Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
 
   8#include <linux/mm.h>
 
 
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
  24#include <linux/module.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/security.h>
  28#include <linux/backing-dev.h>
  29#include <linux/mutex.h>
  30#include <linux/capability.h>
  31#include <linux/syscalls.h>
  32#include <linux/memcontrol.h>
  33#include <linux/poll.h>
  34#include <linux/oom.h>
 
 
 
 
 
 
 
 
  35
  36#include <asm/pgtable.h>
  37#include <asm/tlbflush.h>
  38#include <linux/swapops.h>
  39#include <linux/page_cgroup.h>
 
 
  40
  41static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  42				 unsigned char);
  43static void free_swap_count_continuations(struct swap_info_struct *);
  44static sector_t map_swap_entry(swp_entry_t, struct block_device**);
 
 
 
 
 
 
 
 
  45
  46static DEFINE_SPINLOCK(swap_lock);
  47static unsigned int nr_swapfiles;
  48long nr_swap_pages;
 
 
 
 
 
 
 
  49long total_swap_pages;
  50static int least_priority;
 
 
 
 
  51
  52static const char Bad_file[] = "Bad swap file entry ";
  53static const char Unused_file[] = "Unused swap file entry ";
  54static const char Bad_offset[] = "Bad swap offset entry ";
  55static const char Unused_offset[] = "Unused swap offset entry ";
  56
  57static struct swap_list_t swap_list = {-1, -1};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59static struct swap_info_struct *swap_info[MAX_SWAPFILES];
  60
  61static DEFINE_MUTEX(swapon_mutex);
  62
  63static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  64/* Activity counter to indicate that a swapon or swapoff has occurred */
  65static atomic_t proc_poll_event = ATOMIC_INIT(0);
  66
 
 
 
 
 
 
 
 
 
 
  67static inline unsigned char swap_count(unsigned char ent)
  68{
  69	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70}
  71
  72/* returns 1 if swap entry is freed */
  73static int
  74__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 
 
 
 
  75{
  76	swp_entry_t entry = swp_entry(si->type, offset);
  77	struct page *page;
  78	int ret = 0;
 
 
 
  79
  80	page = find_get_page(&swapper_space, entry.val);
  81	if (!page)
  82		return 0;
 
 
 
 
  83	/*
  84	 * This function is called from scan_swap_map() and it's called
  85	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  86	 * We have to use trylock for avoiding deadlock. This is a special
  87	 * case and you should use try_to_free_swap() with explicit lock_page()
  88	 * in usual operations.
  89	 */
  90	if (trylock_page(page)) {
  91		ret = try_to_free_swap(page);
  92		unlock_page(page);
  93	}
  94	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95	return ret;
  96}
  97
 
 
 
 
 
 
 
 
 
 
 
 
  98/*
  99 * swapon tell device that all the old swap contents can be discarded,
 100 * to allow the swap device to optimize its wear-levelling.
 101 */
 102static int discard_swap(struct swap_info_struct *si)
 103{
 104	struct swap_extent *se;
 105	sector_t start_block;
 106	sector_t nr_blocks;
 107	int err = 0;
 108
 109	/* Do not discard the swap header page! */
 110	se = &si->first_swap_extent;
 111	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 112	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 113	if (nr_blocks) {
 114		err = blkdev_issue_discard(si->bdev, start_block,
 115				nr_blocks, GFP_KERNEL, 0);
 116		if (err)
 117			return err;
 118		cond_resched();
 119	}
 120
 121	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 122		start_block = se->start_block << (PAGE_SHIFT - 9);
 123		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 124
 125		err = blkdev_issue_discard(si->bdev, start_block,
 126				nr_blocks, GFP_KERNEL, 0);
 127		if (err)
 128			break;
 129
 130		cond_resched();
 131	}
 132	return err;		/* That will often be -EOPNOTSUPP */
 133}
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135/*
 136 * swap allocation tell device that a cluster of swap can now be discarded,
 137 * to allow the swap device to optimize its wear-levelling.
 138 */
 139static void discard_swap_cluster(struct swap_info_struct *si,
 140				 pgoff_t start_page, pgoff_t nr_pages)
 141{
 142	struct swap_extent *se = si->curr_swap_extent;
 143	int found_extent = 0;
 144
 145	while (nr_pages) {
 146		struct list_head *lh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148		if (se->start_page <= start_page &&
 149		    start_page < se->start_page + se->nr_pages) {
 150			pgoff_t offset = start_page - se->start_page;
 151			sector_t start_block = se->start_block + offset;
 152			sector_t nr_blocks = se->nr_pages - offset;
 153
 154			if (nr_blocks > nr_pages)
 155				nr_blocks = nr_pages;
 156			start_page += nr_blocks;
 157			nr_pages -= nr_blocks;
 158
 159			if (!found_extent++)
 160				si->curr_swap_extent = se;
 161
 162			start_block <<= PAGE_SHIFT - 9;
 163			nr_blocks <<= PAGE_SHIFT - 9;
 164			if (blkdev_issue_discard(si->bdev, start_block,
 165				    nr_blocks, GFP_NOIO, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166				break;
 167		}
 168
 169		lh = se->list.next;
 170		se = list_entry(lh, struct swap_extent, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172}
 173
 174static int wait_for_discard(void *word)
 175{
 176	schedule();
 177	return 0;
 
 
 
 178}
 179
 180#define SWAPFILE_CLUSTER	256
 181#define LATENCY_LIMIT		256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183static unsigned long scan_swap_map(struct swap_info_struct *si,
 184				   unsigned char usage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185{
 186	unsigned long offset;
 187	unsigned long scan_base;
 188	unsigned long last_in_cluster = 0;
 189	int latency_ration = LATENCY_LIMIT;
 190	int found_free_cluster = 0;
 
 
 191
 192	/*
 193	 * We try to cluster swap pages by allocating them sequentially
 194	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 195	 * way, however, we resort to first-free allocation, starting
 196	 * a new cluster.  This prevents us from scattering swap pages
 197	 * all over the entire swap partition, so that we reduce
 198	 * overall disk seek times between swap pages.  -- sct
 199	 * But we do now try to find an empty cluster.  -Andrea
 200	 * And we let swap pages go all over an SSD partition.  Hugh
 201	 */
 202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203	si->flags += SWP_SCANNING;
 204	scan_base = offset = si->cluster_next;
 
 
 
 205
 206	if (unlikely(!si->cluster_nr--)) {
 207		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 208			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 209			goto checks;
 210		}
 211		if (si->flags & SWP_DISCARDABLE) {
 212			/*
 213			 * Start range check on racing allocations, in case
 214			 * they overlap the cluster we eventually decide on
 215			 * (we scan without swap_lock to allow preemption).
 216			 * It's hardly conceivable that cluster_nr could be
 217			 * wrapped during our scan, but don't depend on it.
 218			 */
 219			if (si->lowest_alloc)
 220				goto checks;
 221			si->lowest_alloc = si->max;
 222			si->highest_alloc = 0;
 223		}
 224		spin_unlock(&swap_lock);
 225
 226		/*
 227		 * If seek is expensive, start searching for new cluster from
 228		 * start of partition, to minimize the span of allocated swap.
 229		 * But if seek is cheap, search from our current position, so
 230		 * that swap is allocated from all over the partition: if the
 231		 * Flash Translation Layer only remaps within limited zones,
 232		 * we don't want to wear out the first zone too quickly.
 233		 */
 234		if (!(si->flags & SWP_SOLIDSTATE))
 235			scan_base = offset = si->lowest_bit;
 236		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 237
 238		/* Locate the first empty (unaligned) cluster */
 239		for (; last_in_cluster <= si->highest_bit; offset++) {
 240			if (si->swap_map[offset])
 241				last_in_cluster = offset + SWAPFILE_CLUSTER;
 242			else if (offset == last_in_cluster) {
 243				spin_lock(&swap_lock);
 244				offset -= SWAPFILE_CLUSTER - 1;
 245				si->cluster_next = offset;
 246				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 247				found_free_cluster = 1;
 248				goto checks;
 249			}
 250			if (unlikely(--latency_ration < 0)) {
 251				cond_resched();
 252				latency_ration = LATENCY_LIMIT;
 253			}
 254		}
 255
 256		offset = si->lowest_bit;
 257		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 258
 259		/* Locate the first empty (unaligned) cluster */
 260		for (; last_in_cluster < scan_base; offset++) {
 261			if (si->swap_map[offset])
 262				last_in_cluster = offset + SWAPFILE_CLUSTER;
 263			else if (offset == last_in_cluster) {
 264				spin_lock(&swap_lock);
 265				offset -= SWAPFILE_CLUSTER - 1;
 266				si->cluster_next = offset;
 267				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 268				found_free_cluster = 1;
 269				goto checks;
 270			}
 271			if (unlikely(--latency_ration < 0)) {
 272				cond_resched();
 273				latency_ration = LATENCY_LIMIT;
 274			}
 275		}
 276
 277		offset = scan_base;
 278		spin_lock(&swap_lock);
 279		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 280		si->lowest_alloc = 0;
 281	}
 282
 283checks:
 284	if (!(si->flags & SWP_WRITEOK))
 285		goto no_page;
 286	if (!si->highest_bit)
 287		goto no_page;
 288	if (offset > si->highest_bit)
 289		scan_base = offset = si->lowest_bit;
 290
 291	/* reuse swap entry of cache-only swap if not busy. */
 292	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 293		int swap_was_freed;
 294		spin_unlock(&swap_lock);
 295		swap_was_freed = __try_to_reclaim_swap(si, offset);
 296		spin_lock(&swap_lock);
 297		/* entry was freed successfully, try to use this again */
 298		if (swap_was_freed)
 299			goto checks;
 300		goto scan; /* check next one */
 301	}
 302
 303	if (si->swap_map[offset])
 304		goto scan;
 
 
 
 
 
 305
 306	if (offset == si->lowest_bit)
 307		si->lowest_bit++;
 308	if (offset == si->highest_bit)
 309		si->highest_bit--;
 310	si->inuse_pages++;
 311	if (si->inuse_pages == si->pages) {
 312		si->lowest_bit = si->max;
 313		si->highest_bit = 0;
 
 
 
 
 
 
 
 
 
 314	}
 315	si->swap_map[offset] = usage;
 316	si->cluster_next = offset + 1;
 317	si->flags -= SWP_SCANNING;
 318
 319	if (si->lowest_alloc) {
 320		/*
 321		 * Only set when SWP_DISCARDABLE, and there's a scan
 322		 * for a free cluster in progress or just completed.
 323		 */
 324		if (found_free_cluster) {
 325			/*
 326			 * To optimize wear-levelling, discard the
 327			 * old data of the cluster, taking care not to
 328			 * discard any of its pages that have already
 329			 * been allocated by racing tasks (offset has
 330			 * already stepped over any at the beginning).
 331			 */
 332			if (offset < si->highest_alloc &&
 333			    si->lowest_alloc <= last_in_cluster)
 334				last_in_cluster = si->lowest_alloc - 1;
 335			si->flags |= SWP_DISCARDING;
 336			spin_unlock(&swap_lock);
 337
 338			if (offset < last_in_cluster)
 339				discard_swap_cluster(si, offset,
 340					last_in_cluster - offset + 1);
 341
 342			spin_lock(&swap_lock);
 343			si->lowest_alloc = 0;
 344			si->flags &= ~SWP_DISCARDING;
 345
 346			smp_mb();	/* wake_up_bit advises this */
 347			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
 
 
 
 
 
 348
 349		} else if (si->flags & SWP_DISCARDING) {
 350			/*
 351			 * Delay using pages allocated by racing tasks
 352			 * until the whole discard has been issued. We
 353			 * could defer that delay until swap_writepage,
 354			 * but it's easier to keep this self-contained.
 355			 */
 356			spin_unlock(&swap_lock);
 357			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
 358				wait_for_discard, TASK_UNINTERRUPTIBLE);
 359			spin_lock(&swap_lock);
 360		} else {
 361			/*
 362			 * Note pages allocated by racing tasks while
 363			 * scan for a free cluster is in progress, so
 364			 * that its final discard can exclude them.
 365			 */
 366			if (offset < si->lowest_alloc)
 367				si->lowest_alloc = offset;
 368			if (offset > si->highest_alloc)
 369				si->highest_alloc = offset;
 370		}
 371	}
 372	return offset;
 
 
 
 
 
 373
 374scan:
 375	spin_unlock(&swap_lock);
 376	while (++offset <= si->highest_bit) {
 377		if (!si->swap_map[offset]) {
 378			spin_lock(&swap_lock);
 379			goto checks;
 380		}
 381		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 382			spin_lock(&swap_lock);
 383			goto checks;
 384		}
 385		if (unlikely(--latency_ration < 0)) {
 386			cond_resched();
 387			latency_ration = LATENCY_LIMIT;
 
 388		}
 
 
 389	}
 390	offset = si->lowest_bit;
 391	while (++offset < scan_base) {
 392		if (!si->swap_map[offset]) {
 393			spin_lock(&swap_lock);
 394			goto checks;
 395		}
 396		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 397			spin_lock(&swap_lock);
 398			goto checks;
 399		}
 400		if (unlikely(--latency_ration < 0)) {
 401			cond_resched();
 402			latency_ration = LATENCY_LIMIT;
 
 403		}
 
 
 
 404	}
 405	spin_lock(&swap_lock);
 406
 407no_page:
 408	si->flags -= SWP_SCANNING;
 409	return 0;
 410}
 411
 412swp_entry_t get_swap_page(void)
 413{
 414	struct swap_info_struct *si;
 415	pgoff_t offset;
 416	int type, next;
 417	int wrapped = 0;
 
 
 418
 419	spin_lock(&swap_lock);
 420	if (nr_swap_pages <= 0)
 
 
 
 421		goto noswap;
 422	nr_swap_pages--;
 423
 424	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 425		si = swap_info[type];
 426		next = si->next;
 427		if (next < 0 ||
 428		    (!wrapped && si->prio != swap_info[next]->prio)) {
 429			next = swap_list.head;
 430			wrapped++;
 431		}
 432
 433		if (!si->highest_bit)
 434			continue;
 435		if (!(si->flags & SWP_WRITEOK))
 436			continue;
 437
 438		swap_list.next = next;
 439		/* This is called for allocating swap entry for cache */
 440		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 441		if (offset) {
 442			spin_unlock(&swap_lock);
 443			return swp_entry(type, offset);
 444		}
 445		next = swap_list.next;
 446	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447
 448	nr_swap_pages++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449noswap:
 450	spin_unlock(&swap_lock);
 451	return (swp_entry_t) {0};
 452}
 453
 454/* The only caller of this function is now susupend routine */
 455swp_entry_t get_swap_page_of_type(int type)
 456{
 457	struct swap_info_struct *si;
 458	pgoff_t offset;
 459
 460	spin_lock(&swap_lock);
 461	si = swap_info[type];
 462	if (si && (si->flags & SWP_WRITEOK)) {
 463		nr_swap_pages--;
 464		/* This is called for allocating swap entry, not cache */
 465		offset = scan_swap_map(si, 1);
 466		if (offset) {
 467			spin_unlock(&swap_lock);
 468			return swp_entry(type, offset);
 469		}
 470		nr_swap_pages++;
 471	}
 472	spin_unlock(&swap_lock);
 473	return (swp_entry_t) {0};
 474}
 475
 476static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 477{
 478	struct swap_info_struct *p;
 479	unsigned long offset, type;
 480
 481	if (!entry.val)
 482		goto out;
 483	type = swp_type(entry);
 484	if (type >= nr_swapfiles)
 485		goto bad_nofile;
 486	p = swap_info[type];
 487	if (!(p->flags & SWP_USED))
 488		goto bad_device;
 489	offset = swp_offset(entry);
 490	if (offset >= p->max)
 491		goto bad_offset;
 492	if (!p->swap_map[offset])
 493		goto bad_free;
 494	spin_lock(&swap_lock);
 495	return p;
 496
 497bad_free:
 498	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
 499	goto out;
 500bad_offset:
 501	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
 502	goto out;
 503bad_device:
 504	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
 505	goto out;
 506bad_nofile:
 507	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
 508out:
 509	return NULL;
 510}
 511
 512static unsigned char swap_entry_free(struct swap_info_struct *p,
 513				     swp_entry_t entry, unsigned char usage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514{
 515	unsigned long offset = swp_offset(entry);
 516	unsigned char count;
 517	unsigned char has_cache;
 518
 519	count = p->swap_map[offset];
 
 520	has_cache = count & SWAP_HAS_CACHE;
 521	count &= ~SWAP_HAS_CACHE;
 522
 523	if (usage == SWAP_HAS_CACHE) {
 524		VM_BUG_ON(!has_cache);
 525		has_cache = 0;
 526	} else if (count == SWAP_MAP_SHMEM) {
 527		/*
 528		 * Or we could insist on shmem.c using a special
 529		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 530		 */
 531		count = 0;
 532	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 533		if (count == COUNT_CONTINUED) {
 534			if (swap_count_continued(p, offset, count))
 535				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 536			else
 537				count = SWAP_MAP_MAX;
 538		} else
 539			count--;
 540	}
 541
 542	if (!count)
 543		mem_cgroup_uncharge_swap(entry);
 544
 545	usage = count | has_cache;
 546	p->swap_map[offset] = usage;
 
 
 
 547
 548	/* free if no reference */
 549	if (!usage) {
 550		struct gendisk *disk = p->bdev->bd_disk;
 551		if (offset < p->lowest_bit)
 552			p->lowest_bit = offset;
 553		if (offset > p->highest_bit)
 554			p->highest_bit = offset;
 555		if (swap_list.next >= 0 &&
 556		    p->prio > swap_info[swap_list.next]->prio)
 557			swap_list.next = p->type;
 558		nr_swap_pages++;
 559		p->inuse_pages--;
 560		if ((p->flags & SWP_BLKDEV) &&
 561				disk->fops->swap_slot_free_notify)
 562			disk->fops->swap_slot_free_notify(p->bdev, offset);
 563	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565	return usage;
 566}
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568/*
 569 * Caller has made sure that the swapdevice corresponding to entry
 570 * is still around or has not been recycled.
 571 */
 572void swap_free(swp_entry_t entry)
 573{
 574	struct swap_info_struct *p;
 
 
 575
 576	p = swap_info_get(entry);
 577	if (p) {
 578		swap_entry_free(p, entry, 1);
 579		spin_unlock(&swap_lock);
 
 
 
 
 
 580	}
 581}
 582
 583/*
 584 * Called after dropping swapcache to decrease refcnt to swap entries.
 585 */
 586void swapcache_free(swp_entry_t entry, struct page *page)
 587{
 588	struct swap_info_struct *p;
 589	unsigned char count;
 
 
 590
 591	p = swap_info_get(entry);
 592	if (p) {
 593		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 594		if (page)
 595			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 596		spin_unlock(&swap_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597	}
 
 
 
 
 
 
 
 
 
 
 598}
 599
 600/*
 601 * How many references to page are currently swapped out?
 602 * This does not give an exact answer when swap count is continued,
 603 * but does include the high COUNT_CONTINUED flag to allow for that.
 604 */
 605static inline int page_swapcount(struct page *page)
 606{
 607	int count = 0;
 608	struct swap_info_struct *p;
 609	swp_entry_t entry;
 610
 611	entry.val = page_private(page);
 612	p = swap_info_get(entry);
 613	if (p) {
 614		count = swap_count(p->swap_map[swp_offset(entry)]);
 615		spin_unlock(&swap_lock);
 616	}
 617	return count;
 618}
 619
 620/*
 621 * We can write to an anon page without COW if there are no other references
 622 * to it.  And as a side-effect, free up its swap: because the old content
 623 * on disk will never be read, and seeking back there to write new content
 624 * later would only waste time away from clustering.
 625 */
 626int reuse_swap_page(struct page *page)
 627{
 628	int count;
 
 
 
 
 
 629
 630	VM_BUG_ON(!PageLocked(page));
 631	if (unlikely(PageKsm(page)))
 632		return 0;
 633	count = page_mapcount(page);
 634	if (count <= 1 && PageSwapCache(page)) {
 635		count += page_swapcount(page);
 636		if (count == 1 && !PageWriteback(page)) {
 637			delete_from_swap_cache(page);
 638			SetPageDirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639		}
 640	}
 641	return count <= 1;
 
 
 642}
 643
 644/*
 645 * If swap is getting full, or if there are no more mappings of this page,
 646 * then try_to_free_swap is called to free its swap space.
 647 */
 648int try_to_free_swap(struct page *page)
 649{
 650	VM_BUG_ON(!PageLocked(page));
 
 651
 652	if (!PageSwapCache(page))
 653		return 0;
 654	if (PageWriteback(page))
 655		return 0;
 656	if (page_swapcount(page))
 657		return 0;
 
 
 
 
 
 
 
 
 
 
 
 658
 659	/*
 660	 * Once hibernation has begun to create its image of memory,
 661	 * there's a danger that one of the calls to try_to_free_swap()
 662	 * - most probably a call from __try_to_reclaim_swap() while
 663	 * hibernation is allocating its own swap pages for the image,
 664	 * but conceivably even a call from memory reclaim - will free
 665	 * the swap from a page which has already been recorded in the
 666	 * image as a clean swapcache page, and then reuse its swap for
 667	 * another page of the image.  On waking from hibernation, the
 668	 * original page might be freed under memory pressure, then
 669	 * later read back in from swap, now with the wrong data.
 670	 *
 671	 * Hibernation clears bits from gfp_allowed_mask to prevent
 672	 * memory reclaim from writing to disk, so check that here.
 673	 */
 674	if (!(gfp_allowed_mask & __GFP_IO))
 675		return 0;
 676
 677	delete_from_swap_cache(page);
 678	SetPageDirty(page);
 679	return 1;
 680}
 681
 682/*
 683 * Free the swap entry like above, but also try to
 684 * free the page cache entry if it is the last user.
 
 
 
 
 
 685 */
 686int free_swap_and_cache(swp_entry_t entry)
 687{
 688	struct swap_info_struct *p;
 689	struct page *page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	if (non_swap_entry(entry))
 692		return 1;
 693
 694	p = swap_info_get(entry);
 695	if (p) {
 696		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 697			page = find_get_page(&swapper_space, entry.val);
 698			if (page && !trylock_page(page)) {
 699				page_cache_release(page);
 700				page = NULL;
 701			}
 702		}
 703		spin_unlock(&swap_lock);
 704	}
 705	if (page) {
 706		/*
 707		 * Not mapped elsewhere, or swap space full? Free it!
 708		 * Also recheck PageSwapCache now page is locked (above).
 709		 */
 710		if (PageSwapCache(page) && !PageWriteback(page) &&
 711				(!page_mapped(page) || vm_swap_full())) {
 712			delete_from_swap_cache(page);
 713			SetPageDirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714		}
 715		unlock_page(page);
 716		page_cache_release(page);
 717	}
 718	return p != NULL;
 
 
 719}
 720
 721#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 722/**
 723 * mem_cgroup_count_swap_user - count the user of a swap entry
 724 * @ent: the swap entry to be checked
 725 * @pagep: the pointer for the swap cache page of the entry to be stored
 726 *
 727 * Returns the number of the user of the swap entry. The number is valid only
 728 * for swaps of anonymous pages.
 729 * If the entry is found on swap cache, the page is stored to pagep with
 730 * refcount of it being incremented.
 731 */
 732int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
 733{
 734	struct page *page;
 735	struct swap_info_struct *p;
 736	int count = 0;
 737
 738	page = find_get_page(&swapper_space, ent.val);
 739	if (page)
 740		count += page_mapcount(page);
 741	p = swap_info_get(ent);
 742	if (p) {
 743		count += swap_count(p->swap_map[swp_offset(ent)]);
 744		spin_unlock(&swap_lock);
 745	}
 746
 747	*pagep = page;
 748	return count;
 
 
 
 
 
 749}
 750#endif
 751
 752#ifdef CONFIG_HIBERNATION
 753/*
 754 * Find the swap type that corresponds to given device (if any).
 755 *
 756 * @offset - number of the PAGE_SIZE-sized block of the device, starting
 757 * from 0, in which the swap header is expected to be located.
 758 *
 759 * This is needed for the suspend to disk (aka swsusp).
 760 */
 761int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
 762{
 763	struct block_device *bdev = NULL;
 764	int type;
 765
 766	if (device)
 767		bdev = bdget(device);
 768
 769	spin_lock(&swap_lock);
 770	for (type = 0; type < nr_swapfiles; type++) {
 771		struct swap_info_struct *sis = swap_info[type];
 772
 773		if (!(sis->flags & SWP_WRITEOK))
 774			continue;
 775
 776		if (!bdev) {
 777			if (bdev_p)
 778				*bdev_p = bdgrab(sis->bdev);
 779
 780			spin_unlock(&swap_lock);
 781			return type;
 782		}
 783		if (bdev == sis->bdev) {
 784			struct swap_extent *se = &sis->first_swap_extent;
 785
 786			if (se->start_block == offset) {
 787				if (bdev_p)
 788					*bdev_p = bdgrab(sis->bdev);
 789
 790				spin_unlock(&swap_lock);
 791				bdput(bdev);
 792				return type;
 793			}
 794		}
 795	}
 796	spin_unlock(&swap_lock);
 797	if (bdev)
 798		bdput(bdev);
 
 
 
 
 
 
 
 
 799
 
 
 
 
 
 
 
 800	return -ENODEV;
 801}
 802
 803/*
 804 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 805 * corresponding to given index in swap_info (swap type).
 806 */
 807sector_t swapdev_block(int type, pgoff_t offset)
 808{
 809	struct block_device *bdev;
 
