_ret < 0)
2254		ret = nce_ret;
2255	name_cache_clean_unused(sctx);
2256
2257out:
2258	return ret;
2259}
2260
2261/*
2262 * Magic happens here. This function returns the first ref to an inode as it
2263 * would look like while receiving the stream at this point in time.
2264 * We walk the path up to the root. For every inode in between, we check if it
2265 * was already processed/sent. If yes, we continue with the parent as found
2266 * in send_root. If not, we continue with the parent as found in parent_root.
2267 * If we encounter an inode that was deleted at this point in time, we use the
2268 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2269 * that were not created yet and overwritten inodes/refs.
2270 *
2271 * When do we have orphan inodes:
2272 * 1. When an inode is freshly created and thus no valid refs are available yet
2273 * 2. When a directory lost all it's refs (deleted) but still has dir items
2274 *    inside which were not processed yet (pending for move/delete). If anyone
2275 *    tried to get the path to the dir items, it would get a path inside that
2276 *    orphan directory.
2277 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2278 *    of an unprocessed inode. If in that case the first ref would be
2279 *    overwritten, the overwritten inode gets "orphanized". Later when we
2280 *    process this overwritten inode, it is restored at a new place by moving
2281 *    the orphan inode.
2282 *
2283 * sctx->send_progress tells this function at which point in time receiving
2284 * would be.
2285 */
2286static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2287			struct fs_path *dest)
2288{
2289	int ret = 0;
2290	struct fs_path *name = NULL;
2291	u64 parent_inode = 0;
2292	u64 parent_gen = 0;
2293	int stop = 0;
2294
2295	name = fs_path_alloc();
2296	if (!name) {
2297		ret = -ENOMEM;
2298		goto out;
2299	}
2300
2301	dest->reversed = 1;
2302	fs_path_reset(dest);
2303
2304	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2305		struct waiting_dir_move *wdm;
2306
2307		fs_path_reset(name);
2308
2309		if (is_waiting_for_rm(sctx, ino)) {
2310			ret = gen_unique_name(sctx, ino, gen, name);
2311			if (ret < 0)
2312				goto out;
2313			ret = fs_path_add_path(dest, name);
2314			break;
2315		}
2316
2317		wdm = get_waiting_dir_move(sctx, ino);
2318		if (wdm && wdm->orphanized) {
2319			ret = gen_unique_name(sctx, ino, gen, name);
2320			stop = 1;
2321		} else if (wdm) {
2322			ret = get_first_ref(sctx->parent_root, ino,
2323					    &parent_inode, &parent_gen, name);
2324		} else {
2325			ret = __get_cur_name_and_parent(sctx, ino, gen,
2326							&parent_inode,
2327							&parent_gen, name);
2328			if (ret)
2329				stop = 1;
2330		}
2331
2332		if (ret < 0)
2333			goto out;
2334
2335		ret = fs_path_add_path(dest, name);
2336		if (ret < 0)
2337			goto out;
2338
2339		ino = parent_inode;
2340		gen = parent_gen;
2341	}
2342
2343out:
2344	fs_path_free(name);
2345	if (!ret)
2346		fs_path_unreverse(dest);
2347	return ret;
2348}
2349
2350/*
2351 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2352 */
2353static int send_subvol_begin(struct send_ctx *sctx)
2354{
2355	int ret;
2356	struct btrfs_root *send_root = sctx->send_root;
2357	struct btrfs_root *parent_root = sctx->parent_root;
2358	struct btrfs_path *path;
2359	struct btrfs_key key;
2360	struct btrfs_root_ref *ref;
2361	struct extent_buffer *leaf;
2362	char *name = NULL;
2363	int namelen;
2364
2365	path = btrfs_alloc_path();
2366	if (!path)
2367		return -ENOMEM;
2368
2369	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2370	if (!name) {
2371		btrfs_free_path(path);
2372		return -ENOMEM;
2373	}
2374
2375	key.objectid = send_root->root_key.objectid;
2376	key.type = BTRFS_ROOT_BACKREF_KEY;
2377	key.offset = 0;
2378
2379	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2380				&key, path, 1, 0);
2381	if (ret < 0)
2382		goto out;
2383	if (ret) {
2384		ret = -ENOENT;
2385		goto out;
2386	}
2387
2388	leaf = path->nodes[0];
2389	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2390	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2391	    key.objectid != send_root->root_key.objectid) {
2392		ret = -ENOENT;
2393		goto out;
2394	}
2395	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2396	namelen = btrfs_root_ref_name_len(leaf, ref);
2397	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2398	btrfs_release_path(path);
2399
2400	if (parent_root) {
2401		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2402		if (ret < 0)
2403			goto out;
2404	} else {
2405		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2406		if (ret < 0)
2407			goto out;
2408	}
2409
2410	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2411
2412	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2413		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2414			    sctx->send_root->root_item.received_uuid);
2415	else
2416		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2417			    sctx->send_root->root_item.uuid);
2418
2419	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2420		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2421	if (parent_root) {
2422		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2423			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2424				     parent_root->root_item.received_uuid);
2425		else
2426			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2427				     parent_root->root_item.uuid);
2428		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2429			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2430	}
2431
2432	ret = send_cmd(sctx);
2433
2434tlv_put_failure:
2435out:
2436	btrfs_free_path(path);
2437	kfree(name);
2438	return ret;
2439}
2440
2441static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2442{
2443	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2444	int ret = 0;
2445	struct fs_path *p;
2446
2447	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2448
2449	p = fs_path_alloc();
2450	if (!p)
2451		return -ENOMEM;
2452
2453	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2454	if (ret < 0)
2455		goto out;
2456
2457	ret = get_cur_path(sctx, ino, gen, p);
2458	if (ret < 0)
2459		goto out;
2460	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2461	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2462
2463	ret = send_cmd(sctx);
2464
2465tlv_put_failure:
2466out:
2467	fs_path_free(p);
2468	return ret;
2469}
2470
2471static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2472{
2473	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2474	int ret = 0;
2475	struct fs_path *p;
2476
2477	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2478
2479	p = fs_path_alloc();
2480	if (!p)
2481		return -ENOMEM;
2482
2483	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2484	if (ret < 0)
2485		goto out;
2486
2487	ret = get_cur_path(sctx, ino, gen, p);
2488	if (ret < 0)
2489		goto out;
2490	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2491	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2492
2493	ret = send_cmd(sctx);
2494
2495tlv_put_failure:
2496out:
2497	fs_path_free(p);
2498	return ret;
2499}
2500
2501static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2502{
2503	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2504	int ret = 0;
2505	struct fs_path *p;
2506
2507	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2508		    ino, uid, gid);
2509
2510	p = fs_path_alloc();
2511	if (!p)
2512		return -ENOMEM;
2513
2514	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2515	if (ret < 0)
2516		goto out;
2517
2518	ret = get_cur_path(sctx, ino, gen, p);
2519	if (ret < 0)
2520		goto out;
2521	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2522	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2523	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2524
2525	ret = send_cmd(sctx);
2526
2527tlv_put_failure:
2528out:
2529	fs_path_free(p);
2530	return ret;
2531}
2532
2533static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2534{
2535	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2536	int ret = 0;
2537	struct fs_path *p = NULL;
2538	struct btrfs_inode_item *ii;
2539	struct btrfs_path *path = NULL;
2540	struct extent_buffer *eb;
2541	struct btrfs_key key;
2542	int slot;
2543
2544	btrfs_debug(fs_info, "send_utimes %llu", ino);
2545
2546	p = fs_path_alloc();
2547	if (!p)
2548		return -ENOMEM;
2549
2550	path = alloc_path_for_send();
2551	if (!path) {
2552		ret = -ENOMEM;
2553		goto out;
2554	}
2555
2556	key.objectid = ino;
2557	key.type = BTRFS_INODE_ITEM_KEY;
2558	key.offset = 0;
2559	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2560	if (ret > 0)
2561		ret = -ENOENT;
2562	if (ret < 0)
2563		goto out;
2564
2565	eb = path->nodes[0];
2566	slot = path->slots[0];
2567	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2568
2569	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2570	if (ret < 0)
2571		goto out;
2572
2573	ret = get_cur_path(sctx, ino, gen, p);
2574	if (ret < 0)
2575		goto out;
2576	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2577	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2578	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2579	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2580	/* TODO Add otime support when the otime patches get into upstream */
2581
2582	ret = send_cmd(sctx);
2583
2584tlv_put_failure:
2585out:
2586	fs_path_free(p);
2587	btrfs_free_path(path);
2588	return ret;
2589}
2590
2591/*
2592 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2593 * a valid path yet because we did not process the refs yet. So, the inode
2594 * is created as orphan.
2595 */
2596static int send_create_inode(struct send_ctx *sctx, u64 ino)
2597{
2598	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2599	int ret = 0;
2600	struct fs_path *p;
2601	int cmd;
2602	u64 gen;
2603	u64 mode;
2604	u64 rdev;
2605
2606	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2607
2608	p = fs_path_alloc();
2609	if (!p)
2610		return -ENOMEM;
2611
2612	if (ino != sctx->cur_ino) {
2613		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2614				     NULL, NULL, &rdev);
2615		if (ret < 0)
2616			goto out;
2617	} else {
2618		gen = sctx->cur_inode_gen;
2619		mode = sctx->cur_inode_mode;
2620		rdev = sctx->cur_inode_rdev;
2621	}
2622
2623	if (S_ISREG(mode)) {
2624		cmd = BTRFS_SEND_C_MKFILE;
2625	} else if (S_ISDIR(mode)) {
2626		cmd = BTRFS_SEND_C_MKDIR;
2627	} else if (S_ISLNK(mode)) {
2628		cmd = BTRFS_SEND_C_SYMLINK;
2629	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2630		cmd = BTRFS_SEND_C_MKNOD;
2631	} else if (S_ISFIFO(mode)) {
2632		cmd = BTRFS_SEND_C_MKFIFO;
2633	} else if (S_ISSOCK(mode)) {
2634		cmd = BTRFS_SEND_C_MKSOCK;
2635	} else {
2636		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2637				(int)(mode & S_IFMT));
2638		ret = -EOPNOTSUPP;
2639		goto out;
2640	}
2641
2642	ret = begin_cmd(sctx, cmd);
2643	if (ret < 0)
2644		goto out;
2645
2646	ret = gen_unique_name(sctx, ino, gen, p);
2647	if (ret < 0)
2648		goto out;
2649
2650	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2651	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2652
2653	if (S_ISLNK(mode)) {
2654		fs_path_reset(p);
2655		ret = read_symlink(sctx->send_root, ino, p);
2656		if (ret < 0)
2657			goto out;
2658		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2659	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2660		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2661		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2662		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2663	}
2664
2665	ret = send_cmd(sctx);
2666	if (ret < 0)
2667		goto out;
2668
2669
2670tlv_put_failure:
2671out:
2672	fs_path_free(p);
2673	return ret;
2674}
2675
2676/*
2677 * We need some special handling for inodes that get processed before the parent
2678 * directory got created. See process_recorded_refs for details.
2679 * This function does the check if we already created the dir out of order.
2680 */
2681static int did_create_dir(struct send_ctx *sctx, u64 dir)
2682{
2683	int ret = 0;
2684	struct btrfs_path *path = NULL;
2685	struct btrfs_key key;
2686	struct btrfs_key found_key;
2687	struct btrfs_key di_key;
2688	struct extent_buffer *eb;
2689	struct btrfs_dir_item *di;
2690	int slot;
2691
2692	path = alloc_path_for_send();
2693	if (!path) {
2694		ret = -ENOMEM;
2695		goto out;
2696	}
2697
2698	key.objectid = dir;
2699	key.type = BTRFS_DIR_INDEX_KEY;
2700	key.offset = 0;
2701	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2702	if (ret < 0)
2703		goto out;
2704
2705	while (1) {
2706		eb = path->nodes[0];
2707		slot = path->slots[0];
2708		if (slot >= btrfs_header_nritems(eb)) {
2709			ret = btrfs_next_leaf(sctx->send_root, path);
2710			if (ret < 0) {
2711				goto out;
2712			} else if (ret > 0) {
2713				ret = 0;
2714				break;
2715			}
2716			continue;
2717		}
2718
2719		btrfs_item_key_to_cpu(eb, &found_key, slot);
2720		if (found_key.objectid != key.objectid ||
2721		    found_key.type != key.type) {
2722			ret = 0;
2723			goto out;
2724		}
2725
2726		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2727		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2728
2729		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2730		    di_key.objectid < sctx->send_progress) {
2731			ret = 1;
2732			goto out;
2733		}
2734
2735		path->slots[0]++;
2736	}
2737
2738out:
2739	btrfs_free_path(path);
2740	return ret;
2741}
2742
2743/*
2744 * Only creates the inode if it is:
2745 * 1. Not a directory
2746 * 2. Or a directory which was not created already due to out of order
2747 *    directories. See did_create_dir and process_recorded_refs for details.
2748 */
2749static int send_create_inode_if_needed(struct send_ctx *sctx)
2750{
2751	int ret;
2752
2753	if (S_ISDIR(sctx->cur_inode_mode)) {
2754		ret = did_create_dir(sctx, sctx->cur_ino);
2755		if (ret < 0)
2756			goto out;
2757		if (ret) {
2758			ret = 0;
2759			goto out;
2760		}
2761	}
2762
2763	ret = send_create_inode(sctx, sctx->cur_ino);
2764	if (ret < 0)
2765		goto out;
2766
2767out:
2768	return ret;
2769}
2770
2771struct recorded_ref {
2772	struct list_head list;
2773	char *name;
2774	struct fs_path *full_path;
2775	u64 dir;
2776	u64 dir_gen;
2777	int name_len;
2778};
2779
2780static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2781{
2782	ref->full_path = path;
2783	ref->name = (char *)kbasename(ref->full_path->start);
2784	ref->name_len = ref->full_path->end - ref->name;
2785}
2786
2787/*
2788 * We need to process new refs before deleted refs, but compare_tree gives us
2789 * everything mixed. So we first record all refs and later process them.
2790 * This function is a helper to record one ref.
2791 */
2792static int __record_ref(struct list_head *head, u64 dir,
2793		      u64 dir_gen, struct fs_path *path)
2794{
2795	struct recorded_ref *ref;
2796
2797	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2798	if (!ref)
2799		return -ENOMEM;
2800
2801	ref->dir = dir;
2802	ref->dir_gen = dir_gen;
2803	set_ref_path(ref, path);
2804	list_add_tail(&ref->list, head);
2805	return 0;
2806}
2807
2808static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2809{
2810	struct recorded_ref *new;
2811
2812	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2813	if (!new)
2814		return -ENOMEM;
2815
2816	new->dir = ref->dir;
2817	new->dir_gen = ref->dir_gen;
2818	new->full_path = NULL;
2819	INIT_LIST_HEAD(&new->list);
2820	list_add_tail(&new->list, list);
2821	return 0;
2822}
2823
2824static void __free_recorded_refs(struct list_head *head)
2825{
2826	struct recorded_ref *cur;
2827
2828	while (!list_empty(head)) {
2829		cur = list_entry(head->next, struct recorded_ref, list);
2830		fs_path_free(cur->full_path);
2831		list_del(&cur->list);
2832		kfree(cur);
2833	}
2834}
2835
2836static void free_recorded_refs(struct send_ctx *sctx)
2837{
2838	__free_recorded_refs(&sctx->new_refs);
2839	__free_recorded_refs(&sctx->deleted_refs);
2840}
2841
2842/*
2843 * Renames/moves a file/dir to its orphan name. Used when the first
2844 * ref of an unprocessed inode gets overwritten and for all non empty
2845 * directories.
2846 */
2847static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2848			  struct fs_path *path)
2849{
2850	int ret;
2851	struct fs_path *orphan;
2852
2853	orphan = fs_path_alloc();
2854	if (!orphan)
2855		return -ENOMEM;
2856
2857	ret = gen_unique_name(sctx, ino, gen, orphan);
2858	if (ret < 0)
2859		goto out;
2860
2861	ret = send_rename(sctx, path, orphan);
2862
2863out:
2864	fs_path_free(orphan);
2865	return ret;
2866}
2867
2868static struct orphan_dir_info *
2869add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2870{
2871	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2872	struct rb_node *parent = NULL;
2873	struct orphan_dir_info *entry, *odi;
2874
2875	while (*p) {
2876		parent = *p;
2877		entry = rb_entry(parent, struct orphan_dir_info, node);
2878		if (dir_ino < entry->ino) {
2879			p = &(*p)->rb_left;
2880		} else if (dir_ino > entry->ino) {
2881			p = &(*p)->rb_right;
2882		} else {
2883			return entry;
2884		}
2885	}
2886
2887	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2888	if (!odi)
2889		return ERR_PTR(-ENOMEM);
2890	odi->ino = dir_ino;
2891	odi->gen = 0;
2892	odi->last_dir_index_offset = 0;
2893
2894	rb_link_node(&odi->node, parent, p);
2895	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2896	return odi;
2897}
2898
2899static struct orphan_dir_info *
2900get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2901{
2902	struct rb_node *n = sctx->orphan_dirs.rb_node;
2903	struct orphan_dir_info *entry;
2904
2905	while (n) {
2906		entry = rb_entry(n, struct orphan_dir_info, node);
2907		if (dir_ino < entry->ino)
2908			n = n->rb_left;
2909		else if (dir_ino > entry->ino)
2910			n = n->rb_right;
2911		else
2912			return entry;
2913	}
2914	return NULL;
2915}
2916
2917static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2918{
2919	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2920
2921	return odi != NULL;
2922}
2923
2924static void free_orphan_dir_info(struct send_ctx *sctx,
2925				 struct orphan_dir_info *odi)
2926{
2927	if (!odi)
2928		return;
2929	rb_erase(&odi->node, &sctx->orphan_dirs);
2930	kfree(odi);
2931}
2932
2933/*
2934 * Returns 1 if a directory can be removed at this point in time.
2935 * We check this by iterating all dir items and checking if the inode behind
2936 * the dir item was already processed.
2937 */
2938static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2939		     u64 send_progress)
2940{
2941	int ret = 0;
2942	struct btrfs_root *root = sctx->parent_root;
2943	struct btrfs_path *path;
2944	struct btrfs_key key;
2945	struct btrfs_key found_key;
2946	struct btrfs_key loc;
2947	struct btrfs_dir_item *di;
2948	struct orphan_dir_info *odi = NULL;
2949
2950	/*
2951	 * Don't try to rmdir the top/root subvolume dir.
