Loading...
1/*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29#include <linux/net.h>
30#include <linux/delay.h>
31#include <linux/string.h>
32#include <linux/timer.h>
33#include <linux/slab.h>
34#include <linux/blkdev.h>
35#include <linux/spinlock.h>
36#include <linux/kthread.h>
37#include <linux/in.h>
38#include <linux/cdrom.h>
39#include <linux/module.h>
40#include <linux/ratelimit.h>
41#include <asm/unaligned.h>
42#include <net/sock.h>
43#include <net/tcp.h>
44#include <scsi/scsi.h>
45#include <scsi/scsi_cmnd.h>
46#include <scsi/scsi_tcq.h>
47
48#include <target/target_core_base.h>
49#include <target/target_core_backend.h>
50#include <target/target_core_fabric.h>
51#include <target/target_core_configfs.h>
52
53#include "target_core_internal.h"
54#include "target_core_alua.h"
55#include "target_core_pr.h"
56#include "target_core_ua.h"
57
58static int sub_api_initialized;
59
60static struct workqueue_struct *target_completion_wq;
61static struct kmem_cache *se_sess_cache;
62struct kmem_cache *se_ua_cache;
63struct kmem_cache *t10_pr_reg_cache;
64struct kmem_cache *t10_alua_lu_gp_cache;
65struct kmem_cache *t10_alua_lu_gp_mem_cache;
66struct kmem_cache *t10_alua_tg_pt_gp_cache;
67struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69static int transport_generic_write_pending(struct se_cmd *);
70static int transport_processing_thread(void *param);
71static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72static void transport_complete_task_attr(struct se_cmd *cmd);
73static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75static int transport_generic_get_mem(struct se_cmd *cmd);
76static void transport_put_cmd(struct se_cmd *cmd);
77static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
78static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
79static void target_complete_ok_work(struct work_struct *work);
80
81int init_se_kmem_caches(void)
82{
83 se_sess_cache = kmem_cache_create("se_sess_cache",
84 sizeof(struct se_session), __alignof__(struct se_session),
85 0, NULL);
86 if (!se_sess_cache) {
87 pr_err("kmem_cache_create() for struct se_session"
88 " failed\n");
89 goto out;
90 }
91 se_ua_cache = kmem_cache_create("se_ua_cache",
92 sizeof(struct se_ua), __alignof__(struct se_ua),
93 0, NULL);
94 if (!se_ua_cache) {
95 pr_err("kmem_cache_create() for struct se_ua failed\n");
96 goto out_free_sess_cache;
97 }
98 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
99 sizeof(struct t10_pr_registration),
100 __alignof__(struct t10_pr_registration), 0, NULL);
101 if (!t10_pr_reg_cache) {
102 pr_err("kmem_cache_create() for struct t10_pr_registration"
103 " failed\n");
104 goto out_free_ua_cache;
105 }
106 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
107 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
108 0, NULL);
109 if (!t10_alua_lu_gp_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
111 " failed\n");
112 goto out_free_pr_reg_cache;
113 }
114 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
115 sizeof(struct t10_alua_lu_gp_member),
116 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
117 if (!t10_alua_lu_gp_mem_cache) {
118 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
119 "cache failed\n");
120 goto out_free_lu_gp_cache;
121 }
122 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
123 sizeof(struct t10_alua_tg_pt_gp),
124 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
125 if (!t10_alua_tg_pt_gp_cache) {
126 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
127 "cache failed\n");
128 goto out_free_lu_gp_mem_cache;
129 }
130 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
131 "t10_alua_tg_pt_gp_mem_cache",
132 sizeof(struct t10_alua_tg_pt_gp_member),
133 __alignof__(struct t10_alua_tg_pt_gp_member),
134 0, NULL);
135 if (!t10_alua_tg_pt_gp_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 "mem_t failed\n");
138 goto out_free_tg_pt_gp_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_tg_pt_gp_mem_cache;
145
146 return 0;
147
148out_free_tg_pt_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
150out_free_tg_pt_gp_cache:
151 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
152out_free_lu_gp_mem_cache:
153 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
154out_free_lu_gp_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_cache);
156out_free_pr_reg_cache:
157 kmem_cache_destroy(t10_pr_reg_cache);
158out_free_ua_cache:
159 kmem_cache_destroy(se_ua_cache);
160out_free_sess_cache:
161 kmem_cache_destroy(se_sess_cache);
162out:
163 return -ENOMEM;
164}
165
166void release_se_kmem_caches(void)
167{
168 destroy_workqueue(target_completion_wq);
169 kmem_cache_destroy(se_sess_cache);
170 kmem_cache_destroy(se_ua_cache);
171 kmem_cache_destroy(t10_pr_reg_cache);
172 kmem_cache_destroy(t10_alua_lu_gp_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
174 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
176}
177
178/* This code ensures unique mib indexes are handed out. */
179static DEFINE_SPINLOCK(scsi_mib_index_lock);
180static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
181
182/*
183 * Allocate a new row index for the entry type specified
184 */
185u32 scsi_get_new_index(scsi_index_t type)
186{
187 u32 new_index;
188
189 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
190
191 spin_lock(&scsi_mib_index_lock);
192 new_index = ++scsi_mib_index[type];
193 spin_unlock(&scsi_mib_index_lock);
194
195 return new_index;
196}
197
198static void transport_init_queue_obj(struct se_queue_obj *qobj)
199{
200 atomic_set(&qobj->queue_cnt, 0);
201 INIT_LIST_HEAD(&qobj->qobj_list);
202 init_waitqueue_head(&qobj->thread_wq);
203 spin_lock_init(&qobj->cmd_queue_lock);
204}
205
206void transport_subsystem_check_init(void)
207{
208 int ret;
209
210 if (sub_api_initialized)
211 return;
212
213 ret = request_module("target_core_iblock");
214 if (ret != 0)
215 pr_err("Unable to load target_core_iblock\n");
216
217 ret = request_module("target_core_file");
218 if (ret != 0)
219 pr_err("Unable to load target_core_file\n");
220
221 ret = request_module("target_core_pscsi");
222 if (ret != 0)
223 pr_err("Unable to load target_core_pscsi\n");
224
225 ret = request_module("target_core_stgt");
226 if (ret != 0)
227 pr_err("Unable to load target_core_stgt\n");
228
229 sub_api_initialized = 1;
230 return;
231}
232
233struct se_session *transport_init_session(void)
234{
235 struct se_session *se_sess;
236
237 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
238 if (!se_sess) {
239 pr_err("Unable to allocate struct se_session from"
240 " se_sess_cache\n");
241 return ERR_PTR(-ENOMEM);
242 }
243 INIT_LIST_HEAD(&se_sess->sess_list);
244 INIT_LIST_HEAD(&se_sess->sess_acl_list);
245 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
246 INIT_LIST_HEAD(&se_sess->sess_wait_list);
247 spin_lock_init(&se_sess->sess_cmd_lock);
248 kref_init(&se_sess->sess_kref);
249
250 return se_sess;
251}
252EXPORT_SYMBOL(transport_init_session);
253
254/*
255 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
256 */
257void __transport_register_session(
258 struct se_portal_group *se_tpg,
259 struct se_node_acl *se_nacl,
260 struct se_session *se_sess,
261 void *fabric_sess_ptr)
262{
263 unsigned char buf[PR_REG_ISID_LEN];
264
265 se_sess->se_tpg = se_tpg;
266 se_sess->fabric_sess_ptr = fabric_sess_ptr;
267 /*
268 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
269 *
270 * Only set for struct se_session's that will actually be moving I/O.
271 * eg: *NOT* discovery sessions.
272 */
273 if (se_nacl) {
274 /*
275 * If the fabric module supports an ISID based TransportID,
276 * save this value in binary from the fabric I_T Nexus now.
277 */
278 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
279 memset(&buf[0], 0, PR_REG_ISID_LEN);
280 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
281 &buf[0], PR_REG_ISID_LEN);
282 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
283 }
284 kref_get(&se_nacl->acl_kref);
285
286 spin_lock_irq(&se_nacl->nacl_sess_lock);
287 /*
288 * The se_nacl->nacl_sess pointer will be set to the
289 * last active I_T Nexus for each struct se_node_acl.
290 */
291 se_nacl->nacl_sess = se_sess;
292
293 list_add_tail(&se_sess->sess_acl_list,
294 &se_nacl->acl_sess_list);
295 spin_unlock_irq(&se_nacl->nacl_sess_lock);
296 }
297 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
298
299 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
300 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
301}
302EXPORT_SYMBOL(__transport_register_session);
303
304void transport_register_session(
305 struct se_portal_group *se_tpg,
306 struct se_node_acl *se_nacl,
307 struct se_session *se_sess,
308 void *fabric_sess_ptr)
309{
310 unsigned long flags;
311
312 spin_lock_irqsave(&se_tpg->session_lock, flags);
313 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
314 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
315}
316EXPORT_SYMBOL(transport_register_session);
317
318void target_release_session(struct kref *kref)
319{
320 struct se_session *se_sess = container_of(kref,
321 struct se_session, sess_kref);
322 struct se_portal_group *se_tpg = se_sess->se_tpg;
323
324 se_tpg->se_tpg_tfo->close_session(se_sess);
325}
326
327void target_get_session(struct se_session *se_sess)
328{
329 kref_get(&se_sess->sess_kref);
330}
331EXPORT_SYMBOL(target_get_session);
332
333void target_put_session(struct se_session *se_sess)
334{
335 struct se_portal_group *tpg = se_sess->se_tpg;
336
337 if (tpg->se_tpg_tfo->put_session != NULL) {
338 tpg->se_tpg_tfo->put_session(se_sess);
339 return;
340 }
341 kref_put(&se_sess->sess_kref, target_release_session);
342}
343EXPORT_SYMBOL(target_put_session);
344
345static void target_complete_nacl(struct kref *kref)
346{
347 struct se_node_acl *nacl = container_of(kref,
348 struct se_node_acl, acl_kref);
349
350 complete(&nacl->acl_free_comp);
351}
352
353void target_put_nacl(struct se_node_acl *nacl)
354{
355 kref_put(&nacl->acl_kref, target_complete_nacl);
356}
357
358void transport_deregister_session_configfs(struct se_session *se_sess)
359{
360 struct se_node_acl *se_nacl;
361 unsigned long flags;
362 /*
363 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
364 */
365 se_nacl = se_sess->se_node_acl;
366 if (se_nacl) {
367 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
368 if (se_nacl->acl_stop == 0)
369 list_del(&se_sess->sess_acl_list);
370 /*
371 * If the session list is empty, then clear the pointer.
372 * Otherwise, set the struct se_session pointer from the tail
373 * element of the per struct se_node_acl active session list.
374 */
375 if (list_empty(&se_nacl->acl_sess_list))
376 se_nacl->nacl_sess = NULL;
377 else {
378 se_nacl->nacl_sess = container_of(
379 se_nacl->acl_sess_list.prev,
380 struct se_session, sess_acl_list);
381 }
382 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
383 }
384}
385EXPORT_SYMBOL(transport_deregister_session_configfs);
386
387void transport_free_session(struct se_session *se_sess)
388{
389 kmem_cache_free(se_sess_cache, se_sess);
390}
391EXPORT_SYMBOL(transport_free_session);
392
393void transport_deregister_session(struct se_session *se_sess)
394{
395 struct se_portal_group *se_tpg = se_sess->se_tpg;
396 struct target_core_fabric_ops *se_tfo;
397 struct se_node_acl *se_nacl;
398 unsigned long flags;
399 bool comp_nacl = true;
400
401 if (!se_tpg) {
402 transport_free_session(se_sess);
403 return;
404 }
405 se_tfo = se_tpg->se_tpg_tfo;
406
407 spin_lock_irqsave(&se_tpg->session_lock, flags);
408 list_del(&se_sess->sess_list);
409 se_sess->se_tpg = NULL;
410 se_sess->fabric_sess_ptr = NULL;
411 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
412
413 /*
414 * Determine if we need to do extra work for this initiator node's
415 * struct se_node_acl if it had been previously dynamically generated.
416 */
417 se_nacl = se_sess->se_node_acl;
418
419 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
420 if (se_nacl && se_nacl->dynamic_node_acl) {
421 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
422 list_del(&se_nacl->acl_list);
423 se_tpg->num_node_acls--;
424 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
425 core_tpg_wait_for_nacl_pr_ref(se_nacl);
426 core_free_device_list_for_node(se_nacl, se_tpg);
427 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
428
429 comp_nacl = false;
430 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
431 }
432 }
433 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
434
435 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
436 se_tpg->se_tpg_tfo->get_fabric_name());
437 /*
438 * If last kref is dropping now for an explict NodeACL, awake sleeping
439 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
440 * removal context.
441 */
442 if (se_nacl && comp_nacl == true)
443 target_put_nacl(se_nacl);
444
445 transport_free_session(se_sess);
446}
447EXPORT_SYMBOL(transport_deregister_session);
448
449/*
450 * Called with cmd->t_state_lock held.
451 */
452static void target_remove_from_state_list(struct se_cmd *cmd)
453{
454 struct se_device *dev = cmd->se_dev;
455 unsigned long flags;
456
457 if (!dev)
458 return;
459
460 if (cmd->transport_state & CMD_T_BUSY)
461 return;
462
463 spin_lock_irqsave(&dev->execute_task_lock, flags);
464 if (cmd->state_active) {
465 list_del(&cmd->state_list);
466 cmd->state_active = false;
467 }
468 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
469}
470
471/* transport_cmd_check_stop():
472 *
473 * 'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
474 * 'transport_off = 2' determines if task_dev_state should be removed.
475 *
476 * A non-zero u8 t_state sets cmd->t_state.
477 * Returns 1 when command is stopped, else 0.
478 */
479static int transport_cmd_check_stop(
480 struct se_cmd *cmd,
481 int transport_off,
482 u8 t_state)
483{
484 unsigned long flags;
485
486 spin_lock_irqsave(&cmd->t_state_lock, flags);
487 /*
488 * Determine if IOCTL context caller in requesting the stopping of this
489 * command for LUN shutdown purposes.
490 */
491 if (cmd->transport_state & CMD_T_LUN_STOP) {
492 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
493 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
494
495 cmd->transport_state &= ~CMD_T_ACTIVE;
496 if (transport_off == 2)
497 target_remove_from_state_list(cmd);
498 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
499
500 complete(&cmd->transport_lun_stop_comp);
501 return 1;
502 }
503 /*
504 * Determine if frontend context caller is requesting the stopping of
505 * this command for frontend exceptions.
506 */
507 if (cmd->transport_state & CMD_T_STOP) {
508 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
509 __func__, __LINE__,
510 cmd->se_tfo->get_task_tag(cmd));
511
512 if (transport_off == 2)
513 target_remove_from_state_list(cmd);
514
515 /*
516 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
517 * to FE.
518 */
519 if (transport_off == 2)
520 cmd->se_lun = NULL;
521 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
522
523 complete(&cmd->t_transport_stop_comp);
524 return 1;
525 }
526 if (transport_off) {
527 cmd->transport_state &= ~CMD_T_ACTIVE;
528 if (transport_off == 2) {
529 target_remove_from_state_list(cmd);
530 /*
531 * Clear struct se_cmd->se_lun before the transport_off == 2
532 * handoff to fabric module.
533 */
534 cmd->se_lun = NULL;
535 /*
536 * Some fabric modules like tcm_loop can release
537 * their internally allocated I/O reference now and
538 * struct se_cmd now.
539 *
540 * Fabric modules are expected to return '1' here if the
541 * se_cmd being passed is released at this point,
542 * or zero if not being released.
