Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Ram backed block device driver.
  3 *
  4 * Copyright (C) 2007 Nick Piggin
  5 * Copyright (C) 2007 Novell Inc.
  6 *
  7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8 * of their respective owners.
  9 */
 10
 11#include <linux/init.h>
 
 12#include <linux/module.h>
 13#include <linux/moduleparam.h>
 14#include <linux/major.h>
 15#include <linux/blkdev.h>
 16#include <linux/bio.h>
 17#include <linux/highmem.h>
 18#include <linux/mutex.h>
 19#include <linux/radix-tree.h>
 20#include <linux/buffer_head.h> /* invalidate_bh_lrus() */
 21#include <linux/slab.h>
 
 22
 23#include <asm/uaccess.h>
 24
 25#define SECTOR_SHIFT		9
 26#define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
 27#define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
 28
 29/*
 30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
 31 * the pages containing the block device's contents. A brd page's ->index is
 32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
 33 * with, the kernel's pagecache or buffer cache (which sit above our block
 34 * device).
 35 */
 36struct brd_device {
 37	int		brd_number;
 38
 39	struct request_queue	*brd_queue;
 40	struct gendisk		*brd_disk;
 41	struct list_head	brd_list;
 42
 43	/*
 44	 * Backing store of pages and lock to protect it. This is the contents
 45	 * of the block device.
 46	 */
 47	spinlock_t		brd_lock;
 48	struct radix_tree_root	brd_pages;
 49};
 50
 51/*
 52 * Look up and return a brd's page for a given sector.
 53 */
 54static DEFINE_MUTEX(brd_mutex);
 55static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
 56{
 57	pgoff_t idx;
 58	struct page *page;
 59
 60	/*
 61	 * The page lifetime is protected by the fact that we have opened the
 62	 * device node -- brd pages will never be deleted under us, so we
 63	 * don't need any further locking or refcounting.
 64	 *
 65	 * This is strictly true for the radix-tree nodes as well (ie. we
 66	 * don't actually need the rcu_read_lock()), however that is not a
 67	 * documented feature of the radix-tree API so it is better to be
 68	 * safe here (we don't have total exclusion from radix tree updates
 69	 * here, only deletes).
 70	 */
 71	rcu_read_lock();
 72	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
 73	page = radix_tree_lookup(&brd->brd_pages, idx);
 74	rcu_read_unlock();
 75
 76	BUG_ON(page && page->index != idx);
 77
 78	return page;
 79}
 80
 81/*
 82 * Look up and return a brd's page for a given sector.
 83 * If one does not exist, allocate an empty page, and insert that. Then
 84 * return it.
 85 */
 86static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
 87{
 88	pgoff_t idx;
 89	struct page *page;
 90	gfp_t gfp_flags;
 91
 92	page = brd_lookup_page(brd, sector);
 93	if (page)
 94		return page;
 95
 96	/*
 97	 * Must use NOIO because we don't want to recurse back into the
 98	 * block or filesystem layers from page reclaim.
 99	 *
100	 * Cannot support XIP and highmem, because our ->direct_access
101	 * routine for XIP must return memory that is always addressable.
102	 * If XIP was reworked to use pfns and kmap throughout, this
103	 * restriction might be able to be lifted.
104	 */
105	gfp_flags = GFP_NOIO | __GFP_ZERO;
106#ifndef CONFIG_BLK_DEV_XIP
107	gfp_flags |= __GFP_HIGHMEM;
108#endif
109	page = alloc_page(gfp_flags);
110	if (!page)
111		return NULL;
112
113	if (radix_tree_preload(GFP_NOIO)) {
114		__free_page(page);
115		return NULL;
116	}
117
118	spin_lock(&brd->brd_lock);
119	idx = sector >> PAGE_SECTORS_SHIFT;
 
