Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.1
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 
 
 19#include "ctree.h"
 
 
 20#include "transaction.h"
 21#include "disk-io.h"
 22#include "print-tree.h"
 
 
 
 
 
 23
 24/*
 25 * lookup the root with the highest offset for a given objectid.  The key we do
 26 * find is copied into 'key'.  If we find something return 0, otherwise 1, < 0
 27 * on error.
 
 
 28 */
 29int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
 30			struct btrfs_root_item *item, struct btrfs_key *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31{
 32	struct btrfs_path *path;
 33	struct btrfs_key search_key;
 34	struct btrfs_key found_key;
 35	struct extent_buffer *l;
 36	int ret;
 37	int slot;
 38
 39	search_key.objectid = objectid;
 40	search_key.type = BTRFS_ROOT_ITEM_KEY;
 41	search_key.offset = (u64)-1;
 42
 43	path = btrfs_alloc_path();
 44	if (!path)
 45		return -ENOMEM;
 46	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 47	if (ret < 0)
 48		goto out;
 49
 50	BUG_ON(ret == 0);
 51	if (path->slots[0] == 0) {
 52		ret = 1;
 53		goto out;
 
 
 
 
 
 54	}
 
 55	l = path->nodes[0];
 56	slot = path->slots[0] - 1;
 
 57	btrfs_item_key_to_cpu(l, &found_key, slot);
 58	if (found_key.objectid != objectid ||
 59	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 60		ret = 1;
 61		goto out;
 62	}
 63	if (item)
 64		read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot),
 65				   sizeof(*item));
 66	if (key)
 67		memcpy(key, &found_key, sizeof(found_key));
 68	ret = 0;
 69out:
 70	btrfs_free_path(path);
 71	return ret;
 72}
 73
 74void btrfs_set_root_node(struct btrfs_root_item *item,
 75			 struct extent_buffer *node)
 76{
 77	btrfs_set_root_bytenr(item, node->start);
 78	btrfs_set_root_level(item, btrfs_header_level(node));
 79	btrfs_set_root_generation(item, btrfs_header_generation(node));
 80}
 81
 82/*
 83 * copy the data in 'item' into the btree
 84 */
 85int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
 86		      *root, struct btrfs_key *key, struct btrfs_root_item
 87		      *item)
 88{
 
 89	struct btrfs_path *path;
 90	struct extent_buffer *l;
 91	int ret;
 92	int slot;
 93	unsigned long ptr;
 
 94
 95	path = btrfs_alloc_path();
 96	BUG_ON(!path);
 
 
 97	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
 98	if (ret < 0)
 99		goto out;
100
101	if (ret != 0) {
102		btrfs_print_leaf(root, path->nodes[0]);
103		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
104		       (unsigned long long)key->objectid, key->type,
105		       (unsigned long long)key->offset);
106		BUG_ON(1);
 
