Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Xilinx Axi Ethernet device driver
   3 *
   4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   8 * Copyright (c) 2010 - 2011 PetaLogix
   9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  10 *
  11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  12 * and Spartan6.
  13 *
  14 * TODO:
  15 *  - Add Axi Fifo support.
  16 *  - Factor out Axi DMA code into separate driver.
  17 *  - Test and fix basic multicast filtering.
  18 *  - Add support for extended multicast filtering.
  19 *  - Test basic VLAN support.
  20 *  - Add support for extended VLAN support.
  21 */
  22
  23#include <linux/delay.h>
  24#include <linux/etherdevice.h>
  25#include <linux/module.h>
  26#include <linux/netdevice.h>
  27#include <linux/of_mdio.h>
  28#include <linux/of_platform.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/skbuff.h>
  32#include <linux/spinlock.h>
  33#include <linux/phy.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36
  37#include "xilinx_axienet.h"
  38
  39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
  40#define TX_BD_NUM		64
  41#define RX_BD_NUM		128
  42
  43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  44#define DRIVER_NAME		"xaxienet"
  45#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
  46#define DRIVER_VERSION		"1.00a"
  47
  48#define AXIENET_REGS_N		32
  49
  50/* Match table for of_platform binding */
  51static struct of_device_id axienet_of_match[] = {
  52	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
  53	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
  54	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
  55	{},
  56};
  57
  58MODULE_DEVICE_TABLE(of, axienet_of_match);
  59
  60/* Option table for setting up Axi Ethernet hardware options */
  61static struct axienet_option axienet_options[] = {
  62	/* Turn on jumbo packet support for both Rx and Tx */
  63	{
  64		.opt = XAE_OPTION_JUMBO,
  65		.reg = XAE_TC_OFFSET,
  66		.m_or = XAE_TC_JUM_MASK,
  67	}, {
  68		.opt = XAE_OPTION_JUMBO,
  69		.reg = XAE_RCW1_OFFSET,
  70		.m_or = XAE_RCW1_JUM_MASK,
  71	}, { /* Turn on VLAN packet support for both Rx and Tx */
  72		.opt = XAE_OPTION_VLAN,
  73		.reg = XAE_TC_OFFSET,
  74		.m_or = XAE_TC_VLAN_MASK,
  75	}, {
  76		.opt = XAE_OPTION_VLAN,
  77		.reg = XAE_RCW1_OFFSET,
  78		.m_or = XAE_RCW1_VLAN_MASK,
  79	}, { /* Turn on FCS stripping on receive packets */
  80		.opt = XAE_OPTION_FCS_STRIP,
  81		.reg = XAE_RCW1_OFFSET,
  82		.m_or = XAE_RCW1_FCS_MASK,
  83	}, { /* Turn on FCS insertion on transmit packets */
  84		.opt = XAE_OPTION_FCS_INSERT,
  85		.reg = XAE_TC_OFFSET,
  86		.m_or = XAE_TC_FCS_MASK,
  87	}, { /* Turn off length/type field checking on receive packets */
  88		.opt = XAE_OPTION_LENTYPE_ERR,
  89		.reg = XAE_RCW1_OFFSET,
  90		.m_or = XAE_RCW1_LT_DIS_MASK,
  91	}, { /* Turn on Rx flow control */
  92		.opt = XAE_OPTION_FLOW_CONTROL,
  93		.reg = XAE_FCC_OFFSET,
  94		.m_or = XAE_FCC_FCRX_MASK,
  95	}, { /* Turn on Tx flow control */
  96		.opt = XAE_OPTION_FLOW_CONTROL,
  97		.reg = XAE_FCC_OFFSET,
  98		.m_or = XAE_FCC_FCTX_MASK,
  99	}, { /* Turn on promiscuous frame filtering */
 100		.opt = XAE_OPTION_PROMISC,
 101		.reg = XAE_FMI_OFFSET,
 102		.m_or = XAE_FMI_PM_MASK,
 103	}, { /* Enable transmitter */
 104		.opt = XAE_OPTION_TXEN,
 105		.reg = XAE_TC_OFFSET,
 106		.m_or = XAE_TC_TX_MASK,
 107	}, { /* Enable receiver */
 108		.opt = XAE_OPTION_RXEN,
 109		.reg = XAE_RCW1_OFFSET,
 110		.m_or = XAE_RCW1_RX_MASK,
 111	},
 112	{}
 113};
 114
 115/**
 116 * axienet_dma_in32 - Memory mapped Axi DMA register read
 117 * @lp:		Pointer to axienet local structure
 118 * @reg:	Address offset from the base address of the Axi DMA core
 119 *
 120 * returns: The contents of the Axi DMA register
 121 *
 122 * This function returns the contents of the corresponding Axi DMA register.
 123 */
 124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 125{
 126	return in_be32(lp->dma_regs + reg);
 127}
 128
 129/**
 130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 131 * @lp:		Pointer to axienet local structure
 132 * @reg:	Address offset from the base address of the Axi DMA core
 133 * @value:	Value to be written into the Axi DMA register
 134 *
 135 * This function writes the desired value into the corresponding Axi DMA
 136 * register.
 137 */
 138static inline void axienet_dma_out32(struct axienet_local *lp,
 139				     off_t reg, u32 value)
 140{
 141	out_be32((lp->dma_regs + reg), value);
 142}
 143
 144/**
 145 * axienet_dma_bd_release - Release buffer descriptor rings
 146 * @ndev:	Pointer to the net_device structure
 147 *
 148 * This function is used to release the descriptors allocated in
 149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 150 * driver stop api is called.
 151 */
 152static void axienet_dma_bd_release(struct net_device *ndev)
 153{
 154	int i;
 155	struct axienet_local *lp = netdev_priv(ndev);
 156
 157	for (i = 0; i < RX_BD_NUM; i++) {
 158		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
 159				 lp->max_frm_size, DMA_FROM_DEVICE);
 160		dev_kfree_skb((struct sk_buff *)
 161			      (lp->rx_bd_v[i].sw_id_offset));
 162	}
 163
 164	if (lp->rx_bd_v) {
 165		dma_free_coherent(ndev->dev.parent,
 166				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 167				  lp->rx_bd_v,
 168				  lp->rx_bd_p);
 169	}
 170	if (lp->tx_bd_v) {
 171		dma_free_coherent(ndev->dev.parent,
 172				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 173				  lp->tx_bd_v,
 174				  lp->tx_bd_p);
 175	}
 176}
 177
 178/**
 179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 180 * @ndev:	Pointer to the net_device structure
 181 *
 182 * returns: 0, on success
 183 *	    -ENOMEM, on failure
 184 *
 185 * This function is called to initialize the Rx and Tx DMA descriptor
 186 * rings. This initializes the descriptors with required default values
 187 * and is called when Axi Ethernet driver reset is called.