543 */
544 if (cmd->se_tfo->check_stop_free != NULL) {
545 spin_unlock_irqrestore(
546 &cmd->t_state_lock, flags);
547
548 return cmd->se_tfo->check_stop_free(cmd);
549 }
550 }
551 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552
553 return 0;
554 } else if (t_state)
555 cmd->t_state = t_state;
556 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
557
558 return 0;
559}
560
561static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
562{
563 return transport_cmd_check_stop(cmd, 2, 0);
564}
565
566static void transport_lun_remove_cmd(struct se_cmd *cmd)
567{
568 struct se_lun *lun = cmd->se_lun;
569 unsigned long flags;
570
571 if (!lun)
572 return;
573
574 spin_lock_irqsave(&cmd->t_state_lock, flags);
575 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
576 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
577 target_remove_from_state_list(cmd);
578 }
579 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
580
581 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
582 if (!list_empty(&cmd->se_lun_node))
583 list_del_init(&cmd->se_lun_node);
584 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
585}
586
587void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
588{
589 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
590 transport_lun_remove_cmd(cmd);
591
592 if (transport_cmd_check_stop_to_fabric(cmd))
593 return;
594 if (remove) {
595 transport_remove_cmd_from_queue(cmd);
596 transport_put_cmd(cmd);
597 }
598}
599
600static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
601 bool at_head)
602{
603 struct se_device *dev = cmd->se_dev;
604 struct se_queue_obj *qobj = &dev->dev_queue_obj;
605 unsigned long flags;
606
607 if (t_state) {
608 spin_lock_irqsave(&cmd->t_state_lock, flags);
609 cmd->t_state = t_state;
610 cmd->transport_state |= CMD_T_ACTIVE;
611 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
612 }
613
614 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
615
616 /* If the cmd is already on the list, remove it before we add it */
617 if (!list_empty(&cmd->se_queue_node))
618 list_del(&cmd->se_queue_node);
619 else
620 atomic_inc(&qobj->queue_cnt);
621
622 if (at_head)
623 list_add(&cmd->se_queue_node, &qobj->qobj_list);
624 else
625 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
626 cmd->transport_state |= CMD_T_QUEUED;
627 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629 wake_up_interruptible(&qobj->thread_wq);
630}
631
632static struct se_cmd *
633transport_get_cmd_from_queue(struct se_queue_obj *qobj)
634{
635 struct se_cmd *cmd;
636 unsigned long flags;
637
638 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
639 if (list_empty(&qobj->qobj_list)) {
640 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
641 return NULL;
642 }
643 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
644
645 cmd->transport_state &= ~CMD_T_QUEUED;
646 list_del_init(&cmd->se_queue_node);
647 atomic_dec(&qobj->queue_cnt);
648 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
649
650 return cmd;
651}
652
653static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
654{
655 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
656 unsigned long flags;
657
658 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
659 if (!(cmd->transport_state & CMD_T_QUEUED)) {
660 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
661 return;
662 }
663 cmd->transport_state &= ~CMD_T_QUEUED;
664 atomic_dec(&qobj->queue_cnt);
665 list_del_init(&cmd->se_queue_node);
666 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
667}
668
669static void target_complete_failure_work(struct work_struct *work)
670{
671 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
672
673 transport_generic_request_failure(cmd);
674}
675
676void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
677{
678 struct se_device *dev = cmd->se_dev;
679 int success = scsi_status == GOOD;
680 unsigned long flags;
681
682 cmd->scsi_status = scsi_status;
683
684
685 spin_lock_irqsave(&cmd->t_state_lock, flags);
686 cmd->transport_state &= ~CMD_T_BUSY;
687
688 if (dev && dev->transport->transport_complete) {
689 if (dev->transport->transport_complete(cmd,
690 cmd->t_data_sg) != 0) {
691 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
692 success = 1;
693 }
694 }
695
696 /*
697 * See if we are waiting to complete for an exception condition.
698 */
699 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
700 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701 complete(&cmd->task_stop_comp);
702 return;
703 }
704
705 if (!success)
706 cmd->transport_state |= CMD_T_FAILED;
707
708 /*
709 * Check for case where an explict ABORT_TASK has been received
710 * and transport_wait_for_tasks() will be waiting for completion..
711 */
712 if (cmd->transport_state & CMD_T_ABORTED &&
713 cmd->transport_state & CMD_T_STOP) {
714 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715 complete(&cmd->t_transport_stop_comp);
716 return;
717 } else if (cmd->transport_state & CMD_T_FAILED) {
718 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
719 INIT_WORK(&cmd->work, target_complete_failure_work);
720 } else {
721 INIT_WORK(&cmd->work, target_complete_ok_work);
722 }
723
724 cmd->t_state = TRANSPORT_COMPLETE;
725 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
726 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
727
728 queue_work(target_completion_wq, &cmd->work);
729}
730EXPORT_SYMBOL(target_complete_cmd);
731
732static void target_add_to_state_list(struct se_cmd *cmd)
733{
734 struct se_device *dev = cmd->se_dev;
735 unsigned long flags;
736
737 spin_lock_irqsave(&dev->execute_task_lock, flags);
738 if (!cmd->state_active) {
739 list_add_tail(&cmd->state_list, &dev->state_list);
740 cmd->state_active = true;
741 }
742 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
743}
744
745static void __target_add_to_execute_list(struct se_cmd *cmd)
746{
747 struct se_device *dev = cmd->se_dev;
748 bool head_of_queue = false;
749
750 if (!list_empty(&cmd->execute_list))
751 return;
752
753 if (dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED &&
754 cmd->sam_task_attr == MSG_HEAD_TAG)
755 head_of_queue = true;
756
757 if (head_of_queue)
758 list_add(&cmd->execute_list, &dev->execute_list);
759 else
760 list_add_tail(&cmd->execute_list, &dev->execute_list);
761
762 atomic_inc(&dev->execute_tasks);
763
764 if (cmd->state_active)
765 return;
766
767 if (head_of_queue)
768 list_add(&cmd->state_list, &dev->state_list);
769 else
770 list_add_tail(&cmd->state_list, &dev->state_list);
771
772 cmd->state_active = true;
773}
774
775static void target_add_to_execute_list(struct se_cmd *cmd)
776{
777 unsigned long flags;
778 struct se_device *dev = cmd->se_dev;
779
780 spin_lock_irqsave(&dev->execute_task_lock, flags);
781 __target_add_to_execute_list(cmd);
782 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
783}
784
785void __target_remove_from_execute_list(struct se_cmd *cmd)
786{
787 list_del_init(&cmd->execute_list);
788 atomic_dec(&cmd->se_dev->execute_tasks);
789}
790
791static void target_remove_from_execute_list(struct se_cmd *cmd)
792{
793 struct se_device *dev = cmd->se_dev;
794 unsigned long flags;
795
796 if (WARN_ON(list_empty(&cmd->execute_list)))
797 return;
798
799 spin_lock_irqsave(&dev->execute_task_lock, flags);
800 __target_remove_from_execute_list(cmd);
801 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
802}
803
804/*
805 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
806 */
807
808static void target_qf_do_work(struct work_struct *work)
809{
810 struct se_device *dev = container_of(work, struct se_device,
811 qf_work_queue);
812 LIST_HEAD(qf_cmd_list);
813 struct se_cmd *cmd, *cmd_tmp;
814
815 spin_lock_irq(&dev->qf_cmd_lock);
816 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
817 spin_unlock_irq(&dev->qf_cmd_lock);
818
819 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
820 list_del(&cmd->se_qf_node);
821 atomic_dec(&dev->dev_qf_count);
822 smp_mb__after_atomic_dec();
823
824 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
825 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
826 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
827 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
828 : "UNKNOWN");
829
830 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
831 }
832}
833
834unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
835{
836 switch (cmd->data_direction) {
837 case DMA_NONE:
838 return "NONE";
839 case DMA_FROM_DEVICE:
840 return "READ";
841 case DMA_TO_DEVICE:
842 return "WRITE";
843 case DMA_BIDIRECTIONAL:
844 return "BIDI";
845 default:
846 break;
847 }
848
849 return "UNKNOWN";
850}
851
852void transport_dump_dev_state(
853 struct se_device *dev,
854 char *b,
855 int *bl)
856{
857 *bl += sprintf(b + *bl, "Status: ");
858 switch (dev->dev_status) {
859 case TRANSPORT_DEVICE_ACTIVATED:
860 *bl += sprintf(b + *bl, "ACTIVATED");
861 break;
862 case TRANSPORT_DEVICE_DEACTIVATED:
863 *bl += sprintf(b + *bl, "DEACTIVATED");
864 break;
865 case TRANSPORT_DEVICE_SHUTDOWN:
866 *bl += sprintf(b + *bl, "SHUTDOWN");
867 break;
868 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
869 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
870 *bl += sprintf(b + *bl, "OFFLINE");
871 break;
872 default:
873 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
874 break;
875 }
876
877 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
878 atomic_read(&dev->execute_tasks), dev->queue_depth);
879 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
880 dev->se_sub_dev->se_dev_attrib.block_size,
881 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
882 *bl += sprintf(b + *bl, " ");
883}
884
885void transport_dump_vpd_proto_id(
886 struct t10_vpd *vpd,
887 unsigned char *p_buf,
888 int p_buf_len)
889{
890 unsigned char buf[VPD_TMP_BUF_SIZE];
891 int len;
892
893 memset(buf, 0, VPD_TMP_BUF_SIZE);
894 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
895
896 switch (vpd->protocol_identifier) {
897 case 0x00:
898 sprintf(buf+len, "Fibre Channel\n");
899 break;
900 case 0x10:
901 sprintf(buf+len, "Parallel SCSI\n");
902 break;
903 case 0x20:
904 sprintf(buf+len, "SSA\n");
905 break;
906 case 0x30:
907 sprintf(buf+len, "IEEE 1394\n");
908 break;
909 case 0x40:
910 sprintf(buf+len, "SCSI Remote Direct Memory Access"
911 " Protocol\n");
912 break;
913 case 0x50:
914 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
915 break;
916 case 0x60:
917 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
918 break;
919 case 0x70:
920 sprintf(buf+len, "Automation/Drive Interface Transport"
921 " Protocol\n");
922 break;
923 case 0x80:
924 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
925 break;
926 default:
927 sprintf(buf+len, "Unknown 0x%02x\n",
928 vpd->protocol_identifier);
929 break;
930 }
931
932 if (p_buf)
933 strncpy(p_buf, buf, p_buf_len);
934 else
935 pr_debug("%s", buf);
936}
937
938void
939transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
940{
941 /*
942 * Check if the Protocol Identifier Valid (PIV) bit is set..
943 *
944 * from spc3r23.pdf section 7.5.1
945 */
946 if (page_83[1] & 0x80) {
947 vpd->protocol_identifier = (page_83[0] & 0xf0);
948 vpd->protocol_identifier_set = 1;
949 transport_dump_vpd_proto_id(vpd, NULL, 0);
950 }
951}
952EXPORT_SYMBOL(transport_set_vpd_proto_id);
953
954int transport_dump_vpd_assoc(
955 struct t10_vpd *vpd,
956 unsigned char *p_buf,
957 int p_buf_len)
958{
959 unsigned char buf[VPD_TMP_BUF_SIZE];
960 int ret = 0;
961 int len;
962
963 memset(buf, 0, VPD_TMP_BUF_SIZE);
964 len = sprintf(buf, "T10 VPD Identifier Association: ");
965
966 switch (vpd->association) {
967 case 0x00:
968 sprintf(buf+len, "addressed logical unit\n");
969 break;
970 case 0x10:
971 sprintf(buf+len, "target port\n");
972 break;
973 case 0x20:
974 sprintf(buf+len, "SCSI target device\n");
975 break;
976 default:
977 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
978 ret = -EINVAL;
979 break;
980 }
981
982 if (p_buf)
983 strncpy(p_buf, buf, p_buf_len);
984 else
985 pr_debug("%s", buf);
986
987 return ret;
988}
989
990int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
991{
992 /*
993 * The VPD identification association..
994 *
995 * from spc3r23.pdf Section 7.6.3.1 Table 297
996 */
997 vpd->association = (page_83[1] & 0x30);
998 return transport_dump_vpd_assoc(vpd, NULL, 0);
999}
1000EXPORT_SYMBOL(transport_set_vpd_assoc);
1001
1002int transport_dump_vpd_ident_type(
1003 struct t10_vpd *vpd,
1004 unsigned char *p_buf,
1005 int p_buf_len)
1006{
1007 unsigned char buf[VPD_TMP_BUF_SIZE];
1008 int ret = 0;
1009 int len;
1010
1011 memset(buf, 0, VPD_TMP_BUF_SIZE);
1012 len = sprintf(buf, "T10 VPD Identifier Type: ");
1013
1014 switch (vpd->device_identifier_type) {
1015 case 0x00:
1016 sprintf(buf+len, "Vendor specific\n");
1017 break;
1018 case 0x01:
1019 sprintf(buf+len, "T10 Vendor ID based\n");
1020 break;
1021 case 0x02:
1022 sprintf(buf+len, "EUI-64 based\n");
1023 break;
1024 case 0x03:
1025 sprintf(buf+len, "NAA\n");
1026 break;
1027 case 0x04:
1028 sprintf(buf+len, "Relative target port identifier\n");
1029 break;
1030 case 0x08:
1031 sprintf(buf+len, "SCSI name string\n");
1032 break;
1033 default:
1034 sprintf(buf+len, "Unsupported: 0x%02x\n",
1035 vpd->device_identifier_type);
1036 ret = -EINVAL;
1037 break;
1038 }
1039
1040 if (p_buf) {
1041 if (p_buf_len < strlen(buf)+1)
1042 return -EINVAL;
1043 strncpy(p_buf, buf, p_buf_len);
1044 } else {
1045 pr_debug("%s", buf);
1046 }
1047
1048 return ret;
1049}
1050
1051int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1052{
1053 /*
1054 * The VPD identifier type..
1055 *
1056 * from spc3r23.pdf Section 7.6.3.1 Table 298
1057 */
1058 vpd->device_identifier_type = (page_83[1] & 0x0f);
1059 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1060}
1061EXPORT_SYMBOL(transport_set_vpd_ident_type);
1062
1063int transport_dump_vpd_ident(
1064 struct t10_vpd *vpd,
1065 unsigned char *p_buf,
1066 int p_buf_len)
1067{
1068 unsigned char buf[VPD_TMP_BUF_SIZE];
1069 int ret = 0;
1070
1071 memset(buf, 0, VPD_TMP_BUF_SIZE);
1072
1073 switch (vpd->device_identifier_code_set) {
1074 case 0x01: /* Binary */
1075 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1076 &vpd->device_identifier[0]);
1077 break;
1078 case 0x02: /* ASCII */
1079 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1080 &vpd->device_identifier[0]);
1081 break;
1082 case 0x03: /* UTF-8 */
1083 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1084 &vpd->device_identifier[0]);
1085 break;
1086 default:
1087 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1088 " 0x%02x", vpd->device_identifier_code_set);
1089 ret = -EINVAL;
1090 break;
1091 }
1092
1093 if (p_buf)
1094 strncpy(p_buf, buf, p_buf_len);
1095 else
1096 pr_debug("%s", buf);
1097
1098 return ret;
1099}
1100
1101int
1102transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1103{
1104 static const char hex_str[] = "0123456789abcdef";
1105 int j = 0, i = 4; /* offset to start of the identifer */
1106
1107 /*
1108 * The VPD Code Set (encoding)
1109 *
1110 * from spc3r23.pdf Section 7.6.3.1 Table 296
1111 */
1112 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1113 switch (vpd->device_identifier_code_set) {
1114 case 0x01: /* Binary */
1115 vpd->device_identifier[j++] =
1116 hex_str[vpd->device_identifier_type];
1117 while (i < (4 + page_83[3])) {
1118 vpd->device_identifier[j++] =
1119 hex_str[(page_83[i] & 0xf0) >> 4];
1120 vpd->device_identifier[j++] =
1121 hex_str[page_83[i] & 0x0f];
1122 i++;
1123 }
1124 break;
1125 case 0x02: /* ASCII */
1126 case 0x03: /* UTF-8 */
1127 while (i < (4 + page_83[3]))
1128 vpd->device_identifier[j++] = page_83[i++];
1129 break;
1130 default:
1131 break;
1132 }
1133
1134 return transport_dump_vpd_ident(vpd, NULL, 0);
1135}
1136EXPORT_SYMBOL(transport_set_vpd_ident);
1137
1138static void core_setup_task_attr_emulation(struct se_device *dev)
1139{
1140 /*
1141 * If this device is from Target_Core_Mod/pSCSI, disable the
1142 * SAM Task Attribute emulation.
