Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * SMP boot-related support
  3 *
  4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  5 *	David Mosberger-Tang <davidm@hpl.hp.com>
  6 * Copyright (C) 2001, 2004-2005 Intel Corp
  7 * 	Rohit Seth <rohit.seth@intel.com>
  8 * 	Suresh Siddha <suresh.b.siddha@intel.com>
  9 * 	Gordon Jin <gordon.jin@intel.com>
 10 *	Ashok Raj  <ashok.raj@intel.com>
 11 *
 12 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 13 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 14 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 15 *						smp_boot_cpus()/smp_commence() is replaced by
 16 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 17 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 20 *						Add multi-threading and multi-core detection
 21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 22 *						Setup cpu_sibling_map and cpu_core_map
 23 */
 24
 25#include <linux/module.h>
 26#include <linux/acpi.h>
 27#include <linux/bootmem.h>
 28#include <linux/cpu.h>
 29#include <linux/delay.h>
 30#include <linux/init.h>
 31#include <linux/interrupt.h>
 32#include <linux/irq.h>
 33#include <linux/kernel.h>
 34#include <linux/kernel_stat.h>
 35#include <linux/mm.h>
 36#include <linux/notifier.h>
 37#include <linux/smp.h>
 38#include <linux/spinlock.h>
 39#include <linux/efi.h>
 40#include <linux/percpu.h>
 41#include <linux/bitops.h>
 42
 43#include <linux/atomic.h>
 44#include <asm/cache.h>
 45#include <asm/current.h>
 46#include <asm/delay.h>
 47#include <asm/io.h>
 48#include <asm/irq.h>
 49#include <asm/machvec.h>
 50#include <asm/mca.h>
 51#include <asm/page.h>
 52#include <asm/paravirt.h>
 53#include <asm/pgalloc.h>
 54#include <asm/pgtable.h>
 55#include <asm/processor.h>
 56#include <asm/ptrace.h>
 57#include <asm/sal.h>
 58#include <asm/system.h>
 59#include <asm/tlbflush.h>
 60#include <asm/unistd.h>
 61#include <asm/sn/arch.h>
 62
 63#define SMP_DEBUG 0
 64
 65#if SMP_DEBUG
 66#define Dprintk(x...)  printk(x)
 67#else
 68#define Dprintk(x...)
 69#endif
 70
 71#ifdef CONFIG_HOTPLUG_CPU
 72#ifdef CONFIG_PERMIT_BSP_REMOVE
 73#define bsp_remove_ok	1
 74#else
 75#define bsp_remove_ok	0
 76#endif
 77
 78/*
 79 * Store all idle threads, this can be reused instead of creating
 80 * a new thread. Also avoids complicated thread destroy functionality
 81 * for idle threads.
 82 */
 83struct task_struct *idle_thread_array[NR_CPUS];
 84
 85/*
 86 * Global array allocated for NR_CPUS at boot time
 87 */
 88struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 89
 90/*
 91 * start_ap in head.S uses this to store current booting cpu
 92 * info.
 93 */
 94struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 95
 96#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 97
 98#define get_idle_for_cpu(x)		(idle_thread_array[(x)])
 99#define set_idle_for_cpu(x,p)	(idle_thread_array[(x)] = (p))
100
101#else
102
103#define get_idle_for_cpu(x)		(NULL)
104#define set_idle_for_cpu(x,p)
105#define set_brendez_area(x)
106#endif
107
108
109/*
110 * ITC synchronization related stuff:
111 */
112#define MASTER	(0)
113#define SLAVE	(SMP_CACHE_BYTES/8)
114
115#define NUM_ROUNDS	64	/* magic value */
116#define NUM_ITERS	5	/* likewise */
117
118static DEFINE_SPINLOCK(itc_sync_lock);
119static volatile unsigned long go[SLAVE + 1];
120
121#define DEBUG_ITC_SYNC	0
122
123extern void start_ap (void);
124extern unsigned long ia64_iobase;
125
126struct task_struct *task_for_booting_cpu;
127
128/*
129 * State for each CPU
130 */
131DEFINE_PER_CPU(int, cpu_state);
132
133cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
134EXPORT_SYMBOL(cpu_core_map);
135DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
136EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
137
138int smp_num_siblings = 1;
139
140/* which logical CPU number maps to which CPU (physical APIC ID) */
141volatile int ia64_cpu_to_sapicid[NR_CPUS];
142EXPORT_SYMBOL(ia64_cpu_to_sapicid);
143
144static volatile cpumask_t cpu_callin_map;
145
146struct smp_boot_data smp_boot_data __initdata;
147
148unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
149
150char __initdata no_int_routing;
151
152unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
153
154#ifdef CONFIG_FORCE_CPEI_RETARGET
155#define CPEI_OVERRIDE_DEFAULT	(1)
156#else
157#define CPEI_OVERRIDE_DEFAULT	(0)
158#endif
159
160unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
161
162static int __init
163cmdl_force_cpei(char *str)
164{
165	int value=0;
166
167	get_option (&str, &value);
168	force_cpei_retarget = value;
169
170	return 1;
171}
172
173__setup("force_cpei=", cmdl_force_cpei);
174
175static int __init
176nointroute (char *str)
177{
178	no_int_routing = 1;
179	printk ("no_int_routing on\n");
180	return 1;
181}
182
183__setup("nointroute", nointroute);
184
185static void fix_b0_for_bsp(void)
186{
187#ifdef CONFIG_HOTPLUG_CPU
188	int cpuid;
189	static int fix_bsp_b0 = 1;
190
191	cpuid = smp_processor_id();
192
193	/*
194	 * Cache the b0 value on the first AP that comes up
195	 */
196	if (!(fix_bsp_b0 && cpuid))
197		return;
198
199	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
200	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
201
202	fix_bsp_b0 = 0;
203#endif
204}
205
206void
207sync_master (void *arg)
208{
209	unsigned long flags, i;
210
211	go[MASTER] = 0;
212
213	local_irq_save(flags);
214	{
215		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
216			while (!go[MASTER])
217				cpu_relax();
218			go[MASTER] = 0;
219			go[SLAVE] = ia64_get_itc();
220		}
221	}
222	local_irq_restore(flags);
223}
224
225/*
226 * Return the number of cycles by which our itc differs from the itc on the master
227 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
228 * negative that it is behind.
229 */
230static inline long
231get_delta (long *rt, long *master)
232{
233	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
234	unsigned long tcenter, t0, t1, tm;
235	long i;
236
237	for (i = 0; i < NUM_ITERS; ++i) {
238		t0 = ia64_get_itc();
239		go[MASTER] = 1;
240		while (!(tm = go[SLAVE]))
241			cpu_relax();
242		go[SLAVE] = 0;
243		t1 = ia64_get_itc();
244
245		if (t1 - t0 < best_t1 - best_t0)
246			best_t0 = t0, best_t1 = t1, best_tm = tm;
247	}
248
249	*rt = best_t1 - best_t0;
250	*master = best_tm - best_t0;
251
252	/* average best_t0 and best_t1 without overflow: */
253	tcenter = (best_t0/2 + best_t1/2);
254	if (best_t0 % 2 + best_t1 % 2 == 2)
255		++tcenter;
256	return tcenter - best_tm;
257}
258
259/*
260 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
261 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
262 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
263 * step).  The basic idea is for the slave to ask the master what itc value it has and to
264 * read its own itc before and after the master responds.  Each iteration gives us three
265 * timestamps:
266 *
267 *	slave		master
268 *
269 *	t0 ---\
270 *             ---\
271 *		   --->
272 *			tm
273 *		   /---
274 *	       /---
275 *	t1 <---
276 *
277 *