120	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
121		__free_page(page);
122		page = radix_tree_lookup(&brd->brd_pages, idx);
123		BUG_ON(!page);
124		BUG_ON(page->index != idx);
125	} else
126		page->index = idx;
127	spin_unlock(&brd->brd_lock);
128
129	radix_tree_preload_end();
130
131	return page;
132}
133
134static void brd_free_page(struct brd_device *brd, sector_t sector)
135{
136	struct page *page;
137	pgoff_t idx;
138
139	spin_lock(&brd->brd_lock);
140	idx = sector >> PAGE_SECTORS_SHIFT;
141	page = radix_tree_delete(&brd->brd_pages, idx);
142	spin_unlock(&brd->brd_lock);
143	if (page)
144		__free_page(page);
145}
146
147static void brd_zero_page(struct brd_device *brd, sector_t sector)
148{
149	struct page *page;
150
151	page = brd_lookup_page(brd, sector);
152	if (page)
153		clear_highpage(page);
154}
155
156/*
157 * Free all backing store pages and radix tree. This must only be called when
158 * there are no other users of the device.
159 */
160#define FREE_BATCH 16
161static void brd_free_pages(struct brd_device *brd)
162{
163	unsigned long pos = 0;
164	struct page *pages[FREE_BATCH];
165	int nr_pages;
166
167	do {
168		int i;
169
170		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171				(void **)pages, pos, FREE_BATCH);
172
173		for (i = 0; i < nr_pages; i++) {
174			void *ret;
175
176			BUG_ON(pages[i]->index < pos);
177			pos = pages[i]->index;
178			ret = radix_tree_delete(&brd->brd_pages, pos);
179			BUG_ON(!ret || ret != pages[i]);
180			__free_page(pages[i]);
181		}
182
183		pos++;
184
185		/*
186		 * This assumes radix_tree_gang_lookup always returns as
187		 * many pages as possible. If the radix-tree code changes,
188		 * so will this have to.
189		 */
190	} while (nr_pages == FREE_BATCH);
191}
192
193/*
194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
195 */
196static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
197{
198	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199	size_t copy;
200
201	copy = min_t(size_t, n, PAGE_SIZE - offset);
202	if (!brd_insert_page(brd, sector))
203		return -ENOMEM;
204	if (copy < n) {
205		sector += copy >> SECTOR_SHIFT;
206		if (!brd_insert_page(brd, sector))
207			return -ENOMEM;
208	}
209	return 0;
210}
211
212static void discard_from_brd(struct brd_device *brd,
213			sector_t sector, size_t n)
214{
215	while (n >= PAGE_SIZE) {
216		/*
217		 * Don't want to actually discard pages here because
218		 * re-allocating the pages can result in writeback
219		 * deadlocks under heavy load.
220		 */
221		if (0)
222			brd_free_page(brd, sector);
223		else
224			brd_zero_page(brd, sector);
225		sector += PAGE_SIZE >> SECTOR_SHIFT;
226		n -= PAGE_SIZE;
227	}
228}
229
230/*
231 * Copy n bytes from src to the brd starting at sector. Does not sleep.
232 */
233static void copy_to_brd(struct brd_device *brd, const void *src,
234			sector_t sector, size_t n)
235{
236	struct page *page;
237	void *dst;
238	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239	size_t copy;
240
241	copy = min_t(size_t, n, PAGE_SIZE - offset);
242	page = brd_lookup_page(brd, sector);
243	BUG_ON(!page);
244
245	dst = kmap_atomic(page, KM_USER1);
246	memcpy(dst + offset, src, copy);
247	kunmap_atomic(dst, KM_USER1);
248
249	if (copy < n) {
250		src += copy;
251		sector += copy >> SECTOR_SHIFT;
252		copy = n - copy;
253		page = brd_lookup_page(brd, sector);
254		BUG_ON(!page);
255
256		dst = kmap_atomic(page, KM_USER1);
257		memcpy(dst, src, copy);
258		kunmap_atomic(dst, KM_USER1);
259	}
260}
261
262/*
263 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
264 */
265static void copy_from_brd(void *dst, struct brd_device *brd,
266			sector_t sector, size_t n)
267{
268	struct page *page;
269	void *src;
270	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271	size_t copy;
272
273	copy = min_t(size_t, n, PAGE_SIZE - offset);
274	page = brd_lookup_page(brd, sector);
275	if (page) {
276		src = kmap_atomic(page, KM_USER1);
277		memcpy(dst, src + offset, copy);
278		kunmap_atomic(src, KM_USER1);
279	} else
280		memset(dst, 0, copy);
281
282	if (copy < n) {
283		dst += copy;
284		sector += copy >> SECTOR_SHIFT;
285		copy = n - copy;
286		page = brd_lookup_page(brd, sector);
287		if (page) {
288			src = kmap_atomic(page, KM_USER1);
289			memcpy(dst, src, copy);
290			kunmap_atomic(src, KM_USER1);
291		} else
292			memset(dst, 0, copy);
293	}
294}
295
296/*
297 * Process a single bvec of a bio.
298 */
299static int brd_do_bvec(struct brd_device *brd, struct page *page,
300			unsigned int len, unsigned int off, int rw,
301			sector_t sector)
302{
303	void *mem;
304	int err = 0;
305
306	if (rw != READ) {
307		err = copy_to_brd_setup(brd, sector, len);
308		if (err)
309			goto out;
310	}
311
312	mem = kmap_atomic(page, KM_USER0);
313	if (rw == READ) {
314		copy_from_brd(mem + off, brd, sector, len);
315		flush_dcache_page(page);
316	} else {
317		flush_dcache_page(page);
318		copy_to_brd(brd, mem + off, sector, len);
319	}
320	kunmap_atomic(mem, KM_USER0);
321
322out:
323	return err;
324}
325
326static int brd_make_request(struct request_queue *q, struct bio *bio)
327{
328	struct block_device *bdev = bio->bi_bdev;
329	struct brd_device *brd = bdev->bd_disk->private_data;
330	int rw;
331	struct bio_vec *bvec;
332	sector_t sector;
333	int i;
334	int err = -EIO;
335
336	sector = bio->bi_sector;
337	if (sector + (bio->bi_size >> SECTOR_SHIFT) >
338						get_capacity(bdev->bd_disk))
339		goto out;
 