2952	 */
2953	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2954		return 0;
2955
2956	path = alloc_path_for_send();
2957	if (!path)
2958		return -ENOMEM;
2959
2960	key.objectid = dir;
2961	key.type = BTRFS_DIR_INDEX_KEY;
2962	key.offset = 0;
2963
2964	odi = get_orphan_dir_info(sctx, dir);
2965	if (odi)
2966		key.offset = odi->last_dir_index_offset;
2967
2968	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2969	if (ret < 0)
2970		goto out;
2971
2972	while (1) {
2973		struct waiting_dir_move *dm;
2974
2975		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2976			ret = btrfs_next_leaf(root, path);
2977			if (ret < 0)
2978				goto out;
2979			else if (ret > 0)
2980				break;
2981			continue;
2982		}
2983		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2984				      path->slots[0]);
2985		if (found_key.objectid != key.objectid ||
2986		    found_key.type != key.type)
2987			break;
2988
2989		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2990				struct btrfs_dir_item);
2991		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2992
2993		dm = get_waiting_dir_move(sctx, loc.objectid);
2994		if (dm) {
2995			odi = add_orphan_dir_info(sctx, dir);
2996			if (IS_ERR(odi)) {
2997				ret = PTR_ERR(odi);
2998				goto out;
2999			}
3000			odi->gen = dir_gen;
3001			odi->last_dir_index_offset = found_key.offset;
3002			dm->rmdir_ino = dir;
3003			ret = 0;
3004			goto out;
3005		}
3006
3007		if (loc.objectid > send_progress) {
3008			odi = add_orphan_dir_info(sctx, dir);
3009			if (IS_ERR(odi)) {
3010				ret = PTR_ERR(odi);
3011				goto out;
3012			}
3013			odi->gen = dir_gen;
3014			odi->last_dir_index_offset = found_key.offset;
3015			ret = 0;
3016			goto out;
3017		}
3018
3019		path->slots[0]++;
3020	}
3021	free_orphan_dir_info(sctx, odi);
3022
3023	ret = 1;
3024
3025out:
3026	btrfs_free_path(path);
3027	return ret;
3028}
3029
3030static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3031{
3032	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3033
3034	return entry != NULL;
3035}
3036
3037static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3038{
3039	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3040	struct rb_node *parent = NULL;
3041	struct waiting_dir_move *entry, *dm;
3042
3043	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3044	if (!dm)
3045		return -ENOMEM;
3046	dm->ino = ino;
3047	dm->rmdir_ino = 0;
3048	dm->orphanized = orphanized;
3049
3050	while (*p) {
3051		parent = *p;
3052		entry = rb_entry(parent, struct waiting_dir_move, node);
3053		if (ino < entry->ino) {
3054			p = &(*p)->rb_left;
3055		} else if (ino > entry->ino) {
3056			p = &(*p)->rb_right;
3057		} else {
3058			kfree(dm);
3059			return -EEXIST;
3060		}
3061	}
3062
3063	rb_link_node(&dm->node, parent, p);
3064	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3065	return 0;
3066}
3067
3068static struct waiting_dir_move *
3069get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3070{
3071	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3072	struct waiting_dir_move *entry;
3073
3074	while (n) {
3075		entry = rb_entry(n, struct waiting_dir_move, node);
3076		if (ino < entry->ino)
3077			n = n->rb_left;
3078		else if (ino > entry->ino)
3079			n = n->rb_right;
3080		else
3081			return entry;
3082	}
3083	return NULL;
3084}
3085
3086static void free_waiting_dir_move(struct send_ctx *sctx,
3087				  struct waiting_dir_move *dm)
3088{
3089	if (!dm)
3090		return;
3091	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3092	kfree(dm);
3093}
3094
3095static int add_pending_dir_move(struct send_ctx *sctx,
3096				u64 ino,
3097				u64 ino_gen,
3098				u64 parent_ino,
3099				struct list_head *new_refs,
3100				struct list_head *deleted_refs,
3101				const bool is_orphan)
3102{
3103	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3104	struct rb_node *parent = NULL;
3105	struct pending_dir_move *entry = NULL, *pm;
3106	struct recorded_ref *cur;
3107	int exists = 0;
3108	int ret;
3109
3110	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3111	if (!pm)
3112		return -ENOMEM;
3113	pm->parent_ino = parent_ino;
3114	pm->ino = ino;
3115	pm->gen = ino_gen;
3116	INIT_LIST_HEAD(&pm->list);
3117	INIT_LIST_HEAD(&pm->update_refs);
3118	RB_CLEAR_NODE(&pm->node);
3119
3120	while (*p) {
3121		parent = *p;
3122		entry = rb_entry(parent, struct pending_dir_move, node);
3123		if (parent_ino < entry->parent_ino) {
3124			p = &(*p)->rb_left;
3125		} else if (parent_ino > entry->parent_ino) {
3126			p = &(*p)->rb_right;
3127		} else {
3128			exists = 1;
3129			break;
3130		}
3131	}
3132
3133	list_for_each_entry(cur, deleted_refs, list) {
3134		ret = dup_ref(cur, &pm->update_refs);
3135		if (ret < 0)
3136			goto out;
3137	}
3138	list_for_each_entry(cur, new_refs, list) {
3139		ret = dup_ref(cur, &pm->update_refs);
3140		if (ret < 0)
3141			goto out;
3142	}
3143
3144	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3145	if (ret)
3146		goto out;
3147
3148	if (exists) {
3149		list_add_tail(&pm->list, &entry->list);
3150	} else {
3151		rb_link_node(&pm->node, parent, p);
3152		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3153	}
3154	ret = 0;
3155out:
3156	if (ret) {
3157		__free_recorded_refs(&pm->update_refs);
3158		kfree(pm);
3159	}
3160	return ret;
3161}
3162
3163static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3164						      u64 parent_ino)
3165{
3166	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3167	struct pending_dir_move *entry;
3168
3169	while (n) {
3170		entry = rb_entry(n, struct pending_dir_move, node);
3171		if (parent_ino < entry->parent_ino)
3172			n = n->rb_left;
3173		else if (parent_ino > entry->parent_ino)
3174			n = n->rb_right;
3175		else
3176			return entry;
3177	}
3178	return NULL;
3179}
3180
3181static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3182		     u64 ino, u64 gen, u64 *ancestor_ino)
3183{
3184	int ret = 0;
3185	u64 parent_inode = 0;
3186	u64 parent_gen = 0;
3187	u64 start_ino = ino;
3188
3189	*ancestor_ino = 0;
3190	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3191		fs_path_reset(name);
3192
3193		if (is_waiting_for_rm(sctx, ino))
3194			break;
3195		if (is_waiting_for_move(sctx, ino)) {
3196			if (*ancestor_ino == 0)
3197				*ancestor_ino = ino;
3198			ret = get_first_ref(sctx->parent_root, ino,
3199					    &parent_inode, &parent_gen, name);
3200		} else {
3201			ret = __get_cur_name_and_parent(sctx, ino, gen,
3202							&parent_inode,
3203							&parent_gen, name);
3204			if (ret > 0) {
3205				ret = 0;
3206				break;
3207			}
3208		}
3209		if (ret < 0)
3210			break;
3211		if (parent_inode == start_ino) {
3212			ret = 1;
3213			if (*ancestor_ino == 0)
3214				*ancestor_ino = ino;
3215			break;
3216		}
3217		ino = parent_inode;
3218		gen = parent_gen;
3219	}
3220	return ret;
3221}
3222
3223static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3224{
3225	struct fs_path *from_path = NULL;
3226	struct fs_path *to_path = NULL;
3227	struct fs_path *name = NULL;
3228	u64 orig_progress = sctx->send_progress;
3229	struct recorded_ref *cur;
3230	u64 parent_ino, parent_gen;
3231	struct waiting_dir_move *dm = NULL;
3232	u64 rmdir_ino = 0;
3233	u64 ancestor;
3234	bool is_orphan;
3235	int ret;
3236
3237	name = fs_path_alloc();
3238	from_path = fs_path_alloc();
3239	if (!name || !from_path) {
3240		ret = -ENOMEM;
3241		goto out;
3242	}
3243
3244	dm = get_waiting_dir_move(sctx, pm->ino);
3245	ASSERT(dm);
3246	rmdir_ino = dm->rmdir_ino;
3247	is_orphan = dm->orphanized;
3248	free_waiting_dir_move(sctx, dm);
3249
3250	if (is_orphan) {
3251		ret = gen_unique_name(sctx, pm->ino,
3252				      pm->gen, from_path);
3253	} else {
3254		ret = get_first_ref(sctx->parent_root, pm->ino,
3255				    &parent_ino, &parent_gen, name);
3256		if (ret < 0)
3257			goto out;
3258		ret = get_cur_path(sctx, parent_ino, parent_gen,
3259				   from_path);
3260		if (ret < 0)
3261			goto out;
3262		ret = fs_path_add_path(from_path, name);
3263	}
3264	if (ret < 0)
3265		goto out;
3266
3267	sctx->send_progress = sctx->cur_ino + 1;
3268	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3269	if (ret < 0)
3270		goto out;
3271	if (ret) {
3272		LIST_HEAD(deleted_refs);
3273		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3274		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3275					   &pm->update_refs, &deleted_refs,
3276					   is_orphan);
3277		if (ret < 0)
3278			goto out;
3279		if (rmdir_ino) {
3280			dm = get_waiting_dir_move(sctx, pm->ino);
3281			ASSERT(dm);
3282			dm->rmdir_ino = rmdir_ino;
3283		}
3284		goto out;
3285	}
3286	fs_path_reset(name);
3287	to_path = name;
3288	name = NULL;
3289	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3290	if (ret < 0)
3291		goto out;
3292
3293	ret = send_rename(sctx, from_path, to_path);
3294	if (ret < 0)
3295		goto out;
3296
3297	if (rmdir_ino) {
3298		struct orphan_dir_info *odi;
3299		u64 gen;
3300
3301		odi = get_orphan_dir_info(sctx, rmdir_ino);
3302		if (!odi) {
3303			/* already deleted */
3304			goto finish;
3305		}
3306		gen = odi->gen;
3307
3308		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3309		if (ret < 0)
3310			goto out;
3311		if (!ret)
3312			goto finish;
3313
3314		name = fs_path_alloc();
3315		if (!name) {
3316			ret = -ENOMEM;
3317			goto out;
3318		}
3319		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3320		if (ret < 0)
3321			goto out;
3322		ret = send_rmdir(sctx, name);
3323		if (ret < 0)
3324			goto out;
3325	}
3326
3327finish:
3328	ret = send_utimes(sctx, pm->ino, pm->gen);
3329	if (ret < 0)
3330		goto out;
3331
3332	/*
3333	 * After rename/move, need to update the utimes of both new parent(s)
3334	 * and old parent(s).
3335	 */
3336	list_for_each_entry(cur, &pm->update_refs, list) {
3337		/*
3338		 * The parent inode might have been deleted in the send snapshot
3339		 */
3340		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3341				     NULL, NULL, NULL, NULL, NULL);
3342		if (ret == -ENOENT) {
3343			ret = 0;
3344			continue;
3345		}
3346		if (ret < 0)
3347			goto out;
3348
3349		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3350		if (ret < 0)
3351			goto out;
3352	}
3353
3354out:
3355	fs_path_free(name);
3356	fs_path_free(from_path);
3357	fs_path_free(to_path);
3358	sctx->send_progress = orig_progress;
3359
3360	return ret;
3361}
3362
3363static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3364{
3365	if (!list_empty(&m->list))
3366		list_del(&m->list);
3367	if (!RB_EMPTY_NODE(&m->node))
3368		rb_erase(&m->node, &sctx->pending_dir_moves);
3369	__free_recorded_refs(&m->update_refs);
3370	kfree(m);
3371}
3372
3373static void tail_append_pending_moves(struct send_ctx *sctx,
3374				      struct pending_dir_move *moves,
3375				      struct list_head *stack)
3376{
3377	if (list_empty(&moves->list)) {
3378		list_add_tail(&moves->list, stack);
3379	} else {
3380		LIST_HEAD(list);
3381		list_splice_init(&moves->list, &list);
3382		list_add_tail(&moves->list, stack);
3383		list_splice_tail(&list, stack);
3384	}
3385	if (!RB_EMPTY_NODE(&moves->node)) {
3386		rb_erase(&moves->node, &sctx->pending_dir_moves);
3387		RB_CLEAR_NODE(&moves->node);
3388	}
3389}
3390
3391static int apply_children_dir_moves(struct send_ctx *sctx)
3392{
3393	struct pending_dir_move *pm;
3394	struct list_head stack;
3395	u64 parent_ino = sctx->cur_ino;
3396	int ret = 0;
3397
3398	pm = get_pending_dir_moves(sctx, parent_ino);
3399	if (!pm)
3400		return 0;
3401
3402	INIT_LIST_HEAD(&stack);
3403	tail_append_pending_moves(sctx, pm, &stack);
3404
3405	while (!list_empty(&stack)) {
3406		pm = list_first_entry(&stack, struct pending_dir_move, list);
3407		parent_ino = pm->ino;
3408		ret = apply_dir_move(sctx, pm);
3409		free_pending_move(sctx, pm);
3410		if (ret)
3411			goto out;
3412		pm = get_pending_dir_moves(sctx, parent_ino);
3413		if (pm)
3414			tail_append_pending_moves(sctx, pm, &stack);
3415	}
3416	return 0;
3417
3418out:
3419	while (!list_empty(&stack)) {
3420		pm = list_first_entry(&stack, struct pending_dir_move, list);
3421		free_pending_move(sctx, pm);
3422	}
3423	return ret;
3424}
3425
3426/*
3427 * We might need to delay a directory rename even when no ancestor directory
3428 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3429 * renamed. This happens when we rename a directory to the old name (the name
3430 * in the parent root) of some other unrelated directory that got its rename
3431 * delayed due to some ancestor with higher number that got renamed.
3432 *
3433 * Example:
3434 *
3435 * Parent snapshot:
3436 * .                                       (ino 256)
3437 * |---- a/                                (ino 257)
3438 * |     |---- file                        (ino 260)
3439 * |
3440 * |---- b/                                (ino 258)
3441 * |---- c/                                (ino 259)
3442 *
3443 * Send snapshot:
3444 * .                                       (ino 256)
3445 * |---- a/                                (ino 258)
3446 * |---- x/                                (ino 259)
3447 *       |---- y/                          (ino 257)
3448 *             |----- file                 (ino 260)
3449 *
3450 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3451 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3452 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3453 * must issue is:
3454 *
3455 * 1 - rename 259 from 'c' to 'x'
3456 * 2 - rename 257 from 'a' to 'x/y'
3457 * 3 - rename 258 from 'b' to 'a'
3458 *
3459 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3460 * be done right away and < 0 on error.
3461 */
3462static int wait_for_dest_dir_move(struct send_ctx *sctx,
3463				  struct recorded_ref *parent_ref,
3464				  const bool is_orphan)
3465{
3466	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3467	struct btrfs_path *path;
3468	struct btrfs_key key;
3469	struct btrfs_key di_key;
3470	struct btrfs_dir_item *di;
3471	u64 left_gen;
3472	u64 right_gen;
3473	int ret = 0;
3474	struct waiting_dir_move *wdm;
3475
3476	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3477		return 0;
3478
3479	path = alloc_path_for_send();
3480	if (!path)
3481		return -ENOMEM;
3482
3483	key.objectid = parent_ref->dir;
3484	key.type = BTRFS_DIR_ITEM_KEY;
3485	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3486
3487	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3488	if (ret < 0) {
3489		goto out;
3490	} else if (ret > 0) {
3491		ret = 0;
3492		goto out;
3493	}
3494
3495	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3496				       parent_ref->name_len);
3497	if (!di) {
3498		ret = 0;
3499		goto out;
3500	}
3501	/*
3502	 * di_key.objectid has the number of the inode that has a dentry in the
3503	 * parent directory with the same name that sctx->cur_ino is being
3504	 * renamed to. We need to check if that inode is in the send root as
3505	 * well and if it is currently marked as an inode with a pending rename,
3506	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3507	 * that it happens after that other inode is renamed.
3508	 */
3509	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3510	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3511		ret = 0;
3512		goto out;
3513	}
3514
3515	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3516			     &left_gen, NULL, NULL, NULL, NULL);
3517	if (ret < 0)
3518		goto out;
3519	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3520			     &right_gen, NULL, NULL, NULL, NULL);
3521	if (ret < 0) {
3522		if (ret == -ENOENT)
3523			ret = 0;
3524		goto out;
3525	}
3526
3527	/* Different inode, no need to delay the rename of sctx->cur_ino */
3528	if (right_gen != left_gen) {
3529		ret = 0;
3530		goto out;
3531	}
3532
3533	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3534	if (wdm && !wdm->orphanized) {
3535		ret = add_pending_dir_move(sctx,
3536					   sctx->cur_ino,
3537					   sctx->cur_inode_gen,
3538					   di_key.objectid,
3539					   &sctx->new_refs,
3540					   &sctx->deleted_refs,
3541					   is_orphan);
3542		if (!ret)
3543			ret = 1;
3544	}
3545out:
3546	btrfs_free_path(path);
3547	return ret;
3548}
3549
3550/*
3551 * Check if inode ino2, or any of its ancestors, is inode ino1.
3552 * Return 1 if true, 0 if false and < 0 on error.
3553 */
3554static int check_ino_in_path(struct btrfs_root *root,
3555			     const u64 ino1,
3556			     const u64 ino1_gen,
3557			     const u64 ino2,
3558			     const u64 ino2_gen,
3559			     struct fs_path *fs_path)
3560{
3561	u64 ino = ino2;
3562
3563	if (ino1 == ino2)
3564		return ino1_gen == ino2_gen;
3565
3566	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3567		u64 parent;
3568		u64 parent_gen;
3569		int ret;
3570
3571		fs_path_reset(fs_path);
3572		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3573		if (ret < 0)
3574			return ret;
3575		if (parent == ino1)
3576			return parent_gen == ino1_gen;
3577		ino = parent;
3578	}
3579	return 0;
3580}
3581
3582/*
3583 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3584 * possible path (in case ino2 is not a directory and has multiple hard links).
3585 * Return 1 if true, 0 if false and < 0 on error.
