Linux Audio

Check our new training course

Loading...
   1/*******************************************************************************
   2 * Filename:  target_core_transport.c
   3 *
   4 * This file contains the Generic Target Engine Core.
   5 *
   6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
   7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
   8 * Copyright (c) 2007-2010 Rising Tide Systems
   9 * Copyright (c) 2008-2010 Linux-iSCSI.org
  10 *
  11 * Nicholas A. Bellinger <nab@kernel.org>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  26 *
  27 ******************************************************************************/
  28
  29#include <linux/net.h>
  30#include <linux/delay.h>
  31#include <linux/string.h>
  32#include <linux/timer.h>
  33#include <linux/slab.h>
  34#include <linux/blkdev.h>
  35#include <linux/spinlock.h>
  36#include <linux/kthread.h>
  37#include <linux/in.h>
  38#include <linux/cdrom.h>
  39#include <linux/module.h>
  40#include <linux/ratelimit.h>
  41#include <asm/unaligned.h>
  42#include <net/sock.h>
  43#include <net/tcp.h>
  44#include <scsi/scsi.h>
  45#include <scsi/scsi_cmnd.h>
  46#include <scsi/scsi_tcq.h>
  47
  48#include <target/target_core_base.h>
  49#include <target/target_core_backend.h>
  50#include <target/target_core_fabric.h>
  51#include <target/target_core_configfs.h>
  52
  53#include "target_core_internal.h"
  54#include "target_core_alua.h"
  55#include "target_core_pr.h"
  56#include "target_core_ua.h"
  57
  58static int sub_api_initialized;
  59
  60static struct workqueue_struct *target_completion_wq;
  61static struct kmem_cache *se_sess_cache;
  62struct kmem_cache *se_ua_cache;
  63struct kmem_cache *t10_pr_reg_cache;
  64struct kmem_cache *t10_alua_lu_gp_cache;
  65struct kmem_cache *t10_alua_lu_gp_mem_cache;
  66struct kmem_cache *t10_alua_tg_pt_gp_cache;
  67struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
  68
  69static int transport_generic_write_pending(struct se_cmd *);
  70static int transport_processing_thread(void *param);
  71static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
  72static void transport_complete_task_attr(struct se_cmd *cmd);
  73static void transport_handle_queue_full(struct se_cmd *cmd,
  74		struct se_device *dev);
  75static int transport_generic_get_mem(struct se_cmd *cmd);
  76static void transport_put_cmd(struct se_cmd *cmd);
  77static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
  78static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
  79static void target_complete_ok_work(struct work_struct *work);
  80
  81int init_se_kmem_caches(void)
  82{
  83	se_sess_cache = kmem_cache_create("se_sess_cache",
  84			sizeof(struct se_session), __alignof__(struct se_session),
  85			0, NULL);
  86	if (!se_sess_cache) {
  87		pr_err("kmem_cache_create() for struct se_session"
  88				" failed\n");
  89		goto out;
  90	}
  91	se_ua_cache = kmem_cache_create("se_ua_cache",
  92			sizeof(struct se_ua), __alignof__(struct se_ua),
  93			0, NULL);
  94	if (!se_ua_cache) {
  95		pr_err("kmem_cache_create() for struct se_ua failed\n");
  96		goto out_free_sess_cache;
  97	}
  98	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
  99			sizeof(struct t10_pr_registration),
 100			__alignof__(struct t10_pr_registration), 0, NULL);
 101	if (!t10_pr_reg_cache) {
 102		pr_err("kmem_cache_create() for struct t10_pr_registration"
 103				" failed\n");
 104		goto out_free_ua_cache;
 105	}
 106	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
 107			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
 108			0, NULL);
 109	if (!t10_alua_lu_gp_cache) {
 110		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
 111				" failed\n");
 112		goto out_free_pr_reg_cache;
 113	}
 114	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
 115			sizeof(struct t10_alua_lu_gp_member),
 116			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
 117	if (!t10_alua_lu_gp_mem_cache) {
 118		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
 119				"cache failed\n");
 120		goto out_free_lu_gp_cache;
 121	}
 122	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
 123			sizeof(struct t10_alua_tg_pt_gp),
 124			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
 125	if (!t10_alua_tg_pt_gp_cache) {
 126		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
 127				"cache failed\n");
 128		goto out_free_lu_gp_mem_cache;
 129	}
 130	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
 131			"t10_alua_tg_pt_gp_mem_cache",
 132			sizeof(struct t10_alua_tg_pt_gp_member),
 133			__alignof__(struct t10_alua_tg_pt_gp_member),
 134			0, NULL);
 135	if (!t10_alua_tg_pt_gp_mem_cache) {
 136		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
 137				"mem_t failed\n");
 138		goto out_free_tg_pt_gp_cache;
 139	}
 140
 141	target_completion_wq = alloc_workqueue("target_completion",
 142					       WQ_MEM_RECLAIM, 0);
 143	if (!target_completion_wq)
 144		goto out_free_tg_pt_gp_mem_cache;
 145
 146	return 0;
 147
 148out_free_tg_pt_gp_mem_cache:
 149	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
 150out_free_tg_pt_gp_cache:
 151	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 152out_free_lu_gp_mem_cache:
 153	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 154out_free_lu_gp_cache:
 155	kmem_cache_destroy(t10_alua_lu_gp_cache);
 156out_free_pr_reg_cache:
 157	kmem_cache_destroy(t10_pr_reg_cache);
 158out_free_ua_cache:
 159	kmem_cache_destroy(se_ua_cache);
 160out_free_sess_cache:
 161	kmem_cache_destroy(se_sess_cache);
 162out:
 163	return -ENOMEM;
 164}
 165
 166void release_se_kmem_caches(void)
 167{
 168	destroy_workqueue(target_completion_wq);
 169	kmem_cache_destroy(se_sess_cache);
 170	kmem_cache_destroy(se_ua_cache);
 171	kmem_cache_destroy(t10_pr_reg_cache);
 172	kmem_cache_destroy(t10_alua_lu_gp_cache);
 173	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 174	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 175	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
 176}
 177
 178/* This code ensures unique mib indexes are handed out. */
 179static DEFINE_SPINLOCK(scsi_mib_index_lock);
 180static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
 181
 182/*
 183 * Allocate a new row index for the entry type specified
 184 */
 185u32 scsi_get_new_index(scsi_index_t type)
 186{
 187	u32 new_index;
 188
 189	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
 190
 191	spin_lock(&scsi_mib_index_lock);
 192	new_index = ++scsi_mib_index[type];
 193	spin_unlock(&scsi_mib_index_lock);
 194
 195	return new_index;
 196}
 197
 198static void transport_init_queue_obj(struct se_queue_obj *qobj)
 199{
 200	atomic_set(&qobj->queue_cnt, 0);
 201	INIT_LIST_HEAD(&qobj->qobj_list);
 202	init_waitqueue_head(&qobj->thread_wq);
 203	spin_lock_init(&qobj->cmd_queue_lock);
 204}
 205
 206void transport_subsystem_check_init(void)
 207{
 208	int ret;
 209
 210	if (sub_api_initialized)
 211		return;
 212
 213	ret = request_module("target_core_iblock");
 214	if (ret != 0)
 215		pr_err("Unable to load target_core_iblock\n");
 216
 217	ret = request_module("target_core_file");
 218	if (ret != 0)
 219		pr_err("Unable to load target_core_file\n");
 220
 221	ret = request_module("target_core_pscsi");
 222	if (ret != 0)
 223		pr_err("Unable to load target_core_pscsi\n");
 224
 225	ret = request_module("target_core_stgt");
 226	if (ret != 0)
 227		pr_err("Unable to load target_core_stgt\n");
 228
 229	sub_api_initialized = 1;
 230	return;
 231}
 232
 233struct se_session *transport_init_session(void)
 234{
 235	struct se_session *se_sess;
 236
 237	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
 238	if (!se_sess) {
 239		pr_err("Unable to allocate struct se_session from"
 240				" se_sess_cache\n");
 241		return ERR_PTR(-ENOMEM);
 242	}
 243	INIT_LIST_HEAD(&se_sess->sess_list);
 244	INIT_LIST_HEAD(&se_sess->sess_acl_list);
 245	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
 246	INIT_LIST_HEAD(&se_sess->sess_wait_list);
 247	spin_lock_init(&se_sess->sess_cmd_lock);
 248	kref_init(&se_sess->sess_kref);
 249
 250	return se_sess;
 251}
 252EXPORT_SYMBOL(transport_init_session);
 253
 254/*
 255 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
 256 */
 257void __transport_register_session(
 258	struct se_portal_group *se_tpg,
 259	struct se_node_acl *se_nacl,
 260	struct se_session *se_sess,
 261	void *fabric_sess_ptr)
 262{
 263	unsigned char buf[PR_REG_ISID_LEN];
 264
 265	se_sess->se_tpg = se_tpg;
 266	se_sess->fabric_sess_ptr = fabric_sess_ptr;
 267	/*
 268	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
 269	 *
 270	 * Only set for struct se_session's that will actually be moving I/O.
 271	 * eg: *NOT* discovery sessions.
 272	 */
 273	if (se_nacl) {
 274		/*
 275		 * If the fabric module supports an ISID based TransportID,
 276		 * save this value in binary from the fabric I_T Nexus now.
 277		 */
 278		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
 279			memset(&buf[0], 0, PR_REG_ISID_LEN);
 280			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
 281					&buf[0], PR_REG_ISID_LEN);
 282			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
 283		}
 284		kref_get(&se_nacl->acl_kref);
 285
 286		spin_lock_irq(&se_nacl->nacl_sess_lock);
 287		/*
 288		 * The se_nacl->nacl_sess pointer will be set to the
 289		 * last active I_T Nexus for each struct se_node_acl.
 290		 */
 291		se_nacl->nacl_sess = se_sess;
 292
 293		list_add_tail(&se_sess->sess_acl_list,
 294			      &se_nacl->acl_sess_list);
 295		spin_unlock_irq(&se_nacl->nacl_sess_lock);
 296	}
 297	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
 298
 299	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
 300		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
 301}
 302EXPORT_SYMBOL(__transport_register_session);
 303
 304void transport_register_session(
 305	struct se_portal_group *se_tpg,
 306	struct se_node_acl *se_nacl,
 307	struct se_session *se_sess,
 308	void *fabric_sess_ptr)
 309{
 310	unsigned long flags;
 311
 312	spin_lock_irqsave(&se_tpg->session_lock, flags);
 313	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
 314	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 315}
 316EXPORT_SYMBOL(transport_register_session);
 317
 318void target_release_session(struct kref *kref)
 319{
 320	struct se_session *se_sess = container_of(kref,
 321			struct se_session, sess_kref);
 322	struct se_portal_group *se_tpg = se_sess->se_tpg;
 323
 324	se_tpg->se_tpg_tfo->close_session(se_sess);
 325}
 326
 327void target_get_session(struct se_session *se_sess)
 328{
 329	kref_get(&se_sess->sess_kref);
 330}
 331EXPORT_SYMBOL(target_get_session);
 332
 333void target_put_session(struct se_session *se_sess)
 334{
 335	struct se_portal_group *tpg = se_sess->se_tpg;
 336
 337	if (tpg->se_tpg_tfo->put_session != NULL) {
 338		tpg->se_tpg_tfo->put_session(se_sess);
 339		return;
 340	}
 341	kref_put(&se_sess->sess_kref, target_release_session);
 342}
 343EXPORT_SYMBOL(target_put_session);
 344
 345static void target_complete_nacl(struct kref *kref)
 346{
 347	struct se_node_acl *nacl = container_of(kref,
 348				struct se_node_acl, acl_kref);
 349
 350	complete(&nacl->acl_free_comp);
 351}
 352
 353void target_put_nacl(struct se_node_acl *nacl)
 354{
 355	kref_put(&nacl->acl_kref, target_complete_nacl);
 356}
 357
 358void transport_deregister_session_configfs(struct se_session *se_sess)
 359{
 360	struct se_node_acl *se_nacl;
 361	unsigned long flags;
 362	/*
 363	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
 364	 */
 365	se_nacl = se_sess->se_node_acl;
 366	if (se_nacl) {
 367		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 368		if (se_nacl->acl_stop == 0)
 369			list_del(&se_sess->sess_acl_list);
 370		/*
 371		 * If the session list is empty, then clear the pointer.
 372		 * Otherwise, set the struct se_session pointer from the tail
 373		 * element of the per struct se_node_acl active session list.
 374		 */
 375		if (list_empty(&se_nacl->acl_sess_list))
 376			se_nacl->nacl_sess = NULL;
 377		else {
 378			se_nacl->nacl_sess = container_of(
 379					se_nacl->acl_sess_list.prev,
 380					struct se_session, sess_acl_list);
 381		}
 382		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 383	}
 384}
 385EXPORT_SYMBOL(transport_deregister_session_configfs);
 386
 387void transport_free_session(struct se_session *se_sess)
 388{
 389	kmem_cache_free(se_sess_cache, se_sess);
 390}
 391EXPORT_SYMBOL(transport_free_session);
 392
 393void transport_deregister_session(struct se_session *se_sess)
 394{
 395	struct se_portal_group *se_tpg = se_sess->se_tpg;
 396	struct target_core_fabric_ops *se_tfo;
 397	struct se_node_acl *se_nacl;
 398	unsigned long flags;
 399	bool comp_nacl = true;
 400
 401	if (!se_tpg) {
 402		transport_free_session(se_sess);
 403		return;
 404	}
 405	se_tfo = se_tpg->se_tpg_tfo;
 406
 407	spin_lock_irqsave(&se_tpg->session_lock, flags);
 408	list_del(&se_sess->sess_list);
 409	se_sess->se_tpg = NULL;
 410	se_sess->fabric_sess_ptr = NULL;
 411	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 412
 413	/*
 414	 * Determine if we need to do extra work for this initiator node's
 415	 * struct se_node_acl if it had been previously dynamically generated.
 416	 */
 417	se_nacl = se_sess->se_node_acl;
 418
 419	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
 420	if (se_nacl && se_nacl->dynamic_node_acl) {
 421		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
 422			list_del(&se_nacl->acl_list);
 423			se_tpg->num_node_acls--;
 424			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
 425			core_tpg_wait_for_nacl_pr_ref(se_nacl);
 426			core_free_device_list_for_node(se_nacl, se_tpg);
 427			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
 428
 429			comp_nacl = false;
 430			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
 431		}
 432	}
 433	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
 434
 435	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
 436		se_tpg->se_tpg_tfo->get_fabric_name());
 437	/*
 438	 * If last kref is dropping now for an explict NodeACL, awake sleeping
 439	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
 440	 * removal context.
 441	 */
 442	if (se_nacl && comp_nacl == true)
 443		target_put_nacl(se_nacl);
 444
 445	transport_free_session(se_sess);
 446}
 447EXPORT_SYMBOL(transport_deregister_session);
 448
 449/*
 450 * Called with cmd->t_state_lock held.
 451 */
 452static void target_remove_from_state_list(struct se_cmd *cmd)
 453{
 454	struct se_device *dev = cmd->se_dev;
 455	unsigned long flags;
 456
 457	if (!dev)
 458		return;
 459
 460	if (cmd->transport_state & CMD_T_BUSY)
 461		return;
 462
 463	spin_lock_irqsave(&dev->execute_task_lock, flags);
 464	if (cmd->state_active) {
 465		list_del(&cmd->state_list);
 466		cmd->state_active = false;
 467	}
 468	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
 469}
 470
 471/*	transport_cmd_check_stop():
 472 *
 473 *	'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
 474 *	'transport_off = 2' determines if task_dev_state should be removed.
 475 *
 476 *	A non-zero u8 t_state sets cmd->t_state.
 477 *	Returns 1 when command is stopped, else 0.
 478 */
 479static int transport_cmd_check_stop(
 480	struct se_cmd *cmd,
 481	int transport_off,
 482	u8 t_state)
 483{
 484	unsigned long flags;
 485
 486	spin_lock_irqsave(&cmd->t_state_lock, flags);
 487	/*
 488	 * Determine if IOCTL context caller in requesting the stopping of this
 489	 * command for LUN shutdown purposes.
 490	 */
 491	if (cmd->transport_state & CMD_T_LUN_STOP) {
 492		pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
 493			__func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
 494
 495		cmd->transport_state &= ~CMD_T_ACTIVE;
 496		if (transport_off == 2)
 497			target_remove_from_state_list(cmd);
 498		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 499
 500		complete(&cmd->transport_lun_stop_comp);
 501		return 1;
 502	}
 503	/*
 504	 * Determine if frontend context caller is requesting the stopping of
 505	 * this command for frontend exceptions.
 506	 */
 507	if (cmd->transport_state & CMD_T_STOP) {
 508		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
 509			__func__, __LINE__,
 510			cmd->se_tfo->get_task_tag(cmd));
 511
 512		if (transport_off == 2)
 513			target_remove_from_state_list(cmd);
 514
 515		/*
 516		 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
 517		 * to FE.
 518		 */
 519		if (transport_off == 2)
 520			cmd->se_lun = NULL;
 521		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 522
 523		complete(&cmd->t_transport_stop_comp);
 524		return 1;
 525	}
 526	if (transport_off) {
 527		cmd->transport_state &= ~CMD_T_ACTIVE;
 528		if (transport_off == 2) {
 529			target_remove_from_state_list(cmd);
 530			/*
 531			 * Clear struct se_cmd->se_lun before the transport_off == 2
 532			 * handoff to fabric module.