 
 
340
341	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
342		err = 0;
343		discard_from_brd(brd, sector, bio->bi_size);
344		goto out;
345	}
346
347	rw = bio_rw(bio);
348	if (rw == READA)
349		rw = READ;
350
351	bio_for_each_segment(bvec, bio, i) {
352		unsigned int len = bvec->bv_len;
353		err = brd_do_bvec(brd, bvec->bv_page, len,
354					bvec->bv_offset, rw, sector);
355		if (err)
356			break;
357		sector += len >> SECTOR_SHIFT;
358	}
359
360out:
361	bio_endio(bio, err);
362
363	return 0;
364}
365
366#ifdef CONFIG_BLK_DEV_XIP
367static int brd_direct_access(struct block_device *bdev, sector_t sector,
368			void **kaddr, unsigned long *pfn)
369{
370	struct brd_device *brd = bdev->bd_disk->private_data;
371	struct page *page;
372
373	if (!brd)
374		return -ENODEV;
375	if (sector & (PAGE_SECTORS-1))
376		return -EINVAL;
377	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
378		return -ERANGE;
379	page = brd_insert_page(brd, sector);
380	if (!page)
381		return -ENOMEM;
382	*kaddr = page_address(page);
383	*pfn = page_to_pfn(page);
384
385	return 0;
386}
387#endif
388
389static int brd_ioctl(struct block_device *bdev, fmode_t mode,
390			unsigned int cmd, unsigned long arg)
391{
392	int error;
393	struct brd_device *brd = bdev->bd_disk->private_data;
 
394
395	if (cmd != BLKFLSBUF)
396		return -ENOTTY;
397
398	/*
399	 * ram device BLKFLSBUF has special semantics, we want to actually
400	 * release and destroy the ramdisk data.
401	 */
402	mutex_lock(&brd_mutex);
403	mutex_lock(&bdev->bd_mutex);
404	error = -EBUSY;
405	if (bdev->bd_openers <= 1) {
406		/*
407		 * Invalidate the cache first, so it isn't written
408		 * back to the device.
409		 *
410		 * Another thread might instantiate more buffercache here,
411		 * but there is not much we can do to close that race.
412		 */
413		invalidate_bh_lrus();
414		truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
415		brd_free_pages(brd);
416		error = 0;
417	}
418	mutex_unlock(&bdev->bd_mutex);
419	mutex_unlock(&brd_mutex);
420
421	return error;
422}
423
424static const struct block_device_operations brd_fops = {
425	.owner =		THIS_MODULE,
426	.ioctl =		brd_ioctl,
427#ifdef CONFIG_BLK_DEV_XIP
428	.direct_access =	brd_direct_access,
429#endif
430};
431
432/*
433 * And now the modules code and kernel interface.
434 */
435static int rd_nr;
436int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
437static int max_part;
438static int part_shift;
439module_param(rd_nr, int, S_IRUGO);
440MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
441module_param(rd_size, int, S_IRUGO);
 
