Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*******************************************************************************
   2 * Filename:  target_core_transport.c
   3 *
   4 * This file contains the Generic Target Engine Core.
   5 *
   6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
   7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
   8 * Copyright (c) 2007-2010 Rising Tide Systems
   9 * Copyright (c) 2008-2010 Linux-iSCSI.org
  10 *
  11 * Nicholas A. Bellinger <nab@kernel.org>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  26 *
  27 ******************************************************************************/
  28
  29#include <linux/version.h>
  30#include <linux/net.h>
  31#include <linux/delay.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/slab.h>
  35#include <linux/blkdev.h>
  36#include <linux/spinlock.h>
  37#include <linux/kthread.h>
  38#include <linux/in.h>
  39#include <linux/cdrom.h>
 
 
 
  40#include <asm/unaligned.h>
  41#include <net/sock.h>
  42#include <net/tcp.h>
  43#include <scsi/scsi.h>
  44#include <scsi/scsi_cmnd.h>
  45#include <scsi/scsi_tcq.h>
  46
  47#include <target/target_core_base.h>
  48#include <target/target_core_device.h>
  49#include <target/target_core_tmr.h>
  50#include <target/target_core_tpg.h>
  51#include <target/target_core_transport.h>
  52#include <target/target_core_fabric_ops.h>
  53#include <target/target_core_configfs.h>
  54
 
  55#include "target_core_alua.h"
  56#include "target_core_hba.h"
  57#include "target_core_pr.h"
  58#include "target_core_scdb.h"
  59#include "target_core_ua.h"
  60
  61static int sub_api_initialized;
 
  62
  63static struct kmem_cache *se_cmd_cache;
 
  64static struct kmem_cache *se_sess_cache;
  65struct kmem_cache *se_tmr_req_cache;
  66struct kmem_cache *se_ua_cache;
  67struct kmem_cache *t10_pr_reg_cache;
  68struct kmem_cache *t10_alua_lu_gp_cache;
  69struct kmem_cache *t10_alua_lu_gp_mem_cache;
  70struct kmem_cache *t10_alua_tg_pt_gp_cache;
  71struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
  72
  73/* Used for transport_dev_get_map_*() */
  74typedef int (*map_func_t)(struct se_task *, u32);
  75
  76static int transport_generic_write_pending(struct se_cmd *);
  77static int transport_processing_thread(void *param);
  78static int __transport_execute_tasks(struct se_device *dev);
  79static void transport_complete_task_attr(struct se_cmd *cmd);
  80static int transport_complete_qf(struct se_cmd *cmd);
  81static void transport_handle_queue_full(struct se_cmd *cmd,
  82		struct se_device *dev, int (*qf_callback)(struct se_cmd *));
  83static void transport_direct_request_timeout(struct se_cmd *cmd);
  84static void transport_free_dev_tasks(struct se_cmd *cmd);
  85static u32 transport_allocate_tasks(struct se_cmd *cmd,
  86		unsigned long long starting_lba,
  87		enum dma_data_direction data_direction,
  88		struct scatterlist *sgl, unsigned int nents);
  89static int transport_generic_get_mem(struct se_cmd *cmd);
  90static int transport_generic_remove(struct se_cmd *cmd,
  91		int session_reinstatement);
  92static void transport_release_fe_cmd(struct se_cmd *cmd);
  93static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
  94		struct se_queue_obj *qobj);
  95static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
  96static void transport_stop_all_task_timers(struct se_cmd *cmd);
  97
  98int init_se_kmem_caches(void)
  99{
 100	se_cmd_cache = kmem_cache_create("se_cmd_cache",
 101			sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
 102	if (!se_cmd_cache) {
 103		pr_err("kmem_cache_create for struct se_cmd failed\n");
 104		goto out;
 105	}
 106	se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
 107			sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
 108			0, NULL);
 109	if (!se_tmr_req_cache) {
 110		pr_err("kmem_cache_create() for struct se_tmr_req"
 111				" failed\n");
 112		goto out;
 113	}
 114	se_sess_cache = kmem_cache_create("se_sess_cache",
 115			sizeof(struct se_session), __alignof__(struct se_session),
 116			0, NULL);
 117	if (!se_sess_cache) {
 118		pr_err("kmem_cache_create() for struct se_session"
 119				" failed\n");
 120		goto out;
 121	}
 122	se_ua_cache = kmem_cache_create("se_ua_cache",
 123			sizeof(struct se_ua), __alignof__(struct se_ua),
 124			0, NULL);
 125	if (!se_ua_cache) {
 126		pr_err("kmem_cache_create() for struct se_ua failed\n");
 127		goto out;
 128	}
 129	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
 130			sizeof(struct t10_pr_registration),
 131			__alignof__(struct t10_pr_registration), 0, NULL);
 132	if (!t10_pr_reg_cache) {
 133		pr_err("kmem_cache_create() for struct t10_pr_registration"
 134				" failed\n");
 135		goto out;
 136	}
 137	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
 138			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
 139			0, NULL);
 140	if (!t10_alua_lu_gp_cache) {
 141		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
 142				" failed\n");
 143		goto out;
 144	}
 145	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
 146			sizeof(struct t10_alua_lu_gp_member),
 147			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
 148	if (!t10_alua_lu_gp_mem_cache) {
 149		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
 150				"cache failed\n");
 151		goto out;
 152	}
 153	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
 154			sizeof(struct t10_alua_tg_pt_gp),
 155			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
 156	if (!t10_alua_tg_pt_gp_cache) {
 157		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
 158				"cache failed\n");
 159		goto out;
 160	}
 161	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
 162			"t10_alua_tg_pt_gp_mem_cache",
 163			sizeof(struct t10_alua_tg_pt_gp_member),
 164			__alignof__(struct t10_alua_tg_pt_gp_member),
 165			0, NULL);
 166	if (!t10_alua_tg_pt_gp_mem_cache) {
 167		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
 168				"mem_t failed\n");
 169		goto out;
 
 
 
 
 
 
 
 
 170	}
 171
 
 
 
 
 
 
 
 
 
 
 172	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173out:
 174	if (se_cmd_cache)
 175		kmem_cache_destroy(se_cmd_cache);
 176	if (se_tmr_req_cache)
 177		kmem_cache_destroy(se_tmr_req_cache);
 178	if (se_sess_cache)
 179		kmem_cache_destroy(se_sess_cache);
 180	if (se_ua_cache)
 181		kmem_cache_destroy(se_ua_cache);
 182	if (t10_pr_reg_cache)
 183		kmem_cache_destroy(t10_pr_reg_cache);
 184	if (t10_alua_lu_gp_cache)
 185		kmem_cache_destroy(t10_alua_lu_gp_cache);
 186	if (t10_alua_lu_gp_mem_cache)
 187		kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 188	if (t10_alua_tg_pt_gp_cache)
 189		kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 190	if (t10_alua_tg_pt_gp_mem_cache)
 191		kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
 192	return -ENOMEM;
 193}
 194
 195void release_se_kmem_caches(void)
 196{
 197	kmem_cache_destroy(se_cmd_cache);
 198	kmem_cache_destroy(se_tmr_req_cache);
 199	kmem_cache_destroy(se_sess_cache);
 200	kmem_cache_destroy(se_ua_cache);
 201	kmem_cache_destroy(t10_pr_reg_cache);
 202	kmem_cache_destroy(t10_alua_lu_gp_cache);
 203	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 204	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 205	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
 
 206}
 207
 208/* This code ensures unique mib indexes are handed out. */
 209static DEFINE_SPINLOCK(scsi_mib_index_lock);
 210static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
 211
 212/*
 213 * Allocate a new row index for the entry type specified
 214 */
 215u32 scsi_get_new_index(scsi_index_t type)
 216{
 217	u32 new_index;
 218
 219	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
 220
 221	spin_lock(&scsi_mib_index_lock);
 222	new_index = ++scsi_mib_index[type];
 223	spin_unlock(&scsi_mib_index_lock);
 224
 225	return new_index;
 226}
 227
 228void transport_init_queue_obj(struct se_queue_obj *qobj)
 229{
 230	atomic_set(&qobj->queue_cnt, 0);
 231	INIT_LIST_HEAD(&qobj->qobj_list);
 232	init_waitqueue_head(&qobj->thread_wq);
 233	spin_lock_init(&qobj->cmd_queue_lock);
 234}
 235EXPORT_SYMBOL(transport_init_queue_obj);
 236
 237static int transport_subsystem_reqmods(void)
 238{
 239	int ret;
 
 240
 241	ret = request_module("target_core_iblock");
 
 
 
 242	if (ret != 0)
 243		pr_err("Unable to load target_core_iblock\n");
 244
 245	ret = request_module("target_core_file");
 246	if (ret != 0)
 247		pr_err("Unable to load target_core_file\n");
 248
 249	ret = request_module("target_core_pscsi");
 250	if (ret != 0)
 251		pr_err("Unable to load target_core_pscsi\n");
 252
 253	ret = request_module("target_core_stgt");
 254	if (ret != 0)
 255		pr_err("Unable to load target_core_stgt\n");
 256
 257	return 0;
 258}
 259
 260int transport_subsystem_check_init(void)
 261{
 262	int ret;
 263
 264	if (sub_api_initialized)
 265		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266	/*
 267	 * Request the loading of known TCM subsystem plugins..
 
 
 268	 */
 269	ret = transport_subsystem_reqmods();
 270	if (ret < 0)
 271		return ret;
 272
 273	sub_api_initialized = 1;
 274	return 0;
 275}
 276
 277struct se_session *transport_init_session(void)
 
 
 
 
 278{
 279	struct se_session *se_sess;
 
 280
 281	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
 282	if (!se_sess) {
 283		pr_err("Unable to allocate struct se_session from"
 284				" se_sess_cache\n");
 285		return ERR_PTR(-ENOMEM);
 286	}
 287	INIT_LIST_HEAD(&se_sess->sess_list);
 288	INIT_LIST_HEAD(&se_sess->sess_acl_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290	return se_sess;
 291}
 292EXPORT_SYMBOL(transport_init_session);
 293
 294/*
 295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
 296 */
 297void __transport_register_session(
 298	struct se_portal_group *se_tpg,
 299	struct se_node_acl *se_nacl,
 300	struct se_session *se_sess,
 301	void *fabric_sess_ptr)
 302{
 
 303	unsigned char buf[PR_REG_ISID_LEN];
 
 304
 305	se_sess->se_tpg = se_tpg;
 306	se_sess->fabric_sess_ptr = fabric_sess_ptr;
 307	/*
 308	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
 309	 *
 310	 * Only set for struct se_session's that will actually be moving I/O.
 311	 * eg: *NOT* discovery sessions.
 312	 */
 313	if (se_nacl) {
 314		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315		 * If the fabric module supports an ISID based TransportID,
 316		 * save this value in binary from the fabric I_T Nexus now.
 317		 */
 318		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
 319			memset(&buf[0], 0, PR_REG_ISID_LEN);
 320			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
 321					&buf[0], PR_REG_ISID_LEN);
 322			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
 323		}
 324		spin_lock_irq(&se_nacl->nacl_sess_lock);
 
 325		/*
 326		 * The se_nacl->nacl_sess pointer will be set to the
 327		 * last active I_T Nexus for each struct se_node_acl.
 328		 */
 329		se_nacl->nacl_sess = se_sess;
 330
 331		list_add_tail(&se_sess->sess_acl_list,
 332			      &se_nacl->acl_sess_list);
 333		spin_unlock_irq(&se_nacl->nacl_sess_lock);
 334	}
 335	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
 336
 337	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
 338		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
 339}
 340EXPORT_SYMBOL(__transport_register_session);
 341
 342void transport_register_session(
 343	struct se_portal_group *se_tpg,
 344	struct se_node_acl *se_nacl,
 345	struct se_session *se_sess,
 346	void *fabric_sess_ptr)
 347{
 348	spin_lock_bh(&se_tpg->session_lock);
 
 
 349	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
 350	spin_unlock_bh(&se_tpg->session_lock);
 351}
 352EXPORT_SYMBOL(transport_register_session);
 353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354void transport_deregister_session_configfs(struct se_session *se_sess)
 355{
 356	struct se_node_acl *se_nacl;
 357	unsigned long flags;
 358	/*
 359	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
 360	 */
 361	se_nacl = se_sess->se_node_acl;
 362	if (se_nacl) {
 363		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 364		list_del(&se_sess->sess_acl_list);
 
 365		/*
 366		 * If the session list is empty, then clear the pointer.
 367		 * Otherwise, set the struct se_session pointer from the tail
 368		 * element of the per struct se_node_acl active session list.
 369		 */
 370		if (list_empty(&se_nacl->acl_sess_list))
 371			se_nacl->nacl_sess = NULL;
 372		else {
 373			se_nacl->nacl_sess = container_of(
 374					se_nacl->acl_sess_list.prev,
 375					struct se_session, sess_acl_list);
 376		}
 377		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 378	}
 379}
 380EXPORT_SYMBOL(transport_deregister_session_configfs);
 381
 382void transport_free_session(struct se_session *se_sess)
 383{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384	kmem_cache_free(se_sess_cache, se_sess);
 385}
 386EXPORT_SYMBOL(transport_free_session);
 387
 
 
 
 
 
 
 
 
 
 388void transport_deregister_session(struct se_session *se_sess)
 389{
 390	struct se_portal_group *se_tpg = se_sess->se_tpg;
 391	struct se_node_acl *se_nacl;
 392	unsigned long flags;
 393
 394	if (!se_tpg) {
 395		transport_free_session(se_sess);
 396		return;
 397	}
 398
 399	spin_lock_irqsave(&se_tpg->session_lock, flags);
 400	list_del(&se_sess->sess_list);
 401	se_sess->se_tpg = NULL;
 402	se_sess->fabric_sess_ptr = NULL;
 403	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 404
 405	/*
 406	 * Determine if we need to do extra work for this initiator node's
 407	 * struct se_node_acl if it had been previously dynamically generated.
 408	 */
 409	se_nacl = se_sess->se_node_acl;
 410	if (se_nacl) {
 411		spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
 412		if (se_nacl->dynamic_node_acl) {
 413			if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
 414					se_tpg)) {
 415				list_del(&se_nacl->acl_list);
 416				se_tpg->num_node_acls--;
 417				spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
 418
 419				core_tpg_wait_for_nacl_pr_ref(se_nacl);
 420				core_free_device_list_for_node(se_nacl, se_tpg);
 421				se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
 422						se_nacl);
 423				spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
 424			}
 425		}
 426		spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
 427	}
 428
 429	transport_free_session(se_sess);
 430
 431	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
 432		se_tpg->se_tpg_tfo->get_fabric_name());
 
 
 
 
 
 
 
 
 
 
 433}
 434EXPORT_SYMBOL(transport_deregister_session);
 435
 436/*
 437 * Called with cmd->t_state_lock held.
 438 */
 439static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
 440{
 441	struct se_device *dev;
 442	struct se_task *task;
 
 
 
 
 
 
 443	unsigned long flags;
 444
 445	list_for_each_entry(task, &cmd->t_task_list, t_list) {
 446		dev = task->se_dev;
 447		if (!dev)
 448			continue;
 449
 450		if (atomic_read(&task->task_active))
 451			continue;
 
 
 
 
 
 452
 453		if (!atomic_read(&task->task_state_active))
 454			continue;
 
 
 455
 456		spin_lock_irqsave(&dev->execute_task_lock, flags);
 457		list_del(&task->t_state_list);
 458		pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
 459			cmd->se_tfo->get_task_tag(cmd), dev, task);
 460		spin_unlock_irqrestore(&dev->execute_task_lock, flags);
 461
 462		atomic_set(&task->task_state_active, 0);
 463		atomic_dec(&cmd->t_task_cdbs_ex_left);
 
 
 
 464	}
 465}
 466
 467/*	transport_cmd_check_stop():
 468 *
 469 *	'transport_off = 1' determines if t_transport_active should be cleared.
 470 *	'transport_off = 2' determines if task_dev_state should be removed.
 471 *
 472 *	A non-zero u8 t_state sets cmd->t_state.
 473 *	Returns 1 when command is stopped, else 0.
 474 */
 475static int transport_cmd_check_stop(
 476	struct se_cmd *cmd,
 477	int transport_off,
 478	u8 t_state)
 479{
 480	unsigned long flags;
 481
 482	spin_lock_irqsave(&cmd->t_state_lock, flags);
 483	/*
 484	 * Determine if IOCTL context caller in requesting the stopping of this
 485	 * command for LUN shutdown purposes.
 486	 */
 487	if (atomic_read(&cmd->transport_lun_stop)) {
 488		pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
 489			" == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
 490			cmd->se_tfo->get_task_tag(cmd));
 491
 492		cmd->deferred_t_state = cmd->t_state;
 493		cmd->t_state = TRANSPORT_DEFERRED_CMD;
 494		atomic_set(&cmd->t_transport_active, 0);
 495		if (transport_off == 2)
 496			transport_all_task_dev_remove_state(cmd);
 497		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 498
 499		complete(&cmd->transport_lun_stop_comp);
 500		return 1;
 501	}
 502	/*
 503	 * Determine if frontend context caller is requesting the stopping of
 504	 * this command for frontend exceptions.
 505	 */
 506	if (atomic_read(&cmd->t_transport_stop)) {
 507		pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
 508			" TRUE for ITT: 0x%08x\n", __func__, __LINE__,
 509			cmd->se_tfo->get_task_tag(cmd));
 510
 511		cmd->deferred_t_state = cmd->t_state;
 512		cmd->t_state = TRANSPORT_DEFERRED_CMD;
 513		if (transport_off == 2)
 514			transport_all_task_dev_remove_state(cmd);
 515
 516		/*
 517		 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
 518		 * to FE.
 519		 */
 520		if (transport_off == 2)
 521			cmd->se_lun = NULL;
 522		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 523
 524		complete(&cmd->t_transport_stop_comp);
 525		return 1;
 526	}
 527	if (transport_off) {
 528		atomic_set(&cmd->t_transport_active, 0);
 529		if (transport_off == 2) {
 530			transport_all_task_dev_remove_state(cmd);
 531			/*
 532			 * Clear struct se_cmd->se_lun before the transport_off == 2
 533			 * handoff to fabric module.
 534			 */
 535			cmd->se_lun = NULL;
 536			/*
 537			 * Some fabric modules like tcm_loop can release
 538			 * their internally allocated I/O reference now and
 539			 * struct se_cmd now.
 540			 */
 541			if (cmd->se_tfo->check_stop_free != NULL) {
 542				spin_unlock_irqrestore(
 543					&cmd->t_state_lock, flags);
 544
 545				cmd->se_tfo->check_stop_free(cmd);
 546				return 1;
 547			}
 548		}
 549		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 550
 551		return 0;
 552	} else if (t_state)
 553		cmd->t_state = t_state;
 554	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 555
 556	return 0;
 557}
 558
 559static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
 560{
 561	return transport_cmd_check_stop(cmd, 2, 0);
 
 
 562}
 563
 564static void transport_lun_remove_cmd(struct se_cmd *cmd)
 565{
 566	struct se_lun *lun = cmd->se_lun;
 567	unsigned long flags;
 568
 569	if (!lun)
 570		return;
 571
 572	spin_lock_irqsave(&cmd->t_state_lock, flags);
 573	if (!atomic_read(&cmd->transport_dev_active)) {
 574		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 575		goto check_lun;
 576	}
 577	atomic_set(&cmd->transport_dev_active, 0);
 578	transport_all_task_dev_remove_state(cmd);
 579	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 580
 
 
 581
 582check_lun:
 583	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
 584	if (atomic_read(&cmd->transport_lun_active)) {
 585		list_del(&cmd->se_lun_node);
 586		atomic_set(&cmd->transport_lun_active, 0);
 587#if 0
 588		pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
 589			cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
 590#endif
 591	}
 592	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
 593}
 594
 595void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
 596{
 597	transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
 598	transport_lun_remove_cmd(cmd);
 599
 600	if (transport_cmd_check_stop_to_fabric(cmd))
 601		return;
 602	if (remove)
 603		transport_generic_remove(cmd, 0);
 604}
 605
 606void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
 
 
 
 
 607{
 608	transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
 609
 610	if (transport_cmd_check_stop_to_fabric(cmd))
 611		return;
 
 
 
 
 
 
 
 612
 613	transport_generic_remove(cmd, 0);
 
 
 614}
 615
 616static void transport_add_cmd_to_queue(
 617	struct se_cmd *cmd,
 618	int t_state)
 619{
 620	struct se_device *dev = cmd->se_dev;
 621	struct se_queue_obj *qobj = &dev->dev_queue_obj;
 622	unsigned long flags;
 623
 624	INIT_LIST_HEAD(&cmd->se_queue_node);
 625
 626	if (t_state) {
 627		spin_lock_irqsave(&cmd->t_state_lock, flags);
 628		cmd->t_state = t_state;
 629		atomic_set(&cmd->t_transport_active, 1);
 630		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 
 631	}
 632
 633	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
 634	if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
 635		cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
 636		list_add(&cmd->se_queue_node, &qobj->qobj_list);
 637	} else
 638		list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
 639	atomic_inc(&cmd->t_transport_queue_active);
 640	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 641
 642	atomic_inc(&qobj->queue_cnt);
 643	wake_up_interruptible(&qobj->thread_wq);
 644}
 
 645
 646static struct se_cmd *
 647transport_get_cmd_from_queue(struct se_queue_obj *qobj)
 648{
 649	struct se_cmd *cmd;
 650	unsigned long flags;
 
 651
 652	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
 653	if (list_empty(&qobj->qobj_list)) {
 654		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 655		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	}
 657	cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
 658
 659	atomic_dec(&cmd->t_transport_queue_active);
 660
 661	list_del(&cmd->se_queue_node);
 662	atomic_dec(&qobj->queue_cnt);
 663	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 664
 665	return cmd;
 666}
 667
 668static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
 669		struct se_queue_obj *qobj)
 670{
 671	struct se_cmd *t;
 672	unsigned long flags;
 673
 674	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
 675	if (!atomic_read(&cmd->t_transport_queue_active)) {
 676		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 677		return;
 678	}
 679
 680	list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
 681		if (t == cmd) {
 682			atomic_dec(&cmd->t_transport_queue_active);
 683			atomic_dec(&qobj->queue_cnt);
 684			list_del(&cmd->se_queue_node);
 685			break;
 686		}
 687	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 688
 689	if (atomic_read(&cmd->t_transport_queue_active)) {
 690		pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
 691			cmd->se_tfo->get_task_tag(cmd),
 692			atomic_read(&cmd->t_transport_queue_active));
 693	}
 694}
 695
 696/*
 697 * Completion function used by TCM subsystem plugins (such as FILEIO)
 698 * for queueing up response from struct se_subsystem_api->do_task()
 699 */
 700void transport_complete_sync_cache(struct se_cmd *cmd, int good)
 701{
 702	struct se_task *task = list_entry(cmd->t_task_list.next,
 703				struct se_task, t_list);
 704
 705	if (good) {
 706		cmd->scsi_status = SAM_STAT_GOOD;
 707		task->task_scsi_status = GOOD;
 708	} else {
 709		task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
 710		task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
 711		task->task_se_cmd->transport_error_status =
 712					PYX_TRANSPORT_ILLEGAL_REQUEST;
 
 
 
 713	}
 714
 715	transport_complete_task(task, good);
 716}
 717EXPORT_SYMBOL(transport_complete_sync_cache);
 718
 719/*	transport_complete_task():
 720 *
 721 *	Called from interrupt and non interrupt context depending
 722 *	on the transport plugin.
 723 */
 724void transport_complete_task(struct se_task *task, int success)
 725{
 726	struct se_cmd *cmd = task->task_se_cmd;
 727	struct se_device *dev = task->se_dev;
 728	int t_state;
 729	unsigned long flags;
 730#if 0
 731	pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
 732			cmd->t_task_cdb[0], dev);
 733#endif
 734	if (dev)
 735		atomic_inc(&dev->depth_left);
 736
 737	spin_lock_irqsave(&cmd->t_state_lock, flags);
 738	atomic_set(&task->task_active, 0);
 739
 740	/*
 741	 * See if any sense data exists, if so set the TASK_SENSE flag.
 742	 * Also check for any other post completion work that needs to be
 743	 * done by the plugins.
 744	 */
 745	if (dev && dev->transport->transport_complete) {
 746		if (dev->transport->transport_complete(task) != 0) {
 747			cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
 748			task->task_sense = 1;
 749			success = 1;
 750		}
 751	}
 752
 753	/*
 754	 * See if we are waiting for outstanding struct se_task
 755	 * to complete for an exception condition
 756	 */
 757	if (atomic_read(&task->task_stop)) {
 758		/*
 759		 * Decrement cmd->t_se_count if this task had
 760		 * previously thrown its timeout exception handler.
 761		 */
 762		if (atomic_read(&task->task_timeout)) {
 763			atomic_dec(&cmd->t_se_count);
 764			atomic_set(&task->task_timeout, 0);
 765		}
 766		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 767
 768		complete(&task->task_stop_comp);
 769		return;
 770	}
 771	/*
 772	 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
 773	 * left counter to determine when the struct se_cmd is ready to be queued to
 774	 * the processing thread.
 775	 */
 776	if (atomic_read(&task->task_timeout)) {
 777		if (!atomic_dec_and_test(
 778				&cmd->t_task_cdbs_timeout_left)) {
 779			spin_unlock_irqrestore(&cmd->t_state_lock,
 780				flags);
 781			return;
 782		}
 783		t_state = TRANSPORT_COMPLETE_TIMEOUT;
 784		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 785
 786		transport_add_cmd_to_queue(cmd, t_state);
 787		return;
 788	}
 789	atomic_dec(&cmd->t_task_cdbs_timeout_left);
 790
 791	/*
 792	 * Decrement the outstanding t_task_cdbs_left count.  The last
 793	 * struct se_task from struct se_cmd will complete itself into the
 794	 * device queue depending upon int success.
 795	 */
 796	if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
 797		if (!success)
 798			cmd->t_tasks_failed = 1;
 799
 800		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 801		return;
 
 
 
 
 
 
 
 
 
 802	}
 803
 804	if (!success || cmd->t_tasks_failed) {
 805		t_state = TRANSPORT_COMPLETE_FAILURE;
 806		if (!task->task_error_status) {
 807			task->task_error_status =
 808				PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
 809			cmd->transport_error_status =
 810				PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
 811		}
 812	} else {
 813		atomic_set(&cmd->t_transport_complete, 1);
 814		t_state = TRANSPORT_COMPLETE_OK;
 815	}
 816	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 817
 818	transport_add_cmd_to_queue(cmd, t_state);
 819}
 820EXPORT_SYMBOL(transport_complete_task);
 821
 822/*
 823 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
 824 * struct se_task list are ready to be added to the active execution list
 825 * struct se_device
 826
 827 * Called with se_dev_t->execute_task_lock called.
 828 */
 829static inline int transport_add_task_check_sam_attr(
 830	struct se_task *task,
 831	struct se_task *task_prev,
 832	struct se_device *dev)
 833{
 834	/*
 835	 * No SAM Task attribute emulation enabled, add to tail of
 836	 * execution queue
 837	 */
 838	if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
 839		list_add_tail(&task->t_execute_list, &dev->execute_task_list);
 840		return 0;
 841	}
 842	/*
 843	 * HEAD_OF_QUEUE attribute for received CDB, which means
 844	 * the first task that is associated with a struct se_cmd goes to
 845	 * head of the struct se_device->execute_task_list, and task_prev
 846	 * after that for each subsequent task
 847	 */
 848	if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
 849		list_add(&task->t_execute_list,
 850				(task_prev != NULL) ?
 851				&task_prev->t_execute_list :
 852				&dev->execute_task_list);
 853
 854		pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
 855				" in execution queue\n",
 856				task->task_se_cmd->t_task_cdb[0]);
 857		return 1;
 858	}
 859	/*
 860	 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
 861	 * transitioned from Dermant -> Active state, and are added to the end
 862	 * of the struct se_device->execute_task_list
 863	 */
 864	list_add_tail(&task->t_execute_list, &dev->execute_task_list);
 865	return 0;
 866}
 
 867
 868/*	__transport_add_task_to_execute_queue():
 869 *
 870 *	Called with se_dev_t->execute_task_lock called.
 871 */
 872static void __transport_add_task_to_execute_queue(
 873	struct se_task *task,
 874	struct se_task *task_prev,
 875	struct se_device *dev)
 876{
 877	int head_of_queue;
 878
 879	head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
 880	atomic_inc(&dev->execute_tasks);
 881
 882	if (atomic_read(&task->task_state_active))
 883		return;
 884	/*
 885	 * Determine if this task needs to go to HEAD_OF_QUEUE for the
 886	 * state list as well.  Running with SAM Task Attribute emulation
 887	 * will always return head_of_queue == 0 here
 888	 */
 889	if (head_of_queue)
 890		list_add(&task->t_state_list, (task_prev) ?
 891				&task_prev->t_state_list :
 892				&dev->state_task_list);
 893	else
 894		list_add_tail(&task->t_state_list, &dev->state_task_list);
 895
 896	atomic_set(&task->task_state_active, 1);
 897
 898	pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
 899		task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
 900		task, dev);
 901}
 
 902
 903static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
 904{
 905	struct se_device *dev;
 906	struct se_task *task;
 907	unsigned long flags;
 908
 909	spin_lock_irqsave(&cmd->t_state_lock, flags);
 910	list_for_each_entry(task, &cmd->t_task_list, t_list) {
 911		dev = task->se_dev;
 912
 913		if (atomic_read(&task->task_state_active))
 914			continue;
 915
 916		spin_lock(&dev->execute_task_lock);
 917		list_add_tail(&task->t_state_list, &dev->state_task_list);
 918		atomic_set(&task->task_state_active, 1);
 919
 920		pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
 921			task->task_se_cmd->se_tfo->get_task_tag(
 922			task->task_se_cmd), task, dev);
 923
 924		spin_unlock(&dev->execute_task_lock);
 925	}
 926	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 927}
 
 928
 929static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
 930{
 931	struct se_device *dev = cmd->se_dev;
 932	struct se_task *task, *task_prev = NULL;
 933	unsigned long flags;
 934
 935	spin_lock_irqsave(&dev->execute_task_lock, flags);
 936	list_for_each_entry(task, &cmd->t_task_list, t_list) {
 937		if (atomic_read(&task->task_execute_queue))
 938			continue;
 939		/*
 940		 * __transport_add_task_to_execute_queue() handles the
 941		 * SAM Task Attribute emulation if enabled
 942		 */
 943		__transport_add_task_to_execute_queue(task, task_prev, dev);
 944		atomic_set(&task->task_execute_queue, 1);
 945		task_prev = task;
 946	}
 947	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
 
 948}
 
 949
 950/*	transport_remove_task_from_execute_queue():
 951 *
 952 *
 953 */
 954void transport_remove_task_from_execute_queue(
 955	struct se_task *task,
 956	struct se_device *dev)
 957{
 
 958	unsigned long flags;
 959
 960	if (atomic_read(&task->task_execute_queue) == 0) {
 961		dump_stack();
 962		return;
 
 
 963	}
 964
 965	spin_lock_irqsave(&dev->execute_task_lock, flags);
 966	list_del(&task->t_execute_list);
 967	atomic_set(&task->task_execute_queue, 0);
 968	atomic_dec(&dev->execute_tasks);
 969	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
 970}
 971
 972/*
 973 * Handle QUEUE_FULL / -EAGAIN status
 974 */
 
 
 975
 976static void target_qf_do_work(struct work_struct *work)
 977{
 978	struct se_device *dev = container_of(work, struct se_device,
 979					qf_work_queue);
 980	LIST_HEAD(qf_cmd_list);
 981	struct se_cmd *cmd, *cmd_tmp;
 982
 983	spin_lock_irq(&dev->qf_cmd_lock);
 984	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
 985	spin_unlock_irq(&dev->qf_cmd_lock);
 986
 987	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
 988		list_del(&cmd->se_qf_node);
 989		atomic_dec(&dev->dev_qf_count);
 990		smp_mb__after_atomic_dec();
 991
 992		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
 993			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
 994			(cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
 995			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
 996			: "UNKNOWN");
 997		/*
 998		 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
 999		 * has been added to head of queue
1000		 */
1001		transport_add_cmd_to_queue(cmd, cmd->t_state);
 