 533			 */
 534			cmd->se_lun = NULL;
 535			/*
 536			 * Some fabric modules like tcm_loop can release
 537			 * their internally allocated I/O reference now and
 538			 * struct se_cmd now.
 539			 *
 540			 * Fabric modules are expected to return '1' here if the
 541			 * se_cmd being passed is released at this point,
 542			 * or zero if not being released.
 543			 */
 544			if (cmd->se_tfo->check_stop_free != NULL) {
 545				spin_unlock_irqrestore(
 546					&cmd->t_state_lock, flags);
 547
 548				return cmd->se_tfo->check_stop_free(cmd);
 549			}
 550		}
 551		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 552
 553		return 0;
 554	} else if (t_state)
 555		cmd->t_state = t_state;
 556	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 557
 558	return 0;
 559}
 560
 561static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
 562{
 563	return transport_cmd_check_stop(cmd, 2, 0);
 564}
 565
 566static void transport_lun_remove_cmd(struct se_cmd *cmd)
 567{
 568	struct se_lun *lun = cmd->se_lun;
 569	unsigned long flags;
 570
 571	if (!lun)
 572		return;
 573
 574	spin_lock_irqsave(&cmd->t_state_lock, flags);
 575	if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
 576		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
 577		target_remove_from_state_list(cmd);
 578	}
 579	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 580
 581	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
 582	if (!list_empty(&cmd->se_lun_node))
 583		list_del_init(&cmd->se_lun_node);
 584	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
 585}
 586
 587void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
 588{
 589	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
 590		transport_lun_remove_cmd(cmd);
 591
 592	if (transport_cmd_check_stop_to_fabric(cmd))
 593		return;
 594	if (remove) {
 595		transport_remove_cmd_from_queue(cmd);
 596		transport_put_cmd(cmd);
 597	}
 598}
 599
 600static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
 601		bool at_head)
 602{
 603	struct se_device *dev = cmd->se_dev;
 604	struct se_queue_obj *qobj = &dev->dev_queue_obj;
 605	unsigned long flags;
 606
 607	if (t_state) {
 608		spin_lock_irqsave(&cmd->t_state_lock, flags);
 609		cmd->t_state = t_state;
 610		cmd->transport_state |= CMD_T_ACTIVE;
 611		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 612	}
 613
 614	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
 615
 616	/* If the cmd is already on the list, remove it before we add it */
 617	if (!list_empty(&cmd->se_queue_node))
 618		list_del(&cmd->se_queue_node);
 619	else
 620		atomic_inc(&qobj->queue_cnt);
 621
 622	if (at_head)
 623		list_add(&cmd->se_queue_node, &qobj->qobj_list);
 624	else
 625		list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
 626	cmd->transport_state |= CMD_T_QUEUED;
 627	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 628
 629	wake_up_interruptible(&qobj->thread_wq);
 630}
 631
 632static struct se_cmd *
 633transport_get_cmd_from_queue(struct se_queue_obj *qobj)
 634{
 635	struct se_cmd *cmd;
 636	unsigned long flags;
 637
 638	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
 639	if (list_empty(&qobj->qobj_list)) {
 640		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 641		return NULL;
 642	}
 643	cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
 644
 645	cmd->transport_state &= ~CMD_T_QUEUED;
 646	list_del_init(&cmd->se_queue_node);
 647	atomic_dec(&qobj->queue_cnt);
 648	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 649
 650	return cmd;
 651}
 652
 653static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
 654{
 655	struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
 656	unsigned long flags;
 657
 658	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
 659	if (!(cmd->transport_state & CMD_T_QUEUED)) {
 660		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 661		return;
 662	}
 663	cmd->transport_state &= ~CMD_T_QUEUED;
 664	atomic_dec(&qobj->queue_cnt);
 665	list_del_init(&cmd->se_queue_node);
 666	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
 667}
 668
 669static void target_complete_failure_work(struct work_struct *work)
 670{
 671	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 672
 673	transport_generic_request_failure(cmd);
 674}
 675
 676void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
 677{
 678	struct se_device *dev = cmd->se_dev;
 679	int success = scsi_status == GOOD;
 680	unsigned long flags;
 681
 682	cmd->scsi_status = scsi_status;
 683
 684
 685	spin_lock_irqsave(&cmd->t_state_lock, flags);
 686	cmd->transport_state &= ~CMD_T_BUSY;
 687
 688	if (dev && dev->transport->transport_complete) {
 689		if (dev->transport->transport_complete(cmd,
 690				cmd->t_data_sg) != 0) {
 691			cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
 692			success = 1;
 693		}
 694	}
 695
 696	/*
 697	 * See if we are waiting to complete for an exception condition.
 698	 */
 699	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
 700		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 701		complete(&cmd->task_stop_comp);
 702		return;
 703	}
 704
 705	if (!success)
 706		cmd->transport_state |= CMD_T_FAILED;
 707
 708	/*
 709	 * Check for case where an explict ABORT_TASK has been received
 710	 * and transport_wait_for_tasks() will be waiting for completion..
 711	 */
 712	if (cmd->transport_state & CMD_T_ABORTED &&
 713	    cmd->transport_state & CMD_T_STOP) {
 714		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 715		complete(&cmd->t_transport_stop_comp);
 716		return;
 717	} else if (cmd->transport_state & CMD_T_FAILED) {
 718		cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
 719		INIT_WORK(&cmd->work, target_complete_failure_work);
 720	} else {
 721		INIT_WORK(&cmd->work, target_complete_ok_work);
 722	}
 723
 724	cmd->t_state = TRANSPORT_COMPLETE;
 725	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
 726	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 727
 728	queue_work(target_completion_wq, &cmd->work);
 729}
 730EXPORT_SYMBOL(target_complete_cmd);
 731
 732static void target_add_to_state_list(struct se_cmd *cmd)
 733{
 734	struct se_device *dev = cmd->se_dev;
 735	unsigned long flags;
 736
 737	spin_lock_irqsave(&dev->execute_task_lock, flags);
 738	if (!cmd->state_active) {
 739		list_add_tail(&cmd->state_list, &dev->state_list);
 740		cmd->state_active = true;
 741	}
 742	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
 743}
 744
 745static void __target_add_to_execute_list(struct se_cmd *cmd)
 746{
 747	struct se_device *dev = cmd->se_dev;
 748	bool head_of_queue = false;
 749
 750	if (!list_empty(&cmd->execute_list))
 751		return;
 752
 753	if (dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED &&
 754	    cmd->sam_task_attr == MSG_HEAD_TAG)
 755		head_of_queue = true;
 756
 757	if (head_of_queue)
 758		list_add(&cmd->execute_list, &dev->execute_list);
 759	else
 760		list_add_tail(&cmd->execute_list, &dev->execute_list);
 761
 762	atomic_inc(&dev->execute_tasks);
 763
 764	if (cmd->state_active)
 765		return;
 766
 767	if (head_of_queue)
 768		list_add(&cmd->state_list, &dev->state_list);
 769	else
 770		list_add_tail(&cmd->state_list, &dev->state_list);
 771
 772	cmd->state_active = true;
 773}
 774
 775static void target_add_to_execute_list(struct se_cmd *cmd)
 776{
 777	unsigned long flags;
 778	struct se_device *dev = cmd->se_dev;
 779
 780	spin_lock_irqsave(&dev->execute_task_lock, flags);
 781	__target_add_to_execute_list(cmd);
 782	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
 783}
 784
 785void __target_remove_from_execute_list(struct se_cmd *cmd)
 786{
 787	list_del_init(&cmd->execute_list);
 788	atomic_dec(&cmd->se_dev->execute_tasks);
 789}
 790
 791static void target_remove_from_execute_list(struct se_cmd *cmd)
 792{
 793	struct se_device *dev = cmd->se_dev;
 794	unsigned long flags;
 795
 796	if (WARN_ON(list_empty(&cmd->execute_list)))
 797		return;
 798
 799	spin_lock_irqsave(&dev->execute_task_lock, flags);
 800	__target_remove_from_execute_list(cmd);
 801	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
 802}
 803
 804/*
 805 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
 806 */
 807
 808static void target_qf_do_work(struct work_struct *work)
 809{
 810	struct se_device *dev = container_of(work, struct se_device,
 811					qf_work_queue);
 812	LIST_HEAD(qf_cmd_list);
 813	struct se_cmd *cmd, *cmd_tmp;
 814
 815	spin_lock_irq(&dev->qf_cmd_lock);
 816	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
 817	spin_unlock_irq(&dev->qf_cmd_lock);
 818
 819	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
 820		list_del(&cmd->se_qf_node);
 821		atomic_dec(&dev->dev_qf_count);
 822		smp_mb__after_atomic_dec();
 823
 824		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
 825			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
 826			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
 827			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
 828			: "UNKNOWN");
 829
 830		transport_add_cmd_to_queue(cmd, cmd->t_state, true);
 831	}
 832}
 833
 834unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
 835{
 836	switch (cmd->data_direction) {
 837	case DMA_NONE:
 838		return "NONE";
 839	case DMA_FROM_DEVICE:
 840		return "READ";
 841	case DMA_TO_DEVICE:
 842		return "WRITE";
 843	case DMA_BIDIRECTIONAL:
 844		return "BIDI";
 845	default:
 846		break;
 847	}
 848
 849	return "UNKNOWN";
 850}
 851
 852void transport_dump_dev_state(
 853	struct se_device *dev,
 854	char *b,
 855	int *bl)
 856{
 857	*bl += sprintf(b + *bl, "Status: ");
 858	switch (dev->dev_status) {
 859	case TRANSPORT_DEVICE_ACTIVATED:
 860		*bl += sprintf(b + *bl, "ACTIVATED");
 861		break;
 862	case TRANSPORT_DEVICE_DEACTIVATED:
 863		*bl += sprintf(b + *bl, "DEACTIVATED");
 864		break;
 865	case TRANSPORT_DEVICE_SHUTDOWN:
 866		*bl += sprintf(b + *bl, "SHUTDOWN");
 867		break;
 868	case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
 869	case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
 870		*bl += sprintf(b + *bl, "OFFLINE");
 871		break;
 872	default:
 873		*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
 874		break;
 875	}
 876
 877	*bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
 878		atomic_read(&dev->execute_tasks), dev->queue_depth);
 879	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
 880		dev->se_sub_dev->se_dev_attrib.block_size,
 881		dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
 882	*bl += sprintf(b + *bl, "        ");
 883}
 884
 885void transport_dump_vpd_proto_id(
 886	struct t10_vpd *vpd,
 887	unsigned char *p_buf,
 888	int p_buf_len)
 889{
 890	unsigned char buf[VPD_TMP_BUF_SIZE];
 891	int len;
 892
 893	memset(buf, 0, VPD_TMP_BUF_SIZE);
 894	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
 895
 896	switch (vpd->protocol_identifier) {
 897	case 0x00:
 898		sprintf(buf+len, "Fibre Channel\n");
 899		break;
 900	case 0x10:
 901		sprintf(buf+len, "Parallel SCSI\n");
 902		break;
 903	case 0x20:
 904		sprintf(buf+len, "SSA\n");
 905		break;
 906	case 0x30:
 907		sprintf(buf+len, "IEEE 1394\n");
 908		break;
 909	case 0x40:
 910		sprintf(buf+len, "SCSI Remote Direct Memory Access"
 911				" Protocol\n");
 912		break;
 913	case 0x50:
 914		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
 915		break;
 916	case 0x60:
 917		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
 918		break;
 919	case 0x70:
 920		sprintf(buf+len, "Automation/Drive Interface Transport"
 921				" Protocol\n");
 922		break;
 923	case 0x80:
 924		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
 925		break;
 926	default:
 927		sprintf(buf+len, "Unknown 0x%02x\n",
 928				vpd->protocol_identifier);
 929		break;
 930	}
 931
 932	if (p_buf)
 933		strncpy(p_buf, buf, p_buf_len);
 934	else
 935		pr_debug("%s", buf);
 936}
 937
 938void
 939transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
 940{
 941	/*
 942	 * Check if the Protocol Identifier Valid (PIV) bit is set..
 943	 *
 944	 * from spc3r23.pdf section 7.5.1
 945	 */
 946	 if (page_83[1] & 0x80) {
 947		vpd->protocol_identifier = (page_83[0] & 0xf0);
 948		vpd->protocol_identifier_set = 1;
 949		transport_dump_vpd_proto_id(vpd, NULL, 0);
 950	}
 951}
 952EXPORT_SYMBOL(transport_set_vpd_proto_id);
 953
 954int transport_dump_vpd_assoc(
 955	struct t10_vpd *vpd,
 956	unsigned char *p_buf,
 957	int p_buf_len)
 958{
 959	unsigned char buf[VPD_TMP_BUF_SIZE];
 960	int ret = 0;
 961	int len;
 962
 963	memset(buf, 0, VPD_TMP_BUF_SIZE);
 964	len = sprintf(buf, "T10 VPD Identifier Association: ");
 965
 966	switch (vpd->association) {
 967	case 0x00:
 968		sprintf(buf+len, "addressed logical unit\n");
 969		break;
 970	case 0x10:
 971		sprintf(buf+len, "target port\n");
 972		break;
 973	case 0x20:
 974		sprintf(buf+len, "SCSI target device\n");
 975		break;
 976	default:
 977		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
 978		ret = -EINVAL;
 979		break;
 980	}
 981
 982	if (p_buf)
 983		strncpy(p_buf, buf, p_buf_len);
 984	else
 985		pr_debug("%s", buf);
 986
 987	return ret;
 988}
 989
 990int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
 991{
 992	/*
 993	 * The VPD identification association..
 994	 *
 995	 * from spc3r23.pdf Section 7.6.3.1 Table 297
 996	 */
 997	vpd->association = (page_83[1] & 0x30);
 998	return transport_dump_vpd_assoc(vpd, NULL, 0);
 999}
1000EXPORT_SYMBOL(transport_set_vpd_assoc);
1001
1002int transport_dump_vpd_ident_type(
1003	struct t10_vpd *vpd,
1004	unsigned char *p_buf,
1005	int p_buf_len)
1006{
1007	unsigned char buf[VPD_TMP_BUF_SIZE];
1008	int ret = 0;
1009	int len;
1010
1011	memset(buf, 0, VPD_TMP_BUF_SIZE);
1012	len = sprintf(buf, "T10 VPD Identifier Type: ");
1013
1014	switch (vpd->device_identifier_type) {
1015	case 0x00:
1016		sprintf(buf+len, "Vendor specific\n");
1017		break;
1018	case 0x01:
1019		sprintf(buf+len, "T10 Vendor ID based\n");
1020		break;
1021	case 0x02:
1022		sprintf(buf+len, "EUI-64 based\n");
1023		break;
1024	case 0x03:
1025		sprintf(buf+len, "NAA\n");
1026		break;
1027	case 0x04:
1028		sprintf(buf+len, "Relative target port identifier\n");
1029		break;
1030	case 0x08:
1031		sprintf(buf+len, "SCSI name string\n");
1032		break;
1033	default:
1034		sprintf(buf+len, "Unsupported: 0x%02x\n",
1035				vpd->device_identifier_type);
1036		ret = -EINVAL;
1037		break;
1038	}
1039
1040	if (p_buf) {
1041		if (p_buf_len < strlen(buf)+1)
1042			return -EINVAL;
1043		strncpy(p_buf, buf, p_buf_len);
1044	} else {
1045		pr_debug("%s", buf);
1046	}
1047
1048	return ret;
1049}
1050
1051int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1052{
1053	/*
1054	 * The VPD identifier type..
1055	 *
1056	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1057	 */
1058	vpd->device_identifier_type = (page_83[1] & 0x0f);
1059	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1060}
1061EXPORT_SYMBOL(transport_set_vpd_ident_type);
1062
1063int transport_dump_vpd_ident(
1064	struct t10_vpd *vpd,
1065	unsigned char *p_buf,
1066	int p_buf_len)
1067{
1068	unsigned char buf[VPD_TMP_BUF_SIZE];
1069	int ret = 0;
1070
1071	memset(buf, 0, VPD_TMP_BUF_SIZE);
1072
1073	switch (vpd->device_identifier_code_set) {
1074	case 0x01: /* Binary */
1075		sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1076			&vpd->device_identifier[0]);
1077		break;
1078	case 0x02: /* ASCII */
1079		sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1080			&vpd->device_identifier[0]);
1081		break;
1082	case 0x03: /* UTF-8 */
1083		sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1084			&vpd->device_identifier[0]);
1085		break;
1086	default:
1087		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1088			" 0x%02x", vpd->device_identifier_code_set);
1089		ret = -EINVAL;
1090		break;
1091	}
1092
1093	if (p_buf)
1094		strncpy(p_buf, buf, p_buf_len);
1095	else
1096		pr_debug("%s", buf);
1097
1098	return ret;
1099}
1100
1101int
1102transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1103{
1104	static const char hex_str[] = "0123456789abcdef";
1105	int j = 0, i = 4; /* offset to start of the identifer */
1106
1107	/*
1108	 * The VPD Code Set (encoding)
1109	 *
1110	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1111	 */
1112	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1113	switch (vpd->device_identifier_code_set) {
1114	case 0x01: /* Binary */
1115		vpd->device_identifier[j++] =
1116				hex_str[vpd->device_identifier_type];
1117		while (i < (4 + page_83[3])) {
1118			vpd->device_identifier[j++] =
1119				hex_str[(page_83[i] & 0xf0) >> 4];
1120			vpd->device_identifier[j++] =
1121				hex_str[page_83[i] & 0x0f];
1122			i++;
1123		}
1124		break;
1125	case 0x02: /* ASCII */
1126	case 0x03: /* UTF-8 */
1127		while (i < (4 + page_83[3]))
1128			vpd->device_identifier[j++] = page_83[i++];
1129		break;
1130	default:
1131		break;
1132	}
1133
1134	return transport_dump_vpd_ident(vpd, NULL, 0);
1135}
1136EXPORT_SYMBOL(transport_set_vpd_ident);
1137
1138static void core_setup_task_attr_emulation(struct se_device *dev)
1139{
1140	/*
1141	 * If this device is from Target_Core_Mod/pSCSI, disable the
1142	 * SAM Task Attribute emulation.