3586 */
3587static int is_ancestor(struct btrfs_root *root,
3588		       const u64 ino1,
3589		       const u64 ino1_gen,
3590		       const u64 ino2,
3591		       struct fs_path *fs_path)
3592{
3593	bool free_fs_path = false;
3594	int ret = 0;
3595	struct btrfs_path *path = NULL;
3596	struct btrfs_key key;
3597
3598	if (!fs_path) {
3599		fs_path = fs_path_alloc();
3600		if (!fs_path)
3601			return -ENOMEM;
3602		free_fs_path = true;
3603	}
3604
3605	path = alloc_path_for_send();
3606	if (!path) {
3607		ret = -ENOMEM;
3608		goto out;
3609	}
3610
3611	key.objectid = ino2;
3612	key.type = BTRFS_INODE_REF_KEY;
3613	key.offset = 0;
3614
3615	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3616	if (ret < 0)
3617		goto out;
3618
3619	while (true) {
3620		struct extent_buffer *leaf = path->nodes[0];
3621		int slot = path->slots[0];
3622		u32 cur_offset = 0;
3623		u32 item_size;
3624
3625		if (slot >= btrfs_header_nritems(leaf)) {
3626			ret = btrfs_next_leaf(root, path);
3627			if (ret < 0)
3628				goto out;
3629			if (ret > 0)
3630				break;
3631			continue;
3632		}
3633
3634		btrfs_item_key_to_cpu(leaf, &key, slot);
3635		if (key.objectid != ino2)
3636			break;
3637		if (key.type != BTRFS_INODE_REF_KEY &&
3638		    key.type != BTRFS_INODE_EXTREF_KEY)
3639			break;
3640
3641		item_size = btrfs_item_size_nr(leaf, slot);
3642		while (cur_offset < item_size) {
3643			u64 parent;
3644			u64 parent_gen;
3645
3646			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3647				unsigned long ptr;
3648				struct btrfs_inode_extref *extref;
3649
3650				ptr = btrfs_item_ptr_offset(leaf, slot);
3651				extref = (struct btrfs_inode_extref *)
3652					(ptr + cur_offset);
3653				parent = btrfs_inode_extref_parent(leaf,
3654								   extref);
3655				cur_offset += sizeof(*extref);
3656				cur_offset += btrfs_inode_extref_name_len(leaf,
3657								  extref);
3658			} else {
3659				parent = key.offset;
3660				cur_offset = item_size;
3661			}
3662
3663			ret = get_inode_info(root, parent, NULL, &parent_gen,
3664					     NULL, NULL, NULL, NULL);
3665			if (ret < 0)
3666				goto out;
3667			ret = check_ino_in_path(root, ino1, ino1_gen,
3668						parent, parent_gen, fs_path);
3669			if (ret)
3670				goto out;
3671		}
3672		path->slots[0]++;
3673	}
3674	ret = 0;
3675 out:
3676	btrfs_free_path(path);
3677	if (free_fs_path)
3678		fs_path_free(fs_path);
3679	return ret;
3680}
3681
3682static int wait_for_parent_move(struct send_ctx *sctx,
3683				struct recorded_ref *parent_ref,
3684				const bool is_orphan)
3685{
3686	int ret = 0;
3687	u64 ino = parent_ref->dir;
3688	u64 ino_gen = parent_ref->dir_gen;
3689	u64 parent_ino_before, parent_ino_after;
3690	struct fs_path *path_before = NULL;
3691	struct fs_path *path_after = NULL;
3692	int len1, len2;
3693
3694	path_after = fs_path_alloc();
3695	path_before = fs_path_alloc();
3696	if (!path_after || !path_before) {
3697		ret = -ENOMEM;
3698		goto out;
3699	}
3700
3701	/*
3702	 * Our current directory inode may not yet be renamed/moved because some
3703	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3704	 * such ancestor exists and make sure our own rename/move happens after
3705	 * that ancestor is processed to avoid path build infinite loops (done
3706	 * at get_cur_path()).
3707	 */
3708	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3709		u64 parent_ino_after_gen;
3710
3711		if (is_waiting_for_move(sctx, ino)) {
3712			/*
3713			 * If the current inode is an ancestor of ino in the
3714			 * parent root, we need to delay the rename of the
3715			 * current inode, otherwise don't delayed the rename
3716			 * because we can end up with a circular dependency
3717			 * of renames, resulting in some directories never
3718			 * getting the respective rename operations issued in
3719			 * the send stream or getting into infinite path build
3720			 * loops.
3721			 */
3722			ret = is_ancestor(sctx->parent_root,
3723					  sctx->cur_ino, sctx->cur_inode_gen,
3724					  ino, path_before);
3725			if (ret)
3726				break;
3727		}
3728
3729		fs_path_reset(path_before);
3730		fs_path_reset(path_after);
3731
3732		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3733				    &parent_ino_after_gen, path_after);
3734		if (ret < 0)
3735			goto out;
3736		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3737				    NULL, path_before);
3738		if (ret < 0 && ret != -ENOENT) {
3739			goto out;
3740		} else if (ret == -ENOENT) {
3741			ret = 0;
3742			break;
3743		}
3744
3745		len1 = fs_path_len(path_before);
3746		len2 = fs_path_len(path_after);
3747		if (ino > sctx->cur_ino &&
3748		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3749		     memcmp(path_before->start, path_after->start, len1))) {
3750			u64 parent_ino_gen;
3751
3752			ret = get_inode_info(sctx->parent_root, ino, NULL,
3753					     &parent_ino_gen, NULL, NULL, NULL,
3754					     NULL);
3755			if (ret < 0)
3756				goto out;
3757			if (ino_gen == parent_ino_gen) {
3758				ret = 1;
3759				break;
3760			}
3761		}
3762		ino = parent_ino_after;
3763		ino_gen = parent_ino_after_gen;
3764	}
3765
3766out:
3767	fs_path_free(path_before);
3768	fs_path_free(path_after);
3769
3770	if (ret == 1) {
3771		ret = add_pending_dir_move(sctx,
3772					   sctx->cur_ino,
3773					   sctx->cur_inode_gen,
3774					   ino,
3775					   &sctx->new_refs,
3776					   &sctx->deleted_refs,
3777					   is_orphan);
3778		if (!ret)
3779			ret = 1;
3780	}
3781
3782	return ret;
3783}
3784
3785static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3786{
3787	int ret;
3788	struct fs_path *new_path;
3789
3790	/*
3791	 * Our reference's name member points to its full_path member string, so
3792	 * we use here a new path.
3793	 */
3794	new_path = fs_path_alloc();
3795	if (!new_path)
3796		return -ENOMEM;
3797
3798	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3799	if (ret < 0) {
3800		fs_path_free(new_path);
3801		return ret;
3802	}
3803	ret = fs_path_add(new_path, ref->name, ref->name_len);
3804	if (ret < 0) {
3805		fs_path_free(new_path);
3806		return ret;
3807	}
3808
3809	fs_path_free(ref->full_path);
3810	set_ref_path(ref, new_path);
3811
3812	return 0;
3813}
3814
3815/*
3816 * This does all the move/link/unlink/rmdir magic.
3817 */
3818static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3819{
3820	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3821	int ret = 0;
3822	struct recorded_ref *cur;
3823	struct recorded_ref *cur2;
3824	struct list_head check_dirs;
3825	struct fs_path *valid_path = NULL;
3826	u64 ow_inode = 0;
3827	u64 ow_gen;
3828	u64 ow_mode;
3829	int did_overwrite = 0;
3830	int is_orphan = 0;
3831	u64 last_dir_ino_rm = 0;
3832	bool can_rename = true;
3833	bool orphanized_dir = false;
3834	bool orphanized_ancestor = false;
3835
3836	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3837
3838	/*
3839	 * This should never happen as the root dir always has the same ref
3840	 * which is always '..'
3841	 */
3842	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3843	INIT_LIST_HEAD(&check_dirs);
3844
3845	valid_path = fs_path_alloc();
3846	if (!valid_path) {
3847		ret = -ENOMEM;
3848		goto out;
3849	}
3850
3851	/*
3852	 * First, check if the first ref of the current inode was overwritten
3853	 * before. If yes, we know that the current inode was already orphanized
3854	 * and thus use the orphan name. If not, we can use get_cur_path to
3855	 * get the path of the first ref as it would like while receiving at
3856	 * this point in time.
3857	 * New inodes are always orphan at the beginning, so force to use the
3858	 * orphan name in this case.
3859	 * The first ref is stored in valid_path and will be updated if it
3860	 * gets moved around.
3861	 */
3862	if (!sctx->cur_inode_new) {
3863		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3864				sctx->cur_inode_gen);
3865		if (ret < 0)
3866			goto out;
3867		if (ret)
3868			did_overwrite = 1;
3869	}
3870	if (sctx->cur_inode_new || did_overwrite) {
3871		ret = gen_unique_name(sctx, sctx->cur_ino,
3872				sctx->cur_inode_gen, valid_path);
3873		if (ret < 0)
3874			goto out;
3875		is_orphan = 1;
3876	} else {
3877		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3878				valid_path);
3879		if (ret < 0)
3880			goto out;
3881	}
3882
3883	list_for_each_entry(cur, &sctx->new_refs, list) {
3884		/*
3885		 * We may have refs where the parent directory does not exist
3886		 * yet. This happens if the parent directories inum is higher
3887		 * than the current inum. To handle this case, we create the
3888		 * parent directory out of order. But we need to check if this
3889		 * did already happen before due to other refs in the same dir.
3890		 */
3891		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3892		if (ret < 0)
3893			goto out;
3894		if (ret == inode_state_will_create) {
3895			ret = 0;
3896			/*
3897			 * First check if any of the current inodes refs did
3898			 * already create the dir.
3899			 */
3900			list_for_each_entry(cur2, &sctx->new_refs, list) {
3901				if (cur == cur2)
3902					break;
3903				if (cur2->dir == cur->dir) {
3904					ret = 1;
3905					break;
3906				}
3907			}
3908
3909			/*
3910			 * If that did not happen, check if a previous inode
3911			 * did already create the dir.
3912			 */
3913			if (!ret)
3914				ret = did_create_dir(sctx, cur->dir);
3915			if (ret < 0)
3916				goto out;
3917			if (!ret) {
3918				ret = send_create_inode(sctx, cur->dir);
3919				if (ret < 0)
3920					goto out;
3921			}
3922		}
3923
3924		/*
3925		 * Check if this new ref would overwrite the first ref of
3926		 * another unprocessed inode. If yes, orphanize the
3927		 * overwritten inode. If we find an overwritten ref that is
3928		 * not the first ref, simply unlink it.
3929		 */
3930		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3931				cur->name, cur->name_len,
3932				&ow_inode, &ow_gen, &ow_mode);
3933		if (ret < 0)
3934			goto out;
3935		if (ret) {
3936			ret = is_first_ref(sctx->parent_root,
3937					   ow_inode, cur->dir, cur->name,
3938					   cur->name_len);
3939			if (ret < 0)
3940				goto out;
3941			if (ret) {
3942				struct name_cache_entry *nce;
3943				struct waiting_dir_move *wdm;
3944
3945				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3946						cur->full_path);
3947				if (ret < 0)
3948					goto out;
3949				if (S_ISDIR(ow_mode))
3950					orphanized_dir = true;
3951
3952				/*
3953				 * If ow_inode has its rename operation delayed
3954				 * make sure that its orphanized name is used in
3955				 * the source path when performing its rename
3956				 * operation.
3957				 */
3958				if (is_waiting_for_move(sctx, ow_inode)) {
3959					wdm = get_waiting_dir_move(sctx,
3960								   ow_inode);
3961					ASSERT(wdm);
3962					wdm->orphanized = true;
3963				}
3964
3965				/*
3966				 * Make sure we clear our orphanized inode's
3967				 * name from the name cache. This is because the
3968				 * inode ow_inode might be an ancestor of some
3969				 * other inode that will be orphanized as well
3970				 * later and has an inode number greater than
3971				 * sctx->send_progress. We need to prevent
3972				 * future name lookups from using the old name
3973				 * and get instead the orphan name.
3974				 */
3975				nce = name_cache_search(sctx, ow_inode, ow_gen);
3976				if (nce) {
3977					name_cache_delete(sctx, nce);
3978					kfree(nce);
3979				}
3980
3981				/*
3982				 * ow_inode might currently be an ancestor of
3983				 * cur_ino, therefore compute valid_path (the
3984				 * current path of cur_ino) again because it
3985				 * might contain the pre-orphanization name of
3986				 * ow_inode, which is no longer valid.
3987				 */
3988				ret = is_ancestor(sctx->parent_root,
3989						  ow_inode, ow_gen,
3990						  sctx->cur_ino, NULL);
3991				if (ret > 0) {
3992					orphanized_ancestor = true;
3993					fs_path_reset(valid_path);
3994					ret = get_cur_path(sctx, sctx->cur_ino,
3995							   sctx->cur_inode_gen,
3996							   valid_path);
3997				}
3998				if (ret < 0)
3999					goto out;
4000			} else {
4001				ret = send_unlink(sctx, cur->full_path);
4002				if (ret < 0)
4003					goto out;
4004			}
4005		}
4006
4007		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4008			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4009			if (ret < 0)
4010				goto out;
4011			if (ret == 1) {
4012				can_rename = false;
4013				*pending_move = 1;
4014			}
4015		}
4016
4017		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4018		    can_rename) {
4019			ret = wait_for_parent_move(sctx, cur, is_orphan);
4020			if (ret < 0)
4021				goto out;
4022			if (ret == 1) {
4023				can_rename = false;
4024				*pending_move = 1;
4025			}
4026		}
4027
4028		/*
4029		 * link/move the ref to the new place. If we have an orphan
4030		 * inode, move it and update valid_path. If not, link or move
4031		 * it depending on the inode mode.
4032		 */
4033		if (is_orphan && can_rename) {
4034			ret = send_rename(sctx, valid_path, cur->full_path);
4035			if (ret < 0)
4036				goto out;
4037			is_orphan = 0;
4038			ret = fs_path_copy(valid_path, cur->full_path);
4039			if (ret < 0)
4040				goto out;
4041		} else if (can_rename) {
4042			if (S_ISDIR(sctx->cur_inode_mode)) {
4043				/*
4044				 * Dirs can't be linked, so move it. For moved
4045				 * dirs, we always have one new and one deleted
4046				 * ref. The deleted ref is ignored later.
4047				 */
4048				ret = send_rename(sctx, valid_path,
4049						  cur->full_path);
4050				if (!ret)
4051					ret = fs_path_copy(valid_path,
4052							   cur->full_path);
4053				if (ret < 0)
4054					goto out;
4055			} else {
4056				/*
4057				 * We might have previously orphanized an inode
4058				 * which is an ancestor of our current inode,
4059				 * so our reference's full path, which was
4060				 * computed before any such orphanizations, must
4061				 * be updated.
4062				 */
4063				if (orphanized_dir) {
4064					ret = update_ref_path(sctx, cur);
4065					if (ret < 0)
4066						goto out;
4067				}
4068				ret = send_link(sctx, cur->full_path,
4069						valid_path);
4070				if (ret < 0)
4071					goto out;
4072			}
4073		}
4074		ret = dup_ref(cur, &check_dirs);
4075		if (ret < 0)
4076			goto out;
4077	}
4078
4079	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4080		/*
4081		 * Check if we can already rmdir the directory. If not,
4082		 * orphanize it. For every dir item inside that gets deleted
4083		 * later, we do this check again and rmdir it then if possible.
4084		 * See the use of check_dirs for more details.
4085		 */
4086		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4087				sctx->cur_ino);
4088		if (ret < 0)
4089			goto out;
4090		if (ret) {
4091			ret = send_rmdir(sctx, valid_path);
4092			if (ret < 0)
4093				goto out;
4094		} else if (!is_orphan) {
4095			ret = orphanize_inode(sctx, sctx->cur_ino,
4096					sctx->cur_inode_gen, valid_path);
4097			if (ret < 0)
4098				goto out;
4099			is_orphan = 1;
4100		}
4101
4102		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4103			ret = dup_ref(cur, &check_dirs);
4104			if (ret < 0)
4105				goto out;
4106		}
4107	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4108		   !list_empty(&sctx->deleted_refs)) {
4109		/*
4110		 * We have a moved dir. Add the old parent to check_dirs
4111		 */
4112		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4113				list);
4114		ret = dup_ref(cur, &check_dirs);
4115		if (ret < 0)
4116			goto out;
4117	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4118		/*
4119		 * We have a non dir inode. Go through all deleted refs and
4120		 * unlink them if they were not already overwritten by other
4121		 * inodes.
4122		 */
4123		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4124			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4125					sctx->cur_ino, sctx->cur_inode_gen,
4126					cur->name, cur->name_len);
4127			if (ret < 0)
4128				goto out;
4129			if (!ret) {
4130				/*
4131				 * If we orphanized any ancestor before, we need
4132				 * to recompute the full path for deleted names,
4133				 * since any such path was computed before we
4134				 * processed any references and orphanized any
4135				 * ancestor inode.
4136				 */
4137				if (orphanized_ancestor) {
4138					ret = update_ref_path(sctx, cur);
4139					if (ret < 0)
4140						goto out;
4141				}
4142				ret = send_unlink(sctx, cur->full_path);
4143				if (ret < 0)
4144					goto out;
4145			}
4146			ret = dup_ref(cur, &check_dirs);
4147			if (ret < 0)
4148				goto out;
4149		}
4150		/*
4151		 * If the inode is still orphan, unlink the orphan. This may
4152		 * happen when a previous inode did overwrite the first ref
4153		 * of this inode and no new refs were added for the current
4154		 * inode. Unlinking does not mean that the inode is deleted in
4155		 * all cases. There may still be links to this inode in other
4156		 * places.
4157		 */
4158		if (is_orphan) {
4159			ret = send_unlink(sctx, valid_path);
4160			if (ret < 0)
4161				goto out;
4162		}
4163	}
4164
4165	/*
4166	 * We did collect all parent dirs where cur_inode was once located. We
4167	 * now go through all these dirs and check if they are pending for
4168	 * deletion and if it's finally possible to perform the rmdir now.
4169	 * We also update the inode stats of the parent dirs here.
4170	 */
4171	list_for_each_entry(cur, &check_dirs, list) {
4172		/*
4173		 * In case we had refs into dirs that were not processed yet,
4174		 * we don't need to do the utime and rmdir logic for these dirs.
4175		 * The dir will be processed later.