1002	}
1003}
1004
1005unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1006{
1007	switch (cmd->data_direction) {
1008	case DMA_NONE:
1009		return "NONE";
1010	case DMA_FROM_DEVICE:
1011		return "READ";
1012	case DMA_TO_DEVICE:
1013		return "WRITE";
1014	case DMA_BIDIRECTIONAL:
1015		return "BIDI";
1016	default:
1017		break;
1018	}
1019
1020	return "UNKNOWN";
1021}
1022
1023void transport_dump_dev_state(
1024	struct se_device *dev,
1025	char *b,
1026	int *bl)
1027{
1028	*bl += sprintf(b + *bl, "Status: ");
1029	switch (dev->dev_status) {
1030	case TRANSPORT_DEVICE_ACTIVATED:
1031		*bl += sprintf(b + *bl, "ACTIVATED");
1032		break;
1033	case TRANSPORT_DEVICE_DEACTIVATED:
1034		*bl += sprintf(b + *bl, "DEACTIVATED");
1035		break;
1036	case TRANSPORT_DEVICE_SHUTDOWN:
1037		*bl += sprintf(b + *bl, "SHUTDOWN");
1038		break;
1039	case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1040	case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1041		*bl += sprintf(b + *bl, "OFFLINE");
1042		break;
1043	default:
1044		*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1045		break;
1046	}
1047
1048	*bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1049		atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1050		dev->queue_depth);
1051	*bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1052		dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1053	*bl += sprintf(b + *bl, "        ");
1054}
1055
1056/*	transport_release_all_cmds():
1057 *
1058 *
1059 */
1060static void transport_release_all_cmds(struct se_device *dev)
1061{
1062	struct se_cmd *cmd, *tcmd;
1063	int bug_out = 0, t_state;
1064	unsigned long flags;
1065
1066	spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1067	list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1068				se_queue_node) {
1069		t_state = cmd->t_state;
1070		list_del(&cmd->se_queue_node);
1071		spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1072				flags);
1073
1074		pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1075			" t_state: %u directly\n",
1076			cmd->se_tfo->get_task_tag(cmd),
1077			cmd->se_tfo->get_cmd_state(cmd), t_state);
1078
1079		transport_release_fe_cmd(cmd);
1080		bug_out = 1;
1081
1082		spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1083	}
1084	spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1085#if 0
1086	if (bug_out)
1087		BUG();
1088#endif
1089}
1090
1091void transport_dump_vpd_proto_id(
1092	struct t10_vpd *vpd,
1093	unsigned char *p_buf,
1094	int p_buf_len)
1095{
1096	unsigned char buf[VPD_TMP_BUF_SIZE];
1097	int len;
1098
1099	memset(buf, 0, VPD_TMP_BUF_SIZE);
1100	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1101
1102	switch (vpd->protocol_identifier) {
1103	case 0x00:
1104		sprintf(buf+len, "Fibre Channel\n");
1105		break;
1106	case 0x10:
1107		sprintf(buf+len, "Parallel SCSI\n");
1108		break;
1109	case 0x20:
1110		sprintf(buf+len, "SSA\n");
1111		break;
1112	case 0x30:
1113		sprintf(buf+len, "IEEE 1394\n");
1114		break;
1115	case 0x40:
1116		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1117				" Protocol\n");
1118		break;
1119	case 0x50:
1120		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1121		break;
1122	case 0x60:
1123		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1124		break;
1125	case 0x70:
1126		sprintf(buf+len, "Automation/Drive Interface Transport"
1127				" Protocol\n");
1128		break;
1129	case 0x80:
1130		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1131		break;
1132	default:
1133		sprintf(buf+len, "Unknown 0x%02x\n",
1134				vpd->protocol_identifier);
1135		break;
1136	}
1137
1138	if (p_buf)
1139		strncpy(p_buf, buf, p_buf_len);
1140	else
1141		pr_debug("%s", buf);
1142}
1143
1144void
1145transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1146{
1147	/*
1148	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1149	 *
1150	 * from spc3r23.pdf section 7.5.1
1151	 */
1152	 if (page_83[1] & 0x80) {
1153		vpd->protocol_identifier = (page_83[0] & 0xf0);
1154		vpd->protocol_identifier_set = 1;
1155		transport_dump_vpd_proto_id(vpd, NULL, 0);
1156	}
1157}
1158EXPORT_SYMBOL(transport_set_vpd_proto_id);
1159
1160int transport_dump_vpd_assoc(
1161	struct t10_vpd *vpd,
1162	unsigned char *p_buf,
1163	int p_buf_len)
1164{
1165	unsigned char buf[VPD_TMP_BUF_SIZE];
1166	int ret = 0;
1167	int len;
1168
1169	memset(buf, 0, VPD_TMP_BUF_SIZE);
1170	len = sprintf(buf, "T10 VPD Identifier Association: ");
1171
1172	switch (vpd->association) {
1173	case 0x00:
1174		sprintf(buf+len, "addressed logical unit\n");
1175		break;
1176	case 0x10:
1177		sprintf(buf+len, "target port\n");
1178		break;
1179	case 0x20:
1180		sprintf(buf+len, "SCSI target device\n");
1181		break;
1182	default:
1183		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1184		ret = -EINVAL;
1185		break;
1186	}
1187
1188	if (p_buf)
1189		strncpy(p_buf, buf, p_buf_len);
1190	else
1191		pr_debug("%s", buf);
1192
1193	return ret;
1194}
1195
1196int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1197{
1198	/*
1199	 * The VPD identification association..
1200	 *
1201	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1202	 */
1203	vpd->association = (page_83[1] & 0x30);
1204	return transport_dump_vpd_assoc(vpd, NULL, 0);
1205}
1206EXPORT_SYMBOL(transport_set_vpd_assoc);
1207
1208int transport_dump_vpd_ident_type(
1209	struct t10_vpd *vpd,
1210	unsigned char *p_buf,
1211	int p_buf_len)
1212{
1213	unsigned char buf[VPD_TMP_BUF_SIZE];
1214	int ret = 0;
1215	int len;
1216
1217	memset(buf, 0, VPD_TMP_BUF_SIZE);
1218	len = sprintf(buf, "T10 VPD Identifier Type: ");
1219
1220	switch (vpd->device_identifier_type) {
1221	case 0x00:
1222		sprintf(buf+len, "Vendor specific\n");
1223		break;
1224	case 0x01:
1225		sprintf(buf+len, "T10 Vendor ID based\n");
1226		break;
1227	case 0x02:
1228		sprintf(buf+len, "EUI-64 based\n");
1229		break;
1230	case 0x03:
1231		sprintf(buf+len, "NAA\n");
1232		break;
1233	case 0x04:
1234		sprintf(buf+len, "Relative target port identifier\n");
1235		break;
1236	case 0x08:
1237		sprintf(buf+len, "SCSI name string\n");
1238		break;
1239	default:
1240		sprintf(buf+len, "Unsupported: 0x%02x\n",
1241				vpd->device_identifier_type);
1242		ret = -EINVAL;
1243		break;
1244	}
1245
1246	if (p_buf) {
1247		if (p_buf_len < strlen(buf)+1)
1248			return -EINVAL;
1249		strncpy(p_buf, buf, p_buf_len);
1250	} else {
1251		pr_debug("%s", buf);
1252	}
1253
1254	return ret;
1255}
1256
1257int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1258{
1259	/*
1260	 * The VPD identifier type..
1261	 *
1262	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1263	 */
1264	vpd->device_identifier_type = (page_83[1] & 0x0f);
1265	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1266}
1267EXPORT_SYMBOL(transport_set_vpd_ident_type);
1268
1269int transport_dump_vpd_ident(
1270	struct t10_vpd *vpd,
1271	unsigned char *p_buf,
1272	int p_buf_len)
1273{
1274	unsigned char buf[VPD_TMP_BUF_SIZE];
1275	int ret = 0;
1276
1277	memset(buf, 0, VPD_TMP_BUF_SIZE);
1278
1279	switch (vpd->device_identifier_code_set) {
1280	case 0x01: /* Binary */
1281		sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
 
1282			&vpd->device_identifier[0]);
1283		break;
1284	case 0x02: /* ASCII */
1285		sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
 
1286			&vpd->device_identifier[0]);
1287		break;
1288	case 0x03: /* UTF-8 */
1289		sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
 
1290			&vpd->device_identifier[0]);
1291		break;
1292	default:
1293		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1294			" 0x%02x", vpd->device_identifier_code_set);
1295		ret = -EINVAL;
1296		break;
1297	}
1298
1299	if (p_buf)
1300		strncpy(p_buf, buf, p_buf_len);
1301	else
1302		pr_debug("%s", buf);
1303
1304	return ret;
1305}
1306
1307int
1308transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1309{
1310	static const char hex_str[] = "0123456789abcdef";
1311	int j = 0, i = 4; /* offset to start of the identifer */
1312
1313	/*
1314	 * The VPD Code Set (encoding)
1315	 *
1316	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1317	 */
1318	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1319	switch (vpd->device_identifier_code_set) {
1320	case 0x01: /* Binary */
1321		vpd->device_identifier[j++] =
1322				hex_str[vpd->device_identifier_type];
1323		while (i < (4 + page_83[3])) {
1324			vpd->device_identifier[j++] =
1325				hex_str[(page_83[i] & 0xf0) >> 4];
1326			vpd->device_identifier[j++] =
1327				hex_str[page_83[i] & 0x0f];
1328			i++;
1329		}
1330		break;
1331	case 0x02: /* ASCII */
1332	case 0x03: /* UTF-8 */
1333		while (i < (4 + page_83[3]))
1334			vpd->device_identifier[j++] = page_83[i++];
1335		break;
1336	default:
1337		break;
1338	}
1339
1340	return transport_dump_vpd_ident(vpd, NULL, 0);
1341}
1342EXPORT_SYMBOL(transport_set_vpd_ident);
1343
1344static void core_setup_task_attr_emulation(struct se_device *dev)
1345{
1346	/*
1347	 * If this device is from Target_Core_Mod/pSCSI, disable the
1348	 * SAM Task Attribute emulation.
1349	 *
1350	 * This is currently not available in upsream Linux/SCSI Target
1351	 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1352	 */
1353	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1354		dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1355		return;
1356	}
1357
1358	dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1359	pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1360		" device\n", dev->transport->name,
1361		dev->transport->get_device_rev(dev));
1362}
1363
1364static void scsi_dump_inquiry(struct se_device *dev)
1365{
1366	struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1367	int i, device_type;
1368	/*
1369	 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1370	 */
1371	pr_debug("  Vendor: ");
1372	for (i = 0; i < 8; i++)
1373		if (wwn->vendor[i] >= 0x20)
1374			pr_debug("%c", wwn->vendor[i]);
1375		else
1376			pr_debug(" ");
1377
1378	pr_debug("  Model: ");
1379	for (i = 0; i < 16; i++)
1380		if (wwn->model[i] >= 0x20)
1381			pr_debug("%c", wwn->model[i]);
1382		else
1383			pr_debug(" ");
1384
1385	pr_debug("  Revision: ");
1386	for (i = 0; i < 4; i++)
1387		if (wwn->revision[i] >= 0x20)
1388			pr_debug("%c", wwn->revision[i]);
1389		else
1390			pr_debug(" ");
1391
1392	pr_debug("\n");
1393
1394	device_type = dev->transport->get_device_type(dev);
1395	pr_debug("  Type:   %s ", scsi_device_type(device_type));
1396	pr_debug("                 ANSI SCSI revision: %02x\n",
1397				dev->transport->get_device_rev(dev));
1398}
1399
1400struct se_device *transport_add_device_to_core_hba(
1401	struct se_hba *hba,
1402	struct se_subsystem_api *transport,
1403	struct se_subsystem_dev *se_dev,
1404	u32 device_flags,
1405	void *transport_dev,
1406	struct se_dev_limits *dev_limits,
1407	const char *inquiry_prod,
1408	const char *inquiry_rev)
1409{
1410	int force_pt;
1411	struct se_device  *dev;
1412
1413	dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1414	if (!dev) {
1415		pr_err("Unable to allocate memory for se_dev_t\n");
1416		return NULL;
1417	}
1418
1419	transport_init_queue_obj(&dev->dev_queue_obj);
1420	dev->dev_flags		= device_flags;
1421	dev->dev_status		|= TRANSPORT_DEVICE_DEACTIVATED;
1422	dev->dev_ptr		= transport_dev;
1423	dev->se_hba		= hba;
1424	dev->se_sub_dev		= se_dev;
1425	dev->transport		= transport;
1426	atomic_set(&dev->active_cmds, 0);
1427	INIT_LIST_HEAD(&dev->dev_list);
1428	INIT_LIST_HEAD(&dev->dev_sep_list);
1429	INIT_LIST_HEAD(&dev->dev_tmr_list);
1430	INIT_LIST_HEAD(&dev->execute_task_list);
1431	INIT_LIST_HEAD(&dev->delayed_cmd_list);
1432	INIT_LIST_HEAD(&dev->ordered_cmd_list);
1433	INIT_LIST_HEAD(&dev->state_task_list);
1434	INIT_LIST_HEAD(&dev->qf_cmd_list);
1435	spin_lock_init(&dev->execute_task_lock);
1436	spin_lock_init(&dev->delayed_cmd_lock);
1437	spin_lock_init(&dev->ordered_cmd_lock);
1438	spin_lock_init(&dev->state_task_lock);
1439	spin_lock_init(&dev->dev_alua_lock);
1440	spin_lock_init(&dev->dev_reservation_lock);
1441	spin_lock_init(&dev->dev_status_lock);
1442	spin_lock_init(&dev->dev_status_thr_lock);
1443	spin_lock_init(&dev->se_port_lock);
1444	spin_lock_init(&dev->se_tmr_lock);
1445	spin_lock_init(&dev->qf_cmd_lock);
1446
1447	dev->queue_depth	= dev_limits->queue_depth;
1448	atomic_set(&dev->depth_left, dev->queue_depth);
1449	atomic_set(&dev->dev_ordered_id, 0);
1450
1451	se_dev_set_default_attribs(dev, dev_limits);
1452
1453	dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1454	dev->creation_time = get_jiffies_64();
1455	spin_lock_init(&dev->stats_lock);
1456
1457	spin_lock(&hba->device_lock);
1458	list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1459	hba->dev_count++;
1460	spin_unlock(&hba->device_lock);
1461	/*
1462	 * Setup the SAM Task Attribute emulation for struct se_device
1463	 */
1464	core_setup_task_attr_emulation(dev);
1465	/*
1466	 * Force PR and ALUA passthrough emulation with internal object use.
1467	 */
1468	force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1469	/*
1470	 * Setup the Reservations infrastructure for struct se_device
1471	 */
1472	core_setup_reservations(dev, force_pt);
1473	/*
1474	 * Setup the Asymmetric Logical Unit Assignment for struct se_device
 
 
 
1475	 */
1476	if (core_setup_alua(dev, force_pt) < 0)
1477		goto out;
1478
1479	/*
1480	 * Startup the struct se_device processing thread
1481	 */
1482	dev->process_thread = kthread_run(transport_processing_thread, dev,
1483					  "LIO_%s", dev->transport->name);
1484	if (IS_ERR(dev->process_thread)) {
1485		pr_err("Unable to create kthread: LIO_%s\n",
1486			dev->transport->name);
1487		goto out;
1488	}
1489	/*
1490	 * Setup work_queue for QUEUE_FULL
1491	 */
1492	INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1493	/*
1494	 * Preload the initial INQUIRY const values if we are doing
1495	 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1496	 * passthrough because this is being provided by the backend LLD.
1497	 * This is required so that transport_get_inquiry() copies these
1498	 * originals once back into DEV_T10_WWN(dev) for the virtual device
1499	 * setup.
1500	 */
1501	if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1502		if (!inquiry_prod || !inquiry_rev) {
1503			pr_err("All non TCM/pSCSI plugins require"
1504				" INQUIRY consts\n");
1505			goto out;
1506		}
1507
1508		strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1509		strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1510		strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1511	}
1512	scsi_dump_inquiry(dev);
1513
1514	return dev;
1515out:
1516	kthread_stop(dev->process_thread);
1517
1518	spin_lock(&hba->device_lock);
1519	list_del(&dev->dev_list);
1520	hba->dev_count--;
1521	spin_unlock(&hba->device_lock);
1522
1523	se_release_vpd_for_dev(dev);
1524
1525	kfree(dev);
1526
1527	return NULL;
1528}
1529EXPORT_SYMBOL(transport_add_device_to_core_hba);
1530
1531/*	transport_generic_prepare_cdb():
 
 
 
 
 
 
 
1532 *
1533 *	Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1534 *	contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1535 *	The point of this is since we are mapping iSCSI LUNs to
1536 *	SCSI Target IDs having a non-zero LUN in the CDB will throw the
1537 *	devices and HBAs for a loop.
1538 */
1539static inline void transport_generic_prepare_cdb(
1540	unsigned char *cdb)
1541{
1542	switch (cdb[0]) {
1543	case READ_10: /* SBC - RDProtect */
1544	case READ_12: /* SBC - RDProtect */
1545	case READ_16: /* SBC - RDProtect */
1546	case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1547	case VERIFY: /* SBC - VRProtect */
1548	case VERIFY_16: /* SBC - VRProtect */
1549	case WRITE_VERIFY: /* SBC - VRProtect */
1550	case WRITE_VERIFY_12: /* SBC - VRProtect */
1551		break;
1552	default:
1553		cdb[1] &= 0x1f; /* clear logical unit number */
1554		break;
1555	}
1556}
1557
1558static struct se_task *
1559transport_generic_get_task(struct se_cmd *cmd,
1560		enum dma_data_direction data_direction)
1561{
1562	struct se_task *task;
1563	struct se_device *dev = cmd->se_dev;
1564
1565	task = dev->transport->alloc_task(cmd->t_task_cdb);
1566	if (!task) {
1567		pr_err("Unable to allocate struct se_task\n");
1568		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569	}
1570
1571	INIT_LIST_HEAD(&task->t_list);
1572	INIT_LIST_HEAD(&task->t_execute_list);
1573	INIT_LIST_HEAD(&task->t_state_list);
1574	init_completion(&task->task_stop_comp);
1575	task->task_se_cmd = cmd;
1576	task->se_dev = dev;
1577	task->task_data_direction = data_direction;
1578
1579	return task;
1580}
1581
1582static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1583
1584/*
1585 * Used by fabric modules containing a local struct se_cmd within their
1586 * fabric dependent per I/O descriptor.
 
 
1587 */
1588void transport_init_se_cmd(
1589	struct se_cmd *cmd,
1590	struct target_core_fabric_ops *tfo,
1591	struct se_session *se_sess,
1592	u32 data_length,
1593	int data_direction,
1594	int task_attr,
1595	unsigned char *sense_buffer)
1596{
1597	INIT_LIST_HEAD(&cmd->se_lun_node);
1598	INIT_LIST_HEAD(&cmd->se_delayed_node);
1599	INIT_LIST_HEAD(&cmd->se_ordered_node);
1600	INIT_LIST_HEAD(&cmd->se_qf_node);
1601
1602	INIT_LIST_HEAD(&cmd->t_task_list);
1603	init_completion(&cmd->transport_lun_fe_stop_comp);
1604	init_completion(&cmd->transport_lun_stop_comp);
1605	init_completion(&cmd->t_transport_stop_comp);
 
 
1606	spin_lock_init(&cmd->t_state_lock);
1607	atomic_set(&cmd->transport_dev_active, 1);
 
1608
 
1609	cmd->se_tfo = tfo;
1610	cmd->se_sess = se_sess;
1611	cmd->data_length = data_length;
1612	cmd->data_direction = data_direction;
1613	cmd->sam_task_attr = task_attr;
1614	cmd->sense_buffer = sense_buffer;
 
 
 
 
 
 
1615}
1616EXPORT_SYMBOL(transport_init_se_cmd);
1617
1618static int transport_check_alloc_task_attr(struct se_cmd *cmd)
 
1619{
 
 
1620	/*
1621	 * Check if SAM Task Attribute emulation is enabled for this
1622	 * struct se_device storage object
1623	 */
1624	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1625		return 0;
1626
1627	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1628		pr_debug("SAM Task Attribute ACA"
1629			" emulation is not supported\n");
1630		return -EINVAL;
1631	}
1632	/*
1633	 * Used to determine when ORDERED commands should go from
1634	 * Dormant to Active status.
1635	 */
1636	cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1637	smp_mb__after_atomic_inc();
1638	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1639			cmd->se_ordered_id, cmd->sam_task_attr,
1640			cmd->se_dev->transport->name);
1641	return 0;
1642}
1643
1644void transport_free_se_cmd(
1645	struct se_cmd *se_cmd)
1646{
1647	if (se_cmd->se_tmr_req)
1648		core_tmr_release_req(se_cmd->se_tmr_req);
1649	/*
1650	 * Check and free any extended CDB buffer that was allocated
1651	 */
1652	if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1653		kfree(se_cmd->t_task_cdb);
1654}
1655EXPORT_SYMBOL(transport_free_se_cmd);
1656
1657static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1658
1659/*	transport_generic_allocate_tasks():
1660 *
1661 *	Called from fabric RX Thread.
1662 */
1663int transport_generic_allocate_tasks(
1664	struct se_cmd *cmd,
1665	unsigned char *cdb)
1666{
1667	int ret;
1668
1669	transport_generic_prepare_cdb(cdb);
1670
1671	/*
1672	 * This is needed for early exceptions.
1673	 */
1674	cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1675
1676	/*
1677	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1678	 * for VARIABLE_LENGTH_CMD
1679	 */
1680	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1681		pr_err("Received SCSI CDB with command_size: %d that"
1682			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1683			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1684		return -EINVAL;
 
1685	}
1686	/*
1687	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1688	 * allocate the additional extended CDB buffer now..  Otherwise
1689	 * setup the pointer from __t_task_cdb to t_task_cdb.
1690	 */
1691	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1692		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1693						GFP_KERNEL);
1694		if (!cmd->t_task_cdb) {
1695			pr_err("Unable to allocate cmd->t_task_cdb"
1696				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1697				scsi_command_size(cdb),
1698				(unsigned long)sizeof(cmd->__t_task_cdb));
1699			return -ENOMEM;
 
1700		}
1701	} else
1702		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1703	/*
1704	 * Copy the original CDB into cmd->
1705	 */
1706	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
 
 
 
 
 
1707	/*
1708	 * Setup the received CDB based on SCSI defined opcodes and
1709	 * perform unit attention, persistent reservations and ALUA
1710	 * checks for virtual device backends.  The cmd->t_task_cdb
1711	 * pointer is expected to be setup before we reach this point.
1712	 */
1713	ret = transport_generic_cmd_sequencer(cmd, cdb);
1714	if (ret < 0)
1715		return ret;
1716	/*
1717	 * Check for SAM Task Attribute Emulation
1718	 */
1719	if (transport_check_alloc_task_attr(cmd) < 0) {
1720		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1721		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1722		return -EINVAL;
1723	}
1724	spin_lock(&cmd->se_lun->lun_sep_lock);
1725	if (cmd->se_lun->lun_sep)
1726		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1727	spin_unlock(&cmd->se_lun->lun_sep_lock);
1728	return 0;
1729}
1730EXPORT_SYMBOL(transport_generic_allocate_tasks);
1731
1732/*
1733 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1734 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1735 */
1736int transport_generic_handle_cdb(
1737	struct se_cmd *cmd)
1738{
1739	if (!cmd->se_lun) {
1740		dump_stack();
1741		pr_err("cmd->se_lun is NULL\n");
1742		return -EINVAL;
1743	}
 
 
 
 
 
 
 
 
 
 
1744
1745	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
 
1746	return 0;
1747}
1748EXPORT_SYMBOL(transport_generic_handle_cdb);
1749
1750static void transport_generic_request_failure(struct se_cmd *,
1751			struct se_device *, int, int);
1752/*
1753 * Used by fabric module frontends to queue tasks directly.
1754 * Many only be used from process context only
1755 */
1756int transport_handle_cdb_direct(
1757	struct se_cmd *cmd)
1758{
1759	int ret;
 
 
1760
1761	if (!cmd->se_lun) {
1762		dump_stack();
1763		pr_err("cmd->se_lun is NULL\n");
1764		return -EINVAL;
1765	}
1766	if (in_interrupt()) {
1767		dump_stack();
1768		pr_err("transport_generic_handle_cdb cannot be called"
1769				" from interrupt context\n");
1770		return -EINVAL;
1771	}
1772	/*
1773	 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1774	 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1775	 * in existing usage to ensure that outstanding descriptors are handled
1776	 * correctly during shutdown via transport_generic_wait_for_tasks()
1777	 *
1778	 * Also, we don't take cmd->t_state_lock here as we only expect
1779	 * this to be called for initial descriptor submission.
1780	 */
1781	cmd->t_state = TRANSPORT_NEW_CMD;
1782	atomic_set(&cmd->t_transport_active, 1);
 
1783	/*
1784	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1785	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1786	 * and call transport_generic_request_failure() if necessary..
1787	 */
1788	ret = transport_generic_new_cmd(cmd);
1789	if (ret == -EAGAIN)
1790		return 0;
1791	else if (ret < 0) {
1792		cmd->transport_error_status = ret;
1793		transport_generic_request_failure(cmd, NULL, 0,
1794				(cmd->data_direction != DMA_TO_DEVICE));
1795	}
1796	return 0;
1797}
1798EXPORT_SYMBOL(transport_handle_cdb_direct);
1799
1800/*
1801 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1802 * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1803 * complete setup in TCM process context w/ TFO->new_cmd_map().
1804 */
1805int transport_generic_handle_cdb_map(
1806	struct se_cmd *cmd)
1807{
1808	if (!cmd->se_lun) {
1809		dump_stack();
1810		pr_err("cmd->se_lun is NULL\n");
1811		return -EINVAL;
 
 
 
 
 
 
 
 
1812	}
1813
1814	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
 
 
 
 
 
1815	return 0;
1816}
1817EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1818
1819/*	transport_generic_handle_data():
 
 
 
 
 
 
 
 
 
 
 
1820 *
 
 
 
1821 *
 
 
 
1822 */
1823int transport_generic_handle_data(
1824	struct se_cmd *cmd)
 
1825{
 
 
 
 
 
 
 
 
1826	/*
1827	 * For the software fabric case, then we assume the nexus is being
1828	 * failed/shutdown when signals are pending from the kthread context
1829	 * caller, so we return a failure.  For the HW target mode case running
1830	 * in interrupt code, the signal_pending() check is skipped.
1831	 */
1832	if (!in_interrupt() && signal_pending(current))
1833		return -EPERM;
1834	/*
1835	 * If the received CDB has aleady been ABORTED by the generic
1836	 * target engine, we now call transport_check_aborted_status()
1837	 * to queue any delated TASK_ABORTED status for the received CDB to the
1838	 * fabric module as we are expecting no further incoming DATA OUT
1839	 * sequences at this point.
1840	 */
1841	if (transport_check_aborted_status(cmd, 1) != 0)
1842		return 0;
1843
1844	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1845	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846}
1847EXPORT_SYMBOL(transport_generic_handle_data);
1848
1849/*	transport_generic_handle_tmr():
 
 
 
 
 
 
 
 
 
 
1850 *
 
 
 
1851 *
 
 
1852 */
1853int transport_generic_handle_tmr(
1854	struct se_cmd *cmd)
 
 
 
1855{
1856	/*
1857	 * This is needed for early exceptions.
1858	 */
1859	cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1860
1861	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1862	return 0;
1863}
1864EXPORT_SYMBOL(transport_generic_handle_tmr);
1865
1866void transport_generic_free_cmd_intr(
1867	struct se_cmd *cmd)
1868{
1869	transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1870}
1871EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1872
1873static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1874{
1875	struct se_task *task, *task_tmp;
1876	unsigned long flags;
1877	int ret = 0;
 
1878
1879	pr_debug("ITT[0x%08x] - Stopping tasks\n",
1880		cmd->se_tfo->get_task_tag(cmd));
 
1881
1882	/*
1883	 * No tasks remain in the execution queue
 
1884	 */
1885	spin_lock_irqsave(&cmd->t_state_lock, flags);
1886	list_for_each_entry_safe(task, task_tmp,
1887				&cmd->t_task_list, t_list) {
1888		pr_debug("task_no[%d] - Processing task %p\n",
1889				task->task_no, task);
1890		/*
1891		 * If the struct se_task has not been sent and is not active,
1892		 * remove the struct se_task from the execution queue.
1893		 */
1894		if (!atomic_read(&task->task_sent) &&
1895		    !atomic_read(&task->task_active)) {
1896			spin_unlock_irqrestore(&cmd->t_state_lock,
1897					flags);
1898			transport_remove_task_from_execute_queue(task,
1899					task->se_dev);
1900
1901			pr_debug("task_no[%d] - Removed from execute queue\n",
1902				task->task_no);
1903			spin_lock_irqsave(&cmd->t_state_lock, flags);
1904			continue;
1905		}
1906
1907		/*
1908		 * If the struct se_task is active, sleep until it is returned
1909		 * from the plugin.
1910		 */
1911		if (atomic_read(&task->task_active)) {
1912			atomic_set(&task->task_stop, 1);
1913			spin_unlock_irqrestore(&cmd->t_state_lock,
1914					flags);
1915
1916			pr_debug("task_no[%d] - Waiting to complete\n",
1917				task->task_no);
1918			wait_for_completion(&task->task_stop_comp);
1919			pr_debug("task_no[%d] - Stopped successfully\n",
1920				task->task_no);
1921
1922			spin_lock_irqsave(&cmd->t_state_lock, flags);
1923			atomic_dec(&cmd->t_task_cdbs_left);
 
 
 
1924
1925			atomic_set(&task->task_active, 0);
1926			atomic_set(&task->task_stop, 0);
1927		} else {
1928			pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1929			ret++;
1930		}
1931
1932		__transport_stop_task_timer(task, &flags);
1933	}
1934	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 
1935
1936	return ret;
 
 
1937}
 
1938
1939/*
1940 * Handle SAM-esque emulation for generic transport request failures.
 
 
 
 
1941 */
1942static void transport_generic_request_failure(
1943	struct se_cmd *cmd,
1944	struct se_device *dev,
1945	int complete,
1946	int sc)
1947{
1948	int ret = 0;
1949
1950	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1951		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1952		cmd->t_task_cdb[0]);
1953	pr_debug("-----[ i_state: %d t_state/def_t_state:"
1954		" %d/%d transport_error_status: %d\n",
1955		cmd->se_tfo->get_cmd_state(cmd),
1956		cmd->t_state, cmd->deferred_t_state,
1957		cmd->transport_error_status);
1958	pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1959		" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1960		" t_transport_active: %d t_transport_stop: %d"
1961		" t_transport_sent: %d\n", cmd->t_task_list_num,
1962		atomic_read(&cmd->t_task_cdbs_left),
1963		atomic_read(&cmd->t_task_cdbs_sent),
1964		atomic_read(&cmd->t_task_cdbs_ex_left),
1965		atomic_read(&cmd->t_transport_active),
1966		atomic_read(&cmd->t_transport_stop),
1967		atomic_read(&cmd->t_transport_sent));
1968
1969	transport_stop_all_task_timers(cmd);
1970
1971	if (dev)
1972		atomic_inc(&dev->depth_left);
1973	/*
1974	 * For SAM Task Attribute emulation for failed struct se_cmd
1975	 */
1976	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1977		transport_complete_task_attr(cmd);
1978
1979	if (complete) {
1980		transport_direct_request_timeout(cmd);
1981		cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1982	}
1983
1984	switch (cmd->transport_error_status) {
1985	case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1986		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1987		break;
1988	case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1989		cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1990		break;
1991	case PYX_TRANSPORT_INVALID_CDB_FIELD:
1992		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1993		break;
1994	case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1995		cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1996		break;
1997	case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1998		if (!sc)
1999			transport_new_cmd_failure(cmd);
2000		/*
2001		 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2002		 * we force this session to fall back to session
2003		 * recovery.
 
 
 
2004		 */
2005		cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2006		cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
 
 
2007
2008		goto check_stop;
2009	case PYX_TRANSPORT_LU_COMM_FAILURE:
2010	case PYX_TRANSPORT_ILLEGAL_REQUEST:
2011		cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2012		break;
2013	case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2014		cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2015		break;
2016	case PYX_TRANSPORT_WRITE_PROTECTED:
2017		cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2018		break;
2019	case PYX_TRANSPORT_RESERVATION_CONFLICT:
2020		/*
2021		 * No SENSE Data payload for this case, set SCSI Status
2022		 * and queue the response to $FABRIC_MOD.
2023		 *
2024		 * Uses linux/include/scsi/scsi.h SAM status codes defs
2025		 */
2026		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2027		/*
2028		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2029		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2030		 * CONFLICT STATUS.
2031		 *
2032		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2033		 */
2034		if (cmd->se_sess &&
2035		    cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2036			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2037				cmd->orig_fe_lun, 0x2C,
2038				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2039
2040		ret = cmd->se_tfo->queue_status(cmd);
2041		if (ret == -EAGAIN)
2042			goto queue_full;
2043		goto check_stop;
2044	case PYX_TRANSPORT_USE_SENSE_REASON:
2045		/*
2046		 * struct se_cmd->scsi_sense_reason already set
2047		 */
2048		break;
2049	default:
2050		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2051			cmd->t_task_cdb[0],
2052			cmd->transport_error_status);
2053		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2054		break;
2055	}
2056	/*
2057	 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2058	 * make the call to transport_send_check_condition_and_sense()
2059	 * directly.  Otherwise expect the fabric to make the call to
2060	 * transport_send_check_condition_and_sense() after handling
2061	 * possible unsoliticied write data payloads.
2062	 */
2063	if (!sc && !cmd->se_tfo->new_cmd_map)
2064		transport_new_cmd_failure(cmd);
2065	else {
2066		ret = transport_send_check_condition_and_sense(cmd,
2067				cmd->scsi_sense_reason, 0);
2068		if (ret == -EAGAIN)
2069			goto queue_full;
2070	}
2071
2072check_stop:
2073	transport_lun_remove_cmd(cmd);
2074	if (!transport_cmd_check_stop_to_fabric(cmd))
2075		;
2076	return;
2077
2078queue_full:
2079	cmd->t_state = TRANSPORT_COMPLETE_OK;
2080	transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2081}
 
2082
2083static void transport_direct_request_timeout(struct se_cmd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084{
2085	unsigned long flags;
2086
2087	spin_lock_irqsave(&cmd->t_state_lock, flags);
2088	if (!atomic_read(&cmd->t_transport_timeout)) {
2089		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 
2090		return;
2091	}
2092	if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2093		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2094		return;
2095	}
2096
2097	atomic_sub(atomic_read(&cmd->t_transport_timeout),
2098		   &cmd->t_se_count);
2099	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2100}
 
2101
2102static void transport_generic_request_timeout(struct se_cmd *cmd)
2103{
2104	unsigned long flags;
2105
2106	/*
2107	 * Reset cmd->t_se_count to allow transport_generic_remove()
2108	 * to allow last call to free memory resources.
2109	 */
2110	spin_lock_irqsave(&cmd->t_state_lock, flags);
2111	if (atomic_read(&cmd->t_transport_timeout) > 1) {
2112		int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2113
2114		atomic_sub(tmp, &cmd->t_se_count);
2115	}
2116	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2117
2118	transport_generic_remove(cmd, 0);
2119}
2120
2121static inline u32 transport_lba_21(unsigned char *cdb)
2122{
2123	return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2124}
2125
2126static inline u32 transport_lba_32(unsigned char *cdb)
2127{
2128	return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2129}
2130
2131static inline unsigned long long transport_lba_64(unsigned char *cdb)
2132{
2133	unsigned int __v1, __v2;
2134
2135	__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2136	__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2137
2138	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2139}
2140
2141/*
2142 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2143 */
2144static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2145{
2146	unsigned int __v1, __v2;
2147
2148	__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2149	__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
 
2150
2151	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
 
 
 
 
 
 
 
2152}
2153
2154static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2155{
2156	unsigned long flags;
2157
2158	spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2159	se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2160	spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2161}
2162
2163/*
2164 * Called from interrupt context.
2165 */
2166static void transport_task_timeout_handler(unsigned long data)
2167{
2168	struct se_task *task = (struct se_task *)data;
2169	struct se_cmd *cmd = task->task_se_cmd;
2170	unsigned long flags;
 
 
2171
2172	pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2173
2174	spin_lock_irqsave(&cmd->t_state_lock, flags);
2175	if (task->task_flags & TF_STOP) {
2176		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2177		return;
2178	}
2179	task->task_flags &= ~TF_RUNNING;
2180
2181	/*
2182	 * Determine if transport_complete_task() has already been called.
2183	 */
2184	if (!atomic_read(&task->task_active)) {
2185		pr_debug("transport task: %p cmd: %p timeout task_active"
2186				" == 0\n", task, cmd);
2187		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2188		return;
2189	}
2190
2191	atomic_inc(&cmd->t_se_count);
2192	atomic_inc(&cmd->t_transport_timeout);
2193	cmd->t_tasks_failed = 1;
2194
2195	atomic_set(&task->task_timeout, 1);
2196	task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2197	task->task_scsi_status = 1;
2198
2199	if (atomic_read(&task->task_stop)) {
2200		pr_debug("transport task: %p cmd: %p timeout task_stop"
2201				" == 1\n", task, cmd);
2202		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2203		complete(&task->task_stop_comp);
2204		return;
2205	}
2206
2207	if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2208		pr_debug("transport task: %p cmd: %p timeout non zero"
2209				" t_task_cdbs_left\n", task, cmd);
2210		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2211		return;
2212	}
2213	pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2214			task, cmd);
2215
2216	cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2217	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2218
2219	transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2220}
2221
2222/*
2223 * Called with cmd->t_state_lock held.
 
