Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright © 2006-2011 Intel Corporation
  4 *
  5 * Authors:
  6 *	Eric Anholt <eric@anholt.net>
  7 */
  8
  9#include <linux/delay.h>
 10#include <linux/i2c.h>
 11
 12#include "framebuffer.h"
 13#include "gem.h"
 14#include "gma_display.h"
 15#include "power.h"
 16#include "psb_drv.h"
 17#include "psb_intel_drv.h"
 18#include "psb_intel_reg.h"
 19
 20#define INTEL_LIMIT_I9XX_SDVO_DAC   0
 21#define INTEL_LIMIT_I9XX_LVDS	    1
 22
 23static const struct gma_limit_t psb_intel_limits[] = {
 24	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
 25	 .dot = {.min = 20000, .max = 400000},
 26	 .vco = {.min = 1400000, .max = 2800000},
 27	 .n = {.min = 1, .max = 6},
 28	 .m = {.min = 70, .max = 120},
 29	 .m1 = {.min = 8, .max = 18},
 30	 .m2 = {.min = 3, .max = 7},
 31	 .p = {.min = 5, .max = 80},
 32	 .p1 = {.min = 1, .max = 8},
 33	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
 34	 .find_pll = gma_find_best_pll,
 35	 },
 36	{			/* INTEL_LIMIT_I9XX_LVDS */
 37	 .dot = {.min = 20000, .max = 400000},
 38	 .vco = {.min = 1400000, .max = 2800000},
 39	 .n = {.min = 1, .max = 6},
 40	 .m = {.min = 70, .max = 120},
 41	 .m1 = {.min = 8, .max = 18},
 42	 .m2 = {.min = 3, .max = 7},
 43	 .p = {.min = 7, .max = 98},
 44	 .p1 = {.min = 1, .max = 8},
 45	 /* The single-channel range is 25-112Mhz, and dual-channel
 46	  * is 80-224Mhz.  Prefer single channel as much as possible.
 47	  */
 48	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
 49	 .find_pll = gma_find_best_pll,
 50	 },
 51};
 52
 53static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
 54						 int refclk)
 55{
 56	const struct gma_limit_t *limit;
 57
 58	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 59		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
 60	else
 61		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
 62	return limit;
 63}
 64
 65static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
 66{
 67	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
 68	clock->p = clock->p1 * clock->p2;
 69	clock->vco = refclk * clock->m / (clock->n + 2);
 70	clock->dot = clock->vco / clock->p;
 71}
 72
 73/*
 74 * Return the pipe currently connected to the panel fitter,
 75 * or -1 if the panel fitter is not present or not in use
 76 */
 77static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
 78{
 79	u32 pfit_control;
 80
 81	pfit_control = REG_READ(PFIT_CONTROL);
 82
 83	/* See if the panel fitter is in use */
 84	if ((pfit_control & PFIT_ENABLE) == 0)
 85		return -1;
 86	/* Must be on PIPE 1 for PSB */
 87	return 1;
 88}
 89
 90static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
 91			       struct drm_display_mode *mode,
 92			       struct drm_display_mode *adjusted_mode,
 93			       int x, int y,
 94			       struct drm_framebuffer *old_fb)
 95{
 96	struct drm_device *dev = crtc->dev;
 97	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 98	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 99	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
100	int pipe = gma_crtc->pipe;
101	const struct psb_offset *map = &dev_priv->regmap[pipe];
102	int refclk;
103	struct gma_clock_t clock;
104	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
105	bool ok, is_sdvo = false;
106	bool is_lvds = false, is_tv = false;
107	struct drm_connector_list_iter conn_iter;
108	struct drm_connector *connector;
109	const struct gma_limit_t *limit;
110
111	/* No scan out no play */
112	if (crtc->primary->fb == NULL) {
113		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
114		return 0;
115	}
116
117	drm_connector_list_iter_begin(dev, &conn_iter);
118	drm_for_each_connector_iter(connector, &conn_iter) {
119		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
120
121		if (!connector->encoder
122		    || connector->encoder->crtc != crtc)
123			continue;
124
125		switch (gma_encoder->type) {
126		case INTEL_OUTPUT_LVDS:
127			is_lvds = true;
128			break;
129		case INTEL_OUTPUT_SDVO:
130			is_sdvo = true;
131			break;
132		case INTEL_OUTPUT_TVOUT:
133			is_tv = true;
134			break;
135		}
136
137		break;
138	}
139	drm_connector_list_iter_end(&conn_iter);