 810
 811	if ((unsigned int)type >= nr_swapfiles)
 812		return 0;
 813	if (!(swap_info[type]->flags & SWP_WRITEOK))
 814		return 0;
 815	return map_swap_entry(swp_entry(type, offset), &bdev);
 816}
 817
 818/*
 819 * Return either the total number of swap pages of given type, or the number
 820 * of free pages of that type (depending on @free)
 821 *
 822 * This is needed for software suspend
 823 */
 824unsigned int count_swap_pages(int type, int free)
 825{
 826	unsigned int n = 0;
 827
 828	spin_lock(&swap_lock);
 829	if ((unsigned int)type < nr_swapfiles) {
 830		struct swap_info_struct *sis = swap_info[type];
 831
 
 832		if (sis->flags & SWP_WRITEOK) {
 833			n = sis->pages;
 834			if (free)
 835				n -= sis->inuse_pages;
 836		}
 
 837	}
 838	spin_unlock(&swap_lock);
 839	return n;
 840}
 841#endif /* CONFIG_HIBERNATION */
 842
 
 
 
 
 
 843/*
 844 * No need to decide whether this PTE shares the swap entry with others,
 845 * just let do_wp_page work it out if a write is requested later - to
 846 * force COW, vm_page_prot omits write permission from any private vma.
 847 */
 848static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 849		unsigned long addr, swp_entry_t entry, struct page *page)
 850{
 851	struct mem_cgroup *ptr;
 
 852	spinlock_t *ptl;
 853	pte_t *pte;
 
 854	int ret = 1;
 855
 856	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
 857		ret = -ENOMEM;
 858		goto out_nolock;
 
 
 
 
 859	}
 860
 
 
 
 
 861	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 862	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
 863		if (ret > 0)
 864			mem_cgroup_cancel_charge_swapin(ptr);
 865		ret = 0;
 866		goto out;
 867	}
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 870	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 871	get_page(page);
 872	set_pte_at(vma->vm_mm, addr, pte,
 873		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
 874	page_add_anon_rmap(page, vma, addr);
 875	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876	swap_free(entry);
 877	/*
 878	 * Move the page to the active list so it is not
 879	 * immediately swapped out again after swapon.
 880	 */
 881	activate_page(page);
 882out:
 883	pte_unmap_unlock(pte, ptl);
 884out_nolock:
 
 
 
 
 885	return ret;
 886}
 887
 888static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 889				unsigned long addr, unsigned long end,
 890				swp_entry_t entry, struct page *page)
 891{
 892	pte_t swp_pte = swp_entry_to_pte(entry);
 893	pte_t *pte;
 894	int ret = 0;
 895
 896	/*
 897	 * We don't actually need pte lock while scanning for swp_pte: since
 898	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
 899	 * page table while we're scanning; though it could get zapped, and on
 900	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
 901	 * of unmatched parts which look like swp_pte, so unuse_pte must
 902	 * recheck under pte lock.  Scanning without pte lock lets it be
 903	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
 904	 */
 905	pte = pte_offset_map(pmd, addr);
 906	do {
 907		/*
 908		 * swapoff spends a _lot_ of time in this loop!
 909		 * Test inline before going to call unuse_pte.
 910		 */
 911		if (unlikely(pte_same(*pte, swp_pte))) {
 912			pte_unmap(pte);
 913			ret = unuse_pte(vma, pmd, addr, entry, page);
 914			if (ret)
 915				goto out;
 916			pte = pte_offset_map(pmd, addr);
 
 
 917		}
 918	} while (pte++, addr += PAGE_SIZE, addr != end);
 919	pte_unmap(pte - 1);
 920out:
 921	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922}
 923
 924static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 925				unsigned long addr, unsigned long end,
 926				swp_entry_t entry, struct page *page)
 927{
 928	pmd_t *pmd;
 929	unsigned long next;
 930	int ret;
 931
 932	pmd = pmd_offset(pud, addr);
 933	do {
 
 934		next = pmd_addr_end(addr, end);
 935		if (unlikely(pmd_trans_huge(*pmd)))
 936			continue;
 937		if (pmd_none_or_clear_bad(pmd))
 938			continue;
 939		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 940		if (ret)
 941			return ret;
 942	} while (pmd++, addr = next, addr != end);
 943	return 0;
 944}
 945
 946static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 947				unsigned long addr, unsigned long end,
 948				swp_entry_t entry, struct page *page)
 949{
 950	pud_t *pud;
 951	unsigned long next;
 952	int ret;
 953
 954	pud = pud_offset(pgd, addr);
 955	do {
 956		next = pud_addr_end(addr, end);
 957		if (pud_none_or_clear_bad(pud))
 958			continue;
 959		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 960		if (ret)
 961			return ret;
 962	} while (pud++, addr = next, addr != end);
 963	return 0;
 964}
 965
 966static int unuse_vma(struct vm_area_struct *vma,
 967				swp_entry_t entry, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968{
 969	pgd_t *pgd;
 970	unsigned long addr, end, next;
 971	int ret;
 972
 973	if (page_anon_vma(page)) {
 974		addr = page_address_in_vma(page, vma);
 975		if (addr == -EFAULT)
 976			return 0;
 977		else
 978			end = addr + PAGE_SIZE;
 979	} else {
 980		addr = vma->vm_start;
 981		end = vma->vm_end;
 982	}
 983
 984	pgd = pgd_offset(vma->vm_mm, addr);
 985	do {
 986		next = pgd_addr_end(addr, end);
 987		if (pgd_none_or_clear_bad(pgd))
 988			continue;
 989		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 990		if (ret)
 991			return ret;
 992	} while (pgd++, addr = next, addr != end);
 993	return 0;
 994}
 995
 996static int unuse_mm(struct mm_struct *mm,
 997				swp_entry_t entry, struct page *page)
 998{
 999	struct vm_area_struct *vma;
1000	int ret = 0;
 
1001
1002	if (!down_read_trylock(&mm->mmap_sem)) {
1003		/*
1004		 * Activate page so shrink_inactive_list is unlikely to unmap
1005		 * its ptes while lock is dropped, so swapoff can make progress.
1006		 */
1007		activate_page(page);
1008		unlock_page(page);
1009		down_read(&mm->mmap_sem);
1010		lock_page(page);
1011	}
1012	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1013		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1014			break;
1015	}
1016	up_read(&mm->mmap_sem);
1017	return (ret < 0)? ret: 0;
1018}
1019
1020/*
1021 * Scan swap_map from current position to next entry still in use.
1022 * Recycle to start on reaching the end, returning 0 when empty.
 
1023 */
1024static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1025					unsigned int prev)
1026{
1027	unsigned int max = si->max;
1028	unsigned int i = prev;
1029	unsigned char count;
1030
1031	/*
1032	 * No need for swap_lock here: we're just looking
1033	 * for whether an entry is in use, not modifying it; false
1034	 * hits are okay, and sys_swapoff() has already prevented new
1035	 * allocations from this area (while holding swap_lock).
1036	 */
1037	for (;;) {
1038		if (++i >= max) {
1039			if (!prev) {
1040				i = 0;
1041				break;
1042			}
1043			/*
1044			 * No entries in use at top of swap_map,
1045			 * loop back to start and recheck there.
1046			 */
1047			max = prev + 1;
1048			prev = 0;
1049			i = 1;
1050		}
1051		count = si->swap_map[i];
1052		if (count && swap_count(count) != SWAP_MAP_BAD)
1053			break;
 
 
1054	}
 
 
 
 
1055	return i;
1056}
1057
1058/*
1059 * We completely avoid races by reading each swap page in advance,
1060 * and then search for the process using it.  All the necessary
1061 * page table adjustments can then be made atomically.
1062 */
1063static int try_to_unuse(unsigned int type)
1064{
 
 
 
 
1065	struct swap_info_struct *si = swap_info[type];
1066	struct mm_struct *start_mm;
1067	unsigned char *swap_map;
1068	unsigned char swcount;
1069	struct page *page;
1070	swp_entry_t entry;
1071	unsigned int i = 0;
1072	int retval = 0;
1073
1074	/*
1075	 * When searching mms for an entry, a good strategy is to
1076	 * start at the first mm we freed the previous entry from
1077	 * (though actually we don't notice whether we or coincidence
1078	 * freed the entry).  Initialize this start_mm with a hold.
1079	 *
1080	 * A simpler strategy would be to start at the last mm we
1081	 * freed the previous entry from; but that would take less
1082	 * advantage of mmlist ordering, which clusters forked mms
1083	 * together, child after parent.  If we race with dup_mmap(), we
1084	 * prefer to resolve parent before child, lest we miss entries
1085	 * duplicated after we scanned child: using last mm would invert
1086	 * that.
1087	 */
1088	start_mm = &init_mm;
1089	atomic_inc(&init_mm.mm_users);
1090
1091	/*
1092	 * Keep on scanning until all entries have gone.  Usually,
1093	 * one pass through swap_map is enough, but not necessarily:
1094	 * there are races when an instance of an entry might be missed.
1095	 */
1096	while ((i = find_next_to_unuse(si, i)) != 0) {
1097		if (signal_pending(current)) {
1098			retval = -EINTR;
1099			break;
1100		}
1101
1102		/*
1103		 * Get a page for the entry, using the existing swap
1104		 * cache page if there is one.  Otherwise, get a clean
1105		 * page and read the swap into it.
1106		 */
1107		swap_map = &si->swap_map[i];
1108		entry = swp_entry(type, i);
1109		page = read_swap_cache_async(entry,
1110					GFP_HIGHUSER_MOVABLE, NULL, 0);
1111		if (!page) {
1112			/*
1113			 * Either swap_duplicate() failed because entry
1114			 * has been freed independently, and will not be
1115			 * reused since sys_swapoff() already disabled
1116			 * allocation from here, or alloc_page() failed.
1117			 */
1118			if (!*swap_map)
1119				continue;
1120			retval = -ENOMEM;
1121			break;
1122		}
1123
1124		/*
1125		 * Don't hold on to start_mm if it looks like exiting.
1126		 */
1127		if (atomic_read(&start_mm->mm_users) == 1) {
1128			mmput(start_mm);
1129			start_mm = &init_mm;
1130			atomic_inc(&init_mm.mm_users);
1131		}
1132
1133		/*
1134		 * Wait for and lock page.  When do_swap_page races with
1135		 * try_to_unuse, do_swap_page can handle the fault much
1136		 * faster than try_to_unuse can locate the entry.  This
1137		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1138		 * defer to do_swap_page in such a case - in some tests,
1139		 * do_swap_page and try_to_unuse repeatedly compete.
1140		 */
1141		wait_on_page_locked(page);
1142		wait_on_page_writeback(page);
1143		lock_page(page);
1144		wait_on_page_writeback(page);
1145
1146		/*
1147		 * Remove all references to entry.
1148		 */
1149		swcount = *swap_map;
1150		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1151			retval = shmem_unuse(entry, page);
1152			/* page has already been unlocked and released */
1153			if (retval < 0)
1154				break;
1155			continue;
1156		}
1157		if (swap_count(swcount) && start_mm != &init_mm)
1158			retval = unuse_mm(start_mm, entry, page);
1159
1160		if (swap_count(*swap_map)) {
1161			int set_start_mm = (*swap_map >= swcount);
1162			struct list_head *p = &start_mm->mmlist;
1163			struct mm_struct *new_start_mm = start_mm;
1164			struct mm_struct *prev_mm = start_mm;
1165			struct mm_struct *mm;
1166
1167			atomic_inc(&new_start_mm->mm_users);
1168			atomic_inc(&prev_mm->mm_users);
1169			spin_lock(&mmlist_lock);
1170			while (swap_count(*swap_map) && !retval &&
1171					(p = p->next) != &start_mm->mmlist) {
1172				mm = list_entry(p, struct mm_struct, mmlist);
1173				if (!atomic_inc_not_zero(&mm->mm_users))
1174					continue;
1175				spin_unlock(&mmlist_lock);
1176				mmput(prev_mm);
1177				prev_mm = mm;
1178
1179				cond_resched();
1180
1181				swcount = *swap_map;
1182				if (!swap_count(swcount)) /* any usage ? */
1183					;
1184				else if (mm == &init_mm)
1185					set_start_mm = 1;
1186				else
1187					retval = unuse_mm(mm, entry, page);
1188
1189				if (set_start_mm && *swap_map < swcount) {
1190					mmput(new_start_mm);
1191					atomic_inc(&mm->mm_users);
1192					new_start_mm = mm;
1193					set_start_mm = 0;
1194				}
1195				spin_lock(&mmlist_lock);
1196			}
1197			spin_unlock(&mmlist_lock);
1198			mmput(prev_mm);
1199			mmput(start_mm);
1200			start_mm = new_start_mm;
1201		}
1202		if (retval) {
1203			unlock_page(page);
1204			page_cache_release(page);
1205			break;
1206		}
1207
1208		/*
1209		 * If a reference remains (rare), we would like to leave
1210		 * the page in the swap cache; but try_to_unmap could
1211		 * then re-duplicate the entry once we drop page lock,
1212		 * so we might loop indefinitely; also, that page could
1213		 * not be swapped out to other storage meanwhile.  So:
1214		 * delete from cache even if there's another reference,
1215		 * after ensuring that the data has been saved to disk -
1216		 * since if the reference remains (rarer), it will be
1217		 * read from disk into another page.  Splitting into two
1218		 * pages would be incorrect if swap supported "shared
1219		 * private" pages, but they are handled by tmpfs files.
1220		 *
1221		 * Given how unuse_vma() targets one particular offset
1222		 * in an anon_vma, once the anon_vma has been determined,
1223		 * this splitting happens to be just what is needed to
1224		 * handle where KSM pages have been swapped out: re-reading
1225		 * is unnecessarily slow, but we can fix that later on.
1226		 */
1227		if (swap_count(*swap_map) &&
1228		     PageDirty(page) && PageSwapCache(page)) {
1229			struct writeback_control wbc = {
1230				.sync_mode = WB_SYNC_NONE,
1231			};
1232
1233			swap_writepage(page, &wbc);
1234			lock_page(page);
1235			wait_on_page_writeback(page);
1236		}
1237
1238		/*
1239		 * It is conceivable that a racing task removed this page from
1240		 * swap cache just before we acquired the page lock at the top,
1241		 * or while we dropped it in unuse_mm().  The page might even
1242		 * be back in swap cache on another swap area: that we must not
1243		 * delete, since it may not have been written out to swap yet.
1244		 */
1245		if (PageSwapCache(page) &&
1246		    likely(page_private(page) == entry.val))
1247			delete_from_swap_cache(page);
1248
1249		/*
1250		 * So we could skip searching mms once swap count went
1251		 * to 1, we did not mark any present ptes as dirty: must
1252		 * mark page dirty so shrink_page_list will preserve it.
1253		 */
1254		SetPageDirty(page);
1255		unlock_page(page);
1256		page_cache_release(page);
1257
1258		/*
1259		 * Make sure that we aren't completely killing
1260		 * interactive performance.
1261		 */
1262		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263	}
1264
1265	mmput(start_mm);
1266	return retval;
 
 
 
 
 
1267}
1268
1269/*
1270 * After a successful try_to_unuse, if no swap is now in use, we know
1271 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1272 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1273 * added to the mmlist just after page_duplicate - before would be racy.
1274 */
1275static void drain_mmlist(void)
1276{
1277	struct list_head *p, *next;
1278	unsigned int type;
1279
1280	for (type = 0; type < nr_swapfiles; type++)
1281		if (swap_info[type]->inuse_pages)
1282			return;
1283	spin_lock(&mmlist_lock);
1284	list_for_each_safe(p, next, &init_mm.mmlist)
1285		list_del_init(p);
1286	spin_unlock(&mmlist_lock);
1287}
1288
1289/*
1290 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1291 * corresponds to page offset for the specified swap entry.
1292 * Note that the type of this function is sector_t, but it returns page offset
1293 * into the bdev, not sector offset.
1294 */
1295static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1296{
1297	struct swap_info_struct *sis;
1298	struct swap_extent *start_se;
1299	struct swap_extent *se;
1300	pgoff_t offset;
1301
1302	sis = swap_info[swp_type(entry)];
1303	*bdev = sis->bdev;
1304
1305	offset = swp_offset(entry);
1306	start_se = sis->curr_swap_extent;
1307	se = start_se;
1308
1309	for ( ; ; ) {
1310		struct list_head *lh;
1311
1312		if (se->start_page <= offset &&
1313				offset < (se->start_page + se->nr_pages)) {
1314			return se->start_block + (offset - se->start_page);
1315		}
1316		lh = se->list.next;
1317		se = list_entry(lh, struct swap_extent, list);
1318		sis->curr_swap_extent = se;
1319		BUG_ON(se == start_se);		/* It *must* be present */
1320	}
1321}
1322
1323/*
1324 * Returns the page offset into bdev for the specified page's swap entry.
1325 */
1326sector_t map_swap_page(struct page *page, struct block_device **bdev)
1327{
1328	swp_entry_t entry;
1329	entry.val = page_private(page);
1330	return map_swap_entry(entry, bdev);
1331}
1332
1333/*
1334 * Free all of a swapdev's extent information
1335 */
1336static void destroy_swap_extents(struct swap_info_struct *sis)
1337{
1338	while (!list_empty(&sis->first_swap_extent.list)) {
1339		struct swap_extent *se;
 
1340
1341		se = list_entry(sis->first_swap_extent.list.next,
1342				struct swap_extent, list);
1343		list_del(&se->list);
1344		kfree(se);
1345	}
 
 
 
 
 
 
 
 
 
1346}
1347
1348/*
1349 * Add a block range (and the corresponding page range) into this swapdev's
1350 * extent list.  The extent list is kept sorted in page order.
1351 *
1352 * This function rather assumes that it is called in ascending page order.
1353 */
1354static int
1355add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1356		unsigned long nr_pages, sector_t start_block)
1357{
 
1358	struct swap_extent *se;
1359	struct swap_extent *new_se;
1360	struct list_head *lh;
1361
1362	if (start_page == 0) {
1363		se = &sis->first_swap_extent;
1364		sis->curr_swap_extent = se;
1365		se->start_page = 0;
1366		se->nr_pages = nr_pages;
1367		se->start_block = start_block;
1368		return 1;
1369	} else {
1370		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1371		se = list_entry(lh, struct swap_extent, list);
 
1372		BUG_ON(se->start_page + se->nr_pages != start_page);
1373		if (se->start_block + se->nr_pages == start_block) {
1374			/* Merge it */
1375			se->nr_pages += nr_pages;
1376			return 0;
1377		}
1378	}
1379
1380	/*
1381	 * No merge.  Insert a new extent, preserving ordering.
1382	 */
1383	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1384	if (new_se == NULL)
1385		return -ENOMEM;
1386	new_se->start_page = start_page;
1387	new_se->nr_pages = nr_pages;
1388	new_se->start_block = start_block;
1389
1390	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 
1391	return 1;
1392}
 
1393
1394/*
1395 * A `swap extent' is a simple thing which maps a contiguous range of pages
1396 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1397 * is built at swapon time and is then used at swap_writepage/swap_readpage
1398 * time for locating where on disk a page belongs.
1399 *
1400 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1401 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1402 * swap files identically.
1403 *
1404 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1405 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1406 * swapfiles are handled *identically* after swapon time.
1407 *
1408 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1409 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1410 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1411 * requirements, they are simply tossed out - we will never use those blocks
1412 * for swapping.
1413 *
1414 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1415 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1416 * which will scribble on the fs.
1417 *
1418 * The amount of disk space which a single swap extent represents varies.
1419 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1420 * extents in the list.  To avoid much list walking, we cache the previous
1421 * search location in `curr_swap_extent', and start new searches from there.
1422 * This is extremely effective.  The average number of iterations in
1423 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1424 */
1425static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1426{
1427	struct inode *inode;
1428	unsigned blocks_per_page;
1429	unsigned long page_no;
1430	unsigned blkbits;
1431	sector_t probe_block;
1432	sector_t last_block;
1433	sector_t lowest_block = -1;
1434	sector_t highest_block = 0;
1435	int nr_extents = 0;
1436	int ret;
1437
1438	inode = sis->swap_file->f_mapping->host;
1439	if (S_ISBLK(inode->i_mode)) {
1440		ret = add_swap_extent(sis, 0, sis->max, 0);
1441		*span = sis->pages;
1442		goto out;
1443	}
1444
1445	blkbits = inode->i_blkbits;
1446	blocks_per_page = PAGE_SIZE >> blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447
 
 
 
 
1448	/*
1449	 * Map all the blocks into the extent list.  This code doesn't try
1450	 * to be very smart.
1451	 */
1452	probe_block = 0;
1453	page_no = 0;
1454	last_block = i_size_read(inode) >> blkbits;
1455	while ((probe_block + blocks_per_page) <= last_block &&
1456			page_no < sis->max) {
1457		unsigned block_in_page;
1458		sector_t first_block;
 
 
 
 
 
 
 
 
1459
1460		first_block = bmap(inode, probe_block);
1461		if (first_block == 0)
1462			goto bad_bmap;
 
 
1463
1464		/*
1465		 * It must be PAGE_SIZE aligned on-disk
1466		 */
1467		if (first_block & (blocks_per_page - 1)) {
1468			probe_block++;
1469			goto reprobe;
1470		}
 
 
 
 
 
1471
1472		for (block_in_page = 1; block_in_page < blocks_per_page;
1473					block_in_page++) {
1474			sector_t block;
 
1475
1476			block = bmap(inode, probe_block + block_in_page);
1477			if (block == 0)
1478				goto bad_bmap;
1479			if (block != first_block + block_in_page) {
1480				/* Discontiguity */
1481				probe_block++;
1482				goto reprobe;
1483			}
1484		}
 
 
 
 
 
 
 
 
 
 
 
1485
1486		first_block >>= (PAGE_SHIFT - blkbits);
1487		if (page_no) {	/* exclude the header page */
1488			if (first_block < lowest_block)
1489				lowest_block = first_block;
1490			if (first_block > highest_block)
1491				highest_block = first_block;
1492		}
 
 
1493
1494		/*
1495		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1496		 */
1497		ret = add_swap_extent(sis, page_no, 1, first_block);
1498		if (ret < 0)
1499			goto out;
1500		nr_extents += ret;
1501		page_no++;
1502		probe_block += blocks_per_page;
1503reprobe:
1504		continue;
1505	}
1506	ret = nr_extents;
1507	*span = 1 + highest_block - lowest_block;
1508	if (page_no == 0)
1509		page_no = 1;	/* force Empty message */
1510	sis->max = page_no;
1511	sis->pages = page_no - 1;
1512	sis->highest_bit = page_no - 1;
1513out:
1514	return ret;
1515bad_bmap:
1516	printk(KERN_ERR "swapon: swapfile has holes\n");
1517	ret = -EINVAL;
1518	goto out;
1519}
1520
1521static void enable_swap_info(struct swap_info_struct *p, int prio,
1522				unsigned char *swap_map)
1523{
1524	int i, prev;
1525
1526	spin_lock(&swap_lock);
1527	if (prio >= 0)
1528		p->prio = prio;
1529	else
1530		p->prio = --least_priority;
1531	p->swap_map = swap_map;
1532	p->flags |= SWP_WRITEOK;
1533	nr_swap_pages += p->pages;
1534	total_swap_pages += p->pages;
1535
1536	/* insert swap space into swap_list: */
1537	prev = -1;
1538	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1539		if (p->prio >= swap_info[i]->prio)
1540			break;
1541		prev = i;
1542	}
1543	p->next = i;
1544	if (prev < 0)
1545		swap_list.head = swap_list.next = p->type;
1546	else
1547		swap_info[prev]->next = p->type;
1548	spin_unlock(&swap_lock);
 
1549}
1550
1551SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1552{
1553	struct swap_info_struct *p = NULL;
1554	unsigned char *swap_map;
 
 
1555	struct file *swap_file, *victim;
1556	struct address_space *mapping;
1557	struct inode *inode;
1558	char *pathname;
1559	int oom_score_adj;
1560	int i, type, prev;
1561	int err;
1562
1563	if (!capable(CAP_SYS_ADMIN))
1564		return -EPERM;
1565
 
 
1566	pathname = getname(specialfile);
1567	err = PTR_ERR(pathname);
1568	if (IS_ERR(pathname))
1569		goto out;
1570
1571	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1572	putname(pathname);
1573	err = PTR_ERR(victim);
1574	if (IS_ERR(victim))
1575		goto out;
1576
1577	mapping = victim->f_mapping;
1578	prev = -1;
1579	spin_lock(&swap_lock);
1580	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1581		p = swap_info[type];
1582		if (p->flags & SWP_WRITEOK) {
1583			if (p->swap_file->f_mapping == mapping)
 
1584				break;
 
1585		}
1586		prev = type;
1587	}
1588	if (type < 0) {
1589		err = -EINVAL;
1590		spin_unlock(&swap_lock);
1591		goto out_dput;
1592	}
1593	if (!security_vm_enough_memory(p->pages))
1594		vm_unacct_memory(p->pages);
1595	else {
1596		err = -ENOMEM;
1597		spin_unlock(&swap_lock);
1598		goto out_dput;
1599	}
1600	if (prev < 0)
1601		swap_list.head = p->next;
1602	else
1603		swap_info[prev]->next = p->next;
1604	if (type == swap_list.next) {
1605		/* just pick something that's safe... */
1606		swap_list.next = swap_list.head;
1607	}
1608	if (p->prio < 0) {
1609		for (i = p->next; i >= 0; i = swap_info[i]->next)
1610			swap_info[i]->prio = p->prio--;
 
 
 
 
 
 
 
 
 
1611		least_priority++;
1612	}
1613	nr_swap_pages -= p->pages;
 
1614	total_swap_pages -= p->pages;
1615	p->flags &= ~SWP_WRITEOK;
 
1616	spin_unlock(&swap_lock);
1617
1618	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1619	err = try_to_unuse(type);
1620	test_set_oom_score_adj(oom_score_adj);
 