2224 */
2225static void transport_start_task_timer(struct se_task *task)
2226{
2227	struct se_device *dev = task->se_dev;
2228	int timeout;
2229
2230	if (task->task_flags & TF_RUNNING)
2231		return;
2232	/*
2233	 * If the task_timeout is disabled, exit now.
2234	 */
2235	timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2236	if (!timeout)
2237		return;
2238
2239	init_timer(&task->task_timer);
2240	task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2241	task->task_timer.data = (unsigned long) task;
2242	task->task_timer.function = transport_task_timeout_handler;
2243
2244	task->task_flags |= TF_RUNNING;
2245	add_timer(&task->task_timer);
2246#if 0
2247	pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2248		" %d\n", task->task_se_cmd, task, timeout);
2249#endif
2250}
 
2251
2252/*
2253 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2254 */
2255void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2256{
2257	struct se_cmd *cmd = task->task_se_cmd;
2258
2259	if (!task->task_flags & TF_RUNNING)
2260		return;
2261
2262	task->task_flags |= TF_STOP;
2263	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2264
2265	del_timer_sync(&task->task_timer);
2266
2267	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2268	task->task_flags &= ~TF_RUNNING;
2269	task->task_flags &= ~TF_STOP;
2270}
2271
2272static void transport_stop_all_task_timers(struct se_cmd *cmd)
2273{
2274	struct se_task *task = NULL, *task_tmp;
2275	unsigned long flags;
2276
2277	spin_lock_irqsave(&cmd->t_state_lock, flags);
2278	list_for_each_entry_safe(task, task_tmp,
2279				&cmd->t_task_list, t_list)
2280		__transport_stop_task_timer(task, &flags);
2281	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2282}
 
 
 
 
 
2283
2284static inline int transport_tcq_window_closed(struct se_device *dev)
 
 
 
2285{
2286	if (dev->dev_tcq_window_closed++ <
2287			PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2288		msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2289	} else
2290		msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2291
2292	wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2293	return 0;
2294}
2295
2296/*
2297 * Called from Fabric Module context from transport_execute_tasks()
2298 *
2299 * The return of this function determins if the tasks from struct se_cmd
2300 * get added to the execution queue in transport_execute_tasks(),
2301 * or are added to the delayed or ordered lists here.
2302 */
2303static inline int transport_execute_task_attr(struct se_cmd *cmd)
2304{
2305	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2306		return 1;
2307	/*
2308	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2309	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2310	 */
2311	 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2312		atomic_inc(&cmd->se_dev->dev_hoq_count);
2313		smp_mb__after_atomic_inc();
2314		pr_debug("Added HEAD_OF_QUEUE for CDB:"
2315			" 0x%02x, se_ordered_id: %u\n",
2316			cmd->t_task_cdb[0],
2317			cmd->se_ordered_id);
2318		return 1;
2319	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2320		spin_lock(&cmd->se_dev->ordered_cmd_lock);
2321		list_add_tail(&cmd->se_ordered_node,
2322				&cmd->se_dev->ordered_cmd_list);
2323		spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2324
2325		atomic_inc(&cmd->se_dev->dev_ordered_sync);
2326		smp_mb__after_atomic_inc();
2327
2328		pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2329				" list, se_ordered_id: %u\n",
2330				cmd->t_task_cdb[0],
2331				cmd->se_ordered_id);
2332		/*
2333		 * Add ORDERED command to tail of execution queue if
2334		 * no other older commands exist that need to be
2335		 * completed first.
2336		 */
2337		if (!atomic_read(&cmd->se_dev->simple_cmds))
2338			return 1;
2339	} else {
2340		/*
2341		 * For SIMPLE and UNTAGGED Task Attribute commands
2342		 */
2343		atomic_inc(&cmd->se_dev->simple_cmds);
2344		smp_mb__after_atomic_inc();
2345	}
2346	/*
2347	 * Otherwise if one or more outstanding ORDERED task attribute exist,
2348	 * add the dormant task(s) built for the passed struct se_cmd to the
2349	 * execution queue and become in Active state for this struct se_device.
2350	 */
2351	if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2352		/*
2353		 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2354		 * will be drained upon completion of HEAD_OF_QUEUE task.
2355		 */
2356		spin_lock(&cmd->se_dev->delayed_cmd_lock);
2357		cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2358		list_add_tail(&cmd->se_delayed_node,
2359				&cmd->se_dev->delayed_cmd_list);
2360		spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2361
2362		pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2363			" delayed CMD list, se_ordered_id: %u\n",
2364			cmd->t_task_cdb[0], cmd->sam_task_attr,
2365			cmd->se_ordered_id);
2366		/*
2367		 * Return zero to let transport_execute_tasks() know
2368		 * not to add the delayed tasks to the execution list.
2369		 */
2370		return 0;
2371	}
2372	/*
2373	 * Otherwise, no ORDERED task attributes exist..
2374	 */
2375	return 1;
2376}
2377
2378/*
2379 * Called from fabric module context in transport_generic_new_cmd() and
2380 * transport_generic_process_write()
2381 */
2382static int transport_execute_tasks(struct se_cmd *cmd)
2383{
2384	int add_tasks;
2385
2386	if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2387		cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2388		transport_generic_request_failure(cmd, NULL, 0, 1);
2389		return 0;
 
2390	}
2391
 
 
 
 
 
 
 
2392	/*
2393	 * Call transport_cmd_check_stop() to see if a fabric exception
2394	 * has occurred that prevents execution.
2395	 */
2396	if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2397		/*
2398		 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2399		 * attribute for the tasks of the received struct se_cmd CDB
2400		 */
2401		add_tasks = transport_execute_task_attr(cmd);
2402		if (!add_tasks)
2403			goto execute_tasks;
2404		/*
2405		 * This calls transport_add_tasks_from_cmd() to handle
2406		 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2407		 * (if enabled) in __transport_add_task_to_execute_queue() and
2408		 * transport_add_task_check_sam_attr().
2409		 */
2410		transport_add_tasks_from_cmd(cmd);
2411	}
2412	/*
2413	 * Kick the execution queue for the cmd associated struct se_device
2414	 * storage object.
2415	 */
2416execute_tasks:
2417	__transport_execute_tasks(cmd->se_dev);
 
2418	return 0;
2419}
 
2420
2421/*
2422 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2423 * from struct se_device->execute_task_list and
2424 *
2425 * Called from transport_processing_thread()
2426 */
2427static int __transport_execute_tasks(struct se_device *dev)
 
2428{
2429	int error;
2430	struct se_cmd *cmd = NULL;
2431	struct se_task *task = NULL;
2432	unsigned long flags;
 
2433
2434	/*
2435	 * Check if there is enough room in the device and HBA queue to send
2436	 * struct se_tasks to the selected transport.
2437	 */
2438check_depth:
2439	if (!atomic_read(&dev->depth_left))
2440		return transport_tcq_window_closed(dev);
2441
2442	dev->dev_tcq_window_closed = 0;
2443
2444	spin_lock_irq(&dev->execute_task_lock);
2445	if (list_empty(&dev->execute_task_list)) {
2446		spin_unlock_irq(&dev->execute_task_lock);
2447		return 0;
2448	}
2449	task = list_first_entry(&dev->execute_task_list,
2450				struct se_task, t_execute_list);
2451	list_del(&task->t_execute_list);
2452	atomic_set(&task->task_execute_queue, 0);
2453	atomic_dec(&dev->execute_tasks);
2454	spin_unlock_irq(&dev->execute_task_lock);
2455
2456	atomic_dec(&dev->depth_left);
2457
2458	cmd = task->task_se_cmd;
 
2459
2460	spin_lock_irqsave(&cmd->t_state_lock, flags);
2461	atomic_set(&task->task_active, 1);
2462	atomic_set(&task->task_sent, 1);
2463	atomic_inc(&cmd->t_task_cdbs_sent);
2464
2465	if (atomic_read(&cmd->t_task_cdbs_sent) ==
2466	    cmd->t_task_list_num)
2467		atomic_set(&cmd->transport_sent, 1);
2468
2469	transport_start_task_timer(task);
2470	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2471	/*
2472	 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2473	 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2474	 * struct se_subsystem_api->do_task() caller below.
2475	 */
2476	if (cmd->transport_emulate_cdb) {
2477		error = cmd->transport_emulate_cdb(cmd);
2478		if (error != 0) {
2479			cmd->transport_error_status = error;
2480			atomic_set(&task->task_active, 0);
2481			atomic_set(&cmd->transport_sent, 0);
2482			transport_stop_tasks_for_cmd(cmd);
2483			transport_generic_request_failure(cmd, dev, 0, 1);
2484			goto check_depth;
2485		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486		/*
2487		 * Handle the successful completion for transport_emulate_cdb()
2488		 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2489		 * Otherwise the caller is expected to complete the task with
2490		 * proper status.
2491		 */
2492		if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2493			cmd->scsi_status = SAM_STAT_GOOD;
2494			task->task_scsi_status = GOOD;
2495			transport_complete_task(task, 1);
2496		}
2497	} else {
2498		/*
2499		 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2500		 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2501		 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2502		 * LUN emulation code.
2503		 *
2504		 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2505		 * call ->do_task() directly and let the underlying TCM subsystem plugin
2506		 * code handle the CDB emulation.
2507		 */
2508		if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2509		    (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2510			error = transport_emulate_control_cdb(task);
2511		else
2512			error = dev->transport->do_task(task);
2513
2514		if (error != 0) {
2515			cmd->transport_error_status = error;
2516			atomic_set(&task->task_active, 0);
2517			atomic_set(&cmd->transport_sent, 0);
2518			transport_stop_tasks_for_cmd(cmd);
2519			transport_generic_request_failure(cmd, dev, 0, 1);
2520		}
 
 
 
 
 
 
 
2521	}
2522
2523	goto check_depth;
 
 
2524
2525	return 0;
2526}
 
 
2527
2528void transport_new_cmd_failure(struct se_cmd *se_cmd)
2529{
2530	unsigned long flags;
2531	/*
2532	 * Any unsolicited data will get dumped for failed command inside of
2533	 * the fabric plugin
2534	 */
2535	spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2536	se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2537	se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2538	spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2539}
 
2540
2541static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2542
2543static inline u32 transport_get_sectors_6(
2544	unsigned char *cdb,
2545	struct se_cmd *cmd,
2546	int *ret)
2547{
2548	struct se_device *dev = cmd->se_dev;
2549
2550	/*
2551	 * Assume TYPE_DISK for non struct se_device objects.
2552	 * Use 8-bit sector value.
2553	 */
2554	if (!dev)
2555		goto type_disk;
2556
2557	/*
2558	 * Use 24-bit allocation length for TYPE_TAPE.
2559	 */
2560	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2561		return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2562
2563	/*
2564	 * Everything else assume TYPE_DISK Sector CDB location.
2565	 * Use 8-bit sector value.
2566	 */
2567type_disk:
2568	return (u32)cdb[4];
2569}
2570
2571static inline u32 transport_get_sectors_10(
2572	unsigned char *cdb,
2573	struct se_cmd *cmd,
2574	int *ret)
2575{
2576	struct se_device *dev = cmd->se_dev;
 
 
 
 
 
 
 
 
2577
2578	/*
2579	 * Assume TYPE_DISK for non struct se_device objects.
2580	 * Use 16-bit sector value.
2581	 */
2582	if (!dev)
2583		goto type_disk;
2584
2585	/*
2586	 * XXX_10 is not defined in SSC, throw an exception
2587	 */
2588	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2589		*ret = -EINVAL;
2590		return 0;
2591	}
2592
2593	/*
2594	 * Everything else assume TYPE_DISK Sector CDB location.
2595	 * Use 16-bit sector value.
2596	 */
2597type_disk:
2598	return (u32)(cdb[7] << 8) + cdb[8];
 
 
 
2599}
2600
2601static inline u32 transport_get_sectors_12(
2602	unsigned char *cdb,
2603	struct se_cmd *cmd,
2604	int *ret)
2605{
2606	struct se_device *dev = cmd->se_dev;
2607
2608	/*
2609	 * Assume TYPE_DISK for non struct se_device objects.
2610	 * Use 32-bit sector value.
2611	 */
2612	if (!dev)
2613		goto type_disk;
 
 
 
 
 
 
 
2614
2615	/*
2616	 * XXX_12 is not defined in SSC, throw an exception
2617	 */
2618	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2619		*ret = -EINVAL;
2620		return 0;
 
 
 
 
 
 
 
2621	}
2622
2623	/*
2624	 * Everything else assume TYPE_DISK Sector CDB location.
2625	 * Use 32-bit sector value.
2626	 */
2627type_disk:
2628	return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2629}
2630
2631static inline u32 transport_get_sectors_16(
2632	unsigned char *cdb,
2633	struct se_cmd *cmd,
2634	int *ret)
2635{
2636	struct se_device *dev = cmd->se_dev;
2637
2638	/*
2639	 * Assume TYPE_DISK for non struct se_device objects.
2640	 * Use 32-bit sector value.
2641	 */
2642	if (!dev)
2643		goto type_disk;
2644
2645	/*
2646	 * Use 24-bit allocation length for TYPE_TAPE.
2647	 */
2648	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2649		return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2650
2651type_disk:
2652	return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2653		    (cdb[12] << 8) + cdb[13];
2654}
2655
2656/*
2657 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2658 */
2659static inline u32 transport_get_sectors_32(
2660	unsigned char *cdb,
2661	struct se_cmd *cmd,
2662	int *ret)
2663{
2664	/*
2665	 * Assume TYPE_DISK for non struct se_device objects.
2666	 * Use 32-bit sector value.
2667	 */
2668	return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2669		    (cdb[30] << 8) + cdb[31];
2670
2671}
2672
2673static inline u32 transport_get_size(
2674	u32 sectors,
2675	unsigned char *cdb,
2676	struct se_cmd *cmd)
2677{
2678	struct se_device *dev = cmd->se_dev;
2679
2680	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2681		if (cdb[1] & 1) { /* sectors */
2682			return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2683		} else /* bytes */
2684			return sectors;
2685	}
2686#if 0
2687	pr_debug("Returning block_size: %u, sectors: %u == %u for"
2688			" %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2689			dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2690			dev->transport->name);
2691#endif
2692	return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2693}
2694
2695static void transport_xor_callback(struct se_cmd *cmd)
2696{
2697	unsigned char *buf, *addr;
2698	struct scatterlist *sg;
2699	unsigned int offset;
2700	int i;
2701	int count;
2702	/*
2703	 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2704	 *
2705	 * 1) read the specified logical block(s);
2706	 * 2) transfer logical blocks from the data-out buffer;
2707	 * 3) XOR the logical blocks transferred from the data-out buffer with
2708	 *    the logical blocks read, storing the resulting XOR data in a buffer;
2709	 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2710	 *    blocks transferred from the data-out buffer; and
2711	 * 5) transfer the resulting XOR data to the data-in buffer.
2712	 */
2713	buf = kmalloc(cmd->data_length, GFP_KERNEL);
2714	if (!buf) {
2715		pr_err("Unable to allocate xor_callback buf\n");
2716		return;
2717	}
2718	/*
2719	 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2720	 * into the locally allocated *buf
2721	 */
2722	sg_copy_to_buffer(cmd->t_data_sg,
2723			  cmd->t_data_nents,
2724			  buf,
2725			  cmd->data_length);
2726
2727	/*
2728	 * Now perform the XOR against the BIDI read memory located at
2729	 * cmd->t_mem_bidi_list
2730	 */
 
 
 
 
 
 
 
 
2731
2732	offset = 0;
2733	for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2734		addr = kmap_atomic(sg_page(sg), KM_USER0);
2735		if (!addr)
2736			goto out;
2737
2738		for (i = 0; i < sg->length; i++)
2739			*(addr + sg->offset + i) ^= *(buf + offset + i);
2740
2741		offset += sg->length;
2742		kunmap_atomic(addr, KM_USER0);
 
2743	}
2744
2745out:
2746	kfree(buf);
2747}
2748
2749/*
2750 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2751 */
2752static int transport_get_sense_data(struct se_cmd *cmd)
2753{
2754	unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2755	struct se_device *dev;
2756	struct se_task *task = NULL, *task_tmp;
2757	unsigned long flags;
2758	u32 offset = 0;
2759
2760	WARN_ON(!cmd->se_lun);
2761
2762	spin_lock_irqsave(&cmd->t_state_lock, flags);
2763	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2764		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2765		return 0;
2766	}
2767
2768	list_for_each_entry_safe(task, task_tmp,
2769				&cmd->t_task_list, t_list) {
 
2770
2771		if (!task->task_sense)
2772			continue;
2773
2774		dev = task->se_dev;
2775		if (!dev)
2776			continue;
2777
2778		if (!dev->transport->get_sense_buffer) {
2779			pr_err("dev->transport->get_sense_buffer"
2780					" is NULL\n");
2781			continue;
2782		}
2783
2784		sense_buffer = dev->transport->get_sense_buffer(task);
2785		if (!sense_buffer) {
2786			pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2787				" sense buffer for task with sense\n",
2788				cmd->se_tfo->get_task_tag(cmd), task->task_no);
2789			continue;
2790		}
2791		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2792
2793		offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2794				TRANSPORT_SENSE_BUFFER);
2795
2796		memcpy(&buffer[offset], sense_buffer,
2797				TRANSPORT_SENSE_BUFFER);
2798		cmd->scsi_status = task->task_scsi_status;
2799		/* Automatically padded */
2800		cmd->scsi_sense_length =
2801				(TRANSPORT_SENSE_BUFFER + offset);
2802
2803		pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2804				" and sense\n",
2805			dev->se_hba->hba_id, dev->transport->name,
2806				cmd->scsi_status);
2807		return 0;
2808	}
2809	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2810
2811	return -1;
 
 
 
 
 
 
 
 
2812}
2813
2814static int
2815transport_handle_reservation_conflict(struct se_cmd *cmd)
2816{
2817	cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2818	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2819	cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2820	cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2821	/*
2822	 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2823	 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2824	 * CONFLICT STATUS.
2825	 *
2826	 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2827	 */
2828	if (cmd->se_sess &&
2829	    cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2830		core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2831			cmd->orig_fe_lun, 0x2C,
2832			ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2833	return -EINVAL;
2834}
2835
2836static inline long long transport_dev_end_lba(struct se_device *dev)
2837{
2838	return dev->transport->get_blocks(dev) + 1;
2839}
2840
2841static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2842{
2843	struct se_device *dev = cmd->se_dev;
2844	u32 sectors;
2845
2846	if (dev->transport->get_device_type(dev) != TYPE_DISK)
2847		return 0;
2848
2849	sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2850
2851	if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2852		pr_err("LBA: %llu Sectors: %u exceeds"
2853			" transport_dev_end_lba(): %llu\n",
2854			cmd->t_task_lba, sectors,
2855			transport_dev_end_lba(dev));
2856		return -EINVAL;
2857	}
2858
2859	return 0;
2860}
2861
2862static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2863{
2864	/*
2865	 * Determine if the received WRITE_SAME is used to for direct
2866	 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2867	 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2868	 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2869	 */
2870	int passthrough = (dev->transport->transport_type ==
2871				TRANSPORT_PLUGIN_PHBA_PDEV);
2872
2873	if (!passthrough) {
2874		if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2875			pr_err("WRITE_SAME PBDATA and LBDATA"
2876				" bits not supported for Block Discard"
2877				" Emulation\n");
2878			return -ENOSYS;
2879		}
2880		/*
2881		 * Currently for the emulated case we only accept
2882		 * tpws with the UNMAP=1 bit set.
2883		 */
2884		if (!(flags[0] & 0x08)) {
2885			pr_err("WRITE_SAME w/o UNMAP bit not"
2886				" supported for Block Discard Emulation\n");
2887			return -ENOSYS;
2888		}
2889	}
2890
2891	return 0;
2892}
 
2893
2894/*	transport_generic_cmd_sequencer():
2895 *
2896 *	Generic Command Sequencer that should work for most DAS transport
2897 *	drivers.
2898 *
2899 *	Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2900 *	RX Thread.
2901 *
2902 *	FIXME: Need to support other SCSI OPCODES where as well.
2903 */
2904static int transport_generic_cmd_sequencer(
2905	struct se_cmd *cmd,
2906	unsigned char *cdb)
2907{
2908	struct se_device *dev = cmd->se_dev;
2909	struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2910	int ret = 0, sector_ret = 0, passthrough;
2911	u32 sectors = 0, size = 0, pr_reg_type = 0;
2912	u16 service_action;
2913	u8 alua_ascq = 0;
2914	/*
2915	 * Check for an existing UNIT ATTENTION condition
2916	 */
2917	if (core_scsi3_ua_check(cmd, cdb) < 0) {
2918		cmd->transport_wait_for_tasks =
2919				&transport_nop_wait_for_tasks;
2920		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2921		cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2922		return -EINVAL;
2923	}
2924	/*
2925	 * Check status of Asymmetric Logical Unit Assignment port
2926	 */
2927	ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2928	if (ret != 0) {
2929		cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2930		/*
2931		 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2932		 * The ALUA additional sense code qualifier (ASCQ) is determined
2933		 * by the ALUA primary or secondary access state..
2934		 */
2935		if (ret > 0) {
2936#if 0
2937			pr_debug("[%s]: ALUA TG Port not available,"
2938				" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2939				cmd->se_tfo->get_fabric_name(), alua_ascq);
2940#endif
2941			transport_set_sense_codes(cmd, 0x04, alua_ascq);
2942			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2943			cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2944			return -EINVAL;
2945		}
2946		goto out_invalid_cdb_field;
2947	}
2948	/*
2949	 * Check status for SPC-3 Persistent Reservations
2950	 */
2951	if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2952		if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2953					cmd, cdb, pr_reg_type) != 0)
2954			return transport_handle_reservation_conflict(cmd);
2955		/*
2956		 * This means the CDB is allowed for the SCSI Initiator port
2957		 * when said port is *NOT* holding the legacy SPC-2 or
2958		 * SPC-3 Persistent Reservation.
2959		 */
2960	}
2961
2962	switch (cdb[0]) {
2963	case READ_6:
2964		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2965		if (sector_ret)
2966			goto out_unsupported_cdb;
2967		size = transport_get_size(sectors, cdb, cmd);
2968		cmd->transport_split_cdb = &split_cdb_XX_6;
2969		cmd->t_task_lba = transport_lba_21(cdb);
2970		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2971		break;
2972	case READ_10:
2973		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2974		if (sector_ret)
2975			goto out_unsupported_cdb;
2976		size = transport_get_size(sectors, cdb, cmd);
2977		cmd->transport_split_cdb = &split_cdb_XX_10;
2978		cmd->t_task_lba = transport_lba_32(cdb);
2979		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2980		break;
2981	case READ_12:
2982		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2983		if (sector_ret)
2984			goto out_unsupported_cdb;
2985		size = transport_get_size(sectors, cdb, cmd);
2986		cmd->transport_split_cdb = &split_cdb_XX_12;
2987		cmd->t_task_lba = transport_lba_32(cdb);
2988		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2989		break;
2990	case READ_16:
2991		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2992		if (sector_ret)
2993			goto out_unsupported_cdb;
2994		size = transport_get_size(sectors, cdb, cmd);
2995		cmd->transport_split_cdb = &split_cdb_XX_16;
2996		cmd->t_task_lba = transport_lba_64(cdb);
2997		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2998		break;
2999	case WRITE_6:
3000		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3001		if (sector_ret)
3002			goto out_unsupported_cdb;
3003		size = transport_get_size(sectors, cdb, cmd);
3004		cmd->transport_split_cdb = &split_cdb_XX_6;
3005		cmd->t_task_lba = transport_lba_21(cdb);
3006		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3007		break;
3008	case WRITE_10:
3009		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3010		if (sector_ret)
3011			goto out_unsupported_cdb;
3012		size = transport_get_size(sectors, cdb, cmd);
3013		cmd->transport_split_cdb = &split_cdb_XX_10;
3014		cmd->t_task_lba = transport_lba_32(cdb);
3015		cmd->t_tasks_fua = (cdb[1] & 0x8);
3016		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3017		break;
3018	case WRITE_12:
3019		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3020		if (sector_ret)
3021			goto out_unsupported_cdb;
3022		size = transport_get_size(sectors, cdb, cmd);
3023		cmd->transport_split_cdb = &split_cdb_XX_12;
3024		cmd->t_task_lba = transport_lba_32(cdb);
3025		cmd->t_tasks_fua = (cdb[1] & 0x8);
3026		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3027		break;
3028	case WRITE_16:
3029		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3030		if (sector_ret)
3031			goto out_unsupported_cdb;
3032		size = transport_get_size(sectors, cdb, cmd);
3033		cmd->transport_split_cdb = &split_cdb_XX_16;
3034		cmd->t_task_lba = transport_lba_64(cdb);
3035		cmd->t_tasks_fua = (cdb[1] & 0x8);
3036		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3037		break;
3038	case XDWRITEREAD_10:
3039		if ((cmd->data_direction != DMA_TO_DEVICE) ||
3040		    !(cmd->t_tasks_bidi))
3041			goto out_invalid_cdb_field;
3042		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3043		if (sector_ret)
3044			goto out_unsupported_cdb;
3045		size = transport_get_size(sectors, cdb, cmd);
3046		cmd->transport_split_cdb = &split_cdb_XX_10;
3047		cmd->t_task_lba = transport_lba_32(cdb);
3048		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3049		passthrough = (dev->transport->transport_type ==
3050				TRANSPORT_PLUGIN_PHBA_PDEV);
3051		/*
3052		 * Skip the remaining assignments for TCM/PSCSI passthrough
3053		 */
3054		if (passthrough)
3055			break;
3056		/*
3057		 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3058		 */
3059		cmd->transport_complete_callback = &transport_xor_callback;
3060		cmd->t_tasks_fua = (cdb[1] & 0x8);
3061		break;
3062	case VARIABLE_LENGTH_CMD:
3063		service_action = get_unaligned_be16(&cdb[8]);
3064		/*
3065		 * Determine if this is TCM/PSCSI device and we should disable
3066		 * internal emulation for this CDB.
3067		 */
3068		passthrough = (dev->transport->transport_type ==
3069					TRANSPORT_PLUGIN_PHBA_PDEV);
3070
3071		switch (service_action) {
3072		case XDWRITEREAD_32:
3073			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3074			if (sector_ret)
3075				goto out_unsupported_cdb;
3076			size = transport_get_size(sectors, cdb, cmd);
3077			/*
3078			 * Use WRITE_32 and READ_32 opcodes for the emulated
3079			 * XDWRITE_READ_32 logic.
3080			 */
3081			cmd->transport_split_cdb = &split_cdb_XX_32;
3082			cmd->t_task_lba = transport_lba_64_ext(cdb);
3083			cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3084
3085			/*
3086			 * Skip the remaining assignments for TCM/PSCSI passthrough
3087			 */
3088			if (passthrough)
3089				break;
3090
3091			/*
3092			 * Setup BIDI XOR callback to be run during
3093			 * transport_generic_complete_ok()
3094			 */
3095			cmd->transport_complete_callback = &transport_xor_callback;
3096			cmd->t_tasks_fua = (cdb[10] & 0x8);
3097			break;
3098		case WRITE_SAME_32:
3099			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3100			if (sector_ret)
3101				goto out_unsupported_cdb;
3102
3103			if (sectors)
3104				size = transport_get_size(1, cdb, cmd);
3105			else {
3106				pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3107				       " supported\n");
3108				goto out_invalid_cdb_field;
3109			}
3110
3111			cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3112			cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3113
3114			if (target_check_write_same_discard(&cdb[10], dev) < 0)
3115				goto out_invalid_cdb_field;
3116
3117			break;
3118		default:
3119			pr_err("VARIABLE_LENGTH_CMD service action"
3120				" 0x%04x not supported\n", service_action);
3121			goto out_unsupported_cdb;
3122		}
3123		break;
3124	case MAINTENANCE_IN:
3125		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3126			/* MAINTENANCE_IN from SCC-2 */
3127			/*
3128			 * Check for emulated MI_REPORT_TARGET_PGS.
3129			 */
3130			if (cdb[1] == MI_REPORT_TARGET_PGS) {
3131				cmd->transport_emulate_cdb =
3132				(su_dev->t10_alua.alua_type ==
3133				 SPC3_ALUA_EMULATED) ?
3134				core_emulate_report_target_port_groups :
3135				NULL;
3136			}
3137			size = (cdb[6] << 24) | (cdb[7] << 16) |
3138			       (cdb[8] << 8) | cdb[9];
3139		} else {
3140			/* GPCMD_SEND_KEY from multi media commands */
3141			size = (cdb[8] << 8) + cdb[9];
3142		}
3143		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3144		break;
3145	case MODE_SELECT:
3146		size = cdb[4];
3147		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3148		break;
3149	case MODE_SELECT_10:
3150		size = (cdb[7] << 8) + cdb[8];
3151		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3152		break;
3153	case MODE_SENSE:
3154		size = cdb[4];
3155		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3156		break;
3157	case MODE_SENSE_10:
3158	case GPCMD_READ_BUFFER_CAPACITY:
3159	case GPCMD_SEND_OPC:
3160	case LOG_SELECT:
3161	case LOG_SENSE:
3162		size = (cdb[7] << 8) + cdb[8];
3163		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3164		break;
3165	case READ_BLOCK_LIMITS:
3166		size = READ_BLOCK_LEN;
3167		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3168		break;
3169	case GPCMD_GET_CONFIGURATION:
3170	case GPCMD_READ_FORMAT_CAPACITIES:
3171	case GPCMD_READ_DISC_INFO:
3172	case GPCMD_READ_TRACK_RZONE_INFO:
3173		size = (cdb[7] << 8) + cdb[8];
3174		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3175		break;
3176	case PERSISTENT_RESERVE_IN:
3177	case PERSISTENT_RESERVE_OUT:
3178		cmd->transport_emulate_cdb =
3179			(su_dev->t10_pr.res_type ==
3180			 SPC3_PERSISTENT_RESERVATIONS) ?
3181			core_scsi3_emulate_pr : NULL;
3182		size = (cdb[7] << 8) + cdb[8];
3183		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3184		break;
3185	case GPCMD_MECHANISM_STATUS:
3186	case GPCMD_READ_DVD_STRUCTURE:
3187		size = (cdb[8] << 8) + cdb[9];
3188		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3189		break;
3190	case READ_POSITION:
3191		size = READ_POSITION_LEN;
3192		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3193		break;
3194	case MAINTENANCE_OUT:
3195		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3196			/* MAINTENANCE_OUT from SCC-2
3197			 *
3198			 * Check for emulated MO_SET_TARGET_PGS.
3199			 */
3200			if (cdb[1] == MO_SET_TARGET_PGS) {
3201				cmd->transport_emulate_cdb =
3202				(su_dev->t10_alua.alua_type ==
3203					SPC3_ALUA_EMULATED) ?
3204				core_emulate_set_target_port_groups :
3205				NULL;
3206			}
3207
3208			size = (cdb[6] << 24) | (cdb[7] << 16) |
3209			       (cdb[8] << 8) | cdb[9];
3210		} else  {
3211			/* GPCMD_REPORT_KEY from multi media commands */
3212			size = (cdb[8] << 8) + cdb[9];
3213		}
3214		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3215		break;
3216	case INQUIRY:
3217		size = (cdb[3] << 8) + cdb[4];
3218		/*
3219		 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3220		 * See spc4r17 section 5.3
3221		 */
3222		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3223			cmd->sam_task_attr = MSG_HEAD_TAG;
3224		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3225		break;
3226	case READ_BUFFER:
3227		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3228		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3229		break;
3230	case READ_CAPACITY:
3231		size = READ_CAP_LEN;
3232		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3233		break;
3234	case READ_MEDIA_SERIAL_NUMBER:
3235	case SECURITY_PROTOCOL_IN:
3236	case SECURITY_PROTOCOL_OUT:
3237		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3238		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3239		break;
3240	case SERVICE_ACTION_IN:
3241	case ACCESS_CONTROL_IN:
3242	case ACCESS_CONTROL_OUT:
3243	case EXTENDED_COPY:
3244	case READ_ATTRIBUTE:
3245	case RECEIVE_COPY_RESULTS:
3246	case WRITE_ATTRIBUTE:
3247		size = (cdb[10] << 24) | (cdb[11] << 16) |
3248		       (cdb[12] << 8) | cdb[13];
3249		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3250		break;
3251	case RECEIVE_DIAGNOSTIC:
3252	case SEND_DIAGNOSTIC:
3253		size = (cdb[3] << 8) | cdb[4];
3254		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3255		break;
3256/* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3257#if 0
3258	case GPCMD_READ_CD:
3259		sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3260		size = (2336 * sectors);
3261		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3262		break;
3263#endif
3264	case READ_TOC:
3265		size = cdb[8];
3266		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3267		break;
3268	case REQUEST_SENSE:
3269		size = cdb[4];
3270		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3271		break;
3272	case READ_ELEMENT_STATUS:
3273		size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3274		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3275		break;
3276	case WRITE_BUFFER:
3277		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3278		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3279		break;
3280	case RESERVE:
3281	case RESERVE_10:
3282		/*
3283		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3284		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3285		 */
3286		if (cdb[0] == RESERVE_10)
3287			size = (cdb[7] << 8) | cdb[8];
3288		else
3289			size = cmd->data_length;
3290
3291		/*
3292		 * Setup the legacy emulated handler for SPC-2 and
3293		 * >= SPC-3 compatible reservation handling (CRH=1)
3294		 * Otherwise, we assume the underlying SCSI logic is
3295		 * is running in SPC_PASSTHROUGH, and wants reservations
3296		 * emulation disabled.
3297		 */
3298		cmd->transport_emulate_cdb =
3299				(su_dev->t10_pr.res_type !=
3300				 SPC_PASSTHROUGH) ?
3301				core_scsi2_emulate_crh : NULL;
3302		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3303		break;
3304	case RELEASE:
3305	case RELEASE_10:
3306		/*
3307		 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3308		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3309		*/
3310		if (cdb[0] == RELEASE_10)
3311			size = (cdb[7] << 8) | cdb[8];
3312		else
3313			size = cmd->data_length;
3314
3315		cmd->transport_emulate_cdb =
3316				(su_dev->t10_pr.res_type !=
3317				 SPC_PASSTHROUGH) ?
3318				core_scsi2_emulate_crh : NULL;
3319		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3320		break;
3321	case SYNCHRONIZE_CACHE:
3322	case 0x91: /* SYNCHRONIZE_CACHE_16: */
3323		/*
3324		 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3325		 */
3326		if (cdb[0] == SYNCHRONIZE_CACHE) {
3327			sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3328			cmd->t_task_lba = transport_lba_32(cdb);
3329		} else {
3330			sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3331			cmd->t_task_lba = transport_lba_64(cdb);
3332		}
3333		if (sector_ret)
3334			goto out_unsupported_cdb;
3335
3336		size = transport_get_size(sectors, cdb, cmd);
3337		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3338
3339		/*
3340		 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3341		 */
3342		if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3343			break;
3344		/*
3345		 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3346		 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3347		 */
3348		cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3349		/*
3350		 * Check to ensure that LBA + Range does not exceed past end of
3351		 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3352		 */
3353		if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3354			if (transport_cmd_get_valid_sectors(cmd) < 0)
3355				goto out_invalid_cdb_field;
3356		}
3357		break;
3358	case UNMAP:
3359		size = get_unaligned_be16(&cdb[7]);
3360		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3361		break;
3362	case WRITE_SAME_16:
3363		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3364		if (sector_ret)
3365			goto out_unsupported_cdb;
3366
3367		if (sectors)
3368			size = transport_get_size(1, cdb, cmd);
3369		else {
3370			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3371			goto out_invalid_cdb_field;
3372		}
3373
3374		cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3375		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3376
3377		if (target_check_write_same_discard(&cdb[1], dev) < 0)
3378			goto out_invalid_cdb_field;
3379		break;
3380	case WRITE_SAME:
3381		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3382		if (sector_ret)
3383			goto out_unsupported_cdb;
3384
3385		if (sectors)
3386			size = transport_get_size(1, cdb, cmd);
3387		else {
3388			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3389			goto out_invalid_cdb_field;
3390		}
3391
3392		cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3393		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3394		/*
3395		 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3396		 * of byte 1 bit 3 UNMAP instead of original reserved field
3397		 */
3398		if (target_check_write_same_discard(&cdb[1], dev) < 0)
3399			goto out_invalid_cdb_field;
3400		break;
3401	case ALLOW_MEDIUM_REMOVAL:
3402	case GPCMD_CLOSE_TRACK:
3403	case ERASE:
3404	case INITIALIZE_ELEMENT_STATUS:
3405	case GPCMD_LOAD_UNLOAD:
3406	case REZERO_UNIT:
3407	case SEEK_10:
3408	case GPCMD_SET_SPEED:
3409	case SPACE:
3410	case START_STOP:
3411	case TEST_UNIT_READY:
3412	case VERIFY:
3413	case WRITE_FILEMARKS:
3414	case MOVE_MEDIUM:
3415		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3416		break;
3417	case REPORT_LUNS:
3418		cmd->transport_emulate_cdb =
3419				transport_core_report_lun_response;
3420		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3421		/*
3422		 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3423		 * See spc4r17 section 5.3
3424		 */
3425		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3426			cmd->sam_task_attr = MSG_HEAD_TAG;
3427		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3428		break;
3429	default:
3430		pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3431			" 0x%02x, sending CHECK_CONDITION.\n",
3432			cmd->se_tfo->get_fabric_name(), cdb[0]);
3433		cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3434		goto out_unsupported_cdb;
3435	}
3436
3437	if (size != cmd->data_length) {
3438		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3439			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
3440			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3441				cmd->data_length, size, cdb[0]);
3442
3443		cmd->cmd_spdtl = size;
3444
3445		if (cmd->data_direction == DMA_TO_DEVICE) {
3446			pr_err("Rejecting underflow/overflow"
3447					" WRITE data\n");
3448			goto out_invalid_cdb_field;
3449		}
3450		/*
3451		 * Reject READ_* or WRITE_* with overflow/underflow for
3452		 * type SCF_SCSI_DATA_SG_IO_CDB.
3453		 */
3454		if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3455			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3456				" CDB on non 512-byte sector setup subsystem"
3457				" plugin: %s\n", dev->transport->name);
3458			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3459			goto out_invalid_cdb_field;
3460		}
3461
3462		if (size > cmd->data_length) {
3463			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3464			cmd->residual_count = (size - cmd->data_length);
3465		} else {
3466			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3467			cmd->residual_count = (cmd->data_length - size);
3468		}
3469		cmd->data_length = size;
3470	}
3471
3472	/* Let's limit control cdbs to a page, for simplicity's sake. */
3473	if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3474	    size > PAGE_SIZE)
3475		goto out_invalid_cdb_field;
3476
3477	transport_set_supported_SAM_opcode(cmd);
3478	return ret;
3479
3480out_unsupported_cdb:
3481	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3482	cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3483	return -EINVAL;
3484out_invalid_cdb_field:
3485	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3486	cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3487	return -EINVAL;
3488}
3489
3490/*
3491 * Called from transport_generic_complete_ok() and
3492 * transport_generic_request_failure() to determine which dormant/delayed
3493 * and ordered cmds need to have their tasks added to the execution queue.
3494 */
3495static void transport_complete_task_attr(struct se_cmd *cmd)
3496{
3497	struct se_device *dev = cmd->se_dev;
3498	struct se_cmd *cmd_p, *cmd_tmp;
3499	int new_active_tasks = 0;
3500
3501	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3502		atomic_dec(&dev->simple_cmds);
3503		smp_mb__after_atomic_dec();
 