 
442MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
 
 
443module_param(max_part, int, S_IRUGO);
444MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
 
445MODULE_LICENSE("GPL");
446MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
447MODULE_ALIAS("rd");
448
449#ifndef MODULE
450/* Legacy boot options - nonmodular */
451static int __init ramdisk_size(char *str)
452{
453	rd_size = simple_strtol(str, NULL, 0);
454	return 1;
455}
456__setup("ramdisk_size=", ramdisk_size);
457#endif
458
459/*
460 * The device scheme is derived from loop.c. Keep them in synch where possible
461 * (should share code eventually).
462 */
463static LIST_HEAD(brd_devices);
464static DEFINE_MUTEX(brd_devices_mutex);
465
466static struct brd_device *brd_alloc(int i)
467{
468	struct brd_device *brd;
469	struct gendisk *disk;
470
471	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
472	if (!brd)
473		goto out;
474	brd->brd_number		= i;
475	spin_lock_init(&brd->brd_lock);
476	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
477
478	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
479	if (!brd->brd_queue)
480		goto out_free_dev;
 
481	blk_queue_make_request(brd->brd_queue, brd_make_request);
482	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
483	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
484
485	brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
486	brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
487	brd->brd_queue->limits.discard_zeroes_data = 1;
488	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
489
490	disk = brd->brd_disk = alloc_disk(1 << part_shift);
 
 
 
 
 
 
 
491	if (!disk)
492		goto out_free_queue;
493	disk->major		= RAMDISK_MAJOR;
494	disk->first_minor	= i << part_shift;
495	disk->fops		= &brd_fops;
496	disk->private_data	= brd;
497	disk->queue		= brd->brd_queue;
498	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
499	sprintf(disk->disk_name, "ram%d", i);
500	set_capacity(disk, rd_size * 2);
 
501
502	return brd;
503
504out_free_queue:
505	blk_cleanup_queue(brd->brd_queue);
506out_free_dev:
507	kfree(brd);
508out:
509	return NULL;
510}
511
512static void brd_free(struct brd_device *brd)
513{
514	put_disk(brd->brd_disk);
515	blk_cleanup_queue(brd->brd_queue);
516	brd_free_pages(brd);
517	kfree(brd);
518}
519
520static struct brd_device *brd_init_one(int i)
521{
522	struct brd_device *brd;
523
 
524	list_for_each_entry(brd, &brd_devices, brd_list) {
525		if (brd->brd_number == i)
526			goto out;
527	}
528
529	brd = brd_alloc(i);
530	if (brd) {
531		add_disk(brd->brd_disk);
532		list_add_tail(&brd->brd_list, &brd_devices);
533	}
 
534out:
535	return brd;
536}
537
538static void brd_del_one(struct brd_device *brd)
539{
540	list_del(&brd->brd_list);
541	del_gendisk(brd->brd_disk);
542	brd_free(brd);
543}
544
545static struct kobject *brd_probe(dev_t dev, int *part, void *data)
546{
547	struct brd_device *brd;
548	struct kobject *kobj;
 
549
550	mutex_lock(&brd_devices_mutex);
551	brd = brd_init_one(MINOR(dev) >> part_shift);
552	kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
553	mutex_unlock(&brd_devices_mutex);
554
555	*part = 0;
 
 
556	return kobj;
557}
558
559static int __init brd_init(void)
560{
561	int i, nr;
562	unsigned long range;
563	struct brd_device *brd, *next;
 
564
565	/*
566	 * brd module now has a feature to instantiate underlying device
567	 * structure on-demand, provided that there is an access dev node.
568	 * However, this will not work well with user space tool that doesn't
569	 * know about such "feature".  In order to not break any existing
570	 * tool, we do the following:
571	 *
572	 * (1) if rd_nr is specified, create that many upfront, and this
573	 *     also becomes a hard limit.
574	 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
575	 *     (default 16) rd device on module load, user can further
576	 *     extend brd device by create dev node themselves and have
577	 *     kernel automatically instantiate actual device on-demand.
 