4176		 */
4177		if (cur->dir > sctx->cur_ino)
4178			continue;
4179
4180		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4181		if (ret < 0)
4182			goto out;
4183
4184		if (ret == inode_state_did_create ||
4185		    ret == inode_state_no_change) {
4186			/* TODO delayed utimes */
4187			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4188			if (ret < 0)
4189				goto out;
4190		} else if (ret == inode_state_did_delete &&
4191			   cur->dir != last_dir_ino_rm) {
4192			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4193					sctx->cur_ino);
4194			if (ret < 0)
4195				goto out;
4196			if (ret) {
4197				ret = get_cur_path(sctx, cur->dir,
4198						   cur->dir_gen, valid_path);
4199				if (ret < 0)
4200					goto out;
4201				ret = send_rmdir(sctx, valid_path);
4202				if (ret < 0)
4203					goto out;
4204				last_dir_ino_rm = cur->dir;
4205			}
4206		}
4207	}
4208
4209	ret = 0;
4210
4211out:
4212	__free_recorded_refs(&check_dirs);
4213	free_recorded_refs(sctx);
4214	fs_path_free(valid_path);
4215	return ret;
4216}
4217
4218static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4219		      void *ctx, struct list_head *refs)
4220{
4221	int ret = 0;
4222	struct send_ctx *sctx = ctx;
4223	struct fs_path *p;
4224	u64 gen;
4225
4226	p = fs_path_alloc();
4227	if (!p)
4228		return -ENOMEM;
4229
4230	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4231			NULL, NULL);
4232	if (ret < 0)
4233		goto out;
4234
4235	ret = get_cur_path(sctx, dir, gen, p);
4236	if (ret < 0)
4237		goto out;
4238	ret = fs_path_add_path(p, name);
4239	if (ret < 0)
4240		goto out;
4241
4242	ret = __record_ref(refs, dir, gen, p);
4243
4244out:
4245	if (ret)
4246		fs_path_free(p);
4247	return ret;
4248}
4249
4250static int __record_new_ref(int num, u64 dir, int index,
4251			    struct fs_path *name,
4252			    void *ctx)
4253{
4254	struct send_ctx *sctx = ctx;
4255	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4256}
4257
4258
4259static int __record_deleted_ref(int num, u64 dir, int index,
4260				struct fs_path *name,
4261				void *ctx)
4262{
4263	struct send_ctx *sctx = ctx;
4264	return record_ref(sctx->parent_root, dir, name, ctx,
4265			  &sctx->deleted_refs);
4266}
4267
4268static int record_new_ref(struct send_ctx *sctx)
4269{
4270	int ret;
4271
4272	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4273				sctx->cmp_key, 0, __record_new_ref, sctx);
4274	if (ret < 0)
4275		goto out;
4276	ret = 0;
4277
4278out:
4279	return ret;
4280}
4281
4282static int record_deleted_ref(struct send_ctx *sctx)
4283{
4284	int ret;
4285
4286	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4287				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4288	if (ret < 0)
4289		goto out;
4290	ret = 0;
4291
4292out:
4293	return ret;
4294}
4295
4296struct find_ref_ctx {
4297	u64 dir;
4298	u64 dir_gen;
4299	struct btrfs_root *root;
4300	struct fs_path *name;
4301	int found_idx;
4302};
4303
4304static int __find_iref(int num, u64 dir, int index,
4305		       struct fs_path *name,
4306		       void *ctx_)
4307{
4308	struct find_ref_ctx *ctx = ctx_;
4309	u64 dir_gen;
4310	int ret;
4311
4312	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4313	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4314		/*
4315		 * To avoid doing extra lookups we'll only do this if everything
4316		 * else matches.
4317		 */
4318		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4319				     NULL, NULL, NULL);
4320		if (ret)
4321			return ret;
4322		if (dir_gen != ctx->dir_gen)
4323			return 0;
4324		ctx->found_idx = num;
4325		return 1;
4326	}
4327	return 0;
4328}
4329
4330static int find_iref(struct btrfs_root *root,
4331		     struct btrfs_path *path,
4332		     struct btrfs_key *key,
4333		     u64 dir, u64 dir_gen, struct fs_path *name)
4334{
4335	int ret;
4336	struct find_ref_ctx ctx;
4337
4338	ctx.dir = dir;
4339	ctx.name = name;
4340	ctx.dir_gen = dir_gen;
4341	ctx.found_idx = -1;
4342	ctx.root = root;
4343
4344	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4345	if (ret < 0)
4346		return ret;
4347
4348	if (ctx.found_idx == -1)
4349		return -ENOENT;
4350
4351	return ctx.found_idx;
4352}
4353
4354static int __record_changed_new_ref(int num, u64 dir, int index,
4355				    struct fs_path *name,
4356				    void *ctx)
4357{
4358	u64 dir_gen;
4359	int ret;
4360	struct send_ctx *sctx = ctx;
4361
4362	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4363			     NULL, NULL, NULL);
4364	if (ret)
4365		return ret;
4366
4367	ret = find_iref(sctx->parent_root, sctx->right_path,
4368			sctx->cmp_key, dir, dir_gen, name);
4369	if (ret == -ENOENT)
4370		ret = __record_new_ref(num, dir, index, name, sctx);
4371	else if (ret > 0)
4372		ret = 0;
4373
4374	return ret;
4375}
4376
4377static int __record_changed_deleted_ref(int num, u64 dir, int index,
4378					struct fs_path *name,
4379					void *ctx)
4380{
4381	u64 dir_gen;
4382	int ret;
4383	struct send_ctx *sctx = ctx;
4384
4385	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4386			     NULL, NULL, NULL);
4387	if (ret)
4388		return ret;
4389
4390	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4391			dir, dir_gen, name);
4392	if (ret == -ENOENT)
4393		ret = __record_deleted_ref(num, dir, index, name, sctx);
4394	else if (ret > 0)
4395		ret = 0;
4396
4397	return ret;
4398}
4399
4400static int record_changed_ref(struct send_ctx *sctx)
4401{
4402	int ret = 0;
4403
4404	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4405			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4406	if (ret < 0)
4407		goto out;
4408	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4409			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4410	if (ret < 0)
4411		goto out;
4412	ret = 0;
4413
4414out:
4415	return ret;
4416}
4417
4418/*
4419 * Record and process all refs at once. Needed when an inode changes the
4420 * generation number, which means that it was deleted and recreated.
4421 */
4422static int process_all_refs(struct send_ctx *sctx,
4423			    enum btrfs_compare_tree_result cmd)
4424{
4425	int ret;
4426	struct btrfs_root *root;
4427	struct btrfs_path *path;
4428	struct btrfs_key key;
4429	struct btrfs_key found_key;
4430	struct extent_buffer *eb;
4431	int slot;
4432	iterate_inode_ref_t cb;
4433	int pending_move = 0;
4434
4435	path = alloc_path_for_send();
4436	if (!path)
4437		return -ENOMEM;
4438
4439	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4440		root = sctx->send_root;
4441		cb = __record_new_ref;
4442	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4443		root = sctx->parent_root;
4444		cb = __record_deleted_ref;
4445	} else {
4446		btrfs_err(sctx->send_root->fs_info,
4447				"Wrong command %d in process_all_refs", cmd);
4448		ret = -EINVAL;
4449		goto out;
4450	}
4451
4452	key.objectid = sctx->cmp_key->objectid;
4453	key.type = BTRFS_INODE_REF_KEY;
4454	key.offset = 0;
4455	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4456	if (ret < 0)
4457		goto out;
4458
4459	while (1) {
4460		eb = path->nodes[0];
4461		slot = path->slots[0];
4462		if (slot >= btrfs_header_nritems(eb)) {
4463			ret = btrfs_next_leaf(root, path);
4464			if (ret < 0)
4465				goto out;
4466			else if (ret > 0)
4467				break;
4468			continue;
4469		}
4470
4471		btrfs_item_key_to_cpu(eb, &found_key, slot);
4472
4473		if (found_key.objectid != key.objectid ||
4474		    (found_key.type != BTRFS_INODE_REF_KEY &&
4475		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4476			break;
4477
4478		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4479		if (ret < 0)
4480			goto out;
4481
4482		path->slots[0]++;
4483	}
4484	btrfs_release_path(path);
4485
4486	/*
4487	 * We don't actually care about pending_move as we are simply
4488	 * re-creating this inode and will be rename'ing it into place once we
4489	 * rename the parent directory.
4490	 */
4491	ret = process_recorded_refs(sctx, &pending_move);
4492out:
4493	btrfs_free_path(path);
4494	return ret;
4495}
4496
4497static int send_set_xattr(struct send_ctx *sctx,
4498			  struct fs_path *path,
4499			  const char *name, int name_len,
4500			  const char *data, int data_len)
4501{
4502	int ret = 0;
4503
4504	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4505	if (ret < 0)
4506		goto out;
4507
4508	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4509	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4510	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4511
4512	ret = send_cmd(sctx);
4513
4514tlv_put_failure:
4515out:
4516	return ret;
4517}
4518
4519static int send_remove_xattr(struct send_ctx *sctx,
4520			  struct fs_path *path,
4521			  const char *name, int name_len)
4522{
4523	int ret = 0;
4524
4525	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4526	if (ret < 0)
4527		goto out;
4528
4529	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4530	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4531
4532	ret = send_cmd(sctx);
4533
4534tlv_put_failure:
4535out:
4536	return ret;
4537}
4538
4539static int __process_new_xattr(int num, struct btrfs_key *di_key,
4540			       const char *name, int name_len,
4541			       const char *data, int data_len,
4542			       u8 type, void *ctx)
4543{
4544	int ret;
4545	struct send_ctx *sctx = ctx;
4546	struct fs_path *p;
4547	struct posix_acl_xattr_header dummy_acl;
4548
4549	/* Capabilities are emitted by finish_inode_if_needed */
4550	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4551		return 0;
4552
4553	p = fs_path_alloc();
4554	if (!p)
4555		return -ENOMEM;
4556
4557	/*
4558	 * This hack is needed because empty acls are stored as zero byte
4559	 * data in xattrs. Problem with that is, that receiving these zero byte
4560	 * acls will fail later. To fix this, we send a dummy acl list that
4561	 * only contains the version number and no entries.
4562	 */
4563	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4564	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4565		if (data_len == 0) {
4566			dummy_acl.a_version =
4567					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4568			data = (char *)&dummy_acl;
4569			data_len = sizeof(dummy_acl);
4570		}
4571	}
4572
4573	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4574	if (ret < 0)
4575		goto out;
4576
4577	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4578
4579out:
4580	fs_path_free(p);
4581	return ret;
4582}
4583
4584static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4585				   const char *name, int name_len,
4586				   const char *data, int data_len,
4587				   u8 type, void *ctx)
4588{
4589	int ret;
4590	struct send_ctx *sctx = ctx;
4591	struct fs_path *p;
4592
4593	p = fs_path_alloc();
4594	if (!p)
4595		return -ENOMEM;
4596
4597	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4598	if (ret < 0)
4599		goto out;
4600
4601	ret = send_remove_xattr(sctx, p, name, name_len);
4602
4603out:
4604	fs_path_free(p);
4605	return ret;
4606}
4607
4608static int process_new_xattr(struct send_ctx *sctx)
4609{
4610	int ret = 0;
4611
4612	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4613			       __process_new_xattr, sctx);
4614
4615	return ret;
4616}
4617
4618static int process_deleted_xattr(struct send_ctx *sctx)
4619{
4620	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4621				__process_deleted_xattr, sctx);
4622}
4623
4624struct find_xattr_ctx {
4625	const char *name;
4626	int name_len;
4627	int found_idx;
4628	char *found_data;
4629	int found_data_len;
4630};
4631
4632static int __find_xattr(int num, struct btrfs_key *di_key,
4633			const char *name, int name_len,
4634			const char *data, int data_len,
4635			u8 type, void *vctx)
4636{
4637	struct find_xattr_ctx *ctx = vctx;
4638
4639	if (name_len == ctx->name_len &&
4640	    strncmp(name, ctx->name, name_len) == 0) {
4641		ctx->found_idx = num;
4642		ctx->found_data_len = data_len;
4643		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4644		if (!ctx->found_data)
4645			return -ENOMEM;
4646		return 1;
4647	}
4648	return 0;
4649}
4650
4651static int find_xattr(struct btrfs_root *root,
4652		      struct btrfs_path *path,
4653		      struct btrfs_key *key,
4654		      const char *name, int name_len,
4655		      char **data, int *data_len)
4656{
4657	int ret;
4658	struct find_xattr_ctx ctx;
4659
4660	ctx.name = name;
4661	ctx.name_len = name_len;
4662	ctx.found_idx = -1;
4663	ctx.found_data = NULL;
4664	ctx.found_data_len = 0;
4665
4666	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4667	if (ret < 0)
4668		return ret;
4669
4670	if (ctx.found_idx == -1)
4671		return -ENOENT;
4672	if (data) {
4673		*data = ctx.found_data;
4674		*data_len = ctx.found_data_len;
4675	} else {
4676		kfree(ctx.found_data);
4677	}
4678	return ctx.found_idx;
4679}
4680
4681
4682static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4683				       const char *name, int name_len,
4684				       const char *data, int data_len,
4685				       u8 type, void *ctx)
4686{
4687	int ret;
4688	struct send_ctx *sctx = ctx;
4689	char *found_data = NULL;
4690	int found_data_len  = 0;
4691
4692	ret = find_xattr(sctx->parent_root, sctx->right_path,
4693			 sctx->cmp_key, name, name_len, &found_data,
4694			 &found_data_len);
4695	if (ret == -ENOENT) {
4696		ret = __process_new_xattr(num, di_key, name, name_len, data,
4697				data_len, type, ctx);
4698	} else if (ret >= 0) {
4699		if (data_len != found_data_len ||
4700		    memcmp(data, found_data, data_len)) {
4701			ret = __process_new_xattr(num, di_key, name, name_len,
4702					data, data_len, type, ctx);
4703		} else {
4704			ret = 0;
4705		}
4706	}
4707
4708	kfree(found_data);
4709	return ret;
4710}
4711
4712static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4713					   const char *name, int name_len,
4714					   const char *data, int data_len,
4715					   u8 type, void *ctx)
4716{
4717	int ret;
4718	struct send_ctx *sctx = ctx;
4719
4720	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4721			 name, name_len, NULL, NULL);
4722	if (ret == -ENOENT)
4723		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4724				data_len, type, ctx);
4725	else if (ret >= 0)
4726		ret = 0;
4727
4728	return ret;
4729}
4730
4731static int process_changed_xattr(struct send_ctx *sctx)
4732{
4733	int ret = 0;
4734
4735	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4736			__process_changed_new_xattr, sctx);
4737	if (ret < 0)
4738		goto out;
4739	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4740			__process_changed_deleted_xattr, sctx);
4741
4742out:
4743	return ret;
4744}
4745
4746static int process_all_new_xattrs(struct send_ctx *sctx)
4747{
4748	int ret;
4749	struct btrfs_root *root;
4750	struct btrfs_path *path;
4751	struct btrfs_key key;
4752	struct btrfs_key found_key;
4753	struct extent_buffer *eb;
4754	int slot;
4755
4756	path = alloc_path_for_send();
4757	if (!path)
4758		return -ENOMEM;
4759
4760	root = sctx->send_root;
4761
4762	key.objectid = sctx->cmp_key->objectid;
4763	key.type = BTRFS_XATTR_ITEM_KEY;
4764	key.offset = 0;
4765	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4766	if (ret < 0)
4767		goto out;
4768
4769	while (1) {
4770		eb = path->nodes[0];
4771		slot = path->slots[0];
4772		if (slot >= btrfs_header_nritems(eb)) {
4773			ret = btrfs_next_leaf(root, path);
4774			if (ret < 0) {
4775				goto out;
4776			} else if (ret > 0) {
4777				ret = 0;
4778				break;
4779			}
4780			continue;
4781		}
4782
4783		btrfs_item_key_to_cpu(eb, &found_key, slot);
4784		if (found_key.objectid != key.objectid ||
4785		    found_key.type != key.type) {
4786			ret = 0;
4787			goto out;
4788		}
4789
4790		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4791		if (ret < 0)
4792			goto out;
4793
4794		path->slots[0]++;
4795	}
4796
4797out:
4798	btrfs_free_path(path);
4799	return ret;
4800}
4801
4802static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4803{
4804	struct btrfs_root *root = sctx->send_root;
4805	struct btrfs_fs_info *fs_info = root->fs_info;
4806	struct inode *inode;
4807	struct page *page;
4808	char *addr;
4809	pgoff_t index = offset >> PAGE_SHIFT;
4810	pgoff_t last_index;
4811	unsigned pg_offset = offset_in_page(offset);
4812	ssize_t ret = 0;
4813
4814	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4815	if (IS_ERR(inode))
4816		return PTR_ERR(inode);
4817
4818	if (offset + len > i_size_read(inode)) {
4819		if (offset > i_size_read(inode))
4820			len = 0;
4821		else
4822			len = offset - i_size_read(inode);
4823	}
4824	if (len == 0)
4825		goto out;
4826
4827	last_index = (offset + len - 1) >> PAGE_SHIFT;
4828
4829	/* initial readahead */
4830	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4831	file_ra_state_init(&sctx->ra, inode->i_mapping);
4832
4833	while (index <= last_index) {
4834		unsigned cur_len = min_t(unsigned, len,
4835					 PAGE_SIZE - pg_offset);
4836
4837		page = find_lock_page(inode->i_mapping, index);
4838		if (!page) {
4839			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4840				NULL, index, last_index + 1 - index);
4841
4842			page = find_or_create_page(inode->i_mapping, index,
4843					GFP_KERNEL);
4844			if (!page) {
4845				ret = -ENOMEM;
4846				break;
4847			}
4848		}
4849
4850		if (PageReadahead(page)) {
4851			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4852				NULL, page, index, last_index + 1 - index);
4853		}
4854
4855		if (!PageUptodate(page)) {
4856			btrfs_readpage(NULL, page);
4857			lock_page(page);
4858			if (!PageUptodate(page)) {
4859				unlock_page(page);
4860				put_page(page);
4861				ret = -EIO;
4862				break;
4863			}
4864		}
4865
4866		addr = kmap(page);
4867		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4868		kunmap(page);
4869		unlock_page(page);
4870		put_page(page);
4871		index++;
4872		pg_offset = 0;
4873		len -= cur_len;
4874		ret += cur_len;
4875	}
4876out:
4877	iput(inode);
4878	return ret;
4879}
4880
4881/*
4882 * Read some bytes from the current inode/file and send a write command to
4883 * user space.
4884 */
4885static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4886{
4887	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4888	int ret = 0;
4889	struct fs_path *p;
4890	ssize_t num_read = 0;
4891
4892	p = fs_path_alloc();
4893	if (!p)
4894		return -ENOMEM;
4895
4896	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4897
4898	num_read = fill_read_buf(sctx, offset, len);
4899	if (num_read <= 0) {
4900		if (num_read < 0)
4901			ret = num_read;
4902		goto out;
4903	}
4904
4905	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4906	if (ret < 0)
4907		goto out;
4908
4909	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4910	if (ret < 0)
4911		goto out;
4912
4913	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4914	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4915	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4916
4917	ret = send_cmd(sctx);
4918
4919tlv_put_failure:
4920out:
4921	fs_path_free(p);
4922	if (ret < 0)
4923		return ret;
4924	return num_read;
4925}
4926
4927/*
4928 * Send a clone command to user space.
4929 */
4930static int send_clone(struct send_ctx *sctx,
4931		      u64 offset, u32 len,
4932		      struct clone_root *clone_root)
4933{
4934	int ret = 0;
4935	struct fs_path *p;
4936	u64 gen;
4937
4938	btrfs_debug(sctx->send_root->fs_info,
4939		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4940		    offset, len, clone_root->root->root_key.objectid,
4941		    clone_root->ino, clone_root->offset);
4942
4943	p = fs_path_alloc();
4944	if (!p)
4945		return -ENOMEM;
4946
4947	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4948	if (ret < 0)
4949		goto out;
4950
4951	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4952	if (ret < 0)
4953		goto out;
4954
4955	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4956	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4957	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4958
4959	if (clone_root->root == sctx->send_root) {
4960		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4961				&gen, NULL, NULL, NULL, NULL);
4962		if (ret < 0)
4963			goto out;
4964		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4965	} else {
4966		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4967	}
4968	if (ret < 0)
4969		goto out;
4970
4971	/*
4972	 * If the parent we're using has a received_uuid set then use that as
4973	 * our clone source as that is what we will look for when doing a
4974	 * receive.
