Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Xilinx Axi Ethernet device driver
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 *
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14 * and Spartan6.
15 *
16 * TODO:
17 * - Add Axi Fifo support.
18 * - Factor out Axi DMA code into separate driver.
19 * - Test and fix basic multicast filtering.
20 * - Add support for extended multicast filtering.
21 * - Test basic VLAN support.
22 * - Add support for extended VLAN support.
23 */
24
25#include <linux/clk.h>
26#include <linux/delay.h>
27#include <linux/etherdevice.h>
28#include <linux/module.h>
29#include <linux/netdevice.h>
30#include <linux/of_mdio.h>
31#include <linux/of_net.h>
32#include <linux/of_platform.h>
33#include <linux/of_irq.h>
34#include <linux/of_address.h>
35#include <linux/skbuff.h>
36#include <linux/math64.h>
37#include <linux/phy.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40
41#include "xilinx_axienet.h"
42
43/* Descriptors defines for Tx and Rx DMA */
44#define TX_BD_NUM_DEFAULT 128
45#define RX_BD_NUM_DEFAULT 1024
46#define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1)
47#define TX_BD_NUM_MAX 4096
48#define RX_BD_NUM_MAX 4096
49
50/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
51#define DRIVER_NAME "xaxienet"
52#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
53#define DRIVER_VERSION "1.00a"
54
55#define AXIENET_REGS_N 40
56
57/* Match table for of_platform binding */
58static const struct of_device_id axienet_of_match[] = {
59 { .compatible = "xlnx,axi-ethernet-1.00.a", },
60 { .compatible = "xlnx,axi-ethernet-1.01.a", },
61 { .compatible = "xlnx,axi-ethernet-2.01.a", },
62 {},
63};
64
65MODULE_DEVICE_TABLE(of, axienet_of_match);
66
67/* Option table for setting up Axi Ethernet hardware options */
68static struct axienet_option axienet_options[] = {
69 /* Turn on jumbo packet support for both Rx and Tx */
70 {
71 .opt = XAE_OPTION_JUMBO,
72 .reg = XAE_TC_OFFSET,
73 .m_or = XAE_TC_JUM_MASK,
74 }, {
75 .opt = XAE_OPTION_JUMBO,
76 .reg = XAE_RCW1_OFFSET,
77 .m_or = XAE_RCW1_JUM_MASK,
78 }, { /* Turn on VLAN packet support for both Rx and Tx */
79 .opt = XAE_OPTION_VLAN,
80 .reg = XAE_TC_OFFSET,
81 .m_or = XAE_TC_VLAN_MASK,
82 }, {
83 .opt = XAE_OPTION_VLAN,
84 .reg = XAE_RCW1_OFFSET,
85 .m_or = XAE_RCW1_VLAN_MASK,
86 }, { /* Turn on FCS stripping on receive packets */
87 .opt = XAE_OPTION_FCS_STRIP,
88 .reg = XAE_RCW1_OFFSET,
89 .m_or = XAE_RCW1_FCS_MASK,
90 }, { /* Turn on FCS insertion on transmit packets */
91 .opt = XAE_OPTION_FCS_INSERT,
92 .reg = XAE_TC_OFFSET,
93 .m_or = XAE_TC_FCS_MASK,
94 }, { /* Turn off length/type field checking on receive packets */
95 .opt = XAE_OPTION_LENTYPE_ERR,
96 .reg = XAE_RCW1_OFFSET,
97 .m_or = XAE_RCW1_LT_DIS_MASK,
98 }, { /* Turn on Rx flow control */
99 .opt = XAE_OPTION_FLOW_CONTROL,
100 .reg = XAE_FCC_OFFSET,
101 .m_or = XAE_FCC_FCRX_MASK,
102 }, { /* Turn on Tx flow control */
103 .opt = XAE_OPTION_FLOW_CONTROL,
104 .reg = XAE_FCC_OFFSET,
105 .m_or = XAE_FCC_FCTX_MASK,
106 }, { /* Turn on promiscuous frame filtering */
107 .opt = XAE_OPTION_PROMISC,
108 .reg = XAE_FMI_OFFSET,
109 .m_or = XAE_FMI_PM_MASK,
110 }, { /* Enable transmitter */
111 .opt = XAE_OPTION_TXEN,
112 .reg = XAE_TC_OFFSET,
113 .m_or = XAE_TC_TX_MASK,
114 }, { /* Enable receiver */
115 .opt = XAE_OPTION_RXEN,
116 .reg = XAE_RCW1_OFFSET,
117 .m_or = XAE_RCW1_RX_MASK,
118 },
119 {}
120};
121
122/**
123 * axienet_dma_in32 - Memory mapped Axi DMA register read
124 * @lp: Pointer to axienet local structure
125 * @reg: Address offset from the base address of the Axi DMA core
126 *
127 * Return: The contents of the Axi DMA register
128 *
129 * This function returns the contents of the corresponding Axi DMA register.
130 */
131static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
132{
133 return ioread32(lp->dma_regs + reg);
134}
135
136static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
137 struct axidma_bd *desc)
138{
139 desc->phys = lower_32_bits(addr);
140 if (lp->features & XAE_FEATURE_DMA_64BIT)
141 desc->phys_msb = upper_32_bits(addr);
142}
143
144static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
145 struct axidma_bd *desc)
146{
147 dma_addr_t ret = desc->phys;
148
149 if (lp->features & XAE_FEATURE_DMA_64BIT)
150 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
151
152 return ret;
153}
154
155/**
156 * axienet_dma_bd_release - Release buffer descriptor rings
157 * @ndev: Pointer to the net_device structure
158 *
159 * This function is used to release the descriptors allocated in
160 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
161 * driver stop api is called.
162 */
163static void axienet_dma_bd_release(struct net_device *ndev)
164{
165 int i;
166 struct axienet_local *lp = netdev_priv(ndev);
167
168 /* If we end up here, tx_bd_v must have been DMA allocated. */
169 dma_free_coherent(lp->dev,
170 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
171 lp->tx_bd_v,
172 lp->tx_bd_p);
173
174 if (!lp->rx_bd_v)
175 return;
176
177 for (i = 0; i < lp->rx_bd_num; i++) {
178 dma_addr_t phys;
179
180 /* A NULL skb means this descriptor has not been initialised
181 * at all.
182 */
183 if (!lp->rx_bd_v[i].skb)
184 break;
185
186 dev_kfree_skb(lp->rx_bd_v[i].skb);
187
188 /* For each descriptor, we programmed cntrl with the (non-zero)
189 * descriptor size, after it had been successfully allocated.
190 * So a non-zero value in there means we need to unmap it.
191 */
192 if (lp->rx_bd_v[i].cntrl) {
193 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
194 dma_unmap_single(lp->dev, phys,
195 lp->max_frm_size, DMA_FROM_DEVICE);
196 }
197 }
198
199 dma_free_coherent(lp->dev,
200 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
201 lp->rx_bd_v,
202 lp->rx_bd_p);
203}
204
205/**
206 * axienet_usec_to_timer - Calculate IRQ delay timer value
207 * @lp: Pointer to the axienet_local structure
208 * @coalesce_usec: Microseconds to convert into timer value
209 */
210static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
211{
212 u32 result;
213 u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
214
215 if (lp->axi_clk)
216 clk_rate = clk_get_rate(lp->axi_clk);
217
218 /* 1 Timeout Interval = 125 * (clock period of SG clock) */
219 result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
220 (u64)125000000);
221 if (result > 255)
222 result = 255;
223
224 return result;
225}
226
227/**
228 * axienet_dma_start - Set up DMA registers and start DMA operation
229 * @lp: Pointer to the axienet_local structure
230 */
231static void axienet_dma_start(struct axienet_local *lp)
232{
233 /* Start updating the Rx channel control register */
234 lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
235 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
236 /* Only set interrupt delay timer if not generating an interrupt on
237 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
238 */
239 if (lp->coalesce_count_rx > 1)
240 lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
241 << XAXIDMA_DELAY_SHIFT) |
242 XAXIDMA_IRQ_DELAY_MASK;
243 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
244
245 /* Start updating the Tx channel control register */
246 lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
247 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
248 /* Only set interrupt delay timer if not generating an interrupt on
249 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
250 */
251 if (lp->coalesce_count_tx > 1)
252 lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
253 << XAXIDMA_DELAY_SHIFT) |
254 XAXIDMA_IRQ_DELAY_MASK;
255 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
256
257 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
258 * halted state. This will make the Rx side ready for reception.
259 */
260 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
261 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
262 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
263 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
264 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
265
266 /* Write to the RS (Run-stop) bit in the Tx channel control register.
267 * Tx channel is now ready to run. But only after we write to the
268 * tail pointer register that the Tx channel will start transmitting.
