Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 
 
 19#include "ctree.h"
 20#include "transaction.h"
 21#include "disk-io.h"
 22#include "print-tree.h"
 
 
 23
 24/*
 25 * lookup the root with the highest offset for a given objectid.  The key we do
 26 * find is copied into 'key'.  If we find something return 0, otherwise 1, < 0
 27 * on error.
 
 
 28 */
 29int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
 30			struct btrfs_root_item *item, struct btrfs_key *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31{
 32	struct btrfs_path *path;
 33	struct btrfs_key search_key;
 34	struct btrfs_key found_key;
 35	struct extent_buffer *l;
 36	int ret;
 37	int slot;
 38
 39	search_key.objectid = objectid;
 40	search_key.type = BTRFS_ROOT_ITEM_KEY;
 41	search_key.offset = (u64)-1;
 42
 43	path = btrfs_alloc_path();
 44	if (!path)
 45		return -ENOMEM;
 46	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 47	if (ret < 0)
 48		goto out;
 49
 50	BUG_ON(ret == 0);
 51	if (path->slots[0] == 0) {
 52		ret = 1;
 53		goto out;
 
 
 
 
 
 54	}
 
 55	l = path->nodes[0];
 56	slot = path->slots[0] - 1;
 
 57	btrfs_item_key_to_cpu(l, &found_key, slot);
 58	if (found_key.objectid != objectid ||
 59	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 60		ret = 1;
 61		goto out;
 62	}
 63	if (item)
 64		read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot),
 65				   sizeof(*item));
 66	if (key)
 67		memcpy(key, &found_key, sizeof(found_key));
 68	ret = 0;
 69out:
 70	btrfs_free_path(path);
 71	return ret;
 72}
 73
 74void btrfs_set_root_node(struct btrfs_root_item *item,
 75			 struct extent_buffer *node)
 76{
 77	btrfs_set_root_bytenr(item, node->start);
 78	btrfs_set_root_level(item, btrfs_header_level(node));
 79	btrfs_set_root_generation(item, btrfs_header_generation(node));
 80}
 81
 82/*
 83 * copy the data in 'item' into the btree
 84 */
 85int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
 86		      *root, struct btrfs_key *key, struct btrfs_root_item
 87		      *item)
 88{
 
 89	struct btrfs_path *path;
 90	struct extent_buffer *l;
 91	int ret;
 92	int slot;
 93	unsigned long ptr;
 
 94
 95	path = btrfs_alloc_path();
 96	BUG_ON(!path);
 
 
 97	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
 98	if (ret < 0)
 99		goto out;
100
101	if (ret != 0) {
102		btrfs_print_leaf(root, path->nodes[0]);
103		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
104		       (unsigned long long)key->objectid, key->type,
105		       (unsigned long long)key->offset);
106		BUG_ON(1);
 