1143 *
1144 * This is currently not available in upsream Linux/SCSI Target
1145 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1146 */
1147 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1148 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1149 return;
1150 }
1151
1152 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1153 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1154 " device\n", dev->transport->name,
1155 dev->transport->get_device_rev(dev));
1156}
1157
1158static void scsi_dump_inquiry(struct se_device *dev)
1159{
1160 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1161 char buf[17];
1162 int i, device_type;
1163 /*
1164 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1165 */
1166 for (i = 0; i < 8; i++)
1167 if (wwn->vendor[i] >= 0x20)
1168 buf[i] = wwn->vendor[i];
1169 else
1170 buf[i] = ' ';
1171 buf[i] = '\0';
1172 pr_debug(" Vendor: %s\n", buf);
1173
1174 for (i = 0; i < 16; i++)
1175 if (wwn->model[i] >= 0x20)
1176 buf[i] = wwn->model[i];
1177 else
1178 buf[i] = ' ';
1179 buf[i] = '\0';
1180 pr_debug(" Model: %s\n", buf);
1181
1182 for (i = 0; i < 4; i++)
1183 if (wwn->revision[i] >= 0x20)
1184 buf[i] = wwn->revision[i];
1185 else
1186 buf[i] = ' ';
1187 buf[i] = '\0';
1188 pr_debug(" Revision: %s\n", buf);
1189
1190 device_type = dev->transport->get_device_type(dev);
1191 pr_debug(" Type: %s ", scsi_device_type(device_type));
1192 pr_debug(" ANSI SCSI revision: %02x\n",
1193 dev->transport->get_device_rev(dev));
1194}
1195
1196struct se_device *transport_add_device_to_core_hba(
1197 struct se_hba *hba,
1198 struct se_subsystem_api *transport,
1199 struct se_subsystem_dev *se_dev,
1200 u32 device_flags,
1201 void *transport_dev,
1202 struct se_dev_limits *dev_limits,
1203 const char *inquiry_prod,
1204 const char *inquiry_rev)
1205{
1206 int force_pt;
1207 struct se_device *dev;
1208
1209 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1210 if (!dev) {
1211 pr_err("Unable to allocate memory for se_dev_t\n");
1212 return NULL;
1213 }
1214
1215 transport_init_queue_obj(&dev->dev_queue_obj);
1216 dev->dev_flags = device_flags;
1217 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1218 dev->dev_ptr = transport_dev;
1219 dev->se_hba = hba;
1220 dev->se_sub_dev = se_dev;
1221 dev->transport = transport;
1222 INIT_LIST_HEAD(&dev->dev_list);
1223 INIT_LIST_HEAD(&dev->dev_sep_list);
1224 INIT_LIST_HEAD(&dev->dev_tmr_list);
1225 INIT_LIST_HEAD(&dev->execute_list);
1226 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1227 INIT_LIST_HEAD(&dev->state_list);
1228 INIT_LIST_HEAD(&dev->qf_cmd_list);
1229 spin_lock_init(&dev->execute_task_lock);
1230 spin_lock_init(&dev->delayed_cmd_lock);
1231 spin_lock_init(&dev->dev_reservation_lock);
1232 spin_lock_init(&dev->dev_status_lock);
1233 spin_lock_init(&dev->se_port_lock);
1234 spin_lock_init(&dev->se_tmr_lock);
1235 spin_lock_init(&dev->qf_cmd_lock);
1236 atomic_set(&dev->dev_ordered_id, 0);
1237
1238 se_dev_set_default_attribs(dev, dev_limits);
1239
1240 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1241 dev->creation_time = get_jiffies_64();
1242 spin_lock_init(&dev->stats_lock);
1243
1244 spin_lock(&hba->device_lock);
1245 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1246 hba->dev_count++;
1247 spin_unlock(&hba->device_lock);
1248 /*
1249 * Setup the SAM Task Attribute emulation for struct se_device
1250 */
1251 core_setup_task_attr_emulation(dev);
1252 /*
1253 * Force PR and ALUA passthrough emulation with internal object use.
1254 */
1255 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1256 /*
1257 * Setup the Reservations infrastructure for struct se_device
1258 */
1259 core_setup_reservations(dev, force_pt);
1260 /*
1261 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1262 */
1263 if (core_setup_alua(dev, force_pt) < 0)
1264 goto out;
1265
1266 /*
1267 * Startup the struct se_device processing thread
1268 */
1269 dev->process_thread = kthread_run(transport_processing_thread, dev,
1270 "LIO_%s", dev->transport->name);
1271 if (IS_ERR(dev->process_thread)) {
1272 pr_err("Unable to create kthread: LIO_%s\n",
1273 dev->transport->name);
1274 goto out;
1275 }
1276 /*
1277 * Setup work_queue for QUEUE_FULL
1278 */
1279 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1280 /*
1281 * Preload the initial INQUIRY const values if we are doing
1282 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1283 * passthrough because this is being provided by the backend LLD.
1284 * This is required so that transport_get_inquiry() copies these
1285 * originals once back into DEV_T10_WWN(dev) for the virtual device
1286 * setup.
1287 */
1288 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1289 if (!inquiry_prod || !inquiry_rev) {
1290 pr_err("All non TCM/pSCSI plugins require"
1291 " INQUIRY consts\n");
1292 goto out;
1293 }
1294
1295 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1296 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1297 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1298 }
1299 scsi_dump_inquiry(dev);
1300
1301 return dev;
1302out:
1303 kthread_stop(dev->process_thread);
1304
1305 spin_lock(&hba->device_lock);
1306 list_del(&dev->dev_list);
1307 hba->dev_count--;
1308 spin_unlock(&hba->device_lock);
1309
1310 se_release_vpd_for_dev(dev);
1311
1312 kfree(dev);
1313
1314 return NULL;
1315}
1316EXPORT_SYMBOL(transport_add_device_to_core_hba);
1317
1318/* transport_generic_prepare_cdb():
1319 *
1320 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1321 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1322 * The point of this is since we are mapping iSCSI LUNs to
1323 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1324 * devices and HBAs for a loop.
1325 */
1326static inline void transport_generic_prepare_cdb(
1327 unsigned char *cdb)
1328{
1329 switch (cdb[0]) {
1330 case READ_10: /* SBC - RDProtect */
1331 case READ_12: /* SBC - RDProtect */
1332 case READ_16: /* SBC - RDProtect */
1333 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1334 case VERIFY: /* SBC - VRProtect */
1335 case VERIFY_16: /* SBC - VRProtect */
1336 case WRITE_VERIFY: /* SBC - VRProtect */
1337 case WRITE_VERIFY_12: /* SBC - VRProtect */
1338 case MAINTENANCE_IN: /* SPC - Parameter Data Format for SA RTPG */
1339 break;
1340 default:
1341 cdb[1] &= 0x1f; /* clear logical unit number */
1342 break;
1343 }
1344}
1345
1346static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1347
1348/*
1349 * Used by fabric modules containing a local struct se_cmd within their
1350 * fabric dependent per I/O descriptor.
1351 */
1352void transport_init_se_cmd(
1353 struct se_cmd *cmd,
1354 struct target_core_fabric_ops *tfo,
1355 struct se_session *se_sess,
1356 u32 data_length,
1357 int data_direction,
1358 int task_attr,
1359 unsigned char *sense_buffer)
1360{
1361 INIT_LIST_HEAD(&cmd->se_lun_node);
1362 INIT_LIST_HEAD(&cmd->se_delayed_node);
1363 INIT_LIST_HEAD(&cmd->se_qf_node);
1364 INIT_LIST_HEAD(&cmd->se_queue_node);
1365 INIT_LIST_HEAD(&cmd->se_cmd_list);
1366 INIT_LIST_HEAD(&cmd->execute_list);
1367 INIT_LIST_HEAD(&cmd->state_list);
1368 init_completion(&cmd->transport_lun_fe_stop_comp);
1369 init_completion(&cmd->transport_lun_stop_comp);
1370 init_completion(&cmd->t_transport_stop_comp);
1371 init_completion(&cmd->cmd_wait_comp);
1372 init_completion(&cmd->task_stop_comp);
1373 spin_lock_init(&cmd->t_state_lock);
1374 cmd->transport_state = CMD_T_DEV_ACTIVE;
1375
1376 cmd->se_tfo = tfo;
1377 cmd->se_sess = se_sess;
1378 cmd->data_length = data_length;
1379 cmd->data_direction = data_direction;
1380 cmd->sam_task_attr = task_attr;
1381 cmd->sense_buffer = sense_buffer;
1382
1383 cmd->state_active = false;
1384}
1385EXPORT_SYMBOL(transport_init_se_cmd);
1386
1387static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1388{
1389 /*
1390 * Check if SAM Task Attribute emulation is enabled for this
1391 * struct se_device storage object
1392 */
1393 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1394 return 0;
1395
1396 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1397 pr_debug("SAM Task Attribute ACA"
1398 " emulation is not supported\n");
1399 return -EINVAL;
1400 }
1401 /*
1402 * Used to determine when ORDERED commands should go from
1403 * Dormant to Active status.
1404 */
1405 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1406 smp_mb__after_atomic_inc();
1407 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1408 cmd->se_ordered_id, cmd->sam_task_attr,
1409 cmd->se_dev->transport->name);
1410 return 0;
1411}
1412
1413/* target_setup_cmd_from_cdb():
1414 *
1415 * Called from fabric RX Thread.
1416 */
1417int target_setup_cmd_from_cdb(
1418 struct se_cmd *cmd,
1419 unsigned char *cdb)
1420{
1421 int ret;
1422
1423 transport_generic_prepare_cdb(cdb);
1424 /*
1425 * Ensure that the received CDB is less than the max (252 + 8) bytes
1426 * for VARIABLE_LENGTH_CMD
1427 */
1428 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1429 pr_err("Received SCSI CDB with command_size: %d that"
1430 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1431 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1432 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1433 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1434 return -EINVAL;
1435 }
1436 /*
1437 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1438 * allocate the additional extended CDB buffer now.. Otherwise
1439 * setup the pointer from __t_task_cdb to t_task_cdb.
1440 */
1441 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1442 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1443 GFP_KERNEL);
1444 if (!cmd->t_task_cdb) {
1445 pr_err("Unable to allocate cmd->t_task_cdb"
1446 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1447 scsi_command_size(cdb),
1448 (unsigned long)sizeof(cmd->__t_task_cdb));
1449 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1450 cmd->scsi_sense_reason =
1451 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1452 return -ENOMEM;
1453 }
1454 } else
1455 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1456 /*
1457 * Copy the original CDB into cmd->
1458 */
1459 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1460 /*
1461 * Setup the received CDB based on SCSI defined opcodes and
1462 * perform unit attention, persistent reservations and ALUA
1463 * checks for virtual device backends. The cmd->t_task_cdb
1464 * pointer is expected to be setup before we reach this point.
1465 */
1466 ret = transport_generic_cmd_sequencer(cmd, cdb);
1467 if (ret < 0)
1468 return ret;
1469 /*
1470 * Check for SAM Task Attribute Emulation
1471 */
1472 if (transport_check_alloc_task_attr(cmd) < 0) {
1473 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1474 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1475 return -EINVAL;
1476 }
1477 spin_lock(&cmd->se_lun->lun_sep_lock);
1478 if (cmd->se_lun->lun_sep)
1479 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1480 spin_unlock(&cmd->se_lun->lun_sep_lock);
1481 return 0;
1482}
1483EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1484
1485/*
1486 * Used by fabric module frontends to queue tasks directly.
1487 * Many only be used from process context only
1488 */
1489int transport_handle_cdb_direct(
1490 struct se_cmd *cmd)
1491{
1492 int ret;
1493
1494 if (!cmd->se_lun) {
1495 dump_stack();
1496 pr_err("cmd->se_lun is NULL\n");
1497 return -EINVAL;
1498 }
1499 if (in_interrupt()) {
1500 dump_stack();
1501 pr_err("transport_generic_handle_cdb cannot be called"
1502 " from interrupt context\n");
1503 return -EINVAL;
1504 }
1505 /*
1506 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1507 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1508 * in existing usage to ensure that outstanding descriptors are handled
1509 * correctly during shutdown via transport_wait_for_tasks()
1510 *
1511 * Also, we don't take cmd->t_state_lock here as we only expect
1512 * this to be called for initial descriptor submission.
1513 */
1514 cmd->t_state = TRANSPORT_NEW_CMD;
1515 cmd->transport_state |= CMD_T_ACTIVE;
1516
1517 /*
1518 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1519 * so follow TRANSPORT_NEW_CMD processing thread context usage
1520 * and call transport_generic_request_failure() if necessary..
1521 */
1522 ret = transport_generic_new_cmd(cmd);
1523 if (ret < 0)
1524 transport_generic_request_failure(cmd);
1525
1526 return 0;
1527}
1528EXPORT_SYMBOL(transport_handle_cdb_direct);
1529
1530/**
1531 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1532 *
1533 * @se_cmd: command descriptor to submit
1534 * @se_sess: associated se_sess for endpoint
1535 * @cdb: pointer to SCSI CDB
1536 * @sense: pointer to SCSI sense buffer
1537 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1538 * @data_length: fabric expected data transfer length
1539 * @task_addr: SAM task attribute
1540 * @data_dir: DMA data direction
1541 * @flags: flags for command submission from target_sc_flags_tables
1542 *
1543 * This may only be called from process context, and also currently
1544 * assumes internal allocation of fabric payload buffer by target-core.
1545 **/
1546void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1547 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1548 u32 data_length, int task_attr, int data_dir, int flags)
1549{
1550 struct se_portal_group *se_tpg;
1551 int rc;
1552
1553 se_tpg = se_sess->se_tpg;
1554 BUG_ON(!se_tpg);
1555 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1556 BUG_ON(in_interrupt());
1557 /*
1558 * Initialize se_cmd for target operation. From this point
1559 * exceptions are handled by sending exception status via
1560 * target_core_fabric_ops->queue_status() callback
1561 */
1562 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1563 data_length, data_dir, task_attr, sense);
1564 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1565 se_cmd->unknown_data_length = 1;
1566 /*
1567 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1568 * se_sess->sess_cmd_list. A second kref_get here is necessary
1569 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1570 * kref_put() to happen during fabric packet acknowledgement.
1571 */
1572 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1573 /*
1574 * Signal bidirectional data payloads to target-core
1575 */
1576 if (flags & TARGET_SCF_BIDI_OP)
1577 se_cmd->se_cmd_flags |= SCF_BIDI;
1578 /*
1579 * Locate se_lun pointer and attach it to struct se_cmd
1580 */
1581 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1582 transport_send_check_condition_and_sense(se_cmd,
1583 se_cmd->scsi_sense_reason, 0);
1584 target_put_sess_cmd(se_sess, se_cmd);
1585 return;
1586 }
1587 /*
1588 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1589 * allocate the necessary tasks to complete the received CDB+data
1590 */
1591 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1592 if (rc != 0) {
1593 transport_generic_request_failure(se_cmd);
1594 return;
1595 }
1596
1597 /*
1598 * Check if we need to delay processing because of ALUA
1599 * Active/NonOptimized primary access state..
1600 */
1601 core_alua_check_nonop_delay(se_cmd);
1602
1603 /*
1604 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1605 * for immediate execution of READs, otherwise wait for
1606 * transport_generic_handle_data() to be called for WRITEs
1607 * when fabric has filled the incoming buffer.
1608 */
1609 transport_handle_cdb_direct(se_cmd);
1610 return;
1611}
1612EXPORT_SYMBOL(target_submit_cmd);
1613
1614static void target_complete_tmr_failure(struct work_struct *work)
1615{
1616 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1617
1618 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1619 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1620 transport_generic_free_cmd(se_cmd, 0);
1621}
1622
1623/**
1624 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1625 * for TMR CDBs
1626 *
1627 * @se_cmd: command descriptor to submit
1628 * @se_sess: associated se_sess for endpoint
1629 * @sense: pointer to SCSI sense buffer
1630 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1631 * @fabric_context: fabric context for TMR req
1632 * @tm_type: Type of TM request
1633 * @gfp: gfp type for caller
1634 * @tag: referenced task tag for TMR_ABORT_TASK
1635 * @flags: submit cmd flags
1636 *
1637 * Callable from all contexts.
1638 **/
1639
1640int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1641 unsigned char *sense, u32 unpacked_lun,
1642 void *fabric_tmr_ptr, unsigned char tm_type,
1643 gfp_t gfp, unsigned int tag, int flags)
1644{
1645 struct se_portal_group *se_tpg;
1646 int ret;
1647
1648 se_tpg = se_sess->se_tpg;
1649 BUG_ON(!se_tpg);
1650
1651 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1652 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1653 /*
1654 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1655 * allocation failure.
1656 */
1657 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1658 if (ret < 0)
1659 return -ENOMEM;
1660
1661 if (tm_type == TMR_ABORT_TASK)
1662 se_cmd->se_tmr_req->ref_task_tag = tag;
1663
1664 /* See target_submit_cmd for commentary */
1665 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1666
1667 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1668 if (ret) {
1669 /*
1670 * For callback during failure handling, push this work off
1671 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1672 */
1673 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1674 schedule_work(&se_cmd->work);
1675 return 0;
1676 }
1677 transport_generic_handle_tmr(se_cmd);
1678 return 0;
1679}
1680EXPORT_SYMBOL(target_submit_tmr);
1681
1682/*
1683 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1684 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1685 * complete setup in TCM process context w/ TFO->new_cmd_map().