4975	 *
4976	 * This covers the case that we create a snapshot off of a received
4977	 * subvolume and then use that as the parent and try to receive on a
4978	 * different host.
4979	 */
4980	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4981		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4982			     clone_root->root->root_item.received_uuid);
4983	else
4984		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4985			     clone_root->root->root_item.uuid);
4986	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4987		    le64_to_cpu(clone_root->root->root_item.ctransid));
4988	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4989	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4990			clone_root->offset);
4991
4992	ret = send_cmd(sctx);
4993
4994tlv_put_failure:
4995out:
4996	fs_path_free(p);
4997	return ret;
4998}
4999
5000/*
5001 * Send an update extent command to user space.
5002 */
5003static int send_update_extent(struct send_ctx *sctx,
5004			      u64 offset, u32 len)
5005{
5006	int ret = 0;
5007	struct fs_path *p;
5008
5009	p = fs_path_alloc();
5010	if (!p)
5011		return -ENOMEM;
5012
5013	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5014	if (ret < 0)
5015		goto out;
5016
5017	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5018	if (ret < 0)
5019		goto out;
5020
5021	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5022	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5023	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5024
5025	ret = send_cmd(sctx);
5026
5027tlv_put_failure:
5028out:
5029	fs_path_free(p);
5030	return ret;
5031}
5032
5033static int send_hole(struct send_ctx *sctx, u64 end)
5034{
5035	struct fs_path *p = NULL;
5036	u64 offset = sctx->cur_inode_last_extent;
5037	u64 len;
5038	int ret = 0;
5039
5040	/*
5041	 * A hole that starts at EOF or beyond it. Since we do not yet support
5042	 * fallocate (for extent preallocation and hole punching), sending a
5043	 * write of zeroes starting at EOF or beyond would later require issuing
5044	 * a truncate operation which would undo the write and achieve nothing.
5045	 */
5046	if (offset >= sctx->cur_inode_size)
5047		return 0;
5048
5049	/*
5050	 * Don't go beyond the inode's i_size due to prealloc extents that start
5051	 * after the i_size.
5052	 */
5053	end = min_t(u64, end, sctx->cur_inode_size);
5054
5055	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5056		return send_update_extent(sctx, offset, end - offset);
5057
5058	p = fs_path_alloc();
5059	if (!p)
5060		return -ENOMEM;
5061	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5062	if (ret < 0)
5063		goto tlv_put_failure;
5064	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5065	while (offset < end) {
5066		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5067
5068		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5069		if (ret < 0)
5070			break;
5071		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5072		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5073		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5074		ret = send_cmd(sctx);
5075		if (ret < 0)
5076			break;
5077		offset += len;
5078	}
5079	sctx->cur_inode_next_write_offset = offset;
5080tlv_put_failure:
5081	fs_path_free(p);
5082	return ret;
5083}
5084
5085static int send_extent_data(struct send_ctx *sctx,
5086			    const u64 offset,
5087			    const u64 len)
5088{
5089	u64 sent = 0;
5090
5091	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5092		return send_update_extent(sctx, offset, len);
5093
5094	while (sent < len) {
5095		u64 size = len - sent;
5096		int ret;
5097
5098		if (size > BTRFS_SEND_READ_SIZE)
5099			size = BTRFS_SEND_READ_SIZE;
5100		ret = send_write(sctx, offset + sent, size);
5101		if (ret < 0)
5102			return ret;
5103		if (!ret)
5104			break;
5105		sent += ret;
5106	}
5107	return 0;
5108}
5109
5110/*
5111 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5112 * found, call send_set_xattr function to emit it.
5113 *
5114 * Return 0 if there isn't a capability, or when the capability was emitted
5115 * successfully, or < 0 if an error occurred.
5116 */
5117static int send_capabilities(struct send_ctx *sctx)
5118{
5119	struct fs_path *fspath = NULL;
5120	struct btrfs_path *path;
5121	struct btrfs_dir_item *di;
5122	struct extent_buffer *leaf;
5123	unsigned long data_ptr;
5124	char *buf = NULL;
5125	int buf_len;
5126	int ret = 0;
5127
5128	path = alloc_path_for_send();
5129	if (!path)
5130		return -ENOMEM;
5131
5132	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5133				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5134	if (!di) {
5135		/* There is no xattr for this inode */
5136		goto out;
5137	} else if (IS_ERR(di)) {
5138		ret = PTR_ERR(di);
5139		goto out;
5140	}
5141
5142	leaf = path->nodes[0];
5143	buf_len = btrfs_dir_data_len(leaf, di);
5144
5145	fspath = fs_path_alloc();
5146	buf = kmalloc(buf_len, GFP_KERNEL);
5147	if (!fspath || !buf) {
5148		ret = -ENOMEM;
5149		goto out;
5150	}
5151
5152	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5153	if (ret < 0)
5154		goto out;
5155
5156	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5157	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5158
5159	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5160			strlen(XATTR_NAME_CAPS), buf, buf_len);
5161out:
5162	kfree(buf);
5163	fs_path_free(fspath);
5164	btrfs_free_path(path);
5165	return ret;
5166}
5167
5168static int clone_range(struct send_ctx *sctx,
5169		       struct clone_root *clone_root,
5170		       const u64 disk_byte,
5171		       u64 data_offset,
5172		       u64 offset,
5173		       u64 len)
5174{
5175	struct btrfs_path *path;
5176	struct btrfs_key key;
5177	int ret;
5178	u64 clone_src_i_size = 0;
5179
5180	/*
5181	 * Prevent cloning from a zero offset with a length matching the sector
5182	 * size because in some scenarios this will make the receiver fail.
5183	 *
5184	 * For example, if in the source filesystem the extent at offset 0
5185	 * has a length of sectorsize and it was written using direct IO, then
5186	 * it can never be an inline extent (even if compression is enabled).
5187	 * Then this extent can be cloned in the original filesystem to a non
5188	 * zero file offset, but it may not be possible to clone in the
5189	 * destination filesystem because it can be inlined due to compression
5190	 * on the destination filesystem (as the receiver's write operations are
5191	 * always done using buffered IO). The same happens when the original
5192	 * filesystem does not have compression enabled but the destination
5193	 * filesystem has.
5194	 */
5195	if (clone_root->offset == 0 &&
5196	    len == sctx->send_root->fs_info->sectorsize)
5197		return send_extent_data(sctx, offset, len);
5198
5199	path = alloc_path_for_send();
5200	if (!path)
5201		return -ENOMEM;
5202
5203	/*
5204	 * There are inodes that have extents that lie behind its i_size. Don't
5205	 * accept clones from these extents.
5206	 */
5207	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5208			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5209	btrfs_release_path(path);
5210	if (ret < 0)
5211		goto out;
5212
5213	/*
5214	 * We can't send a clone operation for the entire range if we find
5215	 * extent items in the respective range in the source file that
5216	 * refer to different extents or if we find holes.
5217	 * So check for that and do a mix of clone and regular write/copy
5218	 * operations if needed.
5219	 *
5220	 * Example:
5221	 *
5222	 * mkfs.btrfs -f /dev/sda
5223	 * mount /dev/sda /mnt
5224	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5225	 * cp --reflink=always /mnt/foo /mnt/bar
5226	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5227	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5228	 *
5229	 * If when we send the snapshot and we are processing file bar (which
5230	 * has a higher inode number than foo) we blindly send a clone operation
5231	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5232	 * a file bar that matches the content of file foo - iow, doesn't match
5233	 * the content from bar in the original filesystem.
5234	 */
5235	key.objectid = clone_root->ino;
5236	key.type = BTRFS_EXTENT_DATA_KEY;
5237	key.offset = clone_root->offset;
5238	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5239	if (ret < 0)
5240		goto out;
5241	if (ret > 0 && path->slots[0] > 0) {
5242		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5243		if (key.objectid == clone_root->ino &&
5244		    key.type == BTRFS_EXTENT_DATA_KEY)
5245			path->slots[0]--;
5246	}
5247
5248	while (true) {
5249		struct extent_buffer *leaf = path->nodes[0];
5250		int slot = path->slots[0];
5251		struct btrfs_file_extent_item *ei;
5252		u8 type;
5253		u64 ext_len;
5254		u64 clone_len;
5255		u64 clone_data_offset;
5256
5257		if (slot >= btrfs_header_nritems(leaf)) {
5258			ret = btrfs_next_leaf(clone_root->root, path);
5259			if (ret < 0)
5260				goto out;
5261			else if (ret > 0)
5262				break;
5263			continue;
5264		}
5265
5266		btrfs_item_key_to_cpu(leaf, &key, slot);
5267
5268		/*
5269		 * We might have an implicit trailing hole (NO_HOLES feature
5270		 * enabled). We deal with it after leaving this loop.
5271		 */
5272		if (key.objectid != clone_root->ino ||
5273		    key.type != BTRFS_EXTENT_DATA_KEY)
5274			break;
5275
5276		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5277		type = btrfs_file_extent_type(leaf, ei);
5278		if (type == BTRFS_FILE_EXTENT_INLINE) {
5279			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5280			ext_len = PAGE_ALIGN(ext_len);
5281		} else {
5282			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5283		}
5284
5285		if (key.offset + ext_len <= clone_root->offset)
5286			goto next;
5287
5288		if (key.offset > clone_root->offset) {
5289			/* Implicit hole, NO_HOLES feature enabled. */
5290			u64 hole_len = key.offset - clone_root->offset;
5291
5292			if (hole_len > len)
5293				hole_len = len;
5294			ret = send_extent_data(sctx, offset, hole_len);
5295			if (ret < 0)
5296				goto out;
5297
5298			len -= hole_len;
5299			if (len == 0)
5300				break;
5301			offset += hole_len;
5302			clone_root->offset += hole_len;
5303			data_offset += hole_len;
5304		}
5305
5306		if (key.offset >= clone_root->offset + len)
5307			break;
5308
5309		if (key.offset >= clone_src_i_size)
5310			break;
5311
5312		if (key.offset + ext_len > clone_src_i_size)
5313			ext_len = clone_src_i_size - key.offset;
5314
5315		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5316		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5317			clone_root->offset = key.offset;
5318			if (clone_data_offset < data_offset &&
5319				clone_data_offset + ext_len > data_offset) {
5320				u64 extent_offset;
5321
5322				extent_offset = data_offset - clone_data_offset;
5323				ext_len -= extent_offset;
5324				clone_data_offset += extent_offset;
5325				clone_root->offset += extent_offset;
5326			}
5327		}
5328
5329		clone_len = min_t(u64, ext_len, len);
5330
5331		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5332		    clone_data_offset == data_offset) {
5333			const u64 src_end = clone_root->offset + clone_len;
5334			const u64 sectorsize = SZ_64K;
5335
5336			/*
5337			 * We can't clone the last block, when its size is not
5338			 * sector size aligned, into the middle of a file. If we
5339			 * do so, the receiver will get a failure (-EINVAL) when
5340			 * trying to clone or will silently corrupt the data in
5341			 * the destination file if it's on a kernel without the
5342			 * fix introduced by commit ac765f83f1397646
5343			 * ("Btrfs: fix data corruption due to cloning of eof
5344			 * block).
5345			 *
5346			 * So issue a clone of the aligned down range plus a
5347			 * regular write for the eof block, if we hit that case.
5348			 *
5349			 * Also, we use the maximum possible sector size, 64K,
5350			 * because we don't know what's the sector size of the
5351			 * filesystem that receives the stream, so we have to
5352			 * assume the largest possible sector size.
5353			 */
5354			if (src_end == clone_src_i_size &&
5355			    !IS_ALIGNED(src_end, sectorsize) &&
5356			    offset + clone_len < sctx->cur_inode_size) {
5357				u64 slen;
5358
5359				slen = ALIGN_DOWN(src_end - clone_root->offset,
5360						  sectorsize);
5361				if (slen > 0) {
5362					ret = send_clone(sctx, offset, slen,
5363							 clone_root);
5364					if (ret < 0)
5365						goto out;
5366				}
5367				ret = send_extent_data(sctx, offset + slen,
5368						       clone_len - slen);
5369			} else {
5370				ret = send_clone(sctx, offset, clone_len,
5371						 clone_root);
5372			}
5373		} else {
5374			ret = send_extent_data(sctx, offset, clone_len);
5375		}
5376
5377		if (ret < 0)
5378			goto out;
5379
5380		len -= clone_len;
5381		if (len == 0)
5382			break;
5383		offset += clone_len;
5384		clone_root->offset += clone_len;
5385		data_offset += clone_len;
5386next:
5387		path->slots[0]++;
5388	}
5389
5390	if (len > 0)
5391		ret = send_extent_data(sctx, offset, len);
5392	else
5393		ret = 0;
5394out:
5395	btrfs_free_path(path);
5396	return ret;
5397}
5398
5399static int send_write_or_clone(struct send_ctx *sctx,
5400			       struct btrfs_path *path,
5401			       struct btrfs_key *key,
5402			       struct clone_root *clone_root)
5403{
5404	int ret = 0;
5405	struct btrfs_file_extent_item *ei;
5406	u64 offset = key->offset;
5407	u64 len;
5408	u8 type;
5409	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5410
5411	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5412			struct btrfs_file_extent_item);
5413	type = btrfs_file_extent_type(path->nodes[0], ei);
5414	if (type == BTRFS_FILE_EXTENT_INLINE) {
5415		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5416		/*
5417		 * it is possible the inline item won't cover the whole page,
5418		 * but there may be items after this page.  Make
5419		 * sure to send the whole thing
5420		 */
5421		len = PAGE_ALIGN(len);
5422	} else {
5423		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5424	}
5425
5426	if (offset >= sctx->cur_inode_size) {
5427		ret = 0;
5428		goto out;
5429	}
5430	if (offset + len > sctx->cur_inode_size)
5431		len = sctx->cur_inode_size - offset;
5432	if (len == 0) {
5433		ret = 0;
5434		goto out;
5435	}
5436
5437	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5438		u64 disk_byte;
5439		u64 data_offset;
5440
5441		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5442		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5443		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5444				  offset, len);
5445	} else {
5446		ret = send_extent_data(sctx, offset, len);
5447	}
5448	sctx->cur_inode_next_write_offset = offset + len;
5449out:
5450	return ret;
5451}
5452
5453static int is_extent_unchanged(struct send_ctx *sctx,
5454			       struct btrfs_path *left_path,
5455			       struct btrfs_key *ekey)
5456{
5457	int ret = 0;
5458	struct btrfs_key key;
5459	struct btrfs_path *path = NULL;
5460	struct extent_buffer *eb;
5461	int slot;
5462	struct btrfs_key found_key;
5463	struct btrfs_file_extent_item *ei;
5464	u64 left_disknr;
5465	u64 right_disknr;
5466	u64 left_offset;
5467	u64 right_offset;
5468	u64 left_offset_fixed;
5469	u64 left_len;
5470	u64 right_len;
5471	u64 left_gen;
5472	u64 right_gen;
5473	u8 left_type;
5474	u8 right_type;
5475
5476	path = alloc_path_for_send();
5477	if (!path)
5478		return -ENOMEM;
5479
5480	eb = left_path->nodes[0];
5481	slot = left_path->slots[0];
5482	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5483	left_type = btrfs_file_extent_type(eb, ei);
5484
5485	if (left_type != BTRFS_FILE_EXTENT_REG) {
5486		ret = 0;
5487		goto out;
5488	}
5489	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5490	left_len = btrfs_file_extent_num_bytes(eb, ei);
5491	left_offset = btrfs_file_extent_offset(eb, ei);
5492	left_gen = btrfs_file_extent_generation(eb, ei);
5493
5494	/*
5495	 * Following comments will refer to these graphics. L is the left
5496	 * extents which we are checking at the moment. 1-8 are the right
5497	 * extents that we iterate.
5498	 *
5499	 *       |-----L-----|
5500	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5501	 *
5502	 *       |-----L-----|
5503	 * |--1--|-2b-|...(same as above)
5504	 *
5505	 * Alternative situation. Happens on files where extents got split.
5506	 *       |-----L-----|
5507	 * |-----------7-----------|-6-|
5508	 *
5509	 * Alternative situation. Happens on files which got larger.
5510	 *       |-----L-----|
5511	 * |-8-|
5512	 * Nothing follows after 8.
5513	 */
5514
5515	key.objectid = ekey->objectid;
5516	key.type = BTRFS_EXTENT_DATA_KEY;
5517	key.offset = ekey->offset;
5518	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5519	if (ret < 0)
5520		goto out;
5521	if (ret) {
5522		ret = 0;
5523		goto out;
5524	}
5525
5526	/*
5527	 * Handle special case where the right side has no extents at all.
5528	 */
5529	eb = path->nodes[0];
5530	slot = path->slots[0];
5531	btrfs_item_key_to_cpu(eb, &found_key, slot);
5532	if (found_key.objectid != key.objectid ||
5533	    found_key.type != key.type) {
5534		/* If we're a hole then just pretend nothing changed */
5535		ret = (left_disknr) ? 0 : 1;
5536		goto out;
5537	}
5538
5539	/*
5540	 * We're now on 2a, 2b or 7.
5541	 */
5542	key = found_key;
5543	while (key.offset < ekey->offset + left_len) {
5544		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5545		right_type = btrfs_file_extent_type(eb, ei);
5546		if (right_type != BTRFS_FILE_EXTENT_REG &&
5547		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5548			ret = 0;
5549			goto out;
5550		}
5551
5552		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5553			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5554			right_len = PAGE_ALIGN(right_len);
5555		} else {
5556			right_len = btrfs_file_extent_num_bytes(eb, ei);
5557		}
5558
5559		/*
5560		 * Are we at extent 8? If yes, we know the extent is changed.
5561		 * This may only happen on the first iteration.
5562		 */
5563		if (found_key.offset + right_len <= ekey->offset) {
5564			/* If we're a hole just pretend nothing changed */
5565			ret = (left_disknr) ? 0 : 1;
5566			goto out;
5567		}
5568
5569		/*
5570		 * We just wanted to see if when we have an inline extent, what
5571		 * follows it is a regular extent (wanted to check the above
5572		 * condition for inline extents too). This should normally not
5573		 * happen but it's possible for example when we have an inline
5574		 * compressed extent representing data with a size matching
5575		 * the page size (currently the same as sector size).