140
141	refclk = 96000;
142
143	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
144
145	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
146				 &clock);
147	if (!ok) {
148		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
149			  adjusted_mode->clock, clock.dot);
150		return 0;
151	}
152
153	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
154
155	dpll = DPLL_VGA_MODE_DIS;
156	if (is_lvds) {
157		dpll |= DPLLB_MODE_LVDS;
158		dpll |= DPLL_DVO_HIGH_SPEED;
159	} else
160		dpll |= DPLLB_MODE_DAC_SERIAL;
161	if (is_sdvo) {
162		int sdvo_pixel_multiply =
163			    adjusted_mode->clock / mode->clock;
164		dpll |= DPLL_DVO_HIGH_SPEED;
165		dpll |=
166		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
167	}
168
169	/* compute bitmask from p1 value */
170	dpll |= (1 << (clock.p1 - 1)) << 16;
171	switch (clock.p2) {
172	case 5:
173		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
174		break;
175	case 7:
176		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
177		break;
178	case 10:
179		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
180		break;
181	case 14:
182		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
183		break;
184	}
185
186	if (is_tv) {
187		/* XXX: just matching BIOS for now */
188/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
189		dpll |= 3;
190	}
191	dpll |= PLL_REF_INPUT_DREFCLK;
192
193	/* setup pipeconf */
194	pipeconf = REG_READ(map->conf);
195
196	/* Set up the display plane register */
197	dspcntr = DISPPLANE_GAMMA_ENABLE;
198
199	if (pipe == 0)
200		dspcntr |= DISPPLANE_SEL_PIPE_A;
201	else
202		dspcntr |= DISPPLANE_SEL_PIPE_B;
203
204	dspcntr |= DISPLAY_PLANE_ENABLE;
205	pipeconf |= PIPEACONF_ENABLE;
206	dpll |= DPLL_VCO_ENABLE;
207
208
209	/* Disable the panel fitter if it was on our pipe */
210	if (psb_intel_panel_fitter_pipe(dev) == pipe)
211		REG_WRITE(PFIT_CONTROL, 0);
212
213	drm_mode_debug_printmodeline(mode);
214
215	if (dpll & DPLL_VCO_ENABLE) {
216		REG_WRITE(map->fp0, fp);
217		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
218		REG_READ(map->dpll);
219		udelay(150);
220	}
221
222	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
223	 * This is an exception to the general rule that mode_set doesn't turn
224	 * things on.
225	 */
226	if (is_lvds) {
227		u32 lvds = REG_READ(LVDS);
228
229		lvds &= ~LVDS_PIPEB_SELECT;
230		if (pipe == 1)
231			lvds |= LVDS_PIPEB_SELECT;
232
233		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
234		/* Set the B0-B3 data pairs corresponding to
235		 * whether we're going to
236		 * set the DPLLs for dual-channel mode or not.
237		 */
238		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
239		if (clock.p2 == 7)
240			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
241
242		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
243		 * appropriately here, but we need to look more
244		 * thoroughly into how panels behave in the two modes.
245		 */
246
247		REG_WRITE(LVDS, lvds);
248		REG_READ(LVDS);
249	}
250
251	REG_WRITE(map->fp0, fp);
252	REG_WRITE(map->dpll, dpll);
253	REG_READ(map->dpll);
254	/* Wait for the clocks to stabilize. */
255	udelay(150);
256
257	/* write it again -- the BIOS does, after all */
258	REG_WRITE(map->dpll, dpll);
259
260	REG_READ(map->dpll);
261	/* Wait for the clocks to stabilize. */
262	udelay(150);
263
264	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
265		  ((adjusted_mode->crtc_htotal - 1) << 16));
266	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
267		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
268	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
269		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
270	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
271		  ((adjusted_mode->crtc_vtotal - 1) << 16));
272	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
273		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
274	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
275		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
276	/* pipesrc and dspsize control the size that is scaled from,
277	 * which should always be the user's requested size.
