Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Ram backed block device driver.
  3 *
  4 * Copyright (C) 2007 Nick Piggin
  5 * Copyright (C) 2007 Novell Inc.
  6 *
  7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8 * of their respective owners.
  9 */
 10
 11#include <linux/init.h>
 
 12#include <linux/module.h>
 13#include <linux/moduleparam.h>
 14#include <linux/major.h>
 15#include <linux/blkdev.h>
 16#include <linux/bio.h>
 17#include <linux/highmem.h>
 18#include <linux/mutex.h>
 
 19#include <linux/radix-tree.h>
 20#include <linux/buffer_head.h> /* invalidate_bh_lrus() */
 21#include <linux/slab.h>
 
 
 22
 23#include <asm/uaccess.h>
 24
 25#define SECTOR_SHIFT		9
 26#define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
 27#define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
 28
 29/*
 30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
 31 * the pages containing the block device's contents. A brd page's ->index is
 32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
 33 * with, the kernel's pagecache or buffer cache (which sit above our block
 34 * device).
 35 */
 36struct brd_device {
 37	int		brd_number;
 38
 39	struct request_queue	*brd_queue;
 40	struct gendisk		*brd_disk;
 41	struct list_head	brd_list;
 42
 43	/*
 44	 * Backing store of pages and lock to protect it. This is the contents
 45	 * of the block device.
 46	 */
 47	spinlock_t		brd_lock;
 48	struct radix_tree_root	brd_pages;
 
 49};
 50
 51/*
 52 * Look up and return a brd's page for a given sector.
 53 */
 54static DEFINE_MUTEX(brd_mutex);
 55static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
 56{
 57	pgoff_t idx;
 58	struct page *page;
 59
 60	/*
 61	 * The page lifetime is protected by the fact that we have opened the
 62	 * device node -- brd pages will never be deleted under us, so we
 63	 * don't need any further locking or refcounting.
 64	 *
 65	 * This is strictly true for the radix-tree nodes as well (ie. we
 66	 * don't actually need the rcu_read_lock()), however that is not a
 67	 * documented feature of the radix-tree API so it is better to be
 68	 * safe here (we don't have total exclusion from radix tree updates
 69	 * here, only deletes).
 70	 */
 71	rcu_read_lock();
 72	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
 73	page = radix_tree_lookup(&brd->brd_pages, idx);
 74	rcu_read_unlock();
 75
 76	BUG_ON(page && page->index != idx);
 77
 78	return page;
 79}
 80
 81/*
 82 * Look up and return a brd's page for a given sector.
 83 * If one does not exist, allocate an empty page, and insert that. Then
 84 * return it.
 85 */
 86static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
 87{
 88	pgoff_t idx;
 89	struct page *page;
 90	gfp_t gfp_flags;
 91
 92	page = brd_lookup_page(brd, sector);
 93	if (page)
 94		return page;
 95
 96	/*
 97	 * Must use NOIO because we don't want to recurse back into the
 98	 * block or filesystem layers from page reclaim.
 99	 *
100	 * Cannot support XIP and highmem, because our ->direct_access
101	 * routine for XIP must return memory that is always addressable.
102	 * If XIP was reworked to use pfns and kmap throughout, this
103	 * restriction might be able to be lifted.
104	 */
105	gfp_flags = GFP_NOIO | __GFP_ZERO;
106#ifndef CONFIG_BLK_DEV_XIP
107	gfp_flags |= __GFP_HIGHMEM;
108#endif
109	page = alloc_page(gfp_flags);
110	if (!page)
111		return NULL;
112
113	if (radix_tree_preload(GFP_NOIO)) {
114		__free_page(page);
115		return NULL;
116	}
117
118	spin_lock(&brd->brd_lock);
119	idx = sector >> PAGE_SECTORS_SHIFT;
 
120	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
121		__free_page(page);
122		page = radix_tree_lookup(&brd->brd_pages, idx);
123		BUG_ON(!page);
124		BUG_ON(page->index != idx);
125	} else
126		page->index = idx;
 
