Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v3.1
 
  1/*
  2 * SMP boot-related support
  3 *
  4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  5 *	David Mosberger-Tang <davidm@hpl.hp.com>
  6 * Copyright (C) 2001, 2004-2005 Intel Corp
  7 * 	Rohit Seth <rohit.seth@intel.com>
  8 * 	Suresh Siddha <suresh.b.siddha@intel.com>
  9 * 	Gordon Jin <gordon.jin@intel.com>
 10 *	Ashok Raj  <ashok.raj@intel.com>
 11 *
 12 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 13 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 14 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 15 *						smp_boot_cpus()/smp_commence() is replaced by
 16 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 17 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 20 *						Add multi-threading and multi-core detection
 21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 22 *						Setup cpu_sibling_map and cpu_core_map
 23 */
 24
 25#include <linux/module.h>
 26#include <linux/acpi.h>
 27#include <linux/bootmem.h>
 28#include <linux/cpu.h>
 29#include <linux/delay.h>
 30#include <linux/init.h>
 31#include <linux/interrupt.h>
 32#include <linux/irq.h>
 33#include <linux/kernel.h>
 34#include <linux/kernel_stat.h>
 35#include <linux/mm.h>
 36#include <linux/notifier.h>
 37#include <linux/smp.h>
 38#include <linux/spinlock.h>
 39#include <linux/efi.h>
 40#include <linux/percpu.h>
 41#include <linux/bitops.h>
 42
 43#include <linux/atomic.h>
 44#include <asm/cache.h>
 45#include <asm/current.h>
 46#include <asm/delay.h>
 