1686 */
1687int transport_generic_handle_cdb_map(
1688 struct se_cmd *cmd)
1689{
1690 if (!cmd->se_lun) {
1691 dump_stack();
1692 pr_err("cmd->se_lun is NULL\n");
1693 return -EINVAL;
1694 }
1695
1696 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1697 return 0;
1698}
1699EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1700
1701/* transport_generic_handle_data():
1702 *
1703 *
1704 */
1705int transport_generic_handle_data(
1706 struct se_cmd *cmd)
1707{
1708 /*
1709 * For the software fabric case, then we assume the nexus is being
1710 * failed/shutdown when signals are pending from the kthread context
1711 * caller, so we return a failure. For the HW target mode case running
1712 * in interrupt code, the signal_pending() check is skipped.
1713 */
1714 if (!in_interrupt() && signal_pending(current))
1715 return -EPERM;
1716 /*
1717 * If the received CDB has aleady been ABORTED by the generic
1718 * target engine, we now call transport_check_aborted_status()
1719 * to queue any delated TASK_ABORTED status for the received CDB to the
1720 * fabric module as we are expecting no further incoming DATA OUT
1721 * sequences at this point.
1722 */
1723 if (transport_check_aborted_status(cmd, 1) != 0)
1724 return 0;
1725
1726 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1727 return 0;
1728}
1729EXPORT_SYMBOL(transport_generic_handle_data);
1730
1731/* transport_generic_handle_tmr():
1732 *
1733 *
1734 */
1735int transport_generic_handle_tmr(
1736 struct se_cmd *cmd)
1737{
1738 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1739 return 0;
1740}
1741EXPORT_SYMBOL(transport_generic_handle_tmr);
1742
1743/*
1744 * If the cmd is active, request it to be stopped and sleep until it
1745 * has completed.
1746 */
1747bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1748{
1749 bool was_active = false;
1750
1751 if (cmd->transport_state & CMD_T_BUSY) {
1752 cmd->transport_state |= CMD_T_REQUEST_STOP;
1753 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1754
1755 pr_debug("cmd %p waiting to complete\n", cmd);
1756 wait_for_completion(&cmd->task_stop_comp);
1757 pr_debug("cmd %p stopped successfully\n", cmd);
1758
1759 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1760 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1761 cmd->transport_state &= ~CMD_T_BUSY;
1762 was_active = true;
1763 }
1764
1765 return was_active;
1766}
1767
1768/*
1769 * Handle SAM-esque emulation for generic transport request failures.
1770 */
1771void transport_generic_request_failure(struct se_cmd *cmd)
1772{
1773 int ret = 0;
1774
1775 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1776 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1777 cmd->t_task_cdb[0]);
1778 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1779 cmd->se_tfo->get_cmd_state(cmd),
1780 cmd->t_state, cmd->scsi_sense_reason);
1781 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1782 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1783 (cmd->transport_state & CMD_T_STOP) != 0,
1784 (cmd->transport_state & CMD_T_SENT) != 0);
1785
1786 /*
1787 * For SAM Task Attribute emulation for failed struct se_cmd
1788 */
1789 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1790 transport_complete_task_attr(cmd);
1791
1792 switch (cmd->scsi_sense_reason) {
1793 case TCM_NON_EXISTENT_LUN:
1794 case TCM_UNSUPPORTED_SCSI_OPCODE:
1795 case TCM_INVALID_CDB_FIELD:
1796 case TCM_INVALID_PARAMETER_LIST:
1797 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1798 case TCM_UNKNOWN_MODE_PAGE:
1799 case TCM_WRITE_PROTECTED:
1800 case TCM_ADDRESS_OUT_OF_RANGE:
1801 case TCM_CHECK_CONDITION_ABORT_CMD:
1802 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1803 case TCM_CHECK_CONDITION_NOT_READY:
1804 break;
1805 case TCM_RESERVATION_CONFLICT:
1806 /*
1807 * No SENSE Data payload for this case, set SCSI Status
1808 * and queue the response to $FABRIC_MOD.
1809 *
1810 * Uses linux/include/scsi/scsi.h SAM status codes defs
1811 */
1812 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1813 /*
1814 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1815 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1816 * CONFLICT STATUS.
1817 *
1818 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1819 */
1820 if (cmd->se_sess &&
1821 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1822 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1823 cmd->orig_fe_lun, 0x2C,
1824 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1825
1826 ret = cmd->se_tfo->queue_status(cmd);
1827 if (ret == -EAGAIN || ret == -ENOMEM)
1828 goto queue_full;
1829 goto check_stop;
1830 default:
1831 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1832 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1833 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1834 break;
1835 }
1836 /*
1837 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1838 * make the call to transport_send_check_condition_and_sense()
1839 * directly. Otherwise expect the fabric to make the call to
1840 * transport_send_check_condition_and_sense() after handling
1841 * possible unsoliticied write data payloads.
1842 */
1843 ret = transport_send_check_condition_and_sense(cmd,
1844 cmd->scsi_sense_reason, 0);
1845 if (ret == -EAGAIN || ret == -ENOMEM)
1846 goto queue_full;
1847
1848check_stop:
1849 transport_lun_remove_cmd(cmd);
1850 if (!transport_cmd_check_stop_to_fabric(cmd))
1851 ;
1852 return;
1853
1854queue_full:
1855 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1856 transport_handle_queue_full(cmd, cmd->se_dev);
1857}
1858EXPORT_SYMBOL(transport_generic_request_failure);
1859
1860static inline u32 transport_lba_21(unsigned char *cdb)
1861{
1862 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1863}
1864
1865static inline u32 transport_lba_32(unsigned char *cdb)
1866{
1867 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1868}
1869
1870static inline unsigned long long transport_lba_64(unsigned char *cdb)
1871{
1872 unsigned int __v1, __v2;
1873
1874 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1875 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1876
1877 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1878}
1879
1880/*
1881 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1882 */
1883static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1884{
1885 unsigned int __v1, __v2;
1886
1887 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1888 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1889
1890 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1891}
1892
1893static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1894{
1895 unsigned long flags;
1896
1897 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1898 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1899 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1900}
1901
1902/*
1903 * Called from Fabric Module context from transport_execute_tasks()
1904 *
1905 * The return of this function determins if the tasks from struct se_cmd
1906 * get added to the execution queue in transport_execute_tasks(),
1907 * or are added to the delayed or ordered lists here.
1908 */
1909static inline int transport_execute_task_attr(struct se_cmd *cmd)
1910{
1911 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1912 return 1;
1913 /*
1914 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1915 * to allow the passed struct se_cmd list of tasks to the front of the list.
1916 */
1917 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1918 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1919 " 0x%02x, se_ordered_id: %u\n",
1920 cmd->t_task_cdb[0],
1921 cmd->se_ordered_id);
1922 return 1;
1923 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1924 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1925 smp_mb__after_atomic_inc();
1926
1927 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1928 " list, se_ordered_id: %u\n",
1929 cmd->t_task_cdb[0],
1930 cmd->se_ordered_id);
1931 /*
1932 * Add ORDERED command to tail of execution queue if
1933 * no other older commands exist that need to be
1934 * completed first.
1935 */
1936 if (!atomic_read(&cmd->se_dev->simple_cmds))
1937 return 1;
1938 } else {
1939 /*
1940 * For SIMPLE and UNTAGGED Task Attribute commands
1941 */
1942 atomic_inc(&cmd->se_dev->simple_cmds);
1943 smp_mb__after_atomic_inc();
1944 }
1945 /*
1946 * Otherwise if one or more outstanding ORDERED task attribute exist,
1947 * add the dormant task(s) built for the passed struct se_cmd to the
1948 * execution queue and become in Active state for this struct se_device.
1949 */
1950 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1951 /*
1952 * Otherwise, add cmd w/ tasks to delayed cmd queue that
1953 * will be drained upon completion of HEAD_OF_QUEUE task.
1954 */
1955 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1956 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1957 list_add_tail(&cmd->se_delayed_node,
1958 &cmd->se_dev->delayed_cmd_list);
1959 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1960
1961 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1962 " delayed CMD list, se_ordered_id: %u\n",
1963 cmd->t_task_cdb[0], cmd->sam_task_attr,
1964 cmd->se_ordered_id);
1965 /*
1966 * Return zero to let transport_execute_tasks() know
1967 * not to add the delayed tasks to the execution list.
1968 */
1969 return 0;
1970 }
1971 /*
1972 * Otherwise, no ORDERED task attributes exist..
1973 */
1974 return 1;
1975}
1976
1977/*
1978 * Called from fabric module context in transport_generic_new_cmd() and
1979 * transport_generic_process_write()
1980 */
1981static void transport_execute_tasks(struct se_cmd *cmd)
1982{
1983 int add_tasks;
1984 struct se_device *se_dev = cmd->se_dev;
1985 /*
1986 * Call transport_cmd_check_stop() to see if a fabric exception
1987 * has occurred that prevents execution.
1988 */
1989 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
1990 /*
1991 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
1992 * attribute for the tasks of the received struct se_cmd CDB
1993 */
1994 add_tasks = transport_execute_task_attr(cmd);
1995 if (add_tasks) {
1996 __transport_execute_tasks(se_dev, cmd);
1997 return;
1998 }
1999 }
2000 __transport_execute_tasks(se_dev, NULL);
2001}
2002
2003static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2004{
2005 int error;
2006 struct se_cmd *cmd = NULL;
2007 unsigned long flags;
2008
2009check_depth:
2010 spin_lock_irq(&dev->execute_task_lock);
2011 if (new_cmd != NULL)
2012 __target_add_to_execute_list(new_cmd);
2013
2014 if (list_empty(&dev->execute_list)) {
2015 spin_unlock_irq(&dev->execute_task_lock);
2016 return 0;
2017 }
2018 cmd = list_first_entry(&dev->execute_list, struct se_cmd, execute_list);
2019 __target_remove_from_execute_list(cmd);
2020 spin_unlock_irq(&dev->execute_task_lock);
2021
2022 spin_lock_irqsave(&cmd->t_state_lock, flags);
2023 cmd->transport_state |= CMD_T_BUSY;
2024 cmd->transport_state |= CMD_T_SENT;
2025
2026 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2027
2028 if (cmd->execute_cmd)
2029 error = cmd->execute_cmd(cmd);
2030 else {
2031 error = dev->transport->execute_cmd(cmd, cmd->t_data_sg,
2032 cmd->t_data_nents, cmd->data_direction);
2033 }
2034
2035 if (error != 0) {
2036 spin_lock_irqsave(&cmd->t_state_lock, flags);
2037 cmd->transport_state &= ~CMD_T_BUSY;
2038 cmd->transport_state &= ~CMD_T_SENT;
2039 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2040
2041 transport_generic_request_failure(cmd);
2042 }
2043
2044 new_cmd = NULL;
2045 goto check_depth;
2046
2047 return 0;
2048}
2049
2050static inline u32 transport_get_sectors_6(
2051 unsigned char *cdb,
2052 struct se_cmd *cmd,
2053 int *ret)
2054{
2055 struct se_device *dev = cmd->se_dev;
2056
2057 /*
2058 * Assume TYPE_DISK for non struct se_device objects.
2059 * Use 8-bit sector value.
2060 */
2061 if (!dev)
2062 goto type_disk;
2063
2064 /*
2065 * Use 24-bit allocation length for TYPE_TAPE.
2066 */
2067 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2068 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2069
2070 /*
2071 * Everything else assume TYPE_DISK Sector CDB location.
2072 * Use 8-bit sector value. SBC-3 says:
2073 *
2074 * A TRANSFER LENGTH field set to zero specifies that 256
2075 * logical blocks shall be written. Any other value
2076 * specifies the number of logical blocks that shall be
2077 * written.
2078 */
2079type_disk:
2080 return cdb[4] ? : 256;
2081}
2082
2083static inline u32 transport_get_sectors_10(
2084 unsigned char *cdb,
2085 struct se_cmd *cmd,
2086 int *ret)
2087{
2088 struct se_device *dev = cmd->se_dev;
2089
2090 /*
2091 * Assume TYPE_DISK for non struct se_device objects.
2092 * Use 16-bit sector value.
2093 */
2094 if (!dev)
2095 goto type_disk;
2096
2097 /*
2098 * XXX_10 is not defined in SSC, throw an exception
2099 */
2100 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2101 *ret = -EINVAL;
2102 return 0;
2103 }
2104
2105 /*
2106 * Everything else assume TYPE_DISK Sector CDB location.
2107 * Use 16-bit sector value.
2108 */
2109type_disk:
2110 return (u32)(cdb[7] << 8) + cdb[8];
2111}
2112
2113static inline u32 transport_get_sectors_12(
2114 unsigned char *cdb,
2115 struct se_cmd *cmd,
2116 int *ret)
2117{
2118 struct se_device *dev = cmd->se_dev;
2119
2120 /*
2121 * Assume TYPE_DISK for non struct se_device objects.
2122 * Use 32-bit sector value.
2123 */
2124 if (!dev)
2125 goto type_disk;
2126
2127 /*
2128 * XXX_12 is not defined in SSC, throw an exception
2129 */
2130 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2131 *ret = -EINVAL;
2132 return 0;
2133 }
2134
2135 /*
2136 * Everything else assume TYPE_DISK Sector CDB location.
2137 * Use 32-bit sector value.
2138 */
2139type_disk:
2140 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2141}
2142
2143static inline u32 transport_get_sectors_16(
2144 unsigned char *cdb,
2145 struct se_cmd *cmd,
2146 int *ret)
2147{
2148 struct se_device *dev = cmd->se_dev;
2149
2150 /*
2151 * Assume TYPE_DISK for non struct se_device objects.
2152 * Use 32-bit sector value.
2153 */
2154 if (!dev)
2155 goto type_disk;
2156
2157 /*
2158 * Use 24-bit allocation length for TYPE_TAPE.
2159 */
2160 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2161 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2162
2163type_disk:
2164 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2165 (cdb[12] << 8) + cdb[13];
2166}
2167
2168/*
2169 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2170 */
2171static inline u32 transport_get_sectors_32(
2172 unsigned char *cdb,
2173 struct se_cmd *cmd,
2174 int *ret)
2175{
2176 /*
2177 * Assume TYPE_DISK for non struct se_device objects.
2178 * Use 32-bit sector value.
2179 */
2180 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2181 (cdb[30] << 8) + cdb[31];
2182
2183}
2184
2185static inline u32 transport_get_size(
2186 u32 sectors,
2187 unsigned char *cdb,
2188 struct se_cmd *cmd)
2189{
2190 struct se_device *dev = cmd->se_dev;
2191
2192 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2193 if (cdb[1] & 1) { /* sectors */
2194 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2195 } else /* bytes */
2196 return sectors;
2197 }
2198
2199 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2200 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size,
2201 sectors, dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2202 dev->transport->name);
2203
2204 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2205}
2206
2207static void transport_xor_callback(struct se_cmd *cmd)
2208{
2209 unsigned char *buf, *addr;
2210 struct scatterlist *sg;
2211 unsigned int offset;
2212 int i;
2213 int count;
2214 /*
2215 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2216 *
2217 * 1) read the specified logical block(s);
2218 * 2) transfer logical blocks from the data-out buffer;
2219 * 3) XOR the logical blocks transferred from the data-out buffer with
2220 * the logical blocks read, storing the resulting XOR data in a buffer;
2221 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2222 * blocks transferred from the data-out buffer; and
2223 * 5) transfer the resulting XOR data to the data-in buffer.