278	 */
279	REG_WRITE(map->size,
280		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
281	REG_WRITE(map->pos, 0);
282	REG_WRITE(map->src,
283		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
284	REG_WRITE(map->conf, pipeconf);
285	REG_READ(map->conf);
286
287	gma_wait_for_vblank(dev);
288
289	REG_WRITE(map->cntr, dspcntr);
290
291	/* Flush the plane changes */
292	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
293
294	gma_wait_for_vblank(dev);
295
296	return 0;
297}
298
299/* Returns the clock of the currently programmed mode of the given pipe. */
300static int psb_intel_crtc_clock_get(struct drm_device *dev,
301				struct drm_crtc *crtc)
302{
303	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
304	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
305	int pipe = gma_crtc->pipe;
306	const struct psb_offset *map = &dev_priv->regmap[pipe];
307	u32 dpll;
308	u32 fp;
309	struct gma_clock_t clock;
310	bool is_lvds;
311	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
312
313	if (gma_power_begin(dev, false)) {
314		dpll = REG_READ(map->dpll);
315		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
316			fp = REG_READ(map->fp0);
317		else
318			fp = REG_READ(map->fp1);
319		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
320		gma_power_end(dev);
321	} else {
322		dpll = p->dpll;
323
324		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
325			fp = p->fp0;
326		else
327		        fp = p->fp1;
328
329		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
330								LVDS_PORT_EN);
331	}
332
333	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
334	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
335	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
336
337	if (is_lvds) {
338		clock.p1 =
339		    ffs((dpll &
340			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
341			DPLL_FPA01_P1_POST_DIV_SHIFT);
342		clock.p2 = 14;
343
344		if ((dpll & PLL_REF_INPUT_MASK) ==
345		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
346			/* XXX: might not be 66MHz */
347			psb_intel_clock(66000, &clock);
348		} else
349			psb_intel_clock(48000, &clock);
350	} else {
351		if (dpll & PLL_P1_DIVIDE_BY_TWO)
352			clock.p1 = 2;
353		else {
354			clock.p1 =
355			    ((dpll &
356			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
357			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
358		}
359		if (dpll & PLL_P2_DIVIDE_BY_4)
360			clock.p2 = 4;
361		else
362			clock.p2 = 2;
363
364		psb_intel_clock(48000, &clock);
365	}
366
367	/* XXX: It would be nice to validate the clocks, but we can't reuse
368	 * i830PllIsValid() because it relies on the xf86_config connector
369	 * configuration being accurate, which it isn't necessarily.
370	 */
371
372	return clock.dot;
373}
374
375/** Returns the currently programmed mode of the given pipe. */
376struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
377					     struct drm_crtc *crtc)
378{
379	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
380	int pipe = gma_crtc->pipe;
381	struct drm_display_mode *mode;
382	int htot;
383	int hsync;
384	int vtot;
385	int vsync;
386	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
387	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
388	const struct psb_offset *map = &dev_priv->regmap[pipe];
389
390	if (gma_power_begin(dev, false)) {
391		htot = REG_READ(map->htotal);
392		hsync = REG_READ(map->hsync);
393		vtot = REG_READ(map->vtotal);
394		vsync = REG_READ(map->vsync);
395		gma_power_end(dev);
396	} else {
397		htot = p->htotal;
398		hsync = p->hsync;
399		vtot = p->vtotal;
400		vsync = p->vsync;
401	}
402
403	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
404	if (!mode)
405		return NULL;
406
407	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
408	mode->hdisplay = (htot & 0xffff) + 1;
409	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
410	mode->hsync_start = (hsync & 0xffff) + 1;
411	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
412	mode->vdisplay = (vtot & 0xffff) + 1;
413	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
414	mode->vsync_start = (vsync & 0xffff) + 1;
415	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
416
417	drm_mode_set_name(mode);
418	drm_mode_set_crtcinfo(mode, 0);
419
420	return mode;
421}
422
423const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
424	.dpms = gma_crtc_dpms,
425	.mode_set = psb_intel_crtc_mode_set,
426	.mode_set_base = gma_pipe_set_base,
427	.prepare = gma_crtc_prepare,
428	.commit = gma_crtc_commit,
429	.disable = gma_crtc_disable,
430};
431
432const struct gma_clock_funcs psb_clock_funcs = {
433	.clock = psb_intel_clock,
434	.limit = psb_intel_limit,
435	.pll_is_valid = gma_pll_is_valid,
436};
437
438/*
439 * Set the default value of cursor control and base register
440 * to zero. This is a workaround for h/w defect on Oaktrail
441 */
442static void psb_intel_cursor_init(struct drm_device *dev,
443				  struct gma_crtc *gma_crtc)
444{
445	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
446	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
447	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
448	struct psb_gem_object *cursor_pobj;
449
450	if (dev_priv->ops->cursor_needs_phys) {
451		/* Allocate 4 pages of stolen mem for a hardware cursor. That
452		 * is enough for the 64 x 64 ARGB cursors we support.