 
107	}
108
109	l = path->nodes[0];
110	slot = path->slots[0];
111	ptr = btrfs_item_ptr_offset(l, slot);
112	write_extent_buffer(l, item, ptr, sizeof(*item));
113	btrfs_mark_buffer_dirty(path->nodes[0]);
114out:
115	btrfs_free_path(path);
116	return ret;
117}
118
119int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
120		      *root, struct btrfs_key *key, struct btrfs_root_item
121		      *item)
122{
123	int ret;
124	ret = btrfs_insert_item(trans, root, key, item, sizeof(*item));
125	return ret;
126}
127
128/*
129 * at mount time we want to find all the old transaction snapshots that were in
130 * the process of being deleted if we crashed.  This is any root item with an
131 * offset lower than the latest root.  They need to be queued for deletion to
132 * finish what was happening when we crashed.
133 */
134int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
135{
136	struct btrfs_root *dead_root;
137	struct btrfs_root_item *ri;
138	struct btrfs_key key;
139	struct btrfs_key found_key;
140	struct btrfs_path *path;
141	int ret;
142	u32 nritems;
143	struct extent_buffer *leaf;
144	int slot;
145
146	key.objectid = objectid;
147	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
148	key.offset = 0;
149	path = btrfs_alloc_path();
150	if (!path)
151		return -ENOMEM;
152
153again:
154	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
155	if (ret < 0)
156		goto err;
157	while (1) {
158		leaf = path->nodes[0];
159		nritems = btrfs_header_nritems(leaf);
160		slot = path->slots[0];
161		if (slot >= nritems) {
162			ret = btrfs_next_leaf(root, path);
163			if (ret)
164				break;
165			leaf = path->nodes[0];
166			nritems = btrfs_header_nritems(leaf);
167			slot = path->slots[0];
168		}
169		btrfs_item_key_to_cpu(leaf, &key, slot);
170		if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
171			goto next;
172
173		if (key.objectid < objectid)
174			goto next;
175
176		if (key.objectid > objectid)
177			break;
178
179		ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
180		if (btrfs_disk_root_refs(leaf, ri) != 0)
181			goto next;
182
183		memcpy(&found_key, &key, sizeof(key));
184		key.offset++;
185		btrfs_release_path(path);
186		dead_root =
187			btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
188						    &found_key);
189		if (IS_ERR(dead_root)) {
190			ret = PTR_ERR(dead_root);
191			goto err;
192		}
193
194		ret = btrfs_add_dead_root(dead_root);
195		if (ret)
196			goto err;
197		goto again;
198next:
199		slot++;
200		path->slots[0]++;
201	}
202	ret = 0;
203err:
 
 
 
 
 
 
 
 
204	btrfs_free_path(path);
205	return ret;
206}
207
208int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
 
209{
 
 
 
 
 
 
 
 
 
 
210	struct extent_buffer *leaf;
211	struct btrfs_path *path;
212	struct btrfs_key key;
213	struct btrfs_key root_key;
214	struct btrfs_root *root;
215	int err = 0;
216	int ret;
217
218	path = btrfs_alloc_path();
219	if (!path)
220		return -ENOMEM;
221
222	key.objectid = BTRFS_ORPHAN_OBJECTID;
223	key.type = BTRFS_ORPHAN_ITEM_KEY;
224	key.offset = 0;
225
226	root_key.type = BTRFS_ROOT_ITEM_KEY;
227	root_key.offset = (u64)-1;
228
229	while (1) {
 
 
230		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
231		if (ret < 0) {
232			err = ret;
233			break;
234		}
235
236		leaf = path->nodes[0];
237		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
238			ret = btrfs_next_leaf(tree_root, path);
239			if (ret < 0)
240				err = ret;
241			if (ret != 0)
242				break;
243			leaf = path->nodes[0];
244		}
245
246		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
247		btrfs_release_path(path);
248
249		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
250		    key.type != BTRFS_ORPHAN_ITEM_KEY)
251			break;
252
253		root_key.objectid = key.offset;
254		key.offset++;
255
256		root = btrfs_read_fs_root_no_name(tree_root->fs_info,
257						  &root_key);
258		if (!IS_ERR(root))
259			continue;
260
261		ret = PTR_ERR(root);
262		if (ret != -ENOENT) {
263			err = ret;
264			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265		}
266
267		ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
268		if (ret) {
269			err = ret;
270			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271		}
 
272	}
273
274	btrfs_free_path(path);
275	return err;
276}
277
278/* drop the root item for 'key' from 'root' */
279int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
280		   struct btrfs_key *key)
281{
 
282	struct btrfs_path *path;
283	int ret;
284	struct btrfs_root_item *ri;
285	struct extent_buffer *leaf;
286
287	path = btrfs_alloc_path();
288	if (!path)
289		return -ENOMEM;
290	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
291	if (ret < 0)
292		goto out;
293
294	BUG_ON(ret != 0);
295	leaf = path->nodes[0];
296	ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
297
298	ret = btrfs_del_item(trans, root, path);
299out:
300	btrfs_free_path(path);
301	return ret;
302}
303
304int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
305		       struct btrfs_root *tree_root,
306		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
307		       const char *name, int name_len)
308
309{
 