 
1621
1622	if (err) {
1623		/*
1624		 * reading p->prio and p->swap_map outside the lock is
1625		 * safe here because only sys_swapon and sys_swapoff
1626		 * change them, and there can be no other sys_swapon or
1627		 * sys_swapoff for this swap_info_struct at this point.
1628		 */
1629		/* re-insert swap space back into swap_list */
1630		enable_swap_info(p, p->prio, p->swap_map);
 
1631		goto out_dput;
1632	}
1633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634	destroy_swap_extents(p);
1635	if (p->flags & SWP_CONTINUED)
1636		free_swap_count_continuations(p);
1637
 
 
 
1638	mutex_lock(&swapon_mutex);
1639	spin_lock(&swap_lock);
 
1640	drain_mmlist();
1641
1642	/* wait for anyone still in scan_swap_map */
1643	p->highest_bit = 0;		/* cuts scans short */
1644	while (p->flags >= SWP_SCANNING) {
 
1645		spin_unlock(&swap_lock);
1646		schedule_timeout_uninterruptible(1);
1647		spin_lock(&swap_lock);
 
1648	}
1649
1650	swap_file = p->swap_file;
1651	p->swap_file = NULL;
1652	p->max = 0;
1653	swap_map = p->swap_map;
1654	p->swap_map = NULL;
1655	p->flags = 0;
 
 
 
 
1656	spin_unlock(&swap_lock);
 
 
1657	mutex_unlock(&swapon_mutex);
 
 
 
 
1658	vfree(swap_map);
1659	/* Destroy swap account informatin */
1660	swap_cgroup_swapoff(type);
 
 
 
1661
1662	inode = mapping->host;
1663	if (S_ISBLK(inode->i_mode)) {
1664		struct block_device *bdev = I_BDEV(inode);
1665		set_blocksize(bdev, p->old_block_size);
1666		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1667	} else {
1668		mutex_lock(&inode->i_mutex);
1669		inode->i_flags &= ~S_SWAPFILE;
1670		mutex_unlock(&inode->i_mutex);
1671	}
1672	filp_close(swap_file, NULL);
 
 
 
 
 
 
 
 
 
 
1673	err = 0;
1674	atomic_inc(&proc_poll_event);
1675	wake_up_interruptible(&proc_poll_wait);
1676
1677out_dput:
1678	filp_close(victim, NULL);
1679out:
 
1680	return err;
1681}
1682
1683#ifdef CONFIG_PROC_FS
1684static unsigned swaps_poll(struct file *file, poll_table *wait)
1685{
1686	struct seq_file *seq = file->private_data;
1687
1688	poll_wait(file, &proc_poll_wait, wait);
1689
1690	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1691		seq->poll_event = atomic_read(&proc_poll_event);
1692		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1693	}
1694
1695	return POLLIN | POLLRDNORM;
1696}
1697
1698/* iterator */
1699static void *swap_start(struct seq_file *swap, loff_t *pos)
1700{
1701	struct swap_info_struct *si;
1702	int type;
1703	loff_t l = *pos;
1704
1705	mutex_lock(&swapon_mutex);
1706
1707	if (!l)
1708		return SEQ_START_TOKEN;
1709
1710	for (type = 0; type < nr_swapfiles; type++) {
1711		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1712		si = swap_info[type];
1713		if (!(si->flags & SWP_USED) || !si->swap_map)
1714			continue;
1715		if (!--l)
1716			return si;
1717	}
1718
1719	return NULL;
1720}
1721
1722static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1723{
1724	struct swap_info_struct *si = v;
1725	int type;
1726
1727	if (v == SEQ_START_TOKEN)
1728		type = 0;
1729	else
1730		type = si->type + 1;
1731
1732	for (; type < nr_swapfiles; type++) {
1733		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1734		si = swap_info[type];
1735		if (!(si->flags & SWP_USED) || !si->swap_map)
1736			continue;
1737		++*pos;
1738		return si;
1739	}
1740
1741	return NULL;
1742}
1743
1744static void swap_stop(struct seq_file *swap, void *v)
1745{
1746	mutex_unlock(&swapon_mutex);
1747}
1748
1749static int swap_show(struct seq_file *swap, void *v)
1750{
1751	struct swap_info_struct *si = v;
1752	struct file *file;
1753	int len;
 
1754
1755	if (si == SEQ_START_TOKEN) {
1756		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1757		return 0;
1758	}
1759
 
 
 
1760	file = si->swap_file;
1761	len = seq_path(swap, &file->f_path, " \t\n\\");
1762	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1763			len < 40 ? 40 - len : 1, " ",
1764			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1765				"partition" : "file\t",
1766			si->pages << (PAGE_SHIFT - 10),
1767			si->inuse_pages << (PAGE_SHIFT - 10),
1768			si->prio);
1769	return 0;
1770}
1771
1772static const struct seq_operations swaps_op = {
1773	.start =	swap_start,
1774	.next =		swap_next,
1775	.stop =		swap_stop,
1776	.show =		swap_show
1777};
1778
1779static int swaps_open(struct inode *inode, struct file *file)
1780{
1781	struct seq_file *seq;
1782	int ret;
1783
1784	ret = seq_open(file, &swaps_op);
1785	if (ret)
1786		return ret;
1787
1788	seq = file->private_data;
1789	seq->poll_event = atomic_read(&proc_poll_event);
1790	return 0;
1791}
1792
1793static const struct file_operations proc_swaps_operations = {
1794	.open		= swaps_open,
1795	.read		= seq_read,
1796	.llseek		= seq_lseek,
1797	.release	= seq_release,
1798	.poll		= swaps_poll,
 
1799};
1800
1801static int __init procswaps_init(void)
1802{
1803	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1804	return 0;
1805}
1806__initcall(procswaps_init);
1807#endif /* CONFIG_PROC_FS */
1808
1809#ifdef MAX_SWAPFILES_CHECK
1810static int __init max_swapfiles_check(void)
1811{
1812	MAX_SWAPFILES_CHECK();
1813	return 0;
1814}
1815late_initcall(max_swapfiles_check);
1816#endif
1817
1818static struct swap_info_struct *alloc_swap_info(void)
1819{
1820	struct swap_info_struct *p;
 
1821	unsigned int type;
 
1822
1823	p = kzalloc(sizeof(*p), GFP_KERNEL);
1824	if (!p)
1825		return ERR_PTR(-ENOMEM);
1826
 
 
 
 
 
 
1827	spin_lock(&swap_lock);
1828	for (type = 0; type < nr_swapfiles; type++) {
1829		if (!(swap_info[type]->flags & SWP_USED))
1830			break;
1831	}
1832	if (type >= MAX_SWAPFILES) {
1833		spin_unlock(&swap_lock);
1834		kfree(p);
 
1835		return ERR_PTR(-EPERM);
1836	}
1837	if (type >= nr_swapfiles) {
1838		p->type = type;
1839		swap_info[type] = p;
1840		/*
1841		 * Write swap_info[type] before nr_swapfiles, in case a
1842		 * racing procfs swap_start() or swap_next() is reading them.
1843		 * (We never shrink nr_swapfiles, we never free this entry.)
1844		 */
1845		smp_wmb();
1846		nr_swapfiles++;
1847	} else {
1848		kfree(p);
1849		p = swap_info[type];
1850		/*
1851		 * Do not memset this entry: a racing procfs swap_next()
1852		 * would be relying on p->type to remain valid.
1853		 */
1854	}
1855	INIT_LIST_HEAD(&p->first_swap_extent.list);
 
 
 
1856	p->flags = SWP_USED;
1857	p->next = -1;
1858	spin_unlock(&swap_lock);
 
 
 
 
 
 
 
1859
1860	return p;
1861}
1862
1863static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1864{
1865	int error;
1866
1867	if (S_ISBLK(inode->i_mode)) {
1868		p->bdev = bdgrab(I_BDEV(inode));
1869		error = blkdev_get(p->bdev,
1870				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1871				   sys_swapon);
1872		if (error < 0) {
1873			p->bdev = NULL;
 
1874			return -EINVAL;
1875		}
1876		p->old_block_size = block_size(p->bdev);
1877		error = set_blocksize(p->bdev, PAGE_SIZE);
1878		if (error < 0)
1879			return error;
1880		p->flags |= SWP_BLKDEV;
1881	} else if (S_ISREG(inode->i_mode)) {
1882		p->bdev = inode->i_sb->s_bdev;
1883		mutex_lock(&inode->i_mutex);
1884		if (IS_SWAPFILE(inode))
1885			return -EBUSY;
1886	} else
1887		return -EINVAL;
1888
1889	return 0;
1890}
1891
1892static unsigned long read_swap_header(struct swap_info_struct *p,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893					union swap_header *swap_header,
1894					struct inode *inode)
1895{
1896	int i;
1897	unsigned long maxpages;
1898	unsigned long swapfilepages;
 
1899
1900	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1901		printk(KERN_ERR "Unable to find swap-space signature\n");
1902		return 0;
1903	}
1904
1905	/* swap partition endianess hack... */
1906	if (swab32(swap_header->info.version) == 1) {
1907		swab32s(&swap_header->info.version);
1908		swab32s(&swap_header->info.last_page);
1909		swab32s(&swap_header->info.nr_badpages);
 
 
1910		for (i = 0; i < swap_header->info.nr_badpages; i++)
1911			swab32s(&swap_header->info.badpages[i]);
1912	}
1913	/* Check the swap header's sub-version */
1914	if (swap_header->info.version != 1) {
1915		printk(KERN_WARNING
1916		       "Unable to handle swap header version %d\n",
1917		       swap_header->info.version);
1918		return 0;
1919	}
1920
1921	p->lowest_bit  = 1;
1922	p->cluster_next = 1;
1923	p->cluster_nr = 0;
1924
1925	/*
1926	 * Find out how many pages are allowed for a single swap
1927	 * device. There are three limiting factors: 1) the number
1928	 * of bits for the swap offset in the swp_entry_t type, and
1929	 * 2) the number of bits in the swap pte as defined by the
1930	 * the different architectures, and 3) the number of free bits
1931	 * in an exceptional radix_tree entry. In order to find the
1932	 * largest possible bit mask, a swap entry with swap type 0
1933	 * and swap offset ~0UL is created, encoded to a swap pte,
1934	 * decoded to a swp_entry_t again, and finally the swap
1935	 * offset is extracted. This will mask all the bits from
1936	 * the initial ~0UL mask that can't be encoded in either
1937	 * the swp_entry_t or the architecture definition of a
1938	 * swap pte.  Then the same is done for a radix_tree entry.
1939	 */
1940	maxpages = swp_offset(pte_to_swp_entry(
1941			swp_entry_to_pte(swp_entry(0, ~0UL))));
1942	maxpages = swp_offset(radix_to_swp_entry(
1943			swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1944
1945	if (maxpages > swap_header->info.last_page) {
1946		maxpages = swap_header->info.last_page + 1;
1947		/* p->max is an unsigned int: don't overflow it */
1948		if ((unsigned int)maxpages == 0)
1949			maxpages = UINT_MAX;
1950	}
1951	p->highest_bit = maxpages - 1;
1952
1953	if (!maxpages)
1954		return 0;
1955	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1956	if (swapfilepages && maxpages > swapfilepages) {
1957		printk(KERN_WARNING
1958		       "Swap area shorter than signature indicates\n");
1959		return 0;
1960	}
1961	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1962		return 0;
1963	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1964		return 0;
1965
1966	return maxpages;
1967}
1968
1969static int setup_swap_map_and_extents(struct swap_info_struct *p,
 
 
 
 
 
 
 
1970					union swap_header *swap_header,
1971					unsigned char *swap_map,
1972					unsigned long maxpages,
1973					sector_t *span)
1974{
1975	int i;
1976	unsigned int nr_good_pages;
 
1977	int nr_extents;
1978
1979	nr_good_pages = maxpages - 1;	/* omit header page */
1980
1981	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1982		unsigned int page_nr = swap_header->info.badpages[i];
1983		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1984			return -EINVAL;
1985		if (page_nr < maxpages) {
1986			swap_map[page_nr] = SWAP_MAP_BAD;
1987			nr_good_pages--;
1988		}
1989	}
1990
1991	if (nr_good_pages) {
1992		swap_map[0] = SWAP_MAP_BAD;
1993		p->max = maxpages;
1994		p->pages = nr_good_pages;
1995		nr_extents = setup_swap_extents(p, span);
1996		if (nr_extents < 0)
1997			return nr_extents;
1998		nr_good_pages = p->pages;
1999	}
2000	if (!nr_good_pages) {
2001		printk(KERN_WARNING "Empty swap-file\n");
2002		return -EINVAL;
2003	}
2004
2005	return nr_extents;
2006}
2007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2009{
2010	struct swap_info_struct *p;
2011	char *name;
2012	struct file *swap_file = NULL;
2013	struct address_space *mapping;
2014	int i;
2015	int prio;
2016	int error;
2017	union swap_header *swap_header;
2018	int nr_extents;
2019	sector_t span;
2020	unsigned long maxpages;
2021	unsigned char *swap_map = NULL;
2022	struct page *page = NULL;
 
 
2023	struct inode *inode = NULL;
 
 
 
 
2024
2025	if (!capable(CAP_SYS_ADMIN))
2026		return -EPERM;
2027
2028	p = alloc_swap_info();
2029	if (IS_ERR(p))
2030		return PTR_ERR(p);
 
 
 
 
 
 
2031
2032	name = getname(specialfile);
2033	if (IS_ERR(name)) {
2034		error = PTR_ERR(name);
2035		name = NULL;
2036		goto bad_swap;
2037	}
2038	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2039	if (IS_ERR(swap_file)) {
2040		error = PTR_ERR(swap_file);
2041		swap_file = NULL;
2042		goto bad_swap;
2043	}
2044
2045	p->swap_file = swap_file;
2046	mapping = swap_file->f_mapping;
2047
2048	for (i = 0; i < nr_swapfiles; i++) {
2049		struct swap_info_struct *q = swap_info[i];
2050
2051		if (q == p || !q->swap_file)
2052			continue;
2053		if (mapping == q->swap_file->f_mapping) {
2054			error = -EBUSY;
2055			goto bad_swap;
2056		}
2057	}
2058
2059	inode = mapping->host;
2060	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2061	error = claim_swapfile(p, inode);
2062	if (unlikely(error))
2063		goto bad_swap;
2064
 
 
 
 
 
 
 
 
 
 
2065	/*
2066	 * Read the swap header.
2067	 */
2068	if (!mapping->a_ops->readpage) {
2069		error = -EINVAL;
2070		goto bad_swap;
2071	}
2072	page = read_mapping_page(mapping, 0, swap_file);
2073	if (IS_ERR(page)) {
2074		error = PTR_ERR(page);
2075		goto bad_swap;
2076	}
2077	swap_header = kmap(page);
2078
2079	maxpages = read_swap_header(p, swap_header, inode);
2080	if (unlikely(!maxpages)) {
2081		error = -EINVAL;
2082		goto bad_swap;
2083	}
2084
2085	/* OK, set up the swap map and apply the bad block list */
2086	swap_map = vzalloc(maxpages);
2087	if (!swap_map) {
2088		error = -ENOMEM;
2089		goto bad_swap;
2090	}
2091
2092	error = swap_cgroup_swapon(p->type, maxpages);
2093	if (error)
2094		goto bad_swap;
2095
2096	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2097		maxpages, &span);
2098	if (unlikely(nr_extents < 0)) {
2099		error = nr_extents;
2100		goto bad_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2101	}
2102
2103	if (p->bdev) {
2104		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2105			p->flags |= SWP_SOLIDSTATE;
2106			p->cluster_next = 1 + (random32() % p->highest_bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107		}
2108		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2109			p->flags |= SWP_DISCARDABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2110	}
2111
2112	mutex_lock(&swapon_mutex);
2113	prio = -1;
2114	if (swap_flags & SWAP_FLAG_PREFER)
2115		prio =
2116		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2117	enable_swap_info(p, prio, swap_map);
2118
2119	printk(KERN_INFO "Adding %uk swap on %s.  "
2120			"Priority:%d extents:%d across:%lluk %s%s\n",
2121		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2122		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2123		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2124		(p->flags & SWP_DISCARDABLE) ? "D" : "");
 
2125
2126	mutex_unlock(&swapon_mutex);
2127	atomic_inc(&proc_poll_event);
2128	wake_up_interruptible(&proc_poll_wait);
2129
2130	if (S_ISREG(inode->i_mode))
2131		inode->i_flags |= S_SWAPFILE;
2132	error = 0;
2133	goto out;
 
 
 
 
 
 
2134bad_swap:
2135	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2136		set_blocksize(p->bdev, p->old_block_size);
2137		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2138	}
2139	destroy_swap_extents(p);
2140	swap_cgroup_swapoff(p->type);
 
2141	spin_lock(&swap_lock);
2142	p->swap_file = NULL;
2143	p->flags = 0;
2144	spin_unlock(&swap_lock);
2145	vfree(swap_map);
2146	if (swap_file) {
2147		if (inode && S_ISREG(inode->i_mode)) {
2148			mutex_unlock(&inode->i_mutex);
2149			inode = NULL;
2150		}
2151		filp_close(swap_file, NULL);
2152	}
2153out:
2154	if (page && !IS_ERR(page)) {
2155		kunmap(page);
2156		page_cache_release(page);
2157	}
2158	if (name)
2159		putname(name);
2160	if (inode && S_ISREG(inode->i_mode))
2161		mutex_unlock(&inode->i_mutex);
 
 
2162	return error;
2163}
2164
2165void si_swapinfo(struct sysinfo *val)
2166{
2167	unsigned int type;
2168	unsigned long nr_to_be_unused = 0;
2169
2170	spin_lock(&swap_lock);
2171	for (type = 0; type < nr_swapfiles; type++) {
2172		struct swap_info_struct *si = swap_info[type];
2173
2174		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2175			nr_to_be_unused += si->inuse_pages;
2176	}
2177	val->freeswap = nr_swap_pages + nr_to_be_unused;
2178	val->totalswap = total_swap_pages + nr_to_be_unused;
2179	spin_unlock(&swap_lock);
2180}
2181
2182/*
2183 * Verify that a swap entry is valid and increment its swap map count.
2184 *
2185 * Returns error code in following case.
2186 * - success -> 0
2187 * - swp_entry is invalid -> EINVAL
2188 * - swp_entry is migration entry -> EINVAL
2189 * - swap-cache reference is requested but there is already one. -> EEXIST
2190 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2191 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2192 */
2193static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2194{
2195	struct swap_info_struct *p;
2196	unsigned long offset, type;
 
2197	unsigned char count;
2198	unsigned char has_cache;
2199	int err = -EINVAL;
2200
2201	if (non_swap_entry(entry))
2202		goto out;
2203
2204	type = swp_type(entry);
2205	if (type >= nr_swapfiles)
2206		goto bad_file;
2207	p = swap_info[type];
2208	offset = swp_offset(entry);
 
 
 
2209
2210	spin_lock(&swap_lock);
2211	if (unlikely(offset >= p->max))
2212		goto unlock_out;
2213
2214	count = p->swap_map[offset];
2215	has_cache = count & SWAP_HAS_CACHE;
2216	count &= ~SWAP_HAS_CACHE;
2217	err = 0;
 
 
2218
2219	if (usage == SWAP_HAS_CACHE) {
 
 
 
 
 
 
 
2220
2221		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2222		if (!has_cache && count)
2223			has_cache = SWAP_HAS_CACHE;
2224		else if (has_cache)		/* someone else added cache */
2225			err = -EEXIST;
2226		else				/* no users remaining */
2227			err = -ENOENT;
 
 
 
 
 
 
 
 
 
 
2228
2229	} else if (count || has_cache) {
 
 
 
2230
2231		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
 
 
2232			count += usage;
2233		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2234			err = -EINVAL;
2235		else if (swap_count_continued(p, offset, count))
2236			count = COUNT_CONTINUED;
2237		else
 
 
 
 
2238			err = -ENOMEM;
2239	} else
2240		err = -ENOENT;			/* unused swap entry */
2241
2242	p->swap_map[offset] = count | has_cache;
 
2243
2244unlock_out:
2245	spin_unlock(&swap_lock);
2246out:
2247	return err;
2248
2249bad_file:
2250	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2251	goto out;
2252}
2253
2254/*
2255 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2256 * (in which case its reference count is never incremented).
2257 */
2258void swap_shmem_alloc(swp_entry_t entry)
2259{
2260	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2261}
2262
2263/*
2264 * Increase reference count of swap entry by 1.
2265 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2266 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2267 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2268 * might occur if a page table entry has got corrupted.
2269 */
2270int swap_duplicate(swp_entry_t entry)
2271{
2272	int err = 0;
2273
2274	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2275		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2276	return err;
2277}
2278
2279/*
2280 * @entry: swap entry for which we allocate swap cache.
2281 *
2282 * Called when allocating swap cache for existing swap entry,
2283 * This can return error codes. Returns 0 at success.
2284 * -EBUSY means there is a swap cache.
2285 * Note: return code is different from swap_duplicate().
2286 */
2287int swapcache_prepare(swp_entry_t entry)
2288{
2289	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2290}
2291
2292/*
2293 * swap_lock prevents swap_map being freed. Don't grab an extra
2294 * reference on the swaphandle, it doesn't matter if it becomes unused.
2295 */
2296int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2297{
2298	struct swap_info_struct *si;
2299	int our_page_cluster = page_cluster;
2300	pgoff_t target, toff;
2301	pgoff_t base, end;
2302	int nr_pages = 0;
2303
2304	if (!our_page_cluster)	/* no readahead */
2305		return 0;
2306
2307	si = swap_info[swp_type(entry)];
2308	target = swp_offset(entry);
2309	base = (target >> our_page_cluster) << our_page_cluster;
2310	end = base + (1 << our_page_cluster);
2311	if (!base)		/* first page is swap header */
2312		base++;
2313
2314	spin_lock(&swap_lock);
2315	if (end > si->max)	/* don't go beyond end of map */
2316		end = si->max;
 
2317
2318	/* Count contiguous allocated slots above our target */
2319	for (toff = target; ++toff < end; nr_pages++) {
2320		/* Don't read in free or bad pages */
2321		if (!si->swap_map[toff])
2322			break;
2323		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2324			break;
2325	}
2326	/* Count contiguous allocated slots below our target */
2327	for (toff = target; --toff >= base; nr_pages++) {
2328		/* Don't read in free or bad pages */
2329		if (!si->swap_map[toff])
2330			break;
2331		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2332			break;
2333	}
2334	spin_unlock(&swap_lock);
2335
2336	/*
2337	 * Indicate starting offset, and return number of pages to get:
2338	 * if only 1, say 0, since there's then no readahead to be done.
2339	 */
2340	*offset = ++toff;
2341	return nr_pages? ++nr_pages: 0;
2342}
 
2343
2344/*
2345 * add_swap_count_continuation - called when a swap count is duplicated
2346 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2347 * page of the original vmalloc'ed swap_map, to hold the continuation count
2348 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2349 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2350 *
2351 * These continuation pages are seldom referenced: the common paths all work
2352 * on the original swap_map, only referring to a continuation page when the
2353 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2354 *
2355 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2356 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2357 * can be called after dropping locks.
2358 */
2359int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2360{
2361	struct swap_info_struct *si;
 
2362	struct page *head;
2363	struct page *page;
2364	struct page *list_page;
2365	pgoff_t offset;
2366	unsigned char count;
 
2367
2368	/*
2369	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2370	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2371	 */
2372	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2373
2374	si = swap_info_get(entry);
2375	if (!si) {
2376		/*
2377		 * An acceptable race has occurred since the failing
2378		 * __swap_duplicate(): the swap entry has been freed,
2379		 * perhaps even the whole swap_map cleared for swapoff.
2380		 */
2381		goto outer;
2382	}
 
2383
2384	offset = swp_offset(entry);
2385	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
 
 
 
2386
2387	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2388		/*
2389		 * The higher the swap count, the more likely it is that tasks
2390		 * will race to add swap count continuation: we need to avoid
2391		 * over-provisioning.
2392		 */
2393		goto out;
2394	}
2395
2396	if (!page) {
2397		spin_unlock(&swap_lock);
2398		return -ENOMEM;
2399	}
2400
2401	/*
2402	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2403	 * no architecture is using highmem pages for kernel pagetables: so it
2404	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2405	 */
2406	head = vmalloc_to_page(si->swap_map + offset);
2407	offset &= ~PAGE_MASK;
2408
 
2409	/*
2410	 * Page allocation does not initialize the page's lru field,
2411	 * but it does always reset its private field.
2412	 */
2413	if (!page_private(head)) {
2414		BUG_ON(count & COUNT_CONTINUED);
2415		INIT_LIST_HEAD(&head->lru);
2416		set_page_private(head, SWP_CONTINUED);
2417		si->flags |= SWP_CONTINUED;
2418	}
2419
2420	list_for_each_entry(list_page, &head->lru, lru) {
2421		unsigned char *map;
2422
2423		/*
2424		 * If the previous map said no continuation, but we've found
2425		 * a continuation page, free our allocation and use this one.
2426		 */
2427		if (!(count & COUNT_CONTINUED))
2428			goto out;
2429
2430		map = kmap_atomic(list_page, KM_USER0) + offset;
2431		count = *map;
2432		kunmap_atomic(map, KM_USER0);
2433
2434		/*
2435		 * If this continuation count now has some space in it,
2436		 * free our allocation and use this one.
2437		 */
2438		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2439			goto out;
2440	}
2441
2442	list_add_tail(&page->lru, &head->lru);
2443	page = NULL;			/* now it's attached, don't free it */
 
 
2444out:
2445	spin_unlock(&swap_lock);
 