 188 */
 189static int axienet_dma_bd_init(struct net_device *ndev)
 190{
 191	u32 cr;
 192	int i;
 193	struct sk_buff *skb;
 194	struct axienet_local *lp = netdev_priv(ndev);
 195
 196	/* Reset the indexes which are used for accessing the BDs */
 197	lp->tx_bd_ci = 0;
 198	lp->tx_bd_tail = 0;
 199	lp->rx_bd_ci = 0;
 200
 201	/*
 202	 * Allocate the Tx and Rx buffer descriptors.
 203	 */
 204	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 205					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 206					  &lp->tx_bd_p, GFP_KERNEL);
 207	if (!lp->tx_bd_v)
 208		goto out;
 209
 210	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 211					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 212					  &lp->rx_bd_p, GFP_KERNEL);
 213	if (!lp->rx_bd_v)
 214		goto out;
 215
 216	for (i = 0; i < TX_BD_NUM; i++) {
 217		lp->tx_bd_v[i].next = lp->tx_bd_p +
 218				      sizeof(*lp->tx_bd_v) *
 219				      ((i + 1) % TX_BD_NUM);
 220	}
 221
 222	for (i = 0; i < RX_BD_NUM; i++) {
 223		lp->rx_bd_v[i].next = lp->rx_bd_p +
 224				      sizeof(*lp->rx_bd_v) *
 225				      ((i + 1) % RX_BD_NUM);
 226
 227		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 228		if (!skb)
 229			goto out;
 230
 231		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
 232		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
 233						     skb->data,
 234						     lp->max_frm_size,
 235						     DMA_FROM_DEVICE);
 236		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 237	}
 238
 239	/* Start updating the Rx channel control register */
 240	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 241	/* Update the interrupt coalesce count */
 242	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
 243	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
 244	/* Update the delay timer count */
 245	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
 246	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 247	/* Enable coalesce, delay timer and error interrupts */
 248	cr |= XAXIDMA_IRQ_ALL_MASK;
 249	/* Write to the Rx channel control register */
 250	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 251
 252	/* Start updating the Tx channel control register */
 253	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 254	/* Update the interrupt coalesce count */
 255	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
 256	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
 257	/* Update the delay timer count */
 258	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
 259	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 260	/* Enable coalesce, delay timer and error interrupts */
 261	cr |= XAXIDMA_IRQ_ALL_MASK;
 262	/* Write to the Tx channel control register */
 263	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 264
 265	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
 266	 * halted state. This will make the Rx side ready for reception.*/
 267	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 268	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 269	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 270			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 271	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 272			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
 273
 274	/* Write to the RS (Run-stop) bit in the Tx channel control register.
 275	 * Tx channel is now ready to run. But only after we write to the
 276	 * tail pointer register that the Tx channel will start transmitting */
 277	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 278	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 279	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 280			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 281
 282	return 0;
 283out:
 284	axienet_dma_bd_release(ndev);
 285	return -ENOMEM;
 286}
 287
 288/**
 289 * axienet_set_mac_address - Write the MAC address
 290 * @ndev:	Pointer to the net_device structure
 291 * @address:	6 byte Address to be written as MAC address
 292 *
 293 * This function is called to initialize the MAC address of the Axi Ethernet
 294 * core. It writes to the UAW0 and UAW1 registers of the core.
 295 */
 296static void axienet_set_mac_address(struct net_device *ndev, void *address)
 297{
 298	struct axienet_local *lp = netdev_priv(ndev);
 299
 300	if (address)
 301		memcpy(ndev->dev_addr, address, ETH_ALEN);
 302	if (!is_valid_ether_addr(ndev->dev_addr))
 303		eth_random_addr(ndev->dev_addr);
 304
 305	/* Set up unicast MAC address filter set its mac address */
 306	axienet_iow(lp, XAE_UAW0_OFFSET,
 307		    (ndev->dev_addr[0]) |
 308		    (ndev->dev_addr[1] << 8) |
 309		    (ndev->dev_addr[2] << 16) |
 310		    (ndev->dev_addr[3] << 24));
 311	axienet_iow(lp, XAE_UAW1_OFFSET,
 312		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 313		      ~XAE_UAW1_UNICASTADDR_MASK) |
 314		     (ndev->dev_addr[4] |
 315		     (ndev->dev_addr[5] << 8))));
 316}
 317
 318/**
 319 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 320 * @ndev:	Pointer to the net_device structure
 321 * @p:		6 byte Address to be written as MAC address
 322 *
 323 * returns: 0 for all conditions. Presently, there is no failure case.
 324 *
 325 * This function is called to initialize the MAC address of the Axi Ethernet
 326 * core. It calls the core specific axienet_set_mac_address. This is the
 327 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 328 */
 329static int netdev_set_mac_address(struct net_device *ndev, void *p)
 330{
 331	struct sockaddr *addr = p;
 332	axienet_set_mac_address(ndev, addr->sa_data);
 333	return 0;
 334}
 335
 336/**
 337 * axienet_set_multicast_list - Prepare the multicast table
 338 * @ndev:	Pointer to the net_device structure
 339 *
 340 * This function is called to initialize the multicast table during
 341 * initialization. The Axi Ethernet basic multicast support has a four-entry
 342 * multicast table which is initialized here. Additionally this function
 343 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 344 * means whenever the multicast table entries need to be updated this
 345 * function gets called.
 346 */
 347static void axienet_set_multicast_list(struct net_device *ndev)
 348{
 349	int i;
 350	u32 reg, af0reg, af1reg;
 351	struct axienet_local *lp = netdev_priv(ndev);
 352
 353	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 354	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 355		/* We must make the kernel realize we had to move into
 356		 * promiscuous mode. If it was a promiscuous mode request
 357		 * the flag is already set. If not we set it. */
 358		ndev->flags |= IFF_PROMISC;
 359		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 360		reg |= XAE_FMI_PM_MASK;
 361		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 362		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 363	} else if (!netdev_mc_empty(ndev)) {
 364		struct netdev_hw_addr *ha;
 365
 366		i = 0;
 367		netdev_for_each_mc_addr(ha, ndev) {
 368			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 369				break;
 370
 371			af0reg = (ha->addr[0]);
 372			af0reg |= (ha->addr[1] << 8);
 373			af0reg |= (ha->addr[2] << 16);
 374			af0reg |= (ha->addr[3] << 24);
 375
 376			af1reg = (ha->addr[4]);
 377			af1reg |= (ha->addr[5] << 8);
 378
 379			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 380			reg |= i;
 381
 382			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 383			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 384			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 385			i++;
 386		}
 387	} else {
 388		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 389		reg &= ~XAE_FMI_PM_MASK;
 390
 391		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 392
 393		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 394			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 395			reg |= i;
 396
 397			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 398			axienet_iow(lp, XAE_AF0_OFFSET, 0);
 399			axienet_iow(lp, XAE_AF1_OFFSET, 0);
 400		}
 401
 402		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 403	}
 404}
 405
 406/**
 407 * axienet_setoptions - Set an Axi Ethernet option
 408 * @ndev:	Pointer to the net_device structure
 409 * @options:	Option to be enabled/disabled
 410 *
 411 * The Axi Ethernet core has multiple features which can be selectively turned
 412 * on or off. The typical options could be jumbo frame option, basic VLAN
 413 * option, promiscuous mode option etc. This function is used to set or clear
 414 * these options in the Axi Ethernet hardware. This is done through
 415 * axienet_option structure .