5576		 */
5577		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5578			ret = 0;
5579			goto out;
5580		}
5581
5582		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5583		right_offset = btrfs_file_extent_offset(eb, ei);
5584		right_gen = btrfs_file_extent_generation(eb, ei);
5585
5586		left_offset_fixed = left_offset;
5587		if (key.offset < ekey->offset) {
5588			/* Fix the right offset for 2a and 7. */
5589			right_offset += ekey->offset - key.offset;
5590		} else {
5591			/* Fix the left offset for all behind 2a and 2b */
5592			left_offset_fixed += key.offset - ekey->offset;
5593		}
5594
5595		/*
5596		 * Check if we have the same extent.
5597		 */
5598		if (left_disknr != right_disknr ||
5599		    left_offset_fixed != right_offset ||
5600		    left_gen != right_gen) {
5601			ret = 0;
5602			goto out;
5603		}
5604
5605		/*
5606		 * Go to the next extent.
5607		 */
5608		ret = btrfs_next_item(sctx->parent_root, path);
5609		if (ret < 0)
5610			goto out;
5611		if (!ret) {
5612			eb = path->nodes[0];
5613			slot = path->slots[0];
5614			btrfs_item_key_to_cpu(eb, &found_key, slot);
5615		}
5616		if (ret || found_key.objectid != key.objectid ||
5617		    found_key.type != key.type) {
5618			key.offset += right_len;
5619			break;
5620		}
5621		if (found_key.offset != key.offset + right_len) {
5622			ret = 0;
5623			goto out;
5624		}
5625		key = found_key;
5626	}
5627
5628	/*
5629	 * We're now behind the left extent (treat as unchanged) or at the end
5630	 * of the right side (treat as changed).
5631	 */
5632	if (key.offset >= ekey->offset + left_len)
5633		ret = 1;
5634	else
5635		ret = 0;
5636
5637
5638out:
5639	btrfs_free_path(path);
5640	return ret;
5641}
5642
5643static int get_last_extent(struct send_ctx *sctx, u64 offset)
5644{
5645	struct btrfs_path *path;
5646	struct btrfs_root *root = sctx->send_root;
5647	struct btrfs_key key;
5648	int ret;
5649
5650	path = alloc_path_for_send();
5651	if (!path)
5652		return -ENOMEM;
5653
5654	sctx->cur_inode_last_extent = 0;
5655
5656	key.objectid = sctx->cur_ino;
5657	key.type = BTRFS_EXTENT_DATA_KEY;
5658	key.offset = offset;
5659	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5660	if (ret < 0)
5661		goto out;
5662	ret = 0;
5663	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5664	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5665		goto out;
5666
5667	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5668out:
5669	btrfs_free_path(path);
5670	return ret;
5671}
5672
5673static int range_is_hole_in_parent(struct send_ctx *sctx,
5674				   const u64 start,
5675				   const u64 end)
5676{
5677	struct btrfs_path *path;
5678	struct btrfs_key key;
5679	struct btrfs_root *root = sctx->parent_root;
5680	u64 search_start = start;
5681	int ret;
5682
5683	path = alloc_path_for_send();
5684	if (!path)
5685		return -ENOMEM;
5686
5687	key.objectid = sctx->cur_ino;
5688	key.type = BTRFS_EXTENT_DATA_KEY;
5689	key.offset = search_start;
5690	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5691	if (ret < 0)
5692		goto out;
5693	if (ret > 0 && path->slots[0] > 0)
5694		path->slots[0]--;
5695
5696	while (search_start < end) {
5697		struct extent_buffer *leaf = path->nodes[0];
5698		int slot = path->slots[0];
5699		struct btrfs_file_extent_item *fi;
5700		u64 extent_end;
5701
5702		if (slot >= btrfs_header_nritems(leaf)) {
5703			ret = btrfs_next_leaf(root, path);
5704			if (ret < 0)
5705				goto out;
5706			else if (ret > 0)
5707				break;
5708			continue;
5709		}
5710
5711		btrfs_item_key_to_cpu(leaf, &key, slot);
5712		if (key.objectid < sctx->cur_ino ||
5713		    key.type < BTRFS_EXTENT_DATA_KEY)
5714			goto next;
5715		if (key.objectid > sctx->cur_ino ||
5716		    key.type > BTRFS_EXTENT_DATA_KEY ||
5717		    key.offset >= end)
5718			break;
5719
5720		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5721		extent_end = btrfs_file_extent_end(path);
5722		if (extent_end <= start)
5723			goto next;
5724		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5725			search_start = extent_end;
5726			goto next;
5727		}
5728		ret = 0;
5729		goto out;
5730next:
5731		path->slots[0]++;
5732	}
5733	ret = 1;
5734out:
5735	btrfs_free_path(path);
5736	return ret;
5737}
5738
5739static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5740			   struct btrfs_key *key)
5741{
5742	int ret = 0;
5743
5744	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5745		return 0;
5746
5747	if (sctx->cur_inode_last_extent == (u64)-1) {
5748		ret = get_last_extent(sctx, key->offset - 1);
5749		if (ret)
5750			return ret;
5751	}
5752
5753	if (path->slots[0] == 0 &&
5754	    sctx->cur_inode_last_extent < key->offset) {
5755		/*
5756		 * We might have skipped entire leafs that contained only
5757		 * file extent items for our current inode. These leafs have
5758		 * a generation number smaller (older) than the one in the
5759		 * current leaf and the leaf our last extent came from, and
5760		 * are located between these 2 leafs.
5761		 */
5762		ret = get_last_extent(sctx, key->offset - 1);
5763		if (ret)
5764			return ret;
5765	}
5766
5767	if (sctx->cur_inode_last_extent < key->offset) {
5768		ret = range_is_hole_in_parent(sctx,
5769					      sctx->cur_inode_last_extent,
5770					      key->offset);
5771		if (ret < 0)
5772			return ret;
5773		else if (ret == 0)
5774			ret = send_hole(sctx, key->offset);
5775		else
5776			ret = 0;
5777	}
5778	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5779	return ret;
5780}
5781
5782static int process_extent(struct send_ctx *sctx,
5783			  struct btrfs_path *path,
5784			  struct btrfs_key *key)
5785{
5786	struct clone_root *found_clone = NULL;
5787	int ret = 0;
5788
5789	if (S_ISLNK(sctx->cur_inode_mode))
5790		return 0;
5791
5792	if (sctx->parent_root && !sctx->cur_inode_new) {
5793		ret = is_extent_unchanged(sctx, path, key);
5794		if (ret < 0)
5795			goto out;
5796		if (ret) {
5797			ret = 0;
5798			goto out_hole;
5799		}
5800	} else {
5801		struct btrfs_file_extent_item *ei;
5802		u8 type;
5803
5804		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5805				    struct btrfs_file_extent_item);
5806		type = btrfs_file_extent_type(path->nodes[0], ei);
5807		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5808		    type == BTRFS_FILE_EXTENT_REG) {
5809			/*
5810			 * The send spec does not have a prealloc command yet,
5811			 * so just leave a hole for prealloc'ed extents until
5812			 * we have enough commands queued up to justify rev'ing
5813			 * the send spec.
5814			 */
5815			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5816				ret = 0;
5817				goto out;
5818			}
5819
5820			/* Have a hole, just skip it. */
5821			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5822				ret = 0;
5823				goto out;
5824			}
5825		}
5826	}
5827
5828	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5829			sctx->cur_inode_size, &found_clone);
5830	if (ret != -ENOENT && ret < 0)
5831		goto out;
5832
5833	ret = send_write_or_clone(sctx, path, key, found_clone);
5834	if (ret)
5835		goto out;
5836out_hole:
5837	ret = maybe_send_hole(sctx, path, key);
5838out:
5839	return ret;
5840}
5841
5842static int process_all_extents(struct send_ctx *sctx)
5843{
5844	int ret;
5845	struct btrfs_root *root;
5846	struct btrfs_path *path;
5847	struct btrfs_key key;
5848	struct btrfs_key found_key;
5849	struct extent_buffer *eb;
5850	int slot;
5851
5852	root = sctx->send_root;
5853	path = alloc_path_for_send();
5854	if (!path)
5855		return -ENOMEM;
5856
5857	key.objectid = sctx->cmp_key->objectid;
5858	key.type = BTRFS_EXTENT_DATA_KEY;
5859	key.offset = 0;
5860	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5861	if (ret < 0)
5862		goto out;
5863
5864	while (1) {
5865		eb = path->nodes[0];
5866		slot = path->slots[0];
5867
5868		if (slot >= btrfs_header_nritems(eb)) {
5869			ret = btrfs_next_leaf(root, path);
5870			if (ret < 0) {
5871				goto out;
5872			} else if (ret > 0) {
5873				ret = 0;
5874				break;
5875			}
5876			continue;
5877		}
5878
5879		btrfs_item_key_to_cpu(eb, &found_key, slot);
5880
5881		if (found_key.objectid != key.objectid ||
5882		    found_key.type != key.type) {
5883			ret = 0;
5884			goto out;
5885		}
5886
5887		ret = process_extent(sctx, path, &found_key);
5888		if (ret < 0)
5889			goto out;
5890
5891		path->slots[0]++;
5892	}
5893
5894out:
5895	btrfs_free_path(path);
5896	return ret;
5897}
5898
5899static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5900					   int *pending_move,
5901					   int *refs_processed)
5902{
5903	int ret = 0;
5904
5905	if (sctx->cur_ino == 0)
5906		goto out;
5907	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5908	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5909		goto out;
5910	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5911		goto out;
5912
5913	ret = process_recorded_refs(sctx, pending_move);
5914	if (ret < 0)
5915		goto out;
5916
5917	*refs_processed = 1;
5918out:
5919	return ret;
5920}
5921
5922static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5923{
5924	int ret = 0;
5925	u64 left_mode;
5926	u64 left_uid;
5927	u64 left_gid;
5928	u64 right_mode;
5929	u64 right_uid;
5930	u64 right_gid;
5931	int need_chmod = 0;
5932	int need_chown = 0;
5933	int need_truncate = 1;
5934	int pending_move = 0;
5935	int refs_processed = 0;
5936
5937	if (sctx->ignore_cur_inode)
5938		return 0;
5939
5940	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5941					      &refs_processed);
5942	if (ret < 0)
5943		goto out;
5944
5945	/*
5946	 * We have processed the refs and thus need to advance send_progress.
5947	 * Now, calls to get_cur_xxx will take the updated refs of the current
5948	 * inode into account.
5949	 *
5950	 * On the other hand, if our current inode is a directory and couldn't
5951	 * be moved/renamed because its parent was renamed/moved too and it has
5952	 * a higher inode number, we can only move/rename our current inode
5953	 * after we moved/renamed its parent. Therefore in this case operate on
5954	 * the old path (pre move/rename) of our current inode, and the
5955	 * move/rename will be performed later.
5956	 */
5957	if (refs_processed && !pending_move)
5958		sctx->send_progress = sctx->cur_ino + 1;
5959
5960	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5961		goto out;
5962	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5963		goto out;
5964
5965	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5966			&left_mode, &left_uid, &left_gid, NULL);
5967	if (ret < 0)
5968		goto out;
5969
5970	if (!sctx->parent_root || sctx->cur_inode_new) {
5971		need_chown = 1;
5972		if (!S_ISLNK(sctx->cur_inode_mode))
5973			need_chmod = 1;
5974		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5975			need_truncate = 0;
5976	} else {
5977		u64 old_size;
5978
5979		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5980				&old_size, NULL, &right_mode, &right_uid,
5981				&right_gid, NULL);
5982		if (ret < 0)
5983			goto out;
5984
5985		if (left_uid != right_uid || left_gid != right_gid)
5986			need_chown = 1;
5987		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5988			need_chmod = 1;
5989		if ((old_size == sctx->cur_inode_size) ||
5990		    (sctx->cur_inode_size > old_size &&
5991		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5992			need_truncate = 0;
5993	}
5994
5995	if (S_ISREG(sctx->cur_inode_mode)) {
5996		if (need_send_hole(sctx)) {
5997			if (sctx->cur_inode_last_extent == (u64)-1 ||
5998			    sctx->cur_inode_last_extent <
5999			    sctx->cur_inode_size) {
6000				ret = get_last_extent(sctx, (u64)-1);
6001				if (ret)
6002					goto out;
6003			}
6004			if (sctx->cur_inode_last_extent <
6005			    sctx->cur_inode_size) {
6006				ret = send_hole(sctx, sctx->cur_inode_size);
6007				if (ret)
6008					goto out;
6009			}
6010		}
6011		if (need_truncate) {
6012			ret = send_truncate(sctx, sctx->cur_ino,
6013					    sctx->cur_inode_gen,
6014					    sctx->cur_inode_size);
6015			if (ret < 0)
6016				goto out;
6017		}
6018	}
6019
6020	if (need_chown) {
6021		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6022				left_uid, left_gid);
6023		if (ret < 0)
6024			goto out;
6025	}
6026	if (need_chmod) {
6027		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6028				left_mode);
6029		if (ret < 0)
6030			goto out;
6031	}
6032
6033	ret = send_capabilities(sctx);
6034	if (ret < 0)
6035		goto out;
6036
6037	/*
6038	 * If other directory inodes depended on our current directory
6039	 * inode's move/rename, now do their move/rename operations.
6040	 */
6041	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6042		ret = apply_children_dir_moves(sctx);
6043		if (ret)
6044			goto out;
6045		/*
6046		 * Need to send that every time, no matter if it actually
6047		 * changed between the two trees as we have done changes to
6048		 * the inode before. If our inode is a directory and it's
6049		 * waiting to be moved/renamed, we will send its utimes when
6050		 * it's moved/renamed, therefore we don't need to do it here.
6051		 */
6052		sctx->send_progress = sctx->cur_ino + 1;
6053		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6054		if (ret < 0)
6055			goto out;
6056	}
6057
6058out:
6059	return ret;
6060}
6061
6062struct parent_paths_ctx {
6063	struct list_head *refs;
6064	struct send_ctx *sctx;
6065};
6066
6067static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6068			     void *ctx)
6069{
6070	struct parent_paths_ctx *ppctx = ctx;
6071
6072	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6073			  ppctx->refs);
6074}
6075
6076/*
6077 * Issue unlink operations for all paths of the current inode found in the
6078 * parent snapshot.
6079 */
6080static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6081{
6082	LIST_HEAD(deleted_refs);
6083	struct btrfs_path *path;
6084	struct btrfs_key key;
6085	struct parent_paths_ctx ctx;
6086	int ret;
6087
6088	path = alloc_path_for_send();
6089	if (!path)
6090		return -ENOMEM;
6091
6092	key.objectid = sctx->cur_ino;
6093	key.type = BTRFS_INODE_REF_KEY;
6094	key.offset = 0;
6095	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6096	if (ret < 0)
6097		goto out;
6098
6099	ctx.refs = &deleted_refs;
6100	ctx.sctx = sctx;
6101
6102	while (true) {
6103		struct extent_buffer *eb = path->nodes[0];
6104		int slot = path->slots[0];
6105
6106		if (slot >= btrfs_header_nritems(eb)) {
6107			ret = btrfs_next_leaf(sctx->parent_root, path);
6108			if (ret < 0)
6109				goto out;
6110			else if (ret > 0)
6111				break;
6112			continue;
6113		}
6114
6115		btrfs_item_key_to_cpu(eb, &key, slot);
6116		if (key.objectid != sctx->cur_ino)
6117			break;
6118		if (key.type != BTRFS_INODE_REF_KEY &&
6119		    key.type != BTRFS_INODE_EXTREF_KEY)
6120			break;
6121
6122		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6123					record_parent_ref, &ctx);
6124		if (ret < 0)
6125			goto out;
6126
6127		path->slots[0]++;
6128	}
6129
6130	while (!list_empty(&deleted_refs)) {
6131		struct recorded_ref *ref;
6132
6133		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6134		ret = send_unlink(sctx, ref->full_path);
6135		if (ret < 0)
6136			goto out;
6137		fs_path_free(ref->full_path);
6138		list_del(&ref->list);
6139		kfree(ref);
6140	}
6141	ret = 0;
6142out:
6143	btrfs_free_path(path);
6144	if (ret)
6145		__free_recorded_refs(&deleted_refs);
6146	return ret;
6147}
6148
6149static int changed_inode(struct send_ctx *sctx,
6150			 enum btrfs_compare_tree_result result)
6151{
6152	int ret = 0;
6153	struct btrfs_key *key = sctx->cmp_key;
6154	struct btrfs_inode_item *left_ii = NULL;
6155	struct btrfs_inode_item *right_ii = NULL;
6156	u64 left_gen = 0;
6157	u64 right_gen = 0;
6158
6159	sctx->cur_ino = key->objectid;
6160	sctx->cur_inode_new_gen = 0;
6161	sctx->cur_inode_last_extent = (u64)-1;
6162	sctx->cur_inode_next_write_offset = 0;
6163	sctx->ignore_cur_inode = false;
6164
6165	/*
6166	 * Set send_progress to current inode. This will tell all get_cur_xxx
6167	 * functions that the current inode's refs are not updated yet. Later,
6168	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6169	 */
6170	sctx->send_progress = sctx->cur_ino;
6171
6172	if (result == BTRFS_COMPARE_TREE_NEW ||
6173	    result == BTRFS_COMPARE_TREE_CHANGED) {
6174		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6175				sctx->left_path->slots[0],
6176				struct btrfs_inode_item);
6177		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6178				left_ii);
6179	} else {
6180		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6181				sctx->right_path->slots[0],
6182				struct btrfs_inode_item);
6183		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6184				right_ii);
6185	}
6186	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6187		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6188				sctx->right_path->slots[0],
6189				struct btrfs_inode_item);
6190
6191		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6192				right_ii);
6193
6194		/*
6195		 * The cur_ino = root dir case is special here. We can't treat
6196		 * the inode as deleted+reused because it would generate a
6197		 * stream that tries to delete/mkdir the root dir.
6198		 */
6199		if (left_gen != right_gen &&
6200		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6201			sctx->cur_inode_new_gen = 1;
6202	}
6203
6204	/*
6205	 * Normally we do not find inodes with a link count of zero (orphans)
6206	 * because the most common case is to create a snapshot and use it
6207	 * for a send operation. However other less common use cases involve
6208	 * using a subvolume and send it after turning it to RO mode just
6209	 * after deleting all hard links of a file while holding an open
6210	 * file descriptor against it or turning a RO snapshot into RW mode,
6211	 * keep an open file descriptor against a file, delete it and then
6212	 * turn the snapshot back to RO mode before using it for a send
6213	 * operation. So if we find such cases, ignore the inode and all its
6214	 * items completely if it's a new inode, or if it's a changed inode
6215	 * make sure all its previous paths (from the parent snapshot) are all
6216	 * unlinked and all other the inode items are ignored.