278 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
279 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
280 * between the slave and the master is symmetric.  Even if the interconnect were
281 * asymmetric, we would still know that the synchronization error is smaller than the
282 * roundtrip latency (t0 - t1).
283 *
284 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
285 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
286 * accurate to within a round-trip time, which is typically in the range of several
287 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
288 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
289 * than half a micro second or so.
290 */
291void
292ia64_sync_itc (unsigned int master)
293{
294	long i, delta, adj, adjust_latency = 0, done = 0;
295	unsigned long flags, rt, master_time_stamp, bound;
296#if DEBUG_ITC_SYNC
297	struct {
298		long rt;	/* roundtrip time */
299		long master;	/* master's timestamp */
300		long diff;	/* difference between midpoint and master's timestamp */
301		long lat;	/* estimate of itc adjustment latency */
302	} t[NUM_ROUNDS];
303#endif
304
305	/*
306	 * Make sure local timer ticks are disabled while we sync.  If
307	 * they were enabled, we'd have to worry about nasty issues
308	 * like setting the ITC ahead of (or a long time before) the
309	 * next scheduled tick.
310	 */
311	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
312
313	go[MASTER] = 1;
314
315	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
316		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
317		return;
318	}
319
320	while (go[MASTER])
321		cpu_relax();	/* wait for master to be ready */
322
323	spin_lock_irqsave(&itc_sync_lock, flags);
324	{
325		for (i = 0; i < NUM_ROUNDS; ++i) {
326			delta = get_delta(&rt, &master_time_stamp);
327			if (delta == 0) {
328				done = 1;	/* let's lock on to this... */
329				bound = rt;
330			}
331
332			if (!done) {
333				if (i > 0) {
334					adjust_latency += -delta;
335					adj = -delta + adjust_latency/4;
336				} else
337					adj = -delta;
338
339				ia64_set_itc(ia64_get_itc() + adj);
340			}
341#if DEBUG_ITC_SYNC
342			t[i].rt = rt;
343			t[i].master = master_time_stamp;
344			t[i].diff = delta;
345			t[i].lat = adjust_latency/4;
346#endif
347		}
348	}
349	spin_unlock_irqrestore(&itc_sync_lock, flags);
350
351#if DEBUG_ITC_SYNC
352	for (i = 0; i < NUM_ROUNDS; ++i)
353		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
354		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
355#endif
356
357	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
358	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
359}
360
361/*
362 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
363 */
364static inline void __devinit
365smp_setup_percpu_timer (void)
366{
367}
368
369static void __cpuinit
370smp_callin (void)
371{
372	int cpuid, phys_id, itc_master;
373	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
374	extern void ia64_init_itm(void);
375	extern volatile int time_keeper_id;
376
377#ifdef CONFIG_PERFMON
378	extern void pfm_init_percpu(void);
379#endif
380
381	cpuid = smp_processor_id();
382	phys_id = hard_smp_processor_id();
383	itc_master = time_keeper_id;
384
385	if (cpu_online(cpuid)) {
386		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
387		       phys_id, cpuid);
388		BUG();
389	}
390
391	fix_b0_for_bsp();
392
393	/*
394	 * numa_node_id() works after this.
395	 */
396	set_numa_node(cpu_to_node_map[cpuid]);
397	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
398
399	ipi_call_lock_irq();
400	spin_lock(&vector_lock);
401	/* Setup the per cpu irq handling data structures */
402	__setup_vector_irq(cpuid);
403	notify_cpu_starting(cpuid);
404	cpu_set(cpuid, cpu_online_map);
405	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
406	spin_unlock(&vector_lock);
407	ipi_call_unlock_irq();
408
409	smp_setup_percpu_timer();
410
411	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
412
413#ifdef CONFIG_PERFMON
414	pfm_init_percpu();
415#endif
416
417	local_irq_enable();
418
419	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
420		/*
421		 * Synchronize the ITC with the BP.  Need to do this after irqs are
422		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
423		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
424		 * local_bh_enable(), which bugs out if irqs are not enabled...
425		 */
426		Dprintk("Going to syncup ITC with ITC Master.\n");
427		ia64_sync_itc(itc_master);
428	}
429
430	/*
431	 * Get our bogomips.
432	 */
433	ia64_init_itm();
434
435	/*
436	 * Delay calibration can be skipped if new processor is identical to the
437	 * previous processor.
438	 */
439	last_cpuinfo = cpu_data(cpuid - 1);
440	this_cpuinfo = local_cpu_data;
441	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
442	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
443	    last_cpuinfo->features != this_cpuinfo->features ||
444	    last_cpuinfo->revision != this_cpuinfo->revision ||
445	    last_cpuinfo->family != this_cpuinfo->family ||
446	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
447	    last_cpuinfo->model != this_cpuinfo->model)
448		calibrate_delay();
449	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
450
451	/*
452	 * Allow the master to continue.
453	 */
454	cpu_set(cpuid, cpu_callin_map);
455	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
456}
457
458
459/*
460 * Activate a secondary processor.  head.S calls this.
461 */
462int __cpuinit
463start_secondary (void *unused)
464{
465	/* Early console may use I/O ports */
466	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
467#ifndef CONFIG_PRINTK_TIME
468	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
469#endif
470	efi_map_pal_code();
471	cpu_init();
472	preempt_disable();
473	smp_callin();
474
475	cpu_idle();
476	return 0;
477}
478
479struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
480{
481	return NULL;
482}
483
484struct create_idle {
485	struct work_struct work;
486	struct task_struct *idle;
487	struct completion done;
488	int cpu;
489};
490
491void __cpuinit
492do_fork_idle(struct work_struct *work)
493{
494	struct create_idle *c_idle =
495		container_of(work, struct create_idle, work);
496
497	c_idle->idle = fork_idle(c_idle->cpu);
498	complete(&c_idle->done);
499}
500
501static int __cpuinit
502do_boot_cpu (int sapicid, int cpu)
503{
504	int timeout;
505	struct create_idle c_idle = {
506		.work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
507		.cpu	= cpu,
508		.done	= COMPLETION_INITIALIZER(c_idle.done),
509	};
510
511	/*
512	 * We can't use kernel_thread since we must avoid to
513	 * reschedule the child.
514	 */
515 	c_idle.idle = get_idle_for_cpu(cpu);
516 	if (c_idle.idle) {
517		init_idle(c_idle.idle, cpu);
518 		goto do_rest;
519	}
520
521	schedule_work(&c_idle.work);
522	wait_for_completion(&c_idle.done);
523
524	if (IS_ERR(c_idle.idle))
525		panic("failed fork for CPU %d", cpu);
526
527	set_idle_for_cpu(cpu, c_idle.idle);
528
529do_rest:
530	task_for_booting_cpu = c_idle.idle;
531
 