310	struct btrfs_path *path;
311	struct btrfs_root_ref *ref;
312	struct extent_buffer *leaf;
313	struct btrfs_key key;
314	unsigned long ptr;
315	int err = 0;
316	int ret;
317
318	path = btrfs_alloc_path();
319	if (!path)
320		return -ENOMEM;
321
322	key.objectid = root_id;
323	key.type = BTRFS_ROOT_BACKREF_KEY;
324	key.offset = ref_id;
325again:
326	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
327	BUG_ON(ret < 0);
328	if (ret == 0) {
 
329		leaf = path->nodes[0];
330		ref = btrfs_item_ptr(leaf, path->slots[0],
331				     struct btrfs_root_ref);
332
333		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
334		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
335		ptr = (unsigned long)(ref + 1);
336		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 
 
 
 
 
337		*sequence = btrfs_root_ref_sequence(leaf, ref);
338
339		ret = btrfs_del_item(trans, tree_root, path);
340		if (ret) {
341			err = ret;
342			goto out;
343		}
344	} else
345		err = -ENOENT;
 
346
347	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
348		btrfs_release_path(path);
349		key.objectid = ref_id;
350		key.type = BTRFS_ROOT_REF_KEY;
351		key.offset = root_id;
352		goto again;
353	}
354
355out:
356	btrfs_free_path(path);
357	return err;
358}
359
360int btrfs_find_root_ref(struct btrfs_root *tree_root,
361		   struct btrfs_path *path,
362		   u64 root_id, u64 ref_id)
363{
364	struct btrfs_key key;
365	int ret;
366
367	key.objectid = root_id;
368	key.type = BTRFS_ROOT_REF_KEY;
369	key.offset = ref_id;
370
371	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
372	return ret;
373}
374
375/*
376 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
377 * or BTRFS_ROOT_BACKREF_KEY.
378 *
379 * The dirid, sequence, name and name_len refer to the directory entry
380 * that is referencing the root.
381 *
382 * For a forward ref, the root_id is the id of the tree referencing
383 * the root and ref_id is the id of the subvol  or snapshot.
384 *
385 * For a back ref the root_id is the id of the subvol or snapshot and
386 * ref_id is the id of the tree referencing it.
 
 
387 */
388int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
389		       struct btrfs_root *tree_root,
390		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
391		       const char *name, int name_len)
392{
 
393	struct btrfs_key key;
394	int ret;
395	struct btrfs_path *path;
396	struct btrfs_root_ref *ref;
397	struct extent_buffer *leaf;
398	unsigned long ptr;
399
400	path = btrfs_alloc_path();
401	if (!path)
402		return -ENOMEM;
403
404	key.objectid = root_id;
405	key.type = BTRFS_ROOT_BACKREF_KEY;
406	key.offset = ref_id;
407again:
408	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
409				      sizeof(*ref) + name_len);
410	BUG_ON(ret);
 
 
 