1143	 *
1144	 * This is currently not available in upsream Linux/SCSI Target
1145	 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1146	 */
1147	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1148		dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1149		return;
1150	}
1151
1152	dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1153	pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1154		" device\n", dev->transport->name,
1155		dev->transport->get_device_rev(dev));
1156}
1157
1158static void scsi_dump_inquiry(struct se_device *dev)
1159{
1160	struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1161	char buf[17];
1162	int i, device_type;
1163	/*
1164	 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1165	 */
1166	for (i = 0; i < 8; i++)
1167		if (wwn->vendor[i] >= 0x20)
1168			buf[i] = wwn->vendor[i];
1169		else
1170			buf[i] = ' ';
1171	buf[i] = '\0';
1172	pr_debug("  Vendor: %s\n", buf);
1173
1174	for (i = 0; i < 16; i++)
1175		if (wwn->model[i] >= 0x20)
1176			buf[i] = wwn->model[i];
1177		else
1178			buf[i] = ' ';
1179	buf[i] = '\0';
1180	pr_debug("  Model: %s\n", buf);
1181
1182	for (i = 0; i < 4; i++)
1183		if (wwn->revision[i] >= 0x20)
1184			buf[i] = wwn->revision[i];
1185		else
1186			buf[i] = ' ';
1187	buf[i] = '\0';
1188	pr_debug("  Revision: %s\n", buf);
1189
1190	device_type = dev->transport->get_device_type(dev);
1191	pr_debug("  Type:   %s ", scsi_device_type(device_type));
1192	pr_debug("                 ANSI SCSI revision: %02x\n",
1193				dev->transport->get_device_rev(dev));
1194}
1195
1196struct se_device *transport_add_device_to_core_hba(
1197	struct se_hba *hba,
1198	struct se_subsystem_api *transport,
1199	struct se_subsystem_dev *se_dev,
1200	u32 device_flags,
1201	void *transport_dev,
1202	struct se_dev_limits *dev_limits,
1203	const char *inquiry_prod,
1204	const char *inquiry_rev)
1205{
1206	int force_pt;
1207	struct se_device  *dev;
1208
1209	dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1210	if (!dev) {
1211		pr_err("Unable to allocate memory for se_dev_t\n");
1212		return NULL;
1213	}
1214
1215	transport_init_queue_obj(&dev->dev_queue_obj);
1216	dev->dev_flags		= device_flags;
1217	dev->dev_status		|= TRANSPORT_DEVICE_DEACTIVATED;
1218	dev->dev_ptr		= transport_dev;
1219	dev->se_hba		= hba;
1220	dev->se_sub_dev		= se_dev;
1221	dev->transport		= transport;
1222	INIT_LIST_HEAD(&dev->dev_list);
1223	INIT_LIST_HEAD(&dev->dev_sep_list);
1224	INIT_LIST_HEAD(&dev->dev_tmr_list);
1225	INIT_LIST_HEAD(&dev->execute_list);
1226	INIT_LIST_HEAD(&dev->delayed_cmd_list);
1227	INIT_LIST_HEAD(&dev->state_list);
1228	INIT_LIST_HEAD(&dev->qf_cmd_list);
1229	spin_lock_init(&dev->execute_task_lock);
1230	spin_lock_init(&dev->delayed_cmd_lock);
1231	spin_lock_init(&dev->dev_reservation_lock);
1232	spin_lock_init(&dev->dev_status_lock);
1233	spin_lock_init(&dev->se_port_lock);
1234	spin_lock_init(&dev->se_tmr_lock);
1235	spin_lock_init(&dev->qf_cmd_lock);
1236	atomic_set(&dev->dev_ordered_id, 0);
1237
1238	se_dev_set_default_attribs(dev, dev_limits);
1239
1240	dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1241	dev->creation_time = get_jiffies_64();
1242	spin_lock_init(&dev->stats_lock);
1243
1244	spin_lock(&hba->device_lock);
1245	list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1246	hba->dev_count++;
1247	spin_unlock(&hba->device_lock);
1248	/*
1249	 * Setup the SAM Task Attribute emulation for struct se_device
1250	 */
1251	core_setup_task_attr_emulation(dev);
1252	/*
1253	 * Force PR and ALUA passthrough emulation with internal object use.
1254	 */
1255	force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1256	/*
1257	 * Setup the Reservations infrastructure for struct se_device
1258	 */
1259	core_setup_reservations(dev, force_pt);
1260	/*
1261	 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1262	 */
1263	if (core_setup_alua(dev, force_pt) < 0)
1264		goto out;
1265
1266	/*
1267	 * Startup the struct se_device processing thread
1268	 */
1269	dev->process_thread = kthread_run(transport_processing_thread, dev,
1270					  "LIO_%s", dev->transport->name);
1271	if (IS_ERR(dev->process_thread)) {
1272		pr_err("Unable to create kthread: LIO_%s\n",
1273			dev->transport->name);
1274		goto out;
1275	}
1276	/*
1277	 * Setup work_queue for QUEUE_FULL
1278	 */
1279	INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1280	/*
1281	 * Preload the initial INQUIRY const values if we are doing
1282	 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1283	 * passthrough because this is being provided by the backend LLD.
1284	 * This is required so that transport_get_inquiry() copies these
1285	 * originals once back into DEV_T10_WWN(dev) for the virtual device
1286	 * setup.
1287	 */
1288	if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1289		if (!inquiry_prod || !inquiry_rev) {
1290			pr_err("All non TCM/pSCSI plugins require"
1291				" INQUIRY consts\n");
1292			goto out;
1293		}
1294
1295		strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1296		strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1297		strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1298	}
1299	scsi_dump_inquiry(dev);
1300
1301	return dev;
1302out:
1303	kthread_stop(dev->process_thread);
1304
1305	spin_lock(&hba->device_lock);
1306	list_del(&dev->dev_list);
1307	hba->dev_count--;
1308	spin_unlock(&hba->device_lock);
1309
1310	se_release_vpd_for_dev(dev);
1311
1312	kfree(dev);
1313
1314	return NULL;
1315}
1316EXPORT_SYMBOL(transport_add_device_to_core_hba);
1317
1318/*	transport_generic_prepare_cdb():
1319 *
1320 *	Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1321 *	contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1322 *	The point of this is since we are mapping iSCSI LUNs to
1323 *	SCSI Target IDs having a non-zero LUN in the CDB will throw the
1324 *	devices and HBAs for a loop.
1325 */
1326static inline void transport_generic_prepare_cdb(
1327	unsigned char *cdb)
1328{
1329	switch (cdb[0]) {
1330	case READ_10: /* SBC - RDProtect */
1331	case READ_12: /* SBC - RDProtect */
1332	case READ_16: /* SBC - RDProtect */
1333	case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1334	case VERIFY: /* SBC - VRProtect */
1335	case VERIFY_16: /* SBC - VRProtect */
1336	case WRITE_VERIFY: /* SBC - VRProtect */
1337	case WRITE_VERIFY_12: /* SBC - VRProtect */
1338	case MAINTENANCE_IN: /* SPC - Parameter Data Format for SA RTPG */
1339		break;
1340	default:
1341		cdb[1] &= 0x1f; /* clear logical unit number */
1342		break;
1343	}
1344}
1345
1346static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1347
1348/*
1349 * Used by fabric modules containing a local struct se_cmd within their
1350 * fabric dependent per I/O descriptor.
1351 */
1352void transport_init_se_cmd(
1353	struct se_cmd *cmd,
1354	struct target_core_fabric_ops *tfo,
1355	struct se_session *se_sess,
1356	u32 data_length,
1357	int data_direction,
1358	int task_attr,
1359	unsigned char *sense_buffer)
1360{
1361	INIT_LIST_HEAD(&cmd->se_lun_node);
1362	INIT_LIST_HEAD(&cmd->se_delayed_node);
1363	INIT_LIST_HEAD(&cmd->se_qf_node);
1364	INIT_LIST_HEAD(&cmd->se_queue_node);
1365	INIT_LIST_HEAD(&cmd->se_cmd_list);
1366	INIT_LIST_HEAD(&cmd->execute_list);
1367	INIT_LIST_HEAD(&cmd->state_list);
1368	init_completion(&cmd->transport_lun_fe_stop_comp);
1369	init_completion(&cmd->transport_lun_stop_comp);
1370	init_completion(&cmd->t_transport_stop_comp);
1371	init_completion(&cmd->cmd_wait_comp);
1372	init_completion(&cmd->task_stop_comp);
1373	spin_lock_init(&cmd->t_state_lock);
1374	cmd->transport_state = CMD_T_DEV_ACTIVE;
1375
1376	cmd->se_tfo = tfo;
1377	cmd->se_sess = se_sess;
1378	cmd->data_length = data_length;
1379	cmd->data_direction = data_direction;
1380	cmd->sam_task_attr = task_attr;
1381	cmd->sense_buffer = sense_buffer;
1382
1383	cmd->state_active = false;
1384}
1385EXPORT_SYMBOL(transport_init_se_cmd);
1386
1387static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1388{
1389	/*
1390	 * Check if SAM Task Attribute emulation is enabled for this
1391	 * struct se_device storage object
1392	 */
1393	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1394		return 0;
1395
1396	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1397		pr_debug("SAM Task Attribute ACA"
1398			" emulation is not supported\n");
1399		return -EINVAL;
1400	}
1401	/*
1402	 * Used to determine when ORDERED commands should go from
1403	 * Dormant to Active status.
1404	 */
1405	cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1406	smp_mb__after_atomic_inc();
1407	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1408			cmd->se_ordered_id, cmd->sam_task_attr,
1409			cmd->se_dev->transport->name);
1410	return 0;
1411}
1412
1413/*	target_setup_cmd_from_cdb():
1414 *
1415 *	Called from fabric RX Thread.
1416 */
1417int target_setup_cmd_from_cdb(
1418	struct se_cmd *cmd,
1419	unsigned char *cdb)
1420{
1421	int ret;
1422
1423	transport_generic_prepare_cdb(cdb);
1424	/*
1425	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1426	 * for VARIABLE_LENGTH_CMD
1427	 */
1428	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1429		pr_err("Received SCSI CDB with command_size: %d that"
1430			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1431			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1432		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1433		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1434		return -EINVAL;
1435	}
1436	/*
1437	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1438	 * allocate the additional extended CDB buffer now..  Otherwise
1439	 * setup the pointer from __t_task_cdb to t_task_cdb.
1440	 */
1441	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1442		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1443						GFP_KERNEL);
1444		if (!cmd->t_task_cdb) {
1445			pr_err("Unable to allocate cmd->t_task_cdb"
1446				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1447				scsi_command_size(cdb),
1448				(unsigned long)sizeof(cmd->__t_task_cdb));
1449			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1450			cmd->scsi_sense_reason =
1451					TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1452			return -ENOMEM;
1453		}
1454	} else
1455		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1456	/*
1457	 * Copy the original CDB into cmd->
1458	 */
1459	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1460	/*
1461	 * Setup the received CDB based on SCSI defined opcodes and
1462	 * perform unit attention, persistent reservations and ALUA
1463	 * checks for virtual device backends.  The cmd->t_task_cdb
1464	 * pointer is expected to be setup before we reach this point.
1465	 */
1466	ret = transport_generic_cmd_sequencer(cmd, cdb);
1467	if (ret < 0)
1468		return ret;
1469	/*
1470	 * Check for SAM Task Attribute Emulation
1471	 */
1472	if (transport_check_alloc_task_attr(cmd) < 0) {
1473		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1474		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1475		return -EINVAL;
1476	}
1477	spin_lock(&cmd->se_lun->lun_sep_lock);
1478	if (cmd->se_lun->lun_sep)
1479		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1480	spin_unlock(&cmd->se_lun->lun_sep_lock);
1481	return 0;
1482}
1483EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1484
1485/*
1486 * Used by fabric module frontends to queue tasks directly.
1487 * Many only be used from process context only
1488 */
1489int transport_handle_cdb_direct(
1490	struct se_cmd *cmd)
1491{
1492	int ret;
1493
1494	if (!cmd->se_lun) {
1495		dump_stack();
1496		pr_err("cmd->se_lun is NULL\n");
1497		return -EINVAL;
1498	}
1499	if (in_interrupt()) {
1500		dump_stack();
1501		pr_err("transport_generic_handle_cdb cannot be called"
1502				" from interrupt context\n");
1503		return -EINVAL;
1504	}
1505	/*
1506	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1507	 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1508	 * in existing usage to ensure that outstanding descriptors are handled
1509	 * correctly during shutdown via transport_wait_for_tasks()
1510	 *
1511	 * Also, we don't take cmd->t_state_lock here as we only expect
1512	 * this to be called for initial descriptor submission.
1513	 */
1514	cmd->t_state = TRANSPORT_NEW_CMD;
1515	cmd->transport_state |= CMD_T_ACTIVE;
1516
1517	/*
1518	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1519	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1520	 * and call transport_generic_request_failure() if necessary..
1521	 */
1522	ret = transport_generic_new_cmd(cmd);
1523	if (ret < 0)
1524		transport_generic_request_failure(cmd);
1525
1526	return 0;
1527}
1528EXPORT_SYMBOL(transport_handle_cdb_direct);
1529
1530/**
1531 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1532 *
1533 * @se_cmd: command descriptor to submit
1534 * @se_sess: associated se_sess for endpoint
1535 * @cdb: pointer to SCSI CDB
1536 * @sense: pointer to SCSI sense buffer
1537 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1538 * @data_length: fabric expected data transfer length
1539 * @task_addr: SAM task attribute
1540 * @data_dir: DMA data direction
1541 * @flags: flags for command submission from target_sc_flags_tables
1542 *
1543 * This may only be called from process context, and also currently
1544 * assumes internal allocation of fabric payload buffer by target-core.
1545 **/
1546void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1547		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1548		u32 data_length, int task_attr, int data_dir, int flags)
1549{
1550	struct se_portal_group *se_tpg;
1551	int rc;
1552
1553	se_tpg = se_sess->se_tpg;
1554	BUG_ON(!se_tpg);
1555	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1556	BUG_ON(in_interrupt());
1557	/*
1558	 * Initialize se_cmd for target operation.  From this point
1559	 * exceptions are handled by sending exception status via
1560	 * target_core_fabric_ops->queue_status() callback
1561	 */
1562	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1563				data_length, data_dir, task_attr, sense);
1564	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1565		se_cmd->unknown_data_length = 1;
1566	/*
1567	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1568	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1569	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1570	 * kref_put() to happen during fabric packet acknowledgement.
1571	 */
1572	target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1573	/*
1574	 * Signal bidirectional data payloads to target-core
1575	 */
1576	if (flags & TARGET_SCF_BIDI_OP)
1577		se_cmd->se_cmd_flags |= SCF_BIDI;
1578	/*
1579	 * Locate se_lun pointer and attach it to struct se_cmd
1580	 */
1581	if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1582		transport_send_check_condition_and_sense(se_cmd,
1583				se_cmd->scsi_sense_reason, 0);
1584		target_put_sess_cmd(se_sess, se_cmd);
1585		return;
1586	}
1587	/*
1588	 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1589	 * allocate the necessary tasks to complete the received CDB+data
1590	 */
1591	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1592	if (rc != 0) {
1593		transport_generic_request_failure(se_cmd);
1594		return;
1595	}
1596
1597	/*
1598	 * Check if we need to delay processing because of ALUA
1599	 * Active/NonOptimized primary access state..
1600	 */
1601	core_alua_check_nonop_delay(se_cmd);
1602
1603	/*
1604	 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1605	 * for immediate execution of READs, otherwise wait for
1606	 * transport_generic_handle_data() to be called for WRITEs
1607	 * when fabric has filled the incoming buffer.