 
2446outer:
2447	if (page)
2448		__free_page(page);
2449	return 0;
2450}
2451
2452/*
2453 * swap_count_continued - when the original swap_map count is incremented
2454 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2455 * into, carry if so, or else fail until a new continuation page is allocated;
2456 * when the original swap_map count is decremented from 0 with continuation,
2457 * borrow from the continuation and report whether it still holds more.
2458 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 
2459 */
2460static bool swap_count_continued(struct swap_info_struct *si,
2461				 pgoff_t offset, unsigned char count)
2462{
2463	struct page *head;
2464	struct page *page;
2465	unsigned char *map;
 
2466
2467	head = vmalloc_to_page(si->swap_map + offset);
2468	if (page_private(head) != SWP_CONTINUED) {
2469		BUG_ON(count & COUNT_CONTINUED);
2470		return false;		/* need to add count continuation */
2471	}
2472
 
2473	offset &= ~PAGE_MASK;
2474	page = list_entry(head->lru.next, struct page, lru);
2475	map = kmap_atomic(page, KM_USER0) + offset;
2476
2477	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2478		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2479
2480	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2481		/*
2482		 * Think of how you add 1 to 999
2483		 */
2484		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2485			kunmap_atomic(map, KM_USER0);
2486			page = list_entry(page->lru.next, struct page, lru);
2487			BUG_ON(page == head);
2488			map = kmap_atomic(page, KM_USER0) + offset;
2489		}
2490		if (*map == SWAP_CONT_MAX) {
2491			kunmap_atomic(map, KM_USER0);
2492			page = list_entry(page->lru.next, struct page, lru);
2493			if (page == head)
2494				return false;	/* add count continuation */
2495			map = kmap_atomic(page, KM_USER0) + offset;
 
 
2496init_map:		*map = 0;		/* we didn't zero the page */
2497		}
2498		*map += 1;
2499		kunmap_atomic(map, KM_USER0);
2500		page = list_entry(page->lru.prev, struct page, lru);
2501		while (page != head) {
2502			map = kmap_atomic(page, KM_USER0) + offset;
2503			*map = COUNT_CONTINUED;
2504			kunmap_atomic(map, KM_USER0);
2505			page = list_entry(page->lru.prev, struct page, lru);
2506		}
2507		return true;			/* incremented */
2508
2509	} else {				/* decrementing */
2510		/*
2511		 * Think of how you subtract 1 from 1000
2512		 */
2513		BUG_ON(count != COUNT_CONTINUED);
2514		while (*map == COUNT_CONTINUED) {
2515			kunmap_atomic(map, KM_USER0);
2516			page = list_entry(page->lru.next, struct page, lru);
2517			BUG_ON(page == head);
2518			map = kmap_atomic(page, KM_USER0) + offset;
2519		}
2520		BUG_ON(*map == 0);
2521		*map -= 1;
2522		if (*map == 0)
2523			count = 0;
2524		kunmap_atomic(map, KM_USER0);
2525		page = list_entry(page->lru.prev, struct page, lru);
2526		while (page != head) {
2527			map = kmap_atomic(page, KM_USER0) + offset;
2528			*map = SWAP_CONT_MAX | count;
2529			count = COUNT_CONTINUED;
2530			kunmap_atomic(map, KM_USER0);
2531			page = list_entry(page->lru.prev, struct page, lru);
2532		}
2533		return count == COUNT_CONTINUED;
2534	}
 
 
 
2535}
2536
2537/*
2538 * free_swap_count_continuations - swapoff free all the continuation pages
2539 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2540 */
2541static void free_swap_count_continuations(struct swap_info_struct *si)
2542{
2543	pgoff_t offset;
2544
2545	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2546		struct page *head;
2547		head = vmalloc_to_page(si->swap_map + offset);
2548		if (page_private(head)) {
2549			struct list_head *this, *next;
2550			list_for_each_safe(this, next, &head->lru) {
2551				struct page *page;
2552				page = list_entry(this, struct page, lru);
2553				list_del(this);
2554				__free_page(page);
2555			}
2556		}
2557	}
2558}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/blkdev.h>
  10#include <linux/mm.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/task.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mman.h>
  15#include <linux/slab.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/swap.h>
  18#include <linux/vmalloc.h>
  19#include <linux/pagemap.h>
  20#include <linux/namei.h>
  21#include <linux/shmem_fs.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/random.h>
  24#include <linux/writeback.h>
  25#include <linux/proc_fs.h>
  26#include <linux/seq_file.h>
  27#include <linux/init.h>
 
  28#include <linux/ksm.h>
  29#include <linux/rmap.h>
  30#include <linux/security.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mutex.h>
  33#include <linux/capability.h>
  34#include <linux/syscalls.h>
  35#include <linux/memcontrol.h>
  36#include <linux/poll.h>
  37#include <linux/oom.h>
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43#include <linux/suspend.h>
  44#include <linux/zswap.h>
  45#include <linux/plist.h>
  46
 
  47#include <asm/tlbflush.h>
  48#include <linux/swapops.h>
  49#include <linux/swap_cgroup.h>
  50#include "internal.h"
  51#include "swap.h"
  52
  53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  54				 unsigned char);
  55static void free_swap_count_continuations(struct swap_info_struct *);
  56static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
  57				  unsigned int nr_pages);
  58static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
  59			     unsigned int nr_entries);
  60static bool folio_swapcache_freeable(struct folio *folio);
  61static struct swap_cluster_info *lock_cluster_or_swap_info(
  62		struct swap_info_struct *si, unsigned long offset);
  63static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
  64					struct swap_cluster_info *ci);
  65
  66static DEFINE_SPINLOCK(swap_lock);
  67static unsigned int nr_swapfiles;
  68atomic_long_t nr_swap_pages;
  69/*
  70 * Some modules use swappable objects and may try to swap them out under
  71 * memory pressure (via the shrinker). Before doing so, they may wish to
  72 * check to see if any swap space is available.
  73 */
  74EXPORT_SYMBOL_GPL(nr_swap_pages);
  75/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  76long total_swap_pages;
  77static int least_priority = -1;
  78unsigned long swapfile_maximum_size;
  79#ifdef CONFIG_MIGRATION
  80bool swap_migration_ad_supported;
  81#endif	/* CONFIG_MIGRATION */
  82
  83static const char Bad_file[] = "Bad swap file entry ";
  84static const char Unused_file[] = "Unused swap file entry ";
  85static const char Bad_offset[] = "Bad swap offset entry ";
  86static const char Unused_offset[] = "Unused swap offset entry ";
  87
  88/*
  89 * all active swap_info_structs
  90 * protected with swap_lock, and ordered by priority.
  91 */
  92static PLIST_HEAD(swap_active_head);
  93
  94/*
  95 * all available (active, not full) swap_info_structs
  96 * protected with swap_avail_lock, ordered by priority.
  97 * This is used by folio_alloc_swap() instead of swap_active_head
  98 * because swap_active_head includes all swap_info_structs,
  99 * but folio_alloc_swap() doesn't need to look at full ones.
 100 * This uses its own lock instead of swap_lock because when a
 101 * swap_info_struct changes between not-full/full, it needs to
 102 * add/remove itself to/from this list, but the swap_info_struct->lock
 103 * is held and the locking order requires swap_lock to be taken
 104 * before any swap_info_struct->lock.
 105 */
 106static struct plist_head *swap_avail_heads;
 107static DEFINE_SPINLOCK(swap_avail_lock);
 108
 109static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 110
 111static DEFINE_MUTEX(swapon_mutex);
 112
 113static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 114/* Activity counter to indicate that a swapon or swapoff has occurred */
 115static atomic_t proc_poll_event = ATOMIC_INIT(0);
 116
 117atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 118
 119static struct swap_info_struct *swap_type_to_swap_info(int type)
 120{
 121	if (type >= MAX_SWAPFILES)
 122		return NULL;
 123
 124	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 125}
 126
 127static inline unsigned char swap_count(unsigned char ent)
 128{
 129	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 130}
 131
 132/* Reclaim the swap entry anyway if possible */
 133#define TTRS_ANYWAY		0x1
 134/*
 135 * Reclaim the swap entry if there are no more mappings of the
 136 * corresponding page
 137 */
 138#define TTRS_UNMAPPED		0x2
 139/* Reclaim the swap entry if swap is getting full */
 140#define TTRS_FULL		0x4
 141/* Reclaim directly, bypass the slot cache and don't touch device lock */
 142#define TTRS_DIRECT		0x8
 143
 144static bool swap_is_has_cache(struct swap_info_struct *si,
 145			      unsigned long offset, int nr_pages)
 146{
 147	unsigned char *map = si->swap_map + offset;
 148	unsigned char *map_end = map + nr_pages;
 149
 150	do {
 151		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
 152		if (*map != SWAP_HAS_CACHE)
 153			return false;
 154	} while (++map < map_end);
 155
 156	return true;
 157}
 158
 159static bool swap_is_last_map(struct swap_info_struct *si,
 160		unsigned long offset, int nr_pages, bool *has_cache)
 161{
 162	unsigned char *map = si->swap_map + offset;
 163	unsigned char *map_end = map + nr_pages;
 164	unsigned char count = *map;
 165
 166	if (swap_count(count) != 1)
 167		return false;
 168
 169	while (++map < map_end) {
 170		if (*map != count)
 171			return false;
 172	}
 173
 174	*has_cache = !!(count & SWAP_HAS_CACHE);
 175	return true;
 176}
 177
 178/*
 179 * returns number of pages in the folio that backs the swap entry. If positive,
 180 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
 181 * folio was associated with the swap entry.
 182 */
 183static int __try_to_reclaim_swap(struct swap_info_struct *si,
 184				 unsigned long offset, unsigned long flags)
 185{
 186	swp_entry_t entry = swp_entry(si->type, offset);
 187	struct address_space *address_space = swap_address_space(entry);
 188	struct swap_cluster_info *ci;
 189	struct folio *folio;
 190	int ret, nr_pages;
 191	bool need_reclaim;
 192
 193	folio = filemap_get_folio(address_space, swap_cache_index(entry));
 194	if (IS_ERR(folio))
 195		return 0;
 196
 197	nr_pages = folio_nr_pages(folio);
 198	ret = -nr_pages;
 199
 200	/*
 201	 * When this function is called from scan_swap_map_slots() and it's
 202	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 203	 * here. We have to use trylock for avoiding deadlock. This is a special
 204	 * case and you should use folio_free_swap() with explicit folio_lock()
 205	 * in usual operations.
 206	 */
 207	if (!folio_trylock(folio))
 208		goto out;
 209
 210	/* offset could point to the middle of a large folio */
 211	entry = folio->swap;
 212	offset = swp_offset(entry);
 213
 214	need_reclaim = ((flags & TTRS_ANYWAY) ||
 215			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 216			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
 217	if (!need_reclaim || !folio_swapcache_freeable(folio))
 218		goto out_unlock;
 219
 220	/*
 221	 * It's safe to delete the folio from swap cache only if the folio's
 222	 * swap_map is HAS_CACHE only, which means the slots have no page table
 223	 * reference or pending writeback, and can't be allocated to others.
 224	 */
 225	ci = lock_cluster_or_swap_info(si, offset);
 226	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
 227	unlock_cluster_or_swap_info(si, ci);
 228	if (!need_reclaim)
 229		goto out_unlock;
 230
 231	if (!(flags & TTRS_DIRECT)) {
 232		/* Free through slot cache */
 233		delete_from_swap_cache(folio);
 234		folio_set_dirty(folio);
 235		ret = nr_pages;
 236		goto out_unlock;
 237	}
 238
 239	xa_lock_irq(&address_space->i_pages);
 240	__delete_from_swap_cache(folio, entry, NULL);
 241	xa_unlock_irq(&address_space->i_pages);
 242	folio_ref_sub(folio, nr_pages);
 243	folio_set_dirty(folio);
 244
 245	spin_lock(&si->lock);
 246	/* Only sinple page folio can be backed by zswap */
 247	if (nr_pages == 1)
 248		zswap_invalidate(entry);
 249	swap_entry_range_free(si, entry, nr_pages);
 250	spin_unlock(&si->lock);
 251	ret = nr_pages;
 252out_unlock:
 253	folio_unlock(folio);
 254out:
 255	folio_put(folio);
 256	return ret;
 257}
 258
 259static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 260{
 261	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 262	return rb_entry(rb, struct swap_extent, rb_node);
 263}
 264
 265static inline struct swap_extent *next_se(struct swap_extent *se)
 266{
 267	struct rb_node *rb = rb_next(&se->rb_node);
 268	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 269}
 270
 271/*
 272 * swapon tell device that all the old swap contents can be discarded,
 273 * to allow the swap device to optimize its wear-levelling.
 274 */
 275static int discard_swap(struct swap_info_struct *si)
 276{
 277	struct swap_extent *se;
 278	sector_t start_block;
 279	sector_t nr_blocks;
 280	int err = 0;
 281
 282	/* Do not discard the swap header page! */
 283	se = first_se(si);
 284	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 285	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 286	if (nr_blocks) {
 287		err = blkdev_issue_discard(si->bdev, start_block,
 288				nr_blocks, GFP_KERNEL);
 289		if (err)
 290			return err;
 291		cond_resched();
 292	}
 293
 294	for (se = next_se(se); se; se = next_se(se)) {
 295		start_block = se->start_block << (PAGE_SHIFT - 9);
 296		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 297
 298		err = blkdev_issue_discard(si->bdev, start_block,
 299				nr_blocks, GFP_KERNEL);
 300		if (err)
 301			break;
 302
 303		cond_resched();
 304	}
 305	return err;		/* That will often be -EOPNOTSUPP */
 306}
 307
 308static struct swap_extent *
 309offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 310{
 311	struct swap_extent *se;
 312	struct rb_node *rb;
 313
 314	rb = sis->swap_extent_root.rb_node;
 315	while (rb) {
 316		se = rb_entry(rb, struct swap_extent, rb_node);
 317		if (offset < se->start_page)
 318			rb = rb->rb_left;
 319		else if (offset >= se->start_page + se->nr_pages)
 320			rb = rb->rb_right;
 321		else
 322			return se;
 323	}
 324	/* It *must* be present */
 325	BUG();
 326}
 327
 328sector_t swap_folio_sector(struct folio *folio)
 329{
 330	struct swap_info_struct *sis = swp_swap_info(folio->swap);
 331	struct swap_extent *se;
 332	sector_t sector;
 333	pgoff_t offset;
 334
 335	offset = swp_offset(folio->swap);
 336	se = offset_to_swap_extent(sis, offset);
 337	sector = se->start_block + (offset - se->start_page);
 338	return sector << (PAGE_SHIFT - 9);
 339}
 340
 341/*
 342 * swap allocation tell device that a cluster of swap can now be discarded,
 343 * to allow the swap device to optimize its wear-levelling.
 344 */
 345static void discard_swap_cluster(struct swap_info_struct *si,
 346				 pgoff_t start_page, pgoff_t nr_pages)
 347{
 348	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 
 349
 350	while (nr_pages) {
 351		pgoff_t offset = start_page - se->start_page;
 352		sector_t start_block = se->start_block + offset;
 353		sector_t nr_blocks = se->nr_pages - offset;
 354
 355		if (nr_blocks > nr_pages)
 356			nr_blocks = nr_pages;
 357		start_page += nr_blocks;
 358		nr_pages -= nr_blocks;
 359
 360		start_block <<= PAGE_SHIFT - 9;
 361		nr_blocks <<= PAGE_SHIFT - 9;
 362		if (blkdev_issue_discard(si->bdev, start_block,
 363					nr_blocks, GFP_NOIO))
 364			break;
 365
 366		se = next_se(se);
 367	}
 368}
 369
 370#ifdef CONFIG_THP_SWAP
 371#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 372
 373#define swap_entry_order(order)	(order)
 374#else
 375#define SWAPFILE_CLUSTER	256
 376
 377/*
 378 * Define swap_entry_order() as constant to let compiler to optimize
 379 * out some code if !CONFIG_THP_SWAP
 380 */
 381#define swap_entry_order(order)	0
 382#endif
 383#define LATENCY_LIMIT		256
 384
 385static inline bool cluster_is_free(struct swap_cluster_info *info)
 386{
 387	return info->flags & CLUSTER_FLAG_FREE;
 388}
 389
 390static inline unsigned int cluster_index(struct swap_info_struct *si,
 391					 struct swap_cluster_info *ci)
 392{
 393	return ci - si->cluster_info;
 394}
 395
 396static inline unsigned int cluster_offset(struct swap_info_struct *si,
 397					  struct swap_cluster_info *ci)
 398{
 399	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
 400}
 401
 402static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 403						     unsigned long offset)
 404{
 405	struct swap_cluster_info *ci;
 406
 407	ci = si->cluster_info;
 408	if (ci) {
 409		ci += offset / SWAPFILE_CLUSTER;
 410		spin_lock(&ci->lock);
 411	}
 412	return ci;
 413}
 414
 415static inline void unlock_cluster(struct swap_cluster_info *ci)
 416{
 417	if (ci)
 418		spin_unlock(&ci->lock);
 419}
 420
 421/*
 422 * Determine the locking method in use for this device.  Return
 423 * swap_cluster_info if SSD-style cluster-based locking is in place.
 424 */
 425static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 426		struct swap_info_struct *si, unsigned long offset)
 427{
 428	struct swap_cluster_info *ci;
 429
 430	/* Try to use fine-grained SSD-style locking if available: */
 431	ci = lock_cluster(si, offset);
 432	/* Otherwise, fall back to traditional, coarse locking: */
 433	if (!ci)
 434		spin_lock(&si->lock);
 435
 436	return ci;
 437}
 438
 439static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 440					       struct swap_cluster_info *ci)
 441{
 442	if (ci)
 443		unlock_cluster(ci);
 444	else
 445		spin_unlock(&si->lock);
 446}
 447
 448/* Add a cluster to discard list and schedule it to do discard */
 449static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 450		struct swap_cluster_info *ci)
 451{
 452	unsigned int idx = cluster_index(si, ci);
 453	/*
 454	 * If scan_swap_map_slots() can't find a free cluster, it will check
 455	 * si->swap_map directly. To make sure the discarding cluster isn't
 456	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 457	 * It will be cleared after discard
 458	 */
 459	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 460			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 461
 462	VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
 463	list_move_tail(&ci->list, &si->discard_clusters);
 464	ci->flags = 0;
 465	schedule_work(&si->discard_work);
 466}
 467
 468static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
 469{
 470	lockdep_assert_held(&si->lock);
 471	lockdep_assert_held(&ci->lock);
 472
 473	if (ci->flags)
 474		list_move_tail(&ci->list, &si->free_clusters);
 475	else
 476		list_add_tail(&ci->list, &si->free_clusters);
 477	ci->flags = CLUSTER_FLAG_FREE;
 478	ci->order = 0;
 479}
 480
 481/*
 482 * Doing discard actually. After a cluster discard is finished, the cluster
 483 * will be added to free cluster list. caller should hold si->lock.
 484*/
 485static void swap_do_scheduled_discard(struct swap_info_struct *si)
 486{
 487	struct swap_cluster_info *ci;
 488	unsigned int idx;
 489
 490	while (!list_empty(&si->discard_clusters)) {
 491		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
 492		list_del(&ci->list);
 493		idx = cluster_index(si, ci);
 494		spin_unlock(&si->lock);
 495
 496		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 497				SWAPFILE_CLUSTER);
 498
 499		spin_lock(&si->lock);
 500		spin_lock(&ci->lock);
 501		__free_cluster(si, ci);
 502		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 503				0, SWAPFILE_CLUSTER);
 504		spin_unlock(&ci->lock);
 505	}
 506}
 507
 508static void swap_discard_work(struct work_struct *work)
 509{
 510	struct swap_info_struct *si;
 511
 512	si = container_of(work, struct swap_info_struct, discard_work);
 513
 514	spin_lock(&si->lock);
 515	swap_do_scheduled_discard(si);
 516	spin_unlock(&si->lock);
 517}
 518
 519static void swap_users_ref_free(struct percpu_ref *ref)
 520{
 521	struct swap_info_struct *si;
 522
 523	si = container_of(ref, struct swap_info_struct, users);
 524	complete(&si->comp);
 525}
 526
 527static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
 528{
 529	VM_BUG_ON(ci->count != 0);
 530	lockdep_assert_held(&si->lock);
 531	lockdep_assert_held(&ci->lock);
 532
 533	if (ci->flags & CLUSTER_FLAG_FRAG)
 534		si->frag_cluster_nr[ci->order]--;
 535
 536	/*
 537	 * If the swap is discardable, prepare discard the cluster
 538	 * instead of free it immediately. The cluster will be freed
 539	 * after discard.
 540	 */
 541	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 542	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 543		swap_cluster_schedule_discard(si, ci);
 544		return;
 545	}
 546
 547	__free_cluster(si, ci);
 548}
 549
 550/*
 551 * The cluster corresponding to page_nr will be used. The cluster will not be
 552 * added to free cluster list and its usage counter will be increased by 1.
 553 * Only used for initialization.
 554 */
 555static void inc_cluster_info_page(struct swap_info_struct *si,
 556	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 557{
 558	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 559	struct swap_cluster_info *ci;
 560
 561	if (!cluster_info)
 562		return;
 563
 564	ci = cluster_info + idx;
 565	ci->count++;
 566
 567	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
 568	VM_BUG_ON(ci->flags);
 569}
 570
 571/*
 572 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
 573 * which means no page in the cluster is in use, we can optionally discard
 574 * the cluster and add it to free cluster list.
 575 */
 576static void dec_cluster_info_page(struct swap_info_struct *si,
 577				  struct swap_cluster_info *ci, int nr_pages)
 578{
 579	if (!si->cluster_info)
 580		return;
 581
 582	VM_BUG_ON(ci->count < nr_pages);
 583	VM_BUG_ON(cluster_is_free(ci));
 584	lockdep_assert_held(&si->lock);
 585	lockdep_assert_held(&ci->lock);
 586	ci->count -= nr_pages;
 587
 588	if (!ci->count) {
 589		free_cluster(si, ci);
 590		return;
 591	}
 592
 593	if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
 594		VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
 595		if (ci->flags & CLUSTER_FLAG_FRAG)
 596			si->frag_cluster_nr[ci->order]--;
 597		list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
 598		ci->flags = CLUSTER_FLAG_NONFULL;
 599	}
 600}
 601
 602static bool cluster_reclaim_range(struct swap_info_struct *si,
 603				  struct swap_cluster_info *ci,
 604				  unsigned long start, unsigned long end)
 605{
 606	unsigned char *map = si->swap_map;
 607	unsigned long offset;
 608
 609	spin_unlock(&ci->lock);
 610	spin_unlock(&si->lock);
 611
 612	for (offset = start; offset < end; offset++) {
 613		switch (READ_ONCE(map[offset])) {
 614		case 0:
 615			continue;
 616		case SWAP_HAS_CACHE:
 617			if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
 618				continue;
 619			goto out;
 620		default:
 621			goto out;
 622		}
 623	}
 624out:
 625	spin_lock(&si->lock);
 626	spin_lock(&ci->lock);
 627
 628	/*
 629	 * Recheck the range no matter reclaim succeeded or not, the slot
 630	 * could have been be freed while we are not holding the lock.
 631	 */
 632	for (offset = start; offset < end; offset++)
 633		if (READ_ONCE(map[offset]))
 634			return false;
 635
 636	return true;
 637}
 638
 639static bool cluster_scan_range(struct swap_info_struct *si,
 640			       struct swap_cluster_info *ci,
 641			       unsigned long start, unsigned int nr_pages)
 642{
 643	unsigned long offset, end = start + nr_pages;
 644	unsigned char *map = si->swap_map;
 645	bool need_reclaim = false;
 646
 647	for (offset = start; offset < end; offset++) {
 648		switch (READ_ONCE(map[offset])) {
 649		case 0:
 650			continue;
 651		case SWAP_HAS_CACHE:
 652			if (!vm_swap_full())
 653				return false;
 654			need_reclaim = true;
 655			continue;
 656		default:
 657			return false;
 658		}
 659	}
 660
 661	if (need_reclaim)
 662		return cluster_reclaim_range(si, ci, start, end);
 663
 664	return true;
 665}
 666
 667static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
 668				unsigned int start, unsigned char usage,
 669				unsigned int order)
 670{
 671	unsigned int nr_pages = 1 << order;
 672
 673	if (!(si->flags & SWP_WRITEOK))
 674		return false;
 675
 676	if (cluster_is_free(ci)) {
 677		if (nr_pages < SWAPFILE_CLUSTER) {
 678			list_move_tail(&ci->list, &si->nonfull_clusters[order]);
 679			ci->flags = CLUSTER_FLAG_NONFULL;
 680		}
 681		ci->order = order;
 682	}
 683
 684	memset(si->swap_map + start, usage, nr_pages);
 685	swap_range_alloc(si, start, nr_pages);
 686	ci->count += nr_pages;
 687
 688	if (ci->count == SWAPFILE_CLUSTER) {
 689		VM_BUG_ON(!(ci->flags &
 690			  (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
 691		if (ci->flags & CLUSTER_FLAG_FRAG)
 692			si->frag_cluster_nr[ci->order]--;
 693		list_move_tail(&ci->list, &si->full_clusters);
 694		ci->flags = CLUSTER_FLAG_FULL;
 695	}
 696
 697	return true;
 698}
 699
 700static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
 701					    unsigned int *foundp, unsigned int order,
 702					    unsigned char usage)
 703{
 704	unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
 705	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
 706	unsigned int nr_pages = 1 << order;
 707	struct swap_cluster_info *ci;
 708
 709	if (end < nr_pages)
 710		return SWAP_NEXT_INVALID;
 711	end -= nr_pages;
 712
 713	ci = lock_cluster(si, offset);
 714	if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
 715		offset = SWAP_NEXT_INVALID;
 716		goto done;
 717	}
 718
 719	while (offset <= end) {
 720		if (cluster_scan_range(si, ci, offset, nr_pages)) {
 721			if (!cluster_alloc_range(si, ci, offset, usage, order)) {
 722				offset = SWAP_NEXT_INVALID;
 723				goto done;
 724			}
 725			*foundp = offset;
 726			if (ci->count == SWAPFILE_CLUSTER) {
 727				offset = SWAP_NEXT_INVALID;
 728				goto done;
 729			}
 730			offset += nr_pages;
 731			break;
 732		}
 733		offset += nr_pages;
 734	}
 735	if (offset > end)
 736		offset = SWAP_NEXT_INVALID;
 737done:
 738	unlock_cluster(ci);
 739	return offset;
 740}
 741
 742/* Return true if reclaimed a whole cluster */
 743static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
 744{
 745	long to_scan = 1;
 746	unsigned long offset, end;
 747	struct swap_cluster_info *ci;
 748	unsigned char *map = si->swap_map;
 749	int nr_reclaim;
 750
 751	if (force)
 752		to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
 753
 754	while (!list_empty(&si->full_clusters)) {
 755		ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
 756		list_move_tail(&ci->list, &si->full_clusters);
 757		offset = cluster_offset(si, ci);
 758		end = min(si->max, offset + SWAPFILE_CLUSTER);
 759		to_scan--;
 760
 761		spin_unlock(&si->lock);
 762		while (offset < end) {
 763			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
 764				nr_reclaim = __try_to_reclaim_swap(si, offset,
 765								   TTRS_ANYWAY | TTRS_DIRECT);
 766				if (nr_reclaim) {
 767					offset += abs(nr_reclaim);
 768					continue;
 769				}
 770			}
 771			offset++;
 772		}
 773		spin_lock(&si->lock);
 774
 775		if (to_scan <= 0)
 776			break;
 777	}
 778}
 779
 780static void swap_reclaim_work(struct work_struct *work)
 781{
 782	struct swap_info_struct *si;
 783
 784	si = container_of(work, struct swap_info_struct, reclaim_work);
 785
 786	spin_lock(&si->lock);
 787	swap_reclaim_full_clusters(si, true);
 788	spin_unlock(&si->lock);
 789}
 790
 791/*
 792 * Try to get swap entries with specified order from current cpu's swap entry
 793 * pool (a cluster). This might involve allocating a new cluster for current CPU
 794 * too.
 795 */
 796static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
 797					      unsigned char usage)
 798{
 799	struct percpu_cluster *cluster;
 800	struct swap_cluster_info *ci;
 801	unsigned int offset, found = 0;
 802
 803new_cluster:
 804	lockdep_assert_held(&si->lock);
 805	cluster = this_cpu_ptr(si->percpu_cluster);
 806	offset = cluster->next[order];
 807	if (offset) {
 808		offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
 809		if (found)
 810			goto done;
 811	}
 812
 813	if (!list_empty(&si->free_clusters)) {
 814		ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
 815		offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
 816		/*
 817		 * Either we didn't touch the cluster due to swapoff,
 818		 * or the allocation must success.
 819		 */
 820		VM_BUG_ON((si->flags & SWP_WRITEOK) && !found);
 821		goto done;
 822	}
 823
 824	/* Try reclaim from full clusters if free clusters list is drained */
 825	if (vm_swap_full())
 826		swap_reclaim_full_clusters(si, false);
 827
 828	if (order < PMD_ORDER) {
 829		unsigned int frags = 0;
 830
 831		while (!list_empty(&si->nonfull_clusters[order])) {
 832			ci = list_first_entry(&si->nonfull_clusters[order],
 833					      struct swap_cluster_info, list);
 834			list_move_tail(&ci->list, &si->frag_clusters[order]);
 835			ci->flags = CLUSTER_FLAG_FRAG;
 836			si->frag_cluster_nr[order]++;
 837			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 838							 &found, order, usage);
 839			frags++;
 840			if (found)
 841				break;
 842		}
 843
 844		if (!found) {
 845			/*
 846			 * Nonfull clusters are moved to frag tail if we reached
 847			 * here, count them too, don't over scan the frag list.
 848			 */
 849			while (frags < si->frag_cluster_nr[order]) {
 850				ci = list_first_entry(&si->frag_clusters[order],
 851						      struct swap_cluster_info, list);
 852				/*
 853				 * Rotate the frag list to iterate, they were all failing
 854				 * high order allocation or moved here due to per-CPU usage,
 855				 * this help keeping usable cluster ahead.
 856				 */
 857				list_move_tail(&ci->list, &si->frag_clusters[order]);
 858				offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 859								 &found, order, usage);
 860				frags++;
 861				if (found)
 862					break;
 863			}
 864		}
 865	}
 866
 867	if (found)
 868		goto done;
 869
 870	if (!list_empty(&si->discard_clusters)) {
 871		/*
 872		 * we don't have free cluster but have some clusters in
 873		 * discarding, do discard now and reclaim them, then
 874		 * reread cluster_next_cpu since we dropped si->lock
 875		 */
 876		swap_do_scheduled_discard(si);
 877		goto new_cluster;
 878	}
 879
 880	if (order)
 881		goto done;
 882
 883	/* Order 0 stealing from higher order */
 884	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
 885		/*
 886		 * Clusters here have at least one usable slots and can't fail order 0
 887		 * allocation, but reclaim may drop si->lock and race with another user.
 888		 */
 889		while (!list_empty(&si->frag_clusters[o])) {
 890			ci = list_first_entry(&si->frag_clusters[o],
 891					      struct swap_cluster_info, list);
 892			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 893							 &found, 0, usage);
 894			if (found)
 895				goto done;
 896		}
 897
 898		while (!list_empty(&si->nonfull_clusters[o])) {
 899			ci = list_first_entry(&si->nonfull_clusters[o],
 900					      struct swap_cluster_info, list);
 901			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 902							 &found, 0, usage);
 903			if (found)
 904				goto done;
 905		}
 906	}
 907
 908done:
 909	cluster->next[order] = offset;
 910	return found;
 911}
 912
 913static void __del_from_avail_list(struct swap_info_struct *si)
 914{
 915	int nid;
 916
 917	assert_spin_locked(&si->lock);
 918	for_each_node(nid)
 919		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
 920}
 921
 922static void del_from_avail_list(struct swap_info_struct *si)
 923{
 924	spin_lock(&swap_avail_lock);
 925	__del_from_avail_list(si);
 926	spin_unlock(&swap_avail_lock);
 927}
 928
 929static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 930			     unsigned int nr_entries)
 931{
 932	unsigned int end = offset + nr_entries - 1;
 933
 934	if (offset == si->lowest_bit)
 935		si->lowest_bit += nr_entries;
 936	if (end == si->highest_bit)
 937		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 938	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
 939	if (si->inuse_pages == si->pages) {
 940		si->lowest_bit = si->max;
 941		si->highest_bit = 0;
 942		del_from_avail_list(si);
 943
 944		if (si->cluster_info && vm_swap_full())
 945			schedule_work(&si->reclaim_work);
 946	}
 947}
 948
 949static void add_to_avail_list(struct swap_info_struct *si)
 950{
 951	int nid;
 952
 953	spin_lock(&swap_avail_lock);
 954	for_each_node(nid)
 955		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
 956	spin_unlock(&swap_avail_lock);
 957}
 958
 959static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 960			    unsigned int nr_entries)
 961{
 962	unsigned long begin = offset;
 963	unsigned long end = offset + nr_entries - 1;
 964	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 965	unsigned int i;
 966
 967	/*
 968	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
 969	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
 970	 */
 971	for (i = 0; i < nr_entries; i++)
 972		clear_bit(offset + i, si->zeromap);
 973
 974	if (offset < si->lowest_bit)
 975		si->lowest_bit = offset;
 976	if (end > si->highest_bit) {
 977		bool was_full = !si->highest_bit;
 978
 979		WRITE_ONCE(si->highest_bit, end);
 980		if (was_full && (si->flags & SWP_WRITEOK))
 981			add_to_avail_list(si);
 982	}
 983	if (si->flags & SWP_BLKDEV)
 984		swap_slot_free_notify =
 985			si->bdev->bd_disk->fops->swap_slot_free_notify;
 986	else
 987		swap_slot_free_notify = NULL;
 988	while (offset <= end) {
 989		arch_swap_invalidate_page(si->type, offset);
 990		if (swap_slot_free_notify)
 991			swap_slot_free_notify(si->bdev, offset);
 992		offset++;
 993	}
 994	clear_shadow_from_swap_cache(si->type, begin, end);
 995
 996	/*
 997	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
 998	 * only after the above cleanups are done.
 999	 */
1000	smp_wmb();
1001	atomic_long_add(nr_entries, &nr_swap_pages);
1002	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
1003}
1004
1005static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
1006{
1007	unsigned long prev;
1008
1009	if (!(si->flags & SWP_SOLIDSTATE)) {
1010		si->cluster_next = next;
1011		return;
1012	}
1013
1014	prev = this_cpu_read(*si->cluster_next_cpu);
1015	/*
1016	 * Cross the swap address space size aligned trunk, choose
1017	 * another trunk randomly to avoid lock contention on swap
1018	 * address space if possible.
1019	 */
1020	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
1021	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1022		/* No free swap slots available */
1023		if (si->highest_bit <= si->lowest_bit)
1024			return;
1025		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1026		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1027		next = max_t(unsigned int, next, si->lowest_bit);
1028	}
1029	this_cpu_write(*si->cluster_next_cpu, next);
1030}
1031
1032static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1033					     unsigned long offset)
1034{
1035	if (data_race(!si->swap_map[offset])) {
1036		spin_lock(&si->lock);
1037		return true;
1038	}
1039
1040	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1041		spin_lock(&si->lock);
1042		return true;
1043	}
1044
1045	return false;
1046}
1047
1048static int cluster_alloc_swap(struct swap_info_struct *si,
1049			     unsigned char usage, int nr,
1050			     swp_entry_t slots[], int order)
1051{
1052	int n_ret = 0;
1053
1054	VM_BUG_ON(!si->cluster_info);
1055
1056	si->flags += SWP_SCANNING;
1057
1058	while (n_ret < nr) {
1059		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1060
1061		if (!offset)
1062			break;
1063		slots[n_ret++] = swp_entry(si->type, offset);
1064	}
1065
1066	si->flags -= SWP_SCANNING;
1067
1068	return n_ret;
1069}
1070
1071static int scan_swap_map_slots(struct swap_info_struct *si,
1072			       unsigned char usage, int nr,
1073			       swp_entry_t slots[], int order)
1074{
1075	unsigned long offset;
1076	unsigned long scan_base;
1077	unsigned long last_in_cluster = 0;
1078	int latency_ration = LATENCY_LIMIT;
1079	unsigned int nr_pages = 1 << order;
1080	int n_ret = 0;
1081	bool scanned_many = false;
1082
1083	/*
1084	 * We try to cluster swap pages by allocating them sequentially
1085	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
1086	 * way, however, we resort to first-free allocation, starting
1087	 * a new cluster.  This prevents us from scattering swap pages
1088	 * all over the entire swap partition, so that we reduce
1089	 * overall disk seek times between swap pages.  -- sct
1090	 * But we do now try to find an empty cluster.  -Andrea
1091	 * And we let swap pages go all over an SSD partition.  Hugh
1092	 */
1093
1094	if (order > 0) {
1095		/*
1096		 * Should not even be attempting large allocations when huge
1097		 * page swap is disabled.  Warn and fail the allocation.
1098		 */
1099		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1100		    nr_pages > SWAPFILE_CLUSTER) {
1101			VM_WARN_ON_ONCE(1);
1102			return 0;
1103		}
1104
1105		/*
1106		 * Swapfile is not block device or not using clusters so unable
1107		 * to allocate large entries.
1108		 */
1109		if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1110			return 0;
1111	}
1112
1113	if (si->cluster_info)
1114		return cluster_alloc_swap(si, usage, nr, slots, order);
1115
1116	si->flags += SWP_SCANNING;
1117
1118	/* For HDD, sequential access is more important. */
1119	scan_base = si->cluster_next;
1120	offset = scan_base;
1121
1122	if (unlikely(!si->cluster_nr--)) {
1123		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1124			si->cluster_nr = SWAPFILE_CLUSTER - 1;
1125			goto checks;
1126		}
1127
1128		spin_unlock(&si->lock);
 