 
411
412	leaf = path->nodes[0];
413	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
414	btrfs_set_root_ref_dirid(leaf, ref, dirid);
415	btrfs_set_root_ref_sequence(leaf, ref, sequence);
416	btrfs_set_root_ref_name_len(leaf, ref, name_len);
417	ptr = (unsigned long)(ref + 1);
418	write_extent_buffer(leaf, name, ptr, name_len);
419	btrfs_mark_buffer_dirty(leaf);
420
421	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
422		btrfs_release_path(path);
423		key.objectid = ref_id;
424		key.type = BTRFS_ROOT_REF_KEY;
425		key.offset = root_id;
426		goto again;
427	}
428
429	btrfs_free_path(path);
430	return 0;
431}
432
433/*
434 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
435 * for subvolumes. To work around this problem, we steal a bit from
436 * root_item->inode_item->flags, and use it to indicate if those fields
437 * have been properly initialized.
438 */
439void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
440{
441	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
442
443	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
444		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
445		root_item->inode.flags = cpu_to_le64(inode_flags);
446		root_item->flags = 0;
447		root_item->byte_limit = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "fs.h"
 10#include "messages.h"
 11#include "transaction.h"
 12#include "disk-io.h"
 13#include "print-tree.h"
 14#include "qgroup.h"
 15#include "space-info.h"
 16#include "accessors.h"
 17#include "root-tree.h"
 18#include "orphan.h"
 19
 20/*
 21 * Read a root item from the tree. In case we detect a root item smaller then
 22 * sizeof(root_item), we know it's an old version of the root structure and
 23 * initialize all new fields to zero. The same happens if we detect mismatching
 24 * generation numbers as then we know the root was once mounted with an older
 25 * kernel that was not aware of the root item structure change.
 26 */
 27static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 28				struct btrfs_root_item *item)
 29{
 30	u32 len;
 31	int need_reset = 0;
 32
 33	len = btrfs_item_size(eb, slot);
 34	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 35			   min_t(u32, len, sizeof(*item)));
 36	if (len < sizeof(*item))
 37		need_reset = 1;
 38	if (!need_reset && btrfs_root_generation(item)
 39		!= btrfs_root_generation_v2(item)) {
 40		if (btrfs_root_generation_v2(item) != 0) {
 41			btrfs_warn(eb->fs_info,
 42					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 43		}
 44		need_reset = 1;
 45	}
 46	if (need_reset) {
 47		/* Clear all members from generation_v2 onwards. */
 48		memset_startat(item, 0, generation_v2);
 49		generate_random_guid(item->uuid);
 50	}
 51}
 52
 53/*
 54 * btrfs_find_root - lookup the root by the key.
 55 * root: the root of the root tree
 56 * search_key: the key to search
 57 * path: the path we search
 58 * root_item: the root item of the tree we look for
 59 * root_key: the root key of the tree we look for
 60 *
 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 62 * of the search key, just lookup the root with the highest offset for a
 63 * given objectid.
 64 *
 65 * If we find something return 0, otherwise > 0, < 0 on error.
 66 */
 67int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 68		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 69		    struct btrfs_key *root_key)
 70{
 
 
 71	struct btrfs_key found_key;
 72	struct extent_buffer *l;
 73	int ret;
 74	int slot;
 75
 76	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 
 
 
 
 
 
 
 77	if (ret < 0)
 78		return ret;
 79
 80	if (search_key->offset != -1ULL) {	/* the search key is exact */
 81		if (ret > 0)
 82			goto out;
 83	} else {
 84		BUG_ON(ret == 0);		/* Logical error */
 85		if (path->slots[0] == 0)
 86			goto out;
 87		path->slots[0]--;
 88		ret = 0;
 89	}
 90
 91	l = path->nodes[0];
 92	slot = path->slots[0];
 93
 94	btrfs_item_key_to_cpu(l, &found_key, slot);
 95	if (found_key.objectid != search_key->objectid ||
 96	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 97		ret = 1;
 98		goto out;
 99	}
100
101	if (root_item)
102		btrfs_read_root_item(l, slot, root_item);
103	if (root_key)
104		memcpy(root_key, &found_key, sizeof(found_key));
 