532	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
533
534	set_brendez_area(cpu);
535	platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
536
537	/*
538	 * Wait 10s total for the AP to start
539	 */
540	Dprintk("Waiting on callin_map ...");
541	for (timeout = 0; timeout < 100000; timeout++) {
542		if (cpu_isset(cpu, cpu_callin_map))
543			break;  /* It has booted */
 
544		udelay(100);
545	}
546	Dprintk("\n");
547
548	if (!cpu_isset(cpu, cpu_callin_map)) {
549		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
550		ia64_cpu_to_sapicid[cpu] = -1;
551		cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */
552		return -EINVAL;
553	}
554	return 0;
555}
556
557static int __init
558decay (char *str)
559{
560	int ticks;
561	get_option (&str, &ticks);
562	return 1;
563}
564
565__setup("decay=", decay);
566
567/*
568 * Initialize the logical CPU number to SAPICID mapping
569 */
570void __init
571smp_build_cpu_map (void)
572{
573	int sapicid, cpu, i;
574	int boot_cpu_id = hard_smp_processor_id();
575
576	for (cpu = 0; cpu < NR_CPUS; cpu++) {
577		ia64_cpu_to_sapicid[cpu] = -1;
578	}
579
580	ia64_cpu_to_sapicid[0] = boot_cpu_id;
581	cpus_clear(cpu_present_map);
582	set_cpu_present(0, true);
583	set_cpu_possible(0, true);
584	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
585		sapicid = smp_boot_data.cpu_phys_id[i];
586		if (sapicid == boot_cpu_id)
587			continue;
588		set_cpu_present(cpu, true);
589		set_cpu_possible(cpu, true);
590		ia64_cpu_to_sapicid[cpu] = sapicid;
591		cpu++;
592	}
593}
594
595/*
596 * Cycle through the APs sending Wakeup IPIs to boot each.
597 */
598void __init
599smp_prepare_cpus (unsigned int max_cpus)
600{
601	int boot_cpu_id = hard_smp_processor_id();
602
603	/*
604	 * Initialize the per-CPU profiling counter/multiplier
605	 */
606
607	smp_setup_percpu_timer();
608
609	/*
610	 * We have the boot CPU online for sure.
611	 */
612	cpu_set(0, cpu_online_map);
613	cpu_set(0, cpu_callin_map);
614
615	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
616	ia64_cpu_to_sapicid[0] = boot_cpu_id;
617
618	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
619
620	current_thread_info()->cpu = 0;
621
622	/*
623	 * If SMP should be disabled, then really disable it!
624	 */
625	if (!max_cpus) {
626		printk(KERN_INFO "SMP mode deactivated.\n");
627		init_cpu_online(cpumask_of(0));
628		init_cpu_present(cpumask_of(0));
629		init_cpu_possible(cpumask_of(0));
630		return;
631	}
632}
633
634void __devinit smp_prepare_boot_cpu(void)
635{
636	cpu_set(smp_processor_id(), cpu_online_map);
637	cpu_set(smp_processor_id(), cpu_callin_map);
638	set_numa_node(cpu_to_node_map[smp_processor_id()]);
639	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
640	paravirt_post_smp_prepare_boot_cpu();
641}
642
643#ifdef CONFIG_HOTPLUG_CPU
644static inline void
645clear_cpu_sibling_map(int cpu)
646{
647	int i;
648
649	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
650		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
651	for_each_cpu_mask(i, cpu_core_map[cpu])
652		cpu_clear(cpu, cpu_core_map[i]);
653
654	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
655}
656
657static void
658remove_siblinginfo(int cpu)
659{
660	int last = 0;
661
662	if (cpu_data(cpu)->threads_per_core == 1 &&
663	    cpu_data(cpu)->cores_per_socket == 1) {
664		cpu_clear(cpu, cpu_core_map[cpu]);
665		cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
666		return;
667	}
668
669	last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
670
671	/* remove it from all sibling map's */
672	clear_cpu_sibling_map(cpu);
673}
674
675extern void fixup_irqs(void);
676
677int migrate_platform_irqs(unsigned int cpu)
678{
679	int new_cpei_cpu;
680	struct irq_data *data = NULL;
681	const struct cpumask *mask;
682	int 		retval = 0;
683
684	/*
685	 * dont permit CPEI target to removed.
686	 */
687	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
688		printk ("CPU (%d) is CPEI Target\n", cpu);
689		if (can_cpei_retarget()) {
690			/*
691			 * Now re-target the CPEI to a different processor
692			 */
693			new_cpei_cpu = any_online_cpu(cpu_online_map);
694			mask = cpumask_of(new_cpei_cpu);
695			set_cpei_target_cpu(new_cpei_cpu);
696			data = irq_get_irq_data(ia64_cpe_irq);
697			/*
698			 * Switch for now, immediately, we need to do fake intr
699			 * as other interrupts, but need to study CPEI behaviour with
700			 * polling before making changes.
701			 */
702			if (data && data->chip) {
703				data->chip->irq_disable(data);
704				data->chip->irq_set_affinity(data, mask, false);
705				data->chip->irq_enable(data);
706				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
707			}
708		}
709		if (!data) {
710			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
711			retval = -EBUSY;
712		}
713	}
714	return retval;
715}
716
717/* must be called with cpucontrol mutex held */
718int __cpu_disable(void)
719{
720	int cpu = smp_processor_id();
721
722	/*
723	 * dont permit boot processor for now
724	 */
725	if (cpu == 0 && !bsp_remove_ok) {
726		printk ("Your platform does not support removal of BSP\n");
727		return (-EBUSY);
728	}
729
730	if (ia64_platform_is("sn2")) {
731		if (!sn_cpu_disable_allowed(cpu))
732			return -EBUSY;
733	}
734
735	cpu_clear(cpu, cpu_online_map);
736
737	if (migrate_platform_irqs(cpu)) {
738		cpu_set(cpu, cpu_online_map);
739		return -EBUSY;
740	}
741
742	remove_siblinginfo(cpu);
743	fixup_irqs();
744	local_flush_tlb_all();
745	cpu_clear(cpu, cpu_callin_map);
746	return 0;
747}
748
749void __cpu_die(unsigned int cpu)
750{
751	unsigned int i;
752
753	for (i = 0; i < 100; i++) {
754		/* They ack this in play_dead by setting CPU_DEAD */
755		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
756		{
757			printk ("CPU %d is now offline\n", cpu);
758			return;
759		}
760		msleep(100);
761	}
762 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
763}
764#endif /* CONFIG_HOTPLUG_CPU */
765
766void
767smp_cpus_done (unsigned int dummy)
768{
769	int cpu;
770	unsigned long bogosum = 0;
771
772	/*
773	 * Allow the user to impress friends.
774	 */
775
776	for_each_online_cpu(cpu) {
777		bogosum += cpu_data(cpu)->loops_per_jiffy;
778	}
779
780	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
781	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
782}
783
784static inline void __devinit
785set_cpu_sibling_map(int cpu)
786{
787	int i;
788
789	for_each_online_cpu(i) {
790		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
791			cpu_set(i, cpu_core_map[cpu]);
792			cpu_set(cpu, cpu_core_map[i]);
793			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
794				cpu_set(i, per_cpu(cpu_sibling_map, cpu));
795				cpu_set(cpu, per_cpu(cpu_sibling_map, i));
 