269 */
270 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
271 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
272 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
273}
274
275/**
276 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
277 * @ndev: Pointer to the net_device structure
278 *
279 * Return: 0, on success -ENOMEM, on failure
280 *
281 * This function is called to initialize the Rx and Tx DMA descriptor
282 * rings. This initializes the descriptors with required default values
283 * and is called when Axi Ethernet driver reset is called.
284 */
285static int axienet_dma_bd_init(struct net_device *ndev)
286{
287 int i;
288 struct sk_buff *skb;
289 struct axienet_local *lp = netdev_priv(ndev);
290
291 /* Reset the indexes which are used for accessing the BDs */
292 lp->tx_bd_ci = 0;
293 lp->tx_bd_tail = 0;
294 lp->rx_bd_ci = 0;
295
296 /* Allocate the Tx and Rx buffer descriptors. */
297 lp->tx_bd_v = dma_alloc_coherent(lp->dev,
298 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
299 &lp->tx_bd_p, GFP_KERNEL);
300 if (!lp->tx_bd_v)
301 return -ENOMEM;
302
303 lp->rx_bd_v = dma_alloc_coherent(lp->dev,
304 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
305 &lp->rx_bd_p, GFP_KERNEL);
306 if (!lp->rx_bd_v)
307 goto out;
308
309 for (i = 0; i < lp->tx_bd_num; i++) {
310 dma_addr_t addr = lp->tx_bd_p +
311 sizeof(*lp->tx_bd_v) *
312 ((i + 1) % lp->tx_bd_num);
313
314 lp->tx_bd_v[i].next = lower_32_bits(addr);
315 if (lp->features & XAE_FEATURE_DMA_64BIT)
316 lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
317 }
318
319 for (i = 0; i < lp->rx_bd_num; i++) {
320 dma_addr_t addr;
321
322 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
323 ((i + 1) % lp->rx_bd_num);
324 lp->rx_bd_v[i].next = lower_32_bits(addr);
325 if (lp->features & XAE_FEATURE_DMA_64BIT)
326 lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
327
328 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
329 if (!skb)
330 goto out;
331
332 lp->rx_bd_v[i].skb = skb;
333 addr = dma_map_single(lp->dev, skb->data,
334 lp->max_frm_size, DMA_FROM_DEVICE);
335 if (dma_mapping_error(lp->dev, addr)) {
336 netdev_err(ndev, "DMA mapping error\n");
337 goto out;
338 }
339 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
340
341 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
342 }
343
344 axienet_dma_start(lp);
345
346 return 0;
347out:
348 axienet_dma_bd_release(ndev);
349 return -ENOMEM;
350}
351
352/**
353 * axienet_set_mac_address - Write the MAC address
354 * @ndev: Pointer to the net_device structure
355 * @address: 6 byte Address to be written as MAC address
356 *
357 * This function is called to initialize the MAC address of the Axi Ethernet
358 * core. It writes to the UAW0 and UAW1 registers of the core.
359 */
360static void axienet_set_mac_address(struct net_device *ndev,
361 const void *address)
362{
363 struct axienet_local *lp = netdev_priv(ndev);
364
365 if (address)
366 eth_hw_addr_set(ndev, address);
367 if (!is_valid_ether_addr(ndev->dev_addr))
368 eth_hw_addr_random(ndev);
369
370 /* Set up unicast MAC address filter set its mac address */
371 axienet_iow(lp, XAE_UAW0_OFFSET,
372 (ndev->dev_addr[0]) |
373 (ndev->dev_addr[1] << 8) |
374 (ndev->dev_addr[2] << 16) |
375 (ndev->dev_addr[3] << 24));
376 axienet_iow(lp, XAE_UAW1_OFFSET,
377 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
378 ~XAE_UAW1_UNICASTADDR_MASK) |
379 (ndev->dev_addr[4] |
380 (ndev->dev_addr[5] << 8))));
381}
382
383/**
384 * netdev_set_mac_address - Write the MAC address (from outside the driver)
385 * @ndev: Pointer to the net_device structure
386 * @p: 6 byte Address to be written as MAC address
387 *
388 * Return: 0 for all conditions. Presently, there is no failure case.
389 *
390 * This function is called to initialize the MAC address of the Axi Ethernet
391 * core. It calls the core specific axienet_set_mac_address. This is the
392 * function that goes into net_device_ops structure entry ndo_set_mac_address.
393 */
394static int netdev_set_mac_address(struct net_device *ndev, void *p)
395{
396 struct sockaddr *addr = p;
397 axienet_set_mac_address(ndev, addr->sa_data);
398 return 0;
399}
400
401/**
402 * axienet_set_multicast_list - Prepare the multicast table
403 * @ndev: Pointer to the net_device structure
404 *
405 * This function is called to initialize the multicast table during
406 * initialization. The Axi Ethernet basic multicast support has a four-entry
407 * multicast table which is initialized here. Additionally this function
408 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
409 * means whenever the multicast table entries need to be updated this
410 * function gets called.
411 */
412static void axienet_set_multicast_list(struct net_device *ndev)
413{
414 int i;
415 u32 reg, af0reg, af1reg;
416 struct axienet_local *lp = netdev_priv(ndev);
417
418 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
419 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
420 /* We must make the kernel realize we had to move into
421 * promiscuous mode. If it was a promiscuous mode request
422 * the flag is already set. If not we set it.
423 */
424 ndev->flags |= IFF_PROMISC;
425 reg = axienet_ior(lp, XAE_FMI_OFFSET);
426 reg |= XAE_FMI_PM_MASK;
427 axienet_iow(lp, XAE_FMI_OFFSET, reg);
428 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
429 } else if (!netdev_mc_empty(ndev)) {
430 struct netdev_hw_addr *ha;
431
432 i = 0;
433 netdev_for_each_mc_addr(ha, ndev) {
434 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
435 break;
436
437 af0reg = (ha->addr[0]);
438 af0reg |= (ha->addr[1] << 8);
439 af0reg |= (ha->addr[2] << 16);
440 af0reg |= (ha->addr[3] << 24);
441
442 af1reg = (ha->addr[4]);
443 af1reg |= (ha->addr[5] << 8);
444
445 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
446 reg |= i;
447
448 axienet_iow(lp, XAE_FMI_OFFSET, reg);
449 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
450 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
451 i++;
452 }
453 } else {
454 reg = axienet_ior(lp, XAE_FMI_OFFSET);
455 reg &= ~XAE_FMI_PM_MASK;
456
457 axienet_iow(lp, XAE_FMI_OFFSET, reg);
458
459 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
460 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
461 reg |= i;
462
463 axienet_iow(lp, XAE_FMI_OFFSET, reg);
464 axienet_iow(lp, XAE_AF0_OFFSET, 0);
465 axienet_iow(lp, XAE_AF1_OFFSET, 0);
466 }
467
468 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
469 }
470}
471
472/**
473 * axienet_setoptions - Set an Axi Ethernet option
474 * @ndev: Pointer to the net_device structure
475 * @options: Option to be enabled/disabled
476 *
477 * The Axi Ethernet core has multiple features which can be selectively turned
478 * on or off. The typical options could be jumbo frame option, basic VLAN
479 * option, promiscuous mode option etc. This function is used to set or clear
480 * these options in the Axi Ethernet hardware. This is done through
481 * axienet_option structure .
482 */
483static void axienet_setoptions(struct net_device *ndev, u32 options)
484{
485 int reg;
486 struct axienet_local *lp = netdev_priv(ndev);
487 struct axienet_option *tp = &axienet_options[0];
488
489 while (tp->opt) {
490 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
491 if (options & tp->opt)
492 reg |= tp->m_or;
493 axienet_iow(lp, tp->reg, reg);
494 tp++;
495 }
496
497 lp->options |= options;
498}
499
500static int __axienet_device_reset(struct axienet_local *lp)
501{
502 u32 value;
503 int ret;
504
505 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
506 * process of Axi DMA takes a while to complete as all pending
507 * commands/transfers will be flushed or completed during this
508 * reset process.
509 * Note that even though both TX and RX have their own reset register,
510 * they both reset the entire DMA core, so only one needs to be used.