105out:
106	btrfs_release_path(path);
107	return ret;
108}
109
110void btrfs_set_root_node(struct btrfs_root_item *item,
111			 struct extent_buffer *node)
112{
113	btrfs_set_root_bytenr(item, node->start);
114	btrfs_set_root_level(item, btrfs_header_level(node));
115	btrfs_set_root_generation(item, btrfs_header_generation(node));
116}
117
118/*
119 * copy the data in 'item' into the btree
120 */
121int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
122		      *root, struct btrfs_key *key, struct btrfs_root_item
123		      *item)
124{
125	struct btrfs_fs_info *fs_info = root->fs_info;
126	struct btrfs_path *path;
127	struct extent_buffer *l;
128	int ret;
129	int slot;
130	unsigned long ptr;
131	u32 old_len;
132
133	path = btrfs_alloc_path();
134	if (!path)
135		return -ENOMEM;
136
137	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
138	if (ret < 0)
139		goto out;
140
141	if (ret > 0) {
142		btrfs_crit(fs_info,
143			"unable to find root key (%llu %u %llu) in tree %llu",
144			key->objectid, key->type, key->offset,
145			root->root_key.objectid);
146		ret = -EUCLEAN;
147		btrfs_abort_transaction(trans, ret);
148		goto out;
149	}
150
151	l = path->nodes[0];
152	slot = path->slots[0];
153	ptr = btrfs_item_ptr_offset(l, slot);
154	old_len = btrfs_item_size(l, slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
156	/*
157	 * If this is the first time we update the root item which originated
158	 * from an older kernel, we need to enlarge the item size to make room
159	 * for the added fields.
160	 */
161	if (old_len < sizeof(*item)) {
162		btrfs_release_path(path);
163		ret = btrfs_search_slot(trans, root, key, path,
164				-1, 1);
165		if (ret < 0) {
166			btrfs_abort_transaction(trans, ret);
167			goto out;
 
 
 
168		}
 
 
 
 
 
 
169
170		ret = btrfs_del_item(trans, root, path);
171		if (ret < 0) {
172			btrfs_abort_transaction(trans, ret);
173			goto out;
174		}
 
 
 
 
175		btrfs_release_path(path);
176		ret = btrfs_insert_empty_item(trans, root, path,
177				key, sizeof(*item));
178		if (ret < 0) {
179			btrfs_abort_transaction(trans, ret);
180			goto out;
 
181		}
182		l = path->nodes[0];
183		slot = path->slots[0];
184		ptr = btrfs_item_ptr_offset(l, slot);
 
 
 
 
 
185	}
186
187	/*
188	 * Update generation_v2 so at the next mount we know the new root
189	 * fields are valid.
190	 */
191	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
192
193	write_extent_buffer(l, item, ptr, sizeof(*item));
194	btrfs_mark_buffer_dirty(path->nodes[0]);
195out:
196	btrfs_free_path(path);
197	return ret;
198}
199
200int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
201		      const struct btrfs_key *key, struct btrfs_root_item *item)
202{
203	/*
204	 * Make sure generation v1 and v2 match. See update_root for details.
205	 */
206	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
207	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
208}
209
210int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
211{
212	struct btrfs_root *tree_root = fs_info->tree_root;
213	struct extent_buffer *leaf;
214	struct btrfs_path *path;
215	struct btrfs_key key;
 
216	struct btrfs_root *root;
217	int err = 0;
218	int ret;
219
220	path = btrfs_alloc_path();
221	if (!path)
222		return -ENOMEM;
223
224	key.objectid = BTRFS_ORPHAN_OBJECTID;
225	key.type = BTRFS_ORPHAN_ITEM_KEY;
226	key.offset = 0;
227
 
 
 
228	while (1) {
229		u64 root_objectid;
230
231		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232		if (ret < 0) {
233			err = ret;
234			break;
235		}
236
237		leaf = path->nodes[0];
238		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239			ret = btrfs_next_leaf(tree_root, path);
240			if (ret < 0)
241				err = ret;
242			if (ret != 0)
243				break;
244			leaf = path->nodes[0];
245		}
246
247		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248		btrfs_release_path(path);
249
250		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252			break;
253
254		root_objectid = key.offset;
255		key.offset++;
256
257		root = btrfs_get_fs_root(fs_info, root_objectid, false);
258		err = PTR_ERR_OR_ZERO(root);
259		if (err && err != -ENOENT) {
 
 
 
 
 