 
107	}
108
109	l = path->nodes[0];
110	slot = path->slots[0];
111	ptr = btrfs_item_ptr_offset(l, slot);
112	write_extent_buffer(l, item, ptr, sizeof(*item));
113	btrfs_mark_buffer_dirty(path->nodes[0]);
114out:
115	btrfs_free_path(path);
116	return ret;
117}
118
119int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
120		      *root, struct btrfs_key *key, struct btrfs_root_item
121		      *item)
122{
123	int ret;
124	ret = btrfs_insert_item(trans, root, key, item, sizeof(*item));
125	return ret;
126}
127
128/*
129 * at mount time we want to find all the old transaction snapshots that were in
130 * the process of being deleted if we crashed.  This is any root item with an
131 * offset lower than the latest root.  They need to be queued for deletion to
132 * finish what was happening when we crashed.
133 */
134int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
135{
136	struct btrfs_root *dead_root;
137	struct btrfs_root_item *ri;
138	struct btrfs_key key;
139	struct btrfs_key found_key;
140	struct btrfs_path *path;
141	int ret;
142	u32 nritems;
143	struct extent_buffer *leaf;
144	int slot;
145
146	key.objectid = objectid;
147	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
148	key.offset = 0;
149	path = btrfs_alloc_path();
150	if (!path)
151		return -ENOMEM;
152
153again:
154	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
155	if (ret < 0)
156		goto err;
157	while (1) {
158		leaf = path->nodes[0];
159		nritems = btrfs_header_nritems(leaf);
160		slot = path->slots[0];
161		if (slot >= nritems) {
162			ret = btrfs_next_leaf(root, path);
163			if (ret)
164				break;
165			leaf = path->nodes[0];
166			nritems = btrfs_header_nritems(leaf);
167			slot = path->slots[0];
168		}
169		btrfs_item_key_to_cpu(leaf, &key, slot);
170		if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
171			goto next;
172
173		if (key.objectid < objectid)
174			goto next;
175
176		if (key.objectid > objectid)
177			break;
178
179		ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
180		if (btrfs_disk_root_refs(leaf, ri) != 0)
181			goto next;
182
183		memcpy(&found_key, &key, sizeof(key));
184		key.offset++;
185		btrfs_release_path(path);
186		dead_root =
187			btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
188						    &found_key);
189		if (IS_ERR(dead_root)) {
190			ret = PTR_ERR(dead_root);
191			goto err;
192		}
193
194		ret = btrfs_add_dead_root(dead_root);
195		if (ret)
196			goto err;
197		goto again;
198next:
199		slot++;
200		path->slots[0]++;
201	}
202	ret = 0;
203err:
 
 
 
 
 
 
 
 
204	btrfs_free_path(path);
205	return ret;
206}
207
208int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
 
209{
 
 
 
 
 
 
 
 
 
 
210	struct extent_buffer *leaf;
211	struct btrfs_path *path;
212	struct btrfs_key key;
213	struct btrfs_key root_key;
214	struct btrfs_root *root;
215	int err = 0;
216	int ret;
217
218	path = btrfs_alloc_path();
219	if (!path)
220		return -ENOMEM;
221
222	key.objectid = BTRFS_ORPHAN_OBJECTID;
223	key.type = BTRFS_ORPHAN_ITEM_KEY;
224	key.offset = 0;
225
226	root_key.type = BTRFS_ROOT_ITEM_KEY;
227	root_key.offset = (u64)-1;
228
229	while (1) {
 
 
230		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
231		if (ret < 0) {
232			err = ret;
233			break;
234		}
235
236		leaf = path->nodes[0];
237		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
238			ret = btrfs_next_leaf(tree_root, path);
239			if (ret < 0)
240				err = ret;
241			if (ret != 0)
242				break;
243			leaf = path->nodes[0];
244		}
245
246		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
247		btrfs_release_path(path);
248
249		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
250		    key.type != BTRFS_ORPHAN_ITEM_KEY)
251			break;
252
253		root_key.objectid = key.offset;
254		key.offset++;
255
256		root = btrfs_read_fs_root_no_name(tree_root->fs_info,
257						  &root_key);
258		if (!IS_ERR(root))
259			continue;
260
261		ret = PTR_ERR(root);
262		if (ret != -ENOENT) {
263			err = ret;
264			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265		}
266
267		ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
268		if (ret) {
269			err = ret;
270			break;
271		}
 
272	}
273
274	btrfs_free_path(path);
275	return err;
276}
277
278/* drop the root item for 'key' from 'root' */
279int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
280		   struct btrfs_key *key)
281{
 
282	struct btrfs_path *path;
283	int ret;
284	struct btrfs_root_item *ri;
285	struct extent_buffer *leaf;
286
287	path = btrfs_alloc_path();
288	if (!path)
289		return -ENOMEM;
290	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
291	if (ret < 0)
292		goto out;
293
294	BUG_ON(ret != 0);
295	leaf = path->nodes[0];
296	ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
297
298	ret = btrfs_del_item(trans, root, path);
299out:
300	btrfs_free_path(path);
301	return ret;
302}
303
304int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
305		       struct btrfs_root *tree_root,
306		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
307		       const char *name, int name_len)
308
309{
 