511 */
512 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
513 ret = read_poll_timeout(axienet_dma_in32, value,
514 !(value & XAXIDMA_CR_RESET_MASK),
515 DELAY_OF_ONE_MILLISEC, 50000, false, lp,
516 XAXIDMA_TX_CR_OFFSET);
517 if (ret) {
518 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
519 return ret;
520 }
521
522 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
523 ret = read_poll_timeout(axienet_ior, value,
524 value & XAE_INT_PHYRSTCMPLT_MASK,
525 DELAY_OF_ONE_MILLISEC, 50000, false, lp,
526 XAE_IS_OFFSET);
527 if (ret) {
528 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
529 return ret;
530 }
531
532 return 0;
533}
534
535/**
536 * axienet_dma_stop - Stop DMA operation
537 * @lp: Pointer to the axienet_local structure
538 */
539static void axienet_dma_stop(struct axienet_local *lp)
540{
541 int count;
542 u32 cr, sr;
543
544 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
545 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
546 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
547 synchronize_irq(lp->rx_irq);
548
549 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
550 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
551 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
552 synchronize_irq(lp->tx_irq);
553
554 /* Give DMAs a chance to halt gracefully */
555 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
556 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
557 msleep(20);
558 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
559 }
560
561 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
562 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
563 msleep(20);
564 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
565 }
566
567 /* Do a reset to ensure DMA is really stopped */
568 axienet_lock_mii(lp);
569 __axienet_device_reset(lp);
570 axienet_unlock_mii(lp);
571}
572
573/**
574 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
575 * @ndev: Pointer to the net_device structure
576 *
577 * This function is called to reset and initialize the Axi Ethernet core. This
578 * is typically called during initialization. It does a reset of the Axi DMA
579 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
580 * are connected to Axi Ethernet reset lines, this in turn resets the Axi
581 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
582 * core.
583 * Returns 0 on success or a negative error number otherwise.
584 */
585static int axienet_device_reset(struct net_device *ndev)
586{
587 u32 axienet_status;
588 struct axienet_local *lp = netdev_priv(ndev);
589 int ret;
590
591 ret = __axienet_device_reset(lp);
592 if (ret)
593 return ret;
594
595 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
596 lp->options |= XAE_OPTION_VLAN;
597 lp->options &= (~XAE_OPTION_JUMBO);
598
599 if ((ndev->mtu > XAE_MTU) &&
600 (ndev->mtu <= XAE_JUMBO_MTU)) {
601 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
602 XAE_TRL_SIZE;
603
604 if (lp->max_frm_size <= lp->rxmem)
605 lp->options |= XAE_OPTION_JUMBO;
606 }
607
608 ret = axienet_dma_bd_init(ndev);
609 if (ret) {
610 netdev_err(ndev, "%s: descriptor allocation failed\n",
611 __func__);
612 return ret;
613 }
614
615 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
616 axienet_status &= ~XAE_RCW1_RX_MASK;
617 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
618
619 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
620 if (axienet_status & XAE_INT_RXRJECT_MASK)
621 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
622 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
623 XAE_INT_RECV_ERROR_MASK : 0);
624
625 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
626
627 /* Sync default options with HW but leave receiver and
628 * transmitter disabled.
629 */
630 axienet_setoptions(ndev, lp->options &
631 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
632 axienet_set_mac_address(ndev, NULL);
633 axienet_set_multicast_list(ndev);
634 axienet_setoptions(ndev, lp->options);
635
636 netif_trans_update(ndev);
637
638 return 0;
639}
640
641/**
642 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
643 * @lp: Pointer to the axienet_local structure
644 * @first_bd: Index of first descriptor to clean up
645 * @nr_bds: Max number of descriptors to clean up
646 * @force: Whether to clean descriptors even if not complete
647 * @sizep: Pointer to a u32 filled with the total sum of all bytes
648 * in all cleaned-up descriptors. Ignored if NULL.
649 * @budget: NAPI budget (use 0 when not called from NAPI poll)
650 *
651 * Would either be called after a successful transmit operation, or after
652 * there was an error when setting up the chain.
653 * Returns the number of descriptors handled.
654 */
655static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
656 int nr_bds, bool force, u32 *sizep, int budget)
657{
658 struct axidma_bd *cur_p;
659 unsigned int status;
660 dma_addr_t phys;
661 int i;
662
663 for (i = 0; i < nr_bds; i++) {
664 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
665 status = cur_p->status;
666
667 /* If force is not specified, clean up only descriptors
668 * that have been completed by the MAC.
669 */
670 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
671 break;
672
673 /* Ensure we see complete descriptor update */
674 dma_rmb();
675 phys = desc_get_phys_addr(lp, cur_p);
676 dma_unmap_single(lp->dev, phys,
677 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
678 DMA_TO_DEVICE);
679
680 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
681 napi_consume_skb(cur_p->skb, budget);
682
683 cur_p->app0 = 0;
684 cur_p->app1 = 0;
685 cur_p->app2 = 0;
686 cur_p->app4 = 0;
687 cur_p->skb = NULL;
688 /* ensure our transmit path and device don't prematurely see status cleared */
689 wmb();
690 cur_p->cntrl = 0;
691 cur_p->status = 0;
692
693 if (sizep)
694 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
695 }
696
697 return i;
698}
699
700/**
701 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
702 * @lp: Pointer to the axienet_local structure
703 * @num_frag: The number of BDs to check for
704 *
705 * Return: 0, on success
706 * NETDEV_TX_BUSY, if any of the descriptors are not free
707 *
708 * This function is invoked before BDs are allocated and transmission starts.
709 * This function returns 0 if a BD or group of BDs can be allocated for
710 * transmission. If the BD or any of the BDs are not free the function
711 * returns a busy status.
712 */
713static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
714 int num_frag)
715{
716 struct axidma_bd *cur_p;
717
718 /* Ensure we see all descriptor updates from device or TX polling */
719 rmb();
720 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
721 lp->tx_bd_num];
722 if (cur_p->cntrl)
723 return NETDEV_TX_BUSY;
724 return 0;
725}
726
727/**
728 * axienet_tx_poll - Invoked once a transmit is completed by the
729 * Axi DMA Tx channel.
730 * @napi: Pointer to NAPI structure.
731 * @budget: Max number of TX packets to process.
732 *
733 * Return: Number of TX packets processed.
734 *
735 * This function is invoked from the NAPI processing to notify the completion
736 * of transmit operation. It clears fields in the corresponding Tx BDs and
737 * unmaps the corresponding buffer so that CPU can regain ownership of the
738 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
739 * required.
740 */
741static int axienet_tx_poll(struct napi_struct *napi, int budget)
742{
743 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
744 struct net_device *ndev = lp->ndev;
745 u32 size = 0;
746 int packets;
747
748 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
749
750 if (packets) {
751 lp->tx_bd_ci += packets;
752 if (lp->tx_bd_ci >= lp->tx_bd_num)
753 lp->tx_bd_ci %= lp->tx_bd_num;
754
755 u64_stats_update_begin(&lp->tx_stat_sync);
756 u64_stats_add(&lp->tx_packets, packets);
757 u64_stats_add(&lp->tx_bytes, size);
758 u64_stats_update_end(&lp->tx_stat_sync);
759
760 /* Matches barrier in axienet_start_xmit */
761 smp_mb();
762
763 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
764 netif_wake_queue(ndev);
765 }
766
767 if (packets < budget && napi_complete_done(napi, packets)) {
768 /* Re-enable TX completion interrupts. This should
769 * cause an immediate interrupt if any TX packets are
770 * already pending.
771 */
772 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
773 }
774 return packets;
775}
776
777/**
778 * axienet_start_xmit - Starts the transmission.
779 * @skb: sk_buff pointer that contains data to be Txed.
780 * @ndev: Pointer to net_device structure.
781 *
782 * Return: NETDEV_TX_OK, on success
783 * NETDEV_TX_BUSY, if any of the descriptors are not free
784 *
785 * This function is invoked from upper layers to initiate transmission. The
786 * function uses the next available free BDs and populates their fields to
787 * start the transmission. Additionally if checksum offloading is supported,
788 * it populates AXI Stream Control fields with appropriate values.
789 */
790static netdev_tx_t
791axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
792{
793 u32 ii;
794 u32 num_frag;
795 u32 csum_start_off;
796 u32 csum_index_off;
797 skb_frag_t *frag;
798 dma_addr_t tail_p, phys;
799 u32 orig_tail_ptr, new_tail_ptr;
800 struct axienet_local *lp = netdev_priv(ndev);
801 struct axidma_bd *cur_p;
802
803 orig_tail_ptr = lp->tx_bd_tail;
804 new_tail_ptr = orig_tail_ptr;
805
806 num_frag = skb_shinfo(skb)->nr_frags;
807 cur_p = &lp->tx_bd_v[orig_tail_ptr];
808
809 if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
810 /* Should not happen as last start_xmit call should have
811 * checked for sufficient space and queue should only be
812 * woken when sufficient space is available.