260			break;
261		} else if (err == -ENOENT) {
262			struct btrfs_trans_handle *trans;
263
264			btrfs_release_path(path);
265
266			trans = btrfs_join_transaction(tree_root);
267			if (IS_ERR(trans)) {
268				err = PTR_ERR(trans);
269				btrfs_handle_fs_error(fs_info, err,
270					    "Failed to start trans to delete orphan item");
271				break;
272			}
273			err = btrfs_del_orphan_item(trans, tree_root,
274						    root_objectid);
275			btrfs_end_transaction(trans);
276			if (err) {
277				btrfs_handle_fs_error(fs_info, err,
278					    "Failed to delete root orphan item");
279				break;
280			}
281			continue;
282		}
283
284		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
285		if (btrfs_root_refs(&root->root_item) == 0) {
286			struct btrfs_key drop_key;
287
288			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
289			/*
290			 * If we have a non-zero drop_progress then we know we
291			 * made it partly through deleting this snapshot, and
292			 * thus we need to make sure we block any balance from
293			 * happening until this snapshot is completely dropped.
294			 */
295			if (drop_key.objectid != 0 || drop_key.type != 0 ||
296			    drop_key.offset != 0) {
297				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
298				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
299			}
300
301			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
302			btrfs_add_dead_root(root);
303		}
304		btrfs_put_root(root);
305	}
306
307	btrfs_free_path(path);
308	return err;
309}
310
311/* drop the root item for 'key' from the tree root */
312int btrfs_del_root(struct btrfs_trans_handle *trans,
313		   const struct btrfs_key *key)
314{
315	struct btrfs_root *root = trans->fs_info->tree_root;
316	struct btrfs_path *path;
317	int ret;
 
 
318
319	path = btrfs_alloc_path();
320	if (!path)
321		return -ENOMEM;
322	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
323	if (ret < 0)
324		goto out;
325
326	BUG_ON(ret != 0);
 
 
327
328	ret = btrfs_del_item(trans, root, path);
329out:
330	btrfs_free_path(path);
331	return ret;
332}
333
334int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
335		       u64 ref_id, u64 dirid, u64 *sequence,
336		       const struct fscrypt_str *name)
 
 
337{
338	struct btrfs_root *tree_root = trans->fs_info->tree_root;
339	struct btrfs_path *path;
340	struct btrfs_root_ref *ref;
341	struct extent_buffer *leaf;
342	struct btrfs_key key;
343	unsigned long ptr;
 
344	int ret;
345
346	path = btrfs_alloc_path();
347	if (!path)
348		return -ENOMEM;
349
350	key.objectid = root_id;
351	key.type = BTRFS_ROOT_BACKREF_KEY;
352	key.offset = ref_id;
353again:
354	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
355	if (ret < 0) {
356		goto out;
357	} else if (ret == 0) {
358		leaf = path->nodes[0];
359		ref = btrfs_item_ptr(leaf, path->slots[0],
360				     struct btrfs_root_ref);
 
 
 
361		ptr = (unsigned long)(ref + 1);
362		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
363		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
364		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
365			ret = -ENOENT;
366			goto out;
367		}
368		*sequence = btrfs_root_ref_sequence(leaf, ref);
369
370		ret = btrfs_del_item(trans, tree_root, path);
371		if (ret)
 
372			goto out;
373	} else {
374		ret = -ENOENT;
375		goto out;
376	}
377
378	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
379		btrfs_release_path(path);
380		key.objectid = ref_id;
381		key.type = BTRFS_ROOT_REF_KEY;
382		key.offset = root_id;
383		goto again;
384	}
385
386out:
387	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388	return ret;
389}
390
391/*
392 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
393 * or BTRFS_ROOT_BACKREF_KEY.
394 *
395 * The dirid, sequence, name and name_len refer to the directory entry
396 * that is referencing the root.
397 *
398 * For a forward ref, the root_id is the id of the tree referencing
399 * the root and ref_id is the id of the subvol  or snapshot.
400 *
401 * For a back ref the root_id is the id of the subvol or snapshot and
402 * ref_id is the id of the tree referencing it.
403 *
404 * Will return 0, -ENOMEM, or anything from the CoW path
405 */
406int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
407		       u64 ref_id, u64 dirid, u64 sequence,
408		       const struct fscrypt_str *name)
 