1608	 */
1609	transport_handle_cdb_direct(se_cmd);
1610	return;
1611}
1612EXPORT_SYMBOL(target_submit_cmd);
1613
1614static void target_complete_tmr_failure(struct work_struct *work)
1615{
1616	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1617
1618	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1619	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1620	transport_generic_free_cmd(se_cmd, 0);
1621}
1622
1623/**
1624 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1625 *                     for TMR CDBs
1626 *
1627 * @se_cmd: command descriptor to submit
1628 * @se_sess: associated se_sess for endpoint
1629 * @sense: pointer to SCSI sense buffer
1630 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1631 * @fabric_context: fabric context for TMR req
1632 * @tm_type: Type of TM request
1633 * @gfp: gfp type for caller
1634 * @tag: referenced task tag for TMR_ABORT_TASK
1635 * @flags: submit cmd flags
1636 *
1637 * Callable from all contexts.
1638 **/
1639
1640int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1641		unsigned char *sense, u32 unpacked_lun,
1642		void *fabric_tmr_ptr, unsigned char tm_type,
1643		gfp_t gfp, unsigned int tag, int flags)
1644{
1645	struct se_portal_group *se_tpg;
1646	int ret;
1647
1648	se_tpg = se_sess->se_tpg;
1649	BUG_ON(!se_tpg);
1650
1651	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1652			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1653	/*
1654	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1655	 * allocation failure.
1656	 */
1657	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1658	if (ret < 0)
1659		return -ENOMEM;
1660
1661	if (tm_type == TMR_ABORT_TASK)
1662		se_cmd->se_tmr_req->ref_task_tag = tag;
1663
1664	/* See target_submit_cmd for commentary */
1665	target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1666
1667	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1668	if (ret) {
1669		/*
1670		 * For callback during failure handling, push this work off
1671		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1672		 */
1673		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1674		schedule_work(&se_cmd->work);
1675		return 0;
1676	}
1677	transport_generic_handle_tmr(se_cmd);
1678	return 0;
1679}
1680EXPORT_SYMBOL(target_submit_tmr);
1681
1682/*
1683 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1684 * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1685 * complete setup in TCM process context w/ TFO->new_cmd_map().
1686 */
1687int transport_generic_handle_cdb_map(
1688	struct se_cmd *cmd)
1689{
1690	if (!cmd->se_lun) {
1691		dump_stack();
1692		pr_err("cmd->se_lun is NULL\n");
1693		return -EINVAL;
1694	}
1695
1696	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1697	return 0;
1698}
1699EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1700
1701/*	transport_generic_handle_data():
1702 *
1703 *
1704 */
1705int transport_generic_handle_data(
1706	struct se_cmd *cmd)
1707{
1708	/*
1709	 * For the software fabric case, then we assume the nexus is being
1710	 * failed/shutdown when signals are pending from the kthread context
1711	 * caller, so we return a failure.  For the HW target mode case running
1712	 * in interrupt code, the signal_pending() check is skipped.
1713	 */
1714	if (!in_interrupt() && signal_pending(current))
1715		return -EPERM;
1716	/*
1717	 * If the received CDB has aleady been ABORTED by the generic
1718	 * target engine, we now call transport_check_aborted_status()
1719	 * to queue any delated TASK_ABORTED status for the received CDB to the
1720	 * fabric module as we are expecting no further incoming DATA OUT
1721	 * sequences at this point.
1722	 */
1723	if (transport_check_aborted_status(cmd, 1) != 0)
1724		return 0;
1725
1726	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1727	return 0;
1728}
1729EXPORT_SYMBOL(transport_generic_handle_data);
1730
1731/*	transport_generic_handle_tmr():
1732 *
1733 *
1734 */
1735int transport_generic_handle_tmr(
1736	struct se_cmd *cmd)
1737{
1738	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1739	return 0;
1740}
1741EXPORT_SYMBOL(transport_generic_handle_tmr);
1742
1743/*
1744 * If the cmd is active, request it to be stopped and sleep until it
1745 * has completed.
1746 */
1747bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1748{
1749	bool was_active = false;
1750
1751	if (cmd->transport_state & CMD_T_BUSY) {
1752		cmd->transport_state |= CMD_T_REQUEST_STOP;
1753		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1754
1755		pr_debug("cmd %p waiting to complete\n", cmd);
1756		wait_for_completion(&cmd->task_stop_comp);
1757		pr_debug("cmd %p stopped successfully\n", cmd);
1758
1759		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1760		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1761		cmd->transport_state &= ~CMD_T_BUSY;
1762		was_active = true;
1763	}
1764
1765	return was_active;
1766}
1767
1768/*
1769 * Handle SAM-esque emulation for generic transport request failures.
1770 */
1771void transport_generic_request_failure(struct se_cmd *cmd)
1772{
1773	int ret = 0;
1774
1775	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1776		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1777		cmd->t_task_cdb[0]);
1778	pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1779		cmd->se_tfo->get_cmd_state(cmd),
1780		cmd->t_state, cmd->scsi_sense_reason);
1781	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1782		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1783		(cmd->transport_state & CMD_T_STOP) != 0,
1784		(cmd->transport_state & CMD_T_SENT) != 0);
1785
1786	/*
1787	 * For SAM Task Attribute emulation for failed struct se_cmd
1788	 */
1789	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1790		transport_complete_task_attr(cmd);
1791
1792	switch (cmd->scsi_sense_reason) {
1793	case TCM_NON_EXISTENT_LUN:
1794	case TCM_UNSUPPORTED_SCSI_OPCODE:
1795	case TCM_INVALID_CDB_FIELD:
1796	case TCM_INVALID_PARAMETER_LIST:
1797	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1798	case TCM_UNKNOWN_MODE_PAGE:
1799	case TCM_WRITE_PROTECTED:
1800	case TCM_ADDRESS_OUT_OF_RANGE:
1801	case TCM_CHECK_CONDITION_ABORT_CMD:
1802	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1803	case TCM_CHECK_CONDITION_NOT_READY:
1804		break;
1805	case TCM_RESERVATION_CONFLICT:
1806		/*
1807		 * No SENSE Data payload for this case, set SCSI Status
1808		 * and queue the response to $FABRIC_MOD.
1809		 *
1810		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1811		 */
1812		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1813		/*
1814		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1815		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1816		 * CONFLICT STATUS.
1817		 *
1818		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1819		 */
1820		if (cmd->se_sess &&
1821		    cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1822			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1823				cmd->orig_fe_lun, 0x2C,
1824				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1825
1826		ret = cmd->se_tfo->queue_status(cmd);
1827		if (ret == -EAGAIN || ret == -ENOMEM)
1828			goto queue_full;
1829		goto check_stop;
1830	default:
1831		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1832			cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1833		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1834		break;
1835	}
1836	/*
1837	 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1838	 * make the call to transport_send_check_condition_and_sense()
1839	 * directly.  Otherwise expect the fabric to make the call to
1840	 * transport_send_check_condition_and_sense() after handling
1841	 * possible unsoliticied write data payloads.
1842	 */
1843	ret = transport_send_check_condition_and_sense(cmd,
1844			cmd->scsi_sense_reason, 0);
1845	if (ret == -EAGAIN || ret == -ENOMEM)
1846		goto queue_full;
1847
1848check_stop:
1849	transport_lun_remove_cmd(cmd);
1850	if (!transport_cmd_check_stop_to_fabric(cmd))
1851		;
1852	return;
1853
1854queue_full:
1855	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1856	transport_handle_queue_full(cmd, cmd->se_dev);
1857}
1858EXPORT_SYMBOL(transport_generic_request_failure);
1859
1860static inline u32 transport_lba_21(unsigned char *cdb)
1861{
1862	return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1863}
1864
1865static inline u32 transport_lba_32(unsigned char *cdb)
1866{
1867	return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1868}
1869
1870static inline unsigned long long transport_lba_64(unsigned char *cdb)
1871{
1872	unsigned int __v1, __v2;
1873
1874	__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1875	__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1876
1877	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1878}
1879
1880/*
1881 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1882 */
1883static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1884{
1885	unsigned int __v1, __v2;
1886
1887	__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1888	__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1889
1890	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1891}
1892
1893static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1894{
1895	unsigned long flags;
1896
1897	spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1898	se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1899	spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1900}
1901
1902/*
1903 * Called from Fabric Module context from transport_execute_tasks()
1904 *
1905 * The return of this function determins if the tasks from struct se_cmd
1906 * get added to the execution queue in transport_execute_tasks(),
1907 * or are added to the delayed or ordered lists here.
1908 */
1909static inline int transport_execute_task_attr(struct se_cmd *cmd)
1910{
1911	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1912		return 1;
1913	/*
1914	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1915	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1916	 */
1917	 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1918		pr_debug("Added HEAD_OF_QUEUE for CDB:"
1919			" 0x%02x, se_ordered_id: %u\n",
1920			cmd->t_task_cdb[0],
1921			cmd->se_ordered_id);
1922		return 1;
1923	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1924		atomic_inc(&cmd->se_dev->dev_ordered_sync);
1925		smp_mb__after_atomic_inc();
1926
1927		pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1928				" list, se_ordered_id: %u\n",
1929				cmd->t_task_cdb[0],
1930				cmd->se_ordered_id);
1931		/*
1932		 * Add ORDERED command to tail of execution queue if
1933		 * no other older commands exist that need to be
1934		 * completed first.
1935		 */
1936		if (!atomic_read(&cmd->se_dev->simple_cmds))
1937			return 1;
1938	} else {
1939		/*
1940		 * For SIMPLE and UNTAGGED Task Attribute commands
1941		 */
1942		atomic_inc(&cmd->se_dev->simple_cmds);
1943		smp_mb__after_atomic_inc();
1944	}
1945	/*
1946	 * Otherwise if one or more outstanding ORDERED task attribute exist,
1947	 * add the dormant task(s) built for the passed struct se_cmd to the
1948	 * execution queue and become in Active state for this struct se_device.
1949	 */
1950	if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1951		/*
1952		 * Otherwise, add cmd w/ tasks to delayed cmd queue that
1953		 * will be drained upon completion of HEAD_OF_QUEUE task.
1954		 */
1955		spin_lock(&cmd->se_dev->delayed_cmd_lock);
1956		cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1957		list_add_tail(&cmd->se_delayed_node,
1958				&cmd->se_dev->delayed_cmd_list);
1959		spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1960
1961		pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1962			" delayed CMD list, se_ordered_id: %u\n",
1963			cmd->t_task_cdb[0], cmd->sam_task_attr,
1964			cmd->se_ordered_id);
1965		/*
1966		 * Return zero to let transport_execute_tasks() know
1967		 * not to add the delayed tasks to the execution list.
1968		 */
1969		return 0;
1970	}
1971	/*
1972	 * Otherwise, no ORDERED task attributes exist..
1973	 */
1974	return 1;
1975}
1976
1977/*
1978 * Called from fabric module context in transport_generic_new_cmd() and
1979 * transport_generic_process_write()
1980 */
1981static void transport_execute_tasks(struct se_cmd *cmd)
1982{
1983	int add_tasks;
1984	struct se_device *se_dev = cmd->se_dev;
1985	/*
1986	 * Call transport_cmd_check_stop() to see if a fabric exception
1987	 * has occurred that prevents execution.
1988	 */
1989	if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
1990		/*
1991		 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
1992		 * attribute for the tasks of the received struct se_cmd CDB
1993		 */
1994		add_tasks = transport_execute_task_attr(cmd);
1995		if (add_tasks) {
1996			__transport_execute_tasks(se_dev, cmd);
1997			return;
1998		}
1999	}
2000	__transport_execute_tasks(se_dev, NULL);
2001}
2002
2003static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2004{
2005	int error;
2006	struct se_cmd *cmd = NULL;
2007	unsigned long flags;
2008
2009check_depth:
2010	spin_lock_irq(&dev->execute_task_lock);
2011	if (new_cmd != NULL)
2012		__target_add_to_execute_list(new_cmd);
2013
2014	if (list_empty(&dev->execute_list)) {
2015		spin_unlock_irq(&dev->execute_task_lock);
2016		return 0;
2017	}
2018	cmd = list_first_entry(&dev->execute_list, struct se_cmd, execute_list);
2019	__target_remove_from_execute_list(cmd);
2020	spin_unlock_irq(&dev->execute_task_lock);
2021
2022	spin_lock_irqsave(&cmd->t_state_lock, flags);
2023	cmd->transport_state |= CMD_T_BUSY;
2024	cmd->transport_state |= CMD_T_SENT;
2025
2026	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2027
2028	if (cmd->execute_cmd)
2029		error = cmd->execute_cmd(cmd);
2030	else {
2031		error = dev->transport->execute_cmd(cmd, cmd->t_data_sg,
2032				cmd->t_data_nents, cmd->data_direction);
2033	}
2034
2035	if (error != 0) {
2036		spin_lock_irqsave(&cmd->t_state_lock, flags);
2037		cmd->transport_state &= ~CMD_T_BUSY;
2038		cmd->transport_state &= ~CMD_T_SENT;
2039		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2040
2041		transport_generic_request_failure(cmd);
2042	}
2043
2044	new_cmd = NULL;
2045	goto check_depth;
2046
2047	return 0;
2048}
2049
2050static inline u32 transport_get_sectors_6(
2051	unsigned char *cdb,
2052	struct se_cmd *cmd,
2053	int *ret)
2054{
2055	struct se_device *dev = cmd->se_dev;
2056
2057	/*
2058	 * Assume TYPE_DISK for non struct se_device objects.
2059	 * Use 8-bit sector value.
2060	 */
2061	if (!dev)
2062		goto type_disk;
2063
2064	/*
2065	 * Use 24-bit allocation length for TYPE_TAPE.
2066	 */
2067	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2068		return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2069
2070	/*
2071	 * Everything else assume TYPE_DISK Sector CDB location.
2072	 * Use 8-bit sector value.  SBC-3 says:
2073	 *
2074	 *   A TRANSFER LENGTH field set to zero specifies that 256
2075	 *   logical blocks shall be written.  Any other value
2076	 *   specifies the number of logical blocks that shall be
2077	 *   written.
2078	 */
2079type_disk:
2080	return cdb[4] ? : 256;
2081}
2082
2083static inline u32 transport_get_sectors_10(
2084	unsigned char *cdb,
2085	struct se_cmd *cmd,
2086	int *ret)
2087{
2088	struct se_device *dev = cmd->se_dev;
2089
2090	/*
2091	 * Assume TYPE_DISK for non struct se_device objects.
2092	 * Use 16-bit sector value.
2093	 */
2094	if (!dev)
2095		goto type_disk;
2096
2097	/*
2098	 * XXX_10 is not defined in SSC, throw an exception
2099	 */
2100	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2101		*ret = -EINVAL;
2102		return 0;
2103	}
2104
2105	/*
2106	 * Everything else assume TYPE_DISK Sector CDB location.
2107	 * Use 16-bit sector value.
2108	 */
2109type_disk:
2110	return (u32)(cdb[7] << 8) + cdb[8];
2111}
2112
2113static inline u32 transport_get_sectors_12(
2114	unsigned char *cdb,
2115	struct se_cmd *cmd,
2116	int *ret)
2117{
2118	struct se_device *dev = cmd->se_dev;
2119
2120	/*
2121	 * Assume TYPE_DISK for non struct se_device objects.
2122	 * Use 32-bit sector value.
2123	 */
2124	if (!dev)
2125		goto type_disk;
2126
2127	/*
2128	 * XXX_12 is not defined in SSC, throw an exception
2129	 */
2130	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2131		*ret = -EINVAL;
2132		return 0;
2133	}
2134
2135	/*
2136	 * Everything else assume TYPE_DISK Sector CDB location.
2137	 * Use 32-bit sector value.
2138	 */
2139type_disk:
2140	return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2141}
2142
2143static inline u32 transport_get_sectors_16(
2144	unsigned char *cdb,
2145	struct se_cmd *cmd,
2146	int *ret)
2147{
2148	struct se_device *dev = cmd->se_dev;
2149
2150	/*
2151	 * Assume TYPE_DISK for non struct se_device objects.
2152	 * Use 32-bit sector value.
2153	 */
2154	if (!dev)
2155		goto type_disk;
2156
2157	/*
2158	 * Use 24-bit allocation length for TYPE_TAPE.
2159	 */
2160	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2161		return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2162
2163type_disk:
2164	return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2165		    (cdb[12] << 8) + cdb[13];
2166}
2167
2168/*
2169 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2170 */
2171static inline u32 transport_get_sectors_32(
2172	unsigned char *cdb,
2173	struct se_cmd *cmd,
2174	int *ret)
2175{
2176	/*
2177	 * Assume TYPE_DISK for non struct se_device objects.
2178	 * Use 32-bit sector value.
2179	 */
2180	return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2181		    (cdb[30] << 8) + cdb[31];
2182
2183}
2184
2185static inline u32 transport_get_size(
2186	u32 sectors,
2187	unsigned char *cdb,
2188	struct se_cmd *cmd)
2189{
2190	struct se_device *dev = cmd->se_dev;
2191
2192	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2193		if (cdb[1] & 1) { /* sectors */
2194			return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2195		} else /* bytes */
2196			return sectors;
2197	}
2198
2199	pr_debug("Returning block_size: %u, sectors: %u == %u for"
2200		" %s object\n", dev->se_sub_dev->se_dev_attrib.block_size,
2201		sectors, dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2202		dev->transport->name);
2203
2204	return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2205}
2206
2207static void transport_xor_callback(struct se_cmd *cmd)
2208{
2209	unsigned char *buf, *addr;
2210	struct scatterlist *sg;
2211	unsigned int offset;
2212	int i;
2213	int count;
2214	/*
2215	 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2216	 *
2217	 * 1) read the specified logical block(s);
2218	 * 2) transfer logical blocks from the data-out buffer;
2219	 * 3) XOR the logical blocks transferred from the data-out buffer with
2220	 *    the logical blocks read, storing the resulting XOR data in a buffer;
2221	 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2222	 *    blocks transferred from the data-out buffer; and
2223	 * 5) transfer the resulting XOR data to the data-in buffer.