 47#include <asm/io.h>
 48#include <asm/irq.h>
 49#include <asm/machvec.h>
 50#include <asm/mca.h>
 51#include <asm/page.h>
 52#include <asm/paravirt.h>
 53#include <asm/pgalloc.h>
 54#include <asm/pgtable.h>
 55#include <asm/processor.h>
 56#include <asm/ptrace.h>
 57#include <asm/sal.h>
 58#include <asm/system.h>
 59#include <asm/tlbflush.h>
 60#include <asm/unistd.h>
 61#include <asm/sn/arch.h>
 62
 63#define SMP_DEBUG 0
 64
 65#if SMP_DEBUG
 66#define Dprintk(x...)  printk(x)
 67#else
 68#define Dprintk(x...)
 69#endif
 70
 71#ifdef CONFIG_HOTPLUG_CPU
 72#ifdef CONFIG_PERMIT_BSP_REMOVE
 73#define bsp_remove_ok	1
 74#else
 75#define bsp_remove_ok	0
 76#endif
 77
 78/*
 79 * Store all idle threads, this can be reused instead of creating
 80 * a new thread. Also avoids complicated thread destroy functionality
 81 * for idle threads.
 82 */
 83struct task_struct *idle_thread_array[NR_CPUS];
 84
 85/*
 86 * Global array allocated for NR_CPUS at boot time
 87 */
 88struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 89
 90/*
 91 * start_ap in head.S uses this to store current booting cpu
 92 * info.
 93 */
 94struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 95
 96#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 97
 98#define get_idle_for_cpu(x)		(idle_thread_array[(x)])
 99#define set_idle_for_cpu(x,p)	(idle_thread_array[(x)] = (p))
100
101#else
102
103#define get_idle_for_cpu(x)		(NULL)
104#define set_idle_for_cpu(x,p)
105#define set_brendez_area(x)
106#endif
107
108
109/*
110 * ITC synchronization related stuff:
111 */
112#define MASTER	(0)
113#define SLAVE	(SMP_CACHE_BYTES/8)
114
115#define NUM_ROUNDS	64	/* magic value */
116#define NUM_ITERS	5	/* likewise */
117
118static DEFINE_SPINLOCK(itc_sync_lock);
119static volatile unsigned long go[SLAVE + 1];
120
121#define DEBUG_ITC_SYNC	0
122
123extern void start_ap (void);
124extern unsigned long ia64_iobase;
125
126struct task_struct *task_for_booting_cpu;
127
128/*
129 * State for each CPU
130 */
131DEFINE_PER_CPU(int, cpu_state);
132
133cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
134EXPORT_SYMBOL(cpu_core_map);
135DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
136EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
137
138int smp_num_siblings = 1;
139
140/* which logical CPU number maps to which CPU (physical APIC ID) */
141volatile int ia64_cpu_to_sapicid[NR_CPUS];
142EXPORT_SYMBOL(ia64_cpu_to_sapicid);
143
144static volatile cpumask_t cpu_callin_map;
145
146struct smp_boot_data smp_boot_data __initdata;
147
148unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
149
150char __initdata no_int_routing;
151
152unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
153
154#ifdef CONFIG_FORCE_CPEI_RETARGET
155#define CPEI_OVERRIDE_DEFAULT	(1)
156#else
157#define CPEI_OVERRIDE_DEFAULT	(0)
158#endif
159
160unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
161
162static int __init
163cmdl_force_cpei(char *str)
164{
165	int value=0;
166
167	get_option (&str, &value);
168	force_cpei_retarget = value;
169
170	return 1;
171}
172
173__setup("force_cpei=", cmdl_force_cpei);
174
175static int __init
176nointroute (char *str)
177{
178	no_int_routing = 1;
179	printk ("no_int_routing on\n");
180	return 1;
181}
182
183__setup("nointroute", nointroute);
184
185static void fix_b0_for_bsp(void)
186{
187#ifdef CONFIG_HOTPLUG_CPU
188	int cpuid;
189	static int fix_bsp_b0 = 1;
190
191	cpuid = smp_processor_id();
192
193	/*
194	 * Cache the b0 value on the first AP that comes up
195	 */
196	if (!(fix_bsp_b0 && cpuid))
197		return;
198
199	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
200	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
201
202	fix_bsp_b0 = 0;
203#endif
204}
205
206void
207sync_master (void *arg)
208{
209	unsigned long flags, i;
210
211	go[MASTER] = 0;
212
213	local_irq_save(flags);
214	{
215		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
216			while (!go[MASTER])
217				cpu_relax();
218			go[MASTER] = 0;
219			go[SLAVE] = ia64_get_itc();
220		}
221	}
222	local_irq_restore(flags);
223}
224
225/*
226 * Return the number of cycles by which our itc differs from the itc on the master
227 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
228 * negative that it is behind.
229 */
230static inline long
231get_delta (long *rt, long *master)
232{
233	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
234	unsigned long tcenter, t0, t1, tm;
235	long i;
236
237	for (i = 0; i < NUM_ITERS; ++i) {
238		t0 = ia64_get_itc();
239		go[MASTER] = 1;
240		while (!(tm = go[SLAVE]))
241			cpu_relax();
242		go[SLAVE] = 0;
243		t1 = ia64_get_itc();
244
245		if (t1 - t0 < best_t1 - best_t0)
246			best_t0 = t0, best_t1 = t1, best_tm = tm;
247	}
248
249	*rt = best_t1 - best_t0;
250	*master = best_tm - best_t0;
251
252	/* average best_t0 and best_t1 without overflow: */
253	tcenter = (best_t0/2 + best_t1/2);
254	if (best_t0 % 2 + best_t1 % 2 == 2)
255		++tcenter;
256	return tcenter - best_tm;
257}
258
259/*
260 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
261 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
262 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
263 * step).  The basic idea is for the slave to ask the master what itc value it has and to
264 * read its own itc before and after the master responds.  Each iteration gives us three
265 * timestamps:
266 *
267 *	slave		master
268 *
269 *	t0 ---\
270 *             ---\
271 *		   --->
272 *			tm
273 *		   /---
274 *	       /---
275 *	t1 <---
276 *
277 *
278 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
279 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
280 * between the slave and the master is symmetric.  Even if the interconnect were
281 * asymmetric, we would still know that the synchronization error is smaller than the
282 * roundtrip latency (t0 - t1).
283 *
284 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
285 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
286 * accurate to within a round-trip time, which is typically in the range of several
287 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
288 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
289 * than half a micro second or so.
290 */
291void
292ia64_sync_itc (unsigned int master)
293{