 
 
578	 */
579
580	part_shift = 0;
581	if (max_part > 0) {
582		part_shift = fls(max_part);
583
584		/*
585		 * Adjust max_part according to part_shift as it is exported
586		 * to user space so that user can decide correct minor number
587		 * if [s]he want to create more devices.
588		 *
589		 * Note that -1 is required because partition 0 is reserved
590		 * for the whole disk.
591		 */
592		max_part = (1UL << part_shift) - 1;
593	}
594
595	if ((1UL << part_shift) > DISK_MAX_PARTS)
596		return -EINVAL;
597
598	if (rd_nr > 1UL << (MINORBITS - part_shift))
599		return -EINVAL;
600
601	if (rd_nr) {
602		nr = rd_nr;
603		range = rd_nr << part_shift;
604	} else {
605		nr = CONFIG_BLK_DEV_RAM_COUNT;
606		range = 1UL << MINORBITS;
607	}
608
609	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
610		return -EIO;
611
612	for (i = 0; i < nr; i++) {
 
 
 
613		brd = brd_alloc(i);
614		if (!brd)
615			goto out_free;
616		list_add_tail(&brd->brd_list, &brd_devices);
617	}
618
619	/* point of no return */
620
621	list_for_each_entry(brd, &brd_devices, brd_list)
622		add_disk(brd->brd_disk);
623
624	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
625				  THIS_MODULE, brd_probe, NULL, NULL);
626
627	printk(KERN_INFO "brd: module loaded\n");
628	return 0;
629
630out_free:
631	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
632		list_del(&brd->brd_list);
633		brd_free(brd);
634	}
635	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
636
 
637	return -ENOMEM;
638}
639
640static void __exit brd_exit(void)
641{
642	unsigned long range;
643	struct brd_device *brd, *next;
644
645	range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
646
647	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
648		brd_del_one(brd);
649
650	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
651	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 
 
652}
653
654module_init(brd_init);
655module_exit(brd_exit);
656
v4.17
  1/*
  2 * Ram backed block device driver.
  3 *
  4 * Copyright (C) 2007 Nick Piggin
  5 * Copyright (C) 2007 Novell Inc.
  6 *
  7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8 * of their respective owners.
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/initrd.h>
 13#include <linux/module.h>
 14#include <linux/moduleparam.h>
 15#include <linux/major.h>
 16#include <linux/blkdev.h>
 17#include <linux/bio.h>
 18#include <linux/highmem.h>
 19#include <linux/mutex.h>
 20#include <linux/radix-tree.h>
 21#include <linux/fs.h>
 22#include <linux/slab.h>
 23#include <linux/backing-dev.h>
 24
 25#include <linux/uaccess.h>
 26
 
 27#define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
 28#define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
 29
 30/*
 31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
 32 * the pages containing the block device's contents. A brd page's ->index is
 33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
 34 * with, the kernel's pagecache or buffer cache (which sit above our block
 35 * device).
 36 */
 37struct brd_device {
 38	int		brd_number;
 39
 40	struct request_queue	*brd_queue;
 41	struct gendisk		*brd_disk;
 42	struct list_head	brd_list;
 43
 44	/*
 45	 * Backing store of pages and lock to protect it. This is the contents
 46	 * of the block device.
 47	 */
 48	spinlock_t		brd_lock;
 49	struct radix_tree_root	brd_pages;
 50};
 51
 52/*
 53 * Look up and return a brd's page for a given sector.
 54 */
 