 
 
 
 
3504		dev->dev_cur_ordered_id++;
3505		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3506			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
3507			cmd->se_ordered_id);
3508	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3509		atomic_dec(&dev->dev_hoq_count);
3510		smp_mb__after_atomic_dec();
3511		dev->dev_cur_ordered_id++;
3512		pr_debug("Incremented dev_cur_ordered_id: %u for"
3513			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3514			cmd->se_ordered_id);
3515	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3516		spin_lock(&dev->ordered_cmd_lock);
3517		list_del(&cmd->se_ordered_node);
3518		atomic_dec(&dev->dev_ordered_sync);
3519		smp_mb__after_atomic_dec();
3520		spin_unlock(&dev->ordered_cmd_lock);
3521
3522		dev->dev_cur_ordered_id++;
3523		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3524			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3525	}
3526	/*
3527	 * Process all commands up to the last received
3528	 * ORDERED task attribute which requires another blocking
3529	 * boundary
3530	 */
3531	spin_lock(&dev->delayed_cmd_lock);
3532	list_for_each_entry_safe(cmd_p, cmd_tmp,
3533			&dev->delayed_cmd_list, se_delayed_node) {
3534
3535		list_del(&cmd_p->se_delayed_node);
3536		spin_unlock(&dev->delayed_cmd_lock);
3537
3538		pr_debug("Calling add_tasks() for"
3539			" cmd_p: 0x%02x Task Attr: 0x%02x"
3540			" Dormant -> Active, se_ordered_id: %u\n",
3541			cmd_p->t_task_cdb[0],
3542			cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3543
3544		transport_add_tasks_from_cmd(cmd_p);
3545		new_active_tasks++;
 
3546
3547		spin_lock(&dev->delayed_cmd_lock);
3548		if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3549			break;
3550	}
3551	spin_unlock(&dev->delayed_cmd_lock);
3552	/*
3553	 * If new tasks have become active, wake up the transport thread
3554	 * to do the processing of the Active tasks.
 
 
 
 
 
3555	 */
3556	if (new_active_tasks != 0)
3557		wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3558}
3559
3560static int transport_complete_qf(struct se_cmd *cmd)
3561{
3562	int ret = 0;
3563
3564	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3565		return cmd->se_tfo->queue_status(cmd);
 
 
 
 
 
 
 
 
 
 
3566
3567	switch (cmd->data_direction) {
3568	case DMA_FROM_DEVICE:
 
 
 
 
 
 
3569		ret = cmd->se_tfo->queue_data_in(cmd);
3570		break;
3571	case DMA_TO_DEVICE:
3572		if (cmd->t_bidi_data_sg) {
3573			ret = cmd->se_tfo->queue_data_in(cmd);
3574			if (ret < 0)
3575				return ret;
3576		}
3577		/* Fall through for DMA_TO_DEVICE */
3578	case DMA_NONE:
 
 
3579		ret = cmd->se_tfo->queue_status(cmd);
3580		break;
3581	default:
3582		break;
3583	}
3584
3585	return ret;
 
 
 
 
 
3586}
3587
3588static void transport_handle_queue_full(
3589	struct se_cmd *cmd,
3590	struct se_device *dev,
3591	int (*qf_callback)(struct se_cmd *))
3592{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3593	spin_lock_irq(&dev->qf_cmd_lock);
3594	cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3595	cmd->transport_qf_callback = qf_callback;
3596	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3597	atomic_inc(&dev->dev_qf_count);
3598	smp_mb__after_atomic_inc();
3599	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3600
3601	schedule_work(&cmd->se_dev->qf_work_queue);
3602}
3603
3604static void transport_generic_complete_ok(struct se_cmd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3605{
3606	int reason = 0, ret;
 
 
3607	/*
3608	 * Check if we need to move delayed/dormant tasks from cmds on the
3609	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3610	 * Attribute.
3611	 */
3612	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3613		transport_complete_task_attr(cmd);
3614	/*
3615	 * Check to schedule QUEUE_FULL work, or execute an existing
3616	 * cmd->transport_qf_callback()
3617	 */
3618	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3619		schedule_work(&cmd->se_dev->qf_work_queue);
3620
3621	if (cmd->transport_qf_callback) {
3622		ret = cmd->transport_qf_callback(cmd);
3623		if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
 
3624			goto queue_full;
3625
3626		cmd->transport_qf_callback = NULL;
3627		goto done;
 
3628	}
3629	/*
3630	 * Check if we need to retrieve a sense buffer from
3631	 * the struct se_cmd in question.
3632	 */
3633	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3634		if (transport_get_sense_data(cmd) < 0)
3635			reason = TCM_NON_EXISTENT_LUN;
 
 
 
 
 
 
 
3636
3637		/*
3638		 * Only set when an struct se_task->task_scsi_status returned
3639		 * a non GOOD status.
3640		 */
3641		if (cmd->scsi_status) {
3642			ret = transport_send_check_condition_and_sense(
3643					cmd, reason, 1);
3644			if (ret == -EAGAIN)
3645				goto queue_full;
3646
3647			transport_lun_remove_cmd(cmd);
3648			transport_cmd_check_stop_to_fabric(cmd);
3649			return;
3650		}
3651	}
3652	/*
3653	 * Check for a callback, used by amongst other things
3654	 * XDWRITE_READ_10 emulation.
3655	 */
3656	if (cmd->transport_complete_callback)
3657		cmd->transport_complete_callback(cmd);
3658
 
3659	switch (cmd->data_direction) {
3660	case DMA_FROM_DEVICE:
3661		spin_lock(&cmd->se_lun->lun_sep_lock);
3662		if (cmd->se_lun->lun_sep) {
3663			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3664					cmd->data_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3665		}
3666		spin_unlock(&cmd->se_lun->lun_sep_lock);
3667
 
3668		ret = cmd->se_tfo->queue_data_in(cmd);
3669		if (ret == -EAGAIN)
3670			goto queue_full;
3671		break;
3672	case DMA_TO_DEVICE:
3673		spin_lock(&cmd->se_lun->lun_sep_lock);
3674		if (cmd->se_lun->lun_sep) {
3675			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3676				cmd->data_length;
3677		}
3678		spin_unlock(&cmd->se_lun->lun_sep_lock);
3679		/*
3680		 * Check if we need to send READ payload for BIDI-COMMAND
3681		 */
3682		if (cmd->t_bidi_data_sg) {
3683			spin_lock(&cmd->se_lun->lun_sep_lock);
3684			if (cmd->se_lun->lun_sep) {
3685				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3686					cmd->data_length;
3687			}
3688			spin_unlock(&cmd->se_lun->lun_sep_lock);
3689			ret = cmd->se_tfo->queue_data_in(cmd);
3690			if (ret == -EAGAIN)
3691				goto queue_full;
3692			break;
3693		}
3694		/* Fall through for DMA_TO_DEVICE */
3695	case DMA_NONE:
 
 
3696		ret = cmd->se_tfo->queue_status(cmd);
3697		if (ret == -EAGAIN)
3698			goto queue_full;
3699		break;
3700	default:
3701		break;
3702	}
3703
3704done:
3705	transport_lun_remove_cmd(cmd);
3706	transport_cmd_check_stop_to_fabric(cmd);
3707	return;
3708
3709queue_full:
3710	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3711		" data_direction: %d\n", cmd, cmd->data_direction);
3712	transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
 
3713}
3714
3715static void transport_free_dev_tasks(struct se_cmd *cmd)
3716{
3717	struct se_task *task, *task_tmp;
3718	unsigned long flags;
3719
3720	spin_lock_irqsave(&cmd->t_state_lock, flags);
3721	list_for_each_entry_safe(task, task_tmp,
3722				&cmd->t_task_list, t_list) {
3723		if (atomic_read(&task->task_active))
3724			continue;
3725
3726		kfree(task->task_sg_bidi);
3727		kfree(task->task_sg);
3728
3729		list_del(&task->t_list);
3730
3731		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3732		if (task->se_dev)
3733			task->se_dev->transport->free_task(task);
3734		else
3735			pr_err("task[%u] - task->se_dev is NULL\n",
3736				task->task_no);
3737		spin_lock_irqsave(&cmd->t_state_lock, flags);
3738	}
3739	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3740}
 
3741
3742static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3743{
3744	struct scatterlist *sg;
3745	int count;
3746
3747	for_each_sg(sgl, sg, nents, count)
3748		__free_page(sg_page(sg));
 
3749
3750	kfree(sgl);
 
 
 
 
3751}
3752
3753static inline void transport_free_pages(struct se_cmd *cmd)
3754{
3755	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3756		return;
 
 
3757
3758	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3759	cmd->t_data_sg = NULL;
3760	cmd->t_data_nents = 0;
3761
3762	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3763	cmd->t_bidi_data_sg = NULL;
3764	cmd->t_bidi_data_nents = 0;
3765}
3766
3767static inline void transport_release_tasks(struct se_cmd *cmd)
3768{
3769	transport_free_dev_tasks(cmd);
3770}
 
3771
3772static inline int transport_dec_and_check(struct se_cmd *cmd)
3773{
3774	unsigned long flags;
 
 
 
 
3775
3776	spin_lock_irqsave(&cmd->t_state_lock, flags);
3777	if (atomic_read(&cmd->t_fe_count)) {
3778		if (!atomic_dec_and_test(&cmd->t_fe_count)) {
3779			spin_unlock_irqrestore(&cmd->t_state_lock,
3780					flags);
3781			return 1;
3782		}
3783	}
3784
3785	if (atomic_read(&cmd->t_se_count)) {
3786		if (!atomic_dec_and_test(&cmd->t_se_count)) {
3787			spin_unlock_irqrestore(&cmd->t_state_lock,
3788					flags);
3789			return 1;
3790		}
 
 
3791	}
3792	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3793
3794	return 0;
 
 
 
 
 
3795}
 
3796
3797static void transport_release_fe_cmd(struct se_cmd *cmd)
3798{
3799	unsigned long flags;
3800
3801	if (transport_dec_and_check(cmd))
 
3802		return;
3803
3804	spin_lock_irqsave(&cmd->t_state_lock, flags);
3805	if (!atomic_read(&cmd->transport_dev_active)) {
3806		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3807		goto free_pages;
3808	}
3809	atomic_set(&cmd->transport_dev_active, 0);
3810	transport_all_task_dev_remove_state(cmd);
3811	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3812
3813	transport_release_tasks(cmd);
3814free_pages:
3815	transport_free_pages(cmd);
3816	transport_free_se_cmd(cmd);
3817	cmd->se_tfo->release_cmd(cmd);
3818}
 
3819
3820static int
3821transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
 
3822{
3823	unsigned long flags;
3824
3825	if (transport_dec_and_check(cmd)) {
3826		if (session_reinstatement) {
3827			spin_lock_irqsave(&cmd->t_state_lock, flags);
3828			transport_all_task_dev_remove_state(cmd);
3829			spin_unlock_irqrestore(&cmd->t_state_lock,
3830					flags);
3831		}
3832		return 1;
3833	}
3834
3835	spin_lock_irqsave(&cmd->t_state_lock, flags);
3836	if (!atomic_read(&cmd->transport_dev_active)) {
3837		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3838		goto free_pages;
3839	}
3840	atomic_set(&cmd->transport_dev_active, 0);
3841	transport_all_task_dev_remove_state(cmd);
3842	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3843
3844	transport_release_tasks(cmd);
3845
3846free_pages:
3847	transport_free_pages(cmd);
3848	transport_release_cmd(cmd);
3849	return 0;
3850}
 
3851
3852/*
3853 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3854 * allocating in the core.
3855 * @cmd:  Associated se_cmd descriptor
3856 * @mem:  SGL style memory for TCM WRITE / READ
3857 * @sg_mem_num: Number of SGL elements
3858 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3859 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3860 *
3861 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3862 * of parameters.
3863 */
3864int transport_generic_map_mem_to_cmd(
3865	struct se_cmd *cmd,
3866	struct scatterlist *sgl,
3867	u32 sgl_count,
3868	struct scatterlist *sgl_bidi,
3869	u32 sgl_bidi_count)
3870{
3871	if (!sgl || !sgl_count)
3872		return 0;
3873
3874	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3875	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3876
3877		cmd->t_data_sg = sgl;
3878		cmd->t_data_nents = sgl_count;
3879
3880		if (sgl_bidi && sgl_bidi_count) {
3881			cmd->t_bidi_data_sg = sgl_bidi;
3882			cmd->t_bidi_data_nents = sgl_bidi_count;
3883		}
3884		cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
 
3885	}
3886
3887	return 0;
3888}
3889EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
 
 
 
 
3890
3891static int transport_new_cmd_obj(struct se_cmd *cmd)
3892{
3893	struct se_device *dev = cmd->se_dev;
3894	int set_counts = 1, rc, task_cdbs;
 
 
 
 
 
 
 
 
 
 
 
 
3895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3896	/*
3897	 * Setup any BIDI READ tasks and memory from
3898	 * cmd->t_mem_bidi_list so the READ struct se_tasks
3899	 * are queued first for the non pSCSI passthrough case.
3900	 */
3901	if (cmd->t_bidi_data_sg &&
3902	    (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3903		rc = transport_allocate_tasks(cmd,
3904					      cmd->t_task_lba,
3905					      DMA_FROM_DEVICE,
3906					      cmd->t_bidi_data_sg,
3907					      cmd->t_bidi_data_nents);
3908		if (rc <= 0) {
3909			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3910			cmd->scsi_sense_reason =
3911				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3912			return -EINVAL;
3913		}
3914		atomic_inc(&cmd->t_fe_count);
3915		atomic_inc(&cmd->t_se_count);
3916		set_counts = 0;
3917	}
3918	/*
3919	 * Setup the tasks and memory from cmd->t_mem_list
3920	 * Note for BIDI transfers this will contain the WRITE payload
3921	 */
3922	task_cdbs = transport_allocate_tasks(cmd,
3923					     cmd->t_task_lba,
3924					     cmd->data_direction,
3925					     cmd->t_data_sg,
3926					     cmd->t_data_nents);
3927	if (task_cdbs <= 0) {
3928		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3929		cmd->scsi_sense_reason =
3930			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3931		return -EINVAL;
3932	}
3933
3934	if (set_counts) {
3935		atomic_inc(&cmd->t_fe_count);
3936		atomic_inc(&cmd->t_se_count);
3937	}
 
 
 
 
 
 
3938
3939	cmd->t_task_list_num = task_cdbs;
3940
3941	atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3942	atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3943	atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3944	return 0;
3945}
3946
3947void *transport_kmap_first_data_page(struct se_cmd *cmd)
3948{
3949	struct scatterlist *sg = cmd->t_data_sg;
3950
3951	BUG_ON(!sg);
3952	/*
3953	 * We need to take into account a possible offset here for fabrics like
3954	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3955	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3956	 */
3957	return kmap(sg_page(sg)) + sg->offset;
3958}
3959EXPORT_SYMBOL(transport_kmap_first_data_page);
3960
3961void transport_kunmap_first_data_page(struct se_cmd *cmd)
3962{
3963	kunmap(sg_page(cmd->t_data_sg));
 
3964}
3965EXPORT_SYMBOL(transport_kunmap_first_data_page);
3966
3967static int
3968transport_generic_get_mem(struct se_cmd *cmd)
3969{
3970	u32 length = cmd->data_length;
3971	unsigned int nents;
3972	struct page *page;
3973	int i = 0;
3974
3975	nents = DIV_ROUND_UP(length, PAGE_SIZE);
3976	cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3977	if (!cmd->t_data_sg)
3978		return -ENOMEM;
3979
3980	cmd->t_data_nents = nents;
3981	sg_init_table(cmd->t_data_sg, nents);
 
3982
3983	while (length) {
3984		u32 page_len = min_t(u32, length, PAGE_SIZE);
3985		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3986		if (!page)
3987			goto out;
3988
3989		sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3990		length -= page_len;
3991		i++;
3992	}
3993	return 0;
3994
3995out:
3996	while (i >= 0) {
3997		__free_page(sg_page(&cmd->t_data_sg[i]));
3998		i--;
 
3999	}
4000	kfree(cmd->t_data_sg);
4001	cmd->t_data_sg = NULL;
4002	return -ENOMEM;
4003}
4004
4005/* Reduce sectors if they are too long for the device */
4006static inline sector_t transport_limit_task_sectors(
4007	struct se_device *dev,
4008	unsigned long long lba,
4009	sector_t sectors)
4010{
4011	sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
4012
4013	if (dev->transport->get_device_type(dev) == TYPE_DISK)
4014		if ((lba + sectors) > transport_dev_end_lba(dev))
4015			sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4016
4017	return sectors;
 
 
4018}
4019
4020
4021/*
4022 * This function can be used by HW target mode drivers to create a linked
4023 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4024 * This is intended to be called during the completion path by TCM Core
4025 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4026 */
4027void transport_do_task_sg_chain(struct se_cmd *cmd)
4028{
4029	struct scatterlist *sg_first = NULL;
4030	struct scatterlist *sg_prev = NULL;
4031	int sg_prev_nents = 0;
4032	struct scatterlist *sg;
4033	struct se_task *task;
4034	u32 chained_nents = 0;
4035	int i;
4036
4037	BUG_ON(!cmd->se_tfo->task_sg_chaining);
4038
4039	/*
4040	 * Walk the struct se_task list and setup scatterlist chains
4041	 * for each contiguously allocated struct se_task->task_sg[].
4042	 */
4043	list_for_each_entry(task, &cmd->t_task_list, t_list) {
4044		if (!task->task_sg)
4045			continue;
4046
4047		if (!sg_first) {
4048			sg_first = task->task_sg;
4049			chained_nents = task->task_sg_nents;
4050		} else {
4051			sg_chain(sg_prev, sg_prev_nents, task->task_sg);
4052			chained_nents += task->task_sg_nents;
4053		}
4054		/*
4055		 * For the padded tasks, use the extra SGL vector allocated
4056		 * in transport_allocate_data_tasks() for the sg_prev_nents
4057		 * offset into sg_chain() above..  The last task of a
4058		 * multi-task list, or a single task will not have
4059		 * task->task_sg_padded set..
4060		 */
4061		if (task->task_padded_sg)
4062			sg_prev_nents = (task->task_sg_nents + 1);
4063		else
4064			sg_prev_nents = task->task_sg_nents;
4065
4066		sg_prev = task->task_sg;
4067	}
4068	/*
4069	 * Setup the starting pointer and total t_tasks_sg_linked_no including
4070	 * padding SGs for linking and to mark the end.
4071	 */
4072	cmd->t_tasks_sg_chained = sg_first;
4073	cmd->t_tasks_sg_chained_no = chained_nents;
4074
4075	pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4076		" t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4077		cmd->t_tasks_sg_chained_no);
4078
4079	for_each_sg(cmd->t_tasks_sg_chained, sg,
4080			cmd->t_tasks_sg_chained_no, i) {
4081
4082		pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4083			i, sg, sg_page(sg), sg->length, sg->offset);
4084		if (sg_is_chain(sg))
4085			pr_debug("SG: %p sg_is_chain=1\n", sg);
4086		if (sg_is_last(sg))
4087			pr_debug("SG: %p sg_is_last=1\n", sg);
4088	}
4089}
4090EXPORT_SYMBOL(transport_do_task_sg_chain);
4091
4092/*
4093 * Break up cmd into chunks transport can handle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4094 */
4095static int transport_allocate_data_tasks(
4096	struct se_cmd *cmd,
4097	unsigned long long lba,
4098	enum dma_data_direction data_direction,
4099	struct scatterlist *sgl,
4100	unsigned int sgl_nents)
4101{
4102	unsigned char *cdb = NULL;
4103	struct se_task *task;
4104	struct se_device *dev = cmd->se_dev;
4105	unsigned long flags;
4106	int task_count, i, ret;
4107	sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4108	u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4109	struct scatterlist *sg;
4110	struct scatterlist *cmd_sg;
4111
4112	WARN_ON(cmd->data_length % sector_size);
4113	sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4114	task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
4115	
4116	cmd_sg = sgl;
4117	for (i = 0; i < task_count; i++) {
4118		unsigned int task_size, task_sg_nents_padded;
4119		int count;
4120
4121		task = transport_generic_get_task(cmd, data_direction);
4122		if (!task)
4123			return -ENOMEM;
4124
4125		task->task_lba = lba;
4126		task->task_sectors = min(sectors, dev_max_sectors);
4127		task->task_size = task->task_sectors * sector_size;
4128
4129		cdb = dev->transport->get_cdb(task);
4130		BUG_ON(!cdb);
4131
4132		memcpy(cdb, cmd->t_task_cdb,
4133		       scsi_command_size(cmd->t_task_cdb));
4134
4135		/* Update new cdb with updated lba/sectors */
4136		cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4137		/*
4138		 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
4139		 * in order to calculate the number per task SGL entries
4140		 */
4141		task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
4142		/*
4143		 * Check if the fabric module driver is requesting that all
4144		 * struct se_task->task_sg[] be chained together..  If so,
4145		 * then allocate an extra padding SG entry for linking and
4146		 * marking the end of the chained SGL for every task except
4147		 * the last one for (task_count > 1) operation, or skipping
4148		 * the extra padding for the (task_count == 1) case.
4149		 */
4150		if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4151			task_sg_nents_padded = (task->task_sg_nents + 1);
4152			task->task_padded_sg = 1;
4153		} else
4154			task_sg_nents_padded = task->task_sg_nents;
4155
4156		task->task_sg = kmalloc(sizeof(struct scatterlist) *
4157					task_sg_nents_padded, GFP_KERNEL);
4158		if (!task->task_sg) {
4159			cmd->se_dev->transport->free_task(task);
4160			return -ENOMEM;
4161		}
4162
4163		sg_init_table(task->task_sg, task_sg_nents_padded);
4164
4165		task_size = task->task_size;
4166
4167		/* Build new sgl, only up to task_size */
4168		for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4169			if (cmd_sg->length > task_size)
4170				break;
4171
4172			*sg = *cmd_sg;
4173			task_size -= cmd_sg->length;
4174			cmd_sg = sg_next(cmd_sg);
4175		}
4176
4177		lba += task->task_sectors;
4178		sectors -= task->task_sectors;
4179
4180		spin_lock_irqsave(&cmd->t_state_lock, flags);
4181		list_add_tail(&task->t_list, &cmd->t_task_list);
4182		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4183	}
4184	/*
4185	 * Now perform the memory map of task->task_sg[] into backend
4186	 * subsystem memory..
4187	 */
4188	list_for_each_entry(task, &cmd->t_task_list, t_list) {
4189		if (atomic_read(&task->task_sent))
4190			continue;
4191		if (!dev->transport->map_data_SG)
4192			continue;
4193
4194		ret = dev->transport->map_data_SG(task);
4195		if (ret < 0)
4196			return 0;
4197	}
4198
4199	return task_count;
4200}
 
4201
4202static int
4203transport_allocate_control_task(struct se_cmd *cmd)
 
 
 
 
4204{
4205	struct se_device *dev = cmd->se_dev;
4206	unsigned char *cdb;
4207	struct se_task *task;
4208	unsigned long flags;
4209	int ret = 0;
4210
4211	task = transport_generic_get_task(cmd, cmd->data_direction);
4212	if (!task)
4213		return -ENOMEM;
4214
4215	cdb = dev->transport->get_cdb(task);
4216	BUG_ON(!cdb);
4217	memcpy(cdb, cmd->t_task_cdb,
4218	       scsi_command_size(cmd->t_task_cdb));
4219
4220	task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4221				GFP_KERNEL);
4222	if (!task->task_sg) {
4223		cmd->se_dev->transport->free_task(task);
4224		return -ENOMEM;
4225	}
4226
4227	memcpy(task->task_sg, cmd->t_data_sg,
4228	       sizeof(struct scatterlist) * cmd->t_data_nents);
4229	task->task_size = cmd->data_length;
4230	task->task_sg_nents = cmd->t_data_nents;
4231
4232	spin_lock_irqsave(&cmd->t_state_lock, flags);
4233	list_add_tail(&task->t_list, &cmd->t_task_list);
4234	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4235
4236	if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4237		if (dev->transport->map_control_SG)
4238			ret = dev->transport->map_control_SG(task);
4239	} else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4240		if (dev->transport->cdb_none)
4241			ret = dev->transport->cdb_none(task);
4242	} else {
4243		pr_err("target: Unknown control cmd type!\n");
4244		BUG();
4245	}
4246
4247	/* Success! Return number of tasks allocated */
4248	if (ret == 0)
4249		return 1;
4250	return ret;
4251}
 
4252
4253static u32 transport_allocate_tasks(
4254	struct se_cmd *cmd,
4255	unsigned long long lba,
4256	enum dma_data_direction data_direction,
4257	struct scatterlist *sgl,
4258	unsigned int sgl_nents)
4259{
4260	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4261		if (transport_cmd_get_valid_sectors(cmd) < 0)
4262			return -EINVAL;
4263
4264		return transport_allocate_data_tasks(cmd, lba, data_direction,
4265						     sgl, sgl_nents);
4266	} else
4267		return transport_allocate_control_task(cmd);
4268
 
 
 
 
4269}
4270
4271
4272/*	 transport_generic_new_cmd(): Called from transport_processing_thread()
4273 *
4274 *	 Allocate storage transport resources from a set of values predefined
4275 *	 by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4276 *	 Any non zero return here is treated as an "out of resource' op here.
4277 */
4278	/*
4279	 * Generate struct se_task(s) and/or their payloads for this CDB.
4280	 */
4281int transport_generic_new_cmd(struct se_cmd *cmd)
4282{
4283	int ret = 0;
 
 
 
4284
4285	/*
4286	 * Determine is the TCM fabric module has already allocated physical
4287	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4288	 * beforehand.
4289	 */
4290	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4291	    cmd->data_length) {
4292		ret = transport_generic_get_mem(cmd);
4293		if (ret < 0)
4294			return ret;
4295	}
4296	/*
4297	 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4298	 * control or data CDB types, and perform the map to backend subsystem
4299	 * code from SGL memory allocated here by transport_generic_get_mem(), or
4300	 * via pre-existing SGL memory setup explictly by fabric module code with
4301	 * transport_generic_map_mem_to_cmd().
4302	 */
4303	ret = transport_new_cmd_obj(cmd);
4304	if (ret < 0)
4305		return ret;
4306	/*
4307	 * For WRITEs, let the fabric know its buffer is ready..
4308	 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4309	 * will be added to the struct se_device execution queue after its WRITE
4310	 * data has arrived. (ie: It gets handled by the transport processing
4311	 * thread a second time)
4312	 */
4313	if (cmd->data_direction == DMA_TO_DEVICE) {
4314		transport_add_tasks_to_state_queue(cmd);
4315		return transport_generic_write_pending(cmd);
4316	}
4317	/*
4318	 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4319	 * to the execution queue.
4320	 */
4321	transport_execute_tasks(cmd);
4322	return 0;
4323}
4324EXPORT_SYMBOL(transport_generic_new_cmd);
4325
4326/*	transport_generic_process_write():
4327 *
 
4328 *
 
 
4329 */
4330void transport_generic_process_write(struct se_cmd *cmd)
4331{
4332	transport_execute_tasks(cmd);
4333}
4334EXPORT_SYMBOL(transport_generic_process_write);
4335
4336static int transport_write_pending_qf(struct se_cmd *cmd)
4337{
4338	return cmd->se_tfo->write_pending(cmd);
 
 
 
 
 
 
 
4339}
4340
4341/*	transport_generic_write_pending():
4342 *
4343 *
4344 */
4345static int transport_generic_write_pending(struct se_cmd *cmd)
4346{
4347	unsigned long flags;
4348	int ret;
4349
4350	spin_lock_irqsave(&cmd->t_state_lock, flags);
4351	cmd->t_state = TRANSPORT_WRITE_PENDING;
4352	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4353
4354	if (cmd->transport_qf_callback) {
4355		ret = cmd->transport_qf_callback(cmd);
4356		if (ret == -EAGAIN)
4357			goto queue_full;
4358		else if (ret < 0)
4359			return ret;
4360
4361		cmd->transport_qf_callback = NULL;
4362		return 0;
4363	}
4364
4365	/*
4366	 * Clear the se_cmd for WRITE_PENDING status in order to set
4367	 * cmd->t_transport_active=0 so that transport_generic_handle_data
4368	 * can be called from HW target mode interrupt code.  This is safe
4369	 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4370	 * because the se_cmd->se_lun pointer is not being cleared.
4371	 */
4372	transport_cmd_check_stop(cmd, 1, 0);
4373
4374	/*
4375	 * Call the fabric write_pending function here to let the
4376	 * frontend know that WRITE buffers are ready.
4377	 */
4378	ret = cmd->se_tfo->write_pending(cmd);
4379	if (ret == -EAGAIN)
4380		goto queue_full;
4381	else if (ret < 0)
4382		return ret;
4383
4384	return PYX_TRANSPORT_WRITE_PENDING;
4385
4386queue_full:
4387	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4388	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4389	transport_handle_queue_full(cmd, cmd->se_dev,
4390			transport_write_pending_qf);
4391	return ret;
4392}
4393
4394void transport_release_cmd(struct se_cmd *cmd)
4395{
4396	BUG_ON(!cmd->se_tfo);
4397
4398	transport_free_se_cmd(cmd);
4399	cmd->se_tfo->release_cmd(cmd);
 
4400}
4401EXPORT_SYMBOL(transport_release_cmd);
4402
4403/*	transport_generic_free_cmd():
4404 *
4405 *	Called from processing frontend to release storage engine resources
4406 */
4407void transport_generic_free_cmd(
4408	struct se_cmd *cmd,
4409	int wait_for_tasks,
4410	int session_reinstatement)
4411{
4412	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4413		transport_release_cmd(cmd);
4414	else {
4415		core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4416
4417		if (cmd->se_lun) {
4418#if 0
4419			pr_debug("cmd: %p ITT: 0x%08x contains"
4420				" cmd->se_lun\n", cmd,
4421				cmd->se_tfo->get_task_tag(cmd));
4422#endif
4423			transport_lun_remove_cmd(cmd);
4424		}
4425
4426		if (wait_for_tasks && cmd->transport_wait_for_tasks)
4427			cmd->transport_wait_for_tasks(cmd, 0, 0);
 
 
 
 
 
 
 
 
 
 
4428
4429		transport_free_dev_tasks(cmd);
 
4430
4431		transport_generic_remove(cmd, session_reinstatement);
 
 
 
 
 
 
 
 
 
 
 
4432	}
 
4433}
4434EXPORT_SYMBOL(transport_generic_free_cmd);
4435
4436static void transport_nop_wait_for_tasks(
4437	struct se_cmd *cmd,
4438	int remove_cmd,
4439	int session_reinstatement)
4440{
4441	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4442}
 
4443
4444/*	transport_lun_wait_for_tasks():
4445 *
4446 *	Called from ConfigFS context to stop the passed struct se_cmd to allow
4447 *	an struct se_lun to be successfully shutdown.
 