 
796			}
797		}
798	}
799}
800
801int __cpuinit
802__cpu_up (unsigned int cpu)
803{
804	int ret;
805	int sapicid;
806
807	sapicid = ia64_cpu_to_sapicid[cpu];
808	if (sapicid == -1)
809		return -EINVAL;
810
811	/*
812	 * Already booted cpu? not valid anymore since we dont
813	 * do idle loop tightspin anymore.
814	 */
815	if (cpu_isset(cpu, cpu_callin_map))
816		return -EINVAL;
817
818	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
819	/* Processor goes to start_secondary(), sets online flag */
820	ret = do_boot_cpu(sapicid, cpu);
821	if (ret < 0)
822		return ret;
823
824	if (cpu_data(cpu)->threads_per_core == 1 &&
825	    cpu_data(cpu)->cores_per_socket == 1) {
826		cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
827		cpu_set(cpu, cpu_core_map[cpu]);
828		return 0;
829	}
830
831	set_cpu_sibling_map(cpu);
832
833	return 0;
834}
835
836/*
837 * Assume that CPUs have been discovered by some platform-dependent interface.  For
838 * SoftSDV/Lion, that would be ACPI.
839 *
840 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
841 */
842void __init
843init_smp_config(void)
844{
845	struct fptr {
846		unsigned long fp;
847		unsigned long gp;
848	} *ap_startup;
849	long sal_ret;
850
851	/* Tell SAL where to drop the APs.  */
852	ap_startup = (struct fptr *) start_ap;
853	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
854				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
855	if (sal_ret < 0)
856		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
857		       ia64_sal_strerror(sal_ret));
858}
859
860/*
861 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
862 * information related to logical execution units in per_cpu_data structure.
863 */
864void __devinit
865identify_siblings(struct cpuinfo_ia64 *c)
866{
867	long status;
868	u16 pltid;
869	pal_logical_to_physical_t info;
870
871	status = ia64_pal_logical_to_phys(-1, &info);
872	if (status != PAL_STATUS_SUCCESS) {
873		if (status != PAL_STATUS_UNIMPLEMENTED) {
874			printk(KERN_ERR
875				"ia64_pal_logical_to_phys failed with %ld\n",
876				status);
877			return;
878		}
879
880		info.overview_ppid = 0;
881		info.overview_cpp  = 1;
882		info.overview_tpc  = 1;
883	}
884
885	status = ia64_sal_physical_id_info(&pltid);
886	if (status != PAL_STATUS_SUCCESS) {
887		if (status != PAL_STATUS_UNIMPLEMENTED)
888			printk(KERN_ERR
889				"ia64_sal_pltid failed with %ld\n",
890				status);
891		return;
892	}
893
894	c->socket_id =  (pltid << 8) | info.overview_ppid;
895
896	if (info.overview_cpp == 1 && info.overview_tpc == 1)
897		return;
898
899	c->cores_per_socket = info.overview_cpp;
900	c->threads_per_core = info.overview_tpc;
901	c->num_log = info.overview_num_log;
902
903	c->core_id = info.log1_cid;
904	c->thread_id = info.log1_tid;
905}
906
907/*
908 * returns non zero, if multi-threading is enabled
909 * on at least one physical package. Due to hotplug cpu
910 * and (maxcpus=), all threads may not necessarily be enabled
911 * even though the processor supports multi-threading.
912 */
913int is_multithreading_enabled(void)
914{
915	int i, j;
916
917	for_each_present_cpu(i) {
918		for_each_present_cpu(j) {
919			if (j == i)
920				continue;
921			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
922				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
923					return 1;
924			}
925		}
926	}
927	return 0;
928}
929EXPORT_SYMBOL_GPL(is_multithreading_enabled);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SMP boot-related support
  4 *
  5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 * Copyright (C) 2001, 2004-2005 Intel Corp
  8 * 	Rohit Seth <rohit.seth@intel.com>
  9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
 10 * 	Gordon Jin <gordon.jin@intel.com>
 11 *	Ashok Raj  <ashok.raj@intel.com>
 12 *
 13 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 14 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 15 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 16 *						smp_boot_cpus()/smp_commence() is replaced by
 17 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 18 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 19 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 20 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 21 *						Add multi-threading and multi-core detection
 22 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 23 *						Setup cpu_sibling_map and cpu_core_map
 24 */
 25
 26#include <linux/module.h>
 27#include <linux/acpi.h>
 28#include <linux/memblock.h>
 29#include <linux/cpu.h>
 30#include <linux/delay.h>
 31#include <linux/init.h>
 32#include <linux/interrupt.h>
 33#include <linux/irq.h>
 34#include <linux/kernel.h>
 35#include <linux/kernel_stat.h>
 36#include <linux/mm.h>
 37#include <linux/notifier.h>
 38#include <linux/smp.h>
 39#include <linux/spinlock.h>
 40#include <linux/efi.h>
 41#include <linux/percpu.h>
 42#include <linux/bitops.h>
 43
 44#include <linux/atomic.h>
 45#include <asm/cache.h>
 46#include <asm/current.h>
 47#include <asm/delay.h>
 48#include <asm/io.h>
 49#include <asm/irq.h>
 