 55static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
 56{
 57	pgoff_t idx;
 58	struct page *page;
 59
 60	/*
 61	 * The page lifetime is protected by the fact that we have opened the
 62	 * device node -- brd pages will never be deleted under us, so we
 63	 * don't need any further locking or refcounting.
 64	 *
 65	 * This is strictly true for the radix-tree nodes as well (ie. we
 66	 * don't actually need the rcu_read_lock()), however that is not a
 67	 * documented feature of the radix-tree API so it is better to be
 68	 * safe here (we don't have total exclusion from radix tree updates
 69	 * here, only deletes).
 70	 */
 71	rcu_read_lock();
 72	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
 73	page = radix_tree_lookup(&brd->brd_pages, idx);
 74	rcu_read_unlock();
 75
 76	BUG_ON(page && page->index != idx);
 77
 78	return page;
 79}
 80
 81/*
 82 * Look up and return a brd's page for a given sector.
 83 * If one does not exist, allocate an empty page, and insert that. Then
 84 * return it.
 85 */
 86static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
 87{
 88	pgoff_t idx;
 89	struct page *page;
 90	gfp_t gfp_flags;
 91
 92	page = brd_lookup_page(brd, sector);
 93	if (page)
 94		return page;
 95
 96	/*
 97	 * Must use NOIO because we don't want to recurse back into the
 98	 * block or filesystem layers from page reclaim.
 99	 *
100	 * Cannot support DAX and highmem, because our ->direct_access
101	 * routine for DAX must return memory that is always addressable.
102	 * If DAX was reworked to use pfns and kmap throughout, this
103	 * restriction might be able to be lifted.
104	 */
105	gfp_flags = GFP_NOIO | __GFP_ZERO;
 
 
 
106	page = alloc_page(gfp_flags);
107	if (!page)
108		return NULL;
109
110	if (radix_tree_preload(GFP_NOIO)) {
111		__free_page(page);
112		return NULL;
113	}
114
115	spin_lock(&brd->brd_lock);
116	idx = sector >> PAGE_SECTORS_SHIFT;
117	page->index = idx;
118	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
119		__free_page(page);
120		page = radix_tree_lookup(&brd->brd_pages, idx);
121		BUG_ON(!page);
122		BUG_ON(page->index != idx);
123	}
 
124	spin_unlock(&brd->brd_lock);
125
126	radix_tree_preload_end();
127
128	return page;
129}
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131/*
132 * Free all backing store pages and radix tree. This must only be called when
133 * there are no other users of the device.
134 */
135#define FREE_BATCH 16
136static void brd_free_pages(struct brd_device *brd)
137{
138	unsigned long pos = 0;
139	struct page *pages[FREE_BATCH];
140	int nr_pages;
141
142	do {
143		int i;
144
145		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
146				(void **)pages, pos, FREE_BATCH);
147
148		for (i = 0; i < nr_pages; i++) {
149			void *ret;
150
151			BUG_ON(pages[i]->index < pos);
152			pos = pages[i]->index;
153			ret = radix_tree_delete(&brd->brd_pages, pos);
154			BUG_ON(!ret || ret != pages[i]);
155			__free_page(pages[i]);
156		}
157
158		pos++;
159
160		/*
161		 * This assumes radix_tree_gang_lookup always returns as
162		 * many pages as possible. If the radix-tree code changes,
163		 * so will this have to.
164		 */
165	} while (nr_pages == FREE_BATCH);
166}
167
168/*
169 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
170 */
171static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
172{
173	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
174	size_t copy;
175
176	copy = min_t(size_t, n, PAGE_SIZE - offset);
177	if (!brd_insert_page(brd, sector))
178		return -ENOSPC;
179	if (copy < n) {
180		sector += copy >> SECTOR_SHIFT;
181		if (!brd_insert_page(brd, sector))
182			return -ENOSPC;
183	}
184	return 0;
185}
186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187/*
188 * Copy n bytes from src to the brd starting at sector. Does not sleep.
189 */
190static void copy_to_brd(struct brd_device *brd, const void *src,
191			sector_t sector, size_t n)
192{
193	struct page *page;
194	void *dst;
195	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
196	size_t copy;
197
198	copy = min_t(size_t, n, PAGE_SIZE - offset);
199	page = brd_lookup_page(brd, sector);
200	BUG_ON(!page);
201
202	dst = kmap_atomic(page);
203	memcpy(dst + offset, src, copy);
204	kunmap_atomic(dst);
205
206	if (copy < n) {
207		src += copy;
208		sector += copy >> SECTOR_SHIFT;
209		copy = n - copy;
210		page = brd_lookup_page(brd, sector);
211		BUG_ON(!page);
212
213		dst = kmap_atomic(page);
214		memcpy(dst, src, copy);
215		kunmap_atomic(dst);
216	}
217}
218
219/*
220 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
221 */
222static void copy_from_brd(void *dst, struct brd_device *brd,
223			sector_t sector, size_t n)
224{
225	struct page *page;
226	void *src;
227	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
228	size_t copy;
229
230	copy = min_t(size_t, n, PAGE_SIZE - offset);
231	page = brd_lookup_page(brd, sector);
232	if (page) {
233		src = kmap_atomic(page);
234		memcpy(dst, src + offset, copy);
235		kunmap_atomic(src);
236	} else
237		memset(dst, 0, copy);
238
239	if (copy < n) {
240		dst += copy;
241		sector += copy >> SECTOR_SHIFT;
242		copy = n - copy;
243		page = brd_lookup_page(brd, sector);
244		if (page) {
245			src = kmap_atomic(page);
246			memcpy(dst, src, copy);
247			kunmap_atomic(src);
248		} else
249			memset(dst, 0, copy);
250	}
251}
252
253/*
254 * Process a single bvec of a bio.
255 */
256static int brd_do_bvec(struct brd_device *brd, struct page *page,
257			unsigned int len, unsigned int off, bool is_write,
258			sector_t sector)
259{
260	void *mem;
261	int err = 0;
262
263	if (is_write) {
264		err = copy_to_brd_setup(brd, sector, len);
265		if (err)
266			goto out;
267	}
268
269	mem = kmap_atomic(page);
270	if (!is_write) {
271		copy_from_brd(mem + off, brd, sector, len);
272		flush_dcache_page(page);
273	} else {
274		flush_dcache_page(page);
275		copy_to_brd(brd, mem + off, sector, len);
276	}
277	kunmap_atomic(mem);
278
279out:
280	return err;
281}
282
283static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
284{
285	struct brd_device *brd = bio->bi_disk->private_data;
286	struct bio_vec bvec;
 