6217	 */
6218	if (result == BTRFS_COMPARE_TREE_NEW ||
6219	    result == BTRFS_COMPARE_TREE_CHANGED) {
6220		u32 nlinks;
6221
6222		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6223		if (nlinks == 0) {
6224			sctx->ignore_cur_inode = true;
6225			if (result == BTRFS_COMPARE_TREE_CHANGED)
6226				ret = btrfs_unlink_all_paths(sctx);
6227			goto out;
6228		}
6229	}
6230
6231	if (result == BTRFS_COMPARE_TREE_NEW) {
6232		sctx->cur_inode_gen = left_gen;
6233		sctx->cur_inode_new = 1;
6234		sctx->cur_inode_deleted = 0;
6235		sctx->cur_inode_size = btrfs_inode_size(
6236				sctx->left_path->nodes[0], left_ii);
6237		sctx->cur_inode_mode = btrfs_inode_mode(
6238				sctx->left_path->nodes[0], left_ii);
6239		sctx->cur_inode_rdev = btrfs_inode_rdev(
6240				sctx->left_path->nodes[0], left_ii);
6241		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6242			ret = send_create_inode_if_needed(sctx);
6243	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6244		sctx->cur_inode_gen = right_gen;
6245		sctx->cur_inode_new = 0;
6246		sctx->cur_inode_deleted = 1;
6247		sctx->cur_inode_size = btrfs_inode_size(
6248				sctx->right_path->nodes[0], right_ii);
6249		sctx->cur_inode_mode = btrfs_inode_mode(
6250				sctx->right_path->nodes[0], right_ii);
6251	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6252		/*
6253		 * We need to do some special handling in case the inode was
6254		 * reported as changed with a changed generation number. This
6255		 * means that the original inode was deleted and new inode
6256		 * reused the same inum. So we have to treat the old inode as
6257		 * deleted and the new one as new.
6258		 */
6259		if (sctx->cur_inode_new_gen) {
6260			/*
6261			 * First, process the inode as if it was deleted.
6262			 */
6263			sctx->cur_inode_gen = right_gen;
6264			sctx->cur_inode_new = 0;
6265			sctx->cur_inode_deleted = 1;
6266			sctx->cur_inode_size = btrfs_inode_size(
6267					sctx->right_path->nodes[0], right_ii);
6268			sctx->cur_inode_mode = btrfs_inode_mode(
6269					sctx->right_path->nodes[0], right_ii);
6270			ret = process_all_refs(sctx,
6271					BTRFS_COMPARE_TREE_DELETED);
6272			if (ret < 0)
6273				goto out;
6274
6275			/*
6276			 * Now process the inode as if it was new.
6277			 */
6278			sctx->cur_inode_gen = left_gen;
6279			sctx->cur_inode_new = 1;
6280			sctx->cur_inode_deleted = 0;
6281			sctx->cur_inode_size = btrfs_inode_size(
6282					sctx->left_path->nodes[0], left_ii);
6283			sctx->cur_inode_mode = btrfs_inode_mode(
6284					sctx->left_path->nodes[0], left_ii);
6285			sctx->cur_inode_rdev = btrfs_inode_rdev(
6286					sctx->left_path->nodes[0], left_ii);
6287			ret = send_create_inode_if_needed(sctx);
6288			if (ret < 0)
6289				goto out;
6290
6291			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6292			if (ret < 0)
6293				goto out;
6294			/*
6295			 * Advance send_progress now as we did not get into
6296			 * process_recorded_refs_if_needed in the new_gen case.
6297			 */
6298			sctx->send_progress = sctx->cur_ino + 1;
6299
6300			/*
6301			 * Now process all extents and xattrs of the inode as if
6302			 * they were all new.
6303			 */
6304			ret = process_all_extents(sctx);
6305			if (ret < 0)
6306				goto out;
6307			ret = process_all_new_xattrs(sctx);
6308			if (ret < 0)
6309				goto out;
6310		} else {
6311			sctx->cur_inode_gen = left_gen;
6312			sctx->cur_inode_new = 0;
6313			sctx->cur_inode_new_gen = 0;
6314			sctx->cur_inode_deleted = 0;
6315			sctx->cur_inode_size = btrfs_inode_size(
6316					sctx->left_path->nodes[0], left_ii);
6317			sctx->cur_inode_mode = btrfs_inode_mode(
6318					sctx->left_path->nodes[0], left_ii);
6319		}
6320	}
6321
6322out:
6323	return ret;
6324}
6325
6326/*
6327 * We have to process new refs before deleted refs, but compare_trees gives us
6328 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6329 * first and later process them in process_recorded_refs.
6330 * For the cur_inode_new_gen case, we skip recording completely because
6331 * changed_inode did already initiate processing of refs. The reason for this is
6332 * that in this case, compare_tree actually compares the refs of 2 different
6333 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6334 * refs of the right tree as deleted and all refs of the left tree as new.
6335 */
6336static int changed_ref(struct send_ctx *sctx,
6337		       enum btrfs_compare_tree_result result)
6338{
6339	int ret = 0;
6340
6341	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6342		inconsistent_snapshot_error(sctx, result, "reference");
6343		return -EIO;
6344	}
6345
6346	if (!sctx->cur_inode_new_gen &&
6347	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6348		if (result == BTRFS_COMPARE_TREE_NEW)
6349			ret = record_new_ref(sctx);
6350		else if (result == BTRFS_COMPARE_TREE_DELETED)
6351			ret = record_deleted_ref(sctx);
6352		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6353			ret = record_changed_ref(sctx);
6354	}
6355
6356	return ret;
6357}
6358
6359/*
6360 * Process new/deleted/changed xattrs. We skip processing in the
6361 * cur_inode_new_gen case because changed_inode did already initiate processing
6362 * of xattrs. The reason is the same as in changed_ref
6363 */
6364static int changed_xattr(struct send_ctx *sctx,
6365			 enum btrfs_compare_tree_result result)
6366{
6367	int ret = 0;
6368
6369	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6370		inconsistent_snapshot_error(sctx, result, "xattr");
6371		return -EIO;
6372	}
6373
6374	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6375		if (result == BTRFS_COMPARE_TREE_NEW)
6376			ret = process_new_xattr(sctx);
6377		else if (result == BTRFS_COMPARE_TREE_DELETED)
6378			ret = process_deleted_xattr(sctx);
6379		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6380			ret = process_changed_xattr(sctx);
6381	}
6382
6383	return ret;
6384}
6385
6386/*
6387 * Process new/deleted/changed extents. We skip processing in the
6388 * cur_inode_new_gen case because changed_inode did already initiate processing
6389 * of extents. The reason is the same as in changed_ref
6390 */
6391static int changed_extent(struct send_ctx *sctx,
6392			  enum btrfs_compare_tree_result result)
6393{
6394	int ret = 0;
6395
6396	/*
6397	 * We have found an extent item that changed without the inode item
6398	 * having changed. This can happen either after relocation (where the
6399	 * disk_bytenr of an extent item is replaced at
6400	 * relocation.c:replace_file_extents()) or after deduplication into a
6401	 * file in both the parent and send snapshots (where an extent item can
6402	 * get modified or replaced with a new one). Note that deduplication
6403	 * updates the inode item, but it only changes the iversion (sequence
6404	 * field in the inode item) of the inode, so if a file is deduplicated
6405	 * the same amount of times in both the parent and send snapshots, its
6406	 * iversion becames the same in both snapshots, whence the inode item is
6407	 * the same on both snapshots.
6408	 */
6409	if (sctx->cur_ino != sctx->cmp_key->objectid)
6410		return 0;
6411
6412	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6413		if (result != BTRFS_COMPARE_TREE_DELETED)
6414			ret = process_extent(sctx, sctx->left_path,
6415					sctx->cmp_key);
6416	}
6417
6418	return ret;
6419}
6420
6421static int dir_changed(struct send_ctx *sctx, u64 dir)
6422{
6423	u64 orig_gen, new_gen;
6424	int ret;
6425
6426	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6427			     NULL, NULL);
6428	if (ret)
6429		return ret;
6430
6431	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6432			     NULL, NULL, NULL);
6433	if (ret)
6434		return ret;
6435
6436	return (orig_gen != new_gen) ? 1 : 0;
6437}
6438
6439static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6440			struct btrfs_key *key)
6441{
6442	struct btrfs_inode_extref *extref;
6443	struct extent_buffer *leaf;
6444	u64 dirid = 0, last_dirid = 0;
6445	unsigned long ptr;
6446	u32 item_size;
6447	u32 cur_offset = 0;
6448	int ref_name_len;
6449	int ret = 0;
6450
6451	/* Easy case, just check this one dirid */
6452	if (key->type == BTRFS_INODE_REF_KEY) {
6453		dirid = key->offset;
6454
6455		ret = dir_changed(sctx, dirid);
6456		goto out;
6457	}
6458
6459	leaf = path->nodes[0];
6460	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6461	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6462	while (cur_offset < item_size) {
6463		extref = (struct btrfs_inode_extref *)(ptr +
6464						       cur_offset);
6465		dirid = btrfs_inode_extref_parent(leaf, extref);
6466		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6467		cur_offset += ref_name_len + sizeof(*extref);
6468		if (dirid == last_dirid)
6469			continue;
6470		ret = dir_changed(sctx, dirid);
6471		if (ret)
6472			break;
6473		last_dirid = dirid;
6474	}
6475out:
6476	return ret;
6477}
6478
6479/*
6480 * Updates compare related fields in sctx and simply forwards to the actual
6481 * changed_xxx functions.
6482 */
6483static int changed_cb(struct btrfs_path *left_path,
6484		      struct btrfs_path *right_path,
6485		      struct btrfs_key *key,
6486		      enum btrfs_compare_tree_result result,
6487		      void *ctx)
6488{
6489	int ret = 0;
6490	struct send_ctx *sctx = ctx;
6491
6492	if (result == BTRFS_COMPARE_TREE_SAME) {
6493		if (key->type == BTRFS_INODE_REF_KEY ||
6494		    key->type == BTRFS_INODE_EXTREF_KEY) {
6495			ret = compare_refs(sctx, left_path, key);
6496			if (!ret)
6497				return 0;
6498			if (ret < 0)
6499				return ret;
6500		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6501			return maybe_send_hole(sctx, left_path, key);
6502		} else {
6503			return 0;
6504		}
6505		result = BTRFS_COMPARE_TREE_CHANGED;
6506		ret = 0;
6507	}
6508
6509	sctx->left_path = left_path;
6510	sctx->right_path = right_path;
6511	sctx->cmp_key = key;
6512
6513	ret = finish_inode_if_needed(sctx, 0);
6514	if (ret < 0)
6515		goto out;
6516
6517	/* Ignore non-FS objects */
6518	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6519	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6520		goto out;
6521
6522	if (key->type == BTRFS_INODE_ITEM_KEY) {
6523		ret = changed_inode(sctx, result);
6524	} else if (!sctx->ignore_cur_inode) {
6525		if (key->type == BTRFS_INODE_REF_KEY ||
6526		    key->type == BTRFS_INODE_EXTREF_KEY)
6527			ret = changed_ref(sctx, result);
6528		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6529			ret = changed_xattr(sctx, result);
6530		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6531			ret = changed_extent(sctx, result);
6532	}
6533
6534out:
6535	return ret;
6536}
6537
6538static int full_send_tree(struct send_ctx *sctx)
6539{
6540	int ret;
6541	struct btrfs_root *send_root = sctx->send_root;
6542	struct btrfs_key key;
6543	struct btrfs_path *path;
6544	struct extent_buffer *eb;
6545	int slot;
6546
6547	path = alloc_path_for_send();
6548	if (!path)
6549		return -ENOMEM;
6550
6551	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6552	key.type = BTRFS_INODE_ITEM_KEY;
6553	key.offset = 0;
6554
6555	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6556	if (ret < 0)
6557		goto out;
6558	if (ret)
6559		goto out_finish;
6560
6561	while (1) {
6562		eb = path->nodes[0];
6563		slot = path->slots[0];
6564		btrfs_item_key_to_cpu(eb, &key, slot);
6565
6566		ret = changed_cb(path, NULL, &key,
6567				 BTRFS_COMPARE_TREE_NEW, sctx);
6568		if (ret < 0)
6569			goto out;
6570
6571		ret = btrfs_next_item(send_root, path);
6572		if (ret < 0)
6573			goto out;
6574		if (ret) {
6575			ret  = 0;
6576			break;
6577		}
6578	}
6579
6580out_finish:
6581	ret = finish_inode_if_needed(sctx, 1);
6582
6583out:
6584	btrfs_free_path(path);
6585	return ret;
6586}
6587
6588static int tree_move_down(struct btrfs_path *path, int *level)
6589{
6590	struct extent_buffer *eb;
6591
6592	BUG_ON(*level == 0);
6593	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6594	if (IS_ERR(eb))
6595		return PTR_ERR(eb);
6596
6597	path->nodes[*level - 1] = eb;
6598	path->slots[*level - 1] = 0;
6599	(*level)--;
6600	return 0;
6601}
6602
6603static int tree_move_next_or_upnext(struct btrfs_path *path,
6604				    int *level, int root_level)
6605{
6606	int ret = 0;
6607	int nritems;
6608	nritems = btrfs_header_nritems(path->nodes[*level]);
6609
6610	path->slots[*level]++;
6611
6612	while (path->slots[*level] >= nritems) {
6613		if (*level == root_level)
6614			return -1;
6615
6616		/* move upnext */
6617		path->slots[*level] = 0;
6618		free_extent_buffer(path->nodes[*level]);
6619		path->nodes[*level] = NULL;
6620		(*level)++;
6621		path->slots[*level]++;
6622
6623		nritems = btrfs_header_nritems(path->nodes[*level]);
6624		ret = 1;
6625	}
6626	return ret;
6627}
6628
6629/*
6630 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6631 * or down.
6632 */
6633static int tree_advance(struct btrfs_path *path,
6634			int *level, int root_level,
6635			int allow_down,
6636			struct btrfs_key *key)
6637{
6638	int ret;
6639
6640	if (*level == 0 || !allow_down) {
6641		ret = tree_move_next_or_upnext(path, level, root_level);
6642	} else {
6643		ret = tree_move_down(path, level);
6644	}
6645	if (ret >= 0) {
6646		if (*level == 0)
6647			btrfs_item_key_to_cpu(path->nodes[*level], key,
6648					path->slots[*level]);
6649		else
6650			btrfs_node_key_to_cpu(path->nodes[*level], key,
6651					path->slots[*level]);
6652	}
6653	return ret;
6654}
6655
6656static int tree_compare_item(struct btrfs_path *left_path,
6657			     struct btrfs_path *right_path,
6658			     char *tmp_buf)
6659{
6660	int cmp;
6661	int len1, len2;
6662	unsigned long off1, off2;
6663
6664	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6665	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6666	if (len1 != len2)
6667		return 1;
6668
6669	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6670	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6671				right_path->slots[0]);
6672
6673	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6674
6675	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6676	if (cmp)
6677		return 1;
6678	return 0;
6679}
6680
6681/*
6682 * This function compares two trees and calls the provided callback for
6683 * every changed/new/deleted item it finds.
6684 * If shared tree blocks are encountered, whole subtrees are skipped, making
6685 * the compare pretty fast on snapshotted subvolumes.
6686 *
6687 * This currently works on commit roots only. As commit roots are read only,
6688 * we don't do any locking. The commit roots are protected with transactions.
6689 * Transactions are ended and rejoined when a commit is tried in between.
6690 *
6691 * This function checks for modifications done to the trees while comparing.
6692 * If it detects a change, it aborts immediately.
6693 */
6694static int btrfs_compare_trees(struct btrfs_root *left_root,
6695			struct btrfs_root *right_root,
6696			btrfs_changed_cb_t changed_cb, void *ctx)
6697{
6698	struct btrfs_fs_info *fs_info = left_root->fs_info;
6699	int ret;
6700	int cmp;
6701	struct btrfs_path *left_path = NULL;
6702	struct btrfs_path *right_path = NULL;
6703	struct btrfs_key left_key;
6704	struct btrfs_key right_key;
6705	char *tmp_buf = NULL;
6706	int left_root_level;
6707	int right_root_level;
6708	int left_level;
6709	int right_level;
6710	int left_end_reached;
6711	int right_end_reached;
6712	int advance_left;
6713	int advance_right;
6714	u64 left_blockptr;
6715	u64 right_blockptr;
6716	u64 left_gen;
6717	u64 right_gen;
6718
6719	left_path = btrfs_alloc_path();
6720	if (!left_path) {
6721		ret = -ENOMEM;
6722		goto out;
6723	}
6724	right_path = btrfs_alloc_path();
6725	if (!right_path) {
6726		ret = -ENOMEM;
6727		goto out;
6728	}
6729
6730	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6731	if (!tmp_buf) {
6732		ret = -ENOMEM;
6733		goto out;
6734	}
6735
6736	left_path->search_commit_root = 1;
6737	left_path->skip_locking = 1;
6738	right_path->search_commit_root = 1;
6739	right_path->skip_locking = 1;
6740
6741	/*
6742	 * Strategy: Go to the first items of both trees. Then do
6743	 *
6744	 * If both trees are at level 0
6745	 *   Compare keys of current items
6746	 *     If left < right treat left item as new, advance left tree
6747	 *       and repeat
6748	 *     If left > right treat right item as deleted, advance right tree
6749	 *       and repeat
6750	 *     If left == right do deep compare of items, treat as changed if
6751	 *       needed, advance both trees and repeat
6752	 * If both trees are at the same level but not at level 0
6753	 *   Compare keys of current nodes/leafs
6754	 *     If left < right advance left tree and repeat
6755	 *     If left > right advance right tree and repeat
6756	 *     If left == right compare blockptrs of the next nodes/leafs
6757	 *       If they match advance both trees but stay at the same level
6758	 *         and repeat
6759	 *       If they don't match advance both trees while allowing to go
6760	 *         deeper and repeat
6761	 * If tree levels are different
6762	 *   Advance the tree that needs it and repeat
6763	 *
6764	 * Advancing a tree means:
6765	 *   If we are at level 0, try to go to the next slot. If that's not
6766	 *   possible, go one level up and repeat. Stop when we found a level
6767	 *   where we could go to the next slot. We may at this point be on a
6768	 *   node or a leaf.
6769	 *
6770	 *   If we are not at level 0 and not on shared tree blocks, go one
6771	 *   level deeper.
6772	 *
6773	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6774	 *   the right if possible or go up and right.