813 */
814 netif_stop_queue(ndev);
815 if (net_ratelimit())
816 netdev_warn(ndev, "TX ring unexpectedly full\n");
817 return NETDEV_TX_BUSY;
818 }
819
820 if (skb->ip_summed == CHECKSUM_PARTIAL) {
821 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
822 /* Tx Full Checksum Offload Enabled */
823 cur_p->app0 |= 2;
824 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
825 csum_start_off = skb_transport_offset(skb);
826 csum_index_off = csum_start_off + skb->csum_offset;
827 /* Tx Partial Checksum Offload Enabled */
828 cur_p->app0 |= 1;
829 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
830 }
831 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
832 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
833 }
834
835 phys = dma_map_single(lp->dev, skb->data,
836 skb_headlen(skb), DMA_TO_DEVICE);
837 if (unlikely(dma_mapping_error(lp->dev, phys))) {
838 if (net_ratelimit())
839 netdev_err(ndev, "TX DMA mapping error\n");
840 ndev->stats.tx_dropped++;
841 return NETDEV_TX_OK;
842 }
843 desc_set_phys_addr(lp, phys, cur_p);
844 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
845
846 for (ii = 0; ii < num_frag; ii++) {
847 if (++new_tail_ptr >= lp->tx_bd_num)
848 new_tail_ptr = 0;
849 cur_p = &lp->tx_bd_v[new_tail_ptr];
850 frag = &skb_shinfo(skb)->frags[ii];
851 phys = dma_map_single(lp->dev,
852 skb_frag_address(frag),
853 skb_frag_size(frag),
854 DMA_TO_DEVICE);
855 if (unlikely(dma_mapping_error(lp->dev, phys))) {
856 if (net_ratelimit())
857 netdev_err(ndev, "TX DMA mapping error\n");
858 ndev->stats.tx_dropped++;
859 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
860 true, NULL, 0);
861 return NETDEV_TX_OK;
862 }
863 desc_set_phys_addr(lp, phys, cur_p);
864 cur_p->cntrl = skb_frag_size(frag);
865 }
866
867 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
868 cur_p->skb = skb;
869
870 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
871 if (++new_tail_ptr >= lp->tx_bd_num)
872 new_tail_ptr = 0;
873 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
874
875 /* Start the transfer */
876 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
877
878 /* Stop queue if next transmit may not have space */
879 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
880 netif_stop_queue(ndev);
881
882 /* Matches barrier in axienet_tx_poll */
883 smp_mb();
884
885 /* Space might have just been freed - check again */
886 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
887 netif_wake_queue(ndev);
888 }
889
890 return NETDEV_TX_OK;
891}
892
893/**
894 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
895 * @napi: Pointer to NAPI structure.
896 * @budget: Max number of RX packets to process.
897 *
898 * Return: Number of RX packets processed.
899 */
900static int axienet_rx_poll(struct napi_struct *napi, int budget)
901{
902 u32 length;
903 u32 csumstatus;
904 u32 size = 0;
905 int packets = 0;
906 dma_addr_t tail_p = 0;
907 struct axidma_bd *cur_p;
908 struct sk_buff *skb, *new_skb;
909 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
910
911 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
912
913 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
914 dma_addr_t phys;
915
916 /* Ensure we see complete descriptor update */
917 dma_rmb();
918
919 skb = cur_p->skb;
920 cur_p->skb = NULL;
921
922 /* skb could be NULL if a previous pass already received the
923 * packet for this slot in the ring, but failed to refill it
924 * with a newly allocated buffer. In this case, don't try to
925 * receive it again.
926 */
927 if (likely(skb)) {
928 length = cur_p->app4 & 0x0000FFFF;
929
930 phys = desc_get_phys_addr(lp, cur_p);
931 dma_unmap_single(lp->dev, phys, lp->max_frm_size,
932 DMA_FROM_DEVICE);
933
934 skb_put(skb, length);
935 skb->protocol = eth_type_trans(skb, lp->ndev);
936 /*skb_checksum_none_assert(skb);*/
937 skb->ip_summed = CHECKSUM_NONE;
938
939 /* if we're doing Rx csum offload, set it up */
940 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
941 csumstatus = (cur_p->app2 &
942 XAE_FULL_CSUM_STATUS_MASK) >> 3;
943 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
944 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
945 skb->ip_summed = CHECKSUM_UNNECESSARY;
946 }
947 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
948 skb->protocol == htons(ETH_P_IP) &&
949 skb->len > 64) {
950 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
951 skb->ip_summed = CHECKSUM_COMPLETE;
952 }
953
954 napi_gro_receive(napi, skb);
955
956 size += length;
957 packets++;
958 }
959
960 new_skb = napi_alloc_skb(napi, lp->max_frm_size);
961 if (!new_skb)
962 break;
963
964 phys = dma_map_single(lp->dev, new_skb->data,
965 lp->max_frm_size,
966 DMA_FROM_DEVICE);
967 if (unlikely(dma_mapping_error(lp->dev, phys))) {
968 if (net_ratelimit())
969 netdev_err(lp->ndev, "RX DMA mapping error\n");
970 dev_kfree_skb(new_skb);
971 break;
972 }
973 desc_set_phys_addr(lp, phys, cur_p);
974
975 cur_p->cntrl = lp->max_frm_size;
976 cur_p->status = 0;
977 cur_p->skb = new_skb;
978
979 /* Only update tail_p to mark this slot as usable after it has
980 * been successfully refilled.
981 */
982 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
983
984 if (++lp->rx_bd_ci >= lp->rx_bd_num)
985 lp->rx_bd_ci = 0;
986 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
987 }
988
989 u64_stats_update_begin(&lp->rx_stat_sync);
990 u64_stats_add(&lp->rx_packets, packets);
991 u64_stats_add(&lp->rx_bytes, size);
992 u64_stats_update_end(&lp->rx_stat_sync);
993
994 if (tail_p)
995 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
996
997 if (packets < budget && napi_complete_done(napi, packets)) {
998 /* Re-enable RX completion interrupts. This should
999 * cause an immediate interrupt if any RX packets are
1000 * already pending.
1001 */
1002 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1003 }
1004 return packets;
1005}
1006
1007/**
1008 * axienet_tx_irq - Tx Done Isr.
1009 * @irq: irq number
1010 * @_ndev: net_device pointer
1011 *
1012 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1013 *
1014 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1015 * TX BD processing.
1016 */
1017static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1018{
1019 unsigned int status;
1020 struct net_device *ndev = _ndev;
1021 struct axienet_local *lp = netdev_priv(ndev);
1022
1023 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1024
1025 if (!(status & XAXIDMA_IRQ_ALL_MASK))
1026 return IRQ_NONE;
1027
1028 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1029
1030 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1031 netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1032 netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1033 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1034 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1035 schedule_work(&lp->dma_err_task);
1036 } else {
1037 /* Disable further TX completion interrupts and schedule
1038 * NAPI to handle the completions.
1039 */
1040 u32 cr = lp->tx_dma_cr;
1041
1042 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1043 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1044
1045 napi_schedule(&lp->napi_tx);
1046 }
1047
1048 return IRQ_HANDLED;
1049}
1050
1051/**
1052 * axienet_rx_irq - Rx Isr.
1053 * @irq: irq number
1054 * @_ndev: net_device pointer
1055 *
1056 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1057 *
1058 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1059 * processing.
1060 */
1061static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1062{
1063 unsigned int status;
1064 struct net_device *ndev = _ndev;
1065 struct axienet_local *lp = netdev_priv(ndev);
1066
1067 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1068
1069 if (!(status & XAXIDMA_IRQ_ALL_MASK))
1070 return IRQ_NONE;
1071
1072 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1073
1074 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1075 netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1076 netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1077 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1078 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1079 schedule_work(&lp->dma_err_task);
1080 } else {
1081 /* Disable further RX completion interrupts and schedule
1082 * NAPI receive.
1083 */
1084 u32 cr = lp->rx_dma_cr;
1085
1086 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1087 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1088
1089 napi_schedule(&lp->napi_rx);
1090 }
1091
1092 return IRQ_HANDLED;
1093}
1094
1095/**
1096 * axienet_eth_irq - Ethernet core Isr.
1097 * @irq: irq number
1098 * @_ndev: net_device pointer
1099 *
1100 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1101 *
1102 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1103 */
1104static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1105{
1106 struct net_device *ndev = _ndev;
1107 struct axienet_local *lp = netdev_priv(ndev);
1108 unsigned int pending;
1109
1110 pending = axienet_ior(lp, XAE_IP_OFFSET);
1111 if (!pending)
1112 return IRQ_NONE;
1113
1114 if (pending & XAE_INT_RXFIFOOVR_MASK)
1115 ndev->stats.rx_missed_errors++;
1116
1117 if (pending & XAE_INT_RXRJECT_MASK)
1118 ndev->stats.rx_frame_errors++;
1119
1120 axienet_iow(lp, XAE_IS_OFFSET, pending);
1121 return IRQ_HANDLED;
1122}
1123
1124static void axienet_dma_err_handler(struct work_struct *work);
1125
1126/**
1127 * axienet_open - Driver open routine.
1128 * @ndev: Pointer to net_device structure
1129 *
1130 * Return: 0, on success.
1131 * non-zero error value on failure
1132 *
1133 * This is the driver open routine. It calls phylink_start to start the
1134 * PHY device.
1135 * It also allocates interrupt service routines, enables the interrupt lines
1136 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1137 * descriptors are initialized.