310	struct btrfs_path *path;
311	struct btrfs_root_ref *ref;
312	struct extent_buffer *leaf;
313	struct btrfs_key key;
314	unsigned long ptr;
315	int err = 0;
316	int ret;
317
318	path = btrfs_alloc_path();
319	if (!path)
320		return -ENOMEM;
321
322	key.objectid = root_id;
323	key.type = BTRFS_ROOT_BACKREF_KEY;
324	key.offset = ref_id;
325again:
326	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
327	BUG_ON(ret < 0);
328	if (ret == 0) {
329		leaf = path->nodes[0];
330		ref = btrfs_item_ptr(leaf, path->slots[0],
331				     struct btrfs_root_ref);
332
333		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
334		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
335		ptr = (unsigned long)(ref + 1);
336		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 
 
 
 
 
337		*sequence = btrfs_root_ref_sequence(leaf, ref);
338
339		ret = btrfs_del_item(trans, tree_root, path);
340		if (ret) {
341			err = ret;
342			goto out;
343		}
344	} else
345		err = -ENOENT;
346
347	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
348		btrfs_release_path(path);
349		key.objectid = ref_id;
350		key.type = BTRFS_ROOT_REF_KEY;
351		key.offset = root_id;
352		goto again;
353	}
354
355out:
356	btrfs_free_path(path);
357	return err;
358}
359
360int btrfs_find_root_ref(struct btrfs_root *tree_root,
361		   struct btrfs_path *path,
362		   u64 root_id, u64 ref_id)
363{
364	struct btrfs_key key;
365	int ret;
366
367	key.objectid = root_id;
368	key.type = BTRFS_ROOT_REF_KEY;
369	key.offset = ref_id;
370
371	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
372	return ret;
373}
374
375/*
376 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
377 * or BTRFS_ROOT_BACKREF_KEY.
378 *
379 * The dirid, sequence, name and name_len refer to the directory entry
380 * that is referencing the root.
381 *
382 * For a forward ref, the root_id is the id of the tree referencing
383 * the root and ref_id is the id of the subvol  or snapshot.
384 *
385 * For a back ref the root_id is the id of the subvol or snapshot and
386 * ref_id is the id of the tree referencing it.
 
 
387 */
388int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
389		       struct btrfs_root *tree_root,
390		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
391		       const char *name, int name_len)
392{
 
393	struct btrfs_key key;
394	int ret;
395	struct btrfs_path *path;
396	struct btrfs_root_ref *ref;
397	struct extent_buffer *leaf;
398	unsigned long ptr;
399
400	path = btrfs_alloc_path();
401	if (!path)
402		return -ENOMEM;
403
404	key.objectid = root_id;
405	key.type = BTRFS_ROOT_BACKREF_KEY;
406	key.offset = ref_id;
407again:
408	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
409				      sizeof(*ref) + name_len);
410	BUG_ON(ret);
 
 
 