2224	 */
2225	buf = kmalloc(cmd->data_length, GFP_KERNEL);
2226	if (!buf) {
2227		pr_err("Unable to allocate xor_callback buf\n");
2228		return;
2229	}
2230	/*
2231	 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2232	 * into the locally allocated *buf
2233	 */
2234	sg_copy_to_buffer(cmd->t_data_sg,
2235			  cmd->t_data_nents,
2236			  buf,
2237			  cmd->data_length);
2238
2239	/*
2240	 * Now perform the XOR against the BIDI read memory located at
2241	 * cmd->t_mem_bidi_list
2242	 */
2243
2244	offset = 0;
2245	for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2246		addr = kmap_atomic(sg_page(sg));
2247		if (!addr)
2248			goto out;
2249
2250		for (i = 0; i < sg->length; i++)
2251			*(addr + sg->offset + i) ^= *(buf + offset + i);
2252
2253		offset += sg->length;
2254		kunmap_atomic(addr);
2255	}
2256
2257out:
2258	kfree(buf);
2259}
2260
2261/*
2262 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2263 */
2264static void transport_get_sense_data(struct se_cmd *cmd)
2265{
2266	unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2267	struct se_device *dev = cmd->se_dev;
2268	unsigned long flags;
2269	u32 offset = 0;
2270
2271	WARN_ON(!cmd->se_lun);
2272
2273	if (!dev)
2274		return;
2275
2276	spin_lock_irqsave(&cmd->t_state_lock, flags);
2277	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2278		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2279		return;
2280	}
2281
2282	sense_buffer = dev->transport->get_sense_buffer(cmd);
2283	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2284
2285	offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
2286
2287	memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
2288
2289	/* Automatically padded */
2290	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
2291
2292	pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
2293		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
2294}
2295
2296static inline long long transport_dev_end_lba(struct se_device *dev)
2297{
2298	return dev->transport->get_blocks(dev) + 1;
2299}
2300
2301static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2302{
2303	struct se_device *dev = cmd->se_dev;
2304	u32 sectors;
2305
2306	if (dev->transport->get_device_type(dev) != TYPE_DISK)
2307		return 0;
2308
2309	sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2310
2311	if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2312		pr_err("LBA: %llu Sectors: %u exceeds"
2313			" transport_dev_end_lba(): %llu\n",
2314			cmd->t_task_lba, sectors,
2315			transport_dev_end_lba(dev));
2316		return -EINVAL;
2317	}
2318
2319	return 0;
2320}
2321
2322static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2323{
2324	/*
2325	 * Determine if the received WRITE_SAME is used to for direct
2326	 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2327	 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2328	 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2329	 */
2330	int passthrough = (dev->transport->transport_type ==
2331				TRANSPORT_PLUGIN_PHBA_PDEV);
2332
2333	if (!passthrough) {
2334		if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2335			pr_err("WRITE_SAME PBDATA and LBDATA"
2336				" bits not supported for Block Discard"
2337				" Emulation\n");
2338			return -ENOSYS;
2339		}
2340		/*
2341		 * Currently for the emulated case we only accept
2342		 * tpws with the UNMAP=1 bit set.
2343		 */
2344		if (!(flags[0] & 0x08)) {
2345			pr_err("WRITE_SAME w/o UNMAP bit not"
2346				" supported for Block Discard Emulation\n");
2347			return -ENOSYS;
2348		}
2349	}
2350
2351	return 0;
2352}
2353
2354/*	transport_generic_cmd_sequencer():
2355 *
2356 *	Generic Command Sequencer that should work for most DAS transport
2357 *	drivers.
2358 *
2359 *	Called from target_setup_cmd_from_cdb() in the $FABRIC_MOD
2360 *	RX Thread.
2361 *
2362 *	FIXME: Need to support other SCSI OPCODES where as well.
2363 */
2364static int transport_generic_cmd_sequencer(
2365	struct se_cmd *cmd,
2366	unsigned char *cdb)
2367{
2368	struct se_device *dev = cmd->se_dev;
2369	struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2370	int ret = 0, sector_ret = 0, passthrough;
2371	u32 sectors = 0, size = 0, pr_reg_type = 0;
2372	u16 service_action;
2373	u8 alua_ascq = 0;
2374	/*
2375	 * Check for an existing UNIT ATTENTION condition
2376	 */
2377	if (core_scsi3_ua_check(cmd, cdb) < 0) {
2378		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2379		cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2380		return -EINVAL;
2381	}
2382	/*
2383	 * Check status of Asymmetric Logical Unit Assignment port
2384	 */
2385	ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2386	if (ret != 0) {
2387		/*
2388		 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2389		 * The ALUA additional sense code qualifier (ASCQ) is determined
2390		 * by the ALUA primary or secondary access state..
2391		 */
2392		if (ret > 0) {
2393			pr_debug("[%s]: ALUA TG Port not available,"
2394				" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2395				cmd->se_tfo->get_fabric_name(), alua_ascq);
2396
2397			transport_set_sense_codes(cmd, 0x04, alua_ascq);
2398			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2399			cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2400			return -EINVAL;
2401		}
2402		goto out_invalid_cdb_field;
2403	}
2404	/*
2405	 * Check status for SPC-3 Persistent Reservations
2406	 */
2407	if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2408		if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2409					cmd, cdb, pr_reg_type) != 0) {
2410			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2411			cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2412			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2413			cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2414			return -EBUSY;
2415		}
2416		/*
2417		 * This means the CDB is allowed for the SCSI Initiator port
2418		 * when said port is *NOT* holding the legacy SPC-2 or
2419		 * SPC-3 Persistent Reservation.
2420		 */
2421	}
2422
2423	/*
2424	 * If we operate in passthrough mode we skip most CDB emulation and
2425	 * instead hand the commands down to the physical SCSI device.
2426	 */
2427	passthrough =
2428		(dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2429
2430	switch (cdb[0]) {
2431	case READ_6:
2432		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2433		if (sector_ret)
2434			goto out_unsupported_cdb;
2435		size = transport_get_size(sectors, cdb, cmd);
2436		cmd->t_task_lba = transport_lba_21(cdb);
2437		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2438		break;
2439	case READ_10:
2440		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2441		if (sector_ret)
2442			goto out_unsupported_cdb;
2443		size = transport_get_size(sectors, cdb, cmd);
2444		cmd->t_task_lba = transport_lba_32(cdb);
2445		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2446		break;
2447	case READ_12:
2448		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2449		if (sector_ret)
2450			goto out_unsupported_cdb;
2451		size = transport_get_size(sectors, cdb, cmd);
2452		cmd->t_task_lba = transport_lba_32(cdb);
2453		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2454		break;
2455	case READ_16:
2456		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2457		if (sector_ret)
2458			goto out_unsupported_cdb;
2459		size = transport_get_size(sectors, cdb, cmd);
2460		cmd->t_task_lba = transport_lba_64(cdb);
2461		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2462		break;
2463	case WRITE_6:
2464		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2465		if (sector_ret)
2466			goto out_unsupported_cdb;
2467		size = transport_get_size(sectors, cdb, cmd);
2468		cmd->t_task_lba = transport_lba_21(cdb);
2469		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2470		break;
2471	case WRITE_10:
2472	case WRITE_VERIFY:
2473		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2474		if (sector_ret)
2475			goto out_unsupported_cdb;
2476		size = transport_get_size(sectors, cdb, cmd);
2477		cmd->t_task_lba = transport_lba_32(cdb);
2478		if (cdb[1] & 0x8)
2479			cmd->se_cmd_flags |= SCF_FUA;
2480		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2481		break;
2482	case WRITE_12:
2483		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2484		if (sector_ret)
2485			goto out_unsupported_cdb;
2486		size = transport_get_size(sectors, cdb, cmd);
2487		cmd->t_task_lba = transport_lba_32(cdb);
2488		if (cdb[1] & 0x8)
2489			cmd->se_cmd_flags |= SCF_FUA;
2490		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2491		break;
2492	case WRITE_16:
2493		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2494		if (sector_ret)
2495			goto out_unsupported_cdb;
2496		size = transport_get_size(sectors, cdb, cmd);
2497		cmd->t_task_lba = transport_lba_64(cdb);
2498		if (cdb[1] & 0x8)
2499			cmd->se_cmd_flags |= SCF_FUA;
2500		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2501		break;
2502	case XDWRITEREAD_10:
2503		if ((cmd->data_direction != DMA_TO_DEVICE) ||
2504		    !(cmd->se_cmd_flags & SCF_BIDI))
2505			goto out_invalid_cdb_field;
2506		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2507		if (sector_ret)
2508			goto out_unsupported_cdb;
2509		size = transport_get_size(sectors, cdb, cmd);
2510		cmd->t_task_lba = transport_lba_32(cdb);
2511		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2512
2513		/*
2514		 * Do now allow BIDI commands for passthrough mode.
2515		 */
2516		if (passthrough)
2517			goto out_unsupported_cdb;
2518
2519		/*
2520		 * Setup BIDI XOR callback to be run after I/O completion.
2521		 */
2522		cmd->transport_complete_callback = &transport_xor_callback;
2523		if (cdb[1] & 0x8)
2524			cmd->se_cmd_flags |= SCF_FUA;
2525		break;
2526	case VARIABLE_LENGTH_CMD:
2527		service_action = get_unaligned_be16(&cdb[8]);
2528		switch (service_action) {
2529		case XDWRITEREAD_32:
2530			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2531			if (sector_ret)
2532				goto out_unsupported_cdb;
2533			size = transport_get_size(sectors, cdb, cmd);
2534			/*
2535			 * Use WRITE_32 and READ_32 opcodes for the emulated
2536			 * XDWRITE_READ_32 logic.
2537			 */
2538			cmd->t_task_lba = transport_lba_64_ext(cdb);
2539			cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2540
2541			/*
2542			 * Do now allow BIDI commands for passthrough mode.
2543			 */
2544			if (passthrough)
2545				goto out_unsupported_cdb;
2546
2547			/*
2548			 * Setup BIDI XOR callback to be run during after I/O
2549			 * completion.
2550			 */
2551			cmd->transport_complete_callback = &transport_xor_callback;
2552			if (cdb[1] & 0x8)
2553				cmd->se_cmd_flags |= SCF_FUA;
2554			break;
2555		case WRITE_SAME_32:
2556			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2557			if (sector_ret)
2558				goto out_unsupported_cdb;
2559
2560			if (sectors)
2561				size = transport_get_size(1, cdb, cmd);
2562			else {
2563				pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2564				       " supported\n");
2565				goto out_invalid_cdb_field;
2566			}
2567
2568			cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2569			cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2570
2571			if (target_check_write_same_discard(&cdb[10], dev) < 0)
2572				goto out_unsupported_cdb;
2573			if (!passthrough)
2574				cmd->execute_cmd = target_emulate_write_same;
2575			break;
2576		default:
2577			pr_err("VARIABLE_LENGTH_CMD service action"
2578				" 0x%04x not supported\n", service_action);
2579			goto out_unsupported_cdb;
2580		}
2581		break;
2582	case MAINTENANCE_IN:
2583		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2584			/* MAINTENANCE_IN from SCC-2 */
2585			/*
2586			 * Check for emulated MI_REPORT_TARGET_PGS.
2587			 */
2588			if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS &&
2589			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2590				cmd->execute_cmd =
2591					target_emulate_report_target_port_groups;
2592			}
2593			size = (cdb[6] << 24) | (cdb[7] << 16) |
2594			       (cdb[8] << 8) | cdb[9];
2595		} else {
2596			/* GPCMD_SEND_KEY from multi media commands */
2597			size = (cdb[8] << 8) + cdb[9];
2598		}
2599		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2600		break;
2601	case MODE_SELECT:
2602		size = cdb[4];
2603		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2604		break;
2605	case MODE_SELECT_10:
2606		size = (cdb[7] << 8) + cdb[8];
2607		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2608		break;
2609	case MODE_SENSE:
2610		size = cdb[4];
2611		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2612		if (!passthrough)
2613			cmd->execute_cmd = target_emulate_modesense;
2614		break;
2615	case MODE_SENSE_10:
2616		size = (cdb[7] << 8) + cdb[8];
2617		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2618		if (!passthrough)
2619			cmd->execute_cmd = target_emulate_modesense;
2620		break;
2621	case GPCMD_READ_BUFFER_CAPACITY:
2622	case GPCMD_SEND_OPC:
2623	case LOG_SELECT:
2624	case LOG_SENSE:
2625		size = (cdb[7] << 8) + cdb[8];
2626		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2627		break;
2628	case READ_BLOCK_LIMITS:
2629		size = READ_BLOCK_LEN;
2630		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2631		break;
2632	case GPCMD_GET_CONFIGURATION:
2633	case GPCMD_READ_FORMAT_CAPACITIES:
2634	case GPCMD_READ_DISC_INFO:
2635	case GPCMD_READ_TRACK_RZONE_INFO:
2636		size = (cdb[7] << 8) + cdb[8];
2637		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2638		break;
2639	case PERSISTENT_RESERVE_IN:
2640		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2641			cmd->execute_cmd = target_scsi3_emulate_pr_in;
2642		size = (cdb[7] << 8) + cdb[8];
2643		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2644		break;
2645	case PERSISTENT_RESERVE_OUT:
2646		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2647			cmd->execute_cmd = target_scsi3_emulate_pr_out;
2648		size = (cdb[7] << 8) + cdb[8];
2649		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2650		break;
2651	case GPCMD_MECHANISM_STATUS:
2652	case GPCMD_READ_DVD_STRUCTURE:
2653		size = (cdb[8] << 8) + cdb[9];
2654		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2655		break;
2656	case READ_POSITION:
2657		size = READ_POSITION_LEN;
2658		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2659		break;
2660	case MAINTENANCE_OUT:
2661		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2662			/* MAINTENANCE_OUT from SCC-2
2663			 *
2664			 * Check for emulated MO_SET_TARGET_PGS.
2665			 */
2666			if (cdb[1] == MO_SET_TARGET_PGS &&
2667			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2668				cmd->execute_cmd =
2669					target_emulate_set_target_port_groups;
2670			}
2671
2672			size = (cdb[6] << 24) | (cdb[7] << 16) |
2673			       (cdb[8] << 8) | cdb[9];
2674		} else  {
2675			/* GPCMD_REPORT_KEY from multi media commands */
2676			size = (cdb[8] << 8) + cdb[9];
2677		}
2678		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2679		break;
2680	case INQUIRY:
2681		size = (cdb[3] << 8) + cdb[4];
2682		/*
2683		 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2684		 * See spc4r17 section 5.3
2685		 */
2686		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2687			cmd->sam_task_attr = MSG_HEAD_TAG;
2688		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2689		if (!passthrough)
2690			cmd->execute_cmd = target_emulate_inquiry;
2691		break;
2692	case READ_BUFFER:
2693		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2694		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2695		break;
2696	case READ_CAPACITY:
2697		size = READ_CAP_LEN;
2698		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2699		if (!passthrough)
2700			cmd->execute_cmd = target_emulate_readcapacity;
2701		break;
2702	case READ_MEDIA_SERIAL_NUMBER:
2703	case SECURITY_PROTOCOL_IN:
2704	case SECURITY_PROTOCOL_OUT:
2705		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2706		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2707		break;
2708	case SERVICE_ACTION_IN:
2709		switch (cmd->t_task_cdb[1] & 0x1f) {
2710		case SAI_READ_CAPACITY_16:
2711			if (!passthrough)
2712				cmd->execute_cmd =
2713					target_emulate_readcapacity_16;
2714			break;
2715		default:
2716			if (passthrough)
2717				break;
2718
2719			pr_err("Unsupported SA: 0x%02x\n",
2720				cmd->t_task_cdb[1] & 0x1f);
2721			goto out_invalid_cdb_field;
2722		}
2723		/*FALLTHROUGH*/
2724	case ACCESS_CONTROL_IN:
2725	case ACCESS_CONTROL_OUT:
2726	case EXTENDED_COPY:
2727	case READ_ATTRIBUTE:
2728	case RECEIVE_COPY_RESULTS:
2729	case WRITE_ATTRIBUTE:
2730		size = (cdb[10] << 24) | (cdb[11] << 16) |
2731		       (cdb[12] << 8) | cdb[13];
2732		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2733		break;
2734	case RECEIVE_DIAGNOSTIC:
2735	case SEND_DIAGNOSTIC:
2736		size = (cdb[3] << 8) | cdb[4];
2737		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2738		break;
2739/* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2740#if 0
2741	case GPCMD_READ_CD:
2742		sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2743		size = (2336 * sectors);
2744		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2745		break;
2746#endif
2747	case READ_TOC:
2748		size = cdb[8];
2749		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2750		break;
2751	case REQUEST_SENSE:
2752		size = cdb[4];
2753		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2754		if (!passthrough)
2755			cmd->execute_cmd = target_emulate_request_sense;
2756		break;
2757	case READ_ELEMENT_STATUS:
2758		size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2759		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2760		break;
2761	case WRITE_BUFFER:
2762		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2763		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2764		break;
2765	case RESERVE:
2766	case RESERVE_10:
2767		/*
2768		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2769		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2770		 */
2771		if (cdb[0] == RESERVE_10)
2772			size = (cdb[7] << 8) | cdb[8];
2773		else
2774			size = cmd->data_length;
2775
2776		/*
2777		 * Setup the legacy emulated handler for SPC-2 and
2778		 * >= SPC-3 compatible reservation handling (CRH=1)
2779		 * Otherwise, we assume the underlying SCSI logic is
2780		 * is running in SPC_PASSTHROUGH, and wants reservations
2781		 * emulation disabled.