294	long i, delta, adj, adjust_latency = 0, done = 0;
295	unsigned long flags, rt, master_time_stamp, bound;
296#if DEBUG_ITC_SYNC
297	struct {
298		long rt;	/* roundtrip time */
299		long master;	/* master's timestamp */
300		long diff;	/* difference between midpoint and master's timestamp */
301		long lat;	/* estimate of itc adjustment latency */
302	} t[NUM_ROUNDS];
303#endif
304
305	/*
306	 * Make sure local timer ticks are disabled while we sync.  If
307	 * they were enabled, we'd have to worry about nasty issues
308	 * like setting the ITC ahead of (or a long time before) the
309	 * next scheduled tick.
310	 */
311	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
312
313	go[MASTER] = 1;
314
315	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
316		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
317		return;
318	}
319
320	while (go[MASTER])
321		cpu_relax();	/* wait for master to be ready */
322
323	spin_lock_irqsave(&itc_sync_lock, flags);
324	{
325		for (i = 0; i < NUM_ROUNDS; ++i) {
326			delta = get_delta(&rt, &master_time_stamp);
327			if (delta == 0) {
328				done = 1;	/* let's lock on to this... */
329				bound = rt;
330			}
331
332			if (!done) {
333				if (i > 0) {
334					adjust_latency += -delta;
335					adj = -delta + adjust_latency/4;
336				} else
337					adj = -delta;
338
339				ia64_set_itc(ia64_get_itc() + adj);
340			}
341#if DEBUG_ITC_SYNC
342			t[i].rt = rt;
343			t[i].master = master_time_stamp;
344			t[i].diff = delta;
345			t[i].lat = adjust_latency/4;
346#endif
347		}
348	}
349	spin_unlock_irqrestore(&itc_sync_lock, flags);
350
351#if DEBUG_ITC_SYNC
352	for (i = 0; i < NUM_ROUNDS; ++i)
353		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
354		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
355#endif
356
357	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
358	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
359}
360
361/*
362 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
363 */
364static inline void __devinit
365smp_setup_percpu_timer (void)
366{
367}
368
369static void __cpuinit
370smp_callin (void)
371{
372	int cpuid, phys_id, itc_master;
373	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
374	extern void ia64_init_itm(void);
375	extern volatile int time_keeper_id;
376
377#ifdef CONFIG_PERFMON
378	extern void pfm_init_percpu(void);
379#endif
380
381	cpuid = smp_processor_id();
382	phys_id = hard_smp_processor_id();
383	itc_master = time_keeper_id;
384
385	if (cpu_online(cpuid)) {
386		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
387		       phys_id, cpuid);
388		BUG();
389	}
390
391	fix_b0_for_bsp();
392
393	/*
394	 * numa_node_id() works after this.
395	 */
396	set_numa_node(cpu_to_node_map[cpuid]);
397	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
398
399	ipi_call_lock_irq();
400	spin_lock(&vector_lock);
401	/* Setup the per cpu irq handling data structures */
402	__setup_vector_irq(cpuid);
403	notify_cpu_starting(cpuid);
404	cpu_set(cpuid, cpu_online_map);
405	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
406	spin_unlock(&vector_lock);
407	ipi_call_unlock_irq();
408
409	smp_setup_percpu_timer();
410
411	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
412
413#ifdef CONFIG_PERFMON
414	pfm_init_percpu();
415#endif
416
417	local_irq_enable();
418
419	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
420		/*
421		 * Synchronize the ITC with the BP.  Need to do this after irqs are
422		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
423		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
424		 * local_bh_enable(), which bugs out if irqs are not enabled...
425		 */
426		Dprintk("Going to syncup ITC with ITC Master.\n");
427		ia64_sync_itc(itc_master);
428	}
429
430	/*
431	 * Get our bogomips.
432	 */
433	ia64_init_itm();
434
435	/*
436	 * Delay calibration can be skipped if new processor is identical to the
437	 * previous processor.
438	 */
439	last_cpuinfo = cpu_data(cpuid - 1);
440	this_cpuinfo = local_cpu_data;
441	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
442	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
443	    last_cpuinfo->features != this_cpuinfo->features ||
444	    last_cpuinfo->revision != this_cpuinfo->revision ||
445	    last_cpuinfo->family != this_cpuinfo->family ||
446	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
447	    last_cpuinfo->model != this_cpuinfo->model)
448		calibrate_delay();
449	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
450
451	/*
452	 * Allow the master to continue.
453	 */
454	cpu_set(cpuid, cpu_callin_map);
455	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
456}
457
458
459/*
460 * Activate a secondary processor.  head.S calls this.
461 */
462int __cpuinit
463start_secondary (void *unused)
464{
465	/* Early console may use I/O ports */
466	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
467#ifndef CONFIG_PRINTK_TIME
468	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
469#endif
470	efi_map_pal_code();
471	cpu_init();
472	preempt_disable();
473	smp_callin();
474
475	cpu_idle();
476	return 0;
477}
478
479struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
480{
481	return NULL;
482}
483
484struct create_idle {
485	struct work_struct work;
486	struct task_struct *idle;
487	struct completion done;
488	int cpu;
489};
490
491void __cpuinit
492do_fork_idle(struct work_struct *work)
493{
494	struct create_idle *c_idle =
495		container_of(work, struct create_idle, work);
496
497	c_idle->idle = fork_idle(c_idle->cpu);
498	complete(&c_idle->done);
499}
500
501static int __cpuinit
502do_boot_cpu (int sapicid, int cpu)
503{
504	int timeout;
505	struct create_idle c_idle = {
506		.work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
507		.cpu	= cpu,
508		.done	= COMPLETION_INITIALIZER(c_idle.done),
509	};
510
511	/*
512	 * We can't use kernel_thread since we must avoid to
513	 * reschedule the child.
514	 */
515 	c_idle.idle = get_idle_for_cpu(cpu);
516 	if (c_idle.idle) {
517		init_idle(c_idle.idle, cpu);
518 		goto do_rest;
519	}
520
521	schedule_work(&c_idle.work);
522	wait_for_completion(&c_idle.done);
523
524	if (IS_ERR(c_idle.idle))
525		panic("failed fork for CPU %d", cpu);
526
527	set_idle_for_cpu(cpu, c_idle.idle);
528
529do_rest:
530	task_for_booting_cpu = c_idle.idle;
531
 