2224 */
2225 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2226 if (!buf) {
2227 pr_err("Unable to allocate xor_callback buf\n");
2228 return;
2229 }
2230 /*
2231 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2232 * into the locally allocated *buf
2233 */
2234 sg_copy_to_buffer(cmd->t_data_sg,
2235 cmd->t_data_nents,
2236 buf,
2237 cmd->data_length);
2238
2239 /*
2240 * Now perform the XOR against the BIDI read memory located at
2241 * cmd->t_mem_bidi_list
2242 */
2243
2244 offset = 0;
2245 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2246 addr = kmap_atomic(sg_page(sg));
2247 if (!addr)
2248 goto out;
2249
2250 for (i = 0; i < sg->length; i++)
2251 *(addr + sg->offset + i) ^= *(buf + offset + i);
2252
2253 offset += sg->length;
2254 kunmap_atomic(addr);
2255 }
2256
2257out:
2258 kfree(buf);
2259}
2260
2261/*
2262 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2263 */
2264static void transport_get_sense_data(struct se_cmd *cmd)
2265{
2266 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2267 struct se_device *dev = cmd->se_dev;
2268 unsigned long flags;
2269 u32 offset = 0;
2270
2271 WARN_ON(!cmd->se_lun);
2272
2273 if (!dev)
2274 return;
2275
2276 spin_lock_irqsave(&cmd->t_state_lock, flags);
2277 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2278 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2279 return;
2280 }
2281
2282 sense_buffer = dev->transport->get_sense_buffer(cmd);
2283 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2284
2285 offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
2286
2287 memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
2288
2289 /* Automatically padded */
2290 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
2291
2292 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
2293 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
2294}
2295
2296static inline long long transport_dev_end_lba(struct se_device *dev)
2297{
2298 return dev->transport->get_blocks(dev) + 1;
2299}
2300
2301static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2302{
2303 struct se_device *dev = cmd->se_dev;
2304 u32 sectors;
2305
2306 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2307 return 0;
2308
2309 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2310
2311 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2312 pr_err("LBA: %llu Sectors: %u exceeds"
2313 " transport_dev_end_lba(): %llu\n",
2314 cmd->t_task_lba, sectors,
2315 transport_dev_end_lba(dev));
2316 return -EINVAL;
2317 }
2318
2319 return 0;
2320}
2321
2322static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2323{
2324 /*
2325 * Determine if the received WRITE_SAME is used to for direct
2326 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2327 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2328 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2329 */
2330 int passthrough = (dev->transport->transport_type ==
2331 TRANSPORT_PLUGIN_PHBA_PDEV);
2332
2333 if (!passthrough) {
2334 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2335 pr_err("WRITE_SAME PBDATA and LBDATA"
2336 " bits not supported for Block Discard"
2337 " Emulation\n");
2338 return -ENOSYS;
2339 }
2340 /*
2341 * Currently for the emulated case we only accept
2342 * tpws with the UNMAP=1 bit set.
2343 */
2344 if (!(flags[0] & 0x08)) {
2345 pr_err("WRITE_SAME w/o UNMAP bit not"
2346 " supported for Block Discard Emulation\n");
2347 return -ENOSYS;
2348 }
2349 }
2350
2351 return 0;
2352}
2353
2354/* transport_generic_cmd_sequencer():
2355 *
2356 * Generic Command Sequencer that should work for most DAS transport
2357 * drivers.
2358 *
2359 * Called from target_setup_cmd_from_cdb() in the $FABRIC_MOD
2360 * RX Thread.
2361 *
2362 * FIXME: Need to support other SCSI OPCODES where as well.
2363 */
2364static int transport_generic_cmd_sequencer(
2365 struct se_cmd *cmd,
2366 unsigned char *cdb)
2367{
2368 struct se_device *dev = cmd->se_dev;
2369 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2370 int ret = 0, sector_ret = 0, passthrough;
2371 u32 sectors = 0, size = 0, pr_reg_type = 0;
2372 u16 service_action;
2373 u8 alua_ascq = 0;
2374 /*
2375 * Check for an existing UNIT ATTENTION condition
2376 */
2377 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2378 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2379 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2380 return -EINVAL;
2381 }
2382 /*
2383 * Check status of Asymmetric Logical Unit Assignment port
2384 */
2385 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2386 if (ret != 0) {
2387 /*
2388 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2389 * The ALUA additional sense code qualifier (ASCQ) is determined
2390 * by the ALUA primary or secondary access state..
2391 */
2392 if (ret > 0) {
2393 pr_debug("[%s]: ALUA TG Port not available,"
2394 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2395 cmd->se_tfo->get_fabric_name(), alua_ascq);
2396
2397 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2398 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2399 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2400 return -EINVAL;
2401 }
2402 goto out_invalid_cdb_field;
2403 }
2404 /*
2405 * Check status for SPC-3 Persistent Reservations
2406 */
2407 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2408 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2409 cmd, cdb, pr_reg_type) != 0) {
2410 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2411 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2412 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2413 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2414 return -EBUSY;
2415 }
2416 /*
2417 * This means the CDB is allowed for the SCSI Initiator port
2418 * when said port is *NOT* holding the legacy SPC-2 or
2419 * SPC-3 Persistent Reservation.
2420 */
2421 }
2422
2423 /*
2424 * If we operate in passthrough mode we skip most CDB emulation and
2425 * instead hand the commands down to the physical SCSI device.
2426 */
2427 passthrough =
2428 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2429
2430 switch (cdb[0]) {
2431 case READ_6:
2432 sectors = transport_get_sectors_6(cdb, cmd, §or_ret);
2433 if (sector_ret)
2434 goto out_unsupported_cdb;
2435 size = transport_get_size(sectors, cdb, cmd);
2436 cmd->t_task_lba = transport_lba_21(cdb);
2437 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2438 break;
2439 case READ_10:
2440 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2441 if (sector_ret)
2442 goto out_unsupported_cdb;
2443 size = transport_get_size(sectors, cdb, cmd);
2444 cmd->t_task_lba = transport_lba_32(cdb);
2445 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2446 break;
2447 case READ_12:
2448 sectors = transport_get_sectors_12(cdb, cmd, §or_ret);
2449 if (sector_ret)
2450 goto out_unsupported_cdb;
2451 size = transport_get_size(sectors, cdb, cmd);
2452 cmd->t_task_lba = transport_lba_32(cdb);
2453 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2454 break;
2455 case READ_16:
2456 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
2457 if (sector_ret)
2458 goto out_unsupported_cdb;
2459 size = transport_get_size(sectors, cdb, cmd);
2460 cmd->t_task_lba = transport_lba_64(cdb);
2461 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2462 break;
2463 case WRITE_6:
2464 sectors = transport_get_sectors_6(cdb, cmd, §or_ret);
2465 if (sector_ret)
2466 goto out_unsupported_cdb;
2467 size = transport_get_size(sectors, cdb, cmd);
2468 cmd->t_task_lba = transport_lba_21(cdb);
2469 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2470 break;
2471 case WRITE_10:
2472 case WRITE_VERIFY:
2473 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2474 if (sector_ret)
2475 goto out_unsupported_cdb;
2476 size = transport_get_size(sectors, cdb, cmd);
2477 cmd->t_task_lba = transport_lba_32(cdb);
2478 if (cdb[1] & 0x8)
2479 cmd->se_cmd_flags |= SCF_FUA;
2480 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2481 break;
2482 case WRITE_12:
2483 sectors = transport_get_sectors_12(cdb, cmd, §or_ret);
2484 if (sector_ret)
2485 goto out_unsupported_cdb;
2486 size = transport_get_size(sectors, cdb, cmd);
2487 cmd->t_task_lba = transport_lba_32(cdb);
2488 if (cdb[1] & 0x8)
2489 cmd->se_cmd_flags |= SCF_FUA;
2490 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2491 break;
2492 case WRITE_16:
2493 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
2494 if (sector_ret)
2495 goto out_unsupported_cdb;
2496 size = transport_get_size(sectors, cdb, cmd);
2497 cmd->t_task_lba = transport_lba_64(cdb);
2498 if (cdb[1] & 0x8)
2499 cmd->se_cmd_flags |= SCF_FUA;
2500 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2501 break;
2502 case XDWRITEREAD_10:
2503 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2504 !(cmd->se_cmd_flags & SCF_BIDI))
2505 goto out_invalid_cdb_field;
2506 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2507 if (sector_ret)
2508 goto out_unsupported_cdb;
2509 size = transport_get_size(sectors, cdb, cmd);
2510 cmd->t_task_lba = transport_lba_32(cdb);
2511 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2512
2513 /*
2514 * Do now allow BIDI commands for passthrough mode.
2515 */
2516 if (passthrough)
2517 goto out_unsupported_cdb;
2518
2519 /*
2520 * Setup BIDI XOR callback to be run after I/O completion.
2521 */
2522 cmd->transport_complete_callback = &transport_xor_callback;
2523 if (cdb[1] & 0x8)
2524 cmd->se_cmd_flags |= SCF_FUA;
2525 break;
2526 case VARIABLE_LENGTH_CMD:
2527 service_action = get_unaligned_be16(&cdb[8]);
2528 switch (service_action) {
2529 case XDWRITEREAD_32:
2530 sectors = transport_get_sectors_32(cdb, cmd, §or_ret);
2531 if (sector_ret)
2532 goto out_unsupported_cdb;
2533 size = transport_get_size(sectors, cdb, cmd);
2534 /*
2535 * Use WRITE_32 and READ_32 opcodes for the emulated
2536 * XDWRITE_READ_32 logic.
2537 */
2538 cmd->t_task_lba = transport_lba_64_ext(cdb);
2539 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2540
2541 /*
2542 * Do now allow BIDI commands for passthrough mode.
2543 */
2544 if (passthrough)
2545 goto out_unsupported_cdb;
2546
2547 /*
2548 * Setup BIDI XOR callback to be run during after I/O
2549 * completion.
2550 */
2551 cmd->transport_complete_callback = &transport_xor_callback;
2552 if (cdb[1] & 0x8)
2553 cmd->se_cmd_flags |= SCF_FUA;
2554 break;
2555 case WRITE_SAME_32:
2556 sectors = transport_get_sectors_32(cdb, cmd, §or_ret);
2557 if (sector_ret)
2558 goto out_unsupported_cdb;
2559
2560 if (sectors)
2561 size = transport_get_size(1, cdb, cmd);
2562 else {
2563 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2564 " supported\n");
2565 goto out_invalid_cdb_field;
2566 }
2567
2568 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2569 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2570
2571 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2572 goto out_unsupported_cdb;
2573 if (!passthrough)
2574 cmd->execute_cmd = target_emulate_write_same;
2575 break;
2576 default:
2577 pr_err("VARIABLE_LENGTH_CMD service action"
2578 " 0x%04x not supported\n", service_action);
2579 goto out_unsupported_cdb;
2580 }
2581 break;
2582 case MAINTENANCE_IN:
2583 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2584 /* MAINTENANCE_IN from SCC-2 */
2585 /*
2586 * Check for emulated MI_REPORT_TARGET_PGS.
2587 */
2588 if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS &&
2589 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2590 cmd->execute_cmd =
2591 target_emulate_report_target_port_groups;
2592 }
2593 size = (cdb[6] << 24) | (cdb[7] << 16) |
2594 (cdb[8] << 8) | cdb[9];
2595 } else {
2596 /* GPCMD_SEND_KEY from multi media commands */
2597 size = (cdb[8] << 8) + cdb[9];
2598 }
2599 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2600 break;
2601 case MODE_SELECT:
2602 size = cdb[4];
2603 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2604 break;
2605 case MODE_SELECT_10:
2606 size = (cdb[7] << 8) + cdb[8];
2607 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2608 break;
2609 case MODE_SENSE:
2610 size = cdb[4];
2611 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2612 if (!passthrough)
2613 cmd->execute_cmd = target_emulate_modesense;
2614 break;
2615 case MODE_SENSE_10:
2616 size = (cdb[7] << 8) + cdb[8];
2617 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2618 if (!passthrough)
2619 cmd->execute_cmd = target_emulate_modesense;
2620 break;
2621 case GPCMD_READ_BUFFER_CAPACITY:
2622 case GPCMD_SEND_OPC:
2623 case LOG_SELECT:
2624 case LOG_SENSE:
2625 size = (cdb[7] << 8) + cdb[8];
2626 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2627 break;
2628 case READ_BLOCK_LIMITS:
2629 size = READ_BLOCK_LEN;
2630 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2631 break;
2632 case GPCMD_GET_CONFIGURATION:
2633 case GPCMD_READ_FORMAT_CAPACITIES:
2634 case GPCMD_READ_DISC_INFO:
2635 case GPCMD_READ_TRACK_RZONE_INFO:
2636 size = (cdb[7] << 8) + cdb[8];
2637 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2638 break;
2639 case PERSISTENT_RESERVE_IN:
2640 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2641 cmd->execute_cmd = target_scsi3_emulate_pr_in;
2642 size = (cdb[7] << 8) + cdb[8];
2643 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2644 break;
2645 case PERSISTENT_RESERVE_OUT:
2646 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2647 cmd->execute_cmd = target_scsi3_emulate_pr_out;
2648 size = (cdb[7] << 8) + cdb[8];
2649 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2650 break;
2651 case GPCMD_MECHANISM_STATUS:
2652 case GPCMD_READ_DVD_STRUCTURE:
2653 size = (cdb[8] << 8) + cdb[9];
2654 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2655 break;
2656 case READ_POSITION:
2657 size = READ_POSITION_LEN;
2658 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2659 break;
2660 case MAINTENANCE_OUT:
2661 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2662 /* MAINTENANCE_OUT from SCC-2
2663 *
2664 * Check for emulated MO_SET_TARGET_PGS.
2665 */
2666 if (cdb[1] == MO_SET_TARGET_PGS &&
2667 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2668 cmd->execute_cmd =
2669 target_emulate_set_target_port_groups;
2670 }
2671
2672 size = (cdb[6] << 24) | (cdb[7] << 16) |
2673 (cdb[8] << 8) | cdb[9];
2674 } else {
2675 /* GPCMD_REPORT_KEY from multi media commands */
2676 size = (cdb[8] << 8) + cdb[9];
2677 }
2678 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2679 break;
2680 case INQUIRY:
2681 size = (cdb[3] << 8) + cdb[4];
2682 /*
2683 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2684 * See spc4r17 section 5.3
2685 */
2686 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2687 cmd->sam_task_attr = MSG_HEAD_TAG;
2688 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2689 if (!passthrough)
2690 cmd->execute_cmd = target_emulate_inquiry;
2691 break;
2692 case READ_BUFFER:
2693 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2694 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2695 break;
2696 case READ_CAPACITY:
2697 size = READ_CAP_LEN;
2698 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2699 if (!passthrough)
2700 cmd->execute_cmd = target_emulate_readcapacity;
2701 break;
2702 case READ_MEDIA_SERIAL_NUMBER:
2703 case SECURITY_PROTOCOL_IN:
2704 case SECURITY_PROTOCOL_OUT:
2705 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2706 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2707 break;
2708 case SERVICE_ACTION_IN:
2709 switch (cmd->t_task_cdb[1] & 0x1f) {
2710 case SAI_READ_CAPACITY_16:
2711 if (!passthrough)
2712 cmd->execute_cmd =
2713 target_emulate_readcapacity_16;
2714 break;
2715 default:
2716 if (passthrough)
2717 break;
2718
2719 pr_err("Unsupported SA: 0x%02x\n",
2720 cmd->t_task_cdb[1] & 0x1f);
2721 goto out_invalid_cdb_field;
2722 }
2723 /*FALLTHROUGH*/
2724 case ACCESS_CONTROL_IN:
2725 case ACCESS_CONTROL_OUT:
2726 case EXTENDED_COPY:
2727 case READ_ATTRIBUTE:
2728 case RECEIVE_COPY_RESULTS:
2729 case WRITE_ATTRIBUTE:
2730 size = (cdb[10] << 24) | (cdb[11] << 16) |
2731 (cdb[12] << 8) | cdb[13];
2732 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2733 break;
2734 case RECEIVE_DIAGNOSTIC:
2735 case SEND_DIAGNOSTIC:
2736 size = (cdb[3] << 8) | cdb[4];
2737 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2738 break;
2739/* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2740#if 0
2741 case GPCMD_READ_CD:
2742 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2743 size = (2336 * sectors);
2744 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2745 break;
2746#endif
2747 case READ_TOC:
2748 size = cdb[8];
2749 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2750 break;
2751 case REQUEST_SENSE:
2752 size = cdb[4];
2753 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2754 if (!passthrough)
2755 cmd->execute_cmd = target_emulate_request_sense;
2756 break;
2757 case READ_ELEMENT_STATUS:
2758 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2759 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2760 break;
2761 case WRITE_BUFFER:
2762 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2763 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2764 break;
2765 case RESERVE:
2766 case RESERVE_10:
2767 /*
2768 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2769 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2770 */
2771 if (cdb[0] == RESERVE_10)
2772 size = (cdb[7] << 8) | cdb[8];
2773 else
2774 size = cmd->data_length;
2775
2776 /*
2777 * Setup the legacy emulated handler for SPC-2 and
2778 * >= SPC-3 compatible reservation handling (CRH=1)
2779 * Otherwise, we assume the underlying SCSI logic is
2780 * is running in SPC_PASSTHROUGH, and wants reservations
2781 * emulation disabled.