127	spin_unlock(&brd->brd_lock);
128
129	radix_tree_preload_end();
130
131	return page;
132}
133
134static void brd_free_page(struct brd_device *brd, sector_t sector)
135{
136	struct page *page;
137	pgoff_t idx;
138
139	spin_lock(&brd->brd_lock);
140	idx = sector >> PAGE_SECTORS_SHIFT;
141	page = radix_tree_delete(&brd->brd_pages, idx);
142	spin_unlock(&brd->brd_lock);
143	if (page)
144		__free_page(page);
145}
146
147static void brd_zero_page(struct brd_device *brd, sector_t sector)
148{
149	struct page *page;
150
151	page = brd_lookup_page(brd, sector);
152	if (page)
153		clear_highpage(page);
154}
155
156/*
157 * Free all backing store pages and radix tree. This must only be called when
158 * there are no other users of the device.
159 */
160#define FREE_BATCH 16
161static void brd_free_pages(struct brd_device *brd)
162{
163	unsigned long pos = 0;
164	struct page *pages[FREE_BATCH];
165	int nr_pages;
166
167	do {
168		int i;
169
170		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171				(void **)pages, pos, FREE_BATCH);
172
173		for (i = 0; i < nr_pages; i++) {
174			void *ret;
175
176			BUG_ON(pages[i]->index < pos);
177			pos = pages[i]->index;
178			ret = radix_tree_delete(&brd->brd_pages, pos);
179			BUG_ON(!ret || ret != pages[i]);
180			__free_page(pages[i]);
181		}
182
183		pos++;
184
185		/*
 
 
 
 
 