 
411
412	leaf = path->nodes[0];
413	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
414	btrfs_set_root_ref_dirid(leaf, ref, dirid);
415	btrfs_set_root_ref_sequence(leaf, ref, sequence);
416	btrfs_set_root_ref_name_len(leaf, ref, name_len);
417	ptr = (unsigned long)(ref + 1);
418	write_extent_buffer(leaf, name, ptr, name_len);
419	btrfs_mark_buffer_dirty(leaf);
420
421	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
422		btrfs_release_path(path);
423		key.objectid = ref_id;
424		key.type = BTRFS_ROOT_REF_KEY;
425		key.offset = root_id;
426		goto again;
427	}
428
429	btrfs_free_path(path);
430	return 0;
431}
432
433/*
434 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
435 * for subvolumes. To work around this problem, we steal a bit from
436 * root_item->inode_item->flags, and use it to indicate if those fields
437 * have been properly initialized.
438 */
439void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
440{
441	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
442
443	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
444		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
445		root_item->inode.flags = cpu_to_le64(inode_flags);
446		root_item->flags = 0;
447		root_item->byte_limit = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "transaction.h"
 10#include "disk-io.h"
 11#include "print-tree.h"
 12#include "qgroup.h"
 13#include "space-info.h"
 14
 15/*
 16 * Read a root item from the tree. In case we detect a root item smaller then
 17 * sizeof(root_item), we know it's an old version of the root structure and
 18 * initialize all new fields to zero. The same happens if we detect mismatching
 19 * generation numbers as then we know the root was once mounted with an older
 20 * kernel that was not aware of the root item structure change.
 21 */
 22static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 23				struct btrfs_root_item *item)
 24{
 25	u32 len;
 26	int need_reset = 0;
 27
 28	len = btrfs_item_size_nr(eb, slot);
 29	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 30			   min_t(u32, len, sizeof(*item)));
 31	if (len < sizeof(*item))
 32		need_reset = 1;
 33	if (!need_reset && btrfs_root_generation(item)
 34		!= btrfs_root_generation_v2(item)) {
 35		if (btrfs_root_generation_v2(item) != 0) {
 36			btrfs_warn(eb->fs_info,
 37					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 38		}
 39		need_reset = 1;
 40	}
 41	if (need_reset) {
 42		memset(&item->generation_v2, 0,
 43			sizeof(*item) - offsetof(struct btrfs_root_item,
 44					generation_v2));
 45
 46		generate_random_guid(item->uuid);
 47	}
 48}
 49
 50/*
 51 * btrfs_find_root - lookup the root by the key.
 52 * root: the root of the root tree
 53 * search_key: the key to search
 54 * path: the path we search
 55 * root_item: the root item of the tree we look for
 56 * root_key: the root key of the tree we look for
 57 *
 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 59 * of the search key, just lookup the root with the highest offset for a
 60 * given objectid.
 61 *
 62 * If we find something return 0, otherwise > 0, < 0 on error.
 63 */
 64int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 65		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 66		    struct btrfs_key *root_key)
 67{
 
 
 68	struct btrfs_key found_key;
 69	struct extent_buffer *l;
 70	int ret;
 71	int slot;
 72
 73	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 
 
 
 
 
 
 
 74	if (ret < 0)
 75		return ret;
 76
 77	if (search_key->offset != -1ULL) {	/* the search key is exact */
 78		if (ret > 0)
 79			goto out;
 80	} else {
 81		BUG_ON(ret == 0);		/* Logical error */
 82		if (path->slots[0] == 0)
 83			goto out;
 84		path->slots[0]--;
 85		ret = 0;
 86	}
 87
 88	l = path->nodes[0];
 89	slot = path->slots[0];
 90
 91	btrfs_item_key_to_cpu(l, &found_key, slot);
 92	if (found_key.objectid != search_key->objectid ||
 93	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 94		ret = 1;
 95		goto out;
 96	}
 97
 98	if (root_item)
 99		btrfs_read_root_item(l, slot, root_item);
100	if (root_key)
101		memcpy(root_key, &found_key, sizeof(found_key));
 