1138 */
1139static int axienet_open(struct net_device *ndev)
1140{
1141 int ret;
1142 struct axienet_local *lp = netdev_priv(ndev);
1143
1144 dev_dbg(&ndev->dev, "axienet_open()\n");
1145
1146 /* When we do an Axi Ethernet reset, it resets the complete core
1147 * including the MDIO. MDIO must be disabled before resetting.
1148 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1149 */
1150 axienet_lock_mii(lp);
1151 ret = axienet_device_reset(ndev);
1152 axienet_unlock_mii(lp);
1153
1154 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1155 if (ret) {
1156 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1157 return ret;
1158 }
1159
1160 phylink_start(lp->phylink);
1161
1162 /* Enable worker thread for Axi DMA error handling */
1163 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1164
1165 napi_enable(&lp->napi_rx);
1166 napi_enable(&lp->napi_tx);
1167
1168 /* Enable interrupts for Axi DMA Tx */
1169 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1170 ndev->name, ndev);
1171 if (ret)
1172 goto err_tx_irq;
1173 /* Enable interrupts for Axi DMA Rx */
1174 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1175 ndev->name, ndev);
1176 if (ret)
1177 goto err_rx_irq;
1178 /* Enable interrupts for Axi Ethernet core (if defined) */
1179 if (lp->eth_irq > 0) {
1180 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1181 ndev->name, ndev);
1182 if (ret)
1183 goto err_eth_irq;
1184 }
1185
1186 return 0;
1187
1188err_eth_irq:
1189 free_irq(lp->rx_irq, ndev);
1190err_rx_irq:
1191 free_irq(lp->tx_irq, ndev);
1192err_tx_irq:
1193 napi_disable(&lp->napi_tx);
1194 napi_disable(&lp->napi_rx);
1195 phylink_stop(lp->phylink);
1196 phylink_disconnect_phy(lp->phylink);
1197 cancel_work_sync(&lp->dma_err_task);
1198 dev_err(lp->dev, "request_irq() failed\n");
1199 return ret;
1200}
1201
1202/**
1203 * axienet_stop - Driver stop routine.
1204 * @ndev: Pointer to net_device structure
1205 *
1206 * Return: 0, on success.
1207 *
1208 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1209 * device. It also removes the interrupt handlers and disables the interrupts.
1210 * The Axi DMA Tx/Rx BDs are released.
1211 */
1212static int axienet_stop(struct net_device *ndev)
1213{
1214 struct axienet_local *lp = netdev_priv(ndev);
1215
1216 dev_dbg(&ndev->dev, "axienet_close()\n");
1217
1218 napi_disable(&lp->napi_tx);
1219 napi_disable(&lp->napi_rx);
1220
1221 phylink_stop(lp->phylink);
1222 phylink_disconnect_phy(lp->phylink);
1223
1224 axienet_setoptions(ndev, lp->options &
1225 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1226
1227 axienet_dma_stop(lp);
1228
1229 axienet_iow(lp, XAE_IE_OFFSET, 0);
1230
1231 cancel_work_sync(&lp->dma_err_task);
1232
1233 if (lp->eth_irq > 0)
1234 free_irq(lp->eth_irq, ndev);
1235 free_irq(lp->tx_irq, ndev);
1236 free_irq(lp->rx_irq, ndev);
1237
1238 axienet_dma_bd_release(ndev);
1239 return 0;
1240}
1241
1242/**
1243 * axienet_change_mtu - Driver change mtu routine.
1244 * @ndev: Pointer to net_device structure
1245 * @new_mtu: New mtu value to be applied
1246 *
1247 * Return: Always returns 0 (success).
1248 *
1249 * This is the change mtu driver routine. It checks if the Axi Ethernet
1250 * hardware supports jumbo frames before changing the mtu. This can be
1251 * called only when the device is not up.
1252 */
1253static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1254{
1255 struct axienet_local *lp = netdev_priv(ndev);
1256
1257 if (netif_running(ndev))
1258 return -EBUSY;
1259
1260 if ((new_mtu + VLAN_ETH_HLEN +
1261 XAE_TRL_SIZE) > lp->rxmem)
1262 return -EINVAL;
1263
1264 ndev->mtu = new_mtu;
1265
1266 return 0;
1267}
1268
1269#ifdef CONFIG_NET_POLL_CONTROLLER
1270/**
1271 * axienet_poll_controller - Axi Ethernet poll mechanism.
1272 * @ndev: Pointer to net_device structure
1273 *
1274 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1275 * to polling the ISRs and are enabled back after the polling is done.
1276 */
1277static void axienet_poll_controller(struct net_device *ndev)
1278{
1279 struct axienet_local *lp = netdev_priv(ndev);
1280 disable_irq(lp->tx_irq);
1281 disable_irq(lp->rx_irq);
1282 axienet_rx_irq(lp->tx_irq, ndev);
1283 axienet_tx_irq(lp->rx_irq, ndev);
1284 enable_irq(lp->tx_irq);
1285 enable_irq(lp->rx_irq);
1286}
1287#endif
1288
1289static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1290{
1291 struct axienet_local *lp = netdev_priv(dev);
1292
1293 if (!netif_running(dev))
1294 return -EINVAL;
1295
1296 return phylink_mii_ioctl(lp->phylink, rq, cmd);
1297}
1298
1299static void
1300axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1301{
1302 struct axienet_local *lp = netdev_priv(dev);
1303 unsigned int start;
1304
1305 netdev_stats_to_stats64(stats, &dev->stats);
1306
1307 do {
1308 start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1309 stats->rx_packets = u64_stats_read(&lp->rx_packets);
1310 stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1311 } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1312
1313 do {
1314 start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1315 stats->tx_packets = u64_stats_read(&lp->tx_packets);
1316 stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1317 } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1318}
1319
1320static const struct net_device_ops axienet_netdev_ops = {
1321 .ndo_open = axienet_open,
1322 .ndo_stop = axienet_stop,
1323 .ndo_start_xmit = axienet_start_xmit,
1324 .ndo_get_stats64 = axienet_get_stats64,
1325 .ndo_change_mtu = axienet_change_mtu,
1326 .ndo_set_mac_address = netdev_set_mac_address,
1327 .ndo_validate_addr = eth_validate_addr,
1328 .ndo_eth_ioctl = axienet_ioctl,
1329 .ndo_set_rx_mode = axienet_set_multicast_list,
1330#ifdef CONFIG_NET_POLL_CONTROLLER
1331 .ndo_poll_controller = axienet_poll_controller,
1332#endif
1333};
1334
1335/**
1336 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1337 * @ndev: Pointer to net_device structure
1338 * @ed: Pointer to ethtool_drvinfo structure
1339 *
1340 * This implements ethtool command for getting the driver information.
1341 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1342 */
1343static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1344 struct ethtool_drvinfo *ed)
1345{
1346 strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1347 strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1348}
1349
1350/**
1351 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1352 * AxiEthernet core.
1353 * @ndev: Pointer to net_device structure
1354 *
1355 * This implements ethtool command for getting the total register length
1356 * information.
1357 *
1358 * Return: the total regs length
1359 */
1360static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1361{
1362 return sizeof(u32) * AXIENET_REGS_N;
1363}
1364
1365/**
1366 * axienet_ethtools_get_regs - Dump the contents of all registers present
1367 * in AxiEthernet core.
1368 * @ndev: Pointer to net_device structure
1369 * @regs: Pointer to ethtool_regs structure
1370 * @ret: Void pointer used to return the contents of the registers.
1371 *
1372 * This implements ethtool command for getting the Axi Ethernet register dump.
1373 * Issue "ethtool -d ethX" to execute this function.