532	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
533
534	set_brendez_area(cpu);
535	platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
536
537	/*
538	 * Wait 10s total for the AP to start
539	 */
540	Dprintk("Waiting on callin_map ...");
541	for (timeout = 0; timeout < 100000; timeout++) {
542		if (cpu_isset(cpu, cpu_callin_map))
543			break;  /* It has booted */
 
544		udelay(100);
545	}
546	Dprintk("\n");
547
548	if (!cpu_isset(cpu, cpu_callin_map)) {
549		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
550		ia64_cpu_to_sapicid[cpu] = -1;
551		cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */
552		return -EINVAL;
553	}
554	return 0;
555}
556
557static int __init
558decay (char *str)
559{
560	int ticks;
561	get_option (&str, &ticks);
562	return 1;
563}
564
565__setup("decay=", decay);
566
567/*
568 * Initialize the logical CPU number to SAPICID mapping
569 */
570void __init
571smp_build_cpu_map (void)
572{
573	int sapicid, cpu, i;
574	int boot_cpu_id = hard_smp_processor_id();
575
576	for (cpu = 0; cpu < NR_CPUS; cpu++) {
577		ia64_cpu_to_sapicid[cpu] = -1;
578	}
579
580	ia64_cpu_to_sapicid[0] = boot_cpu_id;
581	cpus_clear(cpu_present_map);
582	set_cpu_present(0, true);
583	set_cpu_possible(0, true);
584	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
585		sapicid = smp_boot_data.cpu_phys_id[i];
586		if (sapicid == boot_cpu_id)
587			continue;
588		set_cpu_present(cpu, true);
589		set_cpu_possible(cpu, true);
590		ia64_cpu_to_sapicid[cpu] = sapicid;
591		cpu++;
592	}
593}
594
595/*
596 * Cycle through the APs sending Wakeup IPIs to boot each.
597 */
598void __init
599smp_prepare_cpus (unsigned int max_cpus)
600{
601	int boot_cpu_id = hard_smp_processor_id();
602
603	/*
604	 * Initialize the per-CPU profiling counter/multiplier
605	 */
606
607	smp_setup_percpu_timer();
608
609	/*
610	 * We have the boot CPU online for sure.
611	 */
612	cpu_set(0, cpu_online_map);
613	cpu_set(0, cpu_callin_map);
614
615	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
616	ia64_cpu_to_sapicid[0] = boot_cpu_id;
617
618	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
619
620	current_thread_info()->cpu = 0;
621
622	/*
623	 * If SMP should be disabled, then really disable it!
624	 */
625	if (!max_cpus) {
626		printk(KERN_INFO "SMP mode deactivated.\n");
627		init_cpu_online(cpumask_of(0));
628		init_cpu_present(cpumask_of(0));
629		init_cpu_possible(cpumask_of(0));
630		return;
631	}
632}
633
634void __devinit smp_prepare_boot_cpu(void)
635{
636	cpu_set(smp_processor_id(), cpu_online_map);
637	cpu_set(smp_processor_id(), cpu_callin_map);
638	set_numa_node(cpu_to_node_map[smp_processor_id()]);
639	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
640	paravirt_post_smp_prepare_boot_cpu();
641}
642
643#ifdef CONFIG_HOTPLUG_CPU
644static inline void
645clear_cpu_sibling_map(int cpu)
646{
647	int i;
648
649	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
650		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
651	for_each_cpu_mask(i, cpu_core_map[cpu])
652		cpu_clear(cpu, cpu_core_map[i]);
653
654	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
655}
656
657static void
658remove_siblinginfo(int cpu)
659{
660	int last = 0;
661
662	if (cpu_data(cpu)->threads_per_core == 1 &&
663	    cpu_data(cpu)->cores_per_socket == 1) {
664		cpu_clear(cpu, cpu_core_map[cpu]);
665		cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
666		return;
667	}
668
669	last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
670
671	/* remove it from all sibling map's */
672	clear_cpu_sibling_map(cpu);
673}
674
675extern void fixup_irqs(void);
676
677int migrate_platform_irqs(unsigned int cpu)
678{
679	int new_cpei_cpu;
680	struct irq_data *data = NULL;
681	const struct cpumask *mask;
682	int 		retval = 0;
683
684	/*
685	 * dont permit CPEI target to removed.
686	 */
687	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
688		printk ("CPU (%d) is CPEI Target\n", cpu);
689		if (can_cpei_retarget()) {
690			/*
691			 * Now re-target the CPEI to a different processor
692			 */
693			new_cpei_cpu = any_online_cpu(cpu_online_map);
694			mask = cpumask_of(new_cpei_cpu);
695			set_cpei_target_cpu(new_cpei_cpu);
696			data = irq_get_irq_data(ia64_cpe_irq);
697			/*
698			 * Switch for now, immediately, we need to do fake intr
699			 * as other interrupts, but need to study CPEI behaviour with
700			 * polling before making changes.
701			 */
702			if (data && data->chip) {
703				data->chip->irq_disable(data);
704				data->chip->irq_set_affinity(data, mask, false);
705				data->chip->irq_enable(data);
706				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
707			}
708		}
709		if (!data) {
710			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
711			retval = -EBUSY;
712		}
713	}
714	return retval;
715}
716
717/* must be called with cpucontrol mutex held */
718int __cpu_disable(void)
719{
720	int cpu = smp_processor_id();
721
722	/*
723	 * dont permit boot processor for now
724	 */
725	if (cpu == 0 && !bsp_remove_ok) {
726		printk ("Your platform does not support removal of BSP\n");
727		return (-EBUSY);
728	}
729
730	if (ia64_platform_is("sn2")) {
731		if (!sn_cpu_disable_allowed(cpu))
732			return -EBUSY;
733	}
734
735	cpu_clear(cpu, cpu_online_map);
736
737	if (migrate_platform_irqs(cpu)) {
738		cpu_set(cpu, cpu_online_map);
739		return -EBUSY;
740	}
741
742	remove_siblinginfo(cpu);
743	fixup_irqs();
744	local_flush_tlb_all();
745	cpu_clear(cpu, cpu_callin_map);
746	return 0;
747}
748
749void __cpu_die(unsigned int cpu)
750{
751	unsigned int i;
752
753	for (i = 0; i < 100; i++) {
754		/* They ack this in play_dead by setting CPU_DEAD */
755		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
756		{
757			printk ("CPU %d is now offline\n", cpu);
758			return;
759		}
760		msleep(100);
761	}
762 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
763}
764#endif /* CONFIG_HOTPLUG_CPU */
765
766void
767smp_cpus_done (unsigned int dummy)
768{
769	int cpu;
770	unsigned long bogosum = 0;
771
772	/*
773	 * Allow the user to impress friends.
774	 */
775
776	for_each_online_cpu(cpu) {
777		bogosum += cpu_data(cpu)->loops_per_jiffy;
778	}
779
780	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
781	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
782}
783
784static inline void __devinit
785set_cpu_sibling_map(int cpu)
786{
787	int i;
788
789	for_each_online_cpu(i) {
790		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
791			cpu_set(i, cpu_core_map[cpu]);
792			cpu_set(cpu, cpu_core_map[i]);
793			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
794				cpu_set(i, per_cpu(cpu_sibling_map, cpu));
795				cpu_set(cpu, per_cpu(cpu_sibling_map, i));
 