2782		 */
2783		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2784			cmd->execute_cmd = target_scsi2_reservation_reserve;
2785		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2786		break;
2787	case RELEASE:
2788	case RELEASE_10:
2789		/*
2790		 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2791		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2792		*/
2793		if (cdb[0] == RELEASE_10)
2794			size = (cdb[7] << 8) | cdb[8];
2795		else
2796			size = cmd->data_length;
2797
2798		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2799			cmd->execute_cmd = target_scsi2_reservation_release;
2800		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2801		break;
2802	case SYNCHRONIZE_CACHE:
2803	case SYNCHRONIZE_CACHE_16:
2804		/*
2805		 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2806		 */
2807		if (cdb[0] == SYNCHRONIZE_CACHE) {
2808			sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2809			cmd->t_task_lba = transport_lba_32(cdb);
2810		} else {
2811			sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2812			cmd->t_task_lba = transport_lba_64(cdb);
2813		}
2814		if (sector_ret)
2815			goto out_unsupported_cdb;
2816
2817		size = transport_get_size(sectors, cdb, cmd);
2818		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2819
2820		if (passthrough)
2821			break;
2822
2823		/*
2824		 * Check to ensure that LBA + Range does not exceed past end of
2825		 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2826		 */
2827		if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2828			if (transport_cmd_get_valid_sectors(cmd) < 0)
2829				goto out_invalid_cdb_field;
2830		}
2831		cmd->execute_cmd = target_emulate_synchronize_cache;
2832		break;
2833	case UNMAP:
2834		size = get_unaligned_be16(&cdb[7]);
2835		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836		if (!passthrough)
2837			cmd->execute_cmd = target_emulate_unmap;
2838		break;
2839	case WRITE_SAME_16:
2840		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2841		if (sector_ret)
2842			goto out_unsupported_cdb;
2843
2844		if (sectors)
2845			size = transport_get_size(1, cdb, cmd);
2846		else {
2847			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2848			goto out_invalid_cdb_field;
2849		}
2850
2851		cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2852		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2853
2854		if (target_check_write_same_discard(&cdb[1], dev) < 0)
2855			goto out_unsupported_cdb;
2856		if (!passthrough)
2857			cmd->execute_cmd = target_emulate_write_same;
2858		break;
2859	case WRITE_SAME:
2860		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2861		if (sector_ret)
2862			goto out_unsupported_cdb;
2863
2864		if (sectors)
2865			size = transport_get_size(1, cdb, cmd);
2866		else {
2867			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2868			goto out_invalid_cdb_field;
2869		}
2870
2871		cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2872		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2873		/*
2874		 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2875		 * of byte 1 bit 3 UNMAP instead of original reserved field
2876		 */
2877		if (target_check_write_same_discard(&cdb[1], dev) < 0)
2878			goto out_unsupported_cdb;
2879		if (!passthrough)
2880			cmd->execute_cmd = target_emulate_write_same;
2881		break;
2882	case ALLOW_MEDIUM_REMOVAL:
2883	case ERASE:
2884	case REZERO_UNIT:
2885	case SEEK_10:
2886	case SPACE:
2887	case START_STOP:
2888	case TEST_UNIT_READY:
2889	case VERIFY:
2890	case WRITE_FILEMARKS:
2891		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2892		if (!passthrough)
2893			cmd->execute_cmd = target_emulate_noop;
2894		break;
2895	case GPCMD_CLOSE_TRACK:
2896	case INITIALIZE_ELEMENT_STATUS:
2897	case GPCMD_LOAD_UNLOAD:
2898	case GPCMD_SET_SPEED:
2899	case MOVE_MEDIUM:
2900		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2901		break;
2902	case REPORT_LUNS:
2903		cmd->execute_cmd = target_report_luns;
2904		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2905		/*
2906		 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
2907		 * See spc4r17 section 5.3
2908		 */
2909		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2910			cmd->sam_task_attr = MSG_HEAD_TAG;
2911		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2912		break;
2913	case GET_EVENT_STATUS_NOTIFICATION:
2914		size = (cdb[7] << 8) | cdb[8];
2915		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2916		break;
2917	case ATA_16:
2918		/* Only support ATA passthrough to pSCSI backends.. */
2919		if (!passthrough)
2920			goto out_unsupported_cdb;
2921
2922		/* T_LENGTH */
2923		switch (cdb[2] & 0x3) {
2924		case 0x0:
2925			sectors = 0;
2926			break;
2927		case 0x1:
2928			sectors = (((cdb[1] & 0x1) ? cdb[3] : 0) << 8) | cdb[4];
2929			break;
2930		case 0x2:
2931			sectors = (((cdb[1] & 0x1) ? cdb[5] : 0) << 8) | cdb[6];
2932			break;
2933		case 0x3:
2934			pr_err("T_LENGTH=0x3 not supported for ATA_16\n");
2935			goto out_invalid_cdb_field;
2936		}
2937
2938		/* BYTE_BLOCK */
2939		if (cdb[2] & 0x4) {
2940			/* BLOCK T_TYPE: 512 or sector */
2941			size = sectors * ((cdb[2] & 0x10) ?
2942				dev->se_sub_dev->se_dev_attrib.block_size : 512);
2943		} else {
2944			/* BYTE */
2945			size = sectors;
2946		}
2947		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2948		break;
2949	default:
2950		pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
2951			" 0x%02x, sending CHECK_CONDITION.\n",
2952			cmd->se_tfo->get_fabric_name(), cdb[0]);
2953		goto out_unsupported_cdb;
2954	}
2955
2956	if (cmd->unknown_data_length)
2957		cmd->data_length = size;
2958
2959	if (size != cmd->data_length) {
2960		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
2961			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
2962			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
2963				cmd->data_length, size, cdb[0]);
2964
2965		cmd->cmd_spdtl = size;
2966
2967		if (cmd->data_direction == DMA_TO_DEVICE) {
2968			pr_err("Rejecting underflow/overflow"
2969					" WRITE data\n");
2970			goto out_invalid_cdb_field;
2971		}
2972		/*
2973		 * Reject READ_* or WRITE_* with overflow/underflow for
2974		 * type SCF_SCSI_DATA_SG_IO_CDB.
2975		 */
2976		if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
2977			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
2978				" CDB on non 512-byte sector setup subsystem"
2979				" plugin: %s\n", dev->transport->name);
2980			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
2981			goto out_invalid_cdb_field;
2982		}
2983		/*
2984		 * For the overflow case keep the existing fabric provided
2985		 * ->data_length.  Otherwise for the underflow case, reset
2986		 * ->data_length to the smaller SCSI expected data transfer
2987		 * length.
2988		 */
2989		if (size > cmd->data_length) {
2990			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
2991			cmd->residual_count = (size - cmd->data_length);
2992		} else {
2993			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
2994			cmd->residual_count = (cmd->data_length - size);
2995			cmd->data_length = size;
2996		}
2997	}
2998
2999	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3000		if (sectors > su_dev->se_dev_attrib.fabric_max_sectors) {
3001			printk_ratelimited(KERN_ERR "SCSI OP %02xh with too"
3002				" big sectors %u exceeds fabric_max_sectors:"
3003				" %u\n", cdb[0], sectors,
3004				su_dev->se_dev_attrib.fabric_max_sectors);
3005			goto out_invalid_cdb_field;
3006		}
3007		if (sectors > su_dev->se_dev_attrib.hw_max_sectors) {
3008			printk_ratelimited(KERN_ERR "SCSI OP %02xh with too"
3009				" big sectors %u exceeds backend hw_max_sectors:"
3010				" %u\n", cdb[0], sectors,
3011				su_dev->se_dev_attrib.hw_max_sectors);
3012			goto out_invalid_cdb_field;
3013		}
3014	}
3015
3016	/* reject any command that we don't have a handler for */
3017	if (!(passthrough || cmd->execute_cmd ||
3018	     (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3019		goto out_unsupported_cdb;
3020
3021	transport_set_supported_SAM_opcode(cmd);
3022	return ret;
3023
3024out_unsupported_cdb:
3025	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3026	cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3027	return -EINVAL;
3028out_invalid_cdb_field:
3029	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3030	cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3031	return -EINVAL;
3032}
3033
3034/*
3035 * Called from I/O completion to determine which dormant/delayed
3036 * and ordered cmds need to have their tasks added to the execution queue.
3037 */
3038static void transport_complete_task_attr(struct se_cmd *cmd)
3039{
3040	struct se_device *dev = cmd->se_dev;
3041	struct se_cmd *cmd_p, *cmd_tmp;
3042	int new_active_tasks = 0;
3043
3044	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3045		atomic_dec(&dev->simple_cmds);
3046		smp_mb__after_atomic_dec();
3047		dev->dev_cur_ordered_id++;
3048		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3049			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
3050			cmd->se_ordered_id);
3051	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3052		dev->dev_cur_ordered_id++;
3053		pr_debug("Incremented dev_cur_ordered_id: %u for"
3054			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3055			cmd->se_ordered_id);
3056	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3057		atomic_dec(&dev->dev_ordered_sync);
3058		smp_mb__after_atomic_dec();
3059
3060		dev->dev_cur_ordered_id++;
3061		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3062			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3063	}
3064	/*
3065	 * Process all commands up to the last received
3066	 * ORDERED task attribute which requires another blocking
3067	 * boundary
3068	 */
3069	spin_lock(&dev->delayed_cmd_lock);
3070	list_for_each_entry_safe(cmd_p, cmd_tmp,
3071			&dev->delayed_cmd_list, se_delayed_node) {
3072
3073		list_del(&cmd_p->se_delayed_node);
3074		spin_unlock(&dev->delayed_cmd_lock);
3075
3076		pr_debug("Calling add_tasks() for"
3077			" cmd_p: 0x%02x Task Attr: 0x%02x"
3078			" Dormant -> Active, se_ordered_id: %u\n",
3079			cmd_p->t_task_cdb[0],
3080			cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3081
3082		target_add_to_execute_list(cmd_p);
3083		new_active_tasks++;
3084
3085		spin_lock(&dev->delayed_cmd_lock);
3086		if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3087			break;
3088	}
3089	spin_unlock(&dev->delayed_cmd_lock);
3090	/*
3091	 * If new tasks have become active, wake up the transport thread
3092	 * to do the processing of the Active tasks.
3093	 */
3094	if (new_active_tasks != 0)
3095		wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3096}
3097
3098static void transport_complete_qf(struct se_cmd *cmd)
3099{
3100	int ret = 0;
3101
3102	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3103		transport_complete_task_attr(cmd);
3104
3105	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3106		ret = cmd->se_tfo->queue_status(cmd);
3107		if (ret)
3108			goto out;
3109	}
3110
3111	switch (cmd->data_direction) {
3112	case DMA_FROM_DEVICE:
3113		ret = cmd->se_tfo->queue_data_in(cmd);
3114		break;
3115	case DMA_TO_DEVICE:
3116		if (cmd->t_bidi_data_sg) {
3117			ret = cmd->se_tfo->queue_data_in(cmd);
3118			if (ret < 0)
3119				break;
3120		}
3121		/* Fall through for DMA_TO_DEVICE */
3122	case DMA_NONE:
3123		ret = cmd->se_tfo->queue_status(cmd);
3124		break;
3125	default:
3126		break;
3127	}
3128
3129out:
3130	if (ret < 0) {
3131		transport_handle_queue_full(cmd, cmd->se_dev);
3132		return;
3133	}
3134	transport_lun_remove_cmd(cmd);
3135	transport_cmd_check_stop_to_fabric(cmd);
3136}
3137
3138static void transport_handle_queue_full(
3139	struct se_cmd *cmd,
3140	struct se_device *dev)
3141{
3142	spin_lock_irq(&dev->qf_cmd_lock);
3143	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3144	atomic_inc(&dev->dev_qf_count);
3145	smp_mb__after_atomic_inc();
3146	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3147
3148	schedule_work(&cmd->se_dev->qf_work_queue);
3149}
3150
3151static void target_complete_ok_work(struct work_struct *work)
3152{
3153	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3154	int ret;
3155
3156	/*
3157	 * Check if we need to move delayed/dormant tasks from cmds on the
3158	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3159	 * Attribute.
3160	 */
3161	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3162		transport_complete_task_attr(cmd);
3163	/*
3164	 * Check to schedule QUEUE_FULL work, or execute an existing
3165	 * cmd->transport_qf_callback()
3166	 */
3167	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3168		schedule_work(&cmd->se_dev->qf_work_queue);
3169
3170	/*
3171	 * Check if we need to retrieve a sense buffer from
3172	 * the struct se_cmd in question.
3173	 */
3174	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3175		WARN_ON(!cmd->scsi_status);
3176		transport_get_sense_data(cmd);
3177		ret = transport_send_check_condition_and_sense(
3178					cmd, 0, 1);
3179		if (ret == -EAGAIN || ret == -ENOMEM)
3180			goto queue_full;
3181
3182		transport_lun_remove_cmd(cmd);
3183		transport_cmd_check_stop_to_fabric(cmd);
3184		return;
3185	}
3186	/*
3187	 * Check for a callback, used by amongst other things
3188	 * XDWRITE_READ_10 emulation.
3189	 */
3190	if (cmd->transport_complete_callback)
3191		cmd->transport_complete_callback(cmd);
3192
3193	switch (cmd->data_direction) {
3194	case DMA_FROM_DEVICE:
3195		spin_lock(&cmd->se_lun->lun_sep_lock);
3196		if (cmd->se_lun->lun_sep) {
3197			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3198					cmd->data_length;
3199		}
3200		spin_unlock(&cmd->se_lun->lun_sep_lock);
3201
3202		ret = cmd->se_tfo->queue_data_in(cmd);
3203		if (ret == -EAGAIN || ret == -ENOMEM)
3204			goto queue_full;
3205		break;
3206	case DMA_TO_DEVICE:
3207		spin_lock(&cmd->se_lun->lun_sep_lock);
3208		if (cmd->se_lun->lun_sep) {
3209			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3210				cmd->data_length;
3211		}
3212		spin_unlock(&cmd->se_lun->lun_sep_lock);
3213		/*
3214		 * Check if we need to send READ payload for BIDI-COMMAND
3215		 */
3216		if (cmd->t_bidi_data_sg) {
3217			spin_lock(&cmd->se_lun->lun_sep_lock);
3218			if (cmd->se_lun->lun_sep) {
3219				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3220					cmd->data_length;
3221			}
3222			spin_unlock(&cmd->se_lun->lun_sep_lock);
3223			ret = cmd->se_tfo->queue_data_in(cmd);
3224			if (ret == -EAGAIN || ret == -ENOMEM)
3225				goto queue_full;
3226			break;
3227		}
3228		/* Fall through for DMA_TO_DEVICE */
3229	case DMA_NONE:
3230		ret = cmd->se_tfo->queue_status(cmd);
3231		if (ret == -EAGAIN || ret == -ENOMEM)
3232			goto queue_full;
3233		break;
3234	default:
3235		break;
3236	}
3237
3238	transport_lun_remove_cmd(cmd);
3239	transport_cmd_check_stop_to_fabric(cmd);
3240	return;
3241
3242queue_full:
3243	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3244		" data_direction: %d\n", cmd, cmd->data_direction);
3245	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3246	transport_handle_queue_full(cmd, cmd->se_dev);
3247}
3248
3249static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3250{
3251	struct scatterlist *sg;
3252	int count;
3253
3254	for_each_sg(sgl, sg, nents, count)
3255		__free_page(sg_page(sg));
3256
3257	kfree(sgl);
3258}
3259
3260static inline void transport_free_pages(struct se_cmd *cmd)
3261{
3262	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3263		return;
3264
3265	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3266	cmd->t_data_sg = NULL;
3267	cmd->t_data_nents = 0;
3268
3269	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3270	cmd->t_bidi_data_sg = NULL;
3271	cmd->t_bidi_data_nents = 0;
3272}
3273
3274/**
3275 * transport_release_cmd - free a command
3276 * @cmd:       command to free
3277 *
3278 * This routine unconditionally frees a command, and reference counting
3279 * or list removal must be done in the caller.
3280 */
3281static void transport_release_cmd(struct se_cmd *cmd)
3282{
3283	BUG_ON(!cmd->se_tfo);
3284
3285	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3286		core_tmr_release_req(cmd->se_tmr_req);
3287	if (cmd->t_task_cdb != cmd->__t_task_cdb)
3288		kfree(cmd->t_task_cdb);
3289	/*
3290	 * If this cmd has been setup with target_get_sess_cmd(), drop
3291	 * the kref and call ->release_cmd() in kref callback.