102out:
103	btrfs_release_path(path);
104	return ret;
105}
106
107void btrfs_set_root_node(struct btrfs_root_item *item,
108			 struct extent_buffer *node)
109{
110	btrfs_set_root_bytenr(item, node->start);
111	btrfs_set_root_level(item, btrfs_header_level(node));
112	btrfs_set_root_generation(item, btrfs_header_generation(node));
113}
114
115/*
116 * copy the data in 'item' into the btree
117 */
118int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119		      *root, struct btrfs_key *key, struct btrfs_root_item
120		      *item)
121{
122	struct btrfs_fs_info *fs_info = root->fs_info;
123	struct btrfs_path *path;
124	struct extent_buffer *l;
125	int ret;
126	int slot;
127	unsigned long ptr;
128	u32 old_len;
129
130	path = btrfs_alloc_path();
131	if (!path)
132		return -ENOMEM;
133
134	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135	if (ret < 0)
136		goto out;
137
138	if (ret > 0) {
139		btrfs_crit(fs_info,
140			"unable to find root key (%llu %u %llu) in tree %llu",
141			key->objectid, key->type, key->offset,
142			root->root_key.objectid);
143		ret = -EUCLEAN;
144		btrfs_abort_transaction(trans, ret);
145		goto out;
146	}
147
148	l = path->nodes[0];
149	slot = path->slots[0];
150	ptr = btrfs_item_ptr_offset(l, slot);
151	old_len = btrfs_item_size_nr(l, slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
153	/*
154	 * If this is the first time we update the root item which originated
155	 * from an older kernel, we need to enlarge the item size to make room
156	 * for the added fields.
157	 */
158	if (old_len < sizeof(*item)) {
159		btrfs_release_path(path);
160		ret = btrfs_search_slot(trans, root, key, path,
161				-1, 1);
162		if (ret < 0) {
163			btrfs_abort_transaction(trans, ret);
164			goto out;
 
 
 
 
 
 
 
 
 
 
165		}
 
 
 
 
 
 
166
167		ret = btrfs_del_item(trans, root, path);
168		if (ret < 0) {
169			btrfs_abort_transaction(trans, ret);
170			goto out;
171		}
 
 
 
 
172		btrfs_release_path(path);
173		ret = btrfs_insert_empty_item(trans, root, path,
174				key, sizeof(*item));
175		if (ret < 0) {
176			btrfs_abort_transaction(trans, ret);
177			goto out;
 
178		}
179		l = path->nodes[0];
180		slot = path->slots[0];
181		ptr = btrfs_item_ptr_offset(l, slot);
 
 
 
 
 
182	}
183
184	/*
185	 * Update generation_v2 so at the next mount we know the new root
186	 * fields are valid.
187	 */
188	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
189
190	write_extent_buffer(l, item, ptr, sizeof(*item));
191	btrfs_mark_buffer_dirty(path->nodes[0]);
192out:
193	btrfs_free_path(path);
194	return ret;
195}
196
197int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
198		      const struct btrfs_key *key, struct btrfs_root_item *item)
199{
200	/*
201	 * Make sure generation v1 and v2 match. See update_root for details.
202	 */
203	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
204	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
205}
206
207int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
208{
209	struct btrfs_root *tree_root = fs_info->tree_root;
210	struct extent_buffer *leaf;
211	struct btrfs_path *path;
212	struct btrfs_key key;
 
213	struct btrfs_root *root;
214	int err = 0;
215	int ret;
216
217	path = btrfs_alloc_path();
218	if (!path)
219		return -ENOMEM;
220
221	key.objectid = BTRFS_ORPHAN_OBJECTID;
222	key.type = BTRFS_ORPHAN_ITEM_KEY;
223	key.offset = 0;
224
 
 
 
225	while (1) {
226		u64 root_objectid;
227
228		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
229		if (ret < 0) {
230			err = ret;
231			break;
232		}
233
234		leaf = path->nodes[0];
235		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
236			ret = btrfs_next_leaf(tree_root, path);
237			if (ret < 0)
238				err = ret;
239			if (ret != 0)
240				break;
241			leaf = path->nodes[0];
242		}
243
244		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
245		btrfs_release_path(path);
246
247		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
248		    key.type != BTRFS_ORPHAN_ITEM_KEY)
249			break;
250
251		root_objectid = key.offset;
252		key.offset++;
253
254		root = btrfs_get_fs_root(fs_info, root_objectid, false);
255		err = PTR_ERR_OR_ZERO(root);
256		if (err && err != -ENOENT) {
 
