Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright © 2006-2011 Intel Corporation
  3 *
  4 * This program is free software; you can redistribute it and/or modify it
  5 * under the terms and conditions of the GNU General Public License,
  6 * version 2, as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope it will be useful, but WITHOUT
  9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 11 * more details.
 12 *
 13 * You should have received a copy of the GNU General Public License along with
 14 * this program; if not, write to the Free Software Foundation, Inc.,
 15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 16 *
 17 * Authors:
 18 *	Eric Anholt <eric@anholt.net>
 19 */
 20
 21#include <linux/i2c.h>
 22
 23#include <drm/drmP.h>
 24#include <drm/drm_plane_helper.h>
 25#include "framebuffer.h"
 26#include "psb_drv.h"
 27#include "psb_intel_drv.h"
 28#include "psb_intel_reg.h"
 29#include "gma_display.h"
 30#include "power.h"
 31
 32#define INTEL_LIMIT_I9XX_SDVO_DAC   0
 33#define INTEL_LIMIT_I9XX_LVDS	    1
 34
 35static const struct gma_limit_t psb_intel_limits[] = {
 36	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
 37	 .dot = {.min = 20000, .max = 400000},
 38	 .vco = {.min = 1400000, .max = 2800000},
 39	 .n = {.min = 1, .max = 6},
 40	 .m = {.min = 70, .max = 120},
 41	 .m1 = {.min = 8, .max = 18},
 42	 .m2 = {.min = 3, .max = 7},
 43	 .p = {.min = 5, .max = 80},
 44	 .p1 = {.min = 1, .max = 8},
 45	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
 46	 .find_pll = gma_find_best_pll,
 47	 },
 48	{			/* INTEL_LIMIT_I9XX_LVDS */
 49	 .dot = {.min = 20000, .max = 400000},
 50	 .vco = {.min = 1400000, .max = 2800000},
 51	 .n = {.min = 1, .max = 6},
 52	 .m = {.min = 70, .max = 120},
 53	 .m1 = {.min = 8, .max = 18},
 54	 .m2 = {.min = 3, .max = 7},
 55	 .p = {.min = 7, .max = 98},
 56	 .p1 = {.min = 1, .max = 8},
 57	 /* The single-channel range is 25-112Mhz, and dual-channel
 58	  * is 80-224Mhz.  Prefer single channel as much as possible.
 59	  */
 60	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
 61	 .find_pll = gma_find_best_pll,
 62	 },
 63};
 64
 65static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
 66						 int refclk)
 67{
 68	const struct gma_limit_t *limit;
 69
 70	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 71		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
 72	else
 73		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
 74	return limit;
 75}
 76
 77static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
 78{
 79	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
 80	clock->p = clock->p1 * clock->p2;
 81	clock->vco = refclk * clock->m / (clock->n + 2);
 82	clock->dot = clock->vco / clock->p;
 83}
 84
 85/**
 86 * Return the pipe currently connected to the panel fitter,
 87 * or -1 if the panel fitter is not present or not in use
 88 */
 89static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
 90{
 91	u32 pfit_control;
 92
 93	pfit_control = REG_READ(PFIT_CONTROL);
 94
 95	/* See if the panel fitter is in use */
 96	if ((pfit_control & PFIT_ENABLE) == 0)
 97		return -1;
 98	/* Must be on PIPE 1 for PSB */
 99	return 1;
100}
101
102static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
103			       struct drm_display_mode *mode,
104			       struct drm_display_mode *adjusted_mode,
105			       int x, int y,
106			       struct drm_framebuffer *old_fb)
107{
108	struct drm_device *dev = crtc->dev;
109	struct drm_psb_private *dev_priv = dev->dev_private;
110	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
111	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
112	int pipe = gma_crtc->pipe;
113	const struct psb_offset *map = &dev_priv->regmap[pipe];
114	int refclk;
115	struct gma_clock_t clock;
116	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
117	bool ok, is_sdvo = false;
118	bool is_lvds = false, is_tv = false;
119	struct drm_mode_config *mode_config = &dev->mode_config;
120	struct drm_connector *connector;
121	const struct gma_limit_t *limit;
122
123	/* No scan out no play */
124	if (crtc->primary->fb == NULL) {
125		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
126		return 0;
127	}
128
129	list_for_each_entry(connector, &mode_config->connector_list, head) {
130		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
131
132		if (!connector->encoder
133		    || connector->encoder->crtc != crtc)