1374 */
1375static void axienet_ethtools_get_regs(struct net_device *ndev,
1376 struct ethtool_regs *regs, void *ret)
1377{
1378 u32 *data = (u32 *)ret;
1379 size_t len = sizeof(u32) * AXIENET_REGS_N;
1380 struct axienet_local *lp = netdev_priv(ndev);
1381
1382 regs->version = 0;
1383 regs->len = len;
1384
1385 memset(data, 0, len);
1386 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1387 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1388 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1389 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1390 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1391 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1392 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1393 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1394 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1395 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1396 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1397 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1398 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1399 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1400 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1401 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1402 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1403 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1404 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1405 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1406 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1407 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1408 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1409 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1410 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1411 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1412 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1413 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1414 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1415 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1416 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1417 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1418 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1419 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1420 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1421 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1422}
1423
1424static void
1425axienet_ethtools_get_ringparam(struct net_device *ndev,
1426 struct ethtool_ringparam *ering,
1427 struct kernel_ethtool_ringparam *kernel_ering,
1428 struct netlink_ext_ack *extack)
1429{
1430 struct axienet_local *lp = netdev_priv(ndev);
1431
1432 ering->rx_max_pending = RX_BD_NUM_MAX;
1433 ering->rx_mini_max_pending = 0;
1434 ering->rx_jumbo_max_pending = 0;
1435 ering->tx_max_pending = TX_BD_NUM_MAX;
1436 ering->rx_pending = lp->rx_bd_num;
1437 ering->rx_mini_pending = 0;
1438 ering->rx_jumbo_pending = 0;
1439 ering->tx_pending = lp->tx_bd_num;
1440}
1441
1442static int
1443axienet_ethtools_set_ringparam(struct net_device *ndev,
1444 struct ethtool_ringparam *ering,
1445 struct kernel_ethtool_ringparam *kernel_ering,
1446 struct netlink_ext_ack *extack)
1447{
1448 struct axienet_local *lp = netdev_priv(ndev);
1449
1450 if (ering->rx_pending > RX_BD_NUM_MAX ||
1451 ering->rx_mini_pending ||
1452 ering->rx_jumbo_pending ||
1453 ering->tx_pending < TX_BD_NUM_MIN ||
1454 ering->tx_pending > TX_BD_NUM_MAX)
1455 return -EINVAL;
1456
1457 if (netif_running(ndev))
1458 return -EBUSY;
1459
1460 lp->rx_bd_num = ering->rx_pending;
1461 lp->tx_bd_num = ering->tx_pending;
1462 return 0;
1463}
1464
1465/**
1466 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1467 * Tx and Rx paths.
1468 * @ndev: Pointer to net_device structure
1469 * @epauseparm: Pointer to ethtool_pauseparam structure.
1470 *
1471 * This implements ethtool command for getting axi ethernet pause frame
1472 * setting. Issue "ethtool -a ethX" to execute this function.
1473 */
1474static void
1475axienet_ethtools_get_pauseparam(struct net_device *ndev,
1476 struct ethtool_pauseparam *epauseparm)
1477{
1478 struct axienet_local *lp = netdev_priv(ndev);
1479
1480 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1481}
1482
1483/**
1484 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1485 * settings.
1486 * @ndev: Pointer to net_device structure
1487 * @epauseparm:Pointer to ethtool_pauseparam structure
1488 *
1489 * This implements ethtool command for enabling flow control on Rx and Tx
1490 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1491 * function.
1492 *
1493 * Return: 0 on success, -EFAULT if device is running
1494 */
1495static int
1496axienet_ethtools_set_pauseparam(struct net_device *ndev,
1497 struct ethtool_pauseparam *epauseparm)
1498{
1499 struct axienet_local *lp = netdev_priv(ndev);
1500
1501 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1502}
1503
1504/**
1505 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1506 * @ndev: Pointer to net_device structure
1507 * @ecoalesce: Pointer to ethtool_coalesce structure
1508 * @kernel_coal: ethtool CQE mode setting structure
1509 * @extack: extack for reporting error messages
1510 *
1511 * This implements ethtool command for getting the DMA interrupt coalescing
1512 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1513 * execute this function.
1514 *
1515 * Return: 0 always
1516 */
1517static int
1518axienet_ethtools_get_coalesce(struct net_device *ndev,
1519 struct ethtool_coalesce *ecoalesce,
1520 struct kernel_ethtool_coalesce *kernel_coal,
1521 struct netlink_ext_ack *extack)
1522{
1523 struct axienet_local *lp = netdev_priv(ndev);
1524
1525 ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1526 ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1527 ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1528 ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1529 return 0;
1530}
1531
1532/**
1533 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1534 * @ndev: Pointer to net_device structure
1535 * @ecoalesce: Pointer to ethtool_coalesce structure
1536 * @kernel_coal: ethtool CQE mode setting structure
1537 * @extack: extack for reporting error messages
1538 *
1539 * This implements ethtool command for setting the DMA interrupt coalescing
1540 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1541 * prompt to execute this function.
1542 *
1543 * Return: 0, on success, Non-zero error value on failure.
1544 */
1545static int
1546axienet_ethtools_set_coalesce(struct net_device *ndev,
1547 struct ethtool_coalesce *ecoalesce,
1548 struct kernel_ethtool_coalesce *kernel_coal,
1549 struct netlink_ext_ack *extack)
1550{
1551 struct axienet_local *lp = netdev_priv(ndev);
1552
1553 if (netif_running(ndev)) {
1554 netdev_err(ndev,
1555 "Please stop netif before applying configuration\n");
1556 return -EFAULT;
1557 }
1558
1559 if (ecoalesce->rx_max_coalesced_frames)
1560 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1561 if (ecoalesce->rx_coalesce_usecs)
1562 lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1563 if (ecoalesce->tx_max_coalesced_frames)
1564 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1565 if (ecoalesce->tx_coalesce_usecs)
1566 lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1567
1568 return 0;
1569}
1570
1571static int
1572axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1573 struct ethtool_link_ksettings *cmd)
1574{
1575 struct axienet_local *lp = netdev_priv(ndev);
1576
1577 return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1578}
1579
1580static int
1581axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1582 const struct ethtool_link_ksettings *cmd)
1583{
1584 struct axienet_local *lp = netdev_priv(ndev);
1585
1586 return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1587}
1588
1589static int axienet_ethtools_nway_reset(struct net_device *dev)
1590{
1591 struct axienet_local *lp = netdev_priv(dev);
1592
1593 return phylink_ethtool_nway_reset(lp->phylink);
1594}
1595
1596static const struct ethtool_ops axienet_ethtool_ops = {
1597 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1598 ETHTOOL_COALESCE_USECS,
1599 .get_drvinfo = axienet_ethtools_get_drvinfo,
1600 .get_regs_len = axienet_ethtools_get_regs_len,
1601 .get_regs = axienet_ethtools_get_regs,
1602 .get_link = ethtool_op_get_link,
1603 .get_ringparam = axienet_ethtools_get_ringparam,
1604 .set_ringparam = axienet_ethtools_set_ringparam,
1605 .get_pauseparam = axienet_ethtools_get_pauseparam,
1606 .set_pauseparam = axienet_ethtools_set_pauseparam,
1607 .get_coalesce = axienet_ethtools_get_coalesce,
1608 .set_coalesce = axienet_ethtools_set_coalesce,
1609 .get_link_ksettings = axienet_ethtools_get_link_ksettings,
1610 .set_link_ksettings = axienet_ethtools_set_link_ksettings,
1611 .nway_reset = axienet_ethtools_nway_reset,
1612};
1613
1614static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1615{
1616 return container_of(pcs, struct axienet_local, pcs);
1617}
1618
1619static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1620 struct phylink_link_state *state)
1621{
1622 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1623
1624 phylink_mii_c22_pcs_get_state(pcs_phy, state);
1625}
1626
1627static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1628{
1629 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1630
1631 phylink_mii_c22_pcs_an_restart(pcs_phy);
1632}
1633
1634static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
1635 phy_interface_t interface,
1636 const unsigned long *advertising,
1637 bool permit_pause_to_mac)
1638{
1639 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1640 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1641 struct axienet_local *lp = netdev_priv(ndev);
1642 int ret;
1643
1644 if (lp->switch_x_sgmii) {
1645 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1646 interface == PHY_INTERFACE_MODE_SGMII ?
1647 XLNX_MII_STD_SELECT_SGMII : 0);
1648 if (ret < 0) {
1649 netdev_warn(ndev,
1650 "Failed to switch PHY interface: %d\n",
1651 ret);
1652 return ret;
1653 }
1654 }
1655
1656 ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
1657 if (ret < 0)
1658 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1659
1660 return ret;
1661}
1662
1663static const struct phylink_pcs_ops axienet_pcs_ops = {
1664 .pcs_get_state = axienet_pcs_get_state,
1665 .pcs_config = axienet_pcs_config,
1666 .pcs_an_restart = axienet_pcs_an_restart,
1667};
1668
1669static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1670 phy_interface_t interface)
1671{
1672 struct net_device *ndev = to_net_dev(config->dev);
1673 struct axienet_local *lp = netdev_priv(ndev);
1674
1675 if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1676 interface == PHY_INTERFACE_MODE_SGMII)
1677 return &lp->pcs;
1678
1679 return NULL;
1680}
1681
1682static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1683 const struct phylink_link_state *state)
1684{
1685 /* nothing meaningful to do */
1686}
1687
1688static void axienet_mac_link_down(struct phylink_config *config,
1689 unsigned int mode,
1690 phy_interface_t interface)
1691{
1692 /* nothing meaningful to do */
1693}
1694
1695static void axienet_mac_link_up(struct phylink_config *config,
1696 struct phy_device *phy,
1697 unsigned int mode, phy_interface_t interface,
1698 int speed, int duplex,
1699 bool tx_pause, bool rx_pause)
1700{
1701 struct net_device *ndev = to_net_dev(config->dev);
1702 struct axienet_local *lp = netdev_priv(ndev);
1703 u32 emmc_reg, fcc_reg;
1704
1705 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1706 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1707
1708 switch (speed) {
1709 case SPEED_1000:
1710 emmc_reg |= XAE_EMMC_LINKSPD_1000;
1711 break;
1712 case SPEED_100:
1713 emmc_reg |= XAE_EMMC_LINKSPD_100;
1714 break;
1715 case SPEED_10:
1716 emmc_reg |= XAE_EMMC_LINKSPD_10;
1717 break;
1718 default:
1719 dev_err(&ndev->dev,
1720 "Speed other than 10, 100 or 1Gbps is not supported\n");
1721 break;
1722 }
1723
1724 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1725
1726 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1727 if (tx_pause)
1728 fcc_reg |= XAE_FCC_FCTX_MASK;
1729 else
1730 fcc_reg &= ~XAE_FCC_FCTX_MASK;
1731 if (rx_pause)
1732 fcc_reg |= XAE_FCC_FCRX_MASK;
1733 else
1734 fcc_reg &= ~XAE_FCC_FCRX_MASK;
1735 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1736}
1737
1738static const struct phylink_mac_ops axienet_phylink_ops = {
1739 .mac_select_pcs = axienet_mac_select_pcs,
1740 .mac_config = axienet_mac_config,
1741 .mac_link_down = axienet_mac_link_down,
1742 .mac_link_up = axienet_mac_link_up,
1743};
1744
1745/**
1746 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1747 * @work: pointer to work_struct
1748 *
1749 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1750 * Tx/Rx BDs.