 416 */
 417static void axienet_setoptions(struct net_device *ndev, u32 options)
 418{
 419	int reg;
 420	struct axienet_local *lp = netdev_priv(ndev);
 421	struct axienet_option *tp = &axienet_options[0];
 422
 423	while (tp->opt) {
 424		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 425		if (options & tp->opt)
 426			reg |= tp->m_or;
 427		axienet_iow(lp, tp->reg, reg);
 428		tp++;
 429	}
 430
 431	lp->options |= options;
 432}
 433
 434static void __axienet_device_reset(struct axienet_local *lp,
 435				   struct device *dev, off_t offset)
 436{
 437	u32 timeout;
 438	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 439	 * process of Axi DMA takes a while to complete as all pending
 440	 * commands/transfers will be flushed or completed during this
 441	 * reset process. */
 442	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
 443	timeout = DELAY_OF_ONE_MILLISEC;
 444	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
 445		udelay(1);
 446		if (--timeout == 0) {
 447			dev_err(dev, "axienet_device_reset DMA "
 448				"reset timeout!\n");
 449			break;
 450		}
 451	}
 452}
 453
 454/**
 455 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 456 * @ndev:	Pointer to the net_device structure
 457 *
 458 * This function is called to reset and initialize the Axi Ethernet core. This
 459 * is typically called during initialization. It does a reset of the Axi DMA
 460 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 461 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 462 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 463 * core.
 464 */
 465static void axienet_device_reset(struct net_device *ndev)
 466{
 467	u32 axienet_status;
 468	struct axienet_local *lp = netdev_priv(ndev);
 469
 470	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
 471	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
 472
 473	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 474	lp->options &= (~XAE_OPTION_JUMBO);
 475
 476	if ((ndev->mtu > XAE_MTU) &&
 477	    (ndev->mtu <= XAE_JUMBO_MTU) &&
 478	    (lp->jumbo_support)) {
 479		lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
 480				   XAE_TRL_SIZE;
 481		lp->options |= XAE_OPTION_JUMBO;
 482	}
 483
 484	if (axienet_dma_bd_init(ndev)) {
 485		dev_err(&ndev->dev, "axienet_device_reset descriptor "
 486			"allocation failed\n");
 487	}
 488
 489	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 490	axienet_status &= ~XAE_RCW1_RX_MASK;
 491	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 492
 493	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 494	if (axienet_status & XAE_INT_RXRJECT_MASK)
 495		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 496
 497	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 498
 499	/* Sync default options with HW but leave receiver and
 500	 * transmitter disabled.*/
 501	axienet_setoptions(ndev, lp->options &
 502			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 503	axienet_set_mac_address(ndev, NULL);
 504	axienet_set_multicast_list(ndev);
 505	axienet_setoptions(ndev, lp->options);
 506
 507	ndev->trans_start = jiffies;
 508}
 509
 510/**
 511 * axienet_adjust_link - Adjust the PHY link speed/duplex.
 512 * @ndev:	Pointer to the net_device structure
 513 *
 514 * This function is called to change the speed and duplex setting after
 515 * auto negotiation is done by the PHY. This is the function that gets
 516 * registered with the PHY interface through the "of_phy_connect" call.
 517 */
 518static void axienet_adjust_link(struct net_device *ndev)
 519{
 520	u32 emmc_reg;
 521	u32 link_state;
 522	u32 setspeed = 1;
 523	struct axienet_local *lp = netdev_priv(ndev);
 524	struct phy_device *phy = lp->phy_dev;
 525
 526	link_state = phy->speed | (phy->duplex << 1) | phy->link;
 527	if (lp->last_link != link_state) {
 528		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
 529			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
 530				setspeed = 0;
 531		} else {
 532			if ((phy->speed == SPEED_1000) &&
 533			    (lp->phy_type == XAE_PHY_TYPE_MII))
 534				setspeed = 0;
 535		}
 536
 537		if (setspeed == 1) {
 538			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
 539			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
 540
 541			switch (phy->speed) {
 542			case SPEED_1000:
 543				emmc_reg |= XAE_EMMC_LINKSPD_1000;
 544				break;
 545			case SPEED_100:
 546				emmc_reg |= XAE_EMMC_LINKSPD_100;
 547				break;
 548			case SPEED_10:
 549				emmc_reg |= XAE_EMMC_LINKSPD_10;
 550				break;
 551			default:
 552				dev_err(&ndev->dev, "Speed other than 10, 100 "
 553					"or 1Gbps is not supported\n");
 554				break;
 555			}
 556
 557			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
 558			lp->last_link = link_state;
 559			phy_print_status(phy);
 560		} else {
 561			dev_err(&ndev->dev, "Error setting Axi Ethernet "
 562				"mac speed\n");
 563		}
 564	}
 565}
 566
 567/**
 568 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 569 * Axi DMA Tx channel.
 570 * @ndev:	Pointer to the net_device structure
 571 *
 572 * This function is invoked from the Axi DMA Tx isr to notify the completion
 573 * of transmit operation. It clears fields in the corresponding Tx BDs and
 574 * unmaps the corresponding buffer so that CPU can regain ownership of the
 575 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 576 * required.