 
 
 
 
 
 
 
 
 
 
 
1129
1130		/*
1131		 * If seek is expensive, start searching for new cluster from
1132		 * start of partition, to minimize the span of allocated swap.
 
 
 
 
1133		 */
1134		scan_base = offset = si->lowest_bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1136
1137		/* Locate the first empty (unaligned) cluster */
1138		for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1139			if (si->swap_map[offset])
1140				last_in_cluster = offset + SWAPFILE_CLUSTER;
1141			else if (offset == last_in_cluster) {
1142				spin_lock(&si->lock);
1143				offset -= SWAPFILE_CLUSTER - 1;
1144				si->cluster_next = offset;
1145				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 
1146				goto checks;
1147			}
1148			if (unlikely(--latency_ration < 0)) {
1149				cond_resched();
1150				latency_ration = LATENCY_LIMIT;
1151			}
1152		}
1153
1154		offset = scan_base;
1155		spin_lock(&si->lock);
1156		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 
1157	}
1158
1159checks:
1160	if (!(si->flags & SWP_WRITEOK))
1161		goto no_page;
1162	if (!si->highest_bit)
1163		goto no_page;
1164	if (offset > si->highest_bit)
1165		scan_base = offset = si->lowest_bit;
1166
1167	/* reuse swap entry of cache-only swap if not busy. */
1168	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1169		int swap_was_freed;
1170		spin_unlock(&si->lock);
1171		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1172		spin_lock(&si->lock);
1173		/* entry was freed successfully, try to use this again */
1174		if (swap_was_freed > 0)
1175			goto checks;
1176		goto scan; /* check next one */
1177	}
1178
1179	if (si->swap_map[offset]) {
1180		if (!n_ret)
1181			goto scan;
1182		else
1183			goto done;
1184	}
1185	memset(si->swap_map + offset, usage, nr_pages);
1186
1187	swap_range_alloc(si, offset, nr_pages);
1188	slots[n_ret++] = swp_entry(si->type, offset);
1189
1190	/* got enough slots or reach max slots? */
1191	if ((n_ret == nr) || (offset >= si->highest_bit))
1192		goto done;
1193
1194	/* search for next available slot */
1195
1196	/* time to take a break? */
1197	if (unlikely(--latency_ration < 0)) {
1198		if (n_ret)
1199			goto done;
1200		spin_unlock(&si->lock);
1201		cond_resched();
1202		spin_lock(&si->lock);
1203		latency_ration = LATENCY_LIMIT;
1204	}
 
 
 
1205
1206	if (si->cluster_nr && !si->swap_map[++offset]) {
1207		/* non-ssd case, still more slots in cluster? */
1208		--si->cluster_nr;
1209		goto checks;
1210	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211
1212	/*
1213	 * Even if there's no free clusters available (fragmented),
1214	 * try to scan a little more quickly with lock held unless we
1215	 * have scanned too many slots already.
1216	 */
1217	if (!scanned_many) {
1218		unsigned long scan_limit;
1219
1220		if (offset < scan_base)
1221			scan_limit = scan_base;
1222		else
1223			scan_limit = si->highest_bit;
1224		for (; offset <= scan_limit && --latency_ration > 0;
1225		     offset++) {
1226			if (!si->swap_map[offset])
1227				goto checks;
 
 
 
 
 
 
 
 
 
 
 
 
 
1228		}
1229	}
1230
1231done:
1232	if (order == 0)
1233		set_cluster_next(si, offset + 1);
1234	si->flags -= SWP_SCANNING;
1235	return n_ret;
1236
1237scan:
1238	VM_WARN_ON(order > 0);
1239	spin_unlock(&si->lock);
1240	while (++offset <= READ_ONCE(si->highest_bit)) {
 
 
 
 
 
 
 
1241		if (unlikely(--latency_ration < 0)) {
1242			cond_resched();
1243			latency_ration = LATENCY_LIMIT;
1244			scanned_many = true;
1245		}
1246		if (swap_offset_available_and_locked(si, offset))
1247			goto checks;
1248	}
1249	offset = si->lowest_bit;
1250	while (offset < scan_base) {
 
 
 
 
 
 
 
 
1251		if (unlikely(--latency_ration < 0)) {
1252			cond_resched();
1253			latency_ration = LATENCY_LIMIT;
1254			scanned_many = true;
1255		}
1256		if (swap_offset_available_and_locked(si, offset))
1257			goto checks;
1258		offset++;
1259	}
1260	spin_lock(&si->lock);
1261
1262no_page:
1263	si->flags -= SWP_SCANNING;
1264	return n_ret;
1265}
1266
1267int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1268{
1269	int order = swap_entry_order(entry_order);
1270	unsigned long size = 1 << order;
1271	struct swap_info_struct *si, *next;
1272	long avail_pgs;
1273	int n_ret = 0;
1274	int node;
1275
1276	spin_lock(&swap_avail_lock);
1277
1278	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1279	if (avail_pgs <= 0) {
1280		spin_unlock(&swap_avail_lock);
1281		goto noswap;
1282	}
1283
1284	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
 
 
 
 
 
 
 
1285
1286	atomic_long_sub(n_goal * size, &nr_swap_pages);
 
 
 
1287
1288start_over:
1289	node = numa_node_id();
1290	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1291		/* requeue si to after same-priority siblings */
1292		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1293		spin_unlock(&swap_avail_lock);
1294		spin_lock(&si->lock);
1295		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1296			spin_lock(&swap_avail_lock);
1297			if (plist_node_empty(&si->avail_lists[node])) {
1298				spin_unlock(&si->lock);
1299				goto nextsi;
1300			}
1301			WARN(!si->highest_bit,
1302			     "swap_info %d in list but !highest_bit\n",
1303			     si->type);
1304			WARN(!(si->flags & SWP_WRITEOK),
1305			     "swap_info %d in list but !SWP_WRITEOK\n",
1306			     si->type);
1307			__del_from_avail_list(si);
1308			spin_unlock(&si->lock);
1309			goto nextsi;
1310		}
1311		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1312					    n_goal, swp_entries, order);
1313		spin_unlock(&si->lock);
1314		if (n_ret || size > 1)
1315			goto check_out;
1316		cond_resched();
1317
1318		spin_lock(&swap_avail_lock);
1319nextsi:
1320		/*
1321		 * if we got here, it's likely that si was almost full before,
1322		 * and since scan_swap_map_slots() can drop the si->lock,
1323		 * multiple callers probably all tried to get a page from the
1324		 * same si and it filled up before we could get one; or, the si
1325		 * filled up between us dropping swap_avail_lock and taking
1326		 * si->lock. Since we dropped the swap_avail_lock, the
1327		 * swap_avail_head list may have been modified; so if next is
1328		 * still in the swap_avail_head list then try it, otherwise
1329		 * start over if we have not gotten any slots.
1330		 */
1331		if (plist_node_empty(&next->avail_lists[node]))
1332			goto start_over;
1333	}
1334
1335	spin_unlock(&swap_avail_lock);
1336
1337check_out:
1338	if (n_ret < n_goal)
1339		atomic_long_add((long)(n_goal - n_ret) * size,
1340				&nr_swap_pages);
1341noswap:
1342	return n_ret;
 
1343}
1344
1345static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
 
1346{
1347	struct swap_info_struct *si;
1348	unsigned long offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349
1350	if (!entry.val)
1351		goto out;
1352	si = swp_swap_info(entry);
1353	if (!si)
1354		goto bad_nofile;
1355	if (data_race(!(si->flags & SWP_USED)))
 
1356		goto bad_device;
1357	offset = swp_offset(entry);
1358	if (offset >= si->max)
1359		goto bad_offset;
1360	if (data_race(!si->swap_map[swp_offset(entry)]))
1361		goto bad_free;
1362	return si;
 
1363
1364bad_free:
1365	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1366	goto out;
1367bad_offset:
1368	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1369	goto out;
1370bad_device:
1371	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1372	goto out;
1373bad_nofile:
1374	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1375out:
1376	return NULL;
1377}
1378
1379static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1380					struct swap_info_struct *q)
1381{
1382	struct swap_info_struct *p;
1383
1384	p = _swap_info_get(entry);
1385
1386	if (p != q) {
1387		if (q != NULL)
1388			spin_unlock(&q->lock);
1389		if (p != NULL)
1390			spin_lock(&p->lock);
1391	}
1392	return p;
1393}
1394
1395static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1396					      unsigned long offset,
1397					      unsigned char usage)
1398{
 
1399	unsigned char count;
1400	unsigned char has_cache;
1401
1402	count = si->swap_map[offset];
1403
1404	has_cache = count & SWAP_HAS_CACHE;
1405	count &= ~SWAP_HAS_CACHE;
1406
1407	if (usage == SWAP_HAS_CACHE) {
1408		VM_BUG_ON(!has_cache);
1409		has_cache = 0;
1410	} else if (count == SWAP_MAP_SHMEM) {
1411		/*
1412		 * Or we could insist on shmem.c using a special
1413		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1414		 */
1415		count = 0;
1416	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1417		if (count == COUNT_CONTINUED) {
1418			if (swap_count_continued(si, offset, count))
1419				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1420			else
1421				count = SWAP_MAP_MAX;
1422		} else
1423			count--;
1424	}
1425
 
 
 