2782 */
2783 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2784 cmd->execute_cmd = target_scsi2_reservation_reserve;
2785 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2786 break;
2787 case RELEASE:
2788 case RELEASE_10:
2789 /*
2790 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2791 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2792 */
2793 if (cdb[0] == RELEASE_10)
2794 size = (cdb[7] << 8) | cdb[8];
2795 else
2796 size = cmd->data_length;
2797
2798 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2799 cmd->execute_cmd = target_scsi2_reservation_release;
2800 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2801 break;
2802 case SYNCHRONIZE_CACHE:
2803 case SYNCHRONIZE_CACHE_16:
2804 /*
2805 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2806 */
2807 if (cdb[0] == SYNCHRONIZE_CACHE) {
2808 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2809 cmd->t_task_lba = transport_lba_32(cdb);
2810 } else {
2811 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
2812 cmd->t_task_lba = transport_lba_64(cdb);
2813 }
2814 if (sector_ret)
2815 goto out_unsupported_cdb;
2816
2817 size = transport_get_size(sectors, cdb, cmd);
2818 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2819
2820 if (passthrough)
2821 break;
2822
2823 /*
2824 * Check to ensure that LBA + Range does not exceed past end of
2825 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2826 */
2827 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2828 if (transport_cmd_get_valid_sectors(cmd) < 0)
2829 goto out_invalid_cdb_field;
2830 }
2831 cmd->execute_cmd = target_emulate_synchronize_cache;
2832 break;
2833 case UNMAP:
2834 size = get_unaligned_be16(&cdb[7]);
2835 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 if (!passthrough)
2837 cmd->execute_cmd = target_emulate_unmap;
2838 break;
2839 case WRITE_SAME_16:
2840 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
2841 if (sector_ret)
2842 goto out_unsupported_cdb;
2843
2844 if (sectors)
2845 size = transport_get_size(1, cdb, cmd);
2846 else {
2847 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2848 goto out_invalid_cdb_field;
2849 }
2850
2851 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2852 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2853
2854 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2855 goto out_unsupported_cdb;
2856 if (!passthrough)
2857 cmd->execute_cmd = target_emulate_write_same;
2858 break;
2859 case WRITE_SAME:
2860 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2861 if (sector_ret)
2862 goto out_unsupported_cdb;
2863
2864 if (sectors)
2865 size = transport_get_size(1, cdb, cmd);
2866 else {
2867 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2868 goto out_invalid_cdb_field;
2869 }
2870
2871 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2872 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2873 /*
2874 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2875 * of byte 1 bit 3 UNMAP instead of original reserved field
2876 */
2877 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2878 goto out_unsupported_cdb;
2879 if (!passthrough)
2880 cmd->execute_cmd = target_emulate_write_same;
2881 break;
2882 case ALLOW_MEDIUM_REMOVAL:
2883 case ERASE:
2884 case REZERO_UNIT:
2885 case SEEK_10:
2886 case SPACE:
2887 case START_STOP:
2888 case TEST_UNIT_READY:
2889 case VERIFY:
2890 case WRITE_FILEMARKS:
2891 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2892 if (!passthrough)
2893 cmd->execute_cmd = target_emulate_noop;
2894 break;
2895 case GPCMD_CLOSE_TRACK:
2896 case INITIALIZE_ELEMENT_STATUS:
2897 case GPCMD_LOAD_UNLOAD:
2898 case GPCMD_SET_SPEED:
2899 case MOVE_MEDIUM:
2900 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2901 break;
2902 case REPORT_LUNS:
2903 cmd->execute_cmd = target_report_luns;
2904 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2905 /*
2906 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
2907 * See spc4r17 section 5.3
2908 */
2909 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2910 cmd->sam_task_attr = MSG_HEAD_TAG;
2911 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2912 break;
2913 case GET_EVENT_STATUS_NOTIFICATION:
2914 size = (cdb[7] << 8) | cdb[8];
2915 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2916 break;
2917 case ATA_16:
2918 /* Only support ATA passthrough to pSCSI backends.. */
2919 if (!passthrough)
2920 goto out_unsupported_cdb;
2921
2922 /* T_LENGTH */
2923 switch (cdb[2] & 0x3) {
2924 case 0x0:
2925 sectors = 0;
2926 break;
2927 case 0x1:
2928 sectors = (((cdb[1] & 0x1) ? cdb[3] : 0) << 8) | cdb[4];
2929 break;
2930 case 0x2:
2931 sectors = (((cdb[1] & 0x1) ? cdb[5] : 0) << 8) | cdb[6];
2932 break;
2933 case 0x3:
2934 pr_err("T_LENGTH=0x3 not supported for ATA_16\n");
2935 goto out_invalid_cdb_field;
2936 }
2937
2938 /* BYTE_BLOCK */
2939 if (cdb[2] & 0x4) {
2940 /* BLOCK T_TYPE: 512 or sector */
2941 size = sectors * ((cdb[2] & 0x10) ?
2942 dev->se_sub_dev->se_dev_attrib.block_size : 512);
2943 } else {
2944 /* BYTE */
2945 size = sectors;
2946 }
2947 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2948 break;
2949 default:
2950 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
2951 " 0x%02x, sending CHECK_CONDITION.\n",
2952 cmd->se_tfo->get_fabric_name(), cdb[0]);
2953 goto out_unsupported_cdb;
2954 }
2955
2956 if (cmd->unknown_data_length)
2957 cmd->data_length = size;
2958
2959 if (size != cmd->data_length) {
2960 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
2961 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
2962 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
2963 cmd->data_length, size, cdb[0]);
2964
2965 cmd->cmd_spdtl = size;
2966
2967 if (cmd->data_direction == DMA_TO_DEVICE) {
2968 pr_err("Rejecting underflow/overflow"
2969 " WRITE data\n");
2970 goto out_invalid_cdb_field;
2971 }
2972 /*
2973 * Reject READ_* or WRITE_* with overflow/underflow for
2974 * type SCF_SCSI_DATA_SG_IO_CDB.
2975 */
2976 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
2977 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
2978 " CDB on non 512-byte sector setup subsystem"
2979 " plugin: %s\n", dev->transport->name);
2980 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
2981 goto out_invalid_cdb_field;
2982 }
2983 /*
2984 * For the overflow case keep the existing fabric provided
2985 * ->data_length. Otherwise for the underflow case, reset
2986 * ->data_length to the smaller SCSI expected data transfer
2987 * length.
2988 */
2989 if (size > cmd->data_length) {
2990 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
2991 cmd->residual_count = (size - cmd->data_length);
2992 } else {
2993 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
2994 cmd->residual_count = (cmd->data_length - size);
2995 cmd->data_length = size;
2996 }
2997 }
2998
2999 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3000 if (sectors > su_dev->se_dev_attrib.fabric_max_sectors) {
3001 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too"
3002 " big sectors %u exceeds fabric_max_sectors:"
3003 " %u\n", cdb[0], sectors,
3004 su_dev->se_dev_attrib.fabric_max_sectors);
3005 goto out_invalid_cdb_field;
3006 }
3007 if (sectors > su_dev->se_dev_attrib.hw_max_sectors) {
3008 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too"
3009 " big sectors %u exceeds backend hw_max_sectors:"
3010 " %u\n", cdb[0], sectors,
3011 su_dev->se_dev_attrib.hw_max_sectors);
3012 goto out_invalid_cdb_field;
3013 }
3014 }
3015
3016 /* reject any command that we don't have a handler for */
3017 if (!(passthrough || cmd->execute_cmd ||
3018 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3019 goto out_unsupported_cdb;
3020
3021 transport_set_supported_SAM_opcode(cmd);
3022 return ret;
3023
3024out_unsupported_cdb:
3025 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3026 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3027 return -EINVAL;
3028out_invalid_cdb_field:
3029 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3030 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3031 return -EINVAL;
3032}
3033
3034/*
3035 * Called from I/O completion to determine which dormant/delayed
3036 * and ordered cmds need to have their tasks added to the execution queue.
3037 */
3038static void transport_complete_task_attr(struct se_cmd *cmd)
3039{
3040 struct se_device *dev = cmd->se_dev;
3041 struct se_cmd *cmd_p, *cmd_tmp;
3042 int new_active_tasks = 0;
3043
3044 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3045 atomic_dec(&dev->simple_cmds);
3046 smp_mb__after_atomic_dec();
3047 dev->dev_cur_ordered_id++;
3048 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3049 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3050 cmd->se_ordered_id);
3051 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3052 dev->dev_cur_ordered_id++;
3053 pr_debug("Incremented dev_cur_ordered_id: %u for"
3054 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3055 cmd->se_ordered_id);
3056 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3057 atomic_dec(&dev->dev_ordered_sync);
3058 smp_mb__after_atomic_dec();
3059
3060 dev->dev_cur_ordered_id++;
3061 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3062 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3063 }
3064 /*
3065 * Process all commands up to the last received
3066 * ORDERED task attribute which requires another blocking
3067 * boundary
3068 */
3069 spin_lock(&dev->delayed_cmd_lock);
3070 list_for_each_entry_safe(cmd_p, cmd_tmp,
3071 &dev->delayed_cmd_list, se_delayed_node) {
3072
3073 list_del(&cmd_p->se_delayed_node);
3074 spin_unlock(&dev->delayed_cmd_lock);
3075
3076 pr_debug("Calling add_tasks() for"
3077 " cmd_p: 0x%02x Task Attr: 0x%02x"
3078 " Dormant -> Active, se_ordered_id: %u\n",
3079 cmd_p->t_task_cdb[0],
3080 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3081
3082 target_add_to_execute_list(cmd_p);
3083 new_active_tasks++;
3084
3085 spin_lock(&dev->delayed_cmd_lock);
3086 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3087 break;
3088 }
3089 spin_unlock(&dev->delayed_cmd_lock);
3090 /*
3091 * If new tasks have become active, wake up the transport thread
3092 * to do the processing of the Active tasks.
3093 */
3094 if (new_active_tasks != 0)
3095 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3096}
3097
3098static void transport_complete_qf(struct se_cmd *cmd)
3099{
3100 int ret = 0;
3101
3102 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3103 transport_complete_task_attr(cmd);
3104
3105 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3106 ret = cmd->se_tfo->queue_status(cmd);
3107 if (ret)
3108 goto out;
3109 }
3110
3111 switch (cmd->data_direction) {
3112 case DMA_FROM_DEVICE:
3113 ret = cmd->se_tfo->queue_data_in(cmd);
3114 break;
3115 case DMA_TO_DEVICE:
3116 if (cmd->t_bidi_data_sg) {
3117 ret = cmd->se_tfo->queue_data_in(cmd);
3118 if (ret < 0)
3119 break;
3120 }
3121 /* Fall through for DMA_TO_DEVICE */
3122 case DMA_NONE:
3123 ret = cmd->se_tfo->queue_status(cmd);
3124 break;
3125 default:
3126 break;
3127 }
3128
3129out:
3130 if (ret < 0) {
3131 transport_handle_queue_full(cmd, cmd->se_dev);
3132 return;
3133 }
3134 transport_lun_remove_cmd(cmd);
3135 transport_cmd_check_stop_to_fabric(cmd);
3136}
3137
3138static void transport_handle_queue_full(
3139 struct se_cmd *cmd,
3140 struct se_device *dev)
3141{
3142 spin_lock_irq(&dev->qf_cmd_lock);
3143 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3144 atomic_inc(&dev->dev_qf_count);
3145 smp_mb__after_atomic_inc();
3146 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3147
3148 schedule_work(&cmd->se_dev->qf_work_queue);
3149}
3150
3151static void target_complete_ok_work(struct work_struct *work)
3152{
3153 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3154 int ret;
3155
3156 /*
3157 * Check if we need to move delayed/dormant tasks from cmds on the
3158 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3159 * Attribute.
3160 */
3161 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3162 transport_complete_task_attr(cmd);
3163 /*
3164 * Check to schedule QUEUE_FULL work, or execute an existing
3165 * cmd->transport_qf_callback()
3166 */
3167 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3168 schedule_work(&cmd->se_dev->qf_work_queue);
3169
3170 /*
3171 * Check if we need to retrieve a sense buffer from
3172 * the struct se_cmd in question.
3173 */
3174 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3175 WARN_ON(!cmd->scsi_status);
3176 transport_get_sense_data(cmd);
3177 ret = transport_send_check_condition_and_sense(
3178 cmd, 0, 1);
3179 if (ret == -EAGAIN || ret == -ENOMEM)
3180 goto queue_full;
3181
3182 transport_lun_remove_cmd(cmd);
3183 transport_cmd_check_stop_to_fabric(cmd);
3184 return;
3185 }
3186 /*
3187 * Check for a callback, used by amongst other things
3188 * XDWRITE_READ_10 emulation.
3189 */
3190 if (cmd->transport_complete_callback)
3191 cmd->transport_complete_callback(cmd);
3192
3193 switch (cmd->data_direction) {
3194 case DMA_FROM_DEVICE:
3195 spin_lock(&cmd->se_lun->lun_sep_lock);
3196 if (cmd->se_lun->lun_sep) {
3197 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3198 cmd->data_length;
3199 }
3200 spin_unlock(&cmd->se_lun->lun_sep_lock);
3201
3202 ret = cmd->se_tfo->queue_data_in(cmd);
3203 if (ret == -EAGAIN || ret == -ENOMEM)
3204 goto queue_full;
3205 break;
3206 case DMA_TO_DEVICE:
3207 spin_lock(&cmd->se_lun->lun_sep_lock);
3208 if (cmd->se_lun->lun_sep) {
3209 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3210 cmd->data_length;
3211 }
3212 spin_unlock(&cmd->se_lun->lun_sep_lock);
3213 /*
3214 * Check if we need to send READ payload for BIDI-COMMAND
3215 */
3216 if (cmd->t_bidi_data_sg) {
3217 spin_lock(&cmd->se_lun->lun_sep_lock);
3218 if (cmd->se_lun->lun_sep) {
3219 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3220 cmd->data_length;
3221 }
3222 spin_unlock(&cmd->se_lun->lun_sep_lock);
3223 ret = cmd->se_tfo->queue_data_in(cmd);
3224 if (ret == -EAGAIN || ret == -ENOMEM)
3225 goto queue_full;
3226 break;
3227 }
3228 /* Fall through for DMA_TO_DEVICE */
3229 case DMA_NONE:
3230 ret = cmd->se_tfo->queue_status(cmd);
3231 if (ret == -EAGAIN || ret == -ENOMEM)
3232 goto queue_full;
3233 break;
3234 default:
3235 break;
3236 }
3237
3238 transport_lun_remove_cmd(cmd);
3239 transport_cmd_check_stop_to_fabric(cmd);
3240 return;
3241
3242queue_full:
3243 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3244 " data_direction: %d\n", cmd, cmd->data_direction);
3245 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3246 transport_handle_queue_full(cmd, cmd->se_dev);
3247}
3248
3249static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3250{
3251 struct scatterlist *sg;
3252 int count;
3253
3254 for_each_sg(sgl, sg, nents, count)
3255 __free_page(sg_page(sg));
3256
3257 kfree(sgl);
3258}
3259
3260static inline void transport_free_pages(struct se_cmd *cmd)
3261{
3262 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3263 return;
3264
3265 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3266 cmd->t_data_sg = NULL;
3267 cmd->t_data_nents = 0;
3268
3269 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3270 cmd->t_bidi_data_sg = NULL;
3271 cmd->t_bidi_data_nents = 0;
3272}
3273
3274/**
3275 * transport_release_cmd - free a command
3276 * @cmd: command to free
3277 *
3278 * This routine unconditionally frees a command, and reference counting
3279 * or list removal must be done in the caller.
3280 */
3281static void transport_release_cmd(struct se_cmd *cmd)
3282{
3283 BUG_ON(!cmd->se_tfo);
3284
3285 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3286 core_tmr_release_req(cmd->se_tmr_req);
3287 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3288 kfree(cmd->t_task_cdb);
3289 /*
3290 * If this cmd has been setup with target_get_sess_cmd(), drop
3291 * the kref and call ->release_cmd() in kref callback.
3292 */
3293 if (cmd->check_release != 0) {
3294 target_put_sess_cmd(cmd->se_sess, cmd);
3295 return;
3296 }
3297 cmd->se_tfo->release_cmd(cmd);
3298}
3299
3300/**
3301 * transport_put_cmd - release a reference to a command
3302 * @cmd: command to release
3303 *
3304 * This routine releases our reference to the command and frees it if possible.