134			continue;
135
136		switch (gma_encoder->type) {
137		case INTEL_OUTPUT_LVDS:
138			is_lvds = true;
139			break;
140		case INTEL_OUTPUT_SDVO:
141			is_sdvo = true;
142			break;
143		case INTEL_OUTPUT_TVOUT:
144			is_tv = true;
145			break;
146		}
147	}
148
149	refclk = 96000;
150
151	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
152
153	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
154				 &clock);
155	if (!ok) {
156		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
157			  adjusted_mode->clock, clock.dot);
158		return 0;
159	}
160
161	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
162
163	dpll = DPLL_VGA_MODE_DIS;
164	if (is_lvds) {
165		dpll |= DPLLB_MODE_LVDS;
166		dpll |= DPLL_DVO_HIGH_SPEED;
167	} else
168		dpll |= DPLLB_MODE_DAC_SERIAL;
169	if (is_sdvo) {
170		int sdvo_pixel_multiply =
171			    adjusted_mode->clock / mode->clock;
172		dpll |= DPLL_DVO_HIGH_SPEED;
173		dpll |=
174		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
175	}
176
177	/* compute bitmask from p1 value */
178	dpll |= (1 << (clock.p1 - 1)) << 16;
179	switch (clock.p2) {
180	case 5:
181		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
182		break;
183	case 7:
184		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
185		break;
186	case 10:
187		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
188		break;
189	case 14:
190		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
191		break;
192	}
193
194	if (is_tv) {
195		/* XXX: just matching BIOS for now */
196/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
197		dpll |= 3;
198	}
199	dpll |= PLL_REF_INPUT_DREFCLK;
200
201	/* setup pipeconf */
202	pipeconf = REG_READ(map->conf);
203
204	/* Set up the display plane register */
205	dspcntr = DISPPLANE_GAMMA_ENABLE;
206
207	if (pipe == 0)
208		dspcntr |= DISPPLANE_SEL_PIPE_A;
209	else
210		dspcntr |= DISPPLANE_SEL_PIPE_B;
211
212	dspcntr |= DISPLAY_PLANE_ENABLE;
213	pipeconf |= PIPEACONF_ENABLE;
214	dpll |= DPLL_VCO_ENABLE;
215
216
217	/* Disable the panel fitter if it was on our pipe */
218	if (psb_intel_panel_fitter_pipe(dev) == pipe)
219		REG_WRITE(PFIT_CONTROL, 0);
220
221	drm_mode_debug_printmodeline(mode);
222
223	if (dpll & DPLL_VCO_ENABLE) {
224		REG_WRITE(map->fp0, fp);
225		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
226		REG_READ(map->dpll);
227		udelay(150);
228	}
229
230	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
231	 * This is an exception to the general rule that mode_set doesn't turn
232	 * things on.
233	 */
234	if (is_lvds) {
235		u32 lvds = REG_READ(LVDS);
236
237		lvds &= ~LVDS_PIPEB_SELECT;
238		if (pipe == 1)
239			lvds |= LVDS_PIPEB_SELECT;
240
241		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
242		/* Set the B0-B3 data pairs corresponding to
243		 * whether we're going to
244		 * set the DPLLs for dual-channel mode or not.
245		 */
246		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
247		if (clock.p2 == 7)
248			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
249
250		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
251		 * appropriately here, but we need to look more
252		 * thoroughly into how panels behave in the two modes.
253		 */
254
255		REG_WRITE(LVDS, lvds);
256		REG_READ(LVDS);
257	}
258
259	REG_WRITE(map->fp0, fp);
260	REG_WRITE(map->dpll, dpll);
261	REG_READ(map->dpll);
262	/* Wait for the clocks to stabilize. */
263	udelay(150);
264
265	/* write it again -- the BIOS does, after all */
266	REG_WRITE(map->dpll, dpll);
267
268	REG_READ(map->dpll);
269	/* Wait for the clocks to stabilize. */
270	udelay(150);
271
272	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
273		  ((adjusted_mode->crtc_htotal - 1) << 16));
274	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
275		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
276	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
277		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
278	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
279		  ((adjusted_mode->crtc_vtotal - 1) << 16));
280	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
281		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
282	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
283		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
284	/* pipesrc and dspsize control the size that is scaled from,
285	 * which should always be the user's requested size.