453		 */
454		cursor_pobj = psb_gem_create(dev, 4 * PAGE_SIZE, "cursor", true, PAGE_SIZE);
455		if (IS_ERR(cursor_pobj)) {
456			gma_crtc->cursor_pobj = NULL;
457			goto out;
458		}
459		gma_crtc->cursor_pobj = cursor_pobj;
460		gma_crtc->cursor_addr = dev_priv->stolen_base + cursor_pobj->offset;
461	} else {
462		gma_crtc->cursor_pobj = NULL;
463	}
464
465out:
466	REG_WRITE(control[gma_crtc->pipe], 0);
467	REG_WRITE(base[gma_crtc->pipe], 0);
468}
469
470void psb_intel_crtc_init(struct drm_device *dev, int pipe,
471		     struct psb_intel_mode_device *mode_dev)
472{
473	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
474	struct gma_crtc *gma_crtc;
475	int i;
476
477	/* We allocate a extra array of drm_connector pointers
478	 * for fbdev after the crtc */
479	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
480			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
481			GFP_KERNEL);
482	if (gma_crtc == NULL)
483		return;
484
485	gma_crtc->crtc_state =
486		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
487	if (!gma_crtc->crtc_state) {
488		dev_err(dev->dev, "Crtc state error: No memory\n");
489		kfree(gma_crtc);
490		return;
491	}
492
493	drm_crtc_init(dev, &gma_crtc->base, &gma_crtc_funcs);
494
495	/* Set the CRTC clock functions from chip specific data */
496	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
497
498	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
499	gma_crtc->pipe = pipe;
500	gma_crtc->plane = pipe;
501
502	for (i = 0; i < 256; i++)
503		gma_crtc->lut_adj[i] = 0;
504
505	gma_crtc->mode_dev = mode_dev;
506	gma_crtc->cursor_addr = 0;
507
508	drm_crtc_helper_add(&gma_crtc->base,
509						dev_priv->ops->crtc_helper);
510
511	/* Setup the array of drm_connector pointer array */
512	gma_crtc->mode_set.crtc = &gma_crtc->base;
513	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
514	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
515	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
516	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
517	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
518	gma_crtc->mode_set.num_connectors = 0;
519	psb_intel_cursor_init(dev, gma_crtc);
520
521	/* Set to true so that the pipe is forced off on initial config. */
522	gma_crtc->active = true;
523}
524
525struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
526{
527	struct drm_crtc *crtc;
528
529	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
530		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
531
532		if (gma_crtc->pipe == pipe)
533			return crtc;
534	}
535	return NULL;
536}
537
538int gma_connector_clones(struct drm_device *dev, int type_mask)
539{
540	struct drm_connector_list_iter conn_iter;
541	struct drm_connector *connector;
542	int index_mask = 0;
543	int entry = 0;
544
545	drm_connector_list_iter_begin(dev, &conn_iter);
546	drm_for_each_connector_iter(connector, &conn_iter) {
547		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
548		if (type_mask & (1 << gma_encoder->type))
549			index_mask |= (1 << entry);
550		entry++;
551	}
552	drm_connector_list_iter_end(&conn_iter);
553
554	return index_mask;
555}