3305 */
3306static void transport_put_cmd(struct se_cmd *cmd)
3307{
3308 unsigned long flags;
3309
3310 spin_lock_irqsave(&cmd->t_state_lock, flags);
3311 if (atomic_read(&cmd->t_fe_count)) {
3312 if (!atomic_dec_and_test(&cmd->t_fe_count))
3313 goto out_busy;
3314 }
3315
3316 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3317 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3318 target_remove_from_state_list(cmd);
3319 }
3320 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3321
3322 transport_free_pages(cmd);
3323 transport_release_cmd(cmd);
3324 return;
3325out_busy:
3326 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3327}
3328
3329/*
3330 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3331 * allocating in the core.
3332 * @cmd: Associated se_cmd descriptor
3333 * @mem: SGL style memory for TCM WRITE / READ
3334 * @sg_mem_num: Number of SGL elements
3335 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3336 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3337 *
3338 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3339 * of parameters.
3340 */
3341int transport_generic_map_mem_to_cmd(
3342 struct se_cmd *cmd,
3343 struct scatterlist *sgl,
3344 u32 sgl_count,
3345 struct scatterlist *sgl_bidi,
3346 u32 sgl_bidi_count)
3347{
3348 if (!sgl || !sgl_count)
3349 return 0;
3350
3351 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3352 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3353 /*
3354 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3355 * scatterlists already have been set to follow what the fabric
3356 * passes for the original expected data transfer length.
3357 */
3358 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3359 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3360 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3361 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3362 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3363 return -EINVAL;
3364 }
3365
3366 cmd->t_data_sg = sgl;
3367 cmd->t_data_nents = sgl_count;
3368
3369 if (sgl_bidi && sgl_bidi_count) {
3370 cmd->t_bidi_data_sg = sgl_bidi;
3371 cmd->t_bidi_data_nents = sgl_bidi_count;
3372 }
3373 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3374 }
3375
3376 return 0;
3377}
3378EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3379
3380void *transport_kmap_data_sg(struct se_cmd *cmd)
3381{
3382 struct scatterlist *sg = cmd->t_data_sg;
3383 struct page **pages;
3384 int i;
3385
3386 BUG_ON(!sg);
3387 /*
3388 * We need to take into account a possible offset here for fabrics like
3389 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3390 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3391 */
3392 if (!cmd->t_data_nents)
3393 return NULL;
3394 else if (cmd->t_data_nents == 1)
3395 return kmap(sg_page(sg)) + sg->offset;
3396
3397 /* >1 page. use vmap */
3398 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3399 if (!pages)
3400 return NULL;
3401
3402 /* convert sg[] to pages[] */
3403 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3404 pages[i] = sg_page(sg);
3405 }
3406
3407 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
3408 kfree(pages);
3409 if (!cmd->t_data_vmap)
3410 return NULL;
3411
3412 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3413}
3414EXPORT_SYMBOL(transport_kmap_data_sg);
3415
3416void transport_kunmap_data_sg(struct se_cmd *cmd)
3417{
3418 if (!cmd->t_data_nents) {
3419 return;
3420 } else if (cmd->t_data_nents == 1) {
3421 kunmap(sg_page(cmd->t_data_sg));
3422 return;
3423 }
3424
3425 vunmap(cmd->t_data_vmap);
3426 cmd->t_data_vmap = NULL;
3427}
3428EXPORT_SYMBOL(transport_kunmap_data_sg);
3429
3430static int
3431transport_generic_get_mem(struct se_cmd *cmd)
3432{
3433 u32 length = cmd->data_length;
3434 unsigned int nents;
3435 struct page *page;
3436 gfp_t zero_flag;
3437 int i = 0;
3438
3439 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3440 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3441 if (!cmd->t_data_sg)
3442 return -ENOMEM;
3443
3444 cmd->t_data_nents = nents;
3445 sg_init_table(cmd->t_data_sg, nents);
3446
3447 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3448
3449 while (length) {
3450 u32 page_len = min_t(u32, length, PAGE_SIZE);
3451 page = alloc_page(GFP_KERNEL | zero_flag);
3452 if (!page)
3453 goto out;
3454
3455 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3456 length -= page_len;
3457 i++;
3458 }
3459 return 0;
3460
3461out:
3462 while (i > 0) {
3463 i--;
3464 __free_page(sg_page(&cmd->t_data_sg[i]));
3465 }
3466 kfree(cmd->t_data_sg);
3467 cmd->t_data_sg = NULL;
3468 return -ENOMEM;
3469}
3470
3471/*
3472 * Allocate any required resources to execute the command. For writes we
3473 * might not have the payload yet, so notify the fabric via a call to
3474 * ->write_pending instead. Otherwise place it on the execution queue.
3475 */
3476int transport_generic_new_cmd(struct se_cmd *cmd)
3477{
3478 struct se_device *dev = cmd->se_dev;
3479 int ret = 0;
3480
3481 /*
3482 * Determine is the TCM fabric module has already allocated physical
3483 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3484 * beforehand.
3485 */
3486 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3487 cmd->data_length) {
3488 ret = transport_generic_get_mem(cmd);
3489 if (ret < 0)
3490 goto out_fail;
3491 }
3492
3493 /* Workaround for handling zero-length control CDBs */
3494 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3495 !cmd->data_length) {
3496 spin_lock_irq(&cmd->t_state_lock);
3497 cmd->t_state = TRANSPORT_COMPLETE;
3498 cmd->transport_state |= CMD_T_ACTIVE;
3499 spin_unlock_irq(&cmd->t_state_lock);
3500
3501 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3502 u8 ua_asc = 0, ua_ascq = 0;
3503
3504 core_scsi3_ua_clear_for_request_sense(cmd,
3505 &ua_asc, &ua_ascq);
3506 }
3507
3508 INIT_WORK(&cmd->work, target_complete_ok_work);
3509 queue_work(target_completion_wq, &cmd->work);
3510 return 0;
3511 }
3512
3513 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3514 struct se_dev_attrib *attr = &dev->se_sub_dev->se_dev_attrib;
3515
3516 if (transport_cmd_get_valid_sectors(cmd) < 0)
3517 return -EINVAL;
3518
3519 BUG_ON(cmd->data_length % attr->block_size);
3520 BUG_ON(DIV_ROUND_UP(cmd->data_length, attr->block_size) >
3521 attr->hw_max_sectors);
3522 }
3523
3524 atomic_inc(&cmd->t_fe_count);
3525
3526 /*
3527 * For WRITEs, let the fabric know its buffer is ready.
3528 *
3529 * The command will be added to the execution queue after its write
3530 * data has arrived.
3531 */
3532 if (cmd->data_direction == DMA_TO_DEVICE) {
3533 target_add_to_state_list(cmd);
3534 return transport_generic_write_pending(cmd);
3535 }
3536 /*
3537 * Everything else but a WRITE, add the command to the execution queue.
3538 */
3539 transport_execute_tasks(cmd);
3540 return 0;
3541
3542out_fail:
3543 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3544 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3545 return -EINVAL;
3546}
3547EXPORT_SYMBOL(transport_generic_new_cmd);
3548
3549/* transport_generic_process_write():
3550 *
3551 *
3552 */
3553void transport_generic_process_write(struct se_cmd *cmd)
3554{
3555 transport_execute_tasks(cmd);
3556}
3557EXPORT_SYMBOL(transport_generic_process_write);
3558
3559static void transport_write_pending_qf(struct se_cmd *cmd)
3560{
3561 int ret;
3562
3563 ret = cmd->se_tfo->write_pending(cmd);
3564 if (ret == -EAGAIN || ret == -ENOMEM) {
3565 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3566 cmd);
3567 transport_handle_queue_full(cmd, cmd->se_dev);
3568 }
3569}
3570
3571static int transport_generic_write_pending(struct se_cmd *cmd)
3572{
3573 unsigned long flags;
3574 int ret;
3575
3576 spin_lock_irqsave(&cmd->t_state_lock, flags);
3577 cmd->t_state = TRANSPORT_WRITE_PENDING;
3578 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3579
3580 /*
3581 * Clear the se_cmd for WRITE_PENDING status in order to set
3582 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
3583 * from HW target mode interrupt code. This is safe to be called
3584 * with transport_off=1 before the cmd->se_tfo->write_pending
3585 * because the se_cmd->se_lun pointer is not being cleared.
3586 */
3587 transport_cmd_check_stop(cmd, 1, 0);
3588
3589 /*
3590 * Call the fabric write_pending function here to let the
3591 * frontend know that WRITE buffers are ready.
3592 */
3593 ret = cmd->se_tfo->write_pending(cmd);
3594 if (ret == -EAGAIN || ret == -ENOMEM)
3595 goto queue_full;
3596 else if (ret < 0)
3597 return ret;
3598
3599 return 1;
3600
3601queue_full:
3602 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3603 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3604 transport_handle_queue_full(cmd, cmd->se_dev);
3605 return 0;
3606}
3607
3608void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3609{
3610 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3611 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3612 transport_wait_for_tasks(cmd);
3613
3614 transport_release_cmd(cmd);
3615 } else {
3616 if (wait_for_tasks)
3617 transport_wait_for_tasks(cmd);
3618
3619 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3620
3621 if (cmd->se_lun)
3622 transport_lun_remove_cmd(cmd);
3623
3624 transport_put_cmd(cmd);
3625 }
3626}
3627EXPORT_SYMBOL(transport_generic_free_cmd);
3628
3629/* target_get_sess_cmd - Add command to active ->sess_cmd_list
3630 * @se_sess: session to reference
3631 * @se_cmd: command descriptor to add
3632 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
3633 */
3634void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3635 bool ack_kref)
3636{
3637 unsigned long flags;
3638
3639 kref_init(&se_cmd->cmd_kref);
3640 /*
3641 * Add a second kref if the fabric caller is expecting to handle
3642 * fabric acknowledgement that requires two target_put_sess_cmd()
3643 * invocations before se_cmd descriptor release.
3644 */
3645 if (ack_kref == true) {
3646 kref_get(&se_cmd->cmd_kref);
3647 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3648 }
3649
3650 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3651 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3652 se_cmd->check_release = 1;
3653 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3654}
3655EXPORT_SYMBOL(target_get_sess_cmd);
3656
3657static void target_release_cmd_kref(struct kref *kref)
3658{
3659 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3660 struct se_session *se_sess = se_cmd->se_sess;
3661 unsigned long flags;
3662
3663 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3664 if (list_empty(&se_cmd->se_cmd_list)) {
3665 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3666 se_cmd->se_tfo->release_cmd(se_cmd);
3667 return;
3668 }
3669 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3670 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3671 complete(&se_cmd->cmd_wait_comp);
3672 return;
3673 }
3674 list_del(&se_cmd->se_cmd_list);
3675 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3676
3677 se_cmd->se_tfo->release_cmd(se_cmd);
3678}
3679
3680/* target_put_sess_cmd - Check for active I/O shutdown via kref_put
3681 * @se_sess: session to reference
3682 * @se_cmd: command descriptor to drop
3683 */
3684int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3685{
3686 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3687}
3688EXPORT_SYMBOL(target_put_sess_cmd);
3689
3690/* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3691 * @se_sess: session to split
3692 */
3693void target_splice_sess_cmd_list(struct se_session *se_sess)
3694{
3695 struct se_cmd *se_cmd;
3696 unsigned long flags;
3697
3698 WARN_ON(!list_empty(&se_sess->sess_wait_list));
3699 INIT_LIST_HEAD(&se_sess->sess_wait_list);
3700
3701 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3702 se_sess->sess_tearing_down = 1;
3703
3704 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
3705
3706 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
3707 se_cmd->cmd_wait_set = 1;
3708
3709 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3710}
3711EXPORT_SYMBOL(target_splice_sess_cmd_list);
3712
3713/* target_wait_for_sess_cmds - Wait for outstanding descriptors
3714 * @se_sess: session to wait for active I/O
3715 * @wait_for_tasks: Make extra transport_wait_for_tasks call
3716 */
3717void target_wait_for_sess_cmds(
3718 struct se_session *se_sess,
3719 int wait_for_tasks)
3720{
3721 struct se_cmd *se_cmd, *tmp_cmd;
3722 bool rc = false;
3723
3724 list_for_each_entry_safe(se_cmd, tmp_cmd,
3725 &se_sess->sess_wait_list, se_cmd_list) {
3726 list_del(&se_cmd->se_cmd_list);
3727
3728 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
3729 " %d\n", se_cmd, se_cmd->t_state,
3730 se_cmd->se_tfo->get_cmd_state(se_cmd));
3731
3732 if (wait_for_tasks) {
3733 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
3734 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3735 se_cmd->se_tfo->get_cmd_state(se_cmd));
3736
3737 rc = transport_wait_for_tasks(se_cmd);
3738
3739 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
3740 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3741 se_cmd->se_tfo->get_cmd_state(se_cmd));
3742 }
3743
3744 if (!rc) {
3745 wait_for_completion(&se_cmd->cmd_wait_comp);
3746 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
3747 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3748 se_cmd->se_tfo->get_cmd_state(se_cmd));
3749 }
3750
3751 se_cmd->se_tfo->release_cmd(se_cmd);
3752 }
3753}
3754EXPORT_SYMBOL(target_wait_for_sess_cmds);
3755
3756/* transport_lun_wait_for_tasks():
3757 *
3758 * Called from ConfigFS context to stop the passed struct se_cmd to allow
3759 * an struct se_lun to be successfully shutdown.
3760 */
3761static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
3762{
3763 unsigned long flags;
3764 int ret = 0;
3765
3766 /*
3767 * If the frontend has already requested this struct se_cmd to
3768 * be stopped, we can safely ignore this struct se_cmd.
3769 */
3770 spin_lock_irqsave(&cmd->t_state_lock, flags);
3771 if (cmd->transport_state & CMD_T_STOP) {
3772 cmd->transport_state &= ~CMD_T_LUN_STOP;
3773
3774 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
3775 cmd->se_tfo->get_task_tag(cmd));
3776 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3777 transport_cmd_check_stop(cmd, 1, 0);
3778 return -EPERM;
3779 }
3780 cmd->transport_state |= CMD_T_LUN_FE_STOP;
3781 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3782
3783 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
3784
3785 // XXX: audit task_flags checks.
3786 spin_lock_irqsave(&cmd->t_state_lock, flags);
3787 if ((cmd->transport_state & CMD_T_BUSY) &&
3788 (cmd->transport_state & CMD_T_SENT)) {
3789 if (!target_stop_cmd(cmd, &flags))
3790 ret++;
3791 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3792 } else {
3793 spin_unlock_irqrestore(&cmd->t_state_lock,
3794 flags);
3795 target_remove_from_execute_list(cmd);
3796 }
3797
3798 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
3799 " %d\n", cmd, ret);
3800 if (!ret) {
3801 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
3802 cmd->se_tfo->get_task_tag(cmd));
3803 wait_for_completion(&cmd->transport_lun_stop_comp);
3804 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
3805 cmd->se_tfo->get_task_tag(cmd));
3806 }
3807 transport_remove_cmd_from_queue(cmd);
3808
3809 return 0;
3810}
3811
3812static void __transport_clear_lun_from_sessions(struct se_lun *lun)
3813{
3814 struct se_cmd *cmd = NULL;
3815 unsigned long lun_flags, cmd_flags;
3816 /*
3817 * Do exception processing and return CHECK_CONDITION status to the
3818 * Initiator Port.
3819 */
3820 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3821 while (!list_empty(&lun->lun_cmd_list)) {
3822 cmd = list_first_entry(&lun->lun_cmd_list,
3823 struct se_cmd, se_lun_node);
3824 list_del_init(&cmd->se_lun_node);
3825
3826 /*
3827 * This will notify iscsi_target_transport.c:
3828 * transport_cmd_check_stop() that a LUN shutdown is in
3829 * progress for the iscsi_cmd_t.
3830 */
3831 spin_lock(&cmd->t_state_lock);
3832 pr_debug("SE_LUN[%d] - Setting cmd->transport"
3833 "_lun_stop for ITT: 0x%08x\n",
3834 cmd->se_lun->unpacked_lun,
3835 cmd->se_tfo->get_task_tag(cmd));
3836 cmd->transport_state |= CMD_T_LUN_STOP;
3837 spin_unlock(&cmd->t_state_lock);
3838
3839 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
3840
3841 if (!cmd->se_lun) {
3842 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
3843 cmd->se_tfo->get_task_tag(cmd),
3844 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
3845 BUG();
3846 }
3847 /*
3848 * If the Storage engine still owns the iscsi_cmd_t, determine
3849 * and/or stop its context.