 
186		 * This assumes radix_tree_gang_lookup always returns as
187		 * many pages as possible. If the radix-tree code changes,
188		 * so will this have to.
189		 */
190	} while (nr_pages == FREE_BATCH);
191}
192
193/*
194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
195 */
196static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
197{
198	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199	size_t copy;
200
201	copy = min_t(size_t, n, PAGE_SIZE - offset);
202	if (!brd_insert_page(brd, sector))
203		return -ENOMEM;
204	if (copy < n) {
205		sector += copy >> SECTOR_SHIFT;
206		if (!brd_insert_page(brd, sector))
207			return -ENOMEM;
208	}
209	return 0;
210}
211
212static void discard_from_brd(struct brd_device *brd,
213			sector_t sector, size_t n)
214{
215	while (n >= PAGE_SIZE) {
216		/*
217		 * Don't want to actually discard pages here because
218		 * re-allocating the pages can result in writeback
219		 * deadlocks under heavy load.
220		 */
221		if (0)
222			brd_free_page(brd, sector);
223		else
224			brd_zero_page(brd, sector);
225		sector += PAGE_SIZE >> SECTOR_SHIFT;
226		n -= PAGE_SIZE;
227	}
228}
229
230/*
231 * Copy n bytes from src to the brd starting at sector. Does not sleep.
232 */
233static void copy_to_brd(struct brd_device *brd, const void *src,
234			sector_t sector, size_t n)
235{
236	struct page *page;
237	void *dst;
238	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239	size_t copy;
240
241	copy = min_t(size_t, n, PAGE_SIZE - offset);
242	page = brd_lookup_page(brd, sector);
243	BUG_ON(!page);
244
245	dst = kmap_atomic(page, KM_USER1);
246	memcpy(dst + offset, src, copy);
247	kunmap_atomic(dst, KM_USER1);
248
249	if (copy < n) {
250		src += copy;
251		sector += copy >> SECTOR_SHIFT;
252		copy = n - copy;
253		page = brd_lookup_page(brd, sector);
254		BUG_ON(!page);
255
256		dst = kmap_atomic(page, KM_USER1);
257		memcpy(dst, src, copy);
258		kunmap_atomic(dst, KM_USER1);
259	}
260}
261
262/*
263 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
264 */
265static void copy_from_brd(void *dst, struct brd_device *brd,
266			sector_t sector, size_t n)
267{
268	struct page *page;
269	void *src;
270	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271	size_t copy;
272
273	copy = min_t(size_t, n, PAGE_SIZE - offset);
274	page = brd_lookup_page(brd, sector);
275	if (page) {
276		src = kmap_atomic(page, KM_USER1);
277		memcpy(dst, src + offset, copy);
278		kunmap_atomic(src, KM_USER1);
279	} else
280		memset(dst, 0, copy);
281
282	if (copy < n) {
283		dst += copy;
284		sector += copy >> SECTOR_SHIFT;
285		copy = n - copy;
286		page = brd_lookup_page(brd, sector);
287		if (page) {
288			src = kmap_atomic(page, KM_USER1);
289			memcpy(dst, src, copy);
290			kunmap_atomic(src, KM_USER1);
291		} else
292			memset(dst, 0, copy);
293	}
294}
295
296/*
297 * Process a single bvec of a bio.
298 */
299static int brd_do_bvec(struct brd_device *brd, struct page *page,
300			unsigned int len, unsigned int off, int rw,
301			sector_t sector)
302{
303	void *mem;
304	int err = 0;
305
306	if (rw != READ) {
307		err = copy_to_brd_setup(brd, sector, len);
308		if (err)
309			goto out;
310	}
311
312	mem = kmap_atomic(page, KM_USER0);
313	if (rw == READ) {
314		copy_from_brd(mem + off, brd, sector, len);
315		flush_dcache_page(page);
316	} else {
317		flush_dcache_page(page);
318		copy_to_brd(brd, mem + off, sector, len);
319	}
320	kunmap_atomic(mem, KM_USER0);
321
322out:
323	return err;
324}
325
326static int brd_make_request(struct request_queue *q, struct bio *bio)
327{
328	struct block_device *bdev = bio->bi_bdev;
329	struct brd_device *brd = bdev->bd_disk->private_data;
330	int rw;
331	struct bio_vec *bvec;
332	sector_t sector;
333	int i;
334	int err = -EIO;
335
336	sector = bio->bi_sector;
337	if (sector + (bio->bi_size >> SECTOR_SHIFT) >
338						get_capacity(bdev->bd_disk))
339		goto out;
340
341	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
342		err = 0;
343		discard_from_brd(brd, sector, bio->bi_size);
344		goto out;
345	}
346
347	rw = bio_rw(bio);
348	if (rw == READA)
349		rw = READ;
350
351	bio_for_each_segment(bvec, bio, i) {
352		unsigned int len = bvec->bv_len;
353		err = brd_do_bvec(brd, bvec->bv_page, len,
354					bvec->bv_offset, rw, sector);
355		if (err)
356			break;
357		sector += len >> SECTOR_SHIFT;
358	}
359
360out:
361	bio_endio(bio, err);
362
363	return 0;
364}
365
366#ifdef CONFIG_BLK_DEV_XIP
367static int brd_direct_access(struct block_device *bdev, sector_t sector,
368			void **kaddr, unsigned long *pfn)
369{
370	struct brd_device *brd = bdev->bd_disk->private_data;
371	struct page *page;
372
373	if (!brd)
374		return -ENODEV;
375	if (sector & (PAGE_SECTORS-1))
376		return -EINVAL;
377	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
378		return -ERANGE;
379	page = brd_insert_page(brd, sector);
380	if (!page)
381		return -ENOMEM;
382	*kaddr = page_address(page);
383	*pfn = page_to_pfn(page);
384
385	return 0;
386}
387#endif
388
389static int brd_ioctl(struct block_device *bdev, fmode_t mode,
390			unsigned int cmd, unsigned long arg)
391{
392	int error;
393	struct brd_device *brd = bdev->bd_disk->private_data;
394
395	if (cmd != BLKFLSBUF)
396		return -ENOTTY;
397
398	/*
399	 * ram device BLKFLSBUF has special semantics, we want to actually
400	 * release and destroy the ramdisk data.
401	 */
402	mutex_lock(&brd_mutex);
403	mutex_lock(&bdev->bd_mutex);
404	error = -EBUSY;
405	if (bdev->bd_openers <= 1) {
406		/*
407		 * Invalidate the cache first, so it isn't written
408		 * back to the device.
409		 *
410		 * Another thread might instantiate more buffercache here,
411		 * but there is not much we can do to close that race.
412		 */
413		invalidate_bh_lrus();
414		truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
415		brd_free_pages(brd);
416		error = 0;
417	}
418	mutex_unlock(&bdev->bd_mutex);
419	mutex_unlock(&brd_mutex);
420
421	return error;
422}
423
424static const struct block_device_operations brd_fops = {
425	.owner =		THIS_MODULE,
426	.ioctl =		brd_ioctl,
427#ifdef CONFIG_BLK_DEV_XIP
428	.direct_access =	brd_direct_access,
429#endif
430};
431
432/*
433 * And now the modules code and kernel interface.
434 */
435static int rd_nr;
436int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
437static int max_part;
438static int part_shift;
439module_param(rd_nr, int, S_IRUGO);
440MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
441module_param(rd_size, int, S_IRUGO);
 