3292	 */
3293	 if (cmd->check_release != 0) {
3294		target_put_sess_cmd(cmd->se_sess, cmd);
3295		return;
3296	}
3297	cmd->se_tfo->release_cmd(cmd);
3298}
3299
3300/**
3301 * transport_put_cmd - release a reference to a command
3302 * @cmd:       command to release
3303 *
3304 * This routine releases our reference to the command and frees it if possible.
3305 */
3306static void transport_put_cmd(struct se_cmd *cmd)
3307{
3308	unsigned long flags;
3309
3310	spin_lock_irqsave(&cmd->t_state_lock, flags);
3311	if (atomic_read(&cmd->t_fe_count)) {
3312		if (!atomic_dec_and_test(&cmd->t_fe_count))
3313			goto out_busy;
3314	}
3315
3316	if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3317		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3318		target_remove_from_state_list(cmd);
3319	}
3320	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3321
3322	transport_free_pages(cmd);
3323	transport_release_cmd(cmd);
3324	return;
3325out_busy:
3326	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3327}
3328
3329/*
3330 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3331 * allocating in the core.
3332 * @cmd:  Associated se_cmd descriptor
3333 * @mem:  SGL style memory for TCM WRITE / READ
3334 * @sg_mem_num: Number of SGL elements
3335 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3336 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3337 *
3338 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3339 * of parameters.
3340 */
3341int transport_generic_map_mem_to_cmd(
3342	struct se_cmd *cmd,
3343	struct scatterlist *sgl,
3344	u32 sgl_count,
3345	struct scatterlist *sgl_bidi,
3346	u32 sgl_bidi_count)
3347{
3348	if (!sgl || !sgl_count)
3349		return 0;
3350
3351	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3352	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3353		/*
3354		 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3355		 * scatterlists already have been set to follow what the fabric
3356		 * passes for the original expected data transfer length.
3357		 */
3358		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3359			pr_warn("Rejecting SCSI DATA overflow for fabric using"
3360				" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3361			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3362			cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3363			return -EINVAL;
3364		}
3365
3366		cmd->t_data_sg = sgl;
3367		cmd->t_data_nents = sgl_count;
3368
3369		if (sgl_bidi && sgl_bidi_count) {
3370			cmd->t_bidi_data_sg = sgl_bidi;
3371			cmd->t_bidi_data_nents = sgl_bidi_count;
3372		}
3373		cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3374	}
3375
3376	return 0;
3377}
3378EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3379
3380void *transport_kmap_data_sg(struct se_cmd *cmd)
3381{
3382	struct scatterlist *sg = cmd->t_data_sg;
3383	struct page **pages;
3384	int i;
3385
3386	BUG_ON(!sg);
3387	/*
3388	 * We need to take into account a possible offset here for fabrics like
3389	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3390	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3391	 */
3392	if (!cmd->t_data_nents)
3393		return NULL;
3394	else if (cmd->t_data_nents == 1)
3395		return kmap(sg_page(sg)) + sg->offset;
3396
3397	/* >1 page. use vmap */
3398	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3399	if (!pages)
3400		return NULL;
3401
3402	/* convert sg[] to pages[] */
3403	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3404		pages[i] = sg_page(sg);
3405	}
3406
3407	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3408	kfree(pages);
3409	if (!cmd->t_data_vmap)
3410		return NULL;
3411
3412	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3413}
3414EXPORT_SYMBOL(transport_kmap_data_sg);
3415
3416void transport_kunmap_data_sg(struct se_cmd *cmd)
3417{
3418	if (!cmd->t_data_nents) {
3419		return;
3420	} else if (cmd->t_data_nents == 1) {
3421		kunmap(sg_page(cmd->t_data_sg));
3422		return;
3423	}
3424
3425	vunmap(cmd->t_data_vmap);
3426	cmd->t_data_vmap = NULL;
3427}
3428EXPORT_SYMBOL(transport_kunmap_data_sg);
3429
3430static int
3431transport_generic_get_mem(struct se_cmd *cmd)
3432{
3433	u32 length = cmd->data_length;
3434	unsigned int nents;
3435	struct page *page;
3436	gfp_t zero_flag;
3437	int i = 0;
3438
3439	nents = DIV_ROUND_UP(length, PAGE_SIZE);
3440	cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3441	if (!cmd->t_data_sg)
3442		return -ENOMEM;
3443
3444	cmd->t_data_nents = nents;
3445	sg_init_table(cmd->t_data_sg, nents);
3446
3447	zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3448
3449	while (length) {
3450		u32 page_len = min_t(u32, length, PAGE_SIZE);
3451		page = alloc_page(GFP_KERNEL | zero_flag);
3452		if (!page)
3453			goto out;
3454
3455		sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3456		length -= page_len;
3457		i++;
3458	}
3459	return 0;
3460
3461out:
3462	while (i > 0) {
3463		i--;
3464		__free_page(sg_page(&cmd->t_data_sg[i]));
3465	}
3466	kfree(cmd->t_data_sg);
3467	cmd->t_data_sg = NULL;
3468	return -ENOMEM;
3469}
3470
3471/*
3472 * Allocate any required resources to execute the command.  For writes we
3473 * might not have the payload yet, so notify the fabric via a call to
3474 * ->write_pending instead. Otherwise place it on the execution queue.
3475 */
3476int transport_generic_new_cmd(struct se_cmd *cmd)
3477{
3478	struct se_device *dev = cmd->se_dev;
3479	int ret = 0;
3480
3481	/*
3482	 * Determine is the TCM fabric module has already allocated physical
3483	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3484	 * beforehand.
3485	 */
3486	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3487	    cmd->data_length) {
3488		ret = transport_generic_get_mem(cmd);
3489		if (ret < 0)
3490			goto out_fail;
3491	}
3492
3493	/* Workaround for handling zero-length control CDBs */
3494	if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3495	    !cmd->data_length) {
3496		spin_lock_irq(&cmd->t_state_lock);
3497		cmd->t_state = TRANSPORT_COMPLETE;
3498		cmd->transport_state |= CMD_T_ACTIVE;
3499		spin_unlock_irq(&cmd->t_state_lock);
3500
3501		if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3502			u8 ua_asc = 0, ua_ascq = 0;
3503
3504			core_scsi3_ua_clear_for_request_sense(cmd,
3505					&ua_asc, &ua_ascq);
3506		}
3507
3508		INIT_WORK(&cmd->work, target_complete_ok_work);
3509		queue_work(target_completion_wq, &cmd->work);
3510		return 0;
3511	}
3512
3513	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3514		struct se_dev_attrib *attr = &dev->se_sub_dev->se_dev_attrib;
3515
3516		if (transport_cmd_get_valid_sectors(cmd) < 0)
3517			return -EINVAL;
3518
3519		BUG_ON(cmd->data_length % attr->block_size);
3520		BUG_ON(DIV_ROUND_UP(cmd->data_length, attr->block_size) >
3521			attr->hw_max_sectors);
3522	}
3523
3524	atomic_inc(&cmd->t_fe_count);
3525
3526	/*
3527	 * For WRITEs, let the fabric know its buffer is ready.
3528	 *
3529	 * The command will be added to the execution queue after its write
3530	 * data has arrived.
3531	 */
3532	if (cmd->data_direction == DMA_TO_DEVICE) {
3533		target_add_to_state_list(cmd);
3534		return transport_generic_write_pending(cmd);
3535	}
3536	/*
3537	 * Everything else but a WRITE, add the command to the execution queue.
3538	 */
3539	transport_execute_tasks(cmd);
3540	return 0;
3541
3542out_fail:
3543	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3544	cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3545	return -EINVAL;
3546}
3547EXPORT_SYMBOL(transport_generic_new_cmd);
3548
3549/*	transport_generic_process_write():
3550 *
3551 *
3552 */
3553void transport_generic_process_write(struct se_cmd *cmd)
3554{
3555	transport_execute_tasks(cmd);
3556}
3557EXPORT_SYMBOL(transport_generic_process_write);
3558
3559static void transport_write_pending_qf(struct se_cmd *cmd)
3560{
3561	int ret;
3562
3563	ret = cmd->se_tfo->write_pending(cmd);
3564	if (ret == -EAGAIN || ret == -ENOMEM) {
3565		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3566			 cmd);
3567		transport_handle_queue_full(cmd, cmd->se_dev);
3568	}
3569}
3570
3571static int transport_generic_write_pending(struct se_cmd *cmd)
3572{
3573	unsigned long flags;
3574	int ret;
3575
3576	spin_lock_irqsave(&cmd->t_state_lock, flags);
3577	cmd->t_state = TRANSPORT_WRITE_PENDING;
3578	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3579
3580	/*
3581	 * Clear the se_cmd for WRITE_PENDING status in order to set
3582	 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
3583	 * from HW target mode interrupt code.  This is safe to be called
3584	 * with transport_off=1 before the cmd->se_tfo->write_pending
3585	 * because the se_cmd->se_lun pointer is not being cleared.
3586	 */
3587	transport_cmd_check_stop(cmd, 1, 0);
3588
3589	/*
3590	 * Call the fabric write_pending function here to let the
3591	 * frontend know that WRITE buffers are ready.
3592	 */
3593	ret = cmd->se_tfo->write_pending(cmd);
3594	if (ret == -EAGAIN || ret == -ENOMEM)
3595		goto queue_full;
3596	else if (ret < 0)
3597		return ret;
3598
3599	return 1;
3600
3601queue_full:
3602	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3603	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3604	transport_handle_queue_full(cmd, cmd->se_dev);
3605	return 0;
3606}
3607
3608void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3609{
3610	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3611		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3612			 transport_wait_for_tasks(cmd);
3613
3614		transport_release_cmd(cmd);
3615	} else {
3616		if (wait_for_tasks)
3617			transport_wait_for_tasks(cmd);
3618
3619		core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3620
3621		if (cmd->se_lun)
3622			transport_lun_remove_cmd(cmd);
3623
3624		transport_put_cmd(cmd);
3625	}
3626}
3627EXPORT_SYMBOL(transport_generic_free_cmd);
3628
3629/* target_get_sess_cmd - Add command to active ->sess_cmd_list
3630 * @se_sess:	session to reference
3631 * @se_cmd:	command descriptor to add
3632 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
3633 */
3634void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3635			bool ack_kref)
3636{
3637	unsigned long flags;
3638
3639	kref_init(&se_cmd->cmd_kref);
3640	/*
3641	 * Add a second kref if the fabric caller is expecting to handle
3642	 * fabric acknowledgement that requires two target_put_sess_cmd()
3643	 * invocations before se_cmd descriptor release.
3644	 */
3645	if (ack_kref == true) {
3646		kref_get(&se_cmd->cmd_kref);
3647		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3648	}
3649
3650	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3651	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3652	se_cmd->check_release = 1;
3653	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3654}
3655EXPORT_SYMBOL(target_get_sess_cmd);
3656
3657static void target_release_cmd_kref(struct kref *kref)
3658{
3659	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3660	struct se_session *se_sess = se_cmd->se_sess;
3661	unsigned long flags;
3662
3663	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3664	if (list_empty(&se_cmd->se_cmd_list)) {
3665		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3666		se_cmd->se_tfo->release_cmd(se_cmd);
3667		return;
3668	}
3669	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3670		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3671		complete(&se_cmd->cmd_wait_comp);
3672		return;
3673	}
3674	list_del(&se_cmd->se_cmd_list);
3675	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3676
3677	se_cmd->se_tfo->release_cmd(se_cmd);
3678}
3679
3680/* target_put_sess_cmd - Check for active I/O shutdown via kref_put
3681 * @se_sess:	session to reference
3682 * @se_cmd:	command descriptor to drop
3683 */
3684int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3685{
3686	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3687}
3688EXPORT_SYMBOL(target_put_sess_cmd);
3689
3690/* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3691 * @se_sess:	session to split
3692 */
3693void target_splice_sess_cmd_list(struct se_session *se_sess)
3694{
3695	struct se_cmd *se_cmd;
3696	unsigned long flags;
3697
3698	WARN_ON(!list_empty(&se_sess->sess_wait_list));
3699	INIT_LIST_HEAD(&se_sess->sess_wait_list);
3700
3701	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3702	se_sess->sess_tearing_down = 1;
3703
3704	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
3705
3706	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
3707		se_cmd->cmd_wait_set = 1;
3708
3709	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3710}
3711EXPORT_SYMBOL(target_splice_sess_cmd_list);
3712
3713/* target_wait_for_sess_cmds - Wait for outstanding descriptors
3714 * @se_sess:    session to wait for active I/O
3715 * @wait_for_tasks:	Make extra transport_wait_for_tasks call
3716 */
3717void target_wait_for_sess_cmds(
3718	struct se_session *se_sess,
3719	int wait_for_tasks)
3720{
3721	struct se_cmd *se_cmd, *tmp_cmd;
3722	bool rc = false;
3723
3724	list_for_each_entry_safe(se_cmd, tmp_cmd,
3725				&se_sess->sess_wait_list, se_cmd_list) {
3726		list_del(&se_cmd->se_cmd_list);
3727
3728		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
3729			" %d\n", se_cmd, se_cmd->t_state,
3730			se_cmd->se_tfo->get_cmd_state(se_cmd));
3731
3732		if (wait_for_tasks) {
3733			pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
3734				" fabric state: %d\n", se_cmd, se_cmd->t_state,
3735				se_cmd->se_tfo->get_cmd_state(se_cmd));
3736
3737			rc = transport_wait_for_tasks(se_cmd);
3738
3739			pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
3740				" fabric state: %d\n", se_cmd, se_cmd->t_state,
3741				se_cmd->se_tfo->get_cmd_state(se_cmd));
3742		}
3743
3744		if (!rc) {
3745			wait_for_completion(&se_cmd->cmd_wait_comp);
3746			pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
3747				" fabric state: %d\n", se_cmd, se_cmd->t_state,
3748				se_cmd->se_tfo->get_cmd_state(se_cmd));
3749		}
3750
3751		se_cmd->se_tfo->release_cmd(se_cmd);
3752	}
3753}
3754EXPORT_SYMBOL(target_wait_for_sess_cmds);
3755
3756/*	transport_lun_wait_for_tasks():
3757 *
3758 *	Called from ConfigFS context to stop the passed struct se_cmd to allow
3759 *	an struct se_lun to be successfully shutdown.
3760 */
3761static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
3762{
3763	unsigned long flags;
3764	int ret = 0;
3765
3766	/*
3767	 * If the frontend has already requested this struct se_cmd to
3768	 * be stopped, we can safely ignore this struct se_cmd.
3769	 */
3770	spin_lock_irqsave(&cmd->t_state_lock, flags);
3771	if (cmd->transport_state & CMD_T_STOP) {
3772		cmd->transport_state &= ~CMD_T_LUN_STOP;
3773
3774		pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
3775			 cmd->se_tfo->get_task_tag(cmd));
3776		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3777		transport_cmd_check_stop(cmd, 1, 0);
3778		return -EPERM;
3779	}
3780	cmd->transport_state |= CMD_T_LUN_FE_STOP;
3781	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3782
3783	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
3784
3785	// XXX: audit task_flags checks.
3786	spin_lock_irqsave(&cmd->t_state_lock, flags);
3787	if ((cmd->transport_state & CMD_T_BUSY) &&
3788	    (cmd->transport_state & CMD_T_SENT)) {
3789		if (!target_stop_cmd(cmd, &flags))
3790			ret++;
3791		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3792	} else {
3793		spin_unlock_irqrestore(&cmd->t_state_lock,
3794				flags);
3795		target_remove_from_execute_list(cmd);
3796	}
3797
3798	pr_debug("ConfigFS: cmd: %p stop tasks ret:"
3799			" %d\n", cmd, ret);
3800	if (!ret) {
3801		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
3802				cmd->se_tfo->get_task_tag(cmd));
3803		wait_for_completion(&cmd->transport_lun_stop_comp);
3804		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
3805				cmd->se_tfo->get_task_tag(cmd));
3806	}
3807	transport_remove_cmd_from_queue(cmd);
3808
3809	return 0;
3810}
3811
3812static void __transport_clear_lun_from_sessions(struct se_lun *lun)
3813{
3814	struct se_cmd *cmd = NULL;
3815	unsigned long lun_flags, cmd_flags;
3816	/*
3817	 * Do exception processing and return CHECK_CONDITION status to the
3818	 * Initiator Port.
3819	 */
3820	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3821	while (!list_empty(&lun->lun_cmd_list)) {
3822		cmd = list_first_entry(&lun->lun_cmd_list,
3823		       struct se_cmd, se_lun_node);
3824		list_del_init(&cmd->se_lun_node);
3825
3826		/*
3827		 * This will notify iscsi_target_transport.c:
3828		 * transport_cmd_check_stop() that a LUN shutdown is in
3829		 * progress for the iscsi_cmd_t.
3830		 */
3831		spin_lock(&cmd->t_state_lock);
3832		pr_debug("SE_LUN[%d] - Setting cmd->transport"
3833			"_lun_stop for  ITT: 0x%08x\n",
3834			cmd->se_lun->unpacked_lun,
3835			cmd->se_tfo->get_task_tag(cmd));
3836		cmd->transport_state |= CMD_T_LUN_STOP;
3837		spin_unlock(&cmd->t_state_lock);
3838
3839		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
3840
3841		if (!cmd->se_lun) {
3842			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
3843				cmd->se_tfo->get_task_tag(cmd),
3844				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
3845			BUG();
3846		}
3847		/*
3848		 * If the Storage engine still owns the iscsi_cmd_t, determine
3849		 * and/or stop its context.