 577 */
 578static void axienet_start_xmit_done(struct net_device *ndev)
 579{
 580	u32 size = 0;
 581	u32 packets = 0;
 582	struct axienet_local *lp = netdev_priv(ndev);
 583	struct axidma_bd *cur_p;
 584	unsigned int status = 0;
 585
 586	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 587	status = cur_p->status;
 588	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
 589		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 590				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 591				DMA_TO_DEVICE);
 592		if (cur_p->app4)
 593			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
 594		/*cur_p->phys = 0;*/
 595		cur_p->app0 = 0;
 596		cur_p->app1 = 0;
 597		cur_p->app2 = 0;
 598		cur_p->app4 = 0;
 599		cur_p->status = 0;
 600
 601		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 602		packets++;
 603
 604		++lp->tx_bd_ci;
 605		lp->tx_bd_ci %= TX_BD_NUM;
 606		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 607		status = cur_p->status;
 608	}
 609
 610	ndev->stats.tx_packets += packets;
 611	ndev->stats.tx_bytes += size;
 612	netif_wake_queue(ndev);
 613}
 614
 615/**
 616 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 617 * @lp:		Pointer to the axienet_local structure
 618 * @num_frag:	The number of BDs to check for
 619 *
 620 * returns: 0, on success
 621 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 622 *
 623 * This function is invoked before BDs are allocated and transmission starts.
 624 * This function returns 0 if a BD or group of BDs can be allocated for
 625 * transmission. If the BD or any of the BDs are not free the function
 626 * returns a busy status. This is invoked from axienet_start_xmit.
 627 */
 628static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 629					    int num_frag)
 630{
 631	struct axidma_bd *cur_p;
 632	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
 633	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
 634		return NETDEV_TX_BUSY;
 635	return 0;
 636}
 637
 638/**
 639 * axienet_start_xmit - Starts the transmission.
 640 * @skb:	sk_buff pointer that contains data to be Txed.
 641 * @ndev:	Pointer to net_device structure.
 642 *
 643 * returns: NETDEV_TX_OK, on success
 644 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 645 *
 646 * This function is invoked from upper layers to initiate transmission. The
 647 * function uses the next available free BDs and populates their fields to
 648 * start the transmission. Additionally if checksum offloading is supported,
 649 * it populates AXI Stream Control fields with appropriate values.
 650 */
 651static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 652{
 653	u32 ii;
 654	u32 num_frag;
 655	u32 csum_start_off;
 656	u32 csum_index_off;
 657	skb_frag_t *frag;
 658	dma_addr_t tail_p;
 659	struct axienet_local *lp = netdev_priv(ndev);
 660	struct axidma_bd *cur_p;
 661
 662	num_frag = skb_shinfo(skb)->nr_frags;
 663	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 664
 665	if (axienet_check_tx_bd_space(lp, num_frag)) {
 666		if (!netif_queue_stopped(ndev))
 667			netif_stop_queue(ndev);
 668		return NETDEV_TX_BUSY;
 669	}
 670
 671	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 672		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 673			/* Tx Full Checksum Offload Enabled */
 674			cur_p->app0 |= 2;
 675		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 676			csum_start_off = skb_transport_offset(skb);
 677			csum_index_off = csum_start_off + skb->csum_offset;
 678			/* Tx Partial Checksum Offload Enabled */
 679			cur_p->app0 |= 1;
 680			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 681		}
 682	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 683		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 684	}
 685
 686	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 687	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
 688				     skb_headlen(skb), DMA_TO_DEVICE);
 689
 690	for (ii = 0; ii < num_frag; ii++) {
 691		++lp->tx_bd_tail;
 692		lp->tx_bd_tail %= TX_BD_NUM;
 693		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 694		frag = &skb_shinfo(skb)->frags[ii];
 695		cur_p->phys = dma_map_single(ndev->dev.parent,
 696					     skb_frag_address(frag),
 697					     skb_frag_size(frag),
 698					     DMA_TO_DEVICE);
 699		cur_p->cntrl = skb_frag_size(frag);
 700	}
 701
 702	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 703	cur_p->app4 = (unsigned long)skb;
 704
 705	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
 706	/* Start the transfer */
 707	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 708	++lp->tx_bd_tail;
 709	lp->tx_bd_tail %= TX_BD_NUM;
 710
 711	return NETDEV_TX_OK;
 712}
 713
 714/**
 715 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 716 *		  BD processing.
 717 * @ndev:	Pointer to net_device structure.
 718 *
 719 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 720 * does minimal processing and invokes "netif_rx" to complete further
 721 * processing.
 722 */
 723static void axienet_recv(struct net_device *ndev)
 724{
 725	u32 length;
 726	u32 csumstatus;
 727	u32 size = 0;
 728	u32 packets = 0;
 729	dma_addr_t tail_p;
 730	struct axienet_local *lp = netdev_priv(ndev);
 731	struct sk_buff *skb, *new_skb;
 732	struct axidma_bd *cur_p;
 733
 734	tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 735	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 736
 737	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 738		skb = (struct sk_buff *) (cur_p->sw_id_offset);
 739		length = cur_p->app4 & 0x0000FFFF;
 740
 741		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 742				 lp->max_frm_size,
 743				 DMA_FROM_DEVICE);
 744
 745		skb_put(skb, length);
 746		skb->protocol = eth_type_trans(skb, ndev);
 747		/*skb_checksum_none_assert(skb);*/
 748		skb->ip_summed = CHECKSUM_NONE;
 749
 750		/* if we're doing Rx csum offload, set it up */
 751		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 752			csumstatus = (cur_p->app2 &
 753				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 754			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
 755			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
 756				skb->ip_summed = CHECKSUM_UNNECESSARY;
 757			}
 758		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 759			   skb->protocol == htons(ETH_P_IP) &&
 760			   skb->len > 64) {
 761			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 762			skb->ip_summed = CHECKSUM_COMPLETE;
 763		}
 764
 765		netif_rx(skb);
 766
 767		size += length;
 768		packets++;
 769
 770		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 771		if (!new_skb)
 772			return;
 773
 774		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
 775					     lp->max_frm_size,
 776					     DMA_FROM_DEVICE);
 777		cur_p->cntrl = lp->max_frm_size;
 778		cur_p->status = 0;
 779		cur_p->sw_id_offset = (u32) new_skb;
 780
 781		++lp->rx_bd_ci;
 782		lp->rx_bd_ci %= RX_BD_NUM;
 783		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 784	}
 785
 786	ndev->stats.rx_packets += packets;
 787	ndev->stats.rx_bytes += size;
 788
 789	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 790}
 791
 792/**
 793 * axienet_tx_irq - Tx Done Isr.
 794 * @irq:	irq number
 795 * @_ndev:	net_device pointer
 796 *
 797 * returns: IRQ_HANDLED for all cases.
 798 *
 799 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 800 * to complete the BD processing.
 801 */
 802static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
 803{
 804	u32 cr;
 805	unsigned int status;
 806	struct net_device *ndev = _ndev;
 807	struct axienet_local *lp = netdev_priv(ndev);
 808
 809	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 810	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 811		axienet_start_xmit_done(lp->ndev);
 812		goto out;
 813	}
 814	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 815		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
 816	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 817		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
 818		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 819			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
 820
 821		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 822		/* Disable coalesce, delay timer and error interrupts */
 823		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 824		/* Write to the Tx channel control register */
 825		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 826
 827		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 828		/* Disable coalesce, delay timer and error interrupts */
 829		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 830		/* Write to the Rx channel control register */
 831		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 832
 833		tasklet_schedule(&lp->dma_err_tasklet);
 834	}
 835out:
 836	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 837	return IRQ_HANDLED;
 838}
 839
 840/**
 841 * axienet_rx_irq - Rx Isr.