 
 
 
 
 
4448 */
4449static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
 
 
 
 
 
 
 
 
 
 
 
 
 
4450{
4451	unsigned long flags;
4452	int ret;
4453	/*
4454	 * If the frontend has already requested this struct se_cmd to
4455	 * be stopped, we can safely ignore this struct se_cmd.
4456	 */
4457	spin_lock_irqsave(&cmd->t_state_lock, flags);
4458	if (atomic_read(&cmd->t_transport_stop)) {
4459		atomic_set(&cmd->transport_lun_stop, 0);
4460		pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4461			" TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4462		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4463		transport_cmd_check_stop(cmd, 1, 0);
4464		return -EPERM;
4465	}
4466	atomic_set(&cmd->transport_lun_fe_stop, 1);
4467	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4468
4469	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4470
4471	ret = transport_stop_tasks_for_cmd(cmd);
 
 
 
 
 
4472
4473	pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4474			" %d\n", cmd, cmd->t_task_list_num, ret);
4475	if (!ret) {
4476		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4477				cmd->se_tfo->get_task_tag(cmd));
4478		wait_for_completion(&cmd->transport_lun_stop_comp);
4479		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4480				cmd->se_tfo->get_task_tag(cmd));
4481	}
4482	transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4483
4484	return 0;
 
 
 
 
 
 
 
4485}
4486
4487static void __transport_clear_lun_from_sessions(struct se_lun *lun)
 
 
 
 
4488{
4489	struct se_cmd *cmd = NULL;
4490	unsigned long lun_flags, cmd_flags;
4491	/*
4492	 * Do exception processing and return CHECK_CONDITION status to the
4493	 * Initiator Port.
4494	 */
4495	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4496	while (!list_empty(&lun->lun_cmd_list)) {
4497		cmd = list_first_entry(&lun->lun_cmd_list,
4498		       struct se_cmd, se_lun_node);
4499		list_del(&cmd->se_lun_node);
4500
4501		atomic_set(&cmd->transport_lun_active, 0);
4502		/*
4503		 * This will notify iscsi_target_transport.c:
4504		 * transport_cmd_check_stop() that a LUN shutdown is in
4505		 * progress for the iscsi_cmd_t.
4506		 */
4507		spin_lock(&cmd->t_state_lock);
4508		pr_debug("SE_LUN[%d] - Setting cmd->transport"
4509			"_lun_stop for  ITT: 0x%08x\n",
4510			cmd->se_lun->unpacked_lun,
4511			cmd->se_tfo->get_task_tag(cmd));
4512		atomic_set(&cmd->transport_lun_stop, 1);
4513		spin_unlock(&cmd->t_state_lock);
4514
4515		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4516
4517		if (!cmd->se_lun) {
4518			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4519				cmd->se_tfo->get_task_tag(cmd),
4520				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4521			BUG();
4522		}
4523		/*
4524		 * If the Storage engine still owns the iscsi_cmd_t, determine
4525		 * and/or stop its context.
4526		 */
4527		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4528			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4529			cmd->se_tfo->get_task_tag(cmd));
4530
4531		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4532			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4533			continue;
4534		}
4535
4536		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4537			"_wait_for_tasks(): SUCCESS\n",
4538			cmd->se_lun->unpacked_lun,
4539			cmd->se_tfo->get_task_tag(cmd));
4540
4541		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4542		if (!atomic_read(&cmd->transport_dev_active)) {
4543			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4544			goto check_cond;
4545		}
4546		atomic_set(&cmd->transport_dev_active, 0);
4547		transport_all_task_dev_remove_state(cmd);
4548		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4549
4550		transport_free_dev_tasks(cmd);
4551		/*
4552		 * The Storage engine stopped this struct se_cmd before it was
4553		 * send to the fabric frontend for delivery back to the
4554		 * Initiator Node.  Return this SCSI CDB back with an
4555		 * CHECK_CONDITION status.
4556		 */
4557check_cond:
4558		transport_send_check_condition_and_sense(cmd,
4559				TCM_NON_EXISTENT_LUN, 0);
4560		/*
4561		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
4562		 * be released, notify the waiting thread now that LU has
4563		 * finished accessing it.
4564		 */
4565		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4566		if (atomic_read(&cmd->transport_lun_fe_stop)) {
4567			pr_debug("SE_LUN[%d] - Detected FE stop for"
4568				" struct se_cmd: %p ITT: 0x%08x\n",
4569				lun->unpacked_lun,
4570				cmd, cmd->se_tfo->get_task_tag(cmd));
4571
4572			spin_unlock_irqrestore(&cmd->t_state_lock,
4573					cmd_flags);
4574			transport_cmd_check_stop(cmd, 1, 0);
4575			complete(&cmd->transport_lun_fe_stop_comp);
4576			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4577			continue;
4578		}
4579		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4580			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4581
4582		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4583		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4584	}
4585	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4586}
4587
4588static int transport_clear_lun_thread(void *p)
4589{
4590	struct se_lun *lun = (struct se_lun *)p;
4591
4592	__transport_clear_lun_from_sessions(lun);
4593	complete(&lun->lun_shutdown_comp);
4594
4595	return 0;
4596}
4597
4598int transport_clear_lun_from_sessions(struct se_lun *lun)
4599{
4600	struct task_struct *kt;
4601
4602	kt = kthread_run(transport_clear_lun_thread, lun,
4603			"tcm_cl_%u", lun->unpacked_lun);
4604	if (IS_ERR(kt)) {
4605		pr_err("Unable to start clear_lun thread\n");
4606		return PTR_ERR(kt);
4607	}
4608	wait_for_completion(&lun->lun_shutdown_comp);
4609
4610	return 0;
 
 
 
 
 
 
 
 
 
 
4611}
4612
4613/*	transport_generic_wait_for_tasks():
4614 *
4615 *	Called from frontend or passthrough context to wait for storage engine
4616 *	to pause and/or release frontend generated struct se_cmd.
4617 */
4618static void transport_generic_wait_for_tasks(
4619	struct se_cmd *cmd,
4620	int remove_cmd,
4621	int session_reinstatement)
4622{
4623	unsigned long flags;
4624
4625	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
4626		return;
4627
4628	spin_lock_irqsave(&cmd->t_state_lock, flags);
4629	/*
4630	 * If we are already stopped due to an external event (ie: LUN shutdown)
4631	 * sleep until the connection can have the passed struct se_cmd back.
4632	 * The cmd->transport_lun_stopped_sem will be upped by
4633	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4634	 * has completed its operation on the struct se_cmd.
4635	 */
4636	if (atomic_read(&cmd->transport_lun_stop)) {
4637
4638		pr_debug("wait_for_tasks: Stopping"
4639			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
4640			"_stop_comp); for ITT: 0x%08x\n",
4641			cmd->se_tfo->get_task_tag(cmd));
4642		/*
4643		 * There is a special case for WRITES where a FE exception +
4644		 * LUN shutdown means ConfigFS context is still sleeping on
4645		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4646		 * We go ahead and up transport_lun_stop_comp just to be sure
4647		 * here.
4648		 */
4649		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4650		complete(&cmd->transport_lun_stop_comp);
4651		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4652		spin_lock_irqsave(&cmd->t_state_lock, flags);
4653
4654		transport_all_task_dev_remove_state(cmd);
4655		/*
4656		 * At this point, the frontend who was the originator of this
4657		 * struct se_cmd, now owns the structure and can be released through
4658		 * normal means below.
4659		 */
4660		pr_debug("wait_for_tasks: Stopped"
4661			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4662			"stop_comp); for ITT: 0x%08x\n",
4663			cmd->se_tfo->get_task_tag(cmd));
4664
4665		atomic_set(&cmd->transport_lun_stop, 0);
4666	}
4667	if (!atomic_read(&cmd->t_transport_active) ||
4668	     atomic_read(&cmd->t_transport_aborted))
4669		goto remove;
4670
4671	atomic_set(&cmd->t_transport_stop, 1);
4672
4673	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4674		" i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4675		" = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4676		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4677		cmd->deferred_t_state);
4678
4679	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4680
4681	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4682
4683	wait_for_completion(&cmd->t_transport_stop_comp);
4684
4685	spin_lock_irqsave(&cmd->t_state_lock, flags);
4686	atomic_set(&cmd->t_transport_active, 0);
4687	atomic_set(&cmd->t_transport_stop, 0);
4688
4689	pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4690		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4691		cmd->se_tfo->get_task_tag(cmd));
4692remove:
4693	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4694	if (!remove_cmd)
4695		return;
4696
4697	transport_generic_free_cmd(cmd, 0, session_reinstatement);
4698}
 
4699
4700static int transport_get_sense_codes(
4701	struct se_cmd *cmd,
4702	u8 *asc,
4703	u8 *ascq)
4704{
4705	*asc = cmd->scsi_asc;
4706	*ascq = cmd->scsi_ascq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4707
4708	return 0;
4709}
 
 
 
4710
4711static int transport_set_sense_codes(
4712	struct se_cmd *cmd,
4713	u8 asc,
4714	u8 ascq)
4715{
4716	cmd->scsi_asc = asc;
4717	cmd->scsi_ascq = ascq;
 
 
 
 
 
4718
4719	return 0;
 
 
 
 
 
 
 
4720}
4721
4722int transport_send_check_condition_and_sense(
4723	struct se_cmd *cmd,
4724	u8 reason,
4725	int from_transport)
4726{
4727	unsigned char *buffer = cmd->sense_buffer;
4728	unsigned long flags;
4729	int offset;
4730	u8 asc = 0, ascq = 0;
4731
4732	spin_lock_irqsave(&cmd->t_state_lock, flags);
4733	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4734		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4735		return 0;
4736	}
4737	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4738	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4739
4740	if (!reason && from_transport)
4741		goto after_reason;
4742
4743	if (!from_transport)
4744		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4745	/*
4746	 * Data Segment and SenseLength of the fabric response PDU.
4747	 *
4748	 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4749	 * from include/scsi/scsi_cmnd.h
4750	 */
4751	offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4752				TRANSPORT_SENSE_BUFFER);
4753	/*
4754	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4755	 * SENSE KEY values from include/scsi/scsi.h
4756	 */
4757	switch (reason) {
4758	case TCM_NON_EXISTENT_LUN:
4759		/* CURRENT ERROR */
4760		buffer[offset] = 0x70;
4761		/* ILLEGAL REQUEST */
4762		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4763		/* LOGICAL UNIT NOT SUPPORTED */
4764		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4765		break;
4766	case TCM_UNSUPPORTED_SCSI_OPCODE:
4767	case TCM_SECTOR_COUNT_TOO_MANY:
4768		/* CURRENT ERROR */
4769		buffer[offset] = 0x70;
4770		/* ILLEGAL REQUEST */
4771		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4772		/* INVALID COMMAND OPERATION CODE */
4773		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4774		break;
4775	case TCM_UNKNOWN_MODE_PAGE:
4776		/* CURRENT ERROR */
4777		buffer[offset] = 0x70;
4778		/* ILLEGAL REQUEST */
4779		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4780		/* INVALID FIELD IN CDB */
4781		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4782		break;
4783	case TCM_CHECK_CONDITION_ABORT_CMD:
4784		/* CURRENT ERROR */
4785		buffer[offset] = 0x70;
4786		/* ABORTED COMMAND */
4787		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4788		/* BUS DEVICE RESET FUNCTION OCCURRED */
4789		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4790		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4791		break;
4792	case TCM_INCORRECT_AMOUNT_OF_DATA:
4793		/* CURRENT ERROR */
4794		buffer[offset] = 0x70;
4795		/* ABORTED COMMAND */
4796		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4797		/* WRITE ERROR */
4798		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4799		/* NOT ENOUGH UNSOLICITED DATA */
4800		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4801		break;
4802	case TCM_INVALID_CDB_FIELD:
4803		/* CURRENT ERROR */
4804		buffer[offset] = 0x70;
4805		/* ABORTED COMMAND */
4806		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4807		/* INVALID FIELD IN CDB */
4808		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4809		break;
4810	case TCM_INVALID_PARAMETER_LIST:
4811		/* CURRENT ERROR */
4812		buffer[offset] = 0x70;
4813		/* ABORTED COMMAND */
4814		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4815		/* INVALID FIELD IN PARAMETER LIST */
4816		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4817		break;
4818	case TCM_UNEXPECTED_UNSOLICITED_DATA:
4819		/* CURRENT ERROR */
4820		buffer[offset] = 0x70;
4821		/* ABORTED COMMAND */
4822		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4823		/* WRITE ERROR */
4824		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4825		/* UNEXPECTED_UNSOLICITED_DATA */
4826		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4827		break;
4828	case TCM_SERVICE_CRC_ERROR:
4829		/* CURRENT ERROR */
4830		buffer[offset] = 0x70;
4831		/* ABORTED COMMAND */
4832		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4833		/* PROTOCOL SERVICE CRC ERROR */
4834		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4835		/* N/A */
4836		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4837		break;
4838	case TCM_SNACK_REJECTED:
4839		/* CURRENT ERROR */
4840		buffer[offset] = 0x70;
4841		/* ABORTED COMMAND */
4842		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4843		/* READ ERROR */
4844		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4845		/* FAILED RETRANSMISSION REQUEST */
4846		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4847		break;
4848	case TCM_WRITE_PROTECTED:
4849		/* CURRENT ERROR */
4850		buffer[offset] = 0x70;
4851		/* DATA PROTECT */
4852		buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4853		/* WRITE PROTECTED */
4854		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4855		break;
4856	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4857		/* CURRENT ERROR */
4858		buffer[offset] = 0x70;
4859		/* UNIT ATTENTION */
4860		buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4861		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4862		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4863		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4864		break;
4865	case TCM_CHECK_CONDITION_NOT_READY:
4866		/* CURRENT ERROR */
4867		buffer[offset] = 0x70;
4868		/* Not Ready */
4869		buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4870		transport_get_sense_codes(cmd, &asc, &ascq);
4871		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4872		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4873		break;
4874	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4875	default:
4876		/* CURRENT ERROR */
4877		buffer[offset] = 0x70;
4878		/* ILLEGAL REQUEST */
4879		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4880		/* LOGICAL UNIT COMMUNICATION FAILURE */
4881		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4882		break;
4883	}
4884	/*
4885	 * This code uses linux/include/scsi/scsi.h SAM status codes!
4886	 */
4887	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4888	/*
4889	 * Automatically padded, this value is encoded in the fabric's
4890	 * data_length response PDU containing the SCSI defined sense data.
4891	 */
4892	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4893
4894after_reason:
4895	return cmd->se_tfo->queue_status(cmd);
4896}
4897EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4898
4899int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
 
 
 
 
 
 
4900{
4901	int ret = 0;
4902
4903	if (atomic_read(&cmd->t_transport_aborted) != 0) {
4904		if (!send_status ||
4905		     (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4906			return 1;
4907#if 0
4908		pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4909			" status for CDB: 0x%02x ITT: 0x%08x\n",
4910			cmd->t_task_cdb[0],
4911			cmd->se_tfo->get_task_tag(cmd));
4912#endif
4913		cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4914		cmd->se_tfo->queue_status(cmd);
4915		ret = 1;
4916	}
4917	return ret;
4918}
4919EXPORT_SYMBOL(transport_check_aborted_status);
4920
4921void transport_send_task_abort(struct se_cmd *cmd)
4922{
4923	/*
4924	 * If there are still expected incoming fabric WRITEs, we wait
4925	 * until until they have completed before sending a TASK_ABORTED
4926	 * response.  This response with TASK_ABORTED status will be
4927	 * queued back to fabric module by transport_check_aborted_status().
4928	 */
4929	if (cmd->data_direction == DMA_TO_DEVICE) {
4930		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4931			atomic_inc(&cmd->t_transport_aborted);
4932			smp_mb__after_atomic_inc();
4933			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4934			transport_new_cmd_failure(cmd);
4935			return;
4936		}
4937	}
4938	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4939#if 0
4940	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4941		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
4942		cmd->se_tfo->get_task_tag(cmd));
4943#endif
4944	cmd->se_tfo->queue_status(cmd);
4945}
4946
4947/*	transport_generic_do_tmr():
4948 *
4949 *
4950 */
4951int transport_generic_do_tmr(struct se_cmd *cmd)
4952{
 
4953	struct se_device *dev = cmd->se_dev;
4954	struct se_tmr_req *tmr = cmd->se_tmr_req;
4955	int ret;
4956
 
 
 
4957	switch (tmr->function) {
4958	case TMR_ABORT_TASK:
4959		tmr->response = TMR_FUNCTION_REJECTED;
4960		break;
4961	case TMR_ABORT_TASK_SET:
4962	case TMR_CLEAR_ACA:
4963	case TMR_CLEAR_TASK_SET:
4964		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4965		break;
4966	case TMR_LUN_RESET:
4967		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4968		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4969					 TMR_FUNCTION_REJECTED;
 
 
 
 
4970		break;
4971	case TMR_TARGET_WARM_RESET:
4972		tmr->response = TMR_FUNCTION_REJECTED;
4973		break;
4974	case TMR_TARGET_COLD_RESET:
4975		tmr->response = TMR_FUNCTION_REJECTED;
4976		break;
4977	default:
4978		pr_err("Uknown TMR function: 0x%02x.\n",
4979				tmr->function);
4980		tmr->response = TMR_FUNCTION_REJECTED;
4981		break;
4982	}
4983
4984	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4985	cmd->se_tfo->queue_tm_rsp(cmd);
4986
4987	transport_cmd_check_stop(cmd, 2, 0);
4988	return 0;
4989}
4990
4991/*
4992 *	Called with spin_lock_irq(&dev->execute_task_lock); held
4993 *
4994 */
4995static struct se_task *
4996transport_get_task_from_state_list(struct se_device *dev)
4997{
4998	struct se_task *task;
4999
5000	if (list_empty(&dev->state_task_list))
5001		return NULL;
5002
5003	list_for_each_entry(task, &dev->state_task_list, t_state_list)
5004		break;
5005
5006	list_del(&task->t_state_list);
5007	atomic_set(&task->task_state_active, 0);
 
5008
5009	return task;
 
5010}
5011
5012static void transport_processing_shutdown(struct se_device *dev)
 
5013{
5014	struct se_cmd *cmd;
5015	struct se_task *task;
5016	unsigned long flags;
5017	/*
5018	 * Empty the struct se_device's struct se_task state list.
5019	 */
5020	spin_lock_irqsave(&dev->execute_task_lock, flags);
5021	while ((task = transport_get_task_from_state_list(dev))) {
5022		if (!task->task_se_cmd) {
5023			pr_err("task->task_se_cmd is NULL!\n");
5024			continue;
5025		}
5026		cmd = task->task_se_cmd;
5027
5028		spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5029
5030		spin_lock_irqsave(&cmd->t_state_lock, flags);
5031
5032		pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
5033			" i_state: %d, t_state/def_t_state:"
5034			" %d/%d cdb: 0x%02x\n", cmd, task,
5035			cmd->se_tfo->get_task_tag(cmd),
5036			cmd->se_tfo->get_cmd_state(cmd),
5037			cmd->t_state, cmd->deferred_t_state,
5038			cmd->t_task_cdb[0]);
5039		pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
5040			" %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5041			" t_transport_stop: %d t_transport_sent: %d\n",
5042			cmd->se_tfo->get_task_tag(cmd),
5043			cmd->t_task_list_num,
5044			atomic_read(&cmd->t_task_cdbs_left),
5045			atomic_read(&cmd->t_task_cdbs_sent),
5046			atomic_read(&cmd->t_transport_active),
5047			atomic_read(&cmd->t_transport_stop),
5048			atomic_read(&cmd->t_transport_sent));
5049
5050		if (atomic_read(&task->task_active)) {
5051			atomic_set(&task->task_stop, 1);
5052			spin_unlock_irqrestore(
5053				&cmd->t_state_lock, flags);
5054
5055			pr_debug("Waiting for task: %p to shutdown for dev:"
5056				" %p\n", task, dev);
5057			wait_for_completion(&task->task_stop_comp);
5058			pr_debug("Completed task: %p shutdown for dev: %p\n",
5059				task, dev);
5060
5061			spin_lock_irqsave(&cmd->t_state_lock, flags);
5062			atomic_dec(&cmd->t_task_cdbs_left);
5063
5064			atomic_set(&task->task_active, 0);
5065			atomic_set(&task->task_stop, 0);
5066		} else {
5067			if (atomic_read(&task->task_execute_queue) != 0)
5068				transport_remove_task_from_execute_queue(task, dev);
5069		}
5070		__transport_stop_task_timer(task, &flags);
5071
5072		if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
5073			spin_unlock_irqrestore(
5074					&cmd->t_state_lock, flags);
5075
5076			pr_debug("Skipping task: %p, dev: %p for"
5077				" t_task_cdbs_ex_left: %d\n", task, dev,
5078				atomic_read(&cmd->t_task_cdbs_ex_left));
5079
5080			spin_lock_irqsave(&dev->execute_task_lock, flags);
5081			continue;
5082		}
5083
5084		if (atomic_read(&cmd->t_transport_active)) {
5085			pr_debug("got t_transport_active = 1 for task: %p, dev:"
5086					" %p\n", task, dev);
5087
5088			if (atomic_read(&cmd->t_fe_count)) {
5089				spin_unlock_irqrestore(
5090					&cmd->t_state_lock, flags);
5091				transport_send_check_condition_and_sense(
5092					cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5093					0);
5094				transport_remove_cmd_from_queue(cmd,
5095					&cmd->se_dev->dev_queue_obj);
5096
5097				transport_lun_remove_cmd(cmd);
5098				transport_cmd_check_stop(cmd, 1, 0);
5099			} else {
5100				spin_unlock_irqrestore(
5101					&cmd->t_state_lock, flags);
5102
5103				transport_remove_cmd_from_queue(cmd,
5104					&cmd->se_dev->dev_queue_obj);
5105
5106				transport_lun_remove_cmd(cmd);
5107
5108				if (transport_cmd_check_stop(cmd, 1, 0))
5109					transport_generic_remove(cmd, 0);
5110			}
5111
5112			spin_lock_irqsave(&dev->execute_task_lock, flags);
5113			continue;
5114		}
5115		pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5116				task, dev);
5117
5118		if (atomic_read(&cmd->t_fe_count)) {
5119			spin_unlock_irqrestore(
5120				&cmd->t_state_lock, flags);
5121			transport_send_check_condition_and_sense(cmd,
5122				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5123			transport_remove_cmd_from_queue(cmd,
5124				&cmd->se_dev->dev_queue_obj);
5125
5126			transport_lun_remove_cmd(cmd);
5127			transport_cmd_check_stop(cmd, 1, 0);
5128		} else {
5129			spin_unlock_irqrestore(
5130				&cmd->t_state_lock, flags);
5131
5132			transport_remove_cmd_from_queue(cmd,
5133				&cmd->se_dev->dev_queue_obj);
5134			transport_lun_remove_cmd(cmd);
5135
5136			if (transport_cmd_check_stop(cmd, 1, 0))
5137				transport_generic_remove(cmd, 0);
5138		}
5139
5140		spin_lock_irqsave(&dev->execute_task_lock, flags);
5141	}
5142	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5143	/*
5144	 * Empty the struct se_device's struct se_cmd list.
5145	 */
5146	while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5147
5148		pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5149				cmd, cmd->t_state);
5150
5151		if (atomic_read(&cmd->t_fe_count)) {
5152			transport_send_check_condition_and_sense(cmd,
5153				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5154
5155			transport_lun_remove_cmd(cmd);
5156			transport_cmd_check_stop(cmd, 1, 0);
5157		} else {
5158			transport_lun_remove_cmd(cmd);
5159			if (transport_cmd_check_stop(cmd, 1, 0))
5160				transport_generic_remove(cmd, 0);
5161		}
5162	}
 
 
 
 
5163}
 
5164
5165/*	transport_processing_thread():
5166 *
5167 *
5168 */
5169static int transport_processing_thread(void *param)
5170{
5171	int ret;
5172	struct se_cmd *cmd;
5173	struct se_device *dev = (struct se_device *) param;
5174
5175	set_user_nice(current, -20);
5176
5177	while (!kthread_should_stop()) {
5178		ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5179				atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5180				kthread_should_stop());
5181		if (ret < 0)
5182			goto out;
5183
5184		spin_lock_irq(&dev->dev_status_lock);
5185		if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5186			spin_unlock_irq(&dev->dev_status_lock);
5187			transport_processing_shutdown(dev);
5188			continue;
5189		}
5190		spin_unlock_irq(&dev->dev_status_lock);
5191
5192get_cmd:
5193		__transport_execute_tasks(dev);
5194
5195		cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5196		if (!cmd)
5197			continue;
5198
5199		switch (cmd->t_state) {
5200		case TRANSPORT_NEW_CMD_MAP:
5201			if (!cmd->se_tfo->new_cmd_map) {
5202				pr_err("cmd->se_tfo->new_cmd_map is"
5203					" NULL for TRANSPORT_NEW_CMD_MAP\n");
5204				BUG();
5205			}
5206			ret = cmd->se_tfo->new_cmd_map(cmd);
5207			if (ret < 0) {
5208				cmd->transport_error_status = ret;
5209				transport_generic_request_failure(cmd, NULL,
5210						0, (cmd->data_direction !=
5211						    DMA_TO_DEVICE));
5212				break;
5213			}
5214			/* Fall through */
5215		case TRANSPORT_NEW_CMD:
5216			ret = transport_generic_new_cmd(cmd);
5217			if (ret == -EAGAIN)
5218				break;
5219			else if (ret < 0) {
5220				cmd->transport_error_status = ret;
5221				transport_generic_request_failure(cmd, NULL,
5222					0, (cmd->data_direction !=
5223					 DMA_TO_DEVICE));
5224			}
5225			break;
5226		case TRANSPORT_PROCESS_WRITE:
5227			transport_generic_process_write(cmd);
5228			break;
5229		case TRANSPORT_COMPLETE_OK:
5230			transport_stop_all_task_timers(cmd);
5231			transport_generic_complete_ok(cmd);
5232			break;
5233		case TRANSPORT_REMOVE:
5234			transport_generic_remove(cmd, 0);
5235			break;
5236		case TRANSPORT_FREE_CMD_INTR:
5237			transport_generic_free_cmd(cmd, 0, 0);
5238			break;
5239		case TRANSPORT_PROCESS_TMR:
5240			transport_generic_do_tmr(cmd);
5241			break;
5242		case TRANSPORT_COMPLETE_FAILURE:
5243			transport_generic_request_failure(cmd, NULL, 1, 1);
5244			break;
5245		case TRANSPORT_COMPLETE_TIMEOUT:
5246			transport_stop_all_task_timers(cmd);
5247			transport_generic_request_timeout(cmd);
5248			break;
5249		case TRANSPORT_COMPLETE_QF_WP:
5250			transport_generic_write_pending(cmd);
5251			break;
5252		default:
5253			pr_err("Unknown t_state: %d deferred_t_state:"
5254				" %d for ITT: 0x%08x i_state: %d on SE LUN:"
5255				" %u\n", cmd->t_state, cmd->deferred_t_state,
5256				cmd->se_tfo->get_task_tag(cmd),
5257				cmd->se_tfo->get_cmd_state(cmd),
5258				cmd->se_lun->unpacked_lun);
5259			BUG();
5260		}
5261
5262		goto get_cmd;
5263	}
5264
5265out:
5266	transport_release_all_cmds(dev);
5267	dev->process_thread = NULL;
5268	return 0;
5269}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*******************************************************************************
   3 * Filename:  target_core_transport.c
   4 *
   5 * This file contains the Generic Target Engine Core.
   6 *
   7 * (c) Copyright 2002-2013 Datera, Inc.
 
 
 
   8 *
   9 * Nicholas A. Bellinger <nab@kernel.org>
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 ******************************************************************************/
  12
 
  13#include <linux/net.h>
  14#include <linux/delay.h>
  15#include <linux/string.h>
  16#include <linux/timer.h>
  17#include <linux/slab.h>
 
  18#include <linux/spinlock.h>
  19#include <linux/kthread.h>
  20#include <linux/in.h>
  21#include <linux/cdrom.h>
  22#include <linux/module.h>
  23#include <linux/ratelimit.h>
  24#include <linux/vmalloc.h>
  25#include <asm/unaligned.h>
  26#include <net/sock.h>
  27#include <net/tcp.h>
  28#include <scsi/scsi_proto.h>
  29#include <scsi/scsi_common.h>
 
  30
  31#include <target/target_core_base.h>
  32#include <target/target_core_backend.h>
  33#include <target/target_core_fabric.h>
 
 
 
 
  34
  35#include "target_core_internal.h"
  36#include "target_core_alua.h"
 
  37#include "target_core_pr.h"
 
  38#include "target_core_ua.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/target.h>
  42
  43static struct workqueue_struct *target_completion_wq;
  44static struct workqueue_struct *target_submission_wq;
  45static struct kmem_cache *se_sess_cache;
 
  46struct kmem_cache *se_ua_cache;
  47struct kmem_cache *t10_pr_reg_cache;
  48struct kmem_cache *t10_alua_lu_gp_cache;
  49struct kmem_cache *t10_alua_lu_gp_mem_cache;
  50struct kmem_cache *t10_alua_tg_pt_gp_cache;
  51struct kmem_cache *t10_alua_lba_map_cache;
  52struct kmem_cache *t10_alua_lba_map_mem_cache;
 
 
  53
 
 
 
  54static void transport_complete_task_attr(struct se_cmd *cmd);
  55static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
  56static void transport_handle_queue_full(struct se_cmd *cmd,
  57		struct se_device *dev, int err, bool write_pending);
  58static void target_complete_ok_work(struct work_struct *work);
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60int init_se_kmem_caches(void)
  61{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62	se_sess_cache = kmem_cache_create("se_sess_cache",
  63			sizeof(struct se_session), __alignof__(struct se_session),
  64			0, NULL);
  65	if (!se_sess_cache) {
  66		pr_err("kmem_cache_create() for struct se_session"
  67				" failed\n");
  68		goto out;
  69	}
  70	se_ua_cache = kmem_cache_create("se_ua_cache",
  71			sizeof(struct se_ua), __alignof__(struct se_ua),
  72			0, NULL);
  73	if (!se_ua_cache) {
  74		pr_err("kmem_cache_create() for struct se_ua failed\n");
  75		goto out_free_sess_cache;
  76	}
  77	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
  78			sizeof(struct t10_pr_registration),
  79			__alignof__(struct t10_pr_registration), 0, NULL);
  80	if (!t10_pr_reg_cache) {
  81		pr_err("kmem_cache_create() for struct t10_pr_registration"
  82				" failed\n");
  83		goto out_free_ua_cache;
  84	}
  85	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
  86			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
  87			0, NULL);
  88	if (!t10_alua_lu_gp_cache) {
  89		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
  90				" failed\n");
  91		goto out_free_pr_reg_cache;
  92	}
  93	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
  94			sizeof(struct t10_alua_lu_gp_member),
  95			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
  96	if (!t10_alua_lu_gp_mem_cache) {
  97		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
  98				"cache failed\n");
  99		goto out_free_lu_gp_cache;
 100	}
 101	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
 102			sizeof(struct t10_alua_tg_pt_gp),
 103			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
 104	if (!t10_alua_tg_pt_gp_cache) {
 105		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
 106				"cache failed\n");
 107		goto out_free_lu_gp_mem_cache;
 108	}
 109	t10_alua_lba_map_cache = kmem_cache_create(
 110			"t10_alua_lba_map_cache",
 111			sizeof(struct t10_alua_lba_map),
 112			__alignof__(struct t10_alua_lba_map), 0, NULL);
 113	if (!t10_alua_lba_map_cache) {
 114		pr_err("kmem_cache_create() for t10_alua_lba_map_"
 115				"cache failed\n");
 116		goto out_free_tg_pt_gp_cache;
 117	}
 118	t10_alua_lba_map_mem_cache = kmem_cache_create(
 119			"t10_alua_lba_map_mem_cache",
 120			sizeof(struct t10_alua_lba_map_member),
 121			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
 122	if (!t10_alua_lba_map_mem_cache) {
 123		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
 124				"cache failed\n");
 125		goto out_free_lba_map_cache;
 126	}
 127
 128	target_completion_wq = alloc_workqueue("target_completion",
 129					       WQ_MEM_RECLAIM, 0);
 130	if (!target_completion_wq)
 131		goto out_free_lba_map_mem_cache;
 132
 133	target_submission_wq = alloc_workqueue("target_submission",
 134					       WQ_MEM_RECLAIM, 0);
 135	if (!target_submission_wq)
 136		goto out_free_completion_wq;
 137
 138	return 0;
 139
 140out_free_completion_wq:
 141	destroy_workqueue(target_completion_wq);
 142out_free_lba_map_mem_cache:
 143	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
 144out_free_lba_map_cache:
 145	kmem_cache_destroy(t10_alua_lba_map_cache);
 146out_free_tg_pt_gp_cache:
 147	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 148out_free_lu_gp_mem_cache:
 149	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 150out_free_lu_gp_cache:
 151	kmem_cache_destroy(t10_alua_lu_gp_cache);
 152out_free_pr_reg_cache:
 153	kmem_cache_destroy(t10_pr_reg_cache);
 154out_free_ua_cache:
 155	kmem_cache_destroy(se_ua_cache);
 156out_free_sess_cache:
 157	kmem_cache_destroy(se_sess_cache);
 158out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159	return -ENOMEM;
 160}
 161
 162void release_se_kmem_caches(void)
 163{
 164	destroy_workqueue(target_submission_wq);
 165	destroy_workqueue(target_completion_wq);
 166	kmem_cache_destroy(se_sess_cache);
 167	kmem_cache_destroy(se_ua_cache);
 168	kmem_cache_destroy(t10_pr_reg_cache);
 169	kmem_cache_destroy(t10_alua_lu_gp_cache);
 170	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 171	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 172	kmem_cache_destroy(t10_alua_lba_map_cache);
 173	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
 174}
 175
 176/* This code ensures unique mib indexes are handed out. */
 177static DEFINE_SPINLOCK(scsi_mib_index_lock);
 178static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
 179
 180/*
 181 * Allocate a new row index for the entry type specified
 182 */
 183u32 scsi_get_new_index(scsi_index_t type)
 184{
 185	u32 new_index;
 186
 187	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
 188
 189	spin_lock(&scsi_mib_index_lock);
 190	new_index = ++scsi_mib_index[type];
 191	spin_unlock(&scsi_mib_index_lock);
 192
 193	return new_index;
 194}
 195
 196void transport_subsystem_check_init(void)
 
 
 
 
 
 
 
 
 