 
796			}
797		}
798	}
799}
800
801int __cpuinit
802__cpu_up (unsigned int cpu)
803{
804	int ret;
805	int sapicid;
806
807	sapicid = ia64_cpu_to_sapicid[cpu];
808	if (sapicid == -1)
809		return -EINVAL;
810
811	/*
812	 * Already booted cpu? not valid anymore since we dont
813	 * do idle loop tightspin anymore.
814	 */
815	if (cpu_isset(cpu, cpu_callin_map))
816		return -EINVAL;
817
818	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
819	/* Processor goes to start_secondary(), sets online flag */
820	ret = do_boot_cpu(sapicid, cpu);
821	if (ret < 0)
822		return ret;
823
824	if (cpu_data(cpu)->threads_per_core == 1 &&
825	    cpu_data(cpu)->cores_per_socket == 1) {
826		cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
827		cpu_set(cpu, cpu_core_map[cpu]);
828		return 0;
829	}
830
831	set_cpu_sibling_map(cpu);
832
833	return 0;
834}
835
836/*
837 * Assume that CPUs have been discovered by some platform-dependent interface.  For
838 * SoftSDV/Lion, that would be ACPI.
839 *
840 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
841 */
842void __init
843init_smp_config(void)
844{
845	struct fptr {
846		unsigned long fp;
847		unsigned long gp;
848	} *ap_startup;
849	long sal_ret;
850
851	/* Tell SAL where to drop the APs.  */
852	ap_startup = (struct fptr *) start_ap;
853	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
854				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
855	if (sal_ret < 0)
856		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
857		       ia64_sal_strerror(sal_ret));
858}
859
860/*
861 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
862 * information related to logical execution units in per_cpu_data structure.
863 */
864void __devinit
865identify_siblings(struct cpuinfo_ia64 *c)
866{
867	long status;
868	u16 pltid;
869	pal_logical_to_physical_t info;
870
871	status = ia64_pal_logical_to_phys(-1, &info);
872	if (status != PAL_STATUS_SUCCESS) {
873		if (status != PAL_STATUS_UNIMPLEMENTED) {
874			printk(KERN_ERR
875				"ia64_pal_logical_to_phys failed with %ld\n",
876				status);
877			return;
878		}
879
880		info.overview_ppid = 0;
881		info.overview_cpp  = 1;
882		info.overview_tpc  = 1;
883	}
884
885	status = ia64_sal_physical_id_info(&pltid);
886	if (status != PAL_STATUS_SUCCESS) {
887		if (status != PAL_STATUS_UNIMPLEMENTED)
888			printk(KERN_ERR
889				"ia64_sal_pltid failed with %ld\n",
890				status);
891		return;
892	}
893
894	c->socket_id =  (pltid << 8) | info.overview_ppid;
895
896	if (info.overview_cpp == 1 && info.overview_tpc == 1)
897		return;
898
899	c->cores_per_socket = info.overview_cpp;
900	c->threads_per_core = info.overview_tpc;
901	c->num_log = info.overview_num_log;
902
903	c->core_id = info.log1_cid;
904	c->thread_id = info.log1_tid;
905}
906
907/*
908 * returns non zero, if multi-threading is enabled
909 * on at least one physical package. Due to hotplug cpu
910 * and (maxcpus=), all threads may not necessarily be enabled
911 * even though the processor supports multi-threading.
912 */
913int is_multithreading_enabled(void)
914{
915	int i, j;
916
917	for_each_present_cpu(i) {
918		for_each_present_cpu(j) {
919			if (j == i)
920				continue;
921			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
922				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
923					return 1;
924			}
925		}
926	}
927	return 0;
928}
929EXPORT_SYMBOL_GPL(is_multithreading_enabled);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SMP boot-related support
  4 *
  5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 * Copyright (C) 2001, 2004-2005 Intel Corp
  8 * 	Rohit Seth <rohit.seth@intel.com>
  9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
 10 * 	Gordon Jin <gordon.jin@intel.com>
 11 *	Ashok Raj  <ashok.raj@intel.com>
 12 *
 13 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 14 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 15 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 16 *						smp_boot_cpus()/smp_commence() is replaced by
 17 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 18 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 19 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 20 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 21 *						Add multi-threading and multi-core detection
 22 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 23 *						Setup cpu_sibling_map and cpu_core_map
 24 */
 25
 26#include <linux/module.h>
 27#include <linux/acpi.h>
 28#include <linux/memblock.h>
 29#include <linux/cpu.h>
 30#include <linux/delay.h>
 31#include <linux/init.h>
 32#include <linux/interrupt.h>
 33#include <linux/irq.h>
 34#include <linux/kernel.h>
 35#include <linux/kernel_stat.h>
 36#include <linux/mm.h>
 37#include <linux/notifier.h>
 38#include <linux/smp.h>
 39#include <linux/spinlock.h>
 40#include <linux/efi.h>
 41#include <linux/percpu.h>
 42#include <linux/bitops.h>
 43
 44#include <linux/atomic.h>
 45#include <asm/cache.h>
 46#include <asm/current.h>
 47#include <asm/delay.h>
 48#include <asm/efi.h>
 49#include <asm/io.h>
 50#include <asm/irq.h>
 
 51#include <asm/mca.h>
 52#include <asm/page.h>
 
 
 
 53#include <asm/processor.h>
 54#include <asm/ptrace.h>
 55#include <asm/sal.h>
 
 56#include <asm/tlbflush.h>
 57#include <asm/unistd.h>
 
 58
 59#define SMP_DEBUG 0
 60
 61#if SMP_DEBUG
 62#define Dprintk(x...)  printk(x)
 63#else
 64#define Dprintk(x...)
 65#endif
 66
 67#ifdef CONFIG_HOTPLUG_CPU
 68#ifdef CONFIG_PERMIT_BSP_REMOVE
 69#define bsp_remove_ok	1
 70#else
 71#define bsp_remove_ok	0
 72#endif
 73
 74/*
 
 
 
 
 
 
 
 75 * Global array allocated for NR_CPUS at boot time
 76 */
 77struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 78
 79/*
 80 * start_ap in head.S uses this to store current booting cpu
 81 * info.
 82 */
 83struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 84
 85#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 86
 
 
 
 87#else
 
 
 