 842 * @irq:	irq number
 843 * @_ndev:	net_device pointer
 844 *
 845 * returns: IRQ_HANDLED for all cases.
 846 *
 847 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 848 * processing.
 849 */
 850static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
 851{
 852	u32 cr;
 853	unsigned int status;
 854	struct net_device *ndev = _ndev;
 855	struct axienet_local *lp = netdev_priv(ndev);
 856
 857	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 858	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 859		axienet_recv(lp->ndev);
 860		goto out;
 861	}
 862	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 863		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
 864	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 865		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
 866		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 867			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
 868
 869		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 870		/* Disable coalesce, delay timer and error interrupts */
 871		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 872		/* Finally write to the Tx channel control register */
 873		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 874
 875		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 876		/* Disable coalesce, delay timer and error interrupts */
 877		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 878		/* write to the Rx channel control register */
 879		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 880
 881		tasklet_schedule(&lp->dma_err_tasklet);
 882	}
 883out:
 884	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 885	return IRQ_HANDLED;
 886}
 887
 888static void axienet_dma_err_handler(unsigned long data);
 889
 890/**
 891 * axienet_open - Driver open routine.
 892 * @ndev:	Pointer to net_device structure
 893 *
 894 * returns: 0, on success.
 895 *	    -ENODEV, if PHY cannot be connected to
 896 *	    non-zero error value on failure
 897 *
 898 * This is the driver open routine. It calls phy_start to start the PHY device.
 899 * It also allocates interrupt service routines, enables the interrupt lines
 900 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 901 * descriptors are initialized.
 902 */
 903static int axienet_open(struct net_device *ndev)
 904{
 905	int ret, mdio_mcreg;
 906	struct axienet_local *lp = netdev_priv(ndev);
 907
 908	dev_dbg(&ndev->dev, "axienet_open()\n");
 909
 910	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
 911	ret = axienet_mdio_wait_until_ready(lp);
 912	if (ret < 0)
 913		return ret;
 914	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
 915	 * When we do an Axi Ethernet reset, it resets the complete core
 916	 * including the MDIO. If MDIO is not disabled when the reset
 917	 * process is started, MDIO will be broken afterwards. */
 918	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
 919		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
 920	axienet_device_reset(ndev);
 921	/* Enable the MDIO */
 922	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
 923	ret = axienet_mdio_wait_until_ready(lp);
 924	if (ret < 0)
 925		return ret;
 926
 927	if (lp->phy_node) {
 928		lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
 929					     axienet_adjust_link, 0,
 930					     PHY_INTERFACE_MODE_GMII);
 931		if (!lp->phy_dev) {
 932			dev_err(lp->dev, "of_phy_connect() failed\n");
 933			return -ENODEV;
 934		}
 935		phy_start(lp->phy_dev);
 936	}
 937
 938	/* Enable tasklets for Axi DMA error handling */
 939	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
 940		     (unsigned long) lp);
 941
 942	/* Enable interrupts for Axi DMA Tx */
 943	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
 944	if (ret)
 945		goto err_tx_irq;
 946	/* Enable interrupts for Axi DMA Rx */
 947	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
 948	if (ret)
 949		goto err_rx_irq;
 950
 951	return 0;
 952
 953err_rx_irq:
 954	free_irq(lp->tx_irq, ndev);
 955err_tx_irq:
 956	if (lp->phy_dev)
 957		phy_disconnect(lp->phy_dev);
 958	lp->phy_dev = NULL;
 959	tasklet_kill(&lp->dma_err_tasklet);
 960	dev_err(lp->dev, "request_irq() failed\n");
 961	return ret;
 962}
 963
 964/**
 965 * axienet_stop - Driver stop routine.
 966 * @ndev:	Pointer to net_device structure
 967 *
 968 * returns: 0, on success.
 969 *
 970 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
 971 * device. It also removes the interrupt handlers and disables the interrupts.
 972 * The Axi DMA Tx/Rx BDs are released.
 973 */
 974static int axienet_stop(struct net_device *ndev)
 975{
 976	u32 cr;
 977	struct axienet_local *lp = netdev_priv(ndev);
 978
 979	dev_dbg(&ndev->dev, "axienet_close()\n");
 980
 981	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 982	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 983			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 984	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 985	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 986			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 987	axienet_setoptions(ndev, lp->options &
 988			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 989
 990	tasklet_kill(&lp->dma_err_tasklet);
 991
 992	free_irq(lp->tx_irq, ndev);
 993	free_irq(lp->rx_irq, ndev);
 994
 995	if (lp->phy_dev)
 996		phy_disconnect(lp->phy_dev);
 997	lp->phy_dev = NULL;
 998
 999	axienet_dma_bd_release(ndev);
1000	return 0;
1001}
1002
1003/**
1004 * axienet_change_mtu - Driver change mtu routine.
1005 * @ndev:	Pointer to net_device structure
1006 * @new_mtu:	New mtu value to be applied
1007 *
1008 * returns: Always returns 0 (success).
1009 *
1010 * This is the change mtu driver routine. It checks if the Axi Ethernet
1011 * hardware supports jumbo frames before changing the mtu. This can be
1012 * called only when the device is not up.
1013 */
1014static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1015{
1016	struct axienet_local *lp = netdev_priv(ndev);
1017
1018	if (netif_running(ndev))
1019		return -EBUSY;
1020	if (lp->jumbo_support) {
1021		if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1022			return -EINVAL;
1023		ndev->mtu = new_mtu;
1024	} else {
1025		if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1026			return -EINVAL;
1027		ndev->mtu = new_mtu;
1028	}
1029
1030	return 0;
1031}
1032
1033#ifdef CONFIG_NET_POLL_CONTROLLER
1034/**
1035 * axienet_poll_controller - Axi Ethernet poll mechanism.
1036 * @ndev:	Pointer to net_device structure
1037 *
1038 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1039 * to polling the ISRs and are enabled back after the polling is done.