1751 */
1752static void axienet_dma_err_handler(struct work_struct *work)
1753{
1754 u32 i;
1755 u32 axienet_status;
1756 struct axidma_bd *cur_p;
1757 struct axienet_local *lp = container_of(work, struct axienet_local,
1758 dma_err_task);
1759 struct net_device *ndev = lp->ndev;
1760
1761 napi_disable(&lp->napi_tx);
1762 napi_disable(&lp->napi_rx);
1763
1764 axienet_setoptions(ndev, lp->options &
1765 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1766
1767 axienet_dma_stop(lp);
1768
1769 for (i = 0; i < lp->tx_bd_num; i++) {
1770 cur_p = &lp->tx_bd_v[i];
1771 if (cur_p->cntrl) {
1772 dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1773
1774 dma_unmap_single(lp->dev, addr,
1775 (cur_p->cntrl &
1776 XAXIDMA_BD_CTRL_LENGTH_MASK),
1777 DMA_TO_DEVICE);
1778 }
1779 if (cur_p->skb)
1780 dev_kfree_skb_irq(cur_p->skb);
1781 cur_p->phys = 0;
1782 cur_p->phys_msb = 0;
1783 cur_p->cntrl = 0;
1784 cur_p->status = 0;
1785 cur_p->app0 = 0;
1786 cur_p->app1 = 0;
1787 cur_p->app2 = 0;
1788 cur_p->app3 = 0;
1789 cur_p->app4 = 0;
1790 cur_p->skb = NULL;
1791 }
1792
1793 for (i = 0; i < lp->rx_bd_num; i++) {
1794 cur_p = &lp->rx_bd_v[i];
1795 cur_p->status = 0;
1796 cur_p->app0 = 0;
1797 cur_p->app1 = 0;
1798 cur_p->app2 = 0;
1799 cur_p->app3 = 0;
1800 cur_p->app4 = 0;
1801 }
1802
1803 lp->tx_bd_ci = 0;
1804 lp->tx_bd_tail = 0;
1805 lp->rx_bd_ci = 0;
1806
1807 axienet_dma_start(lp);
1808
1809 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1810 axienet_status &= ~XAE_RCW1_RX_MASK;
1811 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1812
1813 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1814 if (axienet_status & XAE_INT_RXRJECT_MASK)
1815 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1816 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1817 XAE_INT_RECV_ERROR_MASK : 0);
1818 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1819
1820 /* Sync default options with HW but leave receiver and
1821 * transmitter disabled.
1822 */
1823 axienet_setoptions(ndev, lp->options &
1824 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1825 axienet_set_mac_address(ndev, NULL);
1826 axienet_set_multicast_list(ndev);
1827 axienet_setoptions(ndev, lp->options);
1828 napi_enable(&lp->napi_rx);
1829 napi_enable(&lp->napi_tx);
1830}
1831
1832/**
1833 * axienet_probe - Axi Ethernet probe function.
1834 * @pdev: Pointer to platform device structure.
1835 *
1836 * Return: 0, on success
1837 * Non-zero error value on failure.
1838 *
1839 * This is the probe routine for Axi Ethernet driver. This is called before
1840 * any other driver routines are invoked. It allocates and sets up the Ethernet
1841 * device. Parses through device tree and populates fields of
1842 * axienet_local. It registers the Ethernet device.
1843 */
1844static int axienet_probe(struct platform_device *pdev)
1845{
1846 int ret;
1847 struct device_node *np;
1848 struct axienet_local *lp;
1849 struct net_device *ndev;
1850 struct resource *ethres;
1851 u8 mac_addr[ETH_ALEN];
1852 int addr_width = 32;
1853 u32 value;
1854
1855 ndev = alloc_etherdev(sizeof(*lp));
1856 if (!ndev)
1857 return -ENOMEM;
1858
1859 platform_set_drvdata(pdev, ndev);
1860
1861 SET_NETDEV_DEV(ndev, &pdev->dev);
1862 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1863 ndev->features = NETIF_F_SG;
1864 ndev->netdev_ops = &axienet_netdev_ops;
1865 ndev->ethtool_ops = &axienet_ethtool_ops;
1866
1867 /* MTU range: 64 - 9000 */
1868 ndev->min_mtu = 64;
1869 ndev->max_mtu = XAE_JUMBO_MTU;
1870
1871 lp = netdev_priv(ndev);
1872 lp->ndev = ndev;
1873 lp->dev = &pdev->dev;
1874 lp->options = XAE_OPTION_DEFAULTS;
1875 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1876 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1877
1878 u64_stats_init(&lp->rx_stat_sync);
1879 u64_stats_init(&lp->tx_stat_sync);
1880
1881 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
1882 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
1883
1884 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1885 if (!lp->axi_clk) {
1886 /* For backward compatibility, if named AXI clock is not present,
1887 * treat the first clock specified as the AXI clock.
1888 */
1889 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1890 }
1891 if (IS_ERR(lp->axi_clk)) {
1892 ret = PTR_ERR(lp->axi_clk);
1893 goto free_netdev;
1894 }
1895 ret = clk_prepare_enable(lp->axi_clk);
1896 if (ret) {
1897 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1898 goto free_netdev;
1899 }
1900
1901 lp->misc_clks[0].id = "axis_clk";
1902 lp->misc_clks[1].id = "ref_clk";
1903 lp->misc_clks[2].id = "mgt_clk";
1904
1905 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1906 if (ret)
1907 goto cleanup_clk;
1908
1909 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1910 if (ret)
1911 goto cleanup_clk;
1912
1913 /* Map device registers */
1914 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres);
1915 if (IS_ERR(lp->regs)) {
1916 ret = PTR_ERR(lp->regs);
1917 goto cleanup_clk;
1918 }
1919 lp->regs_start = ethres->start;
1920
1921 /* Setup checksum offload, but default to off if not specified */
1922 lp->features = 0;
1923
1924 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1925 if (!ret) {
1926 switch (value) {
1927 case 1:
1928 lp->csum_offload_on_tx_path =
1929 XAE_FEATURE_PARTIAL_TX_CSUM;
1930 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1931 /* Can checksum TCP/UDP over IPv4. */
1932 ndev->features |= NETIF_F_IP_CSUM;
1933 break;
1934 case 2:
1935 lp->csum_offload_on_tx_path =
1936 XAE_FEATURE_FULL_TX_CSUM;
1937 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1938 /* Can checksum TCP/UDP over IPv4. */
1939 ndev->features |= NETIF_F_IP_CSUM;
1940 break;
1941 default:
1942 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1943 }
1944 }
1945 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1946 if (!ret) {
1947 switch (value) {
1948 case 1:
1949 lp->csum_offload_on_rx_path =
1950 XAE_FEATURE_PARTIAL_RX_CSUM;
1951 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1952 break;
1953 case 2:
1954 lp->csum_offload_on_rx_path =
1955 XAE_FEATURE_FULL_RX_CSUM;
1956 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1957 break;
1958 default:
1959 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1960 }
1961 }
1962 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1963 * a larger Rx/Tx Memory. Typically, the size must be large so that
1964 * we can enable jumbo option and start supporting jumbo frames.
1965 * Here we check for memory allocated for Rx/Tx in the hardware from
1966 * the device-tree and accordingly set flags.