 50#include <asm/mca.h>
 51#include <asm/page.h>
 
 
 
 52#include <asm/processor.h>
 53#include <asm/ptrace.h>
 54#include <asm/sal.h>
 
 55#include <asm/tlbflush.h>
 56#include <asm/unistd.h>
 
 57
 58#define SMP_DEBUG 0
 59
 60#if SMP_DEBUG
 61#define Dprintk(x...)  printk(x)
 62#else
 63#define Dprintk(x...)
 64#endif
 65
 66#ifdef CONFIG_HOTPLUG_CPU
 67#ifdef CONFIG_PERMIT_BSP_REMOVE
 68#define bsp_remove_ok	1
 69#else
 70#define bsp_remove_ok	0
 71#endif
 72
 73/*
 
 
 
 
 
 
 
 74 * Global array allocated for NR_CPUS at boot time
 75 */
 76struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 77
 78/*
 79 * start_ap in head.S uses this to store current booting cpu
 80 * info.
 81 */
 82struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 83
 84#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 85
 
 
 
 86#else
 
 
 
 87#define set_brendez_area(x)
 88#endif
 89
 90
 91/*
 92 * ITC synchronization related stuff:
 93 */
 94#define MASTER	(0)
 95#define SLAVE	(SMP_CACHE_BYTES/8)
 96
 97#define NUM_ROUNDS	64	/* magic value */
 98#define NUM_ITERS	5	/* likewise */
 99
100static DEFINE_SPINLOCK(itc_sync_lock);
101static volatile unsigned long go[SLAVE + 1];
102
103#define DEBUG_ITC_SYNC	0
104
105extern void start_ap (void);
106extern unsigned long ia64_iobase;
107
108struct task_struct *task_for_booting_cpu;
109
110/*
111 * State for each CPU
112 */
113DEFINE_PER_CPU(int, cpu_state);
114
115cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
116EXPORT_SYMBOL(cpu_core_map);
117DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
118EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
119
120int smp_num_siblings = 1;
121
122/* which logical CPU number maps to which CPU (physical APIC ID) */
123volatile int ia64_cpu_to_sapicid[NR_CPUS];
124EXPORT_SYMBOL(ia64_cpu_to_sapicid);
125
126static cpumask_t cpu_callin_map;
127
128struct smp_boot_data smp_boot_data __initdata;
129
130unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
131
132char __initdata no_int_routing;
133
134unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
135
136#ifdef CONFIG_FORCE_CPEI_RETARGET
137#define CPEI_OVERRIDE_DEFAULT	(1)
138#else
139#define CPEI_OVERRIDE_DEFAULT	(0)
140#endif
141
142unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
143
144static int __init
145cmdl_force_cpei(char *str)
146{
147	int value=0;
148
149	get_option (&str, &value);
150	force_cpei_retarget = value;
151
152	return 1;
153}
154
155__setup("force_cpei=", cmdl_force_cpei);
156
157static int __init
158nointroute (char *str)
159{
160	no_int_routing = 1;
161	printk ("no_int_routing on\n");
162	return 1;
163}
164
165__setup("nointroute", nointroute);
166
167static void fix_b0_for_bsp(void)
168{
169#ifdef CONFIG_HOTPLUG_CPU
170	int cpuid;
171	static int fix_bsp_b0 = 1;
172
173	cpuid = smp_processor_id();
174
175	/*
176	 * Cache the b0 value on the first AP that comes up
177	 */
178	if (!(fix_bsp_b0 && cpuid))
179		return;
180
181	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
182	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
183
184	fix_bsp_b0 = 0;
185#endif
186}
187
188void
189sync_master (void *arg)
190{
191	unsigned long flags, i;
192
193	go[MASTER] = 0;
194
195	local_irq_save(flags);
196	{
197		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
198			while (!go[MASTER])
199				cpu_relax();
200			go[MASTER] = 0;
201			go[SLAVE] = ia64_get_itc();
202		}
203	}
204	local_irq_restore(flags);
205}
206
207/*
208 * Return the number of cycles by which our itc differs from the itc on the master
209 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
210 * negative that it is behind.
211 */
212static inline long
213get_delta (long *rt, long *master)
214{
215	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
216	unsigned long tcenter, t0, t1, tm;
217	long i;
218
219	for (i = 0; i < NUM_ITERS; ++i) {
220		t0 = ia64_get_itc();
221		go[MASTER] = 1;
222		while (!(tm = go[SLAVE]))
223			cpu_relax();
224		go[SLAVE] = 0;
225		t1 = ia64_get_itc();
226
227		if (t1 - t0 < best_t1 - best_t0)
228			best_t0 = t0, best_t1 = t1, best_tm = tm;
229	}
230
231	*rt = best_t1 - best_t0;
232	*master = best_tm - best_t0;
233
234	/* average best_t0 and best_t1 without overflow: */
235	tcenter = (best_t0/2 + best_t1/2);
236	if (best_t0 % 2 + best_t1 % 2 == 2)
237		++tcenter;
238	return tcenter - best_tm;