 88#define set_brendez_area(x)
 89#endif
 90
 91
 92/*
 93 * ITC synchronization related stuff:
 94 */
 95#define MASTER	(0)
 96#define SLAVE	(SMP_CACHE_BYTES/8)
 97
 98#define NUM_ROUNDS	64	/* magic value */
 99#define NUM_ITERS	5	/* likewise */
100
101static DEFINE_SPINLOCK(itc_sync_lock);
102static volatile unsigned long go[SLAVE + 1];
103
104#define DEBUG_ITC_SYNC	0
105
106extern void start_ap (void);
107extern unsigned long ia64_iobase;
108
109struct task_struct *task_for_booting_cpu;
110
111/*
112 * State for each CPU
113 */
114DEFINE_PER_CPU(int, cpu_state);
115
116cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
117EXPORT_SYMBOL(cpu_core_map);
118DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
119EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
120
121int smp_num_siblings = 1;
122
123/* which logical CPU number maps to which CPU (physical APIC ID) */
124volatile int ia64_cpu_to_sapicid[NR_CPUS];
125EXPORT_SYMBOL(ia64_cpu_to_sapicid);
126
127static cpumask_t cpu_callin_map;
128
129struct smp_boot_data smp_boot_data __initdata;
130
131unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
132
133char __initdata no_int_routing;
134
135unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
136
137#ifdef CONFIG_FORCE_CPEI_RETARGET
138#define CPEI_OVERRIDE_DEFAULT	(1)
139#else
140#define CPEI_OVERRIDE_DEFAULT	(0)
141#endif
142
143unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
144
145static int __init
146cmdl_force_cpei(char *str)
147{
148	int value=0;
149
150	get_option (&str, &value);
151	force_cpei_retarget = value;
152
153	return 1;
154}
155
156__setup("force_cpei=", cmdl_force_cpei);
157
158static int __init
159nointroute (char *str)
160{
161	no_int_routing = 1;
162	printk ("no_int_routing on\n");
163	return 1;
164}
165
166__setup("nointroute", nointroute);
167
168static void fix_b0_for_bsp(void)
169{
170#ifdef CONFIG_HOTPLUG_CPU
171	int cpuid;
172	static int fix_bsp_b0 = 1;
173
174	cpuid = smp_processor_id();
175
176	/*
177	 * Cache the b0 value on the first AP that comes up
178	 */
179	if (!(fix_bsp_b0 && cpuid))
180		return;
181
182	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
183	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
184
185	fix_bsp_b0 = 0;
186#endif
187}
188
189void
190sync_master (void *arg)
191{
192	unsigned long flags, i;
193
194	go[MASTER] = 0;
195
196	local_irq_save(flags);
197	{
198		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
199			while (!go[MASTER])
200				cpu_relax();
201			go[MASTER] = 0;
202			go[SLAVE] = ia64_get_itc();
203		}
204	}
205	local_irq_restore(flags);
206}
207
208/*
209 * Return the number of cycles by which our itc differs from the itc on the master
210 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
211 * negative that it is behind.
212 */
213static inline long
214get_delta (long *rt, long *master)
215{
216	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
217	unsigned long tcenter, t0, t1, tm;
218	long i;
219
220	for (i = 0; i < NUM_ITERS; ++i) {
221		t0 = ia64_get_itc();
222		go[MASTER] = 1;
223		while (!(tm = go[SLAVE]))
224			cpu_relax();
225		go[SLAVE] = 0;
226		t1 = ia64_get_itc();
227
228		if (t1 - t0 < best_t1 - best_t0)
229			best_t0 = t0, best_t1 = t1, best_tm = tm;
230	}
231
232	*rt = best_t1 - best_t0;
233	*master = best_tm - best_t0;
234
235	/* average best_t0 and best_t1 without overflow: */
236	tcenter = (best_t0/2 + best_t1/2);
237	if (best_t0 % 2 + best_t1 % 2 == 2)
238		++tcenter;
239	return tcenter - best_tm;
240}
241
242/*
243 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
244 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
245 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
246 * step).  The basic idea is for the slave to ask the master what itc value it has and to
247 * read its own itc before and after the master responds.  Each iteration gives us three
248 * timestamps:
249 *
250 *	slave		master
251 *
252 *	t0 ---\
253 *             ---\
254 *		   --->
255 *			tm
256 *		   /---
257 *	       /---
258 *	t1 <---
259 *
260 *
261 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
262 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
263 * between the slave and the master is symmetric.  Even if the interconnect were
264 * asymmetric, we would still know that the synchronization error is smaller than the
265 * roundtrip latency (t0 - t1).
266 *
267 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
268 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
269 * accurate to within a round-trip time, which is typically in the range of several
270 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
271 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
272 * than half a micro second or so.
273 */
274void
275ia64_sync_itc (unsigned int master)
276{
277	long i, delta, adj, adjust_latency = 0, done = 0;
278	unsigned long flags, rt, master_time_stamp, bound;
279#if DEBUG_ITC_SYNC
280	struct {
281		long rt;	/* roundtrip time */
282		long master;	/* master's timestamp */
283		long diff;	/* difference between midpoint and master's timestamp */
284		long lat;	/* estimate of itc adjustment latency */
285	} t[NUM_ROUNDS];
286#endif
287
288	/*
289	 * Make sure local timer ticks are disabled while we sync.  If
290	 * they were enabled, we'd have to worry about nasty issues
291	 * like setting the ITC ahead of (or a long time before) the
292	 * next scheduled tick.
293	 */
294	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
295
296	go[MASTER] = 1;
297
298	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
299		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
300		return;
301	}
302
303	while (go[MASTER])
304		cpu_relax();	/* wait for master to be ready */
305
306	spin_lock_irqsave(&itc_sync_lock, flags);
307	{
308		for (i = 0; i < NUM_ROUNDS; ++i) {
309			delta = get_delta(&rt, &master_time_stamp);
310			if (delta == 0) {
311				done = 1;	/* let's lock on to this... */
312				bound = rt;
313			}
314
315			if (!done) {
316				if (i > 0) {
317					adjust_latency += -delta;
318					adj = -delta + adjust_latency/4;
319				} else
320					adj = -delta;
321
322				ia64_set_itc(ia64_get_itc() + adj);
323			}
324#if DEBUG_ITC_SYNC
325			t[i].rt = rt;
326			t[i].master = master_time_stamp;
327			t[i].diff = delta;
328			t[i].lat = adjust_latency/4;
329#endif
330		}
331	}
332	spin_unlock_irqrestore(&itc_sync_lock, flags);
333
334#if DEBUG_ITC_SYNC
335	for (i = 0; i < NUM_ROUNDS; ++i)
336		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
337		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
338#endif
339
340	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
341	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
342}
343
344/*
345 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
346 */
347static inline void smp_setup_percpu_timer(void)
 
348{
349}
350
351static void
352smp_callin (void)
353{
354	int cpuid, phys_id, itc_master;
355	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
356	extern void ia64_init_itm(void);
357	extern volatile int time_keeper_id;
358
 
 
 
 
359	cpuid = smp_processor_id();
360	phys_id = hard_smp_processor_id();
361	itc_master = time_keeper_id;
362
363	if (cpu_online(cpuid)) {
364		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
365		       phys_id, cpuid);
366		BUG();
367	}
368
369	fix_b0_for_bsp();
370
371	/*
372	 * numa_node_id() works after this.
373	 */
374	set_numa_node(cpu_to_node_map[cpuid]);
375	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
376
 
377	spin_lock(&vector_lock);
378	/* Setup the per cpu irq handling data structures */
379	__setup_vector_irq(cpuid);
380	notify_cpu_starting(cpuid);
381	set_cpu_online(cpuid, true);
382	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
383	spin_unlock(&vector_lock);
 
384
385	smp_setup_percpu_timer();
386
387	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
388
 
 
 