 197{
 198	int ret;
 199	static int sub_api_initialized;
 200
 201	if (sub_api_initialized)
 202		return;
 203
 204	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
 205	if (ret != 0)
 206		pr_err("Unable to load target_core_iblock\n");
 207
 208	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
 209	if (ret != 0)
 210		pr_err("Unable to load target_core_file\n");
 211
 212	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
 213	if (ret != 0)
 214		pr_err("Unable to load target_core_pscsi\n");
 215
 216	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
 217	if (ret != 0)
 218		pr_err("Unable to load target_core_user\n");
 219
 220	sub_api_initialized = 1;
 221}
 222
 223static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
 224{
 225	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
 226
 227	wake_up(&sess->cmd_count_wq);
 228}
 229
 230/**
 231 * transport_init_session - initialize a session object
 232 * @se_sess: Session object pointer.
 233 *
 234 * The caller must have zero-initialized @se_sess before calling this function.
 235 */
 236int transport_init_session(struct se_session *se_sess)
 237{
 238	INIT_LIST_HEAD(&se_sess->sess_list);
 239	INIT_LIST_HEAD(&se_sess->sess_acl_list);
 240	spin_lock_init(&se_sess->sess_cmd_lock);
 241	init_waitqueue_head(&se_sess->cmd_count_wq);
 242	init_completion(&se_sess->stop_done);
 243	atomic_set(&se_sess->stopped, 0);
 244	return percpu_ref_init(&se_sess->cmd_count,
 245			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
 246}
 247EXPORT_SYMBOL(transport_init_session);
 248
 249void transport_uninit_session(struct se_session *se_sess)
 250{
 251	/*
 252	 * Drivers like iscsi and loop do not call target_stop_session
 253	 * during session shutdown so we have to drop the ref taken at init
 254	 * time here.
 255	 */
 256	if (!atomic_read(&se_sess->stopped))
 257		percpu_ref_put(&se_sess->cmd_count);
 
 258
 259	percpu_ref_exit(&se_sess->cmd_count);
 
 260}
 261
 262/**
 263 * transport_alloc_session - allocate a session object and initialize it
 264 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 265 */
 266struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
 267{
 268	struct se_session *se_sess;
 269	int ret;
 270
 271	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
 272	if (!se_sess) {
 273		pr_err("Unable to allocate struct se_session from"
 274				" se_sess_cache\n");
 275		return ERR_PTR(-ENOMEM);
 276	}
 277	ret = transport_init_session(se_sess);
 278	if (ret < 0) {
 279		kmem_cache_free(se_sess_cache, se_sess);
 280		return ERR_PTR(ret);
 281	}
 282	se_sess->sup_prot_ops = sup_prot_ops;
 283
 284	return se_sess;
 285}
 286EXPORT_SYMBOL(transport_alloc_session);
 287
 288/**
 289 * transport_alloc_session_tags - allocate target driver private data
 290 * @se_sess:  Session pointer.
 291 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 292 * @tag_size: Size in bytes of the private data a target driver associates with
 293 *	      each command.
 294 */
 295int transport_alloc_session_tags(struct se_session *se_sess,
 296			         unsigned int tag_num, unsigned int tag_size)
 297{
 298	int rc;
 299
 300	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
 301					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 302	if (!se_sess->sess_cmd_map) {
 303		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
 304		return -ENOMEM;
 305	}
 306
 307	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
 308			false, GFP_KERNEL, NUMA_NO_NODE);
 309	if (rc < 0) {
 310		pr_err("Unable to init se_sess->sess_tag_pool,"
 311			" tag_num: %u\n", tag_num);
 312		kvfree(se_sess->sess_cmd_map);
 313		se_sess->sess_cmd_map = NULL;
 314		return -ENOMEM;
 315	}
 316
 317	return 0;
 318}
 319EXPORT_SYMBOL(transport_alloc_session_tags);
 320
 321/**
 322 * transport_init_session_tags - allocate a session and target driver private data
 323 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 324 * @tag_size: Size in bytes of the private data a target driver associates with
 325 *	      each command.
 326 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 327 */
 328static struct se_session *
 329transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
 330			    enum target_prot_op sup_prot_ops)
 331{
 332	struct se_session *se_sess;
 333	int rc;
 334
 335	if (tag_num != 0 && !tag_size) {
 336		pr_err("init_session_tags called with percpu-ida tag_num:"
 337		       " %u, but zero tag_size\n", tag_num);
 338		return ERR_PTR(-EINVAL);
 339	}
 340	if (!tag_num && tag_size) {
 341		pr_err("init_session_tags called with percpu-ida tag_size:"
 342		       " %u, but zero tag_num\n", tag_size);
 343		return ERR_PTR(-EINVAL);
 344	}
 345
 346	se_sess = transport_alloc_session(sup_prot_ops);
 347	if (IS_ERR(se_sess))
 348		return se_sess;
 349
 350	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
 351	if (rc < 0) {
 352		transport_free_session(se_sess);
 353		return ERR_PTR(-ENOMEM);
 354	}
 355
 356	return se_sess;
 357}
 
 358
 359/*
 360 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
 361 */
 362void __transport_register_session(
 363	struct se_portal_group *se_tpg,
 364	struct se_node_acl *se_nacl,
 365	struct se_session *se_sess,
 366	void *fabric_sess_ptr)
 367{
 368	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
 369	unsigned char buf[PR_REG_ISID_LEN];
 370	unsigned long flags;
 371
 372	se_sess->se_tpg = se_tpg;
 373	se_sess->fabric_sess_ptr = fabric_sess_ptr;
 374	/*
 375	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
 376	 *
 377	 * Only set for struct se_session's that will actually be moving I/O.
 378	 * eg: *NOT* discovery sessions.
 379	 */
 380	if (se_nacl) {
 381		/*
 382		 *
 383		 * Determine if fabric allows for T10-PI feature bits exposed to
 384		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
 385		 *
 386		 * If so, then always save prot_type on a per se_node_acl node
 387		 * basis and re-instate the previous sess_prot_type to avoid
 388		 * disabling PI from below any previously initiator side
 389		 * registered LUNs.
 390		 */
 391		if (se_nacl->saved_prot_type)
 392			se_sess->sess_prot_type = se_nacl->saved_prot_type;
 393		else if (tfo->tpg_check_prot_fabric_only)
 394			se_sess->sess_prot_type = se_nacl->saved_prot_type =
 395					tfo->tpg_check_prot_fabric_only(se_tpg);
 396		/*
 397		 * If the fabric module supports an ISID based TransportID,
 398		 * save this value in binary from the fabric I_T Nexus now.
 399		 */
 400		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
 401			memset(&buf[0], 0, PR_REG_ISID_LEN);
 402			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
 403					&buf[0], PR_REG_ISID_LEN);
 404			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
 405		}
 406
 407		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 408		/*
 409		 * The se_nacl->nacl_sess pointer will be set to the
 410		 * last active I_T Nexus for each struct se_node_acl.
 411		 */
 412		se_nacl->nacl_sess = se_sess;
 413
 414		list_add_tail(&se_sess->sess_acl_list,
 415			      &se_nacl->acl_sess_list);
 416		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 417	}
 418	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
 419
 420	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
 421		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
 422}
 423EXPORT_SYMBOL(__transport_register_session);
 424
 425void transport_register_session(
 426	struct se_portal_group *se_tpg,
 427	struct se_node_acl *se_nacl,
 428	struct se_session *se_sess,
 429	void *fabric_sess_ptr)
 430{
 431	unsigned long flags;
 432
 433	spin_lock_irqsave(&se_tpg->session_lock, flags);
 434	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
 435	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 436}
 437EXPORT_SYMBOL(transport_register_session);
 438
 439struct se_session *
 440target_setup_session(struct se_portal_group *tpg,
 441		     unsigned int tag_num, unsigned int tag_size,
 442		     enum target_prot_op prot_op,
 443		     const char *initiatorname, void *private,
 444		     int (*callback)(struct se_portal_group *,
 445				     struct se_session *, void *))
 446{
 447	struct se_session *sess;
 448
 449	/*
 450	 * If the fabric driver is using percpu-ida based pre allocation
 451	 * of I/O descriptor tags, go ahead and perform that setup now..
 452	 */
 453	if (tag_num != 0)
 454		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
 455	else
 456		sess = transport_alloc_session(prot_op);
 457
 458	if (IS_ERR(sess))
 459		return sess;
 460
 461	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
 462					(unsigned char *)initiatorname);
 463	if (!sess->se_node_acl) {
 464		transport_free_session(sess);
 465		return ERR_PTR(-EACCES);
 466	}
 467	/*
 468	 * Go ahead and perform any remaining fabric setup that is
 469	 * required before transport_register_session().
 470	 */
 471	if (callback != NULL) {
 472		int rc = callback(tpg, sess, private);
 473		if (rc) {
 474			transport_free_session(sess);
 475			return ERR_PTR(rc);
 476		}
 477	}
 478
 479	transport_register_session(tpg, sess->se_node_acl, sess, private);
 480	return sess;
 481}
 482EXPORT_SYMBOL(target_setup_session);
 483
 484ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
 485{
 486	struct se_session *se_sess;
 487	ssize_t len = 0;
 488
 489	spin_lock_bh(&se_tpg->session_lock);
 490	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
 491		if (!se_sess->se_node_acl)
 492			continue;
 493		if (!se_sess->se_node_acl->dynamic_node_acl)
 494			continue;
 495		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
 496			break;
 497
 498		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
 499				se_sess->se_node_acl->initiatorname);
 500		len += 1; /* Include NULL terminator */
 501	}
 502	spin_unlock_bh(&se_tpg->session_lock);
 503
 504	return len;
 505}
 506EXPORT_SYMBOL(target_show_dynamic_sessions);
 507
 508static void target_complete_nacl(struct kref *kref)
 509{
 510	struct se_node_acl *nacl = container_of(kref,
 511				struct se_node_acl, acl_kref);
 512	struct se_portal_group *se_tpg = nacl->se_tpg;
 513
 514	if (!nacl->dynamic_stop) {
 515		complete(&nacl->acl_free_comp);
 516		return;
 517	}
 518
 519	mutex_lock(&se_tpg->acl_node_mutex);
 520	list_del_init(&nacl->acl_list);
 521	mutex_unlock(&se_tpg->acl_node_mutex);
 522
 523	core_tpg_wait_for_nacl_pr_ref(nacl);
 524	core_free_device_list_for_node(nacl, se_tpg);
 525	kfree(nacl);
 526}
 527
 528void target_put_nacl(struct se_node_acl *nacl)
 529{
 530	kref_put(&nacl->acl_kref, target_complete_nacl);
 531}
 532EXPORT_SYMBOL(target_put_nacl);
 533
 534void transport_deregister_session_configfs(struct se_session *se_sess)
 535{
 536	struct se_node_acl *se_nacl;
 537	unsigned long flags;
 538	/*
 539	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
 540	 */
 541	se_nacl = se_sess->se_node_acl;
 542	if (se_nacl) {
 543		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 544		if (!list_empty(&se_sess->sess_acl_list))
 545			list_del_init(&se_sess->sess_acl_list);
 546		/*
 547		 * If the session list is empty, then clear the pointer.
 548		 * Otherwise, set the struct se_session pointer from the tail
 549		 * element of the per struct se_node_acl active session list.
 550		 */
 551		if (list_empty(&se_nacl->acl_sess_list))
 552			se_nacl->nacl_sess = NULL;
 553		else {
 554			se_nacl->nacl_sess = container_of(
 555					se_nacl->acl_sess_list.prev,
 556					struct se_session, sess_acl_list);
 557		}
 558		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 559	}
 560}
 561EXPORT_SYMBOL(transport_deregister_session_configfs);
 562
 563void transport_free_session(struct se_session *se_sess)
 564{
 565	struct se_node_acl *se_nacl = se_sess->se_node_acl;
 566
 567	/*
 568	 * Drop the se_node_acl->nacl_kref obtained from within
 569	 * core_tpg_get_initiator_node_acl().
 570	 */
 571	if (se_nacl) {
 572		struct se_portal_group *se_tpg = se_nacl->se_tpg;
 573		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
 574		unsigned long flags;
 575
 576		se_sess->se_node_acl = NULL;
 577
 578		/*
 579		 * Also determine if we need to drop the extra ->cmd_kref if
 580		 * it had been previously dynamically generated, and
 581		 * the endpoint is not caching dynamic ACLs.
 582		 */
 583		mutex_lock(&se_tpg->acl_node_mutex);
 584		if (se_nacl->dynamic_node_acl &&
 585		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
 586			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 587			if (list_empty(&se_nacl->acl_sess_list))
 588				se_nacl->dynamic_stop = true;
 589			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 590
 591			if (se_nacl->dynamic_stop)
 592				list_del_init(&se_nacl->acl_list);
 593		}
 594		mutex_unlock(&se_tpg->acl_node_mutex);
 595
 596		if (se_nacl->dynamic_stop)
 597			target_put_nacl(se_nacl);
 598
 599		target_put_nacl(se_nacl);
 600	}
 601	if (se_sess->sess_cmd_map) {
 602		sbitmap_queue_free(&se_sess->sess_tag_pool);
 603		kvfree(se_sess->sess_cmd_map);
 604	}
 605	transport_uninit_session(se_sess);
 606	kmem_cache_free(se_sess_cache, se_sess);
 607}
 608EXPORT_SYMBOL(transport_free_session);
 609
 610static int target_release_res(struct se_device *dev, void *data)
 611{
 612	struct se_session *sess = data;
 613
 614	if (dev->reservation_holder == sess)
 615		target_release_reservation(dev);
 616	return 0;
 617}
 618
 619void transport_deregister_session(struct se_session *se_sess)
 620{
 621	struct se_portal_group *se_tpg = se_sess->se_tpg;
 
 622	unsigned long flags;
 623
 624	if (!se_tpg) {
 625		transport_free_session(se_sess);
 626		return;
 627	}
 628
 629	spin_lock_irqsave(&se_tpg->session_lock, flags);
 630	list_del(&se_sess->sess_list);
 631	se_sess->se_tpg = NULL;
 632	se_sess->fabric_sess_ptr = NULL;
 633	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 634
 635	/*
 636	 * Since the session is being removed, release SPC-2
 637	 * reservations held by the session that is disappearing.
 638	 */
 639	target_for_each_device(target_release_res, se_sess);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640
 641	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
 642		se_tpg->se_tpg_tfo->fabric_name);
 643	/*
 644	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
 645	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
 646	 * removal context from within transport_free_session() code.
 647	 *
 648	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
 649	 * to release all remaining generate_node_acl=1 created ACL resources.
 650	 */
 651
 652	transport_free_session(se_sess);
 653}
 654EXPORT_SYMBOL(transport_deregister_session);
 655
 656void target_remove_session(struct se_session *se_sess)
 
 
 
 657{
 658	transport_deregister_session_configfs(se_sess);
 659	transport_deregister_session(se_sess);
 660}
 661EXPORT_SYMBOL(target_remove_session);
 662
 663static void target_remove_from_state_list(struct se_cmd *cmd)
 664{
 665	struct se_device *dev = cmd->se_dev;
 666	unsigned long flags;
 667
 668	if (!dev)
 669		return;
 
 
 670
 671	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
 672	if (cmd->state_active) {
 673		list_del(&cmd->state_list);
 674		cmd->state_active = false;
 675	}
 676	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
 677}
 678
 679static void target_remove_from_tmr_list(struct se_cmd *cmd)
 680{
 681	struct se_device *dev = NULL;
 682	unsigned long flags;
 683
 684	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
 685		dev = cmd->se_tmr_req->tmr_dev;
 
 
 
 686
 687	if (dev) {
 688		spin_lock_irqsave(&dev->se_tmr_lock, flags);
 689		if (cmd->se_tmr_req->tmr_dev)
 690			list_del_init(&cmd->se_tmr_req->tmr_list);
 691		spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
 692	}
 693}
 694/*
 695 * This function is called by the target core after the target core has
 696 * finished processing a SCSI command or SCSI TMF. Both the regular command
 697 * processing code and the code for aborting commands can call this
 698 * function. CMD_T_STOP is set if and only if another thread is waiting
 699 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 
 
 700 */
 701static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
 
 
 
 702{
 703	unsigned long flags;
 704
 705	spin_lock_irqsave(&cmd->t_state_lock, flags);
 706	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707	 * Determine if frontend context caller is requesting the stopping of
 708	 * this command for frontend exceptions.
 709	 */
 710	if (cmd->transport_state & CMD_T_STOP) {
 711		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
 712			__func__, __LINE__, cmd->tag);
 
 
 
 
 
 
 713
 
 
 
 
 
 
 714		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 715
 716		complete_all(&cmd->t_transport_stop_comp);
 717		return 1;
 718	}
 719	cmd->transport_state &= ~CMD_T_ACTIVE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 721
 722	/*
 723	 * Some fabric modules like tcm_loop can release their internally
 724	 * allocated I/O reference and struct se_cmd now.
 725	 *
 726	 * Fabric modules are expected to return '1' here if the se_cmd being
 727	 * passed is released at this point, or zero if not being released.
 728	 */
 729	return cmd->se_tfo->check_stop_free(cmd);
 730}
 731
 732static void transport_lun_remove_cmd(struct se_cmd *cmd)
 733{
 734	struct se_lun *lun = cmd->se_lun;
 
 735
 736	if (!lun)
 737		return;
 738
 739	target_remove_from_state_list(cmd);
 740	target_remove_from_tmr_list(cmd);
 
 
 
 
 
 
 741
 742	if (cmpxchg(&cmd->lun_ref_active, true, false))
 743		percpu_ref_put(&lun->lun_ref);
 744
 745	/*
 746	 * Clear struct se_cmd->se_lun before the handoff to FE.
 747	 */
 748	cmd->se_lun = NULL;
 
 
 
 
 
 
 
 749}
 750
 751static void target_complete_failure_work(struct work_struct *work)
 752{
 753	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 
 754
 755	transport_generic_request_failure(cmd, cmd->sense_reason);
 
 
 
 756}
 757
 758/*
 759 * Used when asking transport to copy Sense Data from the underlying
 760 * Linux/SCSI struct scsi_cmnd
 761 */
 762static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
 763{
 764	struct se_device *dev = cmd->se_dev;
 765
 766	WARN_ON(!cmd->se_lun);
 767
 768	if (!dev)
 769		return NULL;
 770
 771	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
 772		return NULL;
 773
 774	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
 775
 776	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
 777		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
 778	return cmd->sense_buffer;
 779}
 780
 781void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
 
 
 782{
 783	unsigned char *cmd_sense_buf;
 
 784	unsigned long flags;
 785
 786	spin_lock_irqsave(&cmd->t_state_lock, flags);
 787	cmd_sense_buf = transport_get_sense_buffer(cmd);
 788	if (!cmd_sense_buf) {
 
 
 
 789		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 790		return;
 791	}
 792
 793	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
 794	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
 795	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 
 
 
 
 
 
 
 
 796}
 797EXPORT_SYMBOL(transport_copy_sense_to_cmd);
 798
 799static void target_handle_abort(struct se_cmd *cmd)
 
 800{
 801	bool tas = cmd->transport_state & CMD_T_TAS;
 802	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
 803	int ret;
 804
 805	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
 806
 807	if (tas) {
 808		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
 809			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
 810			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
 811				 cmd->t_task_cdb[0], cmd->tag);
 812			trace_target_cmd_complete(cmd);
 813			ret = cmd->se_tfo->queue_status(cmd);
 814			if (ret) {
 815				transport_handle_queue_full(cmd, cmd->se_dev,
 816							    ret, false);
 817				return;
 818			}
 819		} else {
 820			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
 821			cmd->se_tfo->queue_tm_rsp(cmd);
 822		}
 823	} else {
 824		/*
 825		 * Allow the fabric driver to unmap any resources before
 826		 * releasing the descriptor via TFO->release_cmd().
 827		 */
 828		cmd->se_tfo->aborted_task(cmd);
 829		if (ack_kref)
 830			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
 831		/*
 832		 * To do: establish a unit attention condition on the I_T
 833		 * nexus associated with cmd. See also the paragraph "Aborting
 834		 * commands" in SAM.
 835		 */
 836	}
 
 837
 838	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
 839
 840	transport_lun_remove_cmd(cmd);
 
 
 841
 842	transport_cmd_check_stop_to_fabric(cmd);
 843}
 844
 845static void target_abort_work(struct work_struct *work)
 
 846{
 847	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 
 
 
 
 
 
 
 848
 849	target_handle_abort(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 850}
 851
 852static bool target_cmd_interrupted(struct se_cmd *cmd)
 
 
 
 
 853{
 854	int post_ret;
 
 855
 856	if (cmd->transport_state & CMD_T_ABORTED) {
 857		if (cmd->transport_complete_callback)
 858			cmd->transport_complete_callback(cmd, false, &post_ret);
 859		INIT_WORK(&cmd->work, target_abort_work);
 860		queue_work(target_completion_wq, &cmd->work);
 861		return true;
 862	} else if (cmd->transport_state & CMD_T_STOP) {
 863		if (cmd->transport_complete_callback)
 864			cmd->transport_complete_callback(cmd, false, &post_ret);
 865		complete_all(&cmd->t_transport_stop_comp);
 866		return true;
 867	}
 868
 869	return false;
 870}
 
 871
 872/* May be called from interrupt context so must not sleep. */
 873void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
 874				    sense_reason_t sense_reason)
 
 
 
 875{
 876	struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
 877	int success, cpu;
 
 878	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879
 880	if (target_cmd_interrupted(cmd))
 881		return;
 
 
 882
 883	cmd->scsi_status = scsi_status;
 884	cmd->sense_reason = sense_reason;
 
 
 
 
 
 
 885
 886	spin_lock_irqsave(&cmd->t_state_lock, flags);
 887	switch (cmd->scsi_status) {
 888	case SAM_STAT_CHECK_CONDITION:
 889		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
 890			success = 1;
 891		else
 892			success = 0;
 893		break;
 894	default:
 895		success = 1;
 896		break;
 897	}
 898
 899	cmd->t_state = TRANSPORT_COMPLETE;
 900	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
 
 
 
 
 
 
 
 
 
 
 901	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 902
 903	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
 904		  target_complete_failure_work);
 
 905
 906	if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
 907		cpu = cmd->cpuid;
 908	else
 909		cpu = wwn->cmd_compl_affinity;
 910
 911	queue_work_on(cpu, target_completion_wq, &cmd->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912}
 913EXPORT_SYMBOL(target_complete_cmd_with_sense);
 914
 915void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
 
 
 
 
 
 
 
 916{
 917	target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
 918			      TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
 919			      TCM_NO_SENSE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920}
 921EXPORT_SYMBOL(target_complete_cmd);
 922
 923void target_set_cmd_data_length(struct se_cmd *cmd, int length)
 924{
 925	if (length < cmd->data_length) {
 926		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
 927			cmd->residual_count += cmd->data_length - length;
 928		} else {
 929			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
 930			cmd->residual_count = cmd->data_length - length;
 931		}
 
 
 
 
 
 
 
 
 
 
 
 932
 933		cmd->data_length = length;
 934	}
 
 935}
 936EXPORT_SYMBOL(target_set_cmd_data_length);
 937
 938void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
 939{
 940	if (scsi_status == SAM_STAT_GOOD ||
 941	    cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
 942		target_set_cmd_data_length(cmd, length);
 
 
 
 
 
 
 
 
 
 
 
 
 943	}
 944
 945	target_complete_cmd(cmd, scsi_status);
 946}
 947EXPORT_SYMBOL(target_complete_cmd_with_length);
 948
 949static void target_add_to_state_list(struct se_cmd *cmd)
 
 
 
 
 
 
 950{
 951	struct se_device *dev = cmd->se_dev;
 952	unsigned long flags;
 953
 954	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
 955	if (!cmd->state_active) {
 956		list_add_tail(&cmd->state_list,
 957			      &dev->queues[cmd->cpuid].state_list);
 958		cmd->state_active = true;
 959	}
 960	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
 
 
 
 
 
 961}
 962
 963/*
 964 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
 965 */
 966static void transport_write_pending_qf(struct se_cmd *cmd);
 967static void transport_complete_qf(struct se_cmd *cmd);
 968
 969void target_qf_do_work(struct work_struct *work)
 970{
 971	struct se_device *dev = container_of(work, struct se_device,
 972					qf_work_queue);
 973	LIST_HEAD(qf_cmd_list);
 974	struct se_cmd *cmd, *cmd_tmp;
 975
 976	spin_lock_irq(&dev->qf_cmd_lock);
 977	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
 978	spin_unlock_irq(&dev->qf_cmd_lock);
 979
 980	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
 981		list_del(&cmd->se_qf_node);
 982		atomic_dec_mb(&dev->dev_qf_count);
 
 983
 984		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
 985			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
 986			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
 987			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
 988			: "UNKNOWN");
 989
 990		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
 991			transport_write_pending_qf(cmd);
 992		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
 993			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
 994			transport_complete_qf(cmd);
 995	}
 996}
 997
 998unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
 999{
1000	switch (cmd->data_direction) {
1001	case DMA_NONE:
1002		return "NONE";
1003	case DMA_FROM_DEVICE:
1004		return "READ";
1005	case DMA_TO_DEVICE:
1006		return "WRITE";
1007	case DMA_BIDIRECTIONAL:
1008		return "BIDI";
1009	default:
1010		break;
1011	}
1012
1013	return "UNKNOWN";
1014}
1015
1016void transport_dump_dev_state(
1017	struct se_device *dev,
1018	char *b,
1019	int *bl)
1020{
1021	*bl += sprintf(b + *bl, "Status: ");
1022	if (dev->export_count)
 
1023		*bl += sprintf(b + *bl, "ACTIVATED");
1024	else
 
1025		*bl += sprintf(b + *bl, "DEACTIVATED");
 
 
 
 
 
 
 
 
 
 
 
 
1026
1027	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1028	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1029		dev->dev_attrib.block_size,
1030		dev->dev_attrib.hw_max_sectors);
 
1031	*bl += sprintf(b + *bl, "        ");
1032}
1033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034void transport_dump_vpd_proto_id(
1035	struct t10_vpd *vpd,
1036	unsigned char *p_buf,
1037	int p_buf_len)
1038{
1039	unsigned char buf[VPD_TMP_BUF_SIZE];
1040	int len;
1041
1042	memset(buf, 0, VPD_TMP_BUF_SIZE);
1043	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1044
1045	switch (vpd->protocol_identifier) {
1046	case 0x00:
1047		sprintf(buf+len, "Fibre Channel\n");
1048		break;
1049	case 0x10:
1050		sprintf(buf+len, "Parallel SCSI\n");
1051		break;
1052	case 0x20:
1053		sprintf(buf+len, "SSA\n");
1054		break;
1055	case 0x30:
1056		sprintf(buf+len, "IEEE 1394\n");
1057		break;
1058	case 0x40:
1059		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1060				" Protocol\n");
1061		break;
1062	case 0x50:
1063		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1064		break;
1065	case 0x60:
1066		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1067		break;
1068	case 0x70:
1069		sprintf(buf+len, "Automation/Drive Interface Transport"
1070				" Protocol\n");
1071		break;
1072	case 0x80:
1073		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1074		break;
1075	default:
1076		sprintf(buf+len, "Unknown 0x%02x\n",
1077				vpd->protocol_identifier);
1078		break;
1079	}
1080
1081	if (p_buf)
1082		strncpy(p_buf, buf, p_buf_len);
1083	else
1084		pr_debug("%s", buf);
1085}
1086
1087void
1088transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1089{
1090	/*
1091	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1092	 *
1093	 * from spc3r23.pdf section 7.5.1
1094	 */
1095	 if (page_83[1] & 0x80) {
1096		vpd->protocol_identifier = (page_83[0] & 0xf0);
1097		vpd->protocol_identifier_set = 1;
1098		transport_dump_vpd_proto_id(vpd, NULL, 0);
1099	}
1100}
1101EXPORT_SYMBOL(transport_set_vpd_proto_id);
1102
1103int transport_dump_vpd_assoc(
1104	struct t10_vpd *vpd,
1105	unsigned char *p_buf,
1106	int p_buf_len)
1107{
1108	unsigned char buf[VPD_TMP_BUF_SIZE];
1109	int ret = 0;
1110	int len;
1111
1112	memset(buf, 0, VPD_TMP_BUF_SIZE);
1113	len = sprintf(buf, "T10 VPD Identifier Association: ");
1114
1115	switch (vpd->association) {
1116	case 0x00:
1117		sprintf(buf+len, "addressed logical unit\n");
1118		break;
1119	case 0x10:
1120		sprintf(buf+len, "target port\n");
1121		break;
1122	case 0x20:
1123		sprintf(buf+len, "SCSI target device\n");
1124		break;
1125	default:
1126		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1127		ret = -EINVAL;
1128		break;
1129	}
1130
1131	if (p_buf)
1132		strncpy(p_buf, buf, p_buf_len);
1133	else
1134		pr_debug("%s", buf);
1135
1136	return ret;
1137}
1138
1139int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1140{
1141	/*
1142	 * The VPD identification association..
1143	 *
1144	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1145	 */
1146	vpd->association = (page_83[1] & 0x30);
1147	return transport_dump_vpd_assoc(vpd, NULL, 0);
1148}
1149EXPORT_SYMBOL(transport_set_vpd_assoc);
1150
1151int transport_dump_vpd_ident_type(
1152	struct t10_vpd *vpd,
1153	unsigned char *p_buf,
1154	int p_buf_len)
1155{
1156	unsigned char buf[VPD_TMP_BUF_SIZE];
1157	int ret = 0;
1158	int len;
1159
1160	memset(buf, 0, VPD_TMP_BUF_SIZE);
1161	len = sprintf(buf, "T10 VPD Identifier Type: ");
1162
1163	switch (vpd->device_identifier_type) {
1164	case 0x00:
1165		sprintf(buf+len, "Vendor specific\n");
1166		break;
1167	case 0x01:
1168		sprintf(buf+len, "T10 Vendor ID based\n");
1169		break;
1170	case 0x02:
1171		sprintf(buf+len, "EUI-64 based\n");
1172		break;
1173	case 0x03:
1174		sprintf(buf+len, "NAA\n");
1175		break;
1176	case 0x04:
1177		sprintf(buf+len, "Relative target port identifier\n");
1178		break;
1179	case 0x08:
1180		sprintf(buf+len, "SCSI name string\n");
1181		break;
1182	default:
1183		sprintf(buf+len, "Unsupported: 0x%02x\n",
1184				vpd->device_identifier_type);
1185		ret = -EINVAL;
1186		break;
1187	}
1188
1189	if (p_buf) {
1190		if (p_buf_len < strlen(buf)+1)
1191			return -EINVAL;
1192		strncpy(p_buf, buf, p_buf_len);
1193	} else {
1194		pr_debug("%s", buf);
1195	}
1196
1197	return ret;
1198}
1199
1200int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1201{
1202	/*
1203	 * The VPD identifier type..
1204	 *
1205	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1206	 */
1207	vpd->device_identifier_type = (page_83[1] & 0x0f);
1208	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1209}
1210EXPORT_SYMBOL(transport_set_vpd_ident_type);
1211
1212int transport_dump_vpd_ident(
1213	struct t10_vpd *vpd,
1214	unsigned char *p_buf,
1215	int p_buf_len)
1216{
1217	unsigned char buf[VPD_TMP_BUF_SIZE];
1218	int ret = 0;
1219
1220	memset(buf, 0, VPD_TMP_BUF_SIZE);
1221
1222	switch (vpd->device_identifier_code_set) {
1223	case 0x01: /* Binary */
1224		snprintf(buf, sizeof(buf),
1225			"T10 VPD Binary Device Identifier: %s\n",
1226			&vpd->device_identifier[0]);
1227		break;
1228	case 0x02: /* ASCII */
1229		snprintf(buf, sizeof(buf),
1230			"T10 VPD ASCII Device Identifier: %s\n",
1231			&vpd->device_identifier[0]);
1232		break;
1233	case 0x03: /* UTF-8 */
1234		snprintf(buf, sizeof(buf),
1235			"T10 VPD UTF-8 Device Identifier: %s\n",
1236			&vpd->device_identifier[0]);
1237		break;
1238	default:
1239		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1240			" 0x%02x", vpd->device_identifier_code_set);
1241		ret = -EINVAL;
1242		break;
1243	}
1244
1245	if (p_buf)
1246		strncpy(p_buf, buf, p_buf_len);
1247	else
1248		pr_debug("%s", buf);
1249
1250	return ret;
1251}
1252
1253int
1254transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1255{
1256	static const char hex_str[] = "0123456789abcdef";
1257	int j = 0, i = 4; /* offset to start of the identifier */
1258
1259	/*
1260	 * The VPD Code Set (encoding)
1261	 *
1262	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1263	 */
1264	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1265	switch (vpd->device_identifier_code_set) {
1266	case 0x01: /* Binary */
1267		vpd->device_identifier[j++] =
1268				hex_str[vpd->device_identifier_type];
1269		while (i < (4 + page_83[3])) {
1270			vpd->device_identifier[j++] =
1271				hex_str[(page_83[i] & 0xf0) >> 4];
1272			vpd->device_identifier[j++] =
1273				hex_str[page_83[i] & 0x0f];
1274			i++;
1275		}
1276		break;
1277	case 0x02: /* ASCII */
1278	case 0x03: /* UTF-8 */
1279		while (i < (4 + page_83[3]))
1280			vpd->device_identifier[j++] = page_83[i++];
1281		break;
1282	default:
1283		break;
1284	}
1285
1286	return transport_dump_vpd_ident(vpd, NULL, 0);
1287}
1288EXPORT_SYMBOL(transport_set_vpd_ident);
1289
1290static sense_reason_t
1291target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1292			       unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293{
1294	u32 mtl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295
1296	if (!cmd->se_tfo->max_data_sg_nents)
1297		return TCM_NO_SENSE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298	/*
1299	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1300	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1301	 * residual_count and reduce original cmd->data_length to maximum
1302	 * length based on single PAGE_SIZE entry scatter-lists.
1303	 */
1304	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1305	if (cmd->data_length > mtl) {
1306		/*
1307		 * If an existing CDB overflow is present, calculate new residual
1308		 * based on CDB size minus fabric maximum transfer length.
1309		 *
1310		 * If an existing CDB underflow is present, calculate new residual
1311		 * based on original cmd->data_length minus fabric maximum transfer
1312		 * length.
1313		 *
1314		 * Otherwise, set the underflow residual based on cmd->data_length
1315		 * minus fabric maximum transfer length.
1316		 */
1317		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1318			cmd->residual_count = (size - mtl);
1319		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1320			u32 orig_dl = size + cmd->residual_count;
1321			cmd->residual_count = (orig_dl - mtl);
1322		} else {
1323			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1324			cmd->residual_count = (cmd->data_length - mtl);
1325		}
1326		cmd->data_length = mtl;
1327		/*
1328		 * Reset sbc_check_prot() calculated protection payload
1329		 * length based upon the new smaller MTL.
1330		 */
1331		if (cmd->prot_length) {
1332			u32 sectors = (mtl / dev->dev_attrib.block_size);
1333			cmd->prot_length = dev->prot_length * sectors;
1334		}
 
 
 
 
1335	}
1336	return TCM_NO_SENSE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337}
 