1040 */
1041static void axienet_poll_controller(struct net_device *ndev)
1042{
1043	struct axienet_local *lp = netdev_priv(ndev);
1044	disable_irq(lp->tx_irq);
1045	disable_irq(lp->rx_irq);
1046	axienet_rx_irq(lp->tx_irq, ndev);
1047	axienet_tx_irq(lp->rx_irq, ndev);
1048	enable_irq(lp->tx_irq);
1049	enable_irq(lp->rx_irq);
1050}
1051#endif
1052
1053static const struct net_device_ops axienet_netdev_ops = {
1054	.ndo_open = axienet_open,
1055	.ndo_stop = axienet_stop,
1056	.ndo_start_xmit = axienet_start_xmit,
1057	.ndo_change_mtu	= axienet_change_mtu,
1058	.ndo_set_mac_address = netdev_set_mac_address,
1059	.ndo_validate_addr = eth_validate_addr,
1060	.ndo_set_rx_mode = axienet_set_multicast_list,
1061#ifdef CONFIG_NET_POLL_CONTROLLER
1062	.ndo_poll_controller = axienet_poll_controller,
1063#endif
1064};
1065
1066/**
1067 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1068 * @ndev:	Pointer to net_device structure
1069 * @ecmd:	Pointer to ethtool_cmd structure
1070 *
1071 * This implements ethtool command for getting PHY settings. If PHY could
1072 * not be found, the function returns -ENODEV. This function calls the
1073 * relevant PHY ethtool API to get the PHY settings.
1074 * Issue "ethtool ethX" under linux prompt to execute this function.
1075 */
1076static int axienet_ethtools_get_settings(struct net_device *ndev,
1077					 struct ethtool_cmd *ecmd)
1078{
1079	struct axienet_local *lp = netdev_priv(ndev);
1080	struct phy_device *phydev = lp->phy_dev;
1081	if (!phydev)
1082		return -ENODEV;
1083	return phy_ethtool_gset(phydev, ecmd);
1084}
1085
1086/**
1087 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1088 * @ndev:	Pointer to net_device structure
1089 * @ecmd:	Pointer to ethtool_cmd structure
1090 *
1091 * This implements ethtool command for setting various PHY settings. If PHY
1092 * could not be found, the function returns -ENODEV. This function calls the
1093 * relevant PHY ethtool API to set the PHY.
1094 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1095 * function.
1096 */
1097static int axienet_ethtools_set_settings(struct net_device *ndev,
1098					 struct ethtool_cmd *ecmd)
1099{
1100	struct axienet_local *lp = netdev_priv(ndev);
1101	struct phy_device *phydev = lp->phy_dev;
1102	if (!phydev)
1103		return -ENODEV;
1104	return phy_ethtool_sset(phydev, ecmd);
1105}
1106
1107/**
1108 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1109 * @ndev:	Pointer to net_device structure
1110 * @ed:		Pointer to ethtool_drvinfo structure
1111 *
1112 * This implements ethtool command for getting the driver information.
1113 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1114 */
1115static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1116					 struct ethtool_drvinfo *ed)
1117{
1118	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1119	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1120	ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1121}
1122
1123/**
1124 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1125 *				   AxiEthernet core.
1126 * @ndev:	Pointer to net_device structure
1127 *
1128 * This implements ethtool command for getting the total register length
1129 * information.
1130 */
1131static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1132{
1133	return sizeof(u32) * AXIENET_REGS_N;
1134}
1135
1136/**
1137 * axienet_ethtools_get_regs - Dump the contents of all registers present
1138 *			       in AxiEthernet core.
1139 * @ndev:	Pointer to net_device structure
1140 * @regs:	Pointer to ethtool_regs structure
1141 * @ret:	Void pointer used to return the contents of the registers.
1142 *
1143 * This implements ethtool command for getting the Axi Ethernet register dump.
1144 * Issue "ethtool -d ethX" to execute this function.
1145 */
1146static void axienet_ethtools_get_regs(struct net_device *ndev,
1147				      struct ethtool_regs *regs, void *ret)
1148{
1149	u32 *data = (u32 *) ret;
1150	size_t len = sizeof(u32) * AXIENET_REGS_N;
1151	struct axienet_local *lp = netdev_priv(ndev);
1152
1153	regs->version = 0;
1154	regs->len = len;
1155
1156	memset(data, 0, len);
1157	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1158	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1159	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1160	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1161	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1162	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1163	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1164	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1165	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1166	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1167	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1168	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1169	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1170	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1171	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1172	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1173	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1174	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1175	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1176	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1177	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1178	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1179	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1180	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1181	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1182	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1183	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1184	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1185	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1186	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1187	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1188	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1189}
1190
1191/**
1192 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1193 *				     Tx and Rx paths.
1194 * @ndev:	Pointer to net_device structure
1195 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1196 *
1197 * This implements ethtool command for getting axi ethernet pause frame
1198 * setting. Issue "ethtool -a ethX" to execute this function.
1199 */
1200static void
1201axienet_ethtools_get_pauseparam(struct net_device *ndev,
1202				struct ethtool_pauseparam *epauseparm)
1203{
1204	u32 regval;
1205	struct axienet_local *lp = netdev_priv(ndev);
1206	epauseparm->autoneg  = 0;
1207	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1208	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1209	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1210}
1211
1212/**
1213 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1214 *				     settings.
1215 * @ndev:	Pointer to net_device structure
1216 * @epauseparam:Pointer to ethtool_pauseparam structure
1217 *
1218 * This implements ethtool command for enabling flow control on Rx and Tx
1219 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1220 * function.
1221 */
1222static int
1223axienet_ethtools_set_pauseparam(struct net_device *ndev,
1224				struct ethtool_pauseparam *epauseparm)
1225{
1226	u32 regval = 0;
1227	struct axienet_local *lp = netdev_priv(ndev);
1228
1229	if (netif_running(ndev)) {
1230		printk(KERN_ERR	"%s: Please stop netif before applying "
1231		       "configruation\n", ndev->name);
1232		return -EFAULT;
1233	}
1234
1235	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1236	if (epauseparm->tx_pause)
1237		regval |= XAE_FCC_FCTX_MASK;
1238	else
1239		regval &= ~XAE_FCC_FCTX_MASK;
1240	if (epauseparm->rx_pause)
1241		regval |= XAE_FCC_FCRX_MASK;
1242	else
1243		regval &= ~XAE_FCC_FCRX_MASK;
1244	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1245
1246	return 0;
1247}
1248
1249/**
1250 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1251 * @ndev:	Pointer to net_device structure
1252 * @ecoalesce:	Pointer to ethtool_coalesce structure
1253 *
1254 * This implements ethtool command for getting the DMA interrupt coalescing
1255 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1256 * execute this function.