1426	usage = count | has_cache;
1427	if (usage)
1428		WRITE_ONCE(si->swap_map[offset], usage);
1429	else
1430		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1431
1432	return usage;
1433}
1434
1435/*
1436 * When we get a swap entry, if there aren't some other ways to
1437 * prevent swapoff, such as the folio in swap cache is locked, RCU
1438 * reader side is locked, etc., the swap entry may become invalid
1439 * because of swapoff.  Then, we need to enclose all swap related
1440 * functions with get_swap_device() and put_swap_device(), unless the
1441 * swap functions call get/put_swap_device() by themselves.
1442 *
1443 * RCU reader side lock (including any spinlock) is sufficient to
1444 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1445 * before freeing data structures.
1446 *
1447 * Check whether swap entry is valid in the swap device.  If so,
1448 * return pointer to swap_info_struct, and keep the swap entry valid
1449 * via preventing the swap device from being swapoff, until
1450 * put_swap_device() is called.  Otherwise return NULL.
1451 *
1452 * Notice that swapoff or swapoff+swapon can still happen before the
1453 * percpu_ref_tryget_live() in get_swap_device() or after the
1454 * percpu_ref_put() in put_swap_device() if there isn't any other way
1455 * to prevent swapoff.  The caller must be prepared for that.  For
1456 * example, the following situation is possible.
1457 *
1458 *   CPU1				CPU2
1459 *   do_swap_page()
1460 *     ...				swapoff+swapon
1461 *     __read_swap_cache_async()
1462 *       swapcache_prepare()
1463 *         __swap_duplicate()
1464 *           // check swap_map
1465 *     // verify PTE not changed
1466 *
1467 * In __swap_duplicate(), the swap_map need to be checked before
1468 * changing partly because the specified swap entry may be for another
1469 * swap device which has been swapoff.  And in do_swap_page(), after
1470 * the page is read from the swap device, the PTE is verified not
1471 * changed with the page table locked to check whether the swap device
1472 * has been swapoff or swapoff+swapon.
1473 */
1474struct swap_info_struct *get_swap_device(swp_entry_t entry)
1475{
1476	struct swap_info_struct *si;
1477	unsigned long offset;
1478
1479	if (!entry.val)
1480		goto out;
1481	si = swp_swap_info(entry);
1482	if (!si)
1483		goto bad_nofile;
1484	if (!percpu_ref_tryget_live(&si->users))
1485		goto out;
1486	/*
1487	 * Guarantee the si->users are checked before accessing other
1488	 * fields of swap_info_struct.
1489	 *
1490	 * Paired with the spin_unlock() after setup_swap_info() in
1491	 * enable_swap_info().
1492	 */
1493	smp_rmb();
1494	offset = swp_offset(entry);
1495	if (offset >= si->max)
1496		goto put_out;
1497
1498	return si;
1499bad_nofile:
1500	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1501out:
1502	return NULL;
1503put_out:
1504	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1505	percpu_ref_put(&si->users);
1506	return NULL;
1507}
1508
1509static unsigned char __swap_entry_free(struct swap_info_struct *si,
1510				       swp_entry_t entry)
1511{
1512	struct swap_cluster_info *ci;
1513	unsigned long offset = swp_offset(entry);
1514	unsigned char usage;
1515
1516	ci = lock_cluster_or_swap_info(si, offset);
1517	usage = __swap_entry_free_locked(si, offset, 1);
1518	unlock_cluster_or_swap_info(si, ci);
1519	if (!usage)
1520		free_swap_slot(entry);
1521
1522	return usage;
1523}
1524
1525static bool __swap_entries_free(struct swap_info_struct *si,
1526		swp_entry_t entry, int nr)
1527{
1528	unsigned long offset = swp_offset(entry);
1529	unsigned int type = swp_type(entry);
1530	struct swap_cluster_info *ci;
1531	bool has_cache = false;
1532	unsigned char count;
1533	int i;
1534
1535	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1536		goto fallback;
1537	/* cross into another cluster */
1538	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1539		goto fallback;
1540
1541	ci = lock_cluster_or_swap_info(si, offset);
1542	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1543		unlock_cluster_or_swap_info(si, ci);
1544		goto fallback;
1545	}
1546	for (i = 0; i < nr; i++)
1547		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1548	unlock_cluster_or_swap_info(si, ci);
1549
1550	if (!has_cache) {
1551		for (i = 0; i < nr; i++)
1552			zswap_invalidate(swp_entry(si->type, offset + i));
1553		spin_lock(&si->lock);
1554		swap_entry_range_free(si, entry, nr);
1555		spin_unlock(&si->lock);
1556	}
1557	return has_cache;
1558
1559fallback:
1560	for (i = 0; i < nr; i++) {
1561		if (data_race(si->swap_map[offset + i])) {
1562			count = __swap_entry_free(si, swp_entry(type, offset + i));
1563			if (count == SWAP_HAS_CACHE)
1564				has_cache = true;
1565		} else {
1566			WARN_ON_ONCE(1);
1567		}
1568	}
1569	return has_cache;
1570}
1571
1572/*
1573 * Drop the last HAS_CACHE flag of swap entries, caller have to
1574 * ensure all entries belong to the same cgroup.
1575 */
1576static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1577				  unsigned int nr_pages)
1578{
1579	unsigned long offset = swp_offset(entry);
1580	unsigned char *map = si->swap_map + offset;
1581	unsigned char *map_end = map + nr_pages;
1582	struct swap_cluster_info *ci;
1583
1584	ci = lock_cluster(si, offset);
1585	do {
1586		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1587		*map = 0;
1588	} while (++map < map_end);
1589	dec_cluster_info_page(si, ci, nr_pages);
1590	unlock_cluster(ci);
1591
1592	mem_cgroup_uncharge_swap(entry, nr_pages);
1593	swap_range_free(si, offset, nr_pages);
1594}
1595
1596static void cluster_swap_free_nr(struct swap_info_struct *si,
1597		unsigned long offset, int nr_pages,
1598		unsigned char usage)
1599{
1600	struct swap_cluster_info *ci;
1601	DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1602	int i, nr;
1603
1604	ci = lock_cluster_or_swap_info(si, offset);
1605	while (nr_pages) {
1606		nr = min(BITS_PER_LONG, nr_pages);
1607		for (i = 0; i < nr; i++) {
1608			if (!__swap_entry_free_locked(si, offset + i, usage))
1609				bitmap_set(to_free, i, 1);
1610		}
1611		if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1612			unlock_cluster_or_swap_info(si, ci);
1613			for_each_set_bit(i, to_free, BITS_PER_LONG)
1614				free_swap_slot(swp_entry(si->type, offset + i));
1615			if (nr == nr_pages)
1616				return;
1617			bitmap_clear(to_free, 0, BITS_PER_LONG);
1618			ci = lock_cluster_or_swap_info(si, offset);
1619		}
1620		offset += nr;
1621		nr_pages -= nr;
1622	}
1623	unlock_cluster_or_swap_info(si, ci);
1624}
1625
1626/*
1627 * Caller has made sure that the swap device corresponding to entry
1628 * is still around or has not been recycled.
1629 */
1630void swap_free_nr(swp_entry_t entry, int nr_pages)
1631{
1632	int nr;
1633	struct swap_info_struct *sis;
1634	unsigned long offset = swp_offset(entry);
1635
1636	sis = _swap_info_get(entry);
1637	if (!sis)
1638		return;
1639
1640	while (nr_pages) {
1641		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1642		cluster_swap_free_nr(sis, offset, nr, 1);
1643		offset += nr;
1644		nr_pages -= nr;
1645	}
1646}
1647
1648/*
1649 * Called after dropping swapcache to decrease refcnt to swap entries.
1650 */
1651void put_swap_folio(struct folio *folio, swp_entry_t entry)
1652{
1653	unsigned long offset = swp_offset(entry);
1654	struct swap_cluster_info *ci;
1655	struct swap_info_struct *si;
1656	int size = 1 << swap_entry_order(folio_order(folio));
1657
1658	si = _swap_info_get(entry);
1659	if (!si)
1660		return;
1661
1662	ci = lock_cluster_or_swap_info(si, offset);
1663	if (size > 1 && swap_is_has_cache(si, offset, size)) {
1664		unlock_cluster_or_swap_info(si, ci);
1665		spin_lock(&si->lock);
1666		swap_entry_range_free(si, entry, size);
1667		spin_unlock(&si->lock);
1668		return;
1669	}
1670	for (int i = 0; i < size; i++, entry.val++) {
1671		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1672			unlock_cluster_or_swap_info(si, ci);
1673			free_swap_slot(entry);
1674			if (i == size - 1)
1675				return;
1676			lock_cluster_or_swap_info(si, offset);
1677		}
1678	}
1679	unlock_cluster_or_swap_info(si, ci);
1680}
1681
1682static int swp_entry_cmp(const void *ent1, const void *ent2)
1683{
1684	const swp_entry_t *e1 = ent1, *e2 = ent2;
1685
1686	return (int)swp_type(*e1) - (int)swp_type(*e2);
1687}
1688
1689void swapcache_free_entries(swp_entry_t *entries, int n)
1690{
1691	struct swap_info_struct *p, *prev;
1692	int i;
1693
1694	if (n <= 0)
1695		return;
1696
1697	prev = NULL;
1698	p = NULL;
1699
1700	/*
1701	 * Sort swap entries by swap device, so each lock is only taken once.
1702	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1703	 * so low that it isn't necessary to optimize further.
1704	 */
1705	if (nr_swapfiles > 1)
1706		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1707	for (i = 0; i < n; ++i) {
1708		p = swap_info_get_cont(entries[i], prev);
1709		if (p)
1710			swap_entry_range_free(p, entries[i], 1);
1711		prev = p;
1712	}
1713	if (p)
1714		spin_unlock(&p->lock);
1715}
1716
1717int __swap_count(swp_entry_t entry)
1718{
1719	struct swap_info_struct *si = swp_swap_info(entry);
1720	pgoff_t offset = swp_offset(entry);
1721
1722	return swap_count(si->swap_map[offset]);
1723}
1724
1725/*
1726 * How many references to @entry are currently swapped out?
1727 * This does not give an exact answer when swap count is continued,
1728 * but does include the high COUNT_CONTINUED flag to allow for that.
1729 */
1730int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1731{
1732	pgoff_t offset = swp_offset(entry);
1733	struct swap_cluster_info *ci;
1734	int count;
1735
1736	ci = lock_cluster_or_swap_info(si, offset);
1737	count = swap_count(si->swap_map[offset]);
1738	unlock_cluster_or_swap_info(si, ci);
 
 
 
1739	return count;
1740}
1741
1742/*
1743 * How many references to @entry are currently swapped out?
1744 * This considers COUNT_CONTINUED so it returns exact answer.
 
 
1745 */
1746int swp_swapcount(swp_entry_t entry)
1747{
1748	int count, tmp_count, n;
1749	struct swap_info_struct *si;
1750	struct swap_cluster_info *ci;
1751	struct page *page;
1752	pgoff_t offset;
1753	unsigned char *map;
1754
1755	si = _swap_info_get(entry);
1756	if (!si)
1757		return 0;
1758
1759	offset = swp_offset(entry);
1760
1761	ci = lock_cluster_or_swap_info(si, offset);
1762
1763	count = swap_count(si->swap_map[offset]);
1764	if (!(count & COUNT_CONTINUED))
1765		goto out;
1766
1767	count &= ~COUNT_CONTINUED;
1768	n = SWAP_MAP_MAX + 1;
1769
1770	page = vmalloc_to_page(si->swap_map + offset);
1771	offset &= ~PAGE_MASK;
1772	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1773
1774	do {
1775		page = list_next_entry(page, lru);
1776		map = kmap_local_page(page);
1777		tmp_count = map[offset];
1778		kunmap_local(map);
1779
1780		count += (tmp_count & ~COUNT_CONTINUED) * n;
1781		n *= (SWAP_CONT_MAX + 1);
1782	} while (tmp_count & COUNT_CONTINUED);
1783out:
1784	unlock_cluster_or_swap_info(si, ci);
1785	return count;
1786}
1787
1788static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1789					 swp_entry_t entry, int order)
1790{
1791	struct swap_cluster_info *ci;
1792	unsigned char *map = si->swap_map;
1793	unsigned int nr_pages = 1 << order;
1794	unsigned long roffset = swp_offset(entry);
1795	unsigned long offset = round_down(roffset, nr_pages);
1796	int i;
1797	bool ret = false;
1798
1799	ci = lock_cluster_or_swap_info(si, offset);
1800	if (!ci || nr_pages == 1) {
1801		if (swap_count(map[roffset]))
1802			ret = true;
1803		goto unlock_out;
1804	}
1805	for (i = 0; i < nr_pages; i++) {
1806		if (swap_count(map[offset + i])) {
1807			ret = true;
1808			break;
1809		}
1810	}
1811unlock_out:
1812	unlock_cluster_or_swap_info(si, ci);
1813	return ret;
1814}
1815
1816static bool folio_swapped(struct folio *folio)
 
 
 
 
1817{
1818	swp_entry_t entry = folio->swap;
1819	struct swap_info_struct *si = _swap_info_get(entry);
1820
1821	if (!si)
1822		return false;
1823
1824	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1825		return swap_swapcount(si, entry) != 0;
1826
1827	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1828}
1829
1830static bool folio_swapcache_freeable(struct folio *folio)
1831{
1832	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1833
1834	if (!folio_test_swapcache(folio))
1835		return false;
1836	if (folio_test_writeback(folio))
1837		return false;
1838
1839	/*
1840	 * Once hibernation has begun to create its image of memory,
1841	 * there's a danger that one of the calls to folio_free_swap()
1842	 * - most probably a call from __try_to_reclaim_swap() while
1843	 * hibernation is allocating its own swap pages for the image,
1844	 * but conceivably even a call from memory reclaim - will free
1845	 * the swap from a folio which has already been recorded in the
1846	 * image as a clean swapcache folio, and then reuse its swap for
1847	 * another page of the image.  On waking from hibernation, the
1848	 * original folio might be freed under memory pressure, then
1849	 * later read back in from swap, now with the wrong data.
1850	 *
1851	 * Hibernation suspends storage while it is writing the image
1852	 * to disk so check that here.
1853	 */
1854	if (pm_suspended_storage())
1855		return false;
1856
1857	return true;
 
 
1858}
1859
1860/**
1861 * folio_free_swap() - Free the swap space used for this folio.
1862 * @folio: The folio to remove.
1863 *
1864 * If swap is getting full, or if there are no more mappings of this folio,
1865 * then call folio_free_swap to free its swap space.
1866 *
1867 * Return: true if we were able to release the swap space.
1868 */
1869bool folio_free_swap(struct folio *folio)
1870{
1871	if (!folio_swapcache_freeable(folio))
1872		return false;
1873	if (folio_swapped(folio))
1874		return false;
1875
1876	delete_from_swap_cache(folio);
1877	folio_set_dirty(folio);
1878	return true;
1879}
1880
1881/**
1882 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1883 *                            reclaim their cache if no more references remain.
1884 * @entry: First entry of range.
1885 * @nr: Number of entries in range.
1886 *
1887 * For each swap entry in the contiguous range, release a reference. If any swap
1888 * entries become free, try to reclaim their underlying folios, if present. The
1889 * offset range is defined by [entry.offset, entry.offset + nr).
1890 */
1891void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1892{
1893	const unsigned long start_offset = swp_offset(entry);
1894	const unsigned long end_offset = start_offset + nr;
1895	struct swap_info_struct *si;
1896	bool any_only_cache = false;
1897	unsigned long offset;
1898
1899	if (non_swap_entry(entry))
1900		return;
1901
1902	si = get_swap_device(entry);
1903	if (!si)
1904		return;
1905
1906	if (WARN_ON(end_offset > si->max))
1907		goto out;
1908
1909	/*
1910	 * First free all entries in the range.
1911	 */
1912	any_only_cache = __swap_entries_free(si, entry, nr);
1913
1914	/*
1915	 * Short-circuit the below loop if none of the entries had their
1916	 * reference drop to zero.
1917	 */
1918	if (!any_only_cache)
1919		goto out;
1920
1921	/*
1922	 * Now go back over the range trying to reclaim the swap cache. This is
1923	 * more efficient for large folios because we will only try to reclaim
1924	 * the swap once per folio in the common case. If we do
1925	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1926	 * latter will get a reference and lock the folio for every individual
1927	 * page but will only succeed once the swap slot for every subpage is
1928	 * zero.
1929	 */
1930	for (offset = start_offset; offset < end_offset; offset += nr) {
1931		nr = 1;
1932		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1933			/*
1934			 * Folios are always naturally aligned in swap so
1935			 * advance forward to the next boundary. Zero means no
1936			 * folio was found for the swap entry, so advance by 1
1937			 * in this case. Negative value means folio was found
1938			 * but could not be reclaimed. Here we can still advance
1939			 * to the next boundary.
1940			 */
1941			nr = __try_to_reclaim_swap(si, offset,
1942						   TTRS_UNMAPPED | TTRS_FULL);
1943			if (nr == 0)
1944				nr = 1;
1945			else if (nr < 0)
1946				nr = -nr;
1947			nr = ALIGN(offset + 1, nr) - offset;
1948		}
 
 
1949	}
1950
1951out:
1952	put_swap_device(si);
1953}
1954
1955#ifdef CONFIG_HIBERNATION
1956
1957swp_entry_t get_swap_page_of_type(int type)
 
 
 
 
 
 
 
 
 
1958{
1959	struct swap_info_struct *si = swap_type_to_swap_info(type);
1960	swp_entry_t entry = {0};
 
1961
1962	if (!si)
1963		goto fail;
 
 
 
 
 
 
1964
1965	/* This is called for allocating swap entry, not cache */
1966	spin_lock(&si->lock);
1967	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1968		atomic_long_dec(&nr_swap_pages);
1969	spin_unlock(&si->lock);
1970fail:
1971	return entry;
1972}
 
1973
 
1974/*
1975 * Find the swap type that corresponds to given device (if any).
1976 *
1977 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1978 * from 0, in which the swap header is expected to be located.
1979 *
1980 * This is needed for the suspend to disk (aka swsusp).
1981 */
1982int swap_type_of(dev_t device, sector_t offset)
1983{
 
1984	int type;
1985
1986	if (!device)
1987		return -1;
1988
1989	spin_lock(&swap_lock);
1990	for (type = 0; type < nr_swapfiles; type++) {
1991		struct swap_info_struct *sis = swap_info[type];
1992
1993		if (!(sis->flags & SWP_WRITEOK))
1994			continue;
1995
1996		if (device == sis->bdev->bd_dev) {
1997			struct swap_extent *se = first_se(sis);
 
 
 
 
 
 
 
1998
1999			if (se->start_block == offset) {
 
 
 
2000				spin_unlock(&swap_lock);
 
2001				return type;
2002			}
2003		}
2004	}
2005	spin_unlock(&swap_lock);
2006	return -ENODEV;
2007}
2008
2009int find_first_swap(dev_t *device)
2010{
2011	int type;
2012
2013	spin_lock(&swap_lock);
2014	for (type = 0; type < nr_swapfiles; type++) {
2015		struct swap_info_struct *sis = swap_info[type];
2016
2017		if (!(sis->flags & SWP_WRITEOK))
2018			continue;
2019		*device = sis->bdev->bd_dev;
2020		spin_unlock(&swap_lock);
2021		return type;
2022	}
2023	spin_unlock(&swap_lock);
2024	return -ENODEV;
2025}
2026
2027/*
2028 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2029 * corresponding to given index in swap_info (swap type).
2030 */
2031sector_t swapdev_block(int type, pgoff_t offset)
2032{
2033	struct swap_info_struct *si = swap_type_to_swap_info(type);
2034	struct swap_extent *se;
2035
2036	if (!si || !(si->flags & SWP_WRITEOK))
2037		return 0;
2038	se = offset_to_swap_extent(si, offset);
2039	return se->start_block + (offset - se->start_page);
 
2040}
2041
2042/*
2043 * Return either the total number of swap pages of given type, or the number
2044 * of free pages of that type (depending on @free)
2045 *
2046 * This is needed for software suspend
2047 */
2048unsigned int count_swap_pages(int type, int free)
2049{
2050	unsigned int n = 0;
2051
2052	spin_lock(&swap_lock);
2053	if ((unsigned int)type < nr_swapfiles) {
2054		struct swap_info_struct *sis = swap_info[type];
2055
2056		spin_lock(&sis->lock);
2057		if (sis->flags & SWP_WRITEOK) {
2058			n = sis->pages;
2059			if (free)
2060				n -= sis->inuse_pages;
2061		}
2062		spin_unlock(&sis->lock);
2063	}
2064	spin_unlock(&swap_lock);
2065	return n;
2066}
2067#endif /* CONFIG_HIBERNATION */
2068
2069static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2070{
2071	return pte_same(pte_swp_clear_flags(pte), swp_pte);
2072}
2073
2074/*
2075 * No need to decide whether this PTE shares the swap entry with others,
2076 * just let do_wp_page work it out if a write is requested later - to
2077 * force COW, vm_page_prot omits write permission from any private vma.
2078 */
2079static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2080		unsigned long addr, swp_entry_t entry, struct folio *folio)
2081{
2082	struct page *page;
2083	struct folio *swapcache;
2084	spinlock_t *ptl;
2085	pte_t *pte, new_pte, old_pte;
2086	bool hwpoisoned = false;
2087	int ret = 1;
2088
2089	swapcache = folio;
2090	folio = ksm_might_need_to_copy(folio, vma, addr);
2091	if (unlikely(!folio))
2092		return -ENOMEM;
2093	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2094		hwpoisoned = true;
2095		folio = swapcache;
2096	}
2097
2098	page = folio_file_page(folio, swp_offset(entry));
2099	if (PageHWPoison(page))
2100		hwpoisoned = true;
2101
2102	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2103	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2104						swp_entry_to_pte(entry)))) {
 
2105		ret = 0;
2106		goto out;
2107	}
2108
2109	old_pte = ptep_get(pte);
2110
2111	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2112		swp_entry_t swp_entry;
2113
2114		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2115		if (hwpoisoned) {
2116			swp_entry = make_hwpoison_entry(page);
2117		} else {
2118			swp_entry = make_poisoned_swp_entry();
2119		}
2120		new_pte = swp_entry_to_pte(swp_entry);
2121		ret = 0;
2122		goto setpte;
2123	}
2124
2125	/*
2126	 * Some architectures may have to restore extra metadata to the page
2127	 * when reading from swap. This metadata may be indexed by swap entry
2128	 * so this must be called before swap_free().
2129	 */
2130	arch_swap_restore(folio_swap(entry, folio), folio);
2131
2132	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2133	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2134	folio_get(folio);
2135	if (folio == swapcache) {
2136		rmap_t rmap_flags = RMAP_NONE;
2137
2138		/*
2139		 * See do_swap_page(): writeback would be problematic.
2140		 * However, we do a folio_wait_writeback() just before this
2141		 * call and have the folio locked.
2142		 */
2143		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2144		if (pte_swp_exclusive(old_pte))
2145			rmap_flags |= RMAP_EXCLUSIVE;
2146		/*
2147		 * We currently only expect small !anon folios, which are either
2148		 * fully exclusive or fully shared. If we ever get large folios
2149		 * here, we have to be careful.
2150		 */
2151		if (!folio_test_anon(folio)) {
2152			VM_WARN_ON_ONCE(folio_test_large(folio));
2153			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2154			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2155		} else {
2156			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2157		}
2158	} else { /* ksm created a completely new copy */
2159		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2160		folio_add_lru_vma(folio, vma);
2161	}
2162	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2163	if (pte_swp_soft_dirty(old_pte))
2164		new_pte = pte_mksoft_dirty(new_pte);
2165	if (pte_swp_uffd_wp(old_pte))
2166		new_pte = pte_mkuffd_wp(new_pte);
2167setpte:
2168	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2169	swap_free(entry);
 
 
 
 
 
2170out:
2171	if (pte)
2172		pte_unmap_unlock(pte, ptl);
2173	if (folio != swapcache) {
2174		folio_unlock(folio);
2175		folio_put(folio);
2176	}
2177	return ret;
2178}
2179
2180static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2181			unsigned long addr, unsigned long end,
2182			unsigned int type)
2183{
2184	pte_t *pte = NULL;
2185	struct swap_info_struct *si;
 
2186
2187	si = swap_info[type];
 
 
 
 
 
 
 
 
 
2188	do {
2189		struct folio *folio;
2190		unsigned long offset;
2191		unsigned char swp_count;
2192		swp_entry_t entry;
2193		int ret;
2194		pte_t ptent;
2195
2196		if (!pte++) {
 
2197			pte = pte_offset_map(pmd, addr);
2198			if (!pte)
2199				break;
2200		}
2201
2202		ptent = ptep_get_lockless(pte);
2203
2204		if (!is_swap_pte(ptent))
2205			continue;
2206
2207		entry = pte_to_swp_entry(ptent);
2208		if (swp_type(entry) != type)
2209			continue;
2210
2211		offset = swp_offset(entry);
2212		pte_unmap(pte);
2213		pte = NULL;
2214
2215		folio = swap_cache_get_folio(entry, vma, addr);
2216		if (!folio) {
2217			struct vm_fault vmf = {
2218				.vma = vma,
2219				.address = addr,
2220				.real_address = addr,
2221				.pmd = pmd,
2222			};
2223
2224			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2225						&vmf);
2226		}
2227		if (!folio) {
2228			swp_count = READ_ONCE(si->swap_map[offset]);
2229			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2230				continue;
2231			return -ENOMEM;
2232		}
2233
2234		folio_lock(folio);
2235		folio_wait_writeback(folio);
2236		ret = unuse_pte(vma, pmd, addr, entry, folio);
2237		if (ret < 0) {
2238			folio_unlock(folio);
2239			folio_put(folio);
2240			return ret;
2241		}
2242
2243		folio_free_swap(folio);
2244		folio_unlock(folio);
2245		folio_put(folio);
2246	} while (addr += PAGE_SIZE, addr != end);
2247
2248	if (pte)
2249		pte_unmap(pte);
2250	return 0;
2251}
2252
2253static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2254				unsigned long addr, unsigned long end,
2255				unsigned int type)
2256{
2257	pmd_t *pmd;
2258	unsigned long next;
2259	int ret;
2260
2261	pmd = pmd_offset(pud, addr);
2262	do {
2263		cond_resched();
2264		next = pmd_addr_end(addr, end);
2265		ret = unuse_pte_range(vma, pmd, addr, next, type);
 
 
 
 
2266		if (ret)
2267			return ret;
2268	} while (pmd++, addr = next, addr != end);
2269	return 0;
2270}
2271
2272static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2273				unsigned long addr, unsigned long end,
2274				unsigned int type)
2275{
2276	pud_t *pud;
2277	unsigned long next;
2278	int ret;
2279
2280	pud = pud_offset(p4d, addr);
2281	do {
2282		next = pud_addr_end(addr, end);
2283		if (pud_none_or_clear_bad(pud))
2284			continue;
2285		ret = unuse_pmd_range(vma, pud, addr, next, type);
2286		if (ret)
2287			return ret;
2288	} while (pud++, addr = next, addr != end);
2289	return 0;
2290}
2291
2292static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2293				unsigned long addr, unsigned long end,
2294				unsigned int type)
2295{
2296	p4d_t *p4d;
2297	unsigned long next;
2298	int ret;
2299
2300	p4d = p4d_offset(pgd, addr);
2301	do {
2302		next = p4d_addr_end(addr, end);
2303		if (p4d_none_or_clear_bad(p4d))
2304			continue;
2305		ret = unuse_pud_range(vma, p4d, addr, next, type);
2306		if (ret)
2307			return ret;
2308	} while (p4d++, addr = next, addr != end);
2309	return 0;
2310}
2311
2312static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2313{
2314	pgd_t *pgd;
2315	unsigned long addr, end, next;
2316	int ret;
2317
2318	addr = vma->vm_start;
2319	end = vma->vm_end;
 
 
 
 
 
 
 
 
2320
2321	pgd = pgd_offset(vma->vm_mm, addr);
2322	do {
2323		next = pgd_addr_end(addr, end);
2324		if (pgd_none_or_clear_bad(pgd))
2325			continue;
2326		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2327		if (ret)
2328			return ret;
2329	} while (pgd++, addr = next, addr != end);
2330	return 0;
2331}
2332
2333static int unuse_mm(struct mm_struct *mm, unsigned int type)
 
2334{
2335	struct vm_area_struct *vma;
2336	int ret = 0;
2337	VMA_ITERATOR(vmi, mm, 0);
2338
2339	mmap_read_lock(mm);
2340	for_each_vma(vmi, vma) {
2341		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2342			ret = unuse_vma(vma, type);
2343			if (ret)
2344				break;
2345		}
2346
2347		cond_resched();
 
 
 
 
2348	}
2349	mmap_read_unlock(mm);
2350	return ret;
2351}
2352
2353/*
2354 * Scan swap_map from current position to next entry still in use.
2355 * Return 0 if there are no inuse entries after prev till end of
2356 * the map.
2357 */
2358static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2359					unsigned int prev)
2360{
2361	unsigned int i;
 
2362	unsigned char count;
2363
2364	/*
2365	 * No need for swap_lock here: we're just looking
2366	 * for whether an entry is in use, not modifying it; false
2367	 * hits are okay, and sys_swapoff() has already prevented new
2368	 * allocations from this area (while holding swap_lock).
2369	 */
2370	for (i = prev + 1; i < si->max; i++) {
2371		count = READ_ONCE(si->swap_map[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
2372		if (count && swap_count(count) != SWAP_MAP_BAD)
2373			break;
2374		if ((i % LATENCY_LIMIT) == 0)
2375			cond_resched();
2376	}
2377
2378	if (i == si->max)
2379		i = 0;
2380
2381	return i;
2382}
2383
 
 
 
 
 
2384static int try_to_unuse(unsigned int type)
2385{
2386	struct mm_struct *prev_mm;
2387	struct mm_struct *mm;
2388	struct list_head *p;
2389	int retval = 0;
2390	struct swap_info_struct *si = swap_info[type];
2391	struct folio *folio;
 
 
 
2392	swp_entry_t entry;
2393	unsigned int i;
 
2394
2395	if (!READ_ONCE(si->inuse_pages))
2396		goto success;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397
2398retry:
2399	retval = shmem_unuse(type);
2400	if (retval)
2401		return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2402
2403	prev_mm = &init_mm;
2404	mmget(prev_mm);
 