1338
1339/**
1340 * target_cmd_size_check - Check whether there will be a residual.
1341 * @cmd: SCSI command.
1342 * @size: Data buffer size derived from CDB. The data buffer size provided by
1343 *   the SCSI transport driver is available in @cmd->data_length.
1344 *
1345 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1346 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1347 *
1348 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1349 *
1350 * Return: TCM_NO_SENSE
 
 
1351 */
1352sense_reason_t
1353target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1354{
 
1355	struct se_device *dev = cmd->se_dev;
1356
1357	if (cmd->unknown_data_length) {
1358		cmd->data_length = size;
1359	} else if (size != cmd->data_length) {
1360		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1361			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1362			" 0x%02x\n", cmd->se_tfo->fabric_name,
1363				cmd->data_length, size, cmd->t_task_cdb[0]);
1364		/*
1365		 * For READ command for the overflow case keep the existing
1366		 * fabric provided ->data_length. Otherwise for the underflow
1367		 * case, reset ->data_length to the smaller SCSI expected data
1368		 * transfer length.
1369		 */
1370		if (size > cmd->data_length) {
1371			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1372			cmd->residual_count = (size - cmd->data_length);
1373		} else {
1374			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1375			cmd->residual_count = (cmd->data_length - size);
1376			/*
1377			 * Do not truncate ->data_length for WRITE command to
1378			 * dump all payload
1379			 */
1380			if (cmd->data_direction == DMA_FROM_DEVICE) {
1381				cmd->data_length = size;
1382			}
1383		}
1384
1385		if (cmd->data_direction == DMA_TO_DEVICE) {
1386			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1387				pr_err_ratelimited("Rejecting underflow/overflow"
1388						   " for WRITE data CDB\n");
1389				return TCM_INVALID_FIELD_IN_COMMAND_IU;
1390			}
1391			/*
1392			 * Some fabric drivers like iscsi-target still expect to
1393			 * always reject overflow writes.  Reject this case until
1394			 * full fabric driver level support for overflow writes
1395			 * is introduced tree-wide.
1396			 */
1397			if (size > cmd->data_length) {
1398				pr_err_ratelimited("Rejecting overflow for"
1399						   " WRITE control CDB\n");
1400				return TCM_INVALID_CDB_FIELD;
1401			}
1402		}
1403	}
1404
1405	return target_check_max_data_sg_nents(cmd, dev, size);
 
 
 
 
 
 
1406
 
1407}
1408
 
 
1409/*
1410 * Used by fabric modules containing a local struct se_cmd within their
1411 * fabric dependent per I/O descriptor.
1412 *
1413 * Preserves the value of @cmd->tag.
1414 */
1415void __target_init_cmd(
1416	struct se_cmd *cmd,
1417	const struct target_core_fabric_ops *tfo,
1418	struct se_session *se_sess,
1419	u32 data_length,
1420	int data_direction,
1421	int task_attr,
1422	unsigned char *sense_buffer, u64 unpacked_lun)
1423{
 
1424	INIT_LIST_HEAD(&cmd->se_delayed_node);
 
1425	INIT_LIST_HEAD(&cmd->se_qf_node);
1426	INIT_LIST_HEAD(&cmd->state_list);
 
 
 
1427	init_completion(&cmd->t_transport_stop_comp);
1428	cmd->free_compl = NULL;
1429	cmd->abrt_compl = NULL;
1430	spin_lock_init(&cmd->t_state_lock);
1431	INIT_WORK(&cmd->work, NULL);
1432	kref_init(&cmd->cmd_kref);
1433
1434	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1435	cmd->se_tfo = tfo;
1436	cmd->se_sess = se_sess;
1437	cmd->data_length = data_length;
1438	cmd->data_direction = data_direction;
1439	cmd->sam_task_attr = task_attr;
1440	cmd->sense_buffer = sense_buffer;
1441	cmd->orig_fe_lun = unpacked_lun;
1442
1443	if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1444		cmd->cpuid = raw_smp_processor_id();
1445
1446	cmd->state_active = false;
1447}
1448EXPORT_SYMBOL(__target_init_cmd);
1449
1450static sense_reason_t
1451transport_check_alloc_task_attr(struct se_cmd *cmd)
1452{
1453	struct se_device *dev = cmd->se_dev;
1454
1455	/*
1456	 * Check if SAM Task Attribute emulation is enabled for this
1457	 * struct se_device storage object
1458	 */
1459	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1460		return 0;
1461
1462	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1463		pr_debug("SAM Task Attribute ACA"
1464			" emulation is not supported\n");
1465		return TCM_INVALID_CDB_FIELD;
1466	}
1467
 
 
 
 
 
 
 
 
1468	return 0;
1469}
1470
1471sense_reason_t
1472target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1473{
1474	sense_reason_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475
1476	/*
1477	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1478	 * for VARIABLE_LENGTH_CMD
1479	 */
1480	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1481		pr_err("Received SCSI CDB with command_size: %d that"
1482			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1483			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1484		ret = TCM_INVALID_CDB_FIELD;
1485		goto err;
1486	}
1487	/*
1488	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1489	 * allocate the additional extended CDB buffer now..  Otherwise
1490	 * setup the pointer from __t_task_cdb to t_task_cdb.
1491	 */
1492	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1493		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
 
1494		if (!cmd->t_task_cdb) {
1495			pr_err("Unable to allocate cmd->t_task_cdb"
1496				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1497				scsi_command_size(cdb),
1498				(unsigned long)sizeof(cmd->__t_task_cdb));
1499			ret = TCM_OUT_OF_RESOURCES;
1500			goto err;
1501		}
1502	}
 
1503	/*
1504	 * Copy the original CDB into cmd->
1505	 */
1506	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1507
1508	trace_target_sequencer_start(cmd);
1509	return 0;
1510
1511err:
1512	/*
1513	 * Copy the CDB here to allow trace_target_cmd_complete() to
1514	 * print the cdb to the trace buffers.
 
 
 
 
 
 
 
 
1515	 */
1516	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1517					 (unsigned int)TCM_MAX_COMMAND_SIZE));
1518	return ret;
 
 
 
 
 
 
 
1519}
1520EXPORT_SYMBOL(target_cmd_init_cdb);
1521
1522sense_reason_t
1523target_cmd_parse_cdb(struct se_cmd *cmd)
 
 
 
 
1524{
1525	struct se_device *dev = cmd->se_dev;
1526	sense_reason_t ret;
1527
1528	ret = dev->transport->parse_cdb(cmd);
1529	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1530		pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1531				     cmd->se_tfo->fabric_name,
1532				     cmd->se_sess->se_node_acl->initiatorname,
1533				     cmd->t_task_cdb[0]);
1534	if (ret)
1535		return ret;
1536
1537	ret = transport_check_alloc_task_attr(cmd);
1538	if (ret)
1539		return ret;
1540
1541	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1542	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1543	return 0;
1544}
1545EXPORT_SYMBOL(target_cmd_parse_cdb);
1546
 
 
1547/*
1548 * Used by fabric module frontends to queue tasks directly.
1549 * May only be used from process context.
1550 */
1551int transport_handle_cdb_direct(
1552	struct se_cmd *cmd)
1553{
1554	sense_reason_t ret;
1555
1556	might_sleep();
1557
1558	if (!cmd->se_lun) {
1559		dump_stack();
1560		pr_err("cmd->se_lun is NULL\n");
1561		return -EINVAL;
1562	}
1563
 
 
 
 
 
1564	/*
1565	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1566	 * outstanding descriptors are handled correctly during shutdown via
1567	 * transport_wait_for_tasks()
 
1568	 *
1569	 * Also, we don't take cmd->t_state_lock here as we only expect
1570	 * this to be called for initial descriptor submission.
1571	 */
1572	cmd->t_state = TRANSPORT_NEW_CMD;
1573	cmd->transport_state |= CMD_T_ACTIVE;
1574
1575	/*
1576	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1577	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1578	 * and call transport_generic_request_failure() if necessary..
1579	 */
1580	ret = transport_generic_new_cmd(cmd);
1581	if (ret)
1582		transport_generic_request_failure(cmd, ret);
 
 
 
 
 
1583	return 0;
1584}
1585EXPORT_SYMBOL(transport_handle_cdb_direct);
1586
1587sense_reason_t
1588transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1589		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
 
 
 
 
1590{
1591	if (!sgl || !sgl_count)
1592		return 0;
1593
1594	/*
1595	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1596	 * scatterlists already have been set to follow what the fabric
1597	 * passes for the original expected data transfer length.
1598	 */
1599	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1600		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1601			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1602		return TCM_INVALID_CDB_FIELD;
1603	}
1604
1605	cmd->t_data_sg = sgl;
1606	cmd->t_data_nents = sgl_count;
1607	cmd->t_bidi_data_sg = sgl_bidi;
1608	cmd->t_bidi_data_nents = sgl_bidi_count;
1609
1610	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1611	return 0;
1612}
 
1613
1614/**
1615 * target_init_cmd - initialize se_cmd
1616 * @se_cmd: command descriptor to init
1617 * @se_sess: associated se_sess for endpoint
1618 * @sense: pointer to SCSI sense buffer
1619 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1620 * @data_length: fabric expected data transfer length
1621 * @task_attr: SAM task attribute
1622 * @data_dir: DMA data direction
1623 * @flags: flags for command submission from target_sc_flags_tables
1624 *
1625 * Task tags are supported if the caller has set @se_cmd->tag.
1626 *
1627 * Returns:
1628 *	- less than zero to signal active I/O shutdown failure.
1629 *	- zero on success.
1630 *
1631 * If the fabric driver calls target_stop_session, then it must check the
1632 * return code and handle failures. This will never fail for other drivers,
1633 * and the return code can be ignored.
1634 */
1635int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1636		    unsigned char *sense, u64 unpacked_lun,
1637		    u32 data_length, int task_attr, int data_dir, int flags)
1638{
1639	struct se_portal_group *se_tpg;
1640
1641	se_tpg = se_sess->se_tpg;
1642	BUG_ON(!se_tpg);
1643	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1644
1645	if (flags & TARGET_SCF_USE_CPUID)
1646		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1647	/*
1648	 * Signal bidirectional data payloads to target-core
 
 
 
 
 
 
 
 
 
 
 
 
1649	 */
1650	if (flags & TARGET_SCF_BIDI_OP)
1651		se_cmd->se_cmd_flags |= SCF_BIDI;
1652
1653	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1654		se_cmd->unknown_data_length = 1;
1655	/*
1656	 * Initialize se_cmd for target operation.  From this point
1657	 * exceptions are handled by sending exception status via
1658	 * target_core_fabric_ops->queue_status() callback
1659	 */
1660	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1661			  data_dir, task_attr, sense, unpacked_lun);
1662
1663	/*
1664	 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1665	 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1666	 * kref_put() to happen during fabric packet acknowledgement.
1667	 */
1668	return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1669}
1670EXPORT_SYMBOL_GPL(target_init_cmd);
1671
1672/**
1673 * target_submit_prep - prepare cmd for submission
1674 * @se_cmd: command descriptor to prep
1675 * @cdb: pointer to SCSI CDB
1676 * @sgl: struct scatterlist memory for unidirectional mapping
1677 * @sgl_count: scatterlist count for unidirectional mapping
1678 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1679 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1680 * @sgl_prot: struct scatterlist memory protection information
1681 * @sgl_prot_count: scatterlist count for protection information
1682 * @gfp: gfp allocation type
1683 *
1684 * Returns:
1685 *	- less than zero to signal failure.
1686 *	- zero on success.
1687 *
1688 * If failure is returned, lio will the callers queue_status to complete
1689 * the cmd.
1690 */
1691int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1692		       struct scatterlist *sgl, u32 sgl_count,
1693		       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1694		       struct scatterlist *sgl_prot, u32 sgl_prot_count,
1695		       gfp_t gfp)
1696{
1697	sense_reason_t rc;
 
 
 
1698
1699	rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1700	if (rc)
1701		goto send_cc_direct;
 
 
 
 
 
 
 
 
1702
1703	/*
1704	 * Locate se_lun pointer and attach it to struct se_cmd
1705	 */
1706	rc = transport_lookup_cmd_lun(se_cmd);
1707	if (rc)
1708		goto send_cc_direct;
1709
1710	rc = target_cmd_parse_cdb(se_cmd);
1711	if (rc != 0)
1712		goto generic_fail;
1713
1714	/*
1715	 * Save pointers for SGLs containing protection information,
1716	 * if present.
1717	 */
1718	if (sgl_prot_count) {
1719		se_cmd->t_prot_sg = sgl_prot;
1720		se_cmd->t_prot_nents = sgl_prot_count;
1721		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1722	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723
1724	/*
1725	 * When a non zero sgl_count has been passed perform SGL passthrough
1726	 * mapping for pre-allocated fabric memory instead of having target
1727	 * core perform an internal SGL allocation..
1728	 */
1729	if (sgl_count != 0) {
1730		BUG_ON(!sgl);
 
 
 
 
 
 
 
1731
1732		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1733				sgl_bidi, sgl_bidi_count);
1734		if (rc != 0)
1735			goto generic_fail;
1736	}
1737
1738	return 0;
 
 
 
 
 
1739
1740send_cc_direct:
1741	transport_send_check_condition_and_sense(se_cmd, rc, 0);
1742	target_put_sess_cmd(se_cmd);
1743	return -EIO;
1744
1745generic_fail:
1746	transport_generic_request_failure(se_cmd, rc);
1747	return -EIO;
1748}
1749EXPORT_SYMBOL_GPL(target_submit_prep);
1750
1751/**
1752 * target_submit - perform final initialization and submit cmd to LIO core
1753 * @se_cmd: command descriptor to submit
1754 *
1755 * target_submit_prep must have been called on the cmd, and this must be
1756 * called from process context.
1757 */
1758void target_submit(struct se_cmd *se_cmd)
 
 
 
 
1759{
1760	struct scatterlist *sgl = se_cmd->t_data_sg;
1761	unsigned char *buf = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762
1763	might_sleep();
1764
1765	if (se_cmd->t_data_nents != 0) {
1766		BUG_ON(!sgl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767		/*
1768		 * A work-around for tcm_loop as some userspace code via
1769		 * scsi-generic do not memset their associated read buffers,
1770		 * so go ahead and do that here for type non-data CDBs.  Also
1771		 * note that this is currently guaranteed to be a single SGL
1772		 * for this case by target core in target_setup_cmd_from_cdb()
1773		 * -> transport_generic_cmd_sequencer().
1774		 */
1775		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1776		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1777			if (sgl)
1778				buf = kmap(sg_page(sgl)) + sgl->offset;
1779
1780			if (buf) {
1781				memset(buf, 0, sgl->length);
1782				kunmap(sg_page(sgl));
1783			}
1784		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786	}
1787
1788	/*
1789	 * Check if we need to delay processing because of ALUA
1790	 * Active/NonOptimized primary access state..
1791	 */
1792	core_alua_check_nonop_delay(se_cmd);
1793
1794	transport_handle_cdb_direct(se_cmd);
 
 
1795}
1796EXPORT_SYMBOL_GPL(target_submit);
1797
1798/**
1799 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1800 *
1801 * @se_cmd: command descriptor to submit
1802 * @se_sess: associated se_sess for endpoint
1803 * @cdb: pointer to SCSI CDB
1804 * @sense: pointer to SCSI sense buffer
1805 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1806 * @data_length: fabric expected data transfer length
1807 * @task_attr: SAM task attribute
1808 * @data_dir: DMA data direction
1809 * @flags: flags for command submission from target_sc_flags_tables
1810 *
1811 * Task tags are supported if the caller has set @se_cmd->tag.
1812 *
1813 * This may only be called from process context, and also currently
1814 * assumes internal allocation of fabric payload buffer by target-core.
1815 *
1816 * It also assumes interal target core SGL memory allocation.
1817 *
1818 * This function must only be used by drivers that do their own
1819 * sync during shutdown and does not use target_stop_session. If there
1820 * is a failure this function will call into the fabric driver's
1821 * queue_status with a CHECK_CONDITION.
1822 */
1823void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1824		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1825		u32 data_length, int task_attr, int data_dir, int flags)
1826{
1827	int rc;
1828
1829	rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1830			     task_attr, data_dir, flags);
1831	WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1832	if (rc)
1833		return;
1834
1835	if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1836			       GFP_KERNEL))
1837		return;
 
1838
1839	target_submit(se_cmd);
 
 
1840}
1841EXPORT_SYMBOL(target_submit_cmd);
1842
 
 
 
1843
1844static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845{
1846	struct se_dev_plug *se_plug;
 
1847
1848	if (!se_dev->transport->plug_device)
1849		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850
1851	se_plug = se_dev->transport->plug_device(se_dev);
1852	if (!se_plug)
1853		return NULL;
1854
1855	se_plug->se_dev = se_dev;
1856	/*
1857	 * We have a ref to the lun at this point, but the cmds could
1858	 * complete before we unplug, so grab a ref to the se_device so we
1859	 * can call back into the backend.
1860	 */
1861	config_group_get(&se_dev->dev_group);
1862	return se_plug;
1863}
1864
1865static void target_unplug_device(struct se_dev_plug *se_plug)
1866{
1867	struct se_device *se_dev = se_plug->se_dev;
1868
1869	se_dev->transport->unplug_device(se_plug);
1870	config_group_put(&se_dev->dev_group);
 
1871}
1872
1873void target_queued_submit_work(struct work_struct *work)
 
 
 
1874{
1875	struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1876	struct se_cmd *se_cmd, *next_cmd;
1877	struct se_dev_plug *se_plug = NULL;
1878	struct se_device *se_dev = NULL;
1879	struct llist_node *cmd_list;
1880
1881	cmd_list = llist_del_all(&sq->cmd_list);
1882	if (!cmd_list)
1883		/* Previous call took what we were queued to submit */
 
 
1884		return;
 
 
1885
1886	cmd_list = llist_reverse_order(cmd_list);
1887	llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1888		if (!se_dev) {
1889			se_dev = se_cmd->se_dev;
1890			se_plug = target_plug_device(se_dev);
1891		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892
1893		target_submit(se_cmd);
 
 
 
 
1894	}
 
 
1895
1896	if (se_plug)
1897		target_unplug_device(se_plug);
 
 
1898}
1899
1900/**
1901 * target_queue_submission - queue the cmd to run on the LIO workqueue
1902 * @se_cmd: command descriptor to submit
1903 */
1904void target_queue_submission(struct se_cmd *se_cmd)
1905{
1906	struct se_device *se_dev = se_cmd->se_dev;
1907	int cpu = se_cmd->cpuid;
1908	struct se_cmd_queue *sq;
 
 
 
 
 
 
 
 
1909
1910	sq = &se_dev->queues[cpu].sq;
1911	llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1912	queue_work_on(cpu, target_submission_wq, &sq->work);
 
 
 
 
 
 
 
 
1913}
1914EXPORT_SYMBOL_GPL(target_queue_submission);
1915
1916static void target_complete_tmr_failure(struct work_struct *work)
 
 
 
1917{
1918	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1919
1920	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1921	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
 
 
 
1922
1923	transport_lun_remove_cmd(se_cmd);
1924	transport_cmd_check_stop_to_fabric(se_cmd);
 
 
 
1925}
1926
1927/**
1928 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1929 *                     for TMR CDBs
1930 *
1931 * @se_cmd: command descriptor to submit
1932 * @se_sess: associated se_sess for endpoint
1933 * @sense: pointer to SCSI sense buffer
1934 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1935 * @fabric_tmr_ptr: fabric context for TMR req
1936 * @tm_type: Type of TM request
1937 * @gfp: gfp type for caller
1938 * @tag: referenced task tag for TMR_ABORT_TASK
1939 * @flags: submit cmd flags
1940 *
1941 * Callable from all contexts.
1942 **/
1943
1944int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1945		unsigned char *sense, u64 unpacked_lun,
1946		void *fabric_tmr_ptr, unsigned char tm_type,
1947		gfp_t gfp, u64 tag, int flags)
1948{
1949	struct se_portal_group *se_tpg;
1950	int ret;
 
 
 
1951
1952	se_tpg = se_sess->se_tpg;
1953	BUG_ON(!se_tpg);
 
1954
1955	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1956			  0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957	/*
1958	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1959	 * allocation failure.
 
1960	 */
1961	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1962	if (ret < 0)
1963		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964
1965	if (tm_type == TMR_ABORT_TASK)
1966		se_cmd->se_tmr_req->ref_task_tag = tag;
 
 
 
 
 
1967
1968	/* See target_submit_cmd for commentary */
1969	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1970	if (ret) {
1971		core_tmr_release_req(se_cmd->se_tmr_req);
1972		return ret;
1973	}
1974
1975	ret = transport_lookup_tmr_lun(se_cmd);
1976	if (ret)
1977		goto failure;
1978
1979	transport_generic_handle_tmr(se_cmd);
1980	return 0;
1981
1982	/*
1983	 * For callback during failure handling, push this work off
1984	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985	 */
1986failure:
1987	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1988	schedule_work(&se_cmd->work);
1989	return 0;
1990}
1991EXPORT_SYMBOL(target_submit_tmr);
1992
1993/*
1994 * Handle SAM-esque emulation for generic transport request failures.
 
 
 
1995 */
1996void transport_generic_request_failure(struct se_cmd *cmd,
1997		sense_reason_t sense_reason)
1998{
1999	int ret = 0, post_ret;
2000
2001	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2002		 sense_reason);
2003	target_show_cmd("-----[ ", cmd);
2004
2005	/*
2006	 * For SAM Task Attribute emulation for failed struct se_cmd
 
2007	 */
2008	transport_complete_task_attr(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009
2010	if (cmd->transport_complete_callback)
2011		cmd->transport_complete_callback(cmd, false, &post_ret);
2012
2013	if (cmd->transport_state & CMD_T_ABORTED) {
2014		INIT_WORK(&cmd->work, target_abort_work);
2015		queue_work(target_completion_wq, &cmd->work);
2016		return;
2017	}
 
 
 
2018
2019	switch (sense_reason) {
2020	case TCM_NON_EXISTENT_LUN:
2021	case TCM_UNSUPPORTED_SCSI_OPCODE:
2022	case TCM_INVALID_CDB_FIELD:
2023	case TCM_INVALID_PARAMETER_LIST:
2024	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2025	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2026	case TCM_UNKNOWN_MODE_PAGE:
2027	case TCM_WRITE_PROTECTED:
2028	case TCM_ADDRESS_OUT_OF_RANGE:
2029	case TCM_CHECK_CONDITION_ABORT_CMD:
2030	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2031	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2032	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2033	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2034	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2035	case TCM_TOO_MANY_TARGET_DESCS:
2036	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2037	case TCM_TOO_MANY_SEGMENT_DESCS:
2038	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2039	case TCM_INVALID_FIELD_IN_COMMAND_IU:
2040	case TCM_ALUA_TG_PT_STANDBY:
2041	case TCM_ALUA_TG_PT_UNAVAILABLE:
2042	case TCM_ALUA_STATE_TRANSITION:
2043	case TCM_ALUA_OFFLINE:
2044		break;
2045	case TCM_OUT_OF_RESOURCES:
2046		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2047		goto queue_status;
2048	case TCM_LUN_BUSY:
2049		cmd->scsi_status = SAM_STAT_BUSY;
2050		goto queue_status;
2051	case TCM_RESERVATION_CONFLICT:
2052		/*
2053		 * No SENSE Data payload for this case, set SCSI Status
2054		 * and queue the response to $FABRIC_MOD.
2055		 *
2056		 * Uses linux/include/scsi/scsi.h SAM status codes defs
2057		 */
2058		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
 
 
 
 
 
2059		/*
2060		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2061		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2062		 * CONFLICT STATUS.
 
2063		 *
2064		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
 
 
2065		 */
2066		if (cmd->se_sess &&
2067		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2068					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2069			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2070					       cmd->orig_fe_lun, 0x2C,
2071					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
 
 
 
 
 
 
2072		}
2073
2074		goto queue_status;
2075	default:
2076		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2077			cmd->t_task_cdb[0], sense_reason);
2078		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2079		break;
2080	}
2081
2082	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2083	if (ret)
2084		goto queue_full;
2085
2086check_stop:
2087	transport_lun_remove_cmd(cmd);
2088	transport_cmd_check_stop_to_fabric(cmd);
2089	return;
2090
2091queue_status:
2092	trace_target_cmd_complete(cmd);
2093	ret = cmd->se_tfo->queue_status(cmd);
2094	if (!ret)
2095		goto check_stop;
2096queue_full:
2097	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
 
 
 
 
2098}
2099EXPORT_SYMBOL(transport_generic_request_failure);
2100
2101void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
 
 
 
 
 
2102{
2103	sense_reason_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2104
2105	if (!cmd->execute_cmd) {
2106		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2107		goto err;
2108	}
2109	if (do_checks) {
2110		/*
2111		 * Check for an existing UNIT ATTENTION condition after
2112		 * target_handle_task_attr() has done SAM task attr
2113		 * checking, and possibly have already defered execution
2114		 * out to target_restart_delayed_cmds() context.
2115		 */
2116		ret = target_scsi3_ua_check(cmd);
2117		if (ret)
2118			goto err;
2119
2120		ret = target_alua_state_check(cmd);
2121		if (ret)
2122			goto err;
 
 
 
2123
2124		ret = target_check_reservation(cmd);
2125		if (ret) {
2126			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2127			goto err;
2128		}
 
2129	}
2130
2131	ret = cmd->execute_cmd(cmd);
2132	if (!ret)
2133		return;
2134err:
2135	spin_lock_irq(&cmd->t_state_lock);
2136	cmd->transport_state &= ~CMD_T_SENT;
2137	spin_unlock_irq(&cmd->t_state_lock);
2138
2139	transport_generic_request_failure(cmd, ret);
2140}
2141
2142static int target_write_prot_action(struct se_cmd *cmd)
 
 
 
2143{
2144	u32 sectors;
 
2145	/*
2146	 * Perform WRITE_INSERT of PI using software emulation when backend
2147	 * device has PI enabled, if the transport has not already generated
2148	 * PI using hardware WRITE_INSERT offload.
2149	 */
2150	switch (cmd->prot_op) {
2151	case TARGET_PROT_DOUT_INSERT:
2152		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2153			sbc_dif_generate(cmd);
2154		break;
2155	case TARGET_PROT_DOUT_STRIP:
2156		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2157			break;
2158
2159		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2160		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2161					     sectors, 0, cmd->t_prot_sg, 0);
2162		if (unlikely(cmd->pi_err)) {
2163			spin_lock_irq(&cmd->t_state_lock);
2164			cmd->transport_state &= ~CMD_T_SENT;
2165			spin_unlock_irq(&cmd->t_state_lock);
2166			transport_generic_request_failure(cmd, cmd->pi_err);
2167			return -1;
2168		}
2169		break;
2170	default:
2171		break;
2172	}
2173
2174	return 0;
 
 
 
 
 
2175}
2176
2177static bool target_handle_task_attr(struct se_cmd *cmd)
 
 
 
2178{
2179	struct se_device *dev = cmd->se_dev;
2180
2181	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2182		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2183
2184	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	/*
2187	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2188	 * to allow the passed struct se_cmd list of tasks to the front of the list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189	 */
2190	switch (cmd->sam_task_attr) {
2191	case TCM_HEAD_TAG:
2192		atomic_inc_mb(&dev->non_ordered);
2193		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2194			 cmd->t_task_cdb[0]);
2195		return false;
2196	case TCM_ORDERED_TAG:
2197		atomic_inc_mb(&dev->delayed_cmd_count);
2198
2199		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2200			 cmd->t_task_cdb[0]);
2201		break;
2202	default:
2203		/*
2204		 * For SIMPLE and UNTAGGED Task Attribute commands
2205		 */
2206		atomic_inc_mb(&dev->non_ordered);
2207
2208		if (atomic_read(&dev->delayed_cmd_count) == 0)
2209			return false;
2210		break;
2211	}
2212
2213	if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
2214		atomic_inc_mb(&dev->delayed_cmd_count);
2215		/*
2216		 * We will account for this when we dequeue from the delayed
2217		 * list.
2218		 */
2219		atomic_dec_mb(&dev->non_ordered);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220	}
2221
2222	spin_lock_irq(&cmd->t_state_lock);
2223	cmd->transport_state &= ~CMD_T_SENT;
2224	spin_unlock_irq(&cmd->t_state_lock);
2225
2226	spin_lock(&dev->delayed_cmd_lock);
2227	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2228	spin_unlock(&dev->delayed_cmd_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229
2230	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2231		cmd->t_task_cdb[0], cmd->sam_task_attr);
2232	/*
2233	 * We may have no non ordered cmds when this function started or we
2234	 * could have raced with the last simple/head cmd completing, so kick
2235	 * the delayed handler here.
2236	 */
2237	schedule_work(&dev->delayed_cmd_work);
2238	return true;
2239}
2240
2241void target_execute_cmd(struct se_cmd *cmd)
 
2242{
 
 
 
 
2243	/*
2244	 * Determine if frontend context caller is requesting the stopping of
2245	 * this command for frontend exceptions.
 
2246	 *
2247	 * If the received CDB has already been aborted stop processing it here.
2248	 */
2249	if (target_cmd_interrupted(cmd))
2250		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251
2252	spin_lock_irq(&cmd->t_state_lock);
2253	cmd->t_state = TRANSPORT_PROCESSING;
2254	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2255	spin_unlock_irq(&cmd->t_state_lock);
 
 
 
2256
2257	if (target_write_prot_action(cmd))
2258		return;
2259
2260	if (target_handle_task_attr(cmd))
2261		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262
2263	__target_execute_cmd(cmd, true);
2264}
2265EXPORT_SYMBOL(target_execute_cmd);
2266
2267/*
2268 * Process all commands up to the last received ORDERED task attribute which
2269 * requires another blocking boundary
 
 
 
 
 
 
2270 */
2271void target_do_delayed_work(struct work_struct *work)
 
 
2272{
2273	struct se_device *dev = container_of(work, struct se_device,
2274					     delayed_cmd_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275
2276	spin_lock(&dev->delayed_cmd_lock);
2277	while (!dev->ordered_sync_in_progress) {
2278		struct se_cmd *cmd;
 
 
2279
2280		if (list_empty(&dev->delayed_cmd_list))
 
 
 
 
 
2281			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282
2283		cmd = list_entry(dev->delayed_cmd_list.next,
2284				 struct se_cmd, se_delayed_node);
2285
2286		if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
 
 
 
 
 
 
 
 
 
2287			/*
2288			 * Check if we started with:
2289			 * [ordered] [simple] [ordered]
2290			 * and we are now at the last ordered so we have to wait
2291			 * for the simple cmd.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292			 */
2293			if (atomic_read(&dev->non_ordered) > 0)
2294				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
2296			dev->ordered_sync_in_progress = true;
 
 
 
 
2297		}
2298
2299		list_del(&cmd->se_delayed_node);
2300		atomic_dec_mb(&dev->delayed_cmd_count);
2301		spin_unlock(&dev->delayed_cmd_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302
2303		if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2304			atomic_inc_mb(&dev->non_ordered);
 
 
 
2305
2306		cmd->transport_state |= CMD_T_SENT;
2307
2308		__target_execute_cmd(cmd, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2309
2310		spin_lock(&dev->delayed_cmd_lock);
 
 
 
 
 
 
 
2311	}
2312	spin_unlock(&dev->delayed_cmd_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313}
2314
2315/*
2316 * Called from I/O completion to determine which dormant/delayed
 
2317 * and ordered cmds need to have their tasks added to the execution queue.
2318 */
2319static void transport_complete_task_attr(struct se_cmd *cmd)
2320{
2321	struct se_device *dev = cmd->se_dev;
 
 
2322
2323	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2324		return;
2325
2326	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2327		goto restart;
2328
2329	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2330		atomic_dec_mb(&dev->non_ordered);
2331		dev->dev_cur_ordered_id++;
2332	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2333		atomic_dec_mb(&dev->non_ordered);
 
 
 
 
2334		dev->dev_cur_ordered_id++;
2335		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2336			 dev->dev_cur_ordered_id);
2337	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2338		spin_lock(&dev->delayed_cmd_lock);
2339		dev->ordered_sync_in_progress = false;
2340		spin_unlock(&dev->delayed_cmd_lock);
 
 
 
2341
2342		dev->dev_cur_ordered_id++;
2343		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2344			 dev->dev_cur_ordered_id);
2345	}
2346	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
 
 
 
 
 
 
 
2347
2348restart:
2349	if (atomic_read(&dev->delayed_cmd_count) > 0)
2350		schedule_work(&dev->delayed_cmd_work);
2351}
 
 
 
 
2352
2353static void transport_complete_qf(struct se_cmd *cmd)
2354{
2355	int ret = 0;
2356
2357	transport_complete_task_attr(cmd);
 
 
 
 
2358	/*
2359	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2360	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2361	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2362	 * if a scsi_status is not already set.
2363	 *
2364	 * If a fabric driver ->queue_status() has returned non zero, always
2365	 * keep retrying no matter what..
2366	 */
2367	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2368		if (cmd->scsi_status)
2369			goto queue_status;
2370
2371		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2372		goto queue_status;
2373	}
2374
2375	/*
2376	 * Check if we need to send a sense buffer from
2377	 * the struct se_cmd in question. We do NOT want
2378	 * to take this path of the IO has been marked as
2379	 * needing to be treated like a "normal read". This
2380	 * is the case if it's a tape read, and either the
2381	 * FM, EOM, or ILI bits are set, but there is no
2382	 * sense data.
2383	 */
2384	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2385	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2386		goto queue_status;
2387
2388	switch (cmd->data_direction) {
2389	case DMA_FROM_DEVICE:
2390		/* queue status if not treating this as a normal read */
2391		if (cmd->scsi_status &&
2392		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2393			goto queue_status;
2394
2395		trace_target_cmd_complete(cmd);
2396		ret = cmd->se_tfo->queue_data_in(cmd);
2397		break;
2398	case DMA_TO_DEVICE:
2399		if (cmd->se_cmd_flags & SCF_BIDI) {
2400			ret = cmd->se_tfo->queue_data_in(cmd);
2401			break;
 
2402		}
2403		fallthrough;
2404	case DMA_NONE:
2405queue_status:
2406		trace_target_cmd_complete(cmd);
2407		ret = cmd->se_tfo->queue_status(cmd);
2408		break;
2409	default:
2410		break;
2411	}
2412
2413	if (ret < 0) {
2414		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2415		return;
2416	}
2417	transport_lun_remove_cmd(cmd);
2418	transport_cmd_check_stop_to_fabric(cmd);
2419}
2420
2421static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2422					int err, bool write_pending)
 
 
2423{
2424	/*
2425	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2426	 * ->queue_data_in() callbacks from new process context.
2427	 *
2428	 * Otherwise for other errors, transport_complete_qf() will send
2429	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2430	 * retry associated fabric driver data-transfer callbacks.
2431	 */
2432	if (err == -EAGAIN || err == -ENOMEM) {
2433		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2434						 TRANSPORT_COMPLETE_QF_OK;
2435	} else {
2436		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2437		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2438	}
2439
2440	spin_lock_irq(&dev->qf_cmd_lock);
 
 
2441	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2442	atomic_inc_mb(&dev->dev_qf_count);
 