239}
240
241/*
242 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
243 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
244 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
245 * step).  The basic idea is for the slave to ask the master what itc value it has and to
246 * read its own itc before and after the master responds.  Each iteration gives us three
247 * timestamps:
248 *
249 *	slave		master
250 *
251 *	t0 ---\
252 *             ---\
253 *		   --->
254 *			tm
255 *		   /---
256 *	       /---
257 *	t1 <---
258 *
259 *
260 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
261 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
262 * between the slave and the master is symmetric.  Even if the interconnect were
263 * asymmetric, we would still know that the synchronization error is smaller than the
264 * roundtrip latency (t0 - t1).
265 *
266 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
267 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
268 * accurate to within a round-trip time, which is typically in the range of several
269 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
270 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
271 * than half a micro second or so.
272 */
273void
274ia64_sync_itc (unsigned int master)
275{
276	long i, delta, adj, adjust_latency = 0, done = 0;
277	unsigned long flags, rt, master_time_stamp, bound;
278#if DEBUG_ITC_SYNC
279	struct {
280		long rt;	/* roundtrip time */
281		long master;	/* master's timestamp */
282		long diff;	/* difference between midpoint and master's timestamp */
283		long lat;	/* estimate of itc adjustment latency */
284	} t[NUM_ROUNDS];
285#endif
286
287	/*
288	 * Make sure local timer ticks are disabled while we sync.  If
289	 * they were enabled, we'd have to worry about nasty issues
290	 * like setting the ITC ahead of (or a long time before) the
291	 * next scheduled tick.
292	 */
293	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
294
295	go[MASTER] = 1;
296
297	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
298		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
299		return;
300	}
301
302	while (go[MASTER])
303		cpu_relax();	/* wait for master to be ready */
304
305	spin_lock_irqsave(&itc_sync_lock, flags);
306	{
307		for (i = 0; i < NUM_ROUNDS; ++i) {
308			delta = get_delta(&rt, &master_time_stamp);
309			if (delta == 0) {
310				done = 1;	/* let's lock on to this... */
311				bound = rt;
312			}
313
314			if (!done) {
315				if (i > 0) {
316					adjust_latency += -delta;
317					adj = -delta + adjust_latency/4;
318				} else
319					adj = -delta;
320
321				ia64_set_itc(ia64_get_itc() + adj);
322			}
323#if DEBUG_ITC_SYNC
324			t[i].rt = rt;
325			t[i].master = master_time_stamp;
326			t[i].diff = delta;
327			t[i].lat = adjust_latency/4;
328#endif
329		}
330	}
331	spin_unlock_irqrestore(&itc_sync_lock, flags);
332
333#if DEBUG_ITC_SYNC
334	for (i = 0; i < NUM_ROUNDS; ++i)
335		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
336		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
337#endif
338
339	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
340	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
341}
342
343/*
344 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
345 */
346static inline void smp_setup_percpu_timer(void)
 
347{
348}
349
350static void
351smp_callin (void)
352{
353	int cpuid, phys_id, itc_master;
354	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
355	extern void ia64_init_itm(void);
356	extern volatile int time_keeper_id;
357
358#ifdef CONFIG_PERFMON
359	extern void pfm_init_percpu(void);
360#endif
361
362	cpuid = smp_processor_id();
363	phys_id = hard_smp_processor_id();
364	itc_master = time_keeper_id;
365
366	if (cpu_online(cpuid)) {
367		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
368		       phys_id, cpuid);
369		BUG();
370	}
371
372	fix_b0_for_bsp();
373
374	/*
375	 * numa_node_id() works after this.
376	 */
377	set_numa_node(cpu_to_node_map[cpuid]);
378	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
379
 
380	spin_lock(&vector_lock);
381	/* Setup the per cpu irq handling data structures */
382	__setup_vector_irq(cpuid);
383	notify_cpu_starting(cpuid);
384	set_cpu_online(cpuid, true);
385	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
386	spin_unlock(&vector_lock);
 