1967 */
1968 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1969
1970 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1971 "xlnx,switch-x-sgmii");
1972
1973 /* Start with the proprietary, and broken phy_type */
1974 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1975 if (!ret) {
1976 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1977 switch (value) {
1978 case XAE_PHY_TYPE_MII:
1979 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1980 break;
1981 case XAE_PHY_TYPE_GMII:
1982 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1983 break;
1984 case XAE_PHY_TYPE_RGMII_2_0:
1985 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1986 break;
1987 case XAE_PHY_TYPE_SGMII:
1988 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1989 break;
1990 case XAE_PHY_TYPE_1000BASE_X:
1991 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1992 break;
1993 default:
1994 ret = -EINVAL;
1995 goto cleanup_clk;
1996 }
1997 } else {
1998 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1999 if (ret)
2000 goto cleanup_clk;
2001 }
2002 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2003 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2004 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2005 ret = -EINVAL;
2006 goto cleanup_clk;
2007 }
2008
2009 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2010 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2011 if (np) {
2012 struct resource dmares;
2013
2014 ret = of_address_to_resource(np, 0, &dmares);
2015 if (ret) {
2016 dev_err(&pdev->dev,
2017 "unable to get DMA resource\n");
2018 of_node_put(np);
2019 goto cleanup_clk;
2020 }
2021 lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2022 &dmares);
2023 lp->rx_irq = irq_of_parse_and_map(np, 1);
2024 lp->tx_irq = irq_of_parse_and_map(np, 0);
2025 of_node_put(np);
2026 lp->eth_irq = platform_get_irq_optional(pdev, 0);
2027 } else {
2028 /* Check for these resources directly on the Ethernet node. */
2029 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2030 lp->rx_irq = platform_get_irq(pdev, 1);
2031 lp->tx_irq = platform_get_irq(pdev, 0);
2032 lp->eth_irq = platform_get_irq_optional(pdev, 2);
2033 }
2034 if (IS_ERR(lp->dma_regs)) {
2035 dev_err(&pdev->dev, "could not map DMA regs\n");
2036 ret = PTR_ERR(lp->dma_regs);
2037 goto cleanup_clk;
2038 }
2039 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2040 dev_err(&pdev->dev, "could not determine irqs\n");
2041 ret = -ENOMEM;
2042 goto cleanup_clk;
2043 }
2044
2045 /* Autodetect the need for 64-bit DMA pointers.
2046 * When the IP is configured for a bus width bigger than 32 bits,
2047 * writing the MSB registers is mandatory, even if they are all 0.
2048 * We can detect this case by writing all 1's to one such register
2049 * and see if that sticks: when the IP is configured for 32 bits
2050 * only, those registers are RES0.
2051 * Those MSB registers were introduced in IP v7.1, which we check first.
2052 */
2053 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2054 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2055
2056 iowrite32(0x0, desc);
2057 if (ioread32(desc) == 0) { /* sanity check */
2058 iowrite32(0xffffffff, desc);
2059 if (ioread32(desc) > 0) {
2060 lp->features |= XAE_FEATURE_DMA_64BIT;
2061 addr_width = 64;
2062 dev_info(&pdev->dev,
2063 "autodetected 64-bit DMA range\n");
2064 }
2065 iowrite32(0x0, desc);
2066 }
2067 }
2068 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2069 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2070 ret = -EINVAL;
2071 goto cleanup_clk;
2072 }
2073
2074 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2075 if (ret) {
2076 dev_err(&pdev->dev, "No suitable DMA available\n");
2077 goto cleanup_clk;
2078 }
2079
2080 /* Check for Ethernet core IRQ (optional) */
2081 if (lp->eth_irq <= 0)
2082 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2083
2084 /* Retrieve the MAC address */
2085 ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2086 if (!ret) {
2087 axienet_set_mac_address(ndev, mac_addr);
2088 } else {
2089 dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2090 ret);
2091 axienet_set_mac_address(ndev, NULL);
2092 }
2093
2094 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2095 lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2096 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2097 lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2098
2099 /* Reset core now that clocks are enabled, prior to accessing MDIO */
2100 ret = __axienet_device_reset(lp);
2101 if (ret)
2102 goto cleanup_clk;
2103
2104 ret = axienet_mdio_setup(lp);
2105 if (ret)
2106 dev_warn(&pdev->dev,
2107 "error registering MDIO bus: %d\n", ret);
2108
2109 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2110 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2111 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2112 if (!np) {
2113 /* Deprecated: Always use "pcs-handle" for pcs_phy.
2114 * Falling back to "phy-handle" here is only for
2115 * backward compatibility with old device trees.
2116 */
2117 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2118 }
2119 if (!np) {
2120 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2121 ret = -EINVAL;
2122 goto cleanup_mdio;
2123 }
2124 lp->pcs_phy = of_mdio_find_device(np);
2125 if (!lp->pcs_phy) {
2126 ret = -EPROBE_DEFER;
2127 of_node_put(np);
2128 goto cleanup_mdio;
2129 }
2130 of_node_put(np);
2131 lp->pcs.ops = &axienet_pcs_ops;
2132 lp->pcs.poll = true;
2133 }
2134
2135 lp->phylink_config.dev = &ndev->dev;
2136 lp->phylink_config.type = PHYLINK_NETDEV;
2137 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2138 MAC_10FD | MAC_100FD | MAC_1000FD;
2139
2140 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2141 if (lp->switch_x_sgmii) {
2142 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2143 lp->phylink_config.supported_interfaces);
2144 __set_bit(PHY_INTERFACE_MODE_SGMII,
2145 lp->phylink_config.supported_interfaces);
2146 }
2147
2148 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2149 lp->phy_mode,
2150 &axienet_phylink_ops);
2151 if (IS_ERR(lp->phylink)) {
2152 ret = PTR_ERR(lp->phylink);
2153 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2154 goto cleanup_mdio;
2155 }
2156
2157 ret = register_netdev(lp->ndev);
2158 if (ret) {
2159 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2160 goto cleanup_phylink;
2161 }
2162
2163 return 0;
2164
2165cleanup_phylink:
2166 phylink_destroy(lp->phylink);
2167
2168cleanup_mdio:
2169 if (lp->pcs_phy)
2170 put_device(&lp->pcs_phy->dev);
2171 if (lp->mii_bus)
2172 axienet_mdio_teardown(lp);
2173cleanup_clk:
2174 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2175 clk_disable_unprepare(lp->axi_clk);
2176
2177free_netdev:
2178 free_netdev(ndev);
2179
2180 return ret;
2181}
2182
2183static int axienet_remove(struct platform_device *pdev)
2184{
2185 struct net_device *ndev = platform_get_drvdata(pdev);
2186 struct axienet_local *lp = netdev_priv(ndev);
2187
2188 unregister_netdev(ndev);
2189
2190 if (lp->phylink)
2191 phylink_destroy(lp->phylink);
2192
2193 if (lp->pcs_phy)
2194 put_device(&lp->pcs_phy->dev);
2195
2196 axienet_mdio_teardown(lp);
2197
2198 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2199 clk_disable_unprepare(lp->axi_clk);
2200
2201 free_netdev(ndev);
2202
2203 return 0;
2204}
2205
2206static void axienet_shutdown(struct platform_device *pdev)
2207{
2208 struct net_device *ndev = platform_get_drvdata(pdev);
2209
2210 rtnl_lock();
2211 netif_device_detach(ndev);
2212
2213 if (netif_running(ndev))
2214 dev_close(ndev);
2215
2216 rtnl_unlock();
2217}
2218
2219static int axienet_suspend(struct device *dev)
2220{
2221 struct net_device *ndev = dev_get_drvdata(dev);
2222
2223 if (!netif_running(ndev))
2224 return 0;
2225
2226 netif_device_detach(ndev);
2227
2228 rtnl_lock();
2229 axienet_stop(ndev);
2230 rtnl_unlock();
2231
2232 return 0;
2233}
2234
2235static int axienet_resume(struct device *dev)
2236{
2237 struct net_device *ndev = dev_get_drvdata(dev);
2238
2239 if (!netif_running(ndev))
2240 return 0;
2241
2242 rtnl_lock();
2243 axienet_open(ndev);
2244 rtnl_unlock();
2245
2246 netif_device_attach(ndev);
2247
2248 return 0;
2249}
2250
2251static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2252 axienet_suspend, axienet_resume);
2253
2254static struct platform_driver axienet_driver = {
2255 .probe = axienet_probe,
2256 .remove = axienet_remove,
2257 .shutdown = axienet_shutdown,
2258 .driver = {
2259 .name = "xilinx_axienet",
2260 .pm = &axienet_pm_ops,
2261 .of_match_table = axienet_of_match,
2262 },
2263};
2264
2265module_platform_driver(axienet_driver);
2266
2267MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2268MODULE_AUTHOR("Xilinx");
2269MODULE_LICENSE("GPL");