 
442MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
443module_param(max_part, int, S_IRUGO);
444MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
 
 
 
445MODULE_LICENSE("GPL");
446MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
447MODULE_ALIAS("rd");
448
449#ifndef MODULE
450/* Legacy boot options - nonmodular */
451static int __init ramdisk_size(char *str)
452{
453	rd_size = simple_strtol(str, NULL, 0);
454	return 1;
455}
456__setup("ramdisk_size=", ramdisk_size);
457#endif
458
459/*
460 * The device scheme is derived from loop.c. Keep them in synch where possible
461 * (should share code eventually).
462 */
463static LIST_HEAD(brd_devices);
464static DEFINE_MUTEX(brd_devices_mutex);
465
466static struct brd_device *brd_alloc(int i)
467{
468	struct brd_device *brd;
469	struct gendisk *disk;
 
 
470
 
 
 
471	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
472	if (!brd)
473		goto out;
474	brd->brd_number		= i;
 
 
475	spin_lock_init(&brd->brd_lock);
476	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
477
478	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
479	if (!brd->brd_queue)
480		goto out_free_dev;
481	blk_queue_make_request(brd->brd_queue, brd_make_request);
482	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
483	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
484
485	brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
486	brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
487	brd->brd_queue->limits.discard_zeroes_data = 1;
488	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
489
490	disk = brd->brd_disk = alloc_disk(1 << part_shift);
491	if (!disk)
492		goto out_free_queue;
 
493	disk->major		= RAMDISK_MAJOR;
494	disk->first_minor	= i << part_shift;
 
495	disk->fops		= &brd_fops;
496	disk->private_data	= brd;
497	disk->queue		= brd->brd_queue;
498	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
499	sprintf(disk->disk_name, "ram%d", i);
500	set_capacity(disk, rd_size * 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501
502	return brd;
503
504out_free_queue:
505	blk_cleanup_queue(brd->brd_queue);
506out_free_dev:
 
507	kfree(brd);
508out:
509	return NULL;
510}
511
512static void brd_free(struct brd_device *brd)
513{
514	put_disk(brd->brd_disk);
515	blk_cleanup_queue(brd->brd_queue);
516	brd_free_pages(brd);
517	kfree(brd);
518}
519
520static struct brd_device *brd_init_one(int i)
521{
522	struct brd_device *brd;
523
524	list_for_each_entry(brd, &brd_devices, brd_list) {
525		if (brd->brd_number == i)
526			goto out;
527	}
528
529	brd = brd_alloc(i);
530	if (brd) {
531		add_disk(brd->brd_disk);
532		list_add_tail(&brd->brd_list, &brd_devices);
 
 
533	}
534out:
535	return brd;
536}
537
538static void brd_del_one(struct brd_device *brd)
539{
540	list_del(&brd->brd_list);
541	del_gendisk(brd->brd_disk);
542	brd_free(brd);
543}
544
545static struct kobject *brd_probe(dev_t dev, int *part, void *data)
546{
547	struct brd_device *brd;
548	struct kobject *kobj;
549
550	mutex_lock(&brd_devices_mutex);
551	brd = brd_init_one(MINOR(dev) >> part_shift);
552	kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
553	mutex_unlock(&brd_devices_mutex);
 
 
554
555	*part = 0;
556	return kobj;
 
 
 
557}
558
559static int __init brd_init(void)
560{
561	int i, nr;
562	unsigned long range;
563	struct brd_device *brd, *next;
 
 
 
 
 
 
 
 
564
565	/*
566	 * brd module now has a feature to instantiate underlying device
567	 * structure on-demand, provided that there is an access dev node.
568	 * However, this will not work well with user space tool that doesn't
569	 * know about such "feature".  In order to not break any existing
570	 * tool, we do the following:
571	 *
572	 * (1) if rd_nr is specified, create that many upfront, and this
573	 *     also becomes a hard limit.
574	 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
575	 *     (default 16) rd device on module load, user can further
576	 *     extend brd device by create dev node themselves and have
577	 *     kernel automatically instantiate actual device on-demand.
 