3850		 */
3851		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
3852			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
3853			cmd->se_tfo->get_task_tag(cmd));
3854
3855		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
3856			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3857			continue;
3858		}
3859
3860		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
3861			"_wait_for_tasks(): SUCCESS\n",
3862			cmd->se_lun->unpacked_lun,
3863			cmd->se_tfo->get_task_tag(cmd));
3864
3865		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
3866		if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
3867			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3868			goto check_cond;
3869		}
3870		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3871		target_remove_from_state_list(cmd);
3872		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3873
3874		/*
3875		 * The Storage engine stopped this struct se_cmd before it was
3876		 * send to the fabric frontend for delivery back to the
3877		 * Initiator Node.  Return this SCSI CDB back with an
3878		 * CHECK_CONDITION status.
3879		 */
3880check_cond:
3881		transport_send_check_condition_and_sense(cmd,
3882				TCM_NON_EXISTENT_LUN, 0);
3883		/*
3884		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
3885		 * be released, notify the waiting thread now that LU has
3886		 * finished accessing it.
3887		 */
3888		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
3889		if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
3890			pr_debug("SE_LUN[%d] - Detected FE stop for"
3891				" struct se_cmd: %p ITT: 0x%08x\n",
3892				lun->unpacked_lun,
3893				cmd, cmd->se_tfo->get_task_tag(cmd));
3894
3895			spin_unlock_irqrestore(&cmd->t_state_lock,
3896					cmd_flags);
3897			transport_cmd_check_stop(cmd, 1, 0);
3898			complete(&cmd->transport_lun_fe_stop_comp);
3899			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3900			continue;
3901		}
3902		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
3903			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
3904
3905		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3906		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3907	}
3908	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
3909}
3910
3911static int transport_clear_lun_thread(void *p)
3912{
3913	struct se_lun *lun = p;
3914
3915	__transport_clear_lun_from_sessions(lun);
3916	complete(&lun->lun_shutdown_comp);
3917
3918	return 0;
3919}
3920
3921int transport_clear_lun_from_sessions(struct se_lun *lun)
3922{
3923	struct task_struct *kt;
3924
3925	kt = kthread_run(transport_clear_lun_thread, lun,
3926			"tcm_cl_%u", lun->unpacked_lun);
3927	if (IS_ERR(kt)) {
3928		pr_err("Unable to start clear_lun thread\n");
3929		return PTR_ERR(kt);
3930	}
3931	wait_for_completion(&lun->lun_shutdown_comp);
3932
3933	return 0;
3934}
3935
3936/**
3937 * transport_wait_for_tasks - wait for completion to occur
3938 * @cmd:	command to wait
3939 *
3940 * Called from frontend fabric context to wait for storage engine
3941 * to pause and/or release frontend generated struct se_cmd.
3942 */
3943bool transport_wait_for_tasks(struct se_cmd *cmd)
3944{
3945	unsigned long flags;
3946
3947	spin_lock_irqsave(&cmd->t_state_lock, flags);
3948	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3949	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3950		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3951		return false;
3952	}
3953	/*
3954	 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
3955	 * has been set in transport_set_supported_SAM_opcode().
3956	 */
3957	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3958	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3959		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3960		return false;
3961	}
3962	/*
3963	 * If we are already stopped due to an external event (ie: LUN shutdown)
3964	 * sleep until the connection can have the passed struct se_cmd back.
3965	 * The cmd->transport_lun_stopped_sem will be upped by
3966	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
3967	 * has completed its operation on the struct se_cmd.
3968	 */
3969	if (cmd->transport_state & CMD_T_LUN_STOP) {
3970		pr_debug("wait_for_tasks: Stopping"
3971			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
3972			"_stop_comp); for ITT: 0x%08x\n",
3973			cmd->se_tfo->get_task_tag(cmd));
3974		/*
3975		 * There is a special case for WRITES where a FE exception +
3976		 * LUN shutdown means ConfigFS context is still sleeping on
3977		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
3978		 * We go ahead and up transport_lun_stop_comp just to be sure
3979		 * here.
3980		 */
3981		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3982		complete(&cmd->transport_lun_stop_comp);
3983		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
3984		spin_lock_irqsave(&cmd->t_state_lock, flags);
3985
3986		target_remove_from_state_list(cmd);
3987		/*
3988		 * At this point, the frontend who was the originator of this
3989		 * struct se_cmd, now owns the structure and can be released through
3990		 * normal means below.
3991		 */
3992		pr_debug("wait_for_tasks: Stopped"
3993			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
3994			"stop_comp); for ITT: 0x%08x\n",
3995			cmd->se_tfo->get_task_tag(cmd));
3996
3997		cmd->transport_state &= ~CMD_T_LUN_STOP;
3998	}
3999
4000	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4001		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4002		return false;
4003	}
4004
4005	cmd->transport_state |= CMD_T_STOP;
4006
4007	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4008		" i_state: %d, t_state: %d, CMD_T_STOP\n",
4009		cmd, cmd->se_tfo->get_task_tag(cmd),
4010		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4011
4012	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4013
4014	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4015
4016	wait_for_completion(&cmd->t_transport_stop_comp);
4017
4018	spin_lock_irqsave(&cmd->t_state_lock, flags);
4019	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4020
4021	pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4022		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4023		cmd->se_tfo->get_task_tag(cmd));
4024
4025	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4026
4027	return true;
4028}
4029EXPORT_SYMBOL(transport_wait_for_tasks);
4030
4031static int transport_get_sense_codes(
4032	struct se_cmd *cmd,
4033	u8 *asc,
4034	u8 *ascq)
4035{
4036	*asc = cmd->scsi_asc;
4037	*ascq = cmd->scsi_ascq;
4038
4039	return 0;
4040}
4041
4042static int transport_set_sense_codes(
4043	struct se_cmd *cmd,
4044	u8 asc,
4045	u8 ascq)
4046{
4047	cmd->scsi_asc = asc;
4048	cmd->scsi_ascq = ascq;
4049
4050	return 0;
4051}
4052
4053int transport_send_check_condition_and_sense(
4054	struct se_cmd *cmd,
4055	u8 reason,
4056	int from_transport)
4057{
4058	unsigned char *buffer = cmd->sense_buffer;
4059	unsigned long flags;
4060	int offset;
4061	u8 asc = 0, ascq = 0;
4062
4063	spin_lock_irqsave(&cmd->t_state_lock, flags);
4064	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4065		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4066		return 0;
4067	}
4068	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4069	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4070
4071	if (!reason && from_transport)
4072		goto after_reason;
4073
4074	if (!from_transport)
4075		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4076	/*
4077	 * Data Segment and SenseLength of the fabric response PDU.
4078	 *
4079	 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4080	 * from include/scsi/scsi_cmnd.h
4081	 */
4082	offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4083				TRANSPORT_SENSE_BUFFER);
4084	/*
4085	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4086	 * SENSE KEY values from include/scsi/scsi.h
4087	 */
4088	switch (reason) {
4089	case TCM_NON_EXISTENT_LUN:
4090		/* CURRENT ERROR */
4091		buffer[offset] = 0x70;
4092		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4093		/* ILLEGAL REQUEST */
4094		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4095		/* LOGICAL UNIT NOT SUPPORTED */
4096		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4097		break;
4098	case TCM_UNSUPPORTED_SCSI_OPCODE:
4099	case TCM_SECTOR_COUNT_TOO_MANY:
4100		/* CURRENT ERROR */
4101		buffer[offset] = 0x70;
4102		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4103		/* ILLEGAL REQUEST */
4104		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4105		/* INVALID COMMAND OPERATION CODE */
4106		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4107		break;
4108	case TCM_UNKNOWN_MODE_PAGE:
4109		/* CURRENT ERROR */
4110		buffer[offset] = 0x70;
4111		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4112		/* ILLEGAL REQUEST */
4113		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4114		/* INVALID FIELD IN CDB */
4115		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4116		break;
4117	case TCM_CHECK_CONDITION_ABORT_CMD:
4118		/* CURRENT ERROR */
4119		buffer[offset] = 0x70;
4120		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4121		/* ABORTED COMMAND */
4122		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4123		/* BUS DEVICE RESET FUNCTION OCCURRED */
4124		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4125		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4126		break;
4127	case TCM_INCORRECT_AMOUNT_OF_DATA:
4128		/* CURRENT ERROR */
4129		buffer[offset] = 0x70;
4130		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4131		/* ABORTED COMMAND */
4132		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4133		/* WRITE ERROR */
4134		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4135		/* NOT ENOUGH UNSOLICITED DATA */
4136		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4137		break;
4138	case TCM_INVALID_CDB_FIELD:
4139		/* CURRENT ERROR */
4140		buffer[offset] = 0x70;
4141		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4142		/* ILLEGAL REQUEST */
4143		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4144		/* INVALID FIELD IN CDB */
4145		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4146		break;
4147	case TCM_INVALID_PARAMETER_LIST:
4148		/* CURRENT ERROR */
4149		buffer[offset] = 0x70;
4150		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4151		/* ILLEGAL REQUEST */
4152		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4153		/* INVALID FIELD IN PARAMETER LIST */
4154		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4155		break;
4156	case TCM_UNEXPECTED_UNSOLICITED_DATA:
4157		/* CURRENT ERROR */
4158		buffer[offset] = 0x70;
4159		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4160		/* ABORTED COMMAND */
4161		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4162		/* WRITE ERROR */
4163		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4164		/* UNEXPECTED_UNSOLICITED_DATA */
4165		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4166		break;
4167	case TCM_SERVICE_CRC_ERROR:
4168		/* CURRENT ERROR */
4169		buffer[offset] = 0x70;
4170		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4171		/* ABORTED COMMAND */
4172		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4173		/* PROTOCOL SERVICE CRC ERROR */
4174		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4175		/* N/A */
4176		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4177		break;
4178	case TCM_SNACK_REJECTED:
4179		/* CURRENT ERROR */
4180		buffer[offset] = 0x70;
4181		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4182		/* ABORTED COMMAND */
4183		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4184		/* READ ERROR */
4185		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4186		/* FAILED RETRANSMISSION REQUEST */
4187		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4188		break;
4189	case TCM_WRITE_PROTECTED:
4190		/* CURRENT ERROR */
4191		buffer[offset] = 0x70;
4192		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4193		/* DATA PROTECT */
4194		buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4195		/* WRITE PROTECTED */
4196		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4197		break;
4198	case TCM_ADDRESS_OUT_OF_RANGE:
4199		/* CURRENT ERROR */
4200		buffer[offset] = 0x70;
4201		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4202		/* ILLEGAL REQUEST */
4203		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4204		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4205		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
4206		break;
4207	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4208		/* CURRENT ERROR */
4209		buffer[offset] = 0x70;
4210		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4211		/* UNIT ATTENTION */
4212		buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4213		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4214		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4215		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4216		break;
4217	case TCM_CHECK_CONDITION_NOT_READY:
4218		/* CURRENT ERROR */
4219		buffer[offset] = 0x70;
4220		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4221		/* Not Ready */
4222		buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4223		transport_get_sense_codes(cmd, &asc, &ascq);
4224		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4225		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4226		break;
4227	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4228	default:
4229		/* CURRENT ERROR */
4230		buffer[offset] = 0x70;
4231		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4232		/* ILLEGAL REQUEST */
4233		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4234		/* LOGICAL UNIT COMMUNICATION FAILURE */
4235		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4236		break;
4237	}
4238	/*
4239	 * This code uses linux/include/scsi/scsi.h SAM status codes!
4240	 */
4241	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4242	/*
4243	 * Automatically padded, this value is encoded in the fabric's
4244	 * data_length response PDU containing the SCSI defined sense data.
4245	 */
4246	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4247
4248after_reason:
4249	return cmd->se_tfo->queue_status(cmd);
4250}
4251EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4252
4253int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4254{
4255	int ret = 0;
4256
4257	if (cmd->transport_state & CMD_T_ABORTED) {
4258		if (!send_status ||
4259		     (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4260			return 1;
4261
4262		pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4263			" status for CDB: 0x%02x ITT: 0x%08x\n",
4264			cmd->t_task_cdb[0],
4265			cmd->se_tfo->get_task_tag(cmd));
4266
4267		cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4268		cmd->se_tfo->queue_status(cmd);
4269		ret = 1;
4270	}
4271	return ret;
4272}
4273EXPORT_SYMBOL(transport_check_aborted_status);
4274
4275void transport_send_task_abort(struct se_cmd *cmd)
4276{
4277	unsigned long flags;
4278
4279	spin_lock_irqsave(&cmd->t_state_lock, flags);
4280	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4281		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4282		return;
4283	}
4284	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4285
4286	/*
4287	 * If there are still expected incoming fabric WRITEs, we wait
4288	 * until until they have completed before sending a TASK_ABORTED
4289	 * response.  This response with TASK_ABORTED status will be
4290	 * queued back to fabric module by transport_check_aborted_status().
4291	 */
4292	if (cmd->data_direction == DMA_TO_DEVICE) {
4293		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4294			cmd->transport_state |= CMD_T_ABORTED;
4295			smp_mb__after_atomic_inc();
4296		}
4297	}
4298	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4299
4300	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4301		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
4302		cmd->se_tfo->get_task_tag(cmd));
4303
4304	cmd->se_tfo->queue_status(cmd);
4305}
4306
4307static int transport_generic_do_tmr(struct se_cmd *cmd)
4308{
4309	struct se_device *dev = cmd->se_dev;
4310	struct se_tmr_req *tmr = cmd->se_tmr_req;
4311	int ret;
4312
4313	switch (tmr->function) {
4314	case TMR_ABORT_TASK:
4315		core_tmr_abort_task(dev, tmr, cmd->se_sess);
4316		break;
4317	case TMR_ABORT_TASK_SET:
4318	case TMR_CLEAR_ACA:
4319	case TMR_CLEAR_TASK_SET:
4320		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4321		break;
4322	case TMR_LUN_RESET:
4323		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4324		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4325					 TMR_FUNCTION_REJECTED;
4326		break;
4327	case TMR_TARGET_WARM_RESET:
4328		tmr->response = TMR_FUNCTION_REJECTED;
4329		break;
4330	case TMR_TARGET_COLD_RESET:
4331		tmr->response = TMR_FUNCTION_REJECTED;
4332		break;
4333	default:
4334		pr_err("Uknown TMR function: 0x%02x.\n",
4335				tmr->function);
4336		tmr->response = TMR_FUNCTION_REJECTED;
4337		break;
4338	}
4339
4340	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4341	cmd->se_tfo->queue_tm_rsp(cmd);
4342
4343	transport_cmd_check_stop_to_fabric(cmd);
4344	return 0;
4345}
4346
4347/*	transport_processing_thread():
4348 *
4349 *
4350 */
4351static int transport_processing_thread(void *param)
4352{
4353	int ret;
4354	struct se_cmd *cmd;
4355	struct se_device *dev = param;
4356
4357	while (!kthread_should_stop()) {
4358		ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4359				atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4360				kthread_should_stop());
4361		if (ret < 0)
4362			goto out;
4363
4364get_cmd:
4365		cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4366		if (!cmd)
4367			continue;
4368
4369		switch (cmd->t_state) {
4370		case TRANSPORT_NEW_CMD:
4371			BUG();
4372			break;
4373		case TRANSPORT_NEW_CMD_MAP:
4374			if (!cmd->se_tfo->new_cmd_map) {
4375				pr_err("cmd->se_tfo->new_cmd_map is"
4376					" NULL for TRANSPORT_NEW_CMD_MAP\n");
4377				BUG();
4378			}
4379			ret = cmd->se_tfo->new_cmd_map(cmd);
4380			if (ret < 0) {
4381				transport_generic_request_failure(cmd);
4382				break;
4383			}
4384			ret = transport_generic_new_cmd(cmd);
4385			if (ret < 0) {
4386				transport_generic_request_failure(cmd);
4387				break;
4388			}
4389			break;
4390		case TRANSPORT_PROCESS_WRITE:
4391			transport_generic_process_write(cmd);
4392			break;
4393		case TRANSPORT_PROCESS_TMR:
4394			transport_generic_do_tmr(cmd);
4395			break;
4396		case TRANSPORT_COMPLETE_QF_WP:
4397			transport_write_pending_qf(cmd);
4398			break;
4399		case TRANSPORT_COMPLETE_QF_OK:
4400			transport_complete_qf(cmd);
4401			break;
4402		default:
4403			pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4404				"i_state: %d on SE LUN: %u\n",
4405				cmd->t_state,
4406				cmd->se_tfo->get_task_tag(cmd),
4407				cmd->se_tfo->get_cmd_state(cmd),
4408				cmd->se_lun->unpacked_lun);
4409			BUG();
4410		}
4411
4412		goto get_cmd;
4413	}
4414
4415out:
4416	WARN_ON(!list_empty(&dev->state_list));
4417	WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4418	dev->process_thread = NULL;
4419	return 0;
4420}