 
 
 
 
257			break;
258		} else if (err == -ENOENT) {
259			struct btrfs_trans_handle *trans;
260
261			btrfs_release_path(path);
262
263			trans = btrfs_join_transaction(tree_root);
264			if (IS_ERR(trans)) {
265				err = PTR_ERR(trans);
266				btrfs_handle_fs_error(fs_info, err,
267					    "Failed to start trans to delete orphan item");
268				break;
269			}
270			err = btrfs_del_orphan_item(trans, tree_root,
271						    root_objectid);
272			btrfs_end_transaction(trans);
273			if (err) {
274				btrfs_handle_fs_error(fs_info, err,
275					    "Failed to delete root orphan item");
276				break;
277			}
278			continue;
279		}
280
281		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
282		if (btrfs_root_refs(&root->root_item) == 0) {
283			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
284			btrfs_add_dead_root(root);
285		}
286		btrfs_put_root(root);
287	}
288
289	btrfs_free_path(path);
290	return err;
291}
292
293/* drop the root item for 'key' from the tree root */
294int btrfs_del_root(struct btrfs_trans_handle *trans,
295		   const struct btrfs_key *key)
296{
297	struct btrfs_root *root = trans->fs_info->tree_root;
298	struct btrfs_path *path;
299	int ret;
 
 
300
301	path = btrfs_alloc_path();
302	if (!path)
303		return -ENOMEM;
304	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
305	if (ret < 0)
306		goto out;
307
308	BUG_ON(ret != 0);
 
 
309
310	ret = btrfs_del_item(trans, root, path);
311out:
312	btrfs_free_path(path);
313	return ret;
314}
315
316int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
317		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
318		       int name_len)
 
319
320{
321	struct btrfs_root *tree_root = trans->fs_info->tree_root;
322	struct btrfs_path *path;
323	struct btrfs_root_ref *ref;
324	struct extent_buffer *leaf;
325	struct btrfs_key key;
326	unsigned long ptr;
327	int err = 0;
328	int ret;
329
330	path = btrfs_alloc_path();
331	if (!path)
332		return -ENOMEM;
333
334	key.objectid = root_id;
335	key.type = BTRFS_ROOT_BACKREF_KEY;
336	key.offset = ref_id;
337again:
338	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
339	BUG_ON(ret < 0);
340	if (ret == 0) {
341		leaf = path->nodes[0];
342		ref = btrfs_item_ptr(leaf, path->slots[0],
343				     struct btrfs_root_ref);
 
 
 
344		ptr = (unsigned long)(ref + 1);
345		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
346		    (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
347		    memcmp_extent_buffer(leaf, name, ptr, name_len)) {
348			err = -ENOENT;
349			goto out;
350		}
351		*sequence = btrfs_root_ref_sequence(leaf, ref);
352
353		ret = btrfs_del_item(trans, tree_root, path);
354		if (ret) {
355			err = ret;
356			goto out;
357		}
358	} else
359		err = -ENOENT;
360
361	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
362		btrfs_release_path(path);
363		key.objectid = ref_id;
364		key.type = BTRFS_ROOT_REF_KEY;
365		key.offset = root_id;
366		goto again;
367	}
368
369out:
370	btrfs_free_path(path);
371	return err;
372}
373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374/*
375 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
376 * or BTRFS_ROOT_BACKREF_KEY.
377 *
378 * The dirid, sequence, name and name_len refer to the directory entry
379 * that is referencing the root.
380 *
381 * For a forward ref, the root_id is the id of the tree referencing
382 * the root and ref_id is the id of the subvol  or snapshot.
383 *
384 * For a back ref the root_id is the id of the subvol or snapshot and
385 * ref_id is the id of the tree referencing it.
386 *
387 * Will return 0, -ENOMEM, or anything from the CoW path
388 */
389int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
390		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
391		       int name_len)
 