 
 
578	 */
579
580	part_shift = 0;
581	if (max_part > 0) {
582		part_shift = fls(max_part);
583
584		/*
585		 * Adjust max_part according to part_shift as it is exported
586		 * to user space so that user can decide correct minor number
587		 * if [s]he want to create more devices.
588		 *
589		 * Note that -1 is required because partition 0 is reserved
590		 * for the whole disk.
591		 */
592		max_part = (1UL << part_shift) - 1;
593	}
594
595	if ((1UL << part_shift) > DISK_MAX_PARTS)
596		return -EINVAL;
597
598	if (rd_nr > 1UL << (MINORBITS - part_shift))
599		return -EINVAL;
600
601	if (rd_nr) {
602		nr = rd_nr;
603		range = rd_nr << part_shift;
604	} else {
605		nr = CONFIG_BLK_DEV_RAM_COUNT;
606		range = 1UL << MINORBITS;
607	}
608
609	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
610		return -EIO;
611
612	for (i = 0; i < nr; i++) {
613		brd = brd_alloc(i);
614		if (!brd)
615			goto out_free;
616		list_add_tail(&brd->brd_list, &brd_devices);
617	}
618
619	/* point of no return */
620
621	list_for_each_entry(brd, &brd_devices, brd_list)
622		add_disk(brd->brd_disk);
623
624	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
625				  THIS_MODULE, brd_probe, NULL, NULL);
626
627	printk(KERN_INFO "brd: module loaded\n");
628	return 0;
629
630out_free:
631	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
632		list_del(&brd->brd_list);
633		brd_free(brd);
634	}
635	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
636
637	return -ENOMEM;
 
638}
639
640static void __exit brd_exit(void)
641{
642	unsigned long range;
643	struct brd_device *brd, *next;
644
645	range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
646
647	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
648		brd_del_one(brd);
649
650	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
651	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 
 
 
652}
653
654module_init(brd_init);
655module_exit(brd_exit);
656
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Ram backed block device driver.
  4 *
  5 * Copyright (C) 2007 Nick Piggin
  6 * Copyright (C) 2007 Novell Inc.
  7 *
  8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  9 * of their respective owners.
 10 */
 11
 12#include <linux/init.h>
 13#include <linux/initrd.h>
 14#include <linux/module.h>
 15#include <linux/moduleparam.h>
 16#include <linux/major.h>
 17#include <linux/blkdev.h>
 18#include <linux/bio.h>
 19#include <linux/highmem.h>
 20#include <linux/mutex.h>
 21#include <linux/pagemap.h>
 22#include <linux/radix-tree.h>
 23#include <linux/fs.h>
 24#include <linux/slab.h>
 25#include <linux/backing-dev.h>
 26#include <linux/debugfs.h>
 27
 28#include <linux/uaccess.h>
 
 
 
 
 29
 30/*
 31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
 32 * the pages containing the block device's contents. A brd page's ->index is
 33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
 34 * with, the kernel's pagecache or buffer cache (which sit above our block
 35 * device).
 36 */
 37struct brd_device {
 38	int			brd_number;
 
 
 39	struct gendisk		*brd_disk;
 40	struct list_head	brd_list;
 41
 42	/*
 43	 * Backing store of pages and lock to protect it. This is the contents
 44	 * of the block device.
 45	 */
 46	spinlock_t		brd_lock;
 47	struct radix_tree_root	brd_pages;
 48	u64			brd_nr_pages;
 49};
 50
 51/*
 52 * Look up and return a brd's page for a given sector.
 53 */
 