 
287	sector_t sector;
288	struct bvec_iter iter;
 
289
290	sector = bio->bi_iter.bi_sector;
291	if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
292		goto io_error;
293
294	bio_for_each_segment(bvec, bio, iter) {
295		unsigned int len = bvec.bv_len;
296		int err;
297
298		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
299					op_is_write(bio_op(bio)), sector);
 
 
 
 
 
 
 
 
 
 
 
 
300		if (err)
301			goto io_error;
302		sector += len >> SECTOR_SHIFT;
303	}
304
305	bio_endio(bio);
306	return BLK_QC_T_NONE;
307io_error:
308	bio_io_error(bio);
309	return BLK_QC_T_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310}
 
311
312static int brd_rw_page(struct block_device *bdev, sector_t sector,
313		       struct page *page, bool is_write)
314{
 
315	struct brd_device *brd = bdev->bd_disk->private_data;
316	int err;
317
318	if (PageTransHuge(page))
319		return -ENOTSUPP;
320	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
321	page_endio(page, is_write, err);
322	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323}
324
325static const struct block_device_operations brd_fops = {
326	.owner =		THIS_MODULE,
327	.rw_page =		brd_rw_page,
 
 
 
328};
329
330/*
331 * And now the modules code and kernel interface.
332 */
333static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
 
 
 
334module_param(rd_nr, int, S_IRUGO);
335MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
336
337unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
338module_param(rd_size, ulong, S_IRUGO);
339MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
340
341static int max_part = 1;
342module_param(max_part, int, S_IRUGO);
343MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
344
345MODULE_LICENSE("GPL");
346MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
347MODULE_ALIAS("rd");
348
349#ifndef MODULE
350/* Legacy boot options - nonmodular */
351static int __init ramdisk_size(char *str)
352{
353	rd_size = simple_strtol(str, NULL, 0);
354	return 1;
355}
356__setup("ramdisk_size=", ramdisk_size);
357#endif
358
359/*
360 * The device scheme is derived from loop.c. Keep them in synch where possible
361 * (should share code eventually).
362 */
363static LIST_HEAD(brd_devices);
364static DEFINE_MUTEX(brd_devices_mutex);
365
366static struct brd_device *brd_alloc(int i)
367{
368	struct brd_device *brd;
369	struct gendisk *disk;
370
371	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
372	if (!brd)
373		goto out;
374	brd->brd_number		= i;
375	spin_lock_init(&brd->brd_lock);
376	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
377
378	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
379	if (!brd->brd_queue)
380		goto out_free_dev;
381
382	blk_queue_make_request(brd->brd_queue, brd_make_request);
383	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
 