387
388	smp_setup_percpu_timer();
389
390	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
391
392#ifdef CONFIG_PERFMON
393	pfm_init_percpu();
394#endif
395
396	local_irq_enable();
397
398	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
399		/*
400		 * Synchronize the ITC with the BP.  Need to do this after irqs are
401		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
402		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
403		 * local_bh_enable(), which bugs out if irqs are not enabled...
404		 */
405		Dprintk("Going to syncup ITC with ITC Master.\n");
406		ia64_sync_itc(itc_master);
407	}
408
409	/*
410	 * Get our bogomips.
411	 */
412	ia64_init_itm();
413
414	/*
415	 * Delay calibration can be skipped if new processor is identical to the
416	 * previous processor.
417	 */
418	last_cpuinfo = cpu_data(cpuid - 1);
419	this_cpuinfo = local_cpu_data;
420	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
421	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
422	    last_cpuinfo->features != this_cpuinfo->features ||
423	    last_cpuinfo->revision != this_cpuinfo->revision ||
424	    last_cpuinfo->family != this_cpuinfo->family ||
425	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
426	    last_cpuinfo->model != this_cpuinfo->model)
427		calibrate_delay();
428	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
429
430	/*
431	 * Allow the master to continue.
432	 */
433	cpumask_set_cpu(cpuid, &cpu_callin_map);
434	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
435}
436
437
438/*
439 * Activate a secondary processor.  head.S calls this.
440 */
441int
442start_secondary (void *unused)
443{
444	/* Early console may use I/O ports */
445	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
446#ifndef CONFIG_PRINTK_TIME
447	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
448#endif
449	efi_map_pal_code();
450	cpu_init();
451	preempt_disable();
452	smp_callin();
453
454	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
455	return 0;
456}
457
458static int
459do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460{
461	int timeout;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462
463	task_for_booting_cpu = idle;
464	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
465
466	set_brendez_area(cpu);
467	ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
468
469	/*
470	 * Wait 10s total for the AP to start
471	 */
472	Dprintk("Waiting on callin_map ...");
473	for (timeout = 0; timeout < 100000; timeout++) {
474		if (cpumask_test_cpu(cpu, &cpu_callin_map))
475			break;  /* It has booted */
476		barrier(); /* Make sure we re-read cpu_callin_map */
477		udelay(100);
478	}
479	Dprintk("\n");
480
481	if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
482		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
483		ia64_cpu_to_sapicid[cpu] = -1;
484		set_cpu_online(cpu, false);  /* was set in smp_callin() */
485		return -EINVAL;
486	}
487	return 0;
488}
489
490static int __init
491decay (char *str)
492{
493	int ticks;
494	get_option (&str, &ticks);
495	return 1;
496}
497
498__setup("decay=", decay);
499
500/*
501 * Initialize the logical CPU number to SAPICID mapping
502 */
503void __init
504smp_build_cpu_map (void)
505{
506	int sapicid, cpu, i;
507	int boot_cpu_id = hard_smp_processor_id();
508
509	for (cpu = 0; cpu < NR_CPUS; cpu++) {
510		ia64_cpu_to_sapicid[cpu] = -1;
511	}
512
513	ia64_cpu_to_sapicid[0] = boot_cpu_id;
514	init_cpu_present(cpumask_of(0));
 
515	set_cpu_possible(0, true);
516	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
517		sapicid = smp_boot_data.cpu_phys_id[i];
518		if (sapicid == boot_cpu_id)
519			continue;
520		set_cpu_present(cpu, true);
521		set_cpu_possible(cpu, true);
522		ia64_cpu_to_sapicid[cpu] = sapicid;
523		cpu++;
524	}
525}
526
527/*
528 * Cycle through the APs sending Wakeup IPIs to boot each.
529 */
530void __init
531smp_prepare_cpus (unsigned int max_cpus)
532{
533	int boot_cpu_id = hard_smp_processor_id();
534
535	/*
536	 * Initialize the per-CPU profiling counter/multiplier
537	 */
538
539	smp_setup_percpu_timer();
540
541	cpumask_set_cpu(0, &cpu_callin_map);
 
 
 
 
542
543	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
544	ia64_cpu_to_sapicid[0] = boot_cpu_id;
545
546	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
547
548	current_thread_info()->cpu = 0;
549
550	/*
551	 * If SMP should be disabled, then really disable it!
552	 */
553	if (!max_cpus) {
554		printk(KERN_INFO "SMP mode deactivated.\n");
555		init_cpu_online(cpumask_of(0));
556		init_cpu_present(cpumask_of(0));
557		init_cpu_possible(cpumask_of(0));
558		return;
559	}
560}
561
562void smp_prepare_boot_cpu(void)
563{
564	set_cpu_online(smp_processor_id(), true);
565	cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
566	set_numa_node(cpu_to_node_map[smp_processor_id()]);
567	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 
568}
569
570#ifdef CONFIG_HOTPLUG_CPU
571static inline void
572clear_cpu_sibling_map(int cpu)
573{
574	int i;
575
576	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
577		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
578	for_each_cpu(i, &cpu_core_map[cpu])
579		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
580
581	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
582}
583
584static void
585remove_siblinginfo(int cpu)
586{
587	int last = 0;
588
589	if (cpu_data(cpu)->threads_per_core == 1 &&
590	    cpu_data(cpu)->cores_per_socket == 1) {
591		cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
592		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
593		return;
594	}
595
596	last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
597
598	/* remove it from all sibling map's */
599	clear_cpu_sibling_map(cpu);
600}
601
602extern void fixup_irqs(void);
603
604int migrate_platform_irqs(unsigned int cpu)
605{
606	int new_cpei_cpu;
607	struct irq_data *data = NULL;
608	const struct cpumask *mask;
609	int 		retval = 0;
610
611	/*
612	 * dont permit CPEI target to removed.
613	 */
614	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
615		printk ("CPU (%d) is CPEI Target\n", cpu);
616		if (can_cpei_retarget()) {
617			/*
618			 * Now re-target the CPEI to a different processor
619			 */
620			new_cpei_cpu = cpumask_any(cpu_online_mask);
621			mask = cpumask_of(new_cpei_cpu);
622			set_cpei_target_cpu(new_cpei_cpu);
623			data = irq_get_irq_data(ia64_cpe_irq);
624			/*
625			 * Switch for now, immediately, we need to do fake intr
626			 * as other interrupts, but need to study CPEI behaviour with
627			 * polling before making changes.
628			 */
629			if (data && data->chip) {
630				data->chip->irq_disable(data);
631				data->chip->irq_set_affinity(data, mask, false);
632				data->chip->irq_enable(data);
633				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
634			}
635		}
636		if (!data) {
637			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
638			retval = -EBUSY;
639		}
640	}
641	return retval;
642}
643
644/* must be called with cpucontrol mutex held */
645int __cpu_disable(void)
646{
647	int cpu = smp_processor_id();
648
649	/*
650	 * dont permit boot processor for now
651	 */
652	if (cpu == 0 && !bsp_remove_ok) {
653		printk ("Your platform does not support removal of BSP\n");
654		return (-EBUSY);
655	}
656
657	set_cpu_online(cpu, false);
 