 54static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
 55{
 56	pgoff_t idx;
 57	struct page *page;
 58
 59	/*
 60	 * The page lifetime is protected by the fact that we have opened the
 61	 * device node -- brd pages will never be deleted under us, so we
 62	 * don't need any further locking or refcounting.
 63	 *
 64	 * This is strictly true for the radix-tree nodes as well (ie. we
 65	 * don't actually need the rcu_read_lock()), however that is not a
 66	 * documented feature of the radix-tree API so it is better to be
 67	 * safe here (we don't have total exclusion from radix tree updates
 68	 * here, only deletes).
 69	 */
 70	rcu_read_lock();
 71	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
 72	page = radix_tree_lookup(&brd->brd_pages, idx);
 73	rcu_read_unlock();
 74
 75	BUG_ON(page && page->index != idx);
 76
 77	return page;
 78}
 79
 80/*
 81 * Look up and return a brd's page for a given sector.
 82 * If one does not exist, allocate an empty page, and insert that. Then
 83 * return it.
 84 */
 85static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
 86{
 87	pgoff_t idx;
 88	struct page *page;
 89	gfp_t gfp_flags;
 90
 91	page = brd_lookup_page(brd, sector);
 92	if (page)
 93		return page;
 94
 95	/*
 96	 * Must use NOIO because we don't want to recurse back into the
 97	 * block or filesystem layers from page reclaim.
 
 
 
 
 
 98	 */
 99	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
 
 
 
100	page = alloc_page(gfp_flags);
101	if (!page)
102		return NULL;
103
104	if (radix_tree_preload(GFP_NOIO)) {
105		__free_page(page);
106		return NULL;
107	}
108
109	spin_lock(&brd->brd_lock);
110	idx = sector >> PAGE_SECTORS_SHIFT;
111	page->index = idx;
112	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
113		__free_page(page);
114		page = radix_tree_lookup(&brd->brd_pages, idx);
115		BUG_ON(!page);
116		BUG_ON(page->index != idx);
117	} else {
118		brd->brd_nr_pages++;
119	}
120	spin_unlock(&brd->brd_lock);
121
122	radix_tree_preload_end();
123
124	return page;
125}
126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127/*
128 * Free all backing store pages and radix tree. This must only be called when
129 * there are no other users of the device.
130 */
131#define FREE_BATCH 16
132static void brd_free_pages(struct brd_device *brd)
133{
134	unsigned long pos = 0;
135	struct page *pages[FREE_BATCH];
136	int nr_pages;
137
138	do {
139		int i;
140
141		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142				(void **)pages, pos, FREE_BATCH);
143
144		for (i = 0; i < nr_pages; i++) {
145			void *ret;
146
147			BUG_ON(pages[i]->index < pos);
148			pos = pages[i]->index;
149			ret = radix_tree_delete(&brd->brd_pages, pos);
150			BUG_ON(!ret || ret != pages[i]);
151			__free_page(pages[i]);
152		}
153
154		pos++;
155
156		/*
157		 * It takes 3.4 seconds to remove 80GiB ramdisk.
158		 * So, we need cond_resched to avoid stalling the CPU.
159		 */
160		cond_resched();
161
162		/*
163		 * This assumes radix_tree_gang_lookup always returns as
164		 * many pages as possible. If the radix-tree code changes,
165		 * so will this have to.
166		 */
167	} while (nr_pages == FREE_BATCH);
168}
169
170/*
171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172 */
173static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
174{
175	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176	size_t copy;
177
178	copy = min_t(size_t, n, PAGE_SIZE - offset);
179	if (!brd_insert_page(brd, sector))
180		return -ENOSPC;
181	if (copy < n) {
182		sector += copy >> SECTOR_SHIFT;
183		if (!brd_insert_page(brd, sector))
184			return -ENOSPC;
185	}
186	return 0;
187}
188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189/*
190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
191 */
192static void copy_to_brd(struct brd_device *brd, const void *src,
193			sector_t sector, size_t n)
194{
195	struct page *page;
196	void *dst;
197	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198	size_t copy;
199
200	copy = min_t(size_t, n, PAGE_SIZE - offset);
201	page = brd_lookup_page(brd, sector);
202	BUG_ON(!page);
203
204	dst = kmap_atomic(page);
205	memcpy(dst + offset, src, copy);
206	kunmap_atomic(dst);
207
208	if (copy < n) {
209		src += copy;
210		sector += copy >> SECTOR_SHIFT;
211		copy = n - copy;
212		page = brd_lookup_page(brd, sector);
213		BUG_ON(!page);
214
215		dst = kmap_atomic(page);
216		memcpy(dst, src, copy);
217		kunmap_atomic(dst);
218	}
219}
220
221/*
222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223 */
224static void copy_from_brd(void *dst, struct brd_device *brd,
225			sector_t sector, size_t n)
226{
227	struct page *page;
228	void *src;
229	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230	size_t copy;
231
232	copy = min_t(size_t, n, PAGE_SIZE - offset);
233	page = brd_lookup_page(brd, sector);
234	if (page) {
235		src = kmap_atomic(page);
236		memcpy(dst, src + offset, copy);
237		kunmap_atomic(src);
238	} else
239		memset(dst, 0, copy);
240
241	if (copy < n) {
242		dst += copy;
243		sector += copy >> SECTOR_SHIFT;
244		copy = n - copy;
245		page = brd_lookup_page(brd, sector);
246		if (page) {
247			src = kmap_atomic(page);
248			memcpy(dst, src, copy);
249			kunmap_atomic(src);
250		} else
251			memset(dst, 0, copy);
252	}
253}
254
255/*
256 * Process a single bvec of a bio.
257 */
258static int brd_do_bvec(struct brd_device *brd, struct page *page,
259			unsigned int len, unsigned int off, enum req_op op,
260			sector_t sector)
261{
262	void *mem;
263	int err = 0;
264
265	if (op_is_write(op)) {
266		err = copy_to_brd_setup(brd, sector, len);
267		if (err)
268			goto out;
269	}
270
271	mem = kmap_atomic(page);
272	if (!op_is_write(op)) {
273		copy_from_brd(mem + off, brd, sector, len);
274		flush_dcache_page(page);
275	} else {
276		flush_dcache_page(page);
277		copy_to_brd(brd, mem + off, sector, len);
278	}
279	kunmap_atomic(mem);
280
281out:
282	return err;
283}
284
285static void brd_submit_bio(struct bio *bio)
286{
287	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
288	sector_t sector = bio->bi_iter.bi_sector;
289	struct bio_vec bvec;
290	struct bvec_iter iter;
291
292	bio_for_each_segment(bvec, bio, iter) {
293		unsigned int len = bvec.bv_len;
294		int err;
295
296		/* Don't support un-aligned buffer */
297		WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
298				(len & (SECTOR_SIZE - 1)));
299
300		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
301				  bio_op(bio), sector);
302		if (err) {
303			bio_io_error(bio);
304			return;
305		}
 