286	 */
287	REG_WRITE(map->size,
288		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
289	REG_WRITE(map->pos, 0);
290	REG_WRITE(map->src,
291		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
292	REG_WRITE(map->conf, pipeconf);
293	REG_READ(map->conf);
294
295	gma_wait_for_vblank(dev);
296
297	REG_WRITE(map->cntr, dspcntr);
298
299	/* Flush the plane changes */
300	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
301
302	gma_wait_for_vblank(dev);
303
304	return 0;
305}
306
307/* Returns the clock of the currently programmed mode of the given pipe. */
308static int psb_intel_crtc_clock_get(struct drm_device *dev,
309				struct drm_crtc *crtc)
310{
311	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
312	struct drm_psb_private *dev_priv = dev->dev_private;
313	int pipe = gma_crtc->pipe;
314	const struct psb_offset *map = &dev_priv->regmap[pipe];
315	u32 dpll;
316	u32 fp;
317	struct gma_clock_t clock;
318	bool is_lvds;
319	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
320
321	if (gma_power_begin(dev, false)) {
322		dpll = REG_READ(map->dpll);
323		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
324			fp = REG_READ(map->fp0);
325		else
326			fp = REG_READ(map->fp1);
327		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
328		gma_power_end(dev);
329	} else {
330		dpll = p->dpll;
331
332		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
333			fp = p->fp0;
334		else
335		        fp = p->fp1;
336
337		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
338								LVDS_PORT_EN);
339	}
340
341	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
342	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
343	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
344
345	if (is_lvds) {
346		clock.p1 =
347		    ffs((dpll &
348			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
349			DPLL_FPA01_P1_POST_DIV_SHIFT);
350		clock.p2 = 14;
351
352		if ((dpll & PLL_REF_INPUT_MASK) ==
353		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
354			/* XXX: might not be 66MHz */
355			psb_intel_clock(66000, &clock);
356		} else
357			psb_intel_clock(48000, &clock);
358	} else {
359		if (dpll & PLL_P1_DIVIDE_BY_TWO)
360			clock.p1 = 2;
361		else {
362			clock.p1 =
363			    ((dpll &
364			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
365			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
366		}
367		if (dpll & PLL_P2_DIVIDE_BY_4)
368			clock.p2 = 4;
369		else
370			clock.p2 = 2;
371
372		psb_intel_clock(48000, &clock);
373	}
374
375	/* XXX: It would be nice to validate the clocks, but we can't reuse
376	 * i830PllIsValid() because it relies on the xf86_config connector
377	 * configuration being accurate, which it isn't necessarily.
378	 */
379
380	return clock.dot;
381}
382
383/** Returns the currently programmed mode of the given pipe. */
384struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
385					     struct drm_crtc *crtc)
386{
387	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
388	int pipe = gma_crtc->pipe;
389	struct drm_display_mode *mode;
390	int htot;
391	int hsync;
392	int vtot;
393	int vsync;
394	struct drm_psb_private *dev_priv = dev->dev_private;
395	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
396	const struct psb_offset *map = &dev_priv->regmap[pipe];
397
398	if (gma_power_begin(dev, false)) {
399		htot = REG_READ(map->htotal);
400		hsync = REG_READ(map->hsync);
401		vtot = REG_READ(map->vtotal);
402		vsync = REG_READ(map->vsync);
403		gma_power_end(dev);
404	} else {
405		htot = p->htotal;
406		hsync = p->hsync;
407		vtot = p->vtotal;
408		vsync = p->vsync;
409	}
410
411	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
412	if (!mode)
413		return NULL;
414
415	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
416	mode->hdisplay = (htot & 0xffff) + 1;
417	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
418	mode->hsync_start = (hsync & 0xffff) + 1;
419	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
420	mode->vdisplay = (vtot & 0xffff) + 1;
421	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
422	mode->vsync_start = (vsync & 0xffff) + 1;
423	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
424
425	drm_mode_set_name(mode);
426	drm_mode_set_crtcinfo(mode, 0);
427
428	return mode;
429}
430
431const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
432	.dpms = gma_crtc_dpms,
433	.mode_set = psb_intel_crtc_mode_set,
434	.mode_set_base = gma_pipe_set_base,
435	.prepare = gma_crtc_prepare,
436	.commit = gma_crtc_commit,
437	.disable = gma_crtc_disable,
438};
439
440const struct drm_crtc_funcs psb_intel_crtc_funcs = {
441	.cursor_set = gma_crtc_cursor_set,
442	.cursor_move = gma_crtc_cursor_move,
443	.gamma_set = gma_crtc_gamma_set,
444	.set_config = gma_crtc_set_config,
445	.destroy = gma_crtc_destroy,
446};
447
448const struct gma_clock_funcs psb_clock_funcs = {
449	.clock = psb_intel_clock,
450	.limit = psb_intel_limit,
451	.pll_is_valid = gma_pll_is_valid,
452};
453
454/*
455 * Set the default value of cursor control and base register
456 * to zero. This is a workaround for h/w defect on Oaktrail
457 */
458static void psb_intel_cursor_init(struct drm_device *dev,
459				  struct gma_crtc *gma_crtc)
460{
461	struct drm_psb_private *dev_priv = dev->dev_private;
462	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
463	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
464	struct gtt_range *cursor_gt;
465
466	if (dev_priv->ops->cursor_needs_phys) {
467		/* Allocate 4 pages of stolen mem for a hardware cursor. That
468		 * is enough for the 64 x 64 ARGB cursors we support.