 
 
 
 
658
659	if (migrate_platform_irqs(cpu)) {
660		set_cpu_online(cpu, true);
661		return -EBUSY;
662	}
663
664	remove_siblinginfo(cpu);
665	fixup_irqs();
666	local_flush_tlb_all();
667	cpumask_clear_cpu(cpu, &cpu_callin_map);
668	return 0;
669}
670
671void __cpu_die(unsigned int cpu)
672{
673	unsigned int i;
674
675	for (i = 0; i < 100; i++) {
676		/* They ack this in play_dead by setting CPU_DEAD */
677		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
678		{
679			printk ("CPU %d is now offline\n", cpu);
680			return;
681		}
682		msleep(100);
683	}
684 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
685}
686#endif /* CONFIG_HOTPLUG_CPU */
687
688void
689smp_cpus_done (unsigned int dummy)
690{
691	int cpu;
692	unsigned long bogosum = 0;
693
694	/*
695	 * Allow the user to impress friends.
696	 */
697
698	for_each_online_cpu(cpu) {
699		bogosum += cpu_data(cpu)->loops_per_jiffy;
700	}
701
702	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
703	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
704}
705
706static inline void set_cpu_sibling_map(int cpu)
 
707{
708	int i;
709
710	for_each_online_cpu(i) {
711		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
712			cpumask_set_cpu(i, &cpu_core_map[cpu]);
713			cpumask_set_cpu(cpu, &cpu_core_map[i]);
714			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
715				cpumask_set_cpu(i,
716						&per_cpu(cpu_sibling_map, cpu));
717				cpumask_set_cpu(cpu,
718						&per_cpu(cpu_sibling_map, i));
719			}
720		}
721	}
722}
723
724int
725__cpu_up(unsigned int cpu, struct task_struct *tidle)
726{
727	int ret;
728	int sapicid;
729
730	sapicid = ia64_cpu_to_sapicid[cpu];
731	if (sapicid == -1)
732		return -EINVAL;
733
734	/*
735	 * Already booted cpu? not valid anymore since we dont
736	 * do idle loop tightspin anymore.
737	 */
738	if (cpumask_test_cpu(cpu, &cpu_callin_map))
739		return -EINVAL;
740
741	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
742	/* Processor goes to start_secondary(), sets online flag */
743	ret = do_boot_cpu(sapicid, cpu, tidle);
744	if (ret < 0)
745		return ret;
746
747	if (cpu_data(cpu)->threads_per_core == 1 &&
748	    cpu_data(cpu)->cores_per_socket == 1) {
749		cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
750		cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
751		return 0;
752	}
753
754	set_cpu_sibling_map(cpu);
755
756	return 0;
757}
758
759/*
760 * Assume that CPUs have been discovered by some platform-dependent interface.  For
761 * SoftSDV/Lion, that would be ACPI.
762 *
763 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
764 */
765void __init
766init_smp_config(void)
767{
768	struct fptr {
769		unsigned long fp;
770		unsigned long gp;
771	} *ap_startup;
772	long sal_ret;
773
774	/* Tell SAL where to drop the APs.  */
775	ap_startup = (struct fptr *) start_ap;
776	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
777				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
778	if (sal_ret < 0)
779		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
780		       ia64_sal_strerror(sal_ret));
781}
782
783/*
784 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
785 * information related to logical execution units in per_cpu_data structure.
786 */
787void identify_siblings(struct cpuinfo_ia64 *c)
 
788{
789	long status;
790	u16 pltid;
791	pal_logical_to_physical_t info;
792
793	status = ia64_pal_logical_to_phys(-1, &info);
794	if (status != PAL_STATUS_SUCCESS) {
795		if (status != PAL_STATUS_UNIMPLEMENTED) {
796			printk(KERN_ERR
797				"ia64_pal_logical_to_phys failed with %ld\n",
798				status);
799			return;
800		}
801
802		info.overview_ppid = 0;
803		info.overview_cpp  = 1;
804		info.overview_tpc  = 1;
805	}
806
807	status = ia64_sal_physical_id_info(&pltid);
808	if (status != PAL_STATUS_SUCCESS) {
809		if (status != PAL_STATUS_UNIMPLEMENTED)
810			printk(KERN_ERR
811				"ia64_sal_pltid failed with %ld\n",
812				status);
813		return;
814	}
815
816	c->socket_id =  (pltid << 8) | info.overview_ppid;
817
818	if (info.overview_cpp == 1 && info.overview_tpc == 1)
819		return;
820
821	c->cores_per_socket = info.overview_cpp;
822	c->threads_per_core = info.overview_tpc;
823	c->num_log = info.overview_num_log;
824
825	c->core_id = info.log1_cid;
826	c->thread_id = info.log1_tid;
827}
828
829/*
830 * returns non zero, if multi-threading is enabled
831 * on at least one physical package. Due to hotplug cpu
832 * and (maxcpus=), all threads may not necessarily be enabled
833 * even though the processor supports multi-threading.
834 */
835int is_multithreading_enabled(void)
836{
837	int i, j;
838
839	for_each_present_cpu(i) {
840		for_each_present_cpu(j) {
841			if (j == i)
842				continue;
843			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
844				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
845					return 1;
846			}
847		}
848	}
849	return 0;
850}
851EXPORT_SYMBOL_GPL(is_multithreading_enabled);