 
389	local_irq_enable();
390
391	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
392		/*
393		 * Synchronize the ITC with the BP.  Need to do this after irqs are
394		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
395		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
396		 * local_bh_enable(), which bugs out if irqs are not enabled...
397		 */
398		Dprintk("Going to syncup ITC with ITC Master.\n");
399		ia64_sync_itc(itc_master);
400	}
401
402	/*
403	 * Get our bogomips.
404	 */
405	ia64_init_itm();
406
407	/*
408	 * Delay calibration can be skipped if new processor is identical to the
409	 * previous processor.
410	 */
411	last_cpuinfo = cpu_data(cpuid - 1);
412	this_cpuinfo = local_cpu_data;
413	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
414	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
415	    last_cpuinfo->features != this_cpuinfo->features ||
416	    last_cpuinfo->revision != this_cpuinfo->revision ||
417	    last_cpuinfo->family != this_cpuinfo->family ||
418	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
419	    last_cpuinfo->model != this_cpuinfo->model)
420		calibrate_delay();
421	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
422
423	/*
424	 * Allow the master to continue.
425	 */
426	cpumask_set_cpu(cpuid, &cpu_callin_map);
427	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
428}
429
430
431/*
432 * Activate a secondary processor.  head.S calls this.
433 */
434int
435start_secondary (void *unused)
436{
437	/* Early console may use I/O ports */
438	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
439#ifndef CONFIG_PRINTK_TIME
440	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
441#endif
442	efi_map_pal_code();
443	cpu_init();
 
444	smp_callin();
445
446	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
447	return 0;
448}
449
450static int
451do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452{
453	int timeout;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
455	task_for_booting_cpu = idle;
456	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
457
458	set_brendez_area(cpu);
459	ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
460
461	/*
462	 * Wait 10s total for the AP to start
463	 */
464	Dprintk("Waiting on callin_map ...");
465	for (timeout = 0; timeout < 100000; timeout++) {
466		if (cpumask_test_cpu(cpu, &cpu_callin_map))
467			break;  /* It has booted */
468		barrier(); /* Make sure we re-read cpu_callin_map */
469		udelay(100);
470	}
471	Dprintk("\n");
472
473	if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
474		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
475		ia64_cpu_to_sapicid[cpu] = -1;
476		set_cpu_online(cpu, false);  /* was set in smp_callin() */
477		return -EINVAL;
478	}
479	return 0;
480}
481
482static int __init
483decay (char *str)
484{
485	int ticks;
486	get_option (&str, &ticks);
487	return 1;
488}
489
490__setup("decay=", decay);
491
492/*
493 * Initialize the logical CPU number to SAPICID mapping
494 */
495void __init
496smp_build_cpu_map (void)
497{
498	int sapicid, cpu, i;
499	int boot_cpu_id = hard_smp_processor_id();
500
501	for (cpu = 0; cpu < NR_CPUS; cpu++) {
502		ia64_cpu_to_sapicid[cpu] = -1;
503	}
504
505	ia64_cpu_to_sapicid[0] = boot_cpu_id;
506	init_cpu_present(cpumask_of(0));
 
507	set_cpu_possible(0, true);
508	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
509		sapicid = smp_boot_data.cpu_phys_id[i];
510		if (sapicid == boot_cpu_id)
511			continue;
512		set_cpu_present(cpu, true);
513		set_cpu_possible(cpu, true);
514		ia64_cpu_to_sapicid[cpu] = sapicid;
515		cpu++;
516	}
517}
518
519/*
520 * Cycle through the APs sending Wakeup IPIs to boot each.
521 */
522void __init
523smp_prepare_cpus (unsigned int max_cpus)
524{
525	int boot_cpu_id = hard_smp_processor_id();
526
527	/*
528	 * Initialize the per-CPU profiling counter/multiplier
529	 */
530
531	smp_setup_percpu_timer();
532
533	cpumask_set_cpu(0, &cpu_callin_map);
 
 
 
 
534
535	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
536	ia64_cpu_to_sapicid[0] = boot_cpu_id;
537
538	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
539
540	current_thread_info()->cpu = 0;
541
542	/*
543	 * If SMP should be disabled, then really disable it!
544	 */
545	if (!max_cpus) {
546		printk(KERN_INFO "SMP mode deactivated.\n");
547		init_cpu_online(cpumask_of(0));
548		init_cpu_present(cpumask_of(0));
549		init_cpu_possible(cpumask_of(0));
550		return;
551	}
552}
553
554void smp_prepare_boot_cpu(void)
555{
556	set_cpu_online(smp_processor_id(), true);
557	cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
558	set_numa_node(cpu_to_node_map[smp_processor_id()]);
559	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 
560}
561
562#ifdef CONFIG_HOTPLUG_CPU
563static inline void
564clear_cpu_sibling_map(int cpu)
565{
566	int i;
567
568	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
569		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
570	for_each_cpu(i, &cpu_core_map[cpu])
571		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
572
573	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
574}
575
576static void
577remove_siblinginfo(int cpu)
578{
 
 
579	if (cpu_data(cpu)->threads_per_core == 1 &&
580	    cpu_data(cpu)->cores_per_socket == 1) {
581		cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
582		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
583		return;
584	}
585
 
 
586	/* remove it from all sibling map's */
587	clear_cpu_sibling_map(cpu);
588}
589
590extern void fixup_irqs(void);
591
592int migrate_platform_irqs(unsigned int cpu)
593{
594	int new_cpei_cpu;
595	struct irq_data *data = NULL;
596	const struct cpumask *mask;
597	int 		retval = 0;
598
599	/*
600	 * dont permit CPEI target to removed.
601	 */
602	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
603		printk ("CPU (%d) is CPEI Target\n", cpu);
604		if (can_cpei_retarget()) {
605			/*
606			 * Now re-target the CPEI to a different processor
607			 */
608			new_cpei_cpu = cpumask_any(cpu_online_mask);
609			mask = cpumask_of(new_cpei_cpu);
610			set_cpei_target_cpu(new_cpei_cpu);
611			data = irq_get_irq_data(ia64_cpe_irq);
612			/*
613			 * Switch for now, immediately, we need to do fake intr
614			 * as other interrupts, but need to study CPEI behaviour with
615			 * polling before making changes.
616			 */
617			if (data && data->chip) {
618				data->chip->irq_disable(data);
619				data->chip->irq_set_affinity(data, mask, false);
620				data->chip->irq_enable(data);
621				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
622			}
623		}
624		if (!data) {
625			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
626			retval = -EBUSY;
627		}
628	}
629	return retval;
630}
631
632/* must be called with cpucontrol mutex held */
633int __cpu_disable(void)
634{
635	int cpu = smp_processor_id();
636
637	/*
638	 * dont permit boot processor for now
639	 */
640	if (cpu == 0 && !bsp_remove_ok) {
641		printk ("Your platform does not support removal of BSP\n");
642		return (-EBUSY);
643	}
644
645	set_cpu_online(cpu, false);
 