 
 
 
 
 
2405
2406	spin_lock(&mmlist_lock);
2407	p = &init_mm.mmlist;
2408	while (READ_ONCE(si->inuse_pages) &&
2409	       !signal_pending(current) &&
2410	       (p = p->next) != &init_mm.mmlist) {
 
 
 
 
 
 
 
2411
2412		mm = list_entry(p, struct mm_struct, mmlist);
2413		if (!mmget_not_zero(mm))
 
 
 
 
 
 
 
2414			continue;
2415		spin_unlock(&mmlist_lock);
2416		mmput(prev_mm);
2417		prev_mm = mm;
2418		retval = unuse_mm(mm, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2419		if (retval) {
2420			mmput(prev_mm);
2421			return retval;
 
2422		}
2423
2424		/*
2425		 * Make sure that we aren't completely killing
2426		 * interactive performance.
2427		 */
2428		cond_resched();
2429		spin_lock(&mmlist_lock);
2430	}
2431	spin_unlock(&mmlist_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432
2433	mmput(prev_mm);
 
 
 
2434
2435	i = 0;
2436	while (READ_ONCE(si->inuse_pages) &&
2437	       !signal_pending(current) &&
2438	       (i = find_next_to_unuse(si, i)) != 0) {
 
 
 
 
 
 
2439
2440		entry = swp_entry(type, i);
2441		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2442		if (IS_ERR(folio))
2443			continue;
 
 
 
 
2444
2445		/*
2446		 * It is conceivable that a racing task removed this folio from
2447		 * swap cache just before we acquired the page lock. The folio
2448		 * might even be back in swap cache on another swap area. But
2449		 * that is okay, folio_free_swap() only removes stale folios.
2450		 */
2451		folio_lock(folio);
2452		folio_wait_writeback(folio);
2453		folio_free_swap(folio);
2454		folio_unlock(folio);
2455		folio_put(folio);
2456	}
2457
2458	/*
2459	 * Lets check again to see if there are still swap entries in the map.
2460	 * If yes, we would need to do retry the unuse logic again.
2461	 * Under global memory pressure, swap entries can be reinserted back
2462	 * into process space after the mmlist loop above passes over them.
2463	 *
2464	 * Limit the number of retries? No: when mmget_not_zero()
2465	 * above fails, that mm is likely to be freeing swap from
2466	 * exit_mmap(), which proceeds at its own independent pace;
2467	 * and even shmem_writepage() could have been preempted after
2468	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2469	 * and robust (though cpu-intensive) just to keep retrying.
2470	 */
2471	if (READ_ONCE(si->inuse_pages)) {
2472		if (!signal_pending(current))
2473			goto retry;
2474		return -EINTR;
2475	}
2476
2477success:
2478	/*
2479	 * Make sure that further cleanups after try_to_unuse() returns happen
2480	 * after swap_range_free() reduces si->inuse_pages to 0.
2481	 */
2482	smp_mb();
2483	return 0;
2484}
2485
2486/*
2487 * After a successful try_to_unuse, if no swap is now in use, we know
2488 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2489 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2490 * added to the mmlist just after page_duplicate - before would be racy.
2491 */
2492static void drain_mmlist(void)
2493{
2494	struct list_head *p, *next;
2495	unsigned int type;
2496
2497	for (type = 0; type < nr_swapfiles; type++)
2498		if (swap_info[type]->inuse_pages)
2499			return;
2500	spin_lock(&mmlist_lock);
2501	list_for_each_safe(p, next, &init_mm.mmlist)
2502		list_del_init(p);
2503	spin_unlock(&mmlist_lock);
2504}
2505
2506/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507 * Free all of a swapdev's extent information
2508 */
2509static void destroy_swap_extents(struct swap_info_struct *sis)
2510{
2511	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2512		struct rb_node *rb = sis->swap_extent_root.rb_node;
2513		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2514
2515		rb_erase(rb, &sis->swap_extent_root);
 
 
2516		kfree(se);
2517	}
2518
2519	if (sis->flags & SWP_ACTIVATED) {
2520		struct file *swap_file = sis->swap_file;
2521		struct address_space *mapping = swap_file->f_mapping;
2522
2523		sis->flags &= ~SWP_ACTIVATED;
2524		if (mapping->a_ops->swap_deactivate)
2525			mapping->a_ops->swap_deactivate(swap_file);
2526	}
2527}
2528
2529/*
2530 * Add a block range (and the corresponding page range) into this swapdev's
2531 * extent tree.
2532 *
2533 * This function rather assumes that it is called in ascending page order.
2534 */
2535int
2536add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2537		unsigned long nr_pages, sector_t start_block)
2538{
2539	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2540	struct swap_extent *se;
2541	struct swap_extent *new_se;
 
2542
2543	/*
2544	 * place the new node at the right most since the
2545	 * function is called in ascending page order.
2546	 */
2547	while (*link) {
2548		parent = *link;
2549		link = &parent->rb_right;
2550	}
2551
2552	if (parent) {
2553		se = rb_entry(parent, struct swap_extent, rb_node);
2554		BUG_ON(se->start_page + se->nr_pages != start_page);
2555		if (se->start_block + se->nr_pages == start_block) {
2556			/* Merge it */
2557			se->nr_pages += nr_pages;
2558			return 0;
2559		}
2560	}
2561
2562	/* No merge, insert a new extent. */
 
 
2563	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2564	if (new_se == NULL)
2565		return -ENOMEM;
2566	new_se->start_page = start_page;
2567	new_se->nr_pages = nr_pages;
2568	new_se->start_block = start_block;
2569
2570	rb_link_node(&new_se->rb_node, parent, link);
2571	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2572	return 1;
2573}
2574EXPORT_SYMBOL_GPL(add_swap_extent);
2575
2576/*
2577 * A `swap extent' is a simple thing which maps a contiguous range of pages
2578 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2579 * built at swapon time and is then used at swap_writepage/swap_read_folio
2580 * time for locating where on disk a page belongs.
2581 *
2582 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2583 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2584 * swap files identically.
2585 *
2586 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2587 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2588 * swapfiles are handled *identically* after swapon time.
2589 *
2590 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2591 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2592 * blocks are found which do not fall within the PAGE_SIZE alignment
2593 * requirements, they are simply tossed out - we will never use those blocks
2594 * for swapping.
2595 *
2596 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2597 * prevents users from writing to the swap device, which will corrupt memory.
 
2598 *
2599 * The amount of disk space which a single swap extent represents varies.
2600 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2601 * extents in the rbtree. - akpm.
 
 
 
2602 */
2603static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2604{
2605	struct file *swap_file = sis->swap_file;
2606	struct address_space *mapping = swap_file->f_mapping;
2607	struct inode *inode = mapping->host;
 
 
 
 
 
 
2608	int ret;
2609
 
2610	if (S_ISBLK(inode->i_mode)) {
2611		ret = add_swap_extent(sis, 0, sis->max, 0);
2612		*span = sis->pages;
2613		return ret;
2614	}
2615
2616	if (mapping->a_ops->swap_activate) {
2617		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2618		if (ret < 0)
2619			return ret;
2620		sis->flags |= SWP_ACTIVATED;
2621		if ((sis->flags & SWP_FS_OPS) &&
2622		    sio_pool_init() != 0) {
2623			destroy_swap_extents(sis);
2624			return -ENOMEM;
2625		}
2626		return ret;
2627	}
2628
2629	return generic_swapfile_activate(sis, swap_file, span);
2630}
2631
2632static int swap_node(struct swap_info_struct *si)
2633{
2634	struct block_device *bdev;
2635
2636	if (si->bdev)
2637		bdev = si->bdev;
2638	else
2639		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2640
2641	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2642}
2643
2644static void setup_swap_info(struct swap_info_struct *si, int prio,
2645			    unsigned char *swap_map,
2646			    struct swap_cluster_info *cluster_info,
2647			    unsigned long *zeromap)
2648{
2649	int i;
2650
2651	if (prio >= 0)
2652		si->prio = prio;
2653	else
2654		si->prio = --least_priority;
2655	/*
2656	 * the plist prio is negated because plist ordering is
2657	 * low-to-high, while swap ordering is high-to-low
2658	 */
2659	si->list.prio = -si->prio;
2660	for_each_node(i) {
2661		if (si->prio >= 0)
2662			si->avail_lists[i].prio = -si->prio;
2663		else {
2664			if (swap_node(si) == i)
2665				si->avail_lists[i].prio = 1;
2666			else
2667				si->avail_lists[i].prio = -si->prio;
2668		}
2669	}
2670	si->swap_map = swap_map;
2671	si->cluster_info = cluster_info;
2672	si->zeromap = zeromap;
2673}
2674
2675static void _enable_swap_info(struct swap_info_struct *si)
2676{
2677	si->flags |= SWP_WRITEOK;
2678	atomic_long_add(si->pages, &nr_swap_pages);
2679	total_swap_pages += si->pages;
2680
2681	assert_spin_locked(&swap_lock);
2682	/*
2683	 * both lists are plists, and thus priority ordered.
2684	 * swap_active_head needs to be priority ordered for swapoff(),
2685	 * which on removal of any swap_info_struct with an auto-assigned
2686	 * (i.e. negative) priority increments the auto-assigned priority
2687	 * of any lower-priority swap_info_structs.
2688	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2689	 * which allocates swap pages from the highest available priority
2690	 * swap_info_struct.
2691	 */
2692	plist_add(&si->list, &swap_active_head);
2693
2694	/* add to available list iff swap device is not full */
2695	if (si->highest_bit)
2696		add_to_avail_list(si);
2697}
2698
2699static void enable_swap_info(struct swap_info_struct *si, int prio,
2700				unsigned char *swap_map,
2701				struct swap_cluster_info *cluster_info,
2702				unsigned long *zeromap)
2703{
2704	spin_lock(&swap_lock);
2705	spin_lock(&si->lock);
2706	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2707	spin_unlock(&si->lock);
2708	spin_unlock(&swap_lock);
2709	/*
2710	 * Finished initializing swap device, now it's safe to reference it.
2711	 */
2712	percpu_ref_resurrect(&si->users);
2713	spin_lock(&swap_lock);
2714	spin_lock(&si->lock);
2715	_enable_swap_info(si);
2716	spin_unlock(&si->lock);
2717	spin_unlock(&swap_lock);
2718}
2719
2720static void reinsert_swap_info(struct swap_info_struct *si)
2721{
2722	spin_lock(&swap_lock);
2723	spin_lock(&si->lock);
2724	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2725	_enable_swap_info(si);
2726	spin_unlock(&si->lock);
2727	spin_unlock(&swap_lock);
2728}
2729
2730static bool __has_usable_swap(void)
2731{
2732	return !plist_head_empty(&swap_active_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2733}
2734
2735bool has_usable_swap(void)
 
2736{
2737	bool ret;
2738
2739	spin_lock(&swap_lock);
2740	ret = __has_usable_swap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741	spin_unlock(&swap_lock);
2742	return ret;
2743}
2744
2745SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2746{
2747	struct swap_info_struct *p = NULL;
2748	unsigned char *swap_map;
2749	unsigned long *zeromap;
2750	struct swap_cluster_info *cluster_info;
2751	struct file *swap_file, *victim;
2752	struct address_space *mapping;
2753	struct inode *inode;
2754	struct filename *pathname;
2755	int err, found = 0;
 
 
2756
2757	if (!capable(CAP_SYS_ADMIN))
2758		return -EPERM;
2759
2760	BUG_ON(!current->mm);
2761
2762	pathname = getname(specialfile);
 
2763	if (IS_ERR(pathname))
2764		return PTR_ERR(pathname);
2765
2766	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 
2767	err = PTR_ERR(victim);
2768	if (IS_ERR(victim))
2769		goto out;
2770
2771	mapping = victim->f_mapping;
 
2772	spin_lock(&swap_lock);
2773	plist_for_each_entry(p, &swap_active_head, list) {
 
2774		if (p->flags & SWP_WRITEOK) {
2775			if (p->swap_file->f_mapping == mapping) {
2776				found = 1;
2777				break;
2778			}
2779		}
 
2780	}
2781	if (!found) {
2782		err = -EINVAL;
2783		spin_unlock(&swap_lock);
2784		goto out_dput;
2785	}
2786	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2787		vm_unacct_memory(p->pages);
2788	else {
2789		err = -ENOMEM;
2790		spin_unlock(&swap_lock);
2791		goto out_dput;
2792	}
2793	spin_lock(&p->lock);
2794	del_from_avail_list(p);
 
 
 
 
 
 
2795	if (p->prio < 0) {
2796		struct swap_info_struct *si = p;
2797		int nid;
2798
2799		plist_for_each_entry_continue(si, &swap_active_head, list) {
2800			si->prio++;
2801			si->list.prio--;
2802			for_each_node(nid) {
2803				if (si->avail_lists[nid].prio != 1)
2804					si->avail_lists[nid].prio--;
2805			}
2806		}
2807		least_priority++;
2808	}
2809	plist_del(&p->list, &swap_active_head);
2810	atomic_long_sub(p->pages, &nr_swap_pages);
2811	total_swap_pages -= p->pages;
2812	p->flags &= ~SWP_WRITEOK;
2813	spin_unlock(&p->lock);
2814	spin_unlock(&swap_lock);
2815
2816	disable_swap_slots_cache_lock();
2817
2818	set_current_oom_origin();
2819	err = try_to_unuse(p->type);
2820	clear_current_oom_origin();
2821
2822	if (err) {
 
 
 
 
 
 
2823		/* re-insert swap space back into swap_list */
2824		reinsert_swap_info(p);
2825		reenable_swap_slots_cache_unlock();
2826		goto out_dput;
2827	}
2828
2829	reenable_swap_slots_cache_unlock();
2830
2831	/*
2832	 * Wait for swap operations protected by get/put_swap_device()
2833	 * to complete.  Because of synchronize_rcu() here, all swap
2834	 * operations protected by RCU reader side lock (including any
2835	 * spinlock) will be waited too.  This makes it easy to
2836	 * prevent folio_test_swapcache() and the following swap cache
2837	 * operations from racing with swapoff.
2838	 */
2839	percpu_ref_kill(&p->users);
2840	synchronize_rcu();
2841	wait_for_completion(&p->comp);
2842
2843	flush_work(&p->discard_work);
2844	flush_work(&p->reclaim_work);
2845
2846	destroy_swap_extents(p);
2847	if (p->flags & SWP_CONTINUED)
2848		free_swap_count_continuations(p);
2849
2850	if (!p->bdev || !bdev_nonrot(p->bdev))
2851		atomic_dec(&nr_rotate_swap);
2852
2853	mutex_lock(&swapon_mutex);
2854	spin_lock(&swap_lock);
2855	spin_lock(&p->lock);
2856	drain_mmlist();
2857
2858	/* wait for anyone still in scan_swap_map_slots */
2859	p->highest_bit = 0;		/* cuts scans short */
2860	while (p->flags >= SWP_SCANNING) {
2861		spin_unlock(&p->lock);
2862		spin_unlock(&swap_lock);
2863		schedule_timeout_uninterruptible(1);
2864		spin_lock(&swap_lock);
2865		spin_lock(&p->lock);
2866	}
2867
2868	swap_file = p->swap_file;
2869	p->swap_file = NULL;
2870	p->max = 0;
2871	swap_map = p->swap_map;
2872	p->swap_map = NULL;
2873	zeromap = p->zeromap;
2874	p->zeromap = NULL;
2875	cluster_info = p->cluster_info;
2876	p->cluster_info = NULL;
2877	spin_unlock(&p->lock);
2878	spin_unlock(&swap_lock);
2879	arch_swap_invalidate_area(p->type);
2880	zswap_swapoff(p->type);
2881	mutex_unlock(&swapon_mutex);
2882	free_percpu(p->percpu_cluster);
2883	p->percpu_cluster = NULL;
2884	free_percpu(p->cluster_next_cpu);
2885	p->cluster_next_cpu = NULL;
2886	vfree(swap_map);
2887	kvfree(zeromap);
2888	kvfree(cluster_info);
2889	/* Destroy swap account information */
2890	swap_cgroup_swapoff(p->type);
2891	exit_swap_address_space(p->type);
2892
2893	inode = mapping->host;
2894
2895	inode_lock(inode);
2896	inode->i_flags &= ~S_SWAPFILE;
2897	inode_unlock(inode);
 
 
 
 
 
2898	filp_close(swap_file, NULL);
2899
2900	/*
2901	 * Clear the SWP_USED flag after all resources are freed so that swapon
2902	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2903	 * not hold p->lock after we cleared its SWP_WRITEOK.
2904	 */
2905	spin_lock(&swap_lock);
2906	p->flags = 0;
2907	spin_unlock(&swap_lock);
2908
2909	err = 0;
2910	atomic_inc(&proc_poll_event);
2911	wake_up_interruptible(&proc_poll_wait);
2912
2913out_dput:
2914	filp_close(victim, NULL);
2915out:
2916	putname(pathname);
2917	return err;
2918}
2919
2920#ifdef CONFIG_PROC_FS
2921static __poll_t swaps_poll(struct file *file, poll_table *wait)
2922{
2923	struct seq_file *seq = file->private_data;
2924
2925	poll_wait(file, &proc_poll_wait, wait);
2926
2927	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2928		seq->poll_event = atomic_read(&proc_poll_event);
2929		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2930	}
2931
2932	return EPOLLIN | EPOLLRDNORM;
2933}
2934
2935/* iterator */
2936static void *swap_start(struct seq_file *swap, loff_t *pos)
2937{
2938	struct swap_info_struct *si;
2939	int type;
2940	loff_t l = *pos;
2941
2942	mutex_lock(&swapon_mutex);
2943
2944	if (!l)
2945		return SEQ_START_TOKEN;
2946
2947	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 
 
2948		if (!(si->flags & SWP_USED) || !si->swap_map)
2949			continue;
2950		if (!--l)
2951			return si;
2952	}
2953
2954	return NULL;
2955}
2956
2957static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2958{
2959	struct swap_info_struct *si = v;
2960	int type;
2961
2962	if (v == SEQ_START_TOKEN)
2963		type = 0;
2964	else
2965		type = si->type + 1;
2966
2967	++(*pos);
2968	for (; (si = swap_type_to_swap_info(type)); type++) {
 
2969		if (!(si->flags & SWP_USED) || !si->swap_map)
2970			continue;
 
2971		return si;
2972	}
2973
2974	return NULL;
2975}
2976
2977static void swap_stop(struct seq_file *swap, void *v)
2978{
2979	mutex_unlock(&swapon_mutex);
2980}
2981
2982static int swap_show(struct seq_file *swap, void *v)
2983{
2984	struct swap_info_struct *si = v;
2985	struct file *file;
2986	int len;
2987	unsigned long bytes, inuse;
2988
2989	if (si == SEQ_START_TOKEN) {
2990		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2991		return 0;
2992	}
2993
2994	bytes = K(si->pages);
2995	inuse = K(READ_ONCE(si->inuse_pages));
2996
2997	file = si->swap_file;
2998	len = seq_file_path(swap, file, " \t\n\\");
2999	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
3000			len < 40 ? 40 - len : 1, " ",
3001			S_ISBLK(file_inode(file)->i_mode) ?
3002				"partition" : "file\t",
3003			bytes, bytes < 10000000 ? "\t" : "",
3004			inuse, inuse < 10000000 ? "\t" : "",
3005			si->prio);
3006	return 0;
3007}
3008
3009static const struct seq_operations swaps_op = {
3010	.start =	swap_start,
3011	.next =		swap_next,
3012	.stop =		swap_stop,
3013	.show =		swap_show
3014};
3015
3016static int swaps_open(struct inode *inode, struct file *file)
3017{
3018	struct seq_file *seq;
3019	int ret;
3020
3021	ret = seq_open(file, &swaps_op);
3022	if (ret)
3023		return ret;
3024
3025	seq = file->private_data;
3026	seq->poll_event = atomic_read(&proc_poll_event);
3027	return 0;
3028}
3029
3030static const struct proc_ops swaps_proc_ops = {
3031	.proc_flags	= PROC_ENTRY_PERMANENT,
3032	.proc_open	= swaps_open,
3033	.proc_read	= seq_read,
3034	.proc_lseek	= seq_lseek,
3035	.proc_release	= seq_release,
3036	.proc_poll	= swaps_poll,
3037};
3038
3039static int __init procswaps_init(void)
3040{
3041	proc_create("swaps", 0, NULL, &swaps_proc_ops);
3042	return 0;
3043}
3044__initcall(procswaps_init);
3045#endif /* CONFIG_PROC_FS */
3046
3047#ifdef MAX_SWAPFILES_CHECK
3048static int __init max_swapfiles_check(void)
3049{
3050	MAX_SWAPFILES_CHECK();
3051	return 0;
3052}
3053late_initcall(max_swapfiles_check);
3054#endif
3055
3056static struct swap_info_struct *alloc_swap_info(void)
3057{
3058	struct swap_info_struct *p;
3059	struct swap_info_struct *defer = NULL;
3060	unsigned int type;
3061	int i;
3062
3063	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3064	if (!p)
3065		return ERR_PTR(-ENOMEM);
3066
3067	if (percpu_ref_init(&p->users, swap_users_ref_free,
3068			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3069		kvfree(p);
3070		return ERR_PTR(-ENOMEM);
3071	}
3072
3073	spin_lock(&swap_lock);
3074	for (type = 0; type < nr_swapfiles; type++) {
3075		if (!(swap_info[type]->flags & SWP_USED))
3076			break;
3077	}
3078	if (type >= MAX_SWAPFILES) {
3079		spin_unlock(&swap_lock);
3080		percpu_ref_exit(&p->users);
3081		kvfree(p);
3082		return ERR_PTR(-EPERM);
3083	}
3084	if (type >= nr_swapfiles) {
3085		p->type = type;
 
3086		/*
3087		 * Publish the swap_info_struct after initializing it.
3088		 * Note that kvzalloc() above zeroes all its fields.
 
3089		 */
3090		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3091		nr_swapfiles++;
3092	} else {
3093		defer = p;
3094		p = swap_info[type];
3095		/*
3096		 * Do not memset this entry: a racing procfs swap_next()
3097		 * would be relying on p->type to remain valid.
3098		 */
3099	}
3100	p->swap_extent_root = RB_ROOT;
3101	plist_node_init(&p->list, 0);
3102	for_each_node(i)
3103		plist_node_init(&p->avail_lists[i], 0);
3104	p->flags = SWP_USED;
 
3105	spin_unlock(&swap_lock);
3106	if (defer) {
3107		percpu_ref_exit(&defer->users);
3108		kvfree(defer);
3109	}
3110	spin_lock_init(&p->lock);
3111	spin_lock_init(&p->cont_lock);
3112	init_completion(&p->comp);
3113
3114	return p;
3115}
3116
3117static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3118{
 
 
3119	if (S_ISBLK(inode->i_mode)) {
3120		si->bdev = I_BDEV(inode);
3121		/*
3122		 * Zoned block devices contain zones that have a sequential
3123		 * write only restriction.  Hence zoned block devices are not
3124		 * suitable for swapping.  Disallow them here.
3125		 */
3126		if (bdev_is_zoned(si->bdev))
3127			return -EINVAL;
3128		si->flags |= SWP_BLKDEV;
 
 
 
 
 
3129	} else if (S_ISREG(inode->i_mode)) {
3130		si->bdev = inode->i_sb->s_bdev;
3131	}
 
 
 
 
3132
3133	return 0;
3134}
3135
3136
3137/*
3138 * Find out how many pages are allowed for a single swap device. There
3139 * are two limiting factors:
3140 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3141 * 2) the number of bits in the swap pte, as defined by the different
3142 * architectures.
3143 *
3144 * In order to find the largest possible bit mask, a swap entry with
3145 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3146 * decoded to a swp_entry_t again, and finally the swap offset is
3147 * extracted.
3148 *
3149 * This will mask all the bits from the initial ~0UL mask that can't
3150 * be encoded in either the swp_entry_t or the architecture definition
3151 * of a swap pte.
3152 */
3153unsigned long generic_max_swapfile_size(void)
3154{
3155	return swp_offset(pte_to_swp_entry(
3156			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3157}
3158
3159/* Can be overridden by an architecture for additional checks. */
3160__weak unsigned long arch_max_swapfile_size(void)
3161{
3162	return generic_max_swapfile_size();
3163}
3164
3165static unsigned long read_swap_header(struct swap_info_struct *si,
3166					union swap_header *swap_header,
3167					struct inode *inode)
3168{
3169	int i;
3170	unsigned long maxpages;
3171	unsigned long swapfilepages;
3172	unsigned long last_page;
3173
3174	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3175		pr_err("Unable to find swap-space signature\n");
3176		return 0;
3177	}
3178
3179	/* swap partition endianness hack... */
3180	if (swab32(swap_header->info.version) == 1) {
3181		swab32s(&swap_header->info.version);
3182		swab32s(&swap_header->info.last_page);
3183		swab32s(&swap_header->info.nr_badpages);
3184		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3185			return 0;
3186		for (i = 0; i < swap_header->info.nr_badpages; i++)
3187			swab32s(&swap_header->info.badpages[i]);
3188	}
3189	/* Check the swap header's sub-version */
3190	if (swap_header->info.version != 1) {
3191		pr_warn("Unable to handle swap header version %d\n",
3192			swap_header->info.version);
 
3193		return 0;
3194	}
3195
3196	si->lowest_bit  = 1;
3197	si->cluster_next = 1;
3198	si->cluster_nr = 0;
3199
3200	maxpages = swapfile_maximum_size;
3201	last_page = swap_header->info.last_page;
3202	if (!last_page) {
3203		pr_warn("Empty swap-file\n");
3204		return 0;
3205	}
3206	if (last_page > maxpages) {
3207		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3208			K(maxpages), K(last_page));
3209	}
3210	if (maxpages > last_page) {
3211		maxpages = last_page + 1;
 