392{
393	struct btrfs_root *tree_root = trans->fs_info->tree_root;
394	struct btrfs_key key;
395	int ret;
396	struct btrfs_path *path;
397	struct btrfs_root_ref *ref;
398	struct extent_buffer *leaf;
399	unsigned long ptr;
400
401	path = btrfs_alloc_path();
402	if (!path)
403		return -ENOMEM;
404
405	key.objectid = root_id;
406	key.type = BTRFS_ROOT_BACKREF_KEY;
407	key.offset = ref_id;
408again:
409	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
410				      sizeof(*ref) + name_len);
411	if (ret) {
412		btrfs_abort_transaction(trans, ret);
413		btrfs_free_path(path);
414		return ret;
415	}
416
417	leaf = path->nodes[0];
418	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
419	btrfs_set_root_ref_dirid(leaf, ref, dirid);
420	btrfs_set_root_ref_sequence(leaf, ref, sequence);
421	btrfs_set_root_ref_name_len(leaf, ref, name_len);
422	ptr = (unsigned long)(ref + 1);
423	write_extent_buffer(leaf, name, ptr, name_len);
424	btrfs_mark_buffer_dirty(leaf);
425
426	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
427		btrfs_release_path(path);
428		key.objectid = ref_id;
429		key.type = BTRFS_ROOT_REF_KEY;
430		key.offset = root_id;
431		goto again;
432	}
433
434	btrfs_free_path(path);
435	return 0;
436}
437
438/*
439 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
440 * for subvolumes. To work around this problem, we steal a bit from
441 * root_item->inode_item->flags, and use it to indicate if those fields
442 * have been properly initialized.
443 */
444void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
445{
446	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
447
448	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
449		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
450		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
451		btrfs_set_root_flags(root_item, 0);
452		btrfs_set_root_limit(root_item, 0);
453	}
454}
455
456void btrfs_update_root_times(struct btrfs_trans_handle *trans,
457			     struct btrfs_root *root)
458{
459	struct btrfs_root_item *item = &root->root_item;
460	struct timespec64 ct;
461
462	ktime_get_real_ts64(&ct);
463	spin_lock(&root->root_item_lock);
464	btrfs_set_root_ctransid(item, trans->transid);
465	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
466	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
467	spin_unlock(&root->root_item_lock);
468}
469
470/*
471 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
472 * root: the root of the parent directory
473 * rsv: block reservation
474 * items: the number of items that we need do reservation
475 * use_global_rsv: allow fallback to the global block reservation
476 *
477 * This function is used to reserve the space for snapshot/subvolume
478 * creation and deletion. Those operations are different with the
479 * common file/directory operations, they change two fs/file trees
480 * and root tree, the number of items that the qgroup reserves is
481 * different with the free space reservation. So we can not use
482 * the space reservation mechanism in start_transaction().
483 */
484int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
485				     struct btrfs_block_rsv *rsv, int items,
486				     bool use_global_rsv)
487{
488	u64 qgroup_num_bytes = 0;
489	u64 num_bytes;
490	int ret;
491	struct btrfs_fs_info *fs_info = root->fs_info;
492	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
493
494	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
495		/* One for parent inode, two for dir entries */
496		qgroup_num_bytes = 3 * fs_info->nodesize;
497		ret = btrfs_qgroup_reserve_meta_prealloc(root,
498				qgroup_num_bytes, true);
499		if (ret)
500			return ret;
501	}
502
503	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
504	rsv->space_info = btrfs_find_space_info(fs_info,
505					    BTRFS_BLOCK_GROUP_METADATA);
506	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
507				  BTRFS_RESERVE_FLUSH_ALL);
508
509	if (ret == -ENOSPC && use_global_rsv)
510		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
511
512	if (ret && qgroup_num_bytes)
513		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
514
515	return ret;
516}
517
518void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
519				      struct btrfs_block_rsv *rsv)
520{
521	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
522}