6775	 */
6776
6777	down_read(&fs_info->commit_root_sem);
6778	left_level = btrfs_header_level(left_root->commit_root);
6779	left_root_level = left_level;
6780	left_path->nodes[left_level] =
6781			btrfs_clone_extent_buffer(left_root->commit_root);
6782	if (!left_path->nodes[left_level]) {
6783		up_read(&fs_info->commit_root_sem);
6784		ret = -ENOMEM;
6785		goto out;
6786	}
6787
6788	right_level = btrfs_header_level(right_root->commit_root);
6789	right_root_level = right_level;
6790	right_path->nodes[right_level] =
6791			btrfs_clone_extent_buffer(right_root->commit_root);
6792	if (!right_path->nodes[right_level]) {
6793		up_read(&fs_info->commit_root_sem);
6794		ret = -ENOMEM;
6795		goto out;
6796	}
6797	up_read(&fs_info->commit_root_sem);
6798
6799	if (left_level == 0)
6800		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6801				&left_key, left_path->slots[left_level]);
6802	else
6803		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6804				&left_key, left_path->slots[left_level]);
6805	if (right_level == 0)
6806		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6807				&right_key, right_path->slots[right_level]);
6808	else
6809		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6810				&right_key, right_path->slots[right_level]);
6811
6812	left_end_reached = right_end_reached = 0;
6813	advance_left = advance_right = 0;
6814
6815	while (1) {
6816		cond_resched();
6817		if (advance_left && !left_end_reached) {
6818			ret = tree_advance(left_path, &left_level,
6819					left_root_level,
6820					advance_left != ADVANCE_ONLY_NEXT,
6821					&left_key);
6822			if (ret == -1)
6823				left_end_reached = ADVANCE;
6824			else if (ret < 0)
6825				goto out;
6826			advance_left = 0;
6827		}
6828		if (advance_right && !right_end_reached) {
6829			ret = tree_advance(right_path, &right_level,
6830					right_root_level,
6831					advance_right != ADVANCE_ONLY_NEXT,
6832					&right_key);
6833			if (ret == -1)
6834				right_end_reached = ADVANCE;
6835			else if (ret < 0)
6836				goto out;
6837			advance_right = 0;
6838		}
6839
6840		if (left_end_reached && right_end_reached) {
6841			ret = 0;
6842			goto out;
6843		} else if (left_end_reached) {
6844			if (right_level == 0) {
6845				ret = changed_cb(left_path, right_path,
6846						&right_key,
6847						BTRFS_COMPARE_TREE_DELETED,
6848						ctx);
6849				if (ret < 0)
6850					goto out;
6851			}
6852			advance_right = ADVANCE;
6853			continue;
6854		} else if (right_end_reached) {
6855			if (left_level == 0) {
6856				ret = changed_cb(left_path, right_path,
6857						&left_key,
6858						BTRFS_COMPARE_TREE_NEW,
6859						ctx);
6860				if (ret < 0)
6861					goto out;
6862			}
6863			advance_left = ADVANCE;
6864			continue;
6865		}
6866
6867		if (left_level == 0 && right_level == 0) {
6868			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6869			if (cmp < 0) {
6870				ret = changed_cb(left_path, right_path,
6871						&left_key,
6872						BTRFS_COMPARE_TREE_NEW,
6873						ctx);
6874				if (ret < 0)
6875					goto out;
6876				advance_left = ADVANCE;
6877			} else if (cmp > 0) {
6878				ret = changed_cb(left_path, right_path,
6879						&right_key,
6880						BTRFS_COMPARE_TREE_DELETED,
6881						ctx);
6882				if (ret < 0)
6883					goto out;
6884				advance_right = ADVANCE;
6885			} else {
6886				enum btrfs_compare_tree_result result;
6887
6888				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6889				ret = tree_compare_item(left_path, right_path,
6890							tmp_buf);
6891				if (ret)
6892					result = BTRFS_COMPARE_TREE_CHANGED;
6893				else
6894					result = BTRFS_COMPARE_TREE_SAME;
6895				ret = changed_cb(left_path, right_path,
6896						 &left_key, result, ctx);
6897				if (ret < 0)
6898					goto out;
6899				advance_left = ADVANCE;
6900				advance_right = ADVANCE;
6901			}
6902		} else if (left_level == right_level) {
6903			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6904			if (cmp < 0) {
6905				advance_left = ADVANCE;
6906			} else if (cmp > 0) {
6907				advance_right = ADVANCE;
6908			} else {
6909				left_blockptr = btrfs_node_blockptr(
6910						left_path->nodes[left_level],
6911						left_path->slots[left_level]);
6912				right_blockptr = btrfs_node_blockptr(
6913						right_path->nodes[right_level],
6914						right_path->slots[right_level]);
6915				left_gen = btrfs_node_ptr_generation(
6916						left_path->nodes[left_level],
6917						left_path->slots[left_level]);
6918				right_gen = btrfs_node_ptr_generation(
6919						right_path->nodes[right_level],
6920						right_path->slots[right_level]);
6921				if (left_blockptr == right_blockptr &&
6922				    left_gen == right_gen) {
6923					/*
6924					 * As we're on a shared block, don't
6925					 * allow to go deeper.
6926					 */
6927					advance_left = ADVANCE_ONLY_NEXT;
6928					advance_right = ADVANCE_ONLY_NEXT;
6929				} else {
6930					advance_left = ADVANCE;
6931					advance_right = ADVANCE;
6932				}
6933			}
6934		} else if (left_level < right_level) {
6935			advance_right = ADVANCE;
6936		} else {
6937			advance_left = ADVANCE;
6938		}
6939	}
6940
6941out:
6942	btrfs_free_path(left_path);
6943	btrfs_free_path(right_path);
6944	kvfree(tmp_buf);
6945	return ret;
6946}
6947
6948static int send_subvol(struct send_ctx *sctx)
6949{
6950	int ret;
6951
6952	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6953		ret = send_header(sctx);
6954		if (ret < 0)
6955			goto out;
6956	}
6957
6958	ret = send_subvol_begin(sctx);
6959	if (ret < 0)
6960		goto out;
6961
6962	if (sctx->parent_root) {
6963		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6964				changed_cb, sctx);
6965		if (ret < 0)
6966			goto out;
6967		ret = finish_inode_if_needed(sctx, 1);
6968		if (ret < 0)
6969			goto out;
6970	} else {
6971		ret = full_send_tree(sctx);
6972		if (ret < 0)
6973			goto out;
6974	}
6975
6976out:
6977	free_recorded_refs(sctx);
6978	return ret;
6979}
6980
6981/*
6982 * If orphan cleanup did remove any orphans from a root, it means the tree
6983 * was modified and therefore the commit root is not the same as the current
6984 * root anymore. This is a problem, because send uses the commit root and
6985 * therefore can see inode items that don't exist in the current root anymore,
6986 * and for example make calls to btrfs_iget, which will do tree lookups based
6987 * on the current root and not on the commit root. Those lookups will fail,
6988 * returning a -ESTALE error, and making send fail with that error. So make
6989 * sure a send does not see any orphans we have just removed, and that it will
6990 * see the same inodes regardless of whether a transaction commit happened
6991 * before it started (meaning that the commit root will be the same as the
6992 * current root) or not.
6993 */
6994static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6995{
6996	int i;
6997	struct btrfs_trans_handle *trans = NULL;
6998
6999again:
7000	if (sctx->parent_root &&
7001	    sctx->parent_root->node != sctx->parent_root->commit_root)
7002		goto commit_trans;
7003
7004	for (i = 0; i < sctx->clone_roots_cnt; i++)
7005		if (sctx->clone_roots[i].root->node !=
7006		    sctx->clone_roots[i].root->commit_root)
7007			goto commit_trans;
7008
7009	if (trans)
7010		return btrfs_end_transaction(trans);
7011
7012	return 0;
7013
7014commit_trans:
7015	/* Use any root, all fs roots will get their commit roots updated. */
7016	if (!trans) {
7017		trans = btrfs_join_transaction(sctx->send_root);
7018		if (IS_ERR(trans))
7019			return PTR_ERR(trans);
7020		goto again;
7021	}
7022
7023	return btrfs_commit_transaction(trans);
7024}
7025
7026/*
7027 * Make sure any existing dellaloc is flushed for any root used by a send
7028 * operation so that we do not miss any data and we do not race with writeback
7029 * finishing and changing a tree while send is using the tree. This could
7030 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7031 * a send operation then uses the subvolume.
7032 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7033 */
7034static int flush_delalloc_roots(struct send_ctx *sctx)
7035{
7036	struct btrfs_root *root = sctx->parent_root;
7037	int ret;
7038	int i;
7039
7040	if (root) {
7041		ret = btrfs_start_delalloc_snapshot(root);
7042		if (ret)
7043			return ret;
7044		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7045	}
7046
7047	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7048		root = sctx->clone_roots[i].root;
7049		ret = btrfs_start_delalloc_snapshot(root);
7050		if (ret)
7051			return ret;
7052		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7053	}
7054
7055	return 0;
7056}
7057
7058static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7059{
7060	spin_lock(&root->root_item_lock);
7061	root->send_in_progress--;
7062	/*
7063	 * Not much left to do, we don't know why it's unbalanced and
7064	 * can't blindly reset it to 0.
7065	 */
7066	if (root->send_in_progress < 0)
7067		btrfs_err(root->fs_info,
7068			  "send_in_progress unbalanced %d root %llu",
7069			  root->send_in_progress, root->root_key.objectid);
7070	spin_unlock(&root->root_item_lock);
7071}
7072
7073static void dedupe_in_progress_warn(const struct btrfs_root *root)
7074{
7075	btrfs_warn_rl(root->fs_info,
7076"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7077		      root->root_key.objectid, root->dedupe_in_progress);
7078}
7079
7080long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7081{
7082	int ret = 0;
7083	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7084	struct btrfs_fs_info *fs_info = send_root->fs_info;
7085	struct btrfs_root *clone_root;
7086	struct send_ctx *sctx = NULL;
7087	u32 i;
7088	u64 *clone_sources_tmp = NULL;
7089	int clone_sources_to_rollback = 0;
7090	unsigned alloc_size;
7091	int sort_clone_roots = 0;
7092
7093	if (!capable(CAP_SYS_ADMIN))
7094		return -EPERM;
7095
7096	/*
7097	 * The subvolume must remain read-only during send, protect against
7098	 * making it RW. This also protects against deletion.
7099	 */
7100	spin_lock(&send_root->root_item_lock);
7101	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7102		dedupe_in_progress_warn(send_root);
7103		spin_unlock(&send_root->root_item_lock);
7104		return -EAGAIN;
7105	}
7106	send_root->send_in_progress++;
7107	spin_unlock(&send_root->root_item_lock);
7108
7109	/*
7110	 * Userspace tools do the checks and warn the user if it's
7111	 * not RO.
7112	 */
7113	if (!btrfs_root_readonly(send_root)) {
7114		ret = -EPERM;
7115		goto out;
7116	}
7117
7118	/*
7119	 * Check that we don't overflow at later allocations, we request
7120	 * clone_sources_count + 1 items, and compare to unsigned long inside
7121	 * access_ok.
7122	 */
7123	if (arg->clone_sources_count >
7124	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7125		ret = -EINVAL;
7126		goto out;
7127	}
7128
7129	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7130		ret = -EINVAL;
7131		goto out;
7132	}
7133
7134	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7135	if (!sctx) {
7136		ret = -ENOMEM;
7137		goto out;
7138	}
7139
7140	INIT_LIST_HEAD(&sctx->new_refs);
7141	INIT_LIST_HEAD(&sctx->deleted_refs);
7142	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7143	INIT_LIST_HEAD(&sctx->name_cache_list);
7144
7145	sctx->flags = arg->flags;
7146
7147	sctx->send_filp = fget(arg->send_fd);
7148	if (!sctx->send_filp) {
7149		ret = -EBADF;
7150		goto out;
7151	}
7152
7153	sctx->send_root = send_root;
7154	/*
7155	 * Unlikely but possible, if the subvolume is marked for deletion but
7156	 * is slow to remove the directory entry, send can still be started
7157	 */
7158	if (btrfs_root_dead(sctx->send_root)) {
7159		ret = -EPERM;
7160		goto out;
7161	}
7162
7163	sctx->clone_roots_cnt = arg->clone_sources_count;
7164
7165	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7166	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7167	if (!sctx->send_buf) {
7168		ret = -ENOMEM;
7169		goto out;
7170	}
7171
7172	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7173	if (!sctx->read_buf) {
7174		ret = -ENOMEM;
7175		goto out;
7176	}
7177
7178	sctx->pending_dir_moves = RB_ROOT;
7179	sctx->waiting_dir_moves = RB_ROOT;
7180	sctx->orphan_dirs = RB_ROOT;
7181
7182	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7183
7184	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7185	if (!sctx->clone_roots) {
7186		ret = -ENOMEM;
7187		goto out;
7188	}
7189
7190	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7191
7192	if (arg->clone_sources_count) {
7193		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7194		if (!clone_sources_tmp) {
7195			ret = -ENOMEM;
7196			goto out;
7197		}
7198
7199		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7200				alloc_size);
7201		if (ret) {
7202			ret = -EFAULT;
7203			goto out;
7204		}
7205
7206		for (i = 0; i < arg->clone_sources_count; i++) {
7207			clone_root = btrfs_get_fs_root(fs_info,
7208						clone_sources_tmp[i], true);
7209			if (IS_ERR(clone_root)) {
7210				ret = PTR_ERR(clone_root);
7211				goto out;
7212			}
7213			spin_lock(&clone_root->root_item_lock);
7214			if (!btrfs_root_readonly(clone_root) ||
7215			    btrfs_root_dead(clone_root)) {
7216				spin_unlock(&clone_root->root_item_lock);
7217				btrfs_put_root(clone_root);
7218				ret = -EPERM;
7219				goto out;
7220			}
7221			if (clone_root->dedupe_in_progress) {
7222				dedupe_in_progress_warn(clone_root);
7223				spin_unlock(&clone_root->root_item_lock);
7224				btrfs_put_root(clone_root);
7225				ret = -EAGAIN;
7226				goto out;
7227			}
7228			clone_root->send_in_progress++;
7229			spin_unlock(&clone_root->root_item_lock);
7230
7231			sctx->clone_roots[i].root = clone_root;
7232			clone_sources_to_rollback = i + 1;
7233		}
7234		kvfree(clone_sources_tmp);
7235		clone_sources_tmp = NULL;
7236	}
7237
7238	if (arg->parent_root) {
7239		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7240						      true);
7241		if (IS_ERR(sctx->parent_root)) {
7242			ret = PTR_ERR(sctx->parent_root);
7243			goto out;
7244		}
7245
7246		spin_lock(&sctx->parent_root->root_item_lock);
7247		sctx->parent_root->send_in_progress++;
7248		if (!btrfs_root_readonly(sctx->parent_root) ||
7249				btrfs_root_dead(sctx->parent_root)) {
7250			spin_unlock(&sctx->parent_root->root_item_lock);
7251			ret = -EPERM;
7252			goto out;
7253		}
7254		if (sctx->parent_root->dedupe_in_progress) {
7255			dedupe_in_progress_warn(sctx->parent_root);
7256			spin_unlock(&sctx->parent_root->root_item_lock);
7257			ret = -EAGAIN;
7258			goto out;
7259		}
7260		spin_unlock(&sctx->parent_root->root_item_lock);
7261	}
7262
7263	/*
7264	 * Clones from send_root are allowed, but only if the clone source
7265	 * is behind the current send position. This is checked while searching
7266	 * for possible clone sources.
7267	 */
7268	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7269		btrfs_grab_root(sctx->send_root);
7270
7271	/* We do a bsearch later */
7272	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7273			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7274			NULL);
7275	sort_clone_roots = 1;
7276
7277	ret = flush_delalloc_roots(sctx);
7278	if (ret)
7279		goto out;
7280
7281	ret = ensure_commit_roots_uptodate(sctx);
7282	if (ret)
7283		goto out;
7284
7285	mutex_lock(&fs_info->balance_mutex);
7286	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7287		mutex_unlock(&fs_info->balance_mutex);
7288		btrfs_warn_rl(fs_info,
7289		"cannot run send because a balance operation is in progress");
7290		ret = -EAGAIN;
7291		goto out;
7292	}
7293	fs_info->send_in_progress++;
7294	mutex_unlock(&fs_info->balance_mutex);
7295
7296	current->journal_info = BTRFS_SEND_TRANS_STUB;
7297	ret = send_subvol(sctx);
7298	current->journal_info = NULL;
7299	mutex_lock(&fs_info->balance_mutex);
7300	fs_info->send_in_progress--;
7301	mutex_unlock(&fs_info->balance_mutex);
7302	if (ret < 0)
7303		goto out;
7304
7305	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7306		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7307		if (ret < 0)
7308			goto out;
7309		ret = send_cmd(sctx);
7310		if (ret < 0)
7311			goto out;
7312	}
7313
7314out:
7315	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7316	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7317		struct rb_node *n;
7318		struct pending_dir_move *pm;
7319
7320		n = rb_first(&sctx->pending_dir_moves);
7321		pm = rb_entry(n, struct pending_dir_move, node);
7322		while (!list_empty(&pm->list)) {
7323			struct pending_dir_move *pm2;
7324
7325			pm2 = list_first_entry(&pm->list,
7326					       struct pending_dir_move, list);
7327			free_pending_move(sctx, pm2);
7328		}
7329		free_pending_move(sctx, pm);
7330	}
7331
7332	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7333	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7334		struct rb_node *n;
7335		struct waiting_dir_move *dm;
7336
7337		n = rb_first(&sctx->waiting_dir_moves);
7338		dm = rb_entry(n, struct waiting_dir_move, node);
7339		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7340		kfree(dm);
7341	}
7342
7343	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7344	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7345		struct rb_node *n;
7346		struct orphan_dir_info *odi;
7347
7348		n = rb_first(&sctx->orphan_dirs);
7349		odi = rb_entry(n, struct orphan_dir_info, node);
7350		free_orphan_dir_info(sctx, odi);
7351	}
7352
7353	if (sort_clone_roots) {
7354		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7355			btrfs_root_dec_send_in_progress(
7356					sctx->clone_roots[i].root);
7357			btrfs_put_root(sctx->clone_roots[i].root);
7358		}
7359	} else {
7360		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7361			btrfs_root_dec_send_in_progress(
7362					sctx->clone_roots[i].root);
7363			btrfs_put_root(sctx->clone_roots[i].root);
7364		}
7365
7366		btrfs_root_dec_send_in_progress(send_root);
7367	}
7368	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7369		btrfs_root_dec_send_in_progress(sctx->parent_root);
7370		btrfs_put_root(sctx->parent_root);
7371	}
7372
7373	kvfree(clone_sources_tmp);
7374
7375	if (sctx) {
7376		if (sctx->send_filp)
7377			fput(sctx->send_filp);
7378
7379		kvfree(sctx->clone_roots);
7380		kvfree(sctx->send_buf);
7381		kvfree(sctx->read_buf);
7382
7383		name_cache_free(sctx);
7384
7385		kfree(sctx);
7386	}
7387
7388	return ret;
7389}