1257 */
1258static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1259					 struct ethtool_coalesce *ecoalesce)
1260{
1261	u32 regval = 0;
1262	struct axienet_local *lp = netdev_priv(ndev);
1263	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1264	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1265					     >> XAXIDMA_COALESCE_SHIFT;
1266	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1267	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1268					     >> XAXIDMA_COALESCE_SHIFT;
1269	return 0;
1270}
1271
1272/**
1273 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1274 * @ndev:	Pointer to net_device structure
1275 * @ecoalesce:	Pointer to ethtool_coalesce structure
1276 *
1277 * This implements ethtool command for setting the DMA interrupt coalescing
1278 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1279 * prompt to execute this function.
1280 */
1281static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1282					 struct ethtool_coalesce *ecoalesce)
1283{
1284	struct axienet_local *lp = netdev_priv(ndev);
1285
1286	if (netif_running(ndev)) {
1287		printk(KERN_ERR	"%s: Please stop netif before applying "
1288		       "configruation\n", ndev->name);
1289		return -EFAULT;
1290	}
1291
1292	if ((ecoalesce->rx_coalesce_usecs) ||
1293	    (ecoalesce->rx_coalesce_usecs_irq) ||
1294	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1295	    (ecoalesce->tx_coalesce_usecs) ||
1296	    (ecoalesce->tx_coalesce_usecs_irq) ||
1297	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1298	    (ecoalesce->stats_block_coalesce_usecs) ||
1299	    (ecoalesce->use_adaptive_rx_coalesce) ||
1300	    (ecoalesce->use_adaptive_tx_coalesce) ||
1301	    (ecoalesce->pkt_rate_low) ||
1302	    (ecoalesce->rx_coalesce_usecs_low) ||
1303	    (ecoalesce->rx_max_coalesced_frames_low) ||
1304	    (ecoalesce->tx_coalesce_usecs_low) ||
1305	    (ecoalesce->tx_max_coalesced_frames_low) ||
1306	    (ecoalesce->pkt_rate_high) ||
1307	    (ecoalesce->rx_coalesce_usecs_high) ||
1308	    (ecoalesce->rx_max_coalesced_frames_high) ||
1309	    (ecoalesce->tx_coalesce_usecs_high) ||
1310	    (ecoalesce->tx_max_coalesced_frames_high) ||
1311	    (ecoalesce->rate_sample_interval))
1312		return -EOPNOTSUPP;
1313	if (ecoalesce->rx_max_coalesced_frames)
1314		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1315	if (ecoalesce->tx_max_coalesced_frames)
1316		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1317
1318	return 0;
1319}
1320
1321static struct ethtool_ops axienet_ethtool_ops = {
1322	.get_settings   = axienet_ethtools_get_settings,
1323	.set_settings   = axienet_ethtools_set_settings,
1324	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1325	.get_regs_len   = axienet_ethtools_get_regs_len,
1326	.get_regs       = axienet_ethtools_get_regs,
1327	.get_link       = ethtool_op_get_link,
1328	.get_pauseparam = axienet_ethtools_get_pauseparam,
1329	.set_pauseparam = axienet_ethtools_set_pauseparam,
1330	.get_coalesce   = axienet_ethtools_get_coalesce,
1331	.set_coalesce   = axienet_ethtools_set_coalesce,
1332};
1333
1334/**
1335 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1336 * @data:	Data passed
1337 *
1338 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1339 * Tx/Rx BDs.
1340 */
1341static void axienet_dma_err_handler(unsigned long data)
1342{
1343	u32 axienet_status;
1344	u32 cr, i;
1345	int mdio_mcreg;
1346	struct axienet_local *lp = (struct axienet_local *) data;
1347	struct net_device *ndev = lp->ndev;
1348	struct axidma_bd *cur_p;
1349
1350	axienet_setoptions(ndev, lp->options &
1351			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1352	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1353	axienet_mdio_wait_until_ready(lp);
1354	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1355	 * When we do an Axi Ethernet reset, it resets the complete core
1356	 * including the MDIO. So if MDIO is not disabled when the reset
1357	 * process is started, MDIO will be broken afterwards. */
1358	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1359		    ~XAE_MDIO_MC_MDIOEN_MASK));
1360
1361	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1362	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1363
1364	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1365	axienet_mdio_wait_until_ready(lp);
1366
1367	for (i = 0; i < TX_BD_NUM; i++) {
1368		cur_p = &lp->tx_bd_v[i];
1369		if (cur_p->phys)
1370			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1371					 (cur_p->cntrl &
1372					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1373					 DMA_TO_DEVICE);
1374		if (cur_p->app4)
1375			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1376		cur_p->phys = 0;
1377		cur_p->cntrl = 0;
1378		cur_p->status = 0;
1379		cur_p->app0 = 0;
1380		cur_p->app1 = 0;
1381		cur_p->app2 = 0;
1382		cur_p->app3 = 0;
1383		cur_p->app4 = 0;
1384		cur_p->sw_id_offset = 0;
1385	}
1386
1387	for (i = 0; i < RX_BD_NUM; i++) {
1388		cur_p = &lp->rx_bd_v[i];
1389		cur_p->status = 0;
1390		cur_p->app0 = 0;
1391		cur_p->app1 = 0;
1392		cur_p->app2 = 0;
1393		cur_p->app3 = 0;
1394		cur_p->app4 = 0;
1395	}
1396
1397	lp->tx_bd_ci = 0;
1398	lp->tx_bd_tail = 0;
1399	lp->rx_bd_ci = 0;
1400
1401	/* Start updating the Rx channel control register */
1402	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1403	/* Update the interrupt coalesce count */
1404	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1405	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1406	/* Update the delay timer count */
1407	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1408	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1409	/* Enable coalesce, delay timer and error interrupts */
1410	cr |= XAXIDMA_IRQ_ALL_MASK;
1411	/* Finally write to the Rx channel control register */
1412	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1413
1414	/* Start updating the Tx channel control register */
1415	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1416	/* Update the interrupt coalesce count */
1417	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1418	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1419	/* Update the delay timer count */
1420	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1421	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1422	/* Enable coalesce, delay timer and error interrupts */
1423	cr |= XAXIDMA_IRQ_ALL_MASK;
1424	/* Finally write to the Tx channel control register */
1425	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1426
1427	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1428	 * halted state. This will make the Rx side ready for reception.*/
1429	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1430	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1431	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1432			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1433	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1434			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1435
1436	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1437	 * Tx channel is now ready to run. But only after we write to the
1438	 * tail pointer register that the Tx channel will start transmitting */
1439	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1440	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1441	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1442			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1443
1444	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1445	axienet_status &= ~XAE_RCW1_RX_MASK;
1446	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1447
1448	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1449	if (axienet_status & XAE_INT_RXRJECT_MASK)
1450		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1451	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1452
1453	/* Sync default options with HW but leave receiver and
1454	 * transmitter disabled.*/
1455	axienet_setoptions(ndev, lp->options &
1456			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1457	axienet_set_mac_address(ndev, NULL);
1458	axienet_set_multicast_list(ndev);
1459	axienet_setoptions(ndev, lp->options);
1460}
1461
1462/**
1463 * axienet_of_probe - Axi Ethernet probe function.