 
 
 
 
646
647	if (migrate_platform_irqs(cpu)) {
648		set_cpu_online(cpu, true);
649		return -EBUSY;
650	}
651
652	remove_siblinginfo(cpu);
653	fixup_irqs();
654	local_flush_tlb_all();
655	cpumask_clear_cpu(cpu, &cpu_callin_map);
656	return 0;
657}
658
659void __cpu_die(unsigned int cpu)
660{
661	unsigned int i;
662
663	for (i = 0; i < 100; i++) {
664		/* They ack this in play_dead by setting CPU_DEAD */
665		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
666		{
667			printk ("CPU %d is now offline\n", cpu);
668			return;
669		}
670		msleep(100);
671	}
672 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
673}
674#endif /* CONFIG_HOTPLUG_CPU */
675
676void
677smp_cpus_done (unsigned int dummy)
678{
679	int cpu;
680	unsigned long bogosum = 0;
681
682	/*
683	 * Allow the user to impress friends.
684	 */
685
686	for_each_online_cpu(cpu) {
687		bogosum += cpu_data(cpu)->loops_per_jiffy;
688	}
689
690	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
691	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
692}
693
694static inline void set_cpu_sibling_map(int cpu)
 
695{
696	int i;
697
698	for_each_online_cpu(i) {
699		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
700			cpumask_set_cpu(i, &cpu_core_map[cpu]);
701			cpumask_set_cpu(cpu, &cpu_core_map[i]);
702			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
703				cpumask_set_cpu(i,
704						&per_cpu(cpu_sibling_map, cpu));
705				cpumask_set_cpu(cpu,
706						&per_cpu(cpu_sibling_map, i));
707			}
708		}
709	}
710}
711
712int
713__cpu_up(unsigned int cpu, struct task_struct *tidle)
714{
715	int ret;
716	int sapicid;
717
718	sapicid = ia64_cpu_to_sapicid[cpu];
719	if (sapicid == -1)
720		return -EINVAL;
721
722	/*
723	 * Already booted cpu? not valid anymore since we dont
724	 * do idle loop tightspin anymore.
725	 */
726	if (cpumask_test_cpu(cpu, &cpu_callin_map))
727		return -EINVAL;
728
729	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
730	/* Processor goes to start_secondary(), sets online flag */
731	ret = do_boot_cpu(sapicid, cpu, tidle);
732	if (ret < 0)
733		return ret;
734
735	if (cpu_data(cpu)->threads_per_core == 1 &&
736	    cpu_data(cpu)->cores_per_socket == 1) {
737		cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
738		cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
739		return 0;
740	}
741
742	set_cpu_sibling_map(cpu);
743
744	return 0;
745}
746
747/*
748 * Assume that CPUs have been discovered by some platform-dependent interface.  For
749 * SoftSDV/Lion, that would be ACPI.
750 *
751 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
752 */
753void __init
754init_smp_config(void)
755{
756	struct fptr {
757		unsigned long fp;
758		unsigned long gp;
759	} *ap_startup;
760	long sal_ret;
761
762	/* Tell SAL where to drop the APs.  */
763	ap_startup = (struct fptr *) start_ap;
764	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
765				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
766	if (sal_ret < 0)
767		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
768		       ia64_sal_strerror(sal_ret));
769}
770
771/*
772 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
773 * information related to logical execution units in per_cpu_data structure.
774 */
775void identify_siblings(struct cpuinfo_ia64 *c)
 
776{
777	long status;
778	u16 pltid;
779	pal_logical_to_physical_t info;
780
781	status = ia64_pal_logical_to_phys(-1, &info);
782	if (status != PAL_STATUS_SUCCESS) {
783		if (status != PAL_STATUS_UNIMPLEMENTED) {
784			printk(KERN_ERR
785				"ia64_pal_logical_to_phys failed with %ld\n",
786				status);
787			return;
788		}
789
790		info.overview_ppid = 0;
791		info.overview_cpp  = 1;
792		info.overview_tpc  = 1;
793	}
794
795	status = ia64_sal_physical_id_info(&pltid);
796	if (status != PAL_STATUS_SUCCESS) {
797		if (status != PAL_STATUS_UNIMPLEMENTED)
798			printk(KERN_ERR
799				"ia64_sal_pltid failed with %ld\n",
800				status);
801		return;
802	}
803
804	c->socket_id =  (pltid << 8) | info.overview_ppid;
805
806	if (info.overview_cpp == 1 && info.overview_tpc == 1)
807		return;
808
809	c->cores_per_socket = info.overview_cpp;
810	c->threads_per_core = info.overview_tpc;
811	c->num_log = info.overview_num_log;
812
813	c->core_id = info.log1_cid;
814	c->thread_id = info.log1_tid;
815}
816
817/*
818 * returns non zero, if multi-threading is enabled
819 * on at least one physical package. Due to hotplug cpu
820 * and (maxcpus=), all threads may not necessarily be enabled
821 * even though the processor supports multi-threading.
822 */
823int is_multithreading_enabled(void)
824{
825	int i, j;
826
827	for_each_present_cpu(i) {
828		for_each_present_cpu(j) {
829			if (j == i)
830				continue;
831			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
832				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
833					return 1;
834			}
835		}
836	}
837	return 0;
838}
839EXPORT_SYMBOL_GPL(is_multithreading_enabled);