2443	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2444
2445	schedule_work(&cmd->se_dev->qf_work_queue);
2446}
2447
2448static bool target_read_prot_action(struct se_cmd *cmd)
2449{
2450	switch (cmd->prot_op) {
2451	case TARGET_PROT_DIN_STRIP:
2452		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2453			u32 sectors = cmd->data_length >>
2454				  ilog2(cmd->se_dev->dev_attrib.block_size);
2455
2456			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2457						     sectors, 0, cmd->t_prot_sg,
2458						     0);
2459			if (cmd->pi_err)
2460				return true;
2461		}
2462		break;
2463	case TARGET_PROT_DIN_INSERT:
2464		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2465			break;
2466
2467		sbc_dif_generate(cmd);
2468		break;
2469	default:
2470		break;
2471	}
2472
2473	return false;
2474}
2475
2476static void target_complete_ok_work(struct work_struct *work)
2477{
2478	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2479	int ret;
2480
2481	/*
2482	 * Check if we need to move delayed/dormant tasks from cmds on the
2483	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2484	 * Attribute.
2485	 */
2486	transport_complete_task_attr(cmd);
2487
2488	/*
2489	 * Check to schedule QUEUE_FULL work, or execute an existing
2490	 * cmd->transport_qf_callback()
2491	 */
2492	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2493		schedule_work(&cmd->se_dev->qf_work_queue);
2494
2495	/*
2496	 * Check if we need to send a sense buffer from
2497	 * the struct se_cmd in question. We do NOT want
2498	 * to take this path of the IO has been marked as
2499	 * needing to be treated like a "normal read". This
2500	 * is the case if it's a tape read, and either the
2501	 * FM, EOM, or ILI bits are set, but there is no
2502	 * sense data.
2503	 */
2504	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2505	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2506		WARN_ON(!cmd->scsi_status);
2507		ret = transport_send_check_condition_and_sense(
2508					cmd, 0, 1);
2509		if (ret)
2510			goto queue_full;
2511
2512		transport_lun_remove_cmd(cmd);
2513		transport_cmd_check_stop_to_fabric(cmd);
2514		return;
2515	}
2516	/*
2517	 * Check for a callback, used by amongst other things
2518	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2519	 */
2520	if (cmd->transport_complete_callback) {
2521		sense_reason_t rc;
2522		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2523		bool zero_dl = !(cmd->data_length);
2524		int post_ret = 0;
2525
2526		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2527		if (!rc && !post_ret) {
2528			if (caw && zero_dl)
2529				goto queue_rsp;
2530
2531			return;
2532		} else if (rc) {
2533			ret = transport_send_check_condition_and_sense(cmd,
2534						rc, 0);
2535			if (ret)
 
 
 
2536				goto queue_full;
2537
2538			transport_lun_remove_cmd(cmd);
2539			transport_cmd_check_stop_to_fabric(cmd);
2540			return;
2541		}
2542	}
 
 
 
 
 
 
2543
2544queue_rsp:
2545	switch (cmd->data_direction) {
2546	case DMA_FROM_DEVICE:
2547		/*
2548		 * if this is a READ-type IO, but SCSI status
2549		 * is set, then skip returning data and just
2550		 * return the status -- unless this IO is marked
2551		 * as needing to be treated as a normal read,
2552		 * in which case we want to go ahead and return
2553		 * the data. This happens, for example, for tape
2554		 * reads with the FM, EOM, or ILI bits set, with
2555		 * no sense data.
2556		 */
2557		if (cmd->scsi_status &&
2558		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2559			goto queue_status;
2560
2561		atomic_long_add(cmd->data_length,
2562				&cmd->se_lun->lun_stats.tx_data_octets);
2563		/*
2564		 * Perform READ_STRIP of PI using software emulation when
2565		 * backend had PI enabled, if the transport will not be
2566		 * performing hardware READ_STRIP offload.
2567		 */
2568		if (target_read_prot_action(cmd)) {
2569			ret = transport_send_check_condition_and_sense(cmd,
2570						cmd->pi_err, 0);
2571			if (ret)
2572				goto queue_full;
2573
2574			transport_lun_remove_cmd(cmd);
2575			transport_cmd_check_stop_to_fabric(cmd);
2576			return;
2577		}
 
2578
2579		trace_target_cmd_complete(cmd);
2580		ret = cmd->se_tfo->queue_data_in(cmd);
2581		if (ret)
2582			goto queue_full;
2583		break;
2584	case DMA_TO_DEVICE:
2585		atomic_long_add(cmd->data_length,
2586				&cmd->se_lun->lun_stats.rx_data_octets);
 
 
 
 
2587		/*
2588		 * Check if we need to send READ payload for BIDI-COMMAND
2589		 */
2590		if (cmd->se_cmd_flags & SCF_BIDI) {
2591			atomic_long_add(cmd->data_length,
2592					&cmd->se_lun->lun_stats.tx_data_octets);
 
 
 
 
2593			ret = cmd->se_tfo->queue_data_in(cmd);
2594			if (ret)
2595				goto queue_full;
2596			break;
2597		}
2598		fallthrough;
2599	case DMA_NONE:
2600queue_status:
2601		trace_target_cmd_complete(cmd);
2602		ret = cmd->se_tfo->queue_status(cmd);
2603		if (ret)
2604			goto queue_full;
2605		break;
2606	default:
2607		break;
2608	}
2609
 
2610	transport_lun_remove_cmd(cmd);
2611	transport_cmd_check_stop_to_fabric(cmd);
2612	return;
2613
2614queue_full:
2615	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2616		" data_direction: %d\n", cmd, cmd->data_direction);
2617
2618	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2619}
2620
2621void target_free_sgl(struct scatterlist *sgl, int nents)
2622{
2623	sgl_free_n_order(sgl, nents, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624}
2625EXPORT_SYMBOL(target_free_sgl);
2626
2627static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2628{
2629	/*
2630	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2631	 * emulation, and free + reset pointers if necessary..
2632	 */
2633	if (!cmd->t_data_sg_orig)
2634		return;
2635
2636	kfree(cmd->t_data_sg);
2637	cmd->t_data_sg = cmd->t_data_sg_orig;
2638	cmd->t_data_sg_orig = NULL;
2639	cmd->t_data_nents = cmd->t_data_nents_orig;
2640	cmd->t_data_nents_orig = 0;
2641}
2642
2643static inline void transport_free_pages(struct se_cmd *cmd)
2644{
2645	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2646		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2647		cmd->t_prot_sg = NULL;
2648		cmd->t_prot_nents = 0;
2649	}
2650
2651	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2652		/*
2653		 * Release special case READ buffer payload required for
2654		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2655		 */
2656		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2657			target_free_sgl(cmd->t_bidi_data_sg,
2658					   cmd->t_bidi_data_nents);
2659			cmd->t_bidi_data_sg = NULL;
2660			cmd->t_bidi_data_nents = 0;
2661		}
2662		transport_reset_sgl_orig(cmd);
2663		return;
2664	}
2665	transport_reset_sgl_orig(cmd);
2666
2667	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2668	cmd->t_data_sg = NULL;
2669	cmd->t_data_nents = 0;
2670
2671	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2672	cmd->t_bidi_data_sg = NULL;
2673	cmd->t_bidi_data_nents = 0;
2674}
2675
2676void *transport_kmap_data_sg(struct se_cmd *cmd)
2677{
2678	struct scatterlist *sg = cmd->t_data_sg;
2679	struct page **pages;
2680	int i;
2681
2682	/*
2683	 * We need to take into account a possible offset here for fabrics like
2684	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2685	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2686	 */
2687	if (!cmd->t_data_nents)
2688		return NULL;
2689
2690	BUG_ON(!sg);
2691	if (cmd->t_data_nents == 1)
2692		return kmap(sg_page(sg)) + sg->offset;
 
 
 
 
 
2693
2694	/* >1 page. use vmap */
2695	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2696	if (!pages)
2697		return NULL;
2698
2699	/* convert sg[] to pages[] */
2700	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2701		pages[i] = sg_page(sg);
2702	}
 
2703
2704	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2705	kfree(pages);
2706	if (!cmd->t_data_vmap)
2707		return NULL;
2708
2709	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2710}
2711EXPORT_SYMBOL(transport_kmap_data_sg);
2712
2713void transport_kunmap_data_sg(struct se_cmd *cmd)
2714{
2715	if (!cmd->t_data_nents) {
2716		return;
2717	} else if (cmd->t_data_nents == 1) {
2718		kunmap(sg_page(cmd->t_data_sg));
2719		return;
 
 
 
 
 
2720	}
 
 
 
2721
2722	vunmap(cmd->t_data_vmap);
2723	cmd->t_data_vmap = NULL;
 
 
 
2724}
2725EXPORT_SYMBOL(transport_kunmap_data_sg);
2726
2727int
2728target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2729		 bool zero_page, bool chainable)
2730{
2731	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2732
2733	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2734	return *sgl ? 0 : -ENOMEM;
 
 
 
 
2735}
2736EXPORT_SYMBOL(target_alloc_sgl);
2737
2738/*
2739 * Allocate any required resources to execute the command.  For writes we
2740 * might not have the payload yet, so notify the fabric via a call to
2741 * ->write_pending instead. Otherwise place it on the execution queue.
 
 
 
 
 
 
 
2742 */
2743sense_reason_t
2744transport_generic_new_cmd(struct se_cmd *cmd)
 
 
 
 
2745{
2746	unsigned long flags;
2747	int ret = 0;
2748	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
 
 
 
 
 
2749
2750	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2751	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2752		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2753				       cmd->prot_length, true, false);
2754		if (ret < 0)
2755			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2756	}
2757
2758	/*
2759	 * Determine if the TCM fabric module has already allocated physical
2760	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2761	 * beforehand.
2762	 */
2763	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2764	    cmd->data_length) {
2765
2766		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2767		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2768			u32 bidi_length;
2769
2770			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2771				bidi_length = cmd->t_task_nolb *
2772					      cmd->se_dev->dev_attrib.block_size;
2773			else
2774				bidi_length = cmd->data_length;
2775
2776			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2777					       &cmd->t_bidi_data_nents,
2778					       bidi_length, zero_flag, false);
2779			if (ret < 0)
2780				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2781		}
2782
2783		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2784				       cmd->data_length, zero_flag, false);
2785		if (ret < 0)
2786			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2787	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2788		    cmd->data_length) {
2789		/*
2790		 * Special case for COMPARE_AND_WRITE with fabrics
2791		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2792		 */
2793		u32 caw_length = cmd->t_task_nolb *
2794				 cmd->se_dev->dev_attrib.block_size;
2795
2796		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2797				       &cmd->t_bidi_data_nents,
2798				       caw_length, zero_flag, false);
2799		if (ret < 0)
2800			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2801	}
2802	/*
2803	 * If this command is not a write we can execute it right here,
2804	 * for write buffers we need to notify the fabric driver first
2805	 * and let it call back once the write buffers are ready.
2806	 */
2807	target_add_to_state_list(cmd);
2808	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2809		target_execute_cmd(cmd);
2810		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2811	}
2812
2813	spin_lock_irqsave(&cmd->t_state_lock, flags);
2814	cmd->t_state = TRANSPORT_WRITE_PENDING;
2815	/*
2816	 * Determine if frontend context caller is requesting the stopping of
2817	 * this command for frontend exceptions.
2818	 */
2819	if (cmd->transport_state & CMD_T_STOP &&
2820	    !cmd->se_tfo->write_pending_must_be_called) {
2821		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2822			 __func__, __LINE__, cmd->tag);
2823
2824		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2825
2826		complete_all(&cmd->t_transport_stop_comp);
2827		return 0;
2828	}
2829	cmd->transport_state &= ~CMD_T_ACTIVE;
2830	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2831
2832	ret = cmd->se_tfo->write_pending(cmd);
2833	if (ret)
2834		goto queue_full;
2835
2836	return 0;
 
 
 
 
 
 
 
 
2837
2838queue_full:
2839	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2840	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2841	return 0;
2842}
2843EXPORT_SYMBOL(transport_generic_new_cmd);
2844
2845static void transport_write_pending_qf(struct se_cmd *cmd)
 
2846{
2847	unsigned long flags;
2848	int ret;
2849	bool stop;
 
 
 
 
 
 
2850
2851	spin_lock_irqsave(&cmd->t_state_lock, flags);
2852	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2853	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2854
2855	if (stop) {
2856		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2857			__func__, __LINE__, cmd->tag);
2858		complete_all(&cmd->t_transport_stop_comp);
2859		return;
 
 
 
 
2860	}
 
2861
2862	ret = cmd->se_tfo->write_pending(cmd);
2863	if (ret) {
2864		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2865			 cmd);
2866		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2867	}
 
 
 
2868}
2869
2870static bool
2871__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2872			   unsigned long *flags);
 
 
 
 
2873
2874static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2875{
2876	unsigned long flags;
2877
2878	spin_lock_irqsave(&cmd->t_state_lock, flags);
2879	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2880	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2881}
2882
 
2883/*
2884 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2885 * finished.
 
 
2886 */
2887void target_put_cmd_and_wait(struct se_cmd *cmd)
2888{
2889	DECLARE_COMPLETION_ONSTACK(compl);
 
 
 
 
 
 
2890
2891	WARN_ON_ONCE(cmd->abrt_compl);
2892	cmd->abrt_compl = &compl;
2893	target_put_sess_cmd(cmd);
2894	wait_for_completion(&compl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895}
 
2896
2897/*
2898 * This function is called by frontend drivers after processing of a command
2899 * has finished.
2900 *
2901 * The protocol for ensuring that either the regular frontend command
2902 * processing flow or target_handle_abort() code drops one reference is as
2903 * follows:
2904 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2905 *   the frontend driver to call this function synchronously or asynchronously.
2906 *   That will cause one reference to be dropped.
2907 * - During regular command processing the target core sets CMD_T_COMPLETE
2908 *   before invoking one of the .queue_*() functions.
2909 * - The code that aborts commands skips commands and TMFs for which
2910 *   CMD_T_COMPLETE has been set.
2911 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2912 *   commands that will be aborted.
2913 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2914 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2915 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2916 *   be called and will drop a reference.
2917 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2918 *   will be called. target_handle_abort() will drop the final reference.
2919 */
2920int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
 
 
 
 
 
2921{
2922	DECLARE_COMPLETION_ONSTACK(compl);
2923	int ret = 0;
2924	bool aborted = false, tas = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925
2926	if (wait_for_tasks)
2927		target_wait_free_cmd(cmd, &aborted, &tas);
2928
2929	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
 
 
 
 
 
 
2930		/*
2931		 * Handle WRITE failure case where transport_generic_new_cmd()
2932		 * has already added se_cmd to state_list, but fabric has
2933		 * failed command before I/O submission.
 
 
 
2934		 */
2935		if (cmd->state_active)
2936			target_remove_from_state_list(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2937
2938		if (cmd->se_lun)
2939			transport_lun_remove_cmd(cmd);
 
2940	}
2941	if (aborted)
2942		cmd->free_compl = &compl;
2943	ret = target_put_sess_cmd(cmd);
2944	if (aborted) {
2945		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2946		wait_for_completion(&compl);
2947		ret = 1;
 
 
 
 
 
 
2948	}
2949	return ret;
 
2950}
2951EXPORT_SYMBOL(transport_generic_free_cmd);
2952
2953/**
2954 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2955 * @se_cmd:	command descriptor to add
2956 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2957 */
2958int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2959{
2960	struct se_session *se_sess = se_cmd->se_sess;
 
 
 
2961	int ret = 0;
2962
2963	/*
2964	 * Add a second kref if the fabric caller is expecting to handle
2965	 * fabric acknowledgement that requires two target_put_sess_cmd()
2966	 * invocations before se_cmd descriptor release.
2967	 */
2968	if (ack_kref) {
2969		kref_get(&se_cmd->cmd_kref);
2970		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
 
 
 
 
 
 
2971	}
2972
2973	if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2974		ret = -ESHUTDOWN;
 
 
2975
2976	if (ret && ack_kref)
2977		target_put_sess_cmd(se_cmd);
 
2978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979	return ret;
2980}
2981EXPORT_SYMBOL(target_get_sess_cmd);
2982
2983static void target_free_cmd_mem(struct se_cmd *cmd)
 
 
 
 
 
2984{
2985	transport_free_pages(cmd);
 
 
 
 
 
 
 
2986
2987	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2988		core_tmr_release_req(cmd->se_tmr_req);
2989	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2990		kfree(cmd->t_task_cdb);
2991}
2992
2993static void target_release_cmd_kref(struct kref *kref)
 
 
 
 
 
 
 
 
 
 
2994{
2995	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2996	struct se_session *se_sess = se_cmd->se_sess;
2997	struct completion *free_compl = se_cmd->free_compl;
2998	struct completion *abrt_compl = se_cmd->abrt_compl;
2999
3000	target_free_cmd_mem(se_cmd);
3001	se_cmd->se_tfo->release_cmd(se_cmd);
3002	if (free_compl)
3003		complete(free_compl);
3004	if (abrt_compl)
3005		complete(abrt_compl);
3006
3007	percpu_ref_put(&se_sess->cmd_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3008}
 
3009
3010/**
3011 * target_put_sess_cmd - decrease the command reference count
3012 * @se_cmd:	command to drop a reference from
3013 *
3014 * Returns 1 if and only if this target_put_sess_cmd() call caused the
3015 * refcount to drop to zero. Returns zero otherwise.
3016 */
3017int target_put_sess_cmd(struct se_cmd *se_cmd)
3018{
3019	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3020}
3021EXPORT_SYMBOL(target_put_sess_cmd);
3022
3023static const char *data_dir_name(enum dma_data_direction d)
3024{
3025	switch (d) {
3026	case DMA_BIDIRECTIONAL:	return "BIDI";
3027	case DMA_TO_DEVICE:	return "WRITE";
3028	case DMA_FROM_DEVICE:	return "READ";
3029	case DMA_NONE:		return "NONE";
3030	}
3031
3032	return "(?)";
3033}
3034
3035static const char *cmd_state_name(enum transport_state_table t)
 
 
 
 
3036{
3037	switch (t) {
3038	case TRANSPORT_NO_STATE:	return "NO_STATE";
3039	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
3040	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
3041	case TRANSPORT_PROCESSING:	return "PROCESSING";
3042	case TRANSPORT_COMPLETE:	return "COMPLETE";
3043	case TRANSPORT_ISTATE_PROCESSING:
3044					return "ISTATE_PROCESSING";
3045	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
3046	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
3047	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
 
 
 
 
 
3048	}
3049
3050	return "(?)";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3051}
3052
3053static void target_append_str(char **str, const char *txt)
3054{
3055	char *prev = *str;
3056
3057	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3058		kstrdup(txt, GFP_ATOMIC);
3059	kfree(prev);
3060}
 
3061
3062/*
3063 * Convert a transport state bitmask into a string. The caller is
3064 * responsible for freeing the returned pointer.
3065 */
3066static char *target_ts_to_str(u32 ts)
 
 
 
3067{
3068	char *str = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
3069
3070	if (ts & CMD_T_ABORTED)
3071		target_append_str(&str, "aborted");
3072	if (ts & CMD_T_ACTIVE)
3073		target_append_str(&str, "active");
3074	if (ts & CMD_T_COMPLETE)
3075		target_append_str(&str, "complete");
3076	if (ts & CMD_T_SENT)
3077		target_append_str(&str, "sent");
3078	if (ts & CMD_T_STOP)
3079		target_append_str(&str, "stop");
3080	if (ts & CMD_T_FABRIC_STOP)
3081		target_append_str(&str, "fabric_stop");
3082
3083	return str;
3084}
3085
3086static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3087{
3088	switch (tmf) {
3089	case TMR_ABORT_TASK:		return "ABORT_TASK";
3090	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
3091	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
3092	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
3093	case TMR_LUN_RESET:		return "LUN_RESET";
3094	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
3095	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
3096	case TMR_LUN_RESET_PRO:		return "LUN_RESET_PRO";
3097	case TMR_UNKNOWN:		break;
3098	}
3099	return "(?)";
3100}
 
3101
3102void target_show_cmd(const char *pfx, struct se_cmd *cmd)
 
 
 
3103{
3104	char *ts_str = target_ts_to_str(cmd->transport_state);
3105	const u8 *cdb = cmd->t_task_cdb;
3106	struct se_tmr_req *tmf = cmd->se_tmr_req;
3107
3108	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3109		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3110			 pfx, cdb[0], cdb[1], cmd->tag,
3111			 data_dir_name(cmd->data_direction),
3112			 cmd->se_tfo->get_cmd_state(cmd),
3113			 cmd_state_name(cmd->t_state), cmd->data_length,
3114			 kref_read(&cmd->cmd_kref), ts_str);
3115	} else {
3116		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3117			 pfx, target_tmf_name(tmf->function), cmd->tag,
3118			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3119			 cmd_state_name(cmd->t_state),
3120			 kref_read(&cmd->cmd_kref), ts_str);
3121	}
3122	kfree(ts_str);
3123}
3124EXPORT_SYMBOL(target_show_cmd);
3125
3126static void target_stop_session_confirm(struct percpu_ref *ref)
3127{
3128	struct se_session *se_sess = container_of(ref, struct se_session,
3129						  cmd_count);
3130	complete_all(&se_sess->stop_done);
3131}
3132
3133/**
3134 * target_stop_session - Stop new IO from being queued on the session.
3135 * @se_sess:    session to stop
3136 */
3137void target_stop_session(struct se_session *se_sess)
3138{
3139	pr_debug("Stopping session queue.\n");
3140	if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
3141		percpu_ref_kill_and_confirm(&se_sess->cmd_count,
3142					    target_stop_session_confirm);
3143}
3144EXPORT_SYMBOL(target_stop_session);
3145
3146/**
3147 * target_wait_for_sess_cmds - Wait for outstanding commands
3148 * @se_sess:    session to wait for active I/O
3149 */
3150void target_wait_for_sess_cmds(struct se_session *se_sess)
3151{
 
3152	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153
3154	WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
3155
3156	do {
3157		pr_debug("Waiting for running cmds to complete.\n");
3158		ret = wait_event_timeout(se_sess->cmd_count_wq,
3159				percpu_ref_is_zero(&se_sess->cmd_count),
3160				180 * HZ);
3161	} while (ret <= 0);
3162
3163	wait_for_completion(&se_sess->stop_done);
3164	pr_debug("Waiting for cmds done.\n");
3165}
3166EXPORT_SYMBOL(target_wait_for_sess_cmds);
 
 
 
 
 
 
3167
3168/*
3169 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3170 * all references to the LUN have been released. Called during LUN shutdown.
3171 */
3172void transport_clear_lun_ref(struct se_lun *lun)
3173{
3174	percpu_ref_kill(&lun->lun_ref);
3175	wait_for_completion(&lun->lun_shutdown_comp);
3176}
3177
3178static bool
3179__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3180			   bool *aborted, bool *tas, unsigned long *flags)
3181	__releases(&cmd->t_state_lock)
3182	__acquires(&cmd->t_state_lock)
3183{
3184	lockdep_assert_held(&cmd->t_state_lock);
 
 
 
 
 
 
 
 
 
 
3185
3186	if (fabric_stop)
3187		cmd->transport_state |= CMD_T_FABRIC_STOP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3188
3189	if (cmd->transport_state & CMD_T_ABORTED)
3190		*aborted = true;
 
 
3191
3192	if (cmd->transport_state & CMD_T_TAS)
3193		*tas = true;
 
 
 
 
 
 
 
 
 
 
 
3194
3195	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3196	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3197		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3198
3199	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3200	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3201		return false;
 
 
3202
3203	if (!(cmd->transport_state & CMD_T_ACTIVE))
3204		return false;
 
3205
3206	if (fabric_stop && *aborted)
3207		return false;
3208
3209	cmd->transport_state |= CMD_T_STOP;
 
3210
3211	target_show_cmd("wait_for_tasks: Stopping ", cmd);
 
 
3212
3213	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
 
 
 
 
 
 
3214
3215	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3216					    180 * HZ))
3217		target_show_cmd("wait for tasks: ", cmd);
3218
3219	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3220	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3221
3222	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3223		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3224
3225	return true;
3226}
3227
3228/**
3229 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3230 * @cmd: command to wait on
 
3231 */
3232bool transport_wait_for_tasks(struct se_cmd *cmd)
 
 
 
3233{
3234	unsigned long flags;
3235	bool ret, aborted = false, tas = false;
 
 
3236
3237	spin_lock_irqsave(&cmd->t_state_lock, flags);
3238	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3239	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 
 
3240
3241	return ret;
3242}
3243EXPORT_SYMBOL(transport_wait_for_tasks);
3244
3245struct sense_detail {
3246	u8 key;
3247	u8 asc;
3248	u8 ascq;
3249	bool add_sense_info;
3250};
3251
3252static const struct sense_detail sense_detail_table[] = {
3253	[TCM_NO_SENSE] = {
3254		.key = NOT_READY
3255	},
3256	[TCM_NON_EXISTENT_LUN] = {
3257		.key = ILLEGAL_REQUEST,
3258		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3259	},
3260	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3261		.key = ILLEGAL_REQUEST,
3262		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3263	},
3264	[TCM_SECTOR_COUNT_TOO_MANY] = {
3265		.key = ILLEGAL_REQUEST,
3266		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3267	},
3268	[TCM_UNKNOWN_MODE_PAGE] = {
3269		.key = ILLEGAL_REQUEST,
3270		.asc = 0x24, /* INVALID FIELD IN CDB */
3271	},
3272	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3273		.key = ABORTED_COMMAND,
3274		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3275		.ascq = 0x03,
3276	},
3277	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3278		.key = ABORTED_COMMAND,
3279		.asc = 0x0c, /* WRITE ERROR */
3280		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3281	},
3282	[TCM_INVALID_CDB_FIELD] = {
3283		.key = ILLEGAL_REQUEST,
3284		.asc = 0x24, /* INVALID FIELD IN CDB */
3285	},
3286	[TCM_INVALID_PARAMETER_LIST] = {
3287		.key = ILLEGAL_REQUEST,
3288		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3289	},
3290	[TCM_TOO_MANY_TARGET_DESCS] = {
3291		.key = ILLEGAL_REQUEST,
3292		.asc = 0x26,
3293		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3294	},
3295	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3296		.key = ILLEGAL_REQUEST,
3297		.asc = 0x26,
3298		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3299	},
3300	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3301		.key = ILLEGAL_REQUEST,
3302		.asc = 0x26,
3303		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3304	},
3305	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3306		.key = ILLEGAL_REQUEST,
3307		.asc = 0x26,
3308		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3309	},
3310	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3311		.key = ILLEGAL_REQUEST,
3312		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3313	},
3314	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3315		.key = ILLEGAL_REQUEST,
3316		.asc = 0x0c, /* WRITE ERROR */
3317		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3318	},
3319	[TCM_SERVICE_CRC_ERROR] = {
3320		.key = ABORTED_COMMAND,
3321		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3322		.ascq = 0x05, /* N/A */
3323	},
3324	[TCM_SNACK_REJECTED] = {
3325		.key = ABORTED_COMMAND,
3326		.asc = 0x11, /* READ ERROR */
3327		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3328	},
3329	[TCM_WRITE_PROTECTED] = {
3330		.key = DATA_PROTECT,
3331		.asc = 0x27, /* WRITE PROTECTED */
3332	},
3333	[TCM_ADDRESS_OUT_OF_RANGE] = {
3334		.key = ILLEGAL_REQUEST,
3335		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3336	},
3337	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3338		.key = UNIT_ATTENTION,
3339	},
3340	[TCM_MISCOMPARE_VERIFY] = {
3341		.key = MISCOMPARE,
3342		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3343		.ascq = 0x00,
3344		.add_sense_info = true,
3345	},
3346	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3347		.key = ABORTED_COMMAND,
3348		.asc = 0x10,
3349		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3350		.add_sense_info = true,
3351	},
3352	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3353		.key = ABORTED_COMMAND,
3354		.asc = 0x10,
3355		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3356		.add_sense_info = true,
3357	},
3358	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3359		.key = ABORTED_COMMAND,
3360		.asc = 0x10,
3361		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3362		.add_sense_info = true,
3363	},
3364	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3365		.key = COPY_ABORTED,
3366		.asc = 0x0d,
3367		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3368
3369	},
3370	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3371		/*
3372		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3373		 * Solaris initiators.  Returning NOT READY instead means the
3374		 * operations will be retried a finite number of times and we
3375		 * can survive intermittent errors.
3376		 */
3377		.key = NOT_READY,
3378		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3379	},
3380	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3381		/*
3382		 * From spc4r22 section5.7.7,5.7.8
3383		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3384		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3385		 * REGISTER AND MOVE service actionis attempted,
3386		 * but there are insufficient device server resources to complete the
3387		 * operation, then the command shall be terminated with CHECK CONDITION
3388		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3389		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3390		 */
3391		.key = ILLEGAL_REQUEST,
3392		.asc = 0x55,
3393		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3394	},
3395	[TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3396		.key = ILLEGAL_REQUEST,
3397		.asc = 0x0e,
3398		.ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3399	},
3400	[TCM_ALUA_TG_PT_STANDBY] = {
3401		.key = NOT_READY,
3402		.asc = 0x04,
3403		.ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3404	},
3405	[TCM_ALUA_TG_PT_UNAVAILABLE] = {
3406		.key = NOT_READY,
3407		.asc = 0x04,
3408		.ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3409	},
3410	[TCM_ALUA_STATE_TRANSITION] = {
3411		.key = NOT_READY,
3412		.asc = 0x04,
3413		.ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3414	},
3415	[TCM_ALUA_OFFLINE] = {
3416		.key = NOT_READY,
3417		.asc = 0x04,
3418		.ascq = ASCQ_04H_ALUA_OFFLINE,
3419	},
3420};
3421
3422/**
3423 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3424 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3425 *   be stored.
3426 * @reason: LIO sense reason code. If this argument has the value
3427 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3428 *   dequeuing a unit attention fails due to multiple commands being processed
3429 *   concurrently, set the command status to BUSY.
3430 *
3431 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3432 */
3433static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3434{
3435	const struct sense_detail *sd;
3436	u8 *buffer = cmd->sense_buffer;
3437	int r = (__force int)reason;
3438	u8 key, asc, ascq;
3439	bool desc_format = target_sense_desc_format(cmd->se_dev);
3440
3441	if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3442		sd = &sense_detail_table[r];
3443	else
3444		sd = &sense_detail_table[(__force int)
3445				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3446
3447	key = sd->key;
3448	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3449		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3450						       &ascq)) {
3451			cmd->scsi_status = SAM_STAT_BUSY;
3452			return;
3453		}
3454	} else {
3455		WARN_ON_ONCE(sd->asc == 0);
3456		asc = sd->asc;
3457		ascq = sd->ascq;
3458	}
3459
3460	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3461	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3462	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3463	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3464	if (sd->add_sense_info)
3465		WARN_ON_ONCE(scsi_set_sense_information(buffer,
3466							cmd->scsi_sense_length,
3467							cmd->sense_info) < 0);
3468}
3469
3470int
3471transport_send_check_condition_and_sense(struct se_cmd *cmd,
3472		sense_reason_t reason, int from_transport)
 
3473{
 
3474	unsigned long flags;
3475
3476	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3477
3478	spin_lock_irqsave(&cmd->t_state_lock, flags);
3479	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3480		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3481		return 0;
3482	}
3483	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3484	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3485
 
 
 
3486	if (!from_transport)
3487		translate_sense_reason(cmd, reason);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3488
3489	trace_target_cmd_complete(cmd);
3490	return cmd->se_tfo->queue_status(cmd);
3491}
3492EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3493
3494/**
3495 * target_send_busy - Send SCSI BUSY status back to the initiator
3496 * @cmd: SCSI command for which to send a BUSY reply.
3497 *
3498 * Note: Only call this function if target_submit_cmd*() failed.
3499 */
3500int target_send_busy(struct se_cmd *cmd)
3501{
3502	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3503
3504	cmd->scsi_status = SAM_STAT_BUSY;
3505	trace_target_cmd_complete(cmd);
3506	return cmd->se_tfo->queue_status(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
3507}
3508EXPORT_SYMBOL(target_send_busy);
3509
3510static void target_tmr_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3511{
3512	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3513	struct se_device *dev = cmd->se_dev;
3514	struct se_tmr_req *tmr = cmd->se_tmr_req;
3515	int ret;
3516
3517	if (cmd->transport_state & CMD_T_ABORTED)
3518		goto aborted;
3519
3520	switch (tmr->function) {
3521	case TMR_ABORT_TASK:
3522		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3523		break;
3524	case TMR_ABORT_TASK_SET:
3525	case TMR_CLEAR_ACA:
3526	case TMR_CLEAR_TASK_SET:
3527		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3528		break;
3529	case TMR_LUN_RESET:
3530		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3531		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3532					 TMR_FUNCTION_REJECTED;
3533		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3534			target_dev_ua_allocate(dev, 0x29,
3535					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3536		}
3537		break;
3538	case TMR_TARGET_WARM_RESET:
3539		tmr->response = TMR_FUNCTION_REJECTED;
3540		break;
3541	case TMR_TARGET_COLD_RESET:
3542		tmr->response = TMR_FUNCTION_REJECTED;
3543		break;
3544	default:
3545		pr_err("Unknown TMR function: 0x%02x.\n",
3546				tmr->function);
3547		tmr->response = TMR_FUNCTION_REJECTED;
3548		break;
3549	}
3550
3551	if (cmd->transport_state & CMD_T_ABORTED)
3552		goto aborted;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553
3554	cmd->se_tfo->queue_tm_rsp(cmd);
 
3555
3556	transport_lun_remove_cmd(cmd);
3557	transport_cmd_check_stop_to_fabric(cmd);
3558	return;
3559
3560aborted:
3561	target_handle_abort(cmd);
3562}
3563
3564int transport_generic_handle_tmr(
3565	struct se_cmd *cmd)
3566{
 
 
3567	unsigned long flags;
3568	bool aborted = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3569
3570	spin_lock_irqsave(&cmd->t_state_lock, flags);
3571	if (cmd->transport_state & CMD_T_ABORTED) {
3572		aborted = true;
3573	} else {
3574		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3575		cmd->transport_state |= CMD_T_ACTIVE;
 
 
 
3576	}
3577	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
3578
3579	if (aborted) {
3580		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3581				    cmd->se_tmr_req->function,
3582				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3583		target_handle_abort(cmd);
3584		return 0;
 
3585	}
3586
3587	INIT_WORK(&cmd->work, target_tmr_work);
3588	schedule_work(&cmd->work);
3589	return 0;
3590}
3591EXPORT_SYMBOL(transport_generic_handle_tmr);
3592
3593bool
3594target_check_wce(struct se_device *dev)
 
 
 
3595{
3596	bool wce = false;
 
 
 
 
 
 
 
 
 
 
 
3597
3598	if (dev->transport->get_write_cache)
3599		wce = dev->transport->get_write_cache(dev);
3600	else if (dev->dev_attrib.emulate_write_cache > 0)
3601		wce = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3602
3603	return wce;
3604}
3605
3606bool
3607target_check_fua(struct se_device *dev)
3608{
3609	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3610}