3850 */
3851 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
3852 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
3853 cmd->se_tfo->get_task_tag(cmd));
3854
3855 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
3856 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3857 continue;
3858 }
3859
3860 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
3861 "_wait_for_tasks(): SUCCESS\n",
3862 cmd->se_lun->unpacked_lun,
3863 cmd->se_tfo->get_task_tag(cmd));
3864
3865 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
3866 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
3867 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3868 goto check_cond;
3869 }
3870 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3871 target_remove_from_state_list(cmd);
3872 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3873
3874 /*
3875 * The Storage engine stopped this struct se_cmd before it was
3876 * send to the fabric frontend for delivery back to the
3877 * Initiator Node. Return this SCSI CDB back with an
3878 * CHECK_CONDITION status.
3879 */
3880check_cond:
3881 transport_send_check_condition_and_sense(cmd,
3882 TCM_NON_EXISTENT_LUN, 0);
3883 /*
3884 * If the fabric frontend is waiting for this iscsi_cmd_t to
3885 * be released, notify the waiting thread now that LU has
3886 * finished accessing it.
3887 */
3888 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
3889 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
3890 pr_debug("SE_LUN[%d] - Detected FE stop for"
3891 " struct se_cmd: %p ITT: 0x%08x\n",
3892 lun->unpacked_lun,
3893 cmd, cmd->se_tfo->get_task_tag(cmd));
3894
3895 spin_unlock_irqrestore(&cmd->t_state_lock,
3896 cmd_flags);
3897 transport_cmd_check_stop(cmd, 1, 0);
3898 complete(&cmd->transport_lun_fe_stop_comp);
3899 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3900 continue;
3901 }
3902 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
3903 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
3904
3905 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3906 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3907 }
3908 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
3909}
3910
3911static int transport_clear_lun_thread(void *p)
3912{
3913 struct se_lun *lun = p;
3914
3915 __transport_clear_lun_from_sessions(lun);
3916 complete(&lun->lun_shutdown_comp);
3917
3918 return 0;
3919}
3920
3921int transport_clear_lun_from_sessions(struct se_lun *lun)
3922{
3923 struct task_struct *kt;
3924
3925 kt = kthread_run(transport_clear_lun_thread, lun,
3926 "tcm_cl_%u", lun->unpacked_lun);
3927 if (IS_ERR(kt)) {
3928 pr_err("Unable to start clear_lun thread\n");
3929 return PTR_ERR(kt);
3930 }
3931 wait_for_completion(&lun->lun_shutdown_comp);
3932
3933 return 0;
3934}
3935
3936/**
3937 * transport_wait_for_tasks - wait for completion to occur
3938 * @cmd: command to wait
3939 *
3940 * Called from frontend fabric context to wait for storage engine
3941 * to pause and/or release frontend generated struct se_cmd.
3942 */
3943bool transport_wait_for_tasks(struct se_cmd *cmd)
3944{
3945 unsigned long flags;
3946
3947 spin_lock_irqsave(&cmd->t_state_lock, flags);
3948 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3949 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3950 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3951 return false;
3952 }
3953 /*
3954 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
3955 * has been set in transport_set_supported_SAM_opcode().
3956 */
3957 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3958 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3959 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3960 return false;
3961 }
3962 /*
3963 * If we are already stopped due to an external event (ie: LUN shutdown)
3964 * sleep until the connection can have the passed struct se_cmd back.
3965 * The cmd->transport_lun_stopped_sem will be upped by
3966 * transport_clear_lun_from_sessions() once the ConfigFS context caller
3967 * has completed its operation on the struct se_cmd.
3968 */
3969 if (cmd->transport_state & CMD_T_LUN_STOP) {
3970 pr_debug("wait_for_tasks: Stopping"
3971 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
3972 "_stop_comp); for ITT: 0x%08x\n",
3973 cmd->se_tfo->get_task_tag(cmd));
3974 /*
3975 * There is a special case for WRITES where a FE exception +
3976 * LUN shutdown means ConfigFS context is still sleeping on
3977 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
3978 * We go ahead and up transport_lun_stop_comp just to be sure
3979 * here.
3980 */
3981 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3982 complete(&cmd->transport_lun_stop_comp);
3983 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
3984 spin_lock_irqsave(&cmd->t_state_lock, flags);
3985
3986 target_remove_from_state_list(cmd);
3987 /*
3988 * At this point, the frontend who was the originator of this
3989 * struct se_cmd, now owns the structure and can be released through
3990 * normal means below.
3991 */
3992 pr_debug("wait_for_tasks: Stopped"
3993 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
3994 "stop_comp); for ITT: 0x%08x\n",
3995 cmd->se_tfo->get_task_tag(cmd));
3996
3997 cmd->transport_state &= ~CMD_T_LUN_STOP;
3998 }
3999
4000 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4001 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4002 return false;
4003 }
4004
4005 cmd->transport_state |= CMD_T_STOP;
4006
4007 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4008 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4009 cmd, cmd->se_tfo->get_task_tag(cmd),
4010 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4011
4012 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4013
4014 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4015
4016 wait_for_completion(&cmd->t_transport_stop_comp);
4017
4018 spin_lock_irqsave(&cmd->t_state_lock, flags);
4019 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4020
4021 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4022 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4023 cmd->se_tfo->get_task_tag(cmd));
4024
4025 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4026
4027 return true;
4028}
4029EXPORT_SYMBOL(transport_wait_for_tasks);
4030
4031static int transport_get_sense_codes(
4032 struct se_cmd *cmd,
4033 u8 *asc,
4034 u8 *ascq)
4035{
4036 *asc = cmd->scsi_asc;
4037 *ascq = cmd->scsi_ascq;
4038
4039 return 0;
4040}
4041
4042static int transport_set_sense_codes(
4043 struct se_cmd *cmd,
4044 u8 asc,
4045 u8 ascq)
4046{
4047 cmd->scsi_asc = asc;
4048 cmd->scsi_ascq = ascq;
4049
4050 return 0;
4051}
4052
4053int transport_send_check_condition_and_sense(
4054 struct se_cmd *cmd,
4055 u8 reason,
4056 int from_transport)
4057{
4058 unsigned char *buffer = cmd->sense_buffer;
4059 unsigned long flags;
4060 int offset;
4061 u8 asc = 0, ascq = 0;
4062
4063 spin_lock_irqsave(&cmd->t_state_lock, flags);
4064 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4065 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4066 return 0;
4067 }
4068 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4069 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4070
4071 if (!reason && from_transport)
4072 goto after_reason;
4073
4074 if (!from_transport)
4075 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4076 /*
4077 * Data Segment and SenseLength of the fabric response PDU.
4078 *
4079 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4080 * from include/scsi/scsi_cmnd.h
4081 */
4082 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4083 TRANSPORT_SENSE_BUFFER);
4084 /*
4085 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4086 * SENSE KEY values from include/scsi/scsi.h
4087 */
4088 switch (reason) {
4089 case TCM_NON_EXISTENT_LUN:
4090 /* CURRENT ERROR */
4091 buffer[offset] = 0x70;
4092 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4093 /* ILLEGAL REQUEST */
4094 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4095 /* LOGICAL UNIT NOT SUPPORTED */
4096 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4097 break;
4098 case TCM_UNSUPPORTED_SCSI_OPCODE:
4099 case TCM_SECTOR_COUNT_TOO_MANY:
4100 /* CURRENT ERROR */
4101 buffer[offset] = 0x70;
4102 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4103 /* ILLEGAL REQUEST */
4104 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4105 /* INVALID COMMAND OPERATION CODE */
4106 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4107 break;
4108 case TCM_UNKNOWN_MODE_PAGE:
4109 /* CURRENT ERROR */
4110 buffer[offset] = 0x70;
4111 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4112 /* ILLEGAL REQUEST */
4113 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4114 /* INVALID FIELD IN CDB */
4115 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4116 break;
4117 case TCM_CHECK_CONDITION_ABORT_CMD:
4118 /* CURRENT ERROR */
4119 buffer[offset] = 0x70;
4120 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4121 /* ABORTED COMMAND */
4122 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4123 /* BUS DEVICE RESET FUNCTION OCCURRED */
4124 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4125 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4126 break;
4127 case TCM_INCORRECT_AMOUNT_OF_DATA:
4128 /* CURRENT ERROR */
4129 buffer[offset] = 0x70;
4130 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4131 /* ABORTED COMMAND */
4132 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4133 /* WRITE ERROR */
4134 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4135 /* NOT ENOUGH UNSOLICITED DATA */
4136 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4137 break;
4138 case TCM_INVALID_CDB_FIELD:
4139 /* CURRENT ERROR */
4140 buffer[offset] = 0x70;
4141 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4142 /* ILLEGAL REQUEST */
4143 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4144 /* INVALID FIELD IN CDB */
4145 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4146 break;
4147 case TCM_INVALID_PARAMETER_LIST:
4148 /* CURRENT ERROR */
4149 buffer[offset] = 0x70;
4150 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4151 /* ILLEGAL REQUEST */
4152 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4153 /* INVALID FIELD IN PARAMETER LIST */
4154 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4155 break;
4156 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4157 /* CURRENT ERROR */
4158 buffer[offset] = 0x70;
4159 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4160 /* ABORTED COMMAND */
4161 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4162 /* WRITE ERROR */
4163 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4164 /* UNEXPECTED_UNSOLICITED_DATA */
4165 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4166 break;
4167 case TCM_SERVICE_CRC_ERROR:
4168 /* CURRENT ERROR */
4169 buffer[offset] = 0x70;
4170 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4171 /* ABORTED COMMAND */
4172 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4173 /* PROTOCOL SERVICE CRC ERROR */
4174 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4175 /* N/A */
4176 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4177 break;
4178 case TCM_SNACK_REJECTED:
4179 /* CURRENT ERROR */
4180 buffer[offset] = 0x70;
4181 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4182 /* ABORTED COMMAND */
4183 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4184 /* READ ERROR */
4185 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4186 /* FAILED RETRANSMISSION REQUEST */
4187 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4188 break;
4189 case TCM_WRITE_PROTECTED:
4190 /* CURRENT ERROR */
4191 buffer[offset] = 0x70;
4192 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4193 /* DATA PROTECT */
4194 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4195 /* WRITE PROTECTED */
4196 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4197 break;
4198 case TCM_ADDRESS_OUT_OF_RANGE:
4199 /* CURRENT ERROR */
4200 buffer[offset] = 0x70;
4201 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4202 /* ILLEGAL REQUEST */
4203 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4204 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4205 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
4206 break;
4207 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4208 /* CURRENT ERROR */
4209 buffer[offset] = 0x70;
4210 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4211 /* UNIT ATTENTION */
4212 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4213 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4214 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4215 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4216 break;
4217 case TCM_CHECK_CONDITION_NOT_READY:
4218 /* CURRENT ERROR */
4219 buffer[offset] = 0x70;
4220 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4221 /* Not Ready */
4222 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4223 transport_get_sense_codes(cmd, &asc, &ascq);
4224 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4225 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4226 break;
4227 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4228 default:
4229 /* CURRENT ERROR */
4230 buffer[offset] = 0x70;
4231 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4232 /* ILLEGAL REQUEST */
4233 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4234 /* LOGICAL UNIT COMMUNICATION FAILURE */
4235 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4236 break;
4237 }
4238 /*
4239 * This code uses linux/include/scsi/scsi.h SAM status codes!
4240 */
4241 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4242 /*
4243 * Automatically padded, this value is encoded in the fabric's
4244 * data_length response PDU containing the SCSI defined sense data.
4245 */
4246 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4247
4248after_reason:
4249 return cmd->se_tfo->queue_status(cmd);
4250}
4251EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4252
4253int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4254{
4255 int ret = 0;
4256
4257 if (cmd->transport_state & CMD_T_ABORTED) {
4258 if (!send_status ||
4259 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4260 return 1;
4261
4262 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4263 " status for CDB: 0x%02x ITT: 0x%08x\n",
4264 cmd->t_task_cdb[0],
4265 cmd->se_tfo->get_task_tag(cmd));
4266
4267 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4268 cmd->se_tfo->queue_status(cmd);
4269 ret = 1;
4270 }
4271 return ret;
4272}
4273EXPORT_SYMBOL(transport_check_aborted_status);
4274
4275void transport_send_task_abort(struct se_cmd *cmd)
4276{
4277 unsigned long flags;
4278
4279 spin_lock_irqsave(&cmd->t_state_lock, flags);
4280 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4281 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4282 return;
4283 }
4284 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4285
4286 /*
4287 * If there are still expected incoming fabric WRITEs, we wait
4288 * until until they have completed before sending a TASK_ABORTED
4289 * response. This response with TASK_ABORTED status will be
4290 * queued back to fabric module by transport_check_aborted_status().
4291 */
4292 if (cmd->data_direction == DMA_TO_DEVICE) {
4293 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4294 cmd->transport_state |= CMD_T_ABORTED;
4295 smp_mb__after_atomic_inc();
4296 }
4297 }
4298 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4299
4300 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4301 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4302 cmd->se_tfo->get_task_tag(cmd));
4303
4304 cmd->se_tfo->queue_status(cmd);
4305}
4306
4307static int transport_generic_do_tmr(struct se_cmd *cmd)
4308{
4309 struct se_device *dev = cmd->se_dev;
4310 struct se_tmr_req *tmr = cmd->se_tmr_req;
4311 int ret;
4312
4313 switch (tmr->function) {
4314 case TMR_ABORT_TASK:
4315 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4316 break;
4317 case TMR_ABORT_TASK_SET:
4318 case TMR_CLEAR_ACA:
4319 case TMR_CLEAR_TASK_SET:
4320 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4321 break;
4322 case TMR_LUN_RESET:
4323 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4324 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4325 TMR_FUNCTION_REJECTED;
4326 break;
4327 case TMR_TARGET_WARM_RESET:
4328 tmr->response = TMR_FUNCTION_REJECTED;
4329 break;
4330 case TMR_TARGET_COLD_RESET:
4331 tmr->response = TMR_FUNCTION_REJECTED;
4332 break;
4333 default:
4334 pr_err("Uknown TMR function: 0x%02x.\n",
4335 tmr->function);
4336 tmr->response = TMR_FUNCTION_REJECTED;
4337 break;
4338 }
4339
4340 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4341 cmd->se_tfo->queue_tm_rsp(cmd);
4342
4343 transport_cmd_check_stop_to_fabric(cmd);
4344 return 0;
4345}
4346
4347/* transport_processing_thread():
4348 *
4349 *
4350 */
4351static int transport_processing_thread(void *param)
4352{
4353 int ret;
4354 struct se_cmd *cmd;
4355 struct se_device *dev = param;
4356
4357 while (!kthread_should_stop()) {
4358 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4359 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4360 kthread_should_stop());
4361 if (ret < 0)
4362 goto out;
4363
4364get_cmd:
4365 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4366 if (!cmd)
4367 continue;
4368
4369 switch (cmd->t_state) {
4370 case TRANSPORT_NEW_CMD:
4371 BUG();
4372 break;
4373 case TRANSPORT_NEW_CMD_MAP:
4374 if (!cmd->se_tfo->new_cmd_map) {
4375 pr_err("cmd->se_tfo->new_cmd_map is"
4376 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4377 BUG();
4378 }
4379 ret = cmd->se_tfo->new_cmd_map(cmd);
4380 if (ret < 0) {
4381 transport_generic_request_failure(cmd);
4382 break;
4383 }
4384 ret = transport_generic_new_cmd(cmd);
4385 if (ret < 0) {
4386 transport_generic_request_failure(cmd);
4387 break;
4388 }
4389 break;
4390 case TRANSPORT_PROCESS_WRITE:
4391 transport_generic_process_write(cmd);
4392 break;
4393 case TRANSPORT_PROCESS_TMR:
4394 transport_generic_do_tmr(cmd);
4395 break;
4396 case TRANSPORT_COMPLETE_QF_WP:
4397 transport_write_pending_qf(cmd);
4398 break;
4399 case TRANSPORT_COMPLETE_QF_OK:
4400 transport_complete_qf(cmd);
4401 break;
4402 default:
4403 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4404 "i_state: %d on SE LUN: %u\n",
4405 cmd->t_state,
4406 cmd->se_tfo->get_task_tag(cmd),
4407 cmd->se_tfo->get_cmd_state(cmd),
4408 cmd->se_lun->unpacked_lun);
4409 BUG();
4410 }
4411
4412 goto get_cmd;
4413 }
4414
4415out:
4416 WARN_ON(!list_empty(&dev->state_list));
4417 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4418 dev->process_thread = NULL;
4419 return 0;
4420}