469		 */
470		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
471						PAGE_SIZE);
472		if (!cursor_gt) {
473			gma_crtc->cursor_gt = NULL;
474			goto out;
475		}
476		gma_crtc->cursor_gt = cursor_gt;
477		gma_crtc->cursor_addr = dev_priv->stolen_base +
478							cursor_gt->offset;
479	} else {
480		gma_crtc->cursor_gt = NULL;
481	}
482
483out:
484	REG_WRITE(control[gma_crtc->pipe], 0);
485	REG_WRITE(base[gma_crtc->pipe], 0);
486}
487
488void psb_intel_crtc_init(struct drm_device *dev, int pipe,
489		     struct psb_intel_mode_device *mode_dev)
490{
491	struct drm_psb_private *dev_priv = dev->dev_private;
492	struct gma_crtc *gma_crtc;
493	int i;
494
495	/* We allocate a extra array of drm_connector pointers
496	 * for fbdev after the crtc */
497	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
498			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
499			GFP_KERNEL);
500	if (gma_crtc == NULL)
501		return;
502
503	gma_crtc->crtc_state =
504		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
505	if (!gma_crtc->crtc_state) {
506		dev_err(dev->dev, "Crtc state error: No memory\n");
507		kfree(gma_crtc);
508		return;
509	}
510
511	/* Set the CRTC operations from the chip specific data */
512	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
513
514	/* Set the CRTC clock functions from chip specific data */
515	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
516
517	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
518	gma_crtc->pipe = pipe;
519	gma_crtc->plane = pipe;
520
521	for (i = 0; i < 256; i++) {
522		gma_crtc->lut_r[i] = i;
523		gma_crtc->lut_g[i] = i;
524		gma_crtc->lut_b[i] = i;
525
526		gma_crtc->lut_adj[i] = 0;
527	}
528
529	gma_crtc->mode_dev = mode_dev;
530	gma_crtc->cursor_addr = 0;
531
532	drm_crtc_helper_add(&gma_crtc->base,
533						dev_priv->ops->crtc_helper);
534
535	/* Setup the array of drm_connector pointer array */
536	gma_crtc->mode_set.crtc = &gma_crtc->base;
537	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
538	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
539	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
540	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
541	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
542	gma_crtc->mode_set.num_connectors = 0;
543	psb_intel_cursor_init(dev, gma_crtc);
544
545	/* Set to true so that the pipe is forced off on initial config. */
546	gma_crtc->active = true;
547}
548
549struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
550{
551	struct drm_crtc *crtc = NULL;
552
553	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
554		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
555		if (gma_crtc->pipe == pipe)
556			break;
557	}
558	return crtc;
559}
560
561int gma_connector_clones(struct drm_device *dev, int type_mask)
562{
563	int index_mask = 0;
564	struct drm_connector *connector;
565	int entry = 0;
566
567	list_for_each_entry(connector, &dev->mode_config.connector_list,
568			    head) {
569		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
570		if (type_mask & (1 << gma_encoder->type))
571			index_mask |= (1 << entry);
572		entry++;
573	}
574	return index_mask;
575}