409{
410	struct btrfs_root *tree_root = trans->fs_info->tree_root;
411	struct btrfs_key key;
412	int ret;
413	struct btrfs_path *path;
414	struct btrfs_root_ref *ref;
415	struct extent_buffer *leaf;
416	unsigned long ptr;
417
418	path = btrfs_alloc_path();
419	if (!path)
420		return -ENOMEM;
421
422	key.objectid = root_id;
423	key.type = BTRFS_ROOT_BACKREF_KEY;
424	key.offset = ref_id;
425again:
426	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
427				      sizeof(*ref) + name->len);
428	if (ret) {
429		btrfs_abort_transaction(trans, ret);
430		btrfs_free_path(path);
431		return ret;
432	}
433
434	leaf = path->nodes[0];
435	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
436	btrfs_set_root_ref_dirid(leaf, ref, dirid);
437	btrfs_set_root_ref_sequence(leaf, ref, sequence);
438	btrfs_set_root_ref_name_len(leaf, ref, name->len);
439	ptr = (unsigned long)(ref + 1);
440	write_extent_buffer(leaf, name->name, ptr, name->len);
441	btrfs_mark_buffer_dirty(leaf);
442
443	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
444		btrfs_release_path(path);
445		key.objectid = ref_id;
446		key.type = BTRFS_ROOT_REF_KEY;
447		key.offset = root_id;
448		goto again;
449	}
450
451	btrfs_free_path(path);
452	return 0;
453}
454
455/*
456 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
457 * for subvolumes. To work around this problem, we steal a bit from
458 * root_item->inode_item->flags, and use it to indicate if those fields
459 * have been properly initialized.
460 */
461void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
462{
463	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
464
465	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
466		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
467		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
468		btrfs_set_root_flags(root_item, 0);
469		btrfs_set_root_limit(root_item, 0);
470	}
471}
472
473void btrfs_update_root_times(struct btrfs_trans_handle *trans,
474			     struct btrfs_root *root)
475{
476	struct btrfs_root_item *item = &root->root_item;
477	struct timespec64 ct;
478
479	ktime_get_real_ts64(&ct);
480	spin_lock(&root->root_item_lock);
481	btrfs_set_root_ctransid(item, trans->transid);
482	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
483	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
484	spin_unlock(&root->root_item_lock);
485}
486
487/*
488 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
489 * root: the root of the parent directory
490 * rsv: block reservation
491 * items: the number of items that we need do reservation
492 * use_global_rsv: allow fallback to the global block reservation
493 *
494 * This function is used to reserve the space for snapshot/subvolume
495 * creation and deletion. Those operations are different with the
496 * common file/directory operations, they change two fs/file trees
497 * and root tree, the number of items that the qgroup reserves is
498 * different with the free space reservation. So we can not use
499 * the space reservation mechanism in start_transaction().
500 */
501int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
502				     struct btrfs_block_rsv *rsv, int items,
503				     bool use_global_rsv)
504{
505	u64 qgroup_num_bytes = 0;
506	u64 num_bytes;
507	int ret;
508	struct btrfs_fs_info *fs_info = root->fs_info;
509	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
510
511	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
512		/* One for parent inode, two for dir entries */
513		qgroup_num_bytes = 3 * fs_info->nodesize;
514		ret = btrfs_qgroup_reserve_meta_prealloc(root,
515							 qgroup_num_bytes, true,
516							 false);
517		if (ret)
518			return ret;
519	}
520
521	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
522	rsv->space_info = btrfs_find_space_info(fs_info,
523					    BTRFS_BLOCK_GROUP_METADATA);
524	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
525				  BTRFS_RESERVE_FLUSH_ALL);
526
527	if (ret == -ENOSPC && use_global_rsv)
528		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
529
530	if (ret && qgroup_num_bytes)
531		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
532
533	if (!ret) {
534		spin_lock(&rsv->lock);
535		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
536		spin_unlock(&rsv->lock);
537	}
538	return ret;
539}
540
541void btrfs_subvolume_release_metadata(struct btrfs_root *root,
542				      struct btrfs_block_rsv *rsv)
543{
544	struct btrfs_fs_info *fs_info = root->fs_info;
545	u64 qgroup_to_release;
546
547	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
548	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
549}