 
 
 
 
 
 
 
 
 
3212		/* p->max is an unsigned int: don't overflow it */
3213		if ((unsigned int)maxpages == 0)
3214			maxpages = UINT_MAX;
3215	}
3216	si->highest_bit = maxpages - 1;
3217
3218	if (!maxpages)
3219		return 0;
3220	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3221	if (swapfilepages && maxpages > swapfilepages) {
3222		pr_warn("Swap area shorter than signature indicates\n");
 
3223		return 0;
3224	}
3225	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3226		return 0;
3227	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3228		return 0;
3229
3230	return maxpages;
3231}
3232
3233#define SWAP_CLUSTER_INFO_COLS						\
3234	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3235#define SWAP_CLUSTER_SPACE_COLS						\
3236	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3237#define SWAP_CLUSTER_COLS						\
3238	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3239
3240static int setup_swap_map_and_extents(struct swap_info_struct *si,
3241					union swap_header *swap_header,
3242					unsigned char *swap_map,
3243					unsigned long maxpages,
3244					sector_t *span)
3245{
 
3246	unsigned int nr_good_pages;
3247	unsigned long i;
3248	int nr_extents;
3249
3250	nr_good_pages = maxpages - 1;	/* omit header page */
3251
3252	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3253		unsigned int page_nr = swap_header->info.badpages[i];
3254		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3255			return -EINVAL;
3256		if (page_nr < maxpages) {
3257			swap_map[page_nr] = SWAP_MAP_BAD;
3258			nr_good_pages--;
3259		}
3260	}
3261
3262	if (nr_good_pages) {
3263		swap_map[0] = SWAP_MAP_BAD;
3264		si->max = maxpages;
3265		si->pages = nr_good_pages;
3266		nr_extents = setup_swap_extents(si, span);
3267		if (nr_extents < 0)
3268			return nr_extents;
3269		nr_good_pages = si->pages;
3270	}
3271	if (!nr_good_pages) {
3272		pr_warn("Empty swap-file\n");
3273		return -EINVAL;
3274	}
3275
3276	return nr_extents;
3277}
3278
3279static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3280						union swap_header *swap_header,
3281						unsigned long maxpages)
3282{
3283	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3284	unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3285	struct swap_cluster_info *cluster_info;
3286	unsigned long i, j, k, idx;
3287	int cpu, err = -ENOMEM;
3288
3289	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3290	if (!cluster_info)
3291		goto err;
3292
3293	for (i = 0; i < nr_clusters; i++)
3294		spin_lock_init(&cluster_info[i].lock);
3295
3296	si->cluster_next_cpu = alloc_percpu(unsigned int);
3297	if (!si->cluster_next_cpu)
3298		goto err_free;
3299
3300	/* Random start position to help with wear leveling */
3301	for_each_possible_cpu(cpu)
3302		per_cpu(*si->cluster_next_cpu, cpu) =
3303		get_random_u32_inclusive(1, si->highest_bit);
3304
3305	si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3306	if (!si->percpu_cluster)
3307		goto err_free;
3308
3309	for_each_possible_cpu(cpu) {
3310		struct percpu_cluster *cluster;
3311
3312		cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3313		for (i = 0; i < SWAP_NR_ORDERS; i++)
3314			cluster->next[i] = SWAP_NEXT_INVALID;
3315	}
3316
3317	/*
3318	 * Mark unusable pages as unavailable. The clusters aren't
3319	 * marked free yet, so no list operations are involved yet.
3320	 *
3321	 * See setup_swap_map_and_extents(): header page, bad pages,
3322	 * and the EOF part of the last cluster.
3323	 */
3324	inc_cluster_info_page(si, cluster_info, 0);
3325	for (i = 0; i < swap_header->info.nr_badpages; i++)
3326		inc_cluster_info_page(si, cluster_info,
3327				      swap_header->info.badpages[i]);
3328	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3329		inc_cluster_info_page(si, cluster_info, i);
3330
3331	INIT_LIST_HEAD(&si->free_clusters);
3332	INIT_LIST_HEAD(&si->full_clusters);
3333	INIT_LIST_HEAD(&si->discard_clusters);
3334
3335	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3336		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3337		INIT_LIST_HEAD(&si->frag_clusters[i]);
3338		si->frag_cluster_nr[i] = 0;
3339	}
3340
3341	/*
3342	 * Reduce false cache line sharing between cluster_info and
3343	 * sharing same address space.
3344	 */
3345	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3346		j = (k + col) % SWAP_CLUSTER_COLS;
3347		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3348			struct swap_cluster_info *ci;
3349			idx = i * SWAP_CLUSTER_COLS + j;
3350			ci = cluster_info + idx;
3351			if (idx >= nr_clusters)
3352				continue;
3353			if (ci->count) {
3354				ci->flags = CLUSTER_FLAG_NONFULL;
3355				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3356				continue;
3357			}
3358			ci->flags = CLUSTER_FLAG_FREE;
3359			list_add_tail(&ci->list, &si->free_clusters);
3360		}
3361	}
3362
3363	return cluster_info;
3364
3365err_free:
3366	kvfree(cluster_info);
3367err:
3368	return ERR_PTR(err);
3369}
3370
3371SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3372{
3373	struct swap_info_struct *si;
3374	struct filename *name;
3375	struct file *swap_file = NULL;
3376	struct address_space *mapping;
3377	struct dentry *dentry;
3378	int prio;
3379	int error;
3380	union swap_header *swap_header;
3381	int nr_extents;
3382	sector_t span;
3383	unsigned long maxpages;
3384	unsigned char *swap_map = NULL;
3385	unsigned long *zeromap = NULL;
3386	struct swap_cluster_info *cluster_info = NULL;
3387	struct folio *folio = NULL;
3388	struct inode *inode = NULL;
3389	bool inced_nr_rotate_swap = false;
3390
3391	if (swap_flags & ~SWAP_FLAGS_VALID)
3392		return -EINVAL;
3393
3394	if (!capable(CAP_SYS_ADMIN))
3395		return -EPERM;
3396
3397	if (!swap_avail_heads)
3398		return -ENOMEM;
3399
3400	si = alloc_swap_info();
3401	if (IS_ERR(si))
3402		return PTR_ERR(si);
3403
3404	INIT_WORK(&si->discard_work, swap_discard_work);
3405	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3406
3407	name = getname(specialfile);
3408	if (IS_ERR(name)) {
3409		error = PTR_ERR(name);
3410		name = NULL;
3411		goto bad_swap;
3412	}
3413	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3414	if (IS_ERR(swap_file)) {
3415		error = PTR_ERR(swap_file);
3416		swap_file = NULL;
3417		goto bad_swap;
3418	}
3419
3420	si->swap_file = swap_file;
3421	mapping = swap_file->f_mapping;
3422	dentry = swap_file->f_path.dentry;
 
 
 
 
 
 
 
 
 
 
 
3423	inode = mapping->host;
3424
3425	error = claim_swapfile(si, inode);
3426	if (unlikely(error))
3427		goto bad_swap;
3428
3429	inode_lock(inode);
3430	if (d_unlinked(dentry) || cant_mount(dentry)) {
3431		error = -ENOENT;
3432		goto bad_swap_unlock_inode;
3433	}
3434	if (IS_SWAPFILE(inode)) {
3435		error = -EBUSY;
3436		goto bad_swap_unlock_inode;
3437	}
3438
3439	/*
3440	 * Read the swap header.
3441	 */
3442	if (!mapping->a_ops->read_folio) {
3443		error = -EINVAL;
3444		goto bad_swap_unlock_inode;
3445	}
3446	folio = read_mapping_folio(mapping, 0, swap_file);
3447	if (IS_ERR(folio)) {
3448		error = PTR_ERR(folio);
3449		goto bad_swap_unlock_inode;
3450	}
3451	swap_header = kmap_local_folio(folio, 0);
3452
3453	maxpages = read_swap_header(si, swap_header, inode);
3454	if (unlikely(!maxpages)) {
3455		error = -EINVAL;
3456		goto bad_swap_unlock_inode;
3457	}
3458
3459	/* OK, set up the swap map and apply the bad block list */
3460	swap_map = vzalloc(maxpages);
3461	if (!swap_map) {
3462		error = -ENOMEM;
3463		goto bad_swap_unlock_inode;
3464	}
3465
3466	error = swap_cgroup_swapon(si->type, maxpages);
3467	if (error)
3468		goto bad_swap_unlock_inode;
3469
3470	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3471						maxpages, &span);
3472	if (unlikely(nr_extents < 0)) {
3473		error = nr_extents;
3474		goto bad_swap_unlock_inode;
3475	}
3476
3477	/*
3478	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3479	 * be above MAX_PAGE_ORDER incase of a large swap file.
3480	 */
3481	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3482				    GFP_KERNEL | __GFP_ZERO);
3483	if (!zeromap) {
3484		error = -ENOMEM;
3485		goto bad_swap_unlock_inode;
3486	}
3487
3488	if (si->bdev && bdev_stable_writes(si->bdev))
3489		si->flags |= SWP_STABLE_WRITES;
3490
3491	if (si->bdev && bdev_synchronous(si->bdev))
3492		si->flags |= SWP_SYNCHRONOUS_IO;
3493
3494	if (si->bdev && bdev_nonrot(si->bdev)) {
3495		si->flags |= SWP_SOLIDSTATE;
3496
3497		cluster_info = setup_clusters(si, swap_header, maxpages);
3498		if (IS_ERR(cluster_info)) {
3499			error = PTR_ERR(cluster_info);
3500			cluster_info = NULL;
3501			goto bad_swap_unlock_inode;
3502		}
3503	} else {
3504		atomic_inc(&nr_rotate_swap);
3505		inced_nr_rotate_swap = true;
3506	}
3507
3508	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3509	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3510		/*
3511		 * When discard is enabled for swap with no particular
3512		 * policy flagged, we set all swap discard flags here in
3513		 * order to sustain backward compatibility with older
3514		 * swapon(8) releases.
3515		 */
3516		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3517			     SWP_PAGE_DISCARD);
3518
3519		/*
3520		 * By flagging sys_swapon, a sysadmin can tell us to
3521		 * either do single-time area discards only, or to just
3522		 * perform discards for released swap page-clusters.
3523		 * Now it's time to adjust the p->flags accordingly.
3524		 */
3525		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3526			si->flags &= ~SWP_PAGE_DISCARD;
3527		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3528			si->flags &= ~SWP_AREA_DISCARD;
3529
3530		/* issue a swapon-time discard if it's still required */
3531		if (si->flags & SWP_AREA_DISCARD) {
3532			int err = discard_swap(si);
3533			if (unlikely(err))
3534				pr_err("swapon: discard_swap(%p): %d\n",
3535					si, err);
3536		}
3537	}
3538
3539	error = init_swap_address_space(si->type, maxpages);
3540	if (error)
3541		goto bad_swap_unlock_inode;
3542
3543	error = zswap_swapon(si->type, maxpages);
3544	if (error)
3545		goto free_swap_address_space;
3546
3547	/*
3548	 * Flush any pending IO and dirty mappings before we start using this
3549	 * swap device.
3550	 */
3551	inode->i_flags |= S_SWAPFILE;
3552	error = inode_drain_writes(inode);
3553	if (error) {
3554		inode->i_flags &= ~S_SWAPFILE;
3555		goto free_swap_zswap;
3556	}
3557
3558	mutex_lock(&swapon_mutex);
3559	prio = -1;
3560	if (swap_flags & SWAP_FLAG_PREFER)
3561		prio =
3562		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3563	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3564
3565	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3566		K(si->pages), name->name, si->prio, nr_extents,
3567		K((unsigned long long)span),
3568		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3569		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3570		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3571		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3572
3573	mutex_unlock(&swapon_mutex);
3574	atomic_inc(&proc_poll_event);
3575	wake_up_interruptible(&proc_poll_wait);
3576
 
 
3577	error = 0;
3578	goto out;
3579free_swap_zswap:
3580	zswap_swapoff(si->type);
3581free_swap_address_space:
3582	exit_swap_address_space(si->type);
3583bad_swap_unlock_inode:
3584	inode_unlock(inode);
3585bad_swap:
3586	free_percpu(si->percpu_cluster);
3587	si->percpu_cluster = NULL;
3588	free_percpu(si->cluster_next_cpu);
3589	si->cluster_next_cpu = NULL;
3590	inode = NULL;
3591	destroy_swap_extents(si);
3592	swap_cgroup_swapoff(si->type);
3593	spin_lock(&swap_lock);
3594	si->swap_file = NULL;
3595	si->flags = 0;
3596	spin_unlock(&swap_lock);
3597	vfree(swap_map);
3598	kvfree(zeromap);
3599	kvfree(cluster_info);
3600	if (inced_nr_rotate_swap)
3601		atomic_dec(&nr_rotate_swap);
3602	if (swap_file)
3603		filp_close(swap_file, NULL);
 
3604out:
3605	if (!IS_ERR_OR_NULL(folio))
3606		folio_release_kmap(folio, swap_header);
 
 
3607	if (name)
3608		putname(name);
3609	if (inode)
3610		inode_unlock(inode);
3611	if (!error)
3612		enable_swap_slots_cache();
3613	return error;
3614}
3615
3616void si_swapinfo(struct sysinfo *val)
3617{
3618	unsigned int type;
3619	unsigned long nr_to_be_unused = 0;
3620
3621	spin_lock(&swap_lock);
3622	for (type = 0; type < nr_swapfiles; type++) {
3623		struct swap_info_struct *si = swap_info[type];
3624
3625		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3626			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3627	}
3628	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3629	val->totalswap = total_swap_pages + nr_to_be_unused;
3630	spin_unlock(&swap_lock);
3631}
3632
3633/*
3634 * Verify that nr swap entries are valid and increment their swap map counts.
3635 *
3636 * Returns error code in following case.
3637 * - success -> 0
3638 * - swp_entry is invalid -> EINVAL
3639 * - swp_entry is migration entry -> EINVAL
3640 * - swap-cache reference is requested but there is already one. -> EEXIST
3641 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3642 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3643 */
3644static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3645{
3646	struct swap_info_struct *si;
3647	struct swap_cluster_info *ci;
3648	unsigned long offset;
3649	unsigned char count;
3650	unsigned char has_cache;
3651	int err, i;
3652
3653	si = swp_swap_info(entry);
 
3654
 
 
 
 
3655	offset = swp_offset(entry);
3656	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3657	VM_WARN_ON(usage == 1 && nr > 1);
3658	ci = lock_cluster_or_swap_info(si, offset);
3659
 
 
 
 
 
 
 
3660	err = 0;
3661	for (i = 0; i < nr; i++) {
3662		count = si->swap_map[offset + i];
3663
3664		/*
3665		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3666		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3667		 */
3668		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3669			err = -ENOENT;
3670			goto unlock_out;
3671		}
3672
3673		has_cache = count & SWAP_HAS_CACHE;
3674		count &= ~SWAP_HAS_CACHE;
3675
3676		if (!count && !has_cache) {
 
 
3677			err = -ENOENT;
3678		} else if (usage == SWAP_HAS_CACHE) {
3679			if (has_cache)
3680				err = -EEXIST;
3681		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3682			err = -EINVAL;
3683		}
3684
3685		if (err)
3686			goto unlock_out;
3687	}
3688
3689	for (i = 0; i < nr; i++) {
3690		count = si->swap_map[offset + i];
3691		has_cache = count & SWAP_HAS_CACHE;
3692		count &= ~SWAP_HAS_CACHE;
3693
3694		if (usage == SWAP_HAS_CACHE)
3695			has_cache = SWAP_HAS_CACHE;
3696		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3697			count += usage;
3698		else if (swap_count_continued(si, offset + i, count))
 
 
3699			count = COUNT_CONTINUED;
3700		else {
3701			/*
3702			 * Don't need to rollback changes, because if
3703			 * usage == 1, there must be nr == 1.
3704			 */
3705			err = -ENOMEM;
3706			goto unlock_out;
3707		}
3708
3709		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3710	}
3711
3712unlock_out:
3713	unlock_cluster_or_swap_info(si, ci);
 
3714	return err;
 
 
 
 
3715}
3716
3717/*
3718 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3719 * (in which case its reference count is never incremented).
3720 */
3721void swap_shmem_alloc(swp_entry_t entry, int nr)
3722{
3723	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3724}
3725
3726/*
3727 * Increase reference count of swap entry by 1.
3728 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3729 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3730 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3731 * might occur if a page table entry has got corrupted.
3732 */
3733int swap_duplicate(swp_entry_t entry)
3734{
3735	int err = 0;
3736
3737	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3738		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3739	return err;
3740}
3741
3742/*
3743 * @entry: first swap entry from which we allocate nr swap cache.
3744 *
3745 * Called when allocating swap cache for existing swap entries,
3746 * This can return error codes. Returns 0 at success.
3747 * -EEXIST means there is a swap cache.
3748 * Note: return code is different from swap_duplicate().
3749 */
3750int swapcache_prepare(swp_entry_t entry, int nr)
3751{
3752	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3753}
3754
3755void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
 
 
 
 
3756{
3757	unsigned long offset = swp_offset(entry);
 
 
 
 
 
 
 
3758
3759	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3760}
 
 
 
 
3761
3762struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3763{
3764	return swap_type_to_swap_info(swp_type(entry));
3765}
3766
3767/*
3768 * out-of-line methods to avoid include hell.
3769 */
3770struct address_space *swapcache_mapping(struct folio *folio)
3771{
3772	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3773}
3774EXPORT_SYMBOL_GPL(swapcache_mapping);
 
 
 
 
 
 
 
 
 
3775
3776pgoff_t __folio_swap_cache_index(struct folio *folio)
3777{
3778	return swap_cache_index(folio->swap);
 
 
 
3779}
3780EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3781
3782/*
3783 * add_swap_count_continuation - called when a swap count is duplicated
3784 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3785 * page of the original vmalloc'ed swap_map, to hold the continuation count
3786 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3787 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3788 *
3789 * These continuation pages are seldom referenced: the common paths all work
3790 * on the original swap_map, only referring to a continuation page when the
3791 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3792 *
3793 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3794 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3795 * can be called after dropping locks.
3796 */
3797int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3798{
3799	struct swap_info_struct *si;
3800	struct swap_cluster_info *ci;
3801	struct page *head;
3802	struct page *page;
3803	struct page *list_page;
3804	pgoff_t offset;
3805	unsigned char count;
3806	int ret = 0;
3807
3808	/*
3809	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3810	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3811	 */
3812	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3813
3814	si = get_swap_device(entry);
3815	if (!si) {
3816		/*
3817		 * An acceptable race has occurred since the failing
3818		 * __swap_duplicate(): the swap device may be swapoff
 
3819		 */
3820		goto outer;
3821	}
3822	spin_lock(&si->lock);
3823
3824	offset = swp_offset(entry);
3825
3826	ci = lock_cluster(si, offset);
3827
3828	count = swap_count(si->swap_map[offset]);
3829
3830	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3831		/*
3832		 * The higher the swap count, the more likely it is that tasks
3833		 * will race to add swap count continuation: we need to avoid
3834		 * over-provisioning.
3835		 */
3836		goto out;
3837	}
3838
3839	if (!page) {
3840		ret = -ENOMEM;
3841		goto out;
3842	}
3843
 
 
 
 
 
3844	head = vmalloc_to_page(si->swap_map + offset);
3845	offset &= ~PAGE_MASK;
3846
3847	spin_lock(&si->cont_lock);
3848	/*
3849	 * Page allocation does not initialize the page's lru field,
3850	 * but it does always reset its private field.
3851	 */
3852	if (!page_private(head)) {
3853		BUG_ON(count & COUNT_CONTINUED);
3854		INIT_LIST_HEAD(&head->lru);
3855		set_page_private(head, SWP_CONTINUED);
3856		si->flags |= SWP_CONTINUED;
3857	}
3858
3859	list_for_each_entry(list_page, &head->lru, lru) {
3860		unsigned char *map;
3861
3862		/*
3863		 * If the previous map said no continuation, but we've found
3864		 * a continuation page, free our allocation and use this one.
3865		 */
3866		if (!(count & COUNT_CONTINUED))
3867			goto out_unlock_cont;
3868
3869		map = kmap_local_page(list_page) + offset;
3870		count = *map;
3871		kunmap_local(map);
3872
3873		/*
3874		 * If this continuation count now has some space in it,
3875		 * free our allocation and use this one.
3876		 */
3877		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3878			goto out_unlock_cont;
3879	}
3880
3881	list_add_tail(&page->lru, &head->lru);
3882	page = NULL;			/* now it's attached, don't free it */
3883out_unlock_cont:
3884	spin_unlock(&si->cont_lock);
3885out:
3886	unlock_cluster(ci);
3887	spin_unlock(&si->lock);
3888	put_swap_device(si);
3889outer:
3890	if (page)
3891		__free_page(page);
3892	return ret;
3893}
3894
3895/*
3896 * swap_count_continued - when the original swap_map count is incremented
3897 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3898 * into, carry if so, or else fail until a new continuation page is allocated;
3899 * when the original swap_map count is decremented from 0 with continuation,
3900 * borrow from the continuation and report whether it still holds more.
3901 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3902 * lock.
3903 */
3904static bool swap_count_continued(struct swap_info_struct *si,
3905				 pgoff_t offset, unsigned char count)
3906{
3907	struct page *head;
3908	struct page *page;
3909	unsigned char *map;
3910	bool ret;
3911
3912	head = vmalloc_to_page(si->swap_map + offset);
3913	if (page_private(head) != SWP_CONTINUED) {
3914		BUG_ON(count & COUNT_CONTINUED);
3915		return false;		/* need to add count continuation */
3916	}
3917
3918	spin_lock(&si->cont_lock);
3919	offset &= ~PAGE_MASK;
3920	page = list_next_entry(head, lru);
3921	map = kmap_local_page(page) + offset;
3922
3923	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3924		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3925
3926	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3927		/*
3928		 * Think of how you add 1 to 999
3929		 */
3930		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3931			kunmap_local(map);
3932			page = list_next_entry(page, lru);
3933			BUG_ON(page == head);
3934			map = kmap_local_page(page) + offset;
3935		}
3936		if (*map == SWAP_CONT_MAX) {
3937			kunmap_local(map);
3938			page = list_next_entry(page, lru);
3939			if (page == head) {
3940				ret = false;	/* add count continuation */
3941				goto out;
3942			}
3943			map = kmap_local_page(page) + offset;
3944init_map:		*map = 0;		/* we didn't zero the page */
3945		}
3946		*map += 1;
3947		kunmap_local(map);
3948		while ((page = list_prev_entry(page, lru)) != head) {
3949			map = kmap_local_page(page) + offset;
 
3950			*map = COUNT_CONTINUED;
3951			kunmap_local(map);
 
3952		}
3953		ret = true;			/* incremented */
3954
3955	} else {				/* decrementing */
3956		/*
3957		 * Think of how you subtract 1 from 1000
3958		 */
3959		BUG_ON(count != COUNT_CONTINUED);
3960		while (*map == COUNT_CONTINUED) {
3961			kunmap_local(map);
3962			page = list_next_entry(page, lru);
3963			BUG_ON(page == head);
3964			map = kmap_local_page(page) + offset;
3965		}
3966		BUG_ON(*map == 0);
3967		*map -= 1;
3968		if (*map == 0)
3969			count = 0;
3970		kunmap_local(map);
3971		while ((page = list_prev_entry(page, lru)) != head) {
3972			map = kmap_local_page(page) + offset;
 
3973			*map = SWAP_CONT_MAX | count;
3974			count = COUNT_CONTINUED;
3975			kunmap_local(map);
 
3976		}
3977		ret = count == COUNT_CONTINUED;
3978	}
3979out:
3980	spin_unlock(&si->cont_lock);
3981	return ret;
3982}
3983
3984/*
3985 * free_swap_count_continuations - swapoff free all the continuation pages
3986 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3987 */
3988static void free_swap_count_continuations(struct swap_info_struct *si)
3989{
3990	pgoff_t offset;
3991
3992	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3993		struct page *head;
3994		head = vmalloc_to_page(si->swap_map + offset);
3995		if (page_private(head)) {
3996			struct page *page, *next;
3997
3998			list_for_each_entry_safe(page, next, &head->lru, lru) {
3999				list_del(&page->lru);
 
4000				__free_page(page);
4001			}
4002		}
4003	}
4004}
4005
4006#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
4007void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
4008{
4009	struct swap_info_struct *si, *next;
4010	int nid = folio_nid(folio);
4011
4012	if (!(gfp & __GFP_IO))
4013		return;
4014
4015	if (!__has_usable_swap())
4016		return;
4017
4018	if (!blk_cgroup_congested())
4019		return;
4020
4021	/*
4022	 * We've already scheduled a throttle, avoid taking the global swap
4023	 * lock.
4024	 */
4025	if (current->throttle_disk)
4026		return;
4027
4028	spin_lock(&swap_avail_lock);
4029	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4030				  avail_lists[nid]) {
4031		if (si->bdev) {
4032			blkcg_schedule_throttle(si->bdev->bd_disk, true);
4033			break;
4034		}
4035	}
4036	spin_unlock(&swap_avail_lock);
4037}
4038#endif
4039
4040static int __init swapfile_init(void)
4041{
4042	int nid;
4043
4044	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4045					 GFP_KERNEL);
4046	if (!swap_avail_heads) {
4047		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4048		return -ENOMEM;
4049	}
4050
4051	for_each_node(nid)
4052		plist_head_init(&swap_avail_heads[nid]);
4053
4054	swapfile_maximum_size = arch_max_swapfile_size();
4055
4056#ifdef CONFIG_MIGRATION
4057	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4058		swap_migration_ad_supported = true;
4059#endif	/* CONFIG_MIGRATION */
4060
4061	return 0;
4062}
4063subsys_initcall(swapfile_init);