 
 
 
 
 
384
385	/* This is so fdisk will align partitions on 4k, because of
386	 * direct_access API needing 4k alignment, returning a PFN
387	 * (This is only a problem on very small devices <= 4M,
388	 *  otherwise fdisk will align on 1M. Regardless this call
389	 *  is harmless)
390	 */
391	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
392	disk = brd->brd_disk = alloc_disk(max_part);
393	if (!disk)
394		goto out_free_queue;
395	disk->major		= RAMDISK_MAJOR;
396	disk->first_minor	= i * max_part;
397	disk->fops		= &brd_fops;
398	disk->private_data	= brd;
399	disk->queue		= brd->brd_queue;
400	disk->flags		= GENHD_FL_EXT_DEVT;
401	sprintf(disk->disk_name, "ram%d", i);
402	set_capacity(disk, rd_size * 2);
403	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
404
405	return brd;
406
407out_free_queue:
408	blk_cleanup_queue(brd->brd_queue);
409out_free_dev:
410	kfree(brd);
411out:
412	return NULL;
413}
414
415static void brd_free(struct brd_device *brd)
416{
417	put_disk(brd->brd_disk);
418	blk_cleanup_queue(brd->brd_queue);
419	brd_free_pages(brd);
420	kfree(brd);
421}
422
423static struct brd_device *brd_init_one(int i, bool *new)
424{
425	struct brd_device *brd;
426
427	*new = false;
428	list_for_each_entry(brd, &brd_devices, brd_list) {
429		if (brd->brd_number == i)
430			goto out;
431	}
432
433	brd = brd_alloc(i);
434	if (brd) {
435		add_disk(brd->brd_disk);
436		list_add_tail(&brd->brd_list, &brd_devices);
437	}
438	*new = true;
439out:
440	return brd;
441}
442
443static void brd_del_one(struct brd_device *brd)
444{
445	list_del(&brd->brd_list);
446	del_gendisk(brd->brd_disk);
447	brd_free(brd);
448}
449
450static struct kobject *brd_probe(dev_t dev, int *part, void *data)
451{
452	struct brd_device *brd;
453	struct kobject *kobj;
454	bool new;
455
456	mutex_lock(&brd_devices_mutex);
457	brd = brd_init_one(MINOR(dev) / max_part, &new);
458	kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
459	mutex_unlock(&brd_devices_mutex);
460
461	if (new)
462		*part = 0;
463
464	return kobj;
465}
466
467static int __init brd_init(void)
468{
 
 
469	struct brd_device *brd, *next;
470	int i;
471
472	/*
473	 * brd module now has a feature to instantiate underlying device
474	 * structure on-demand, provided that there is an access dev node.
 
 
 
475	 *
476	 * (1) if rd_nr is specified, create that many upfront. else
477	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
478	 * (2) User can further extend brd devices by create dev node themselves
479	 *     and have kernel automatically instantiate actual device
480	 *     on-demand. Example:
481	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
482	 *		fdisk -l /path/devnod_name
483	 *	If (X / max_part) was not already created it will be created
484	 *	dynamically.
485	 */
486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
488		return -EIO;
489
490	if (unlikely(!max_part))
491		max_part = 1;
492
493	for (i = 0; i < rd_nr; i++) {
494		brd = brd_alloc(i);
495		if (!brd)
496			goto out_free;
497		list_add_tail(&brd->brd_list, &brd_devices);
498	}
499
500	/* point of no return */
501
502	list_for_each_entry(brd, &brd_devices, brd_list)
503		add_disk(brd->brd_disk);
504
505	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
506				  THIS_MODULE, brd_probe, NULL, NULL);
507
508	pr_info("brd: module loaded\n");
509	return 0;
510
511out_free:
512	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
513		list_del(&brd->brd_list);
514		brd_free(brd);
515	}
516	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
517
518	pr_info("brd: module NOT loaded !!!\n");
519	return -ENOMEM;
520}
521
522static void __exit brd_exit(void)
523{
 
524	struct brd_device *brd, *next;
525
 
 
526	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
527		brd_del_one(brd);
528
529	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
530	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
531
532	pr_info("brd: module unloaded\n");
533}
534
535module_init(brd_init);
536module_exit(brd_exit);
537