 
 
 
 
 
 
 
 
 
306		sector += len >> SECTOR_SHIFT;
307	}
308
309	bio_endio(bio);
 
 
 
310}
311
312static int brd_rw_page(struct block_device *bdev, sector_t sector,
313		       struct page *page, enum req_op op)
 
314{
315	struct brd_device *brd = bdev->bd_disk->private_data;
316	int err;
 
 
 
 
 
 
 
 
 
 
 
 
317
318	if (PageTransHuge(page))
319		return -ENOTSUPP;
320	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
321	page_endio(page, op_is_write(op), err);
322	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323}
324
325static const struct block_device_operations brd_fops = {
326	.owner =		THIS_MODULE,
327	.submit_bio =		brd_submit_bio,
328	.rw_page =		brd_rw_page,
 
 
329};
330
331/*
332 * And now the modules code and kernel interface.
333 */
334static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
335module_param(rd_nr, int, 0444);
 
 
 
336MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
337
338unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
339module_param(rd_size, ulong, 0444);
340MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
341
342static int max_part = 1;
343module_param(max_part, int, 0444);
344MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
345
346MODULE_LICENSE("GPL");
347MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
348MODULE_ALIAS("rd");
349
350#ifndef MODULE
351/* Legacy boot options - nonmodular */
352static int __init ramdisk_size(char *str)
353{
354	rd_size = simple_strtol(str, NULL, 0);
355	return 1;
356}
357__setup("ramdisk_size=", ramdisk_size);
358#endif
359
360/*
361 * The device scheme is derived from loop.c. Keep them in synch where possible
362 * (should share code eventually).
363 */
364static LIST_HEAD(brd_devices);
365static struct dentry *brd_debugfs_dir;
366
367static int brd_alloc(int i)
368{
369	struct brd_device *brd;
370	struct gendisk *disk;
371	char buf[DISK_NAME_LEN];
372	int err = -ENOMEM;
373
374	list_for_each_entry(brd, &brd_devices, brd_list)
375		if (brd->brd_number == i)
376			return -EEXIST;
377	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
378	if (!brd)
379		return -ENOMEM;
380	brd->brd_number		= i;
381	list_add_tail(&brd->brd_list, &brd_devices);
382
383	spin_lock_init(&brd->brd_lock);
384	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
385
386	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
387	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
388		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
389				&brd->brd_nr_pages);
 