1464 * @op:		Pointer to platform device structure.
1465 * @match:	Pointer to device id structure
1466 *
1467 * returns: 0, on success
1468 *	    Non-zero error value on failure.
1469 *
1470 * This is the probe routine for Axi Ethernet driver. This is called before
1471 * any other driver routines are invoked. It allocates and sets up the Ethernet
1472 * device. Parses through device tree and populates fields of
1473 * axienet_local. It registers the Ethernet device.
1474 */
1475static int axienet_of_probe(struct platform_device *op)
1476{
1477	__be32 *p;
1478	int size, ret = 0;
1479	struct device_node *np;
1480	struct axienet_local *lp;
1481	struct net_device *ndev;
1482	const void *addr;
1483
1484	ndev = alloc_etherdev(sizeof(*lp));
1485	if (!ndev)
1486		return -ENOMEM;
1487
1488	ether_setup(ndev);
1489	platform_set_drvdata(op, ndev);
1490
1491	SET_NETDEV_DEV(ndev, &op->dev);
1492	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1493	ndev->features = NETIF_F_SG;
1494	ndev->netdev_ops = &axienet_netdev_ops;
1495	ndev->ethtool_ops = &axienet_ethtool_ops;
1496
1497	lp = netdev_priv(ndev);
1498	lp->ndev = ndev;
1499	lp->dev = &op->dev;
1500	lp->options = XAE_OPTION_DEFAULTS;
1501	/* Map device registers */
1502	lp->regs = of_iomap(op->dev.of_node, 0);
1503	if (!lp->regs) {
1504		dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1505		goto nodev;
1506	}
1507	/* Setup checksum offload, but default to off if not specified */
1508	lp->features = 0;
1509
1510	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1511	if (p) {
1512		switch (be32_to_cpup(p)) {
1513		case 1:
1514			lp->csum_offload_on_tx_path =
1515				XAE_FEATURE_PARTIAL_TX_CSUM;
1516			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1517			/* Can checksum TCP/UDP over IPv4. */
1518			ndev->features |= NETIF_F_IP_CSUM;
1519			break;
1520		case 2:
1521			lp->csum_offload_on_tx_path =
1522				XAE_FEATURE_FULL_TX_CSUM;
1523			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1524			/* Can checksum TCP/UDP over IPv4. */
1525			ndev->features |= NETIF_F_IP_CSUM;
1526			break;
1527		default:
1528			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1529		}
1530	}
1531	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1532	if (p) {
1533		switch (be32_to_cpup(p)) {
1534		case 1:
1535			lp->csum_offload_on_rx_path =
1536				XAE_FEATURE_PARTIAL_RX_CSUM;
1537			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1538			break;
1539		case 2:
1540			lp->csum_offload_on_rx_path =
1541				XAE_FEATURE_FULL_RX_CSUM;
1542			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1543			break;
1544		default:
1545			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1546		}
1547	}
1548	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1549	 * a larger Rx/Tx Memory. Typically, the size must be more than or
1550	 * equal to 16384 bytes, so that we can enable jumbo option and start
1551	 * supporting jumbo frames. Here we check for memory allocated for
1552	 * Rx/Tx in the hardware from the device-tree and accordingly set
1553	 * flags. */
1554	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1555	if (p) {
1556		if ((be32_to_cpup(p)) >= 0x4000)
1557			lp->jumbo_support = 1;
1558	}
1559	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1560				       NULL);
1561	if (p)
1562		lp->temac_type = be32_to_cpup(p);
1563	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1564	if (p)
1565		lp->phy_type = be32_to_cpup(p);
1566
1567	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1568	np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1569	if (!np) {
1570		dev_err(&op->dev, "could not find DMA node\n");
1571		goto err_iounmap;
1572	}
1573	lp->dma_regs = of_iomap(np, 0);
1574	if (lp->dma_regs) {
1575		dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1576	} else {
1577		dev_err(&op->dev, "unable to map DMA registers\n");
1578		of_node_put(np);
1579	}
1580	lp->rx_irq = irq_of_parse_and_map(np, 1);
1581	lp->tx_irq = irq_of_parse_and_map(np, 0);
1582	of_node_put(np);
1583	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1584		dev_err(&op->dev, "could not determine irqs\n");
1585		ret = -ENOMEM;
1586		goto err_iounmap_2;
1587	}
1588
1589	/* Retrieve the MAC address */
1590	addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1591	if ((!addr) || (size != 6)) {
1592		dev_err(&op->dev, "could not find MAC address\n");
1593		ret = -ENODEV;
1594		goto err_iounmap_2;
1595	}
1596	axienet_set_mac_address(ndev, (void *) addr);
1597
1598	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1599	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1600
1601	lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1602	ret = axienet_mdio_setup(lp, op->dev.of_node);
1603	if (ret)
1604		dev_warn(&op->dev, "error registering MDIO bus\n");
1605
1606	ret = register_netdev(lp->ndev);
1607	if (ret) {
1608		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1609		goto err_iounmap_2;
1610	}
1611
1612	return 0;
1613
1614err_iounmap_2:
1615	if (lp->dma_regs)
1616		iounmap(lp->dma_regs);
1617err_iounmap:
1618	iounmap(lp->regs);
1619nodev:
1620	free_netdev(ndev);
1621	ndev = NULL;
1622	return ret;
1623}
1624
1625static int axienet_of_remove(struct platform_device *op)
1626{
1627	struct net_device *ndev = platform_get_drvdata(op);
1628	struct axienet_local *lp = netdev_priv(ndev);
1629
1630	axienet_mdio_teardown(lp);
1631	unregister_netdev(ndev);
1632
1633	if (lp->phy_node)
1634		of_node_put(lp->phy_node);
1635	lp->phy_node = NULL;
1636
1637	iounmap(lp->regs);
1638	if (lp->dma_regs)
1639		iounmap(lp->dma_regs);
1640	free_netdev(ndev);
1641
1642	return 0;
1643}
1644
1645static struct platform_driver axienet_of_driver = {
1646	.probe = axienet_of_probe,
1647	.remove = axienet_of_remove,
1648	.driver = {
1649		 .owner = THIS_MODULE,
1650		 .name = "xilinx_axienet",
1651		 .of_match_table = axienet_of_match,
1652	},
1653};
1654
1655module_platform_driver(axienet_of_driver);
1656
1657MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1658MODULE_AUTHOR("Xilinx");
1659MODULE_LICENSE("GPL");