 
 
 
 
 
 
390
391	disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
392	if (!disk)
393		goto out_free_dev;
394
395	disk->major		= RAMDISK_MAJOR;
396	disk->first_minor	= i * max_part;
397	disk->minors		= max_part;
398	disk->fops		= &brd_fops;
399	disk->private_data	= brd;
400	strscpy(disk->disk_name, buf, DISK_NAME_LEN);
 
 
401	set_capacity(disk, rd_size * 2);
402	
403	/*
404	 * This is so fdisk will align partitions on 4k, because of
405	 * direct_access API needing 4k alignment, returning a PFN
406	 * (This is only a problem on very small devices <= 4M,
407	 *  otherwise fdisk will align on 1M. Regardless this call
408	 *  is harmless)
409	 */
410	blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
411
412	/* Tell the block layer that this is not a rotational device */
413	blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
414	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
415	err = add_disk(disk);
416	if (err)
417		goto out_cleanup_disk;
418
419	return 0;
420
421out_cleanup_disk:
422	put_disk(disk);
423out_free_dev:
424	list_del(&brd->brd_list);
425	kfree(brd);
426	return err;
 
427}
428
429static void brd_probe(dev_t dev)
430{
431	brd_alloc(MINOR(dev) / max_part);
 
 
 
432}
433
434static void brd_cleanup(void)
435{
436	struct brd_device *brd, *next;
437
438	debugfs_remove_recursive(brd_debugfs_dir);
 
 
 
439
440	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
441		del_gendisk(brd->brd_disk);
442		put_disk(brd->brd_disk);
443		brd_free_pages(brd);
444		list_del(&brd->brd_list);
445		kfree(brd);
446	}
 
 
447}
448
449static inline void brd_check_and_reset_par(void)
450{
451	if (unlikely(!max_part))
452		max_part = 1;
 
 
 
 
 
 
 
453
454	/*
455	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
456	 * otherwise, it is possiable to get same dev_t when adding partitions.
457	 */
458	if ((1U << MINORBITS) % max_part != 0)
459		max_part = 1UL << fls(max_part);
460
461	if (max_part > DISK_MAX_PARTS) {
462		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
463			DISK_MAX_PARTS, DISK_MAX_PARTS);
464		max_part = DISK_MAX_PARTS;
465	}
466}
467
468static int __init brd_init(void)
469{
470	int err, i;
471
472	brd_check_and_reset_par();
473
474	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
475
476	for (i = 0; i < rd_nr; i++) {
477		err = brd_alloc(i);
478		if (err)
479			goto out_free;
480	}
481
482	/*
483	 * brd module now has a feature to instantiate underlying device
484	 * structure on-demand, provided that there is an access dev node.
 
 
 
485	 *
486	 * (1) if rd_nr is specified, create that many upfront. else
487	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
488	 * (2) User can further extend brd devices by create dev node themselves
489	 *     and have kernel automatically instantiate actual device
490	 *     on-demand. Example:
491	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
492	 *		fdisk -l /path/devnod_name
493	 *	If (X / max_part) was not already created it will be created
494	 *	dynamically.
495	 */
496
497	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
498		err = -EIO;
499		goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500	}
501
502	pr_info("brd: module loaded\n");
 
 
 
 
 
 
 
 
503	return 0;
504
505out_free:
506	brd_cleanup();
 
 
 
 
507
508	pr_info("brd: module NOT loaded !!!\n");
509	return err;
510}
511
512static void __exit brd_exit(void)
513{
 
 
 
 
514
 
 
 
 
515	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
516	brd_cleanup();
517
518	pr_info("brd: module unloaded\n");
519}
520
521module_init(brd_init);
522module_exit(brd_exit);
523