Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
 
 
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
  24#include <linux/module.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/security.h>
  28#include <linux/backing-dev.h>
  29#include <linux/mutex.h>
  30#include <linux/capability.h>
  31#include <linux/syscalls.h>
  32#include <linux/memcontrol.h>
  33#include <linux/poll.h>
  34#include <linux/oom.h>
 
 
 
 
 
 
  35
  36#include <asm/pgtable.h>
  37#include <asm/tlbflush.h>
  38#include <linux/swapops.h>
  39#include <linux/page_cgroup.h>
  40
  41static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  42				 unsigned char);
  43static void free_swap_count_continuations(struct swap_info_struct *);
  44static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  45
  46static DEFINE_SPINLOCK(swap_lock);
  47static unsigned int nr_swapfiles;
  48long nr_swap_pages;
 
 
 
 
 
 
 
  49long total_swap_pages;
  50static int least_priority;
  51
  52static const char Bad_file[] = "Bad swap file entry ";
  53static const char Unused_file[] = "Unused swap file entry ";
  54static const char Bad_offset[] = "Bad swap offset entry ";
  55static const char Unused_offset[] = "Unused swap offset entry ";
  56
  57static struct swap_list_t swap_list = {-1, -1};
 
 
 
 
  58
  59static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61static DEFINE_MUTEX(swapon_mutex);
  62
  63static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  64/* Activity counter to indicate that a swapon or swapoff has occurred */
  65static atomic_t proc_poll_event = ATOMIC_INIT(0);
  66
 
 
 
 
 
 
 
 
 
 
  67static inline unsigned char swap_count(unsigned char ent)
  68{
  69	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
  70}
  71
 
 
 
 
 
 
 
 
 
 
  72/* returns 1 if swap entry is freed */
  73static int
  74__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  75{
  76	swp_entry_t entry = swp_entry(si->type, offset);
  77	struct page *page;
  78	int ret = 0;
  79
  80	page = find_get_page(&swapper_space, entry.val);
  81	if (!page)
  82		return 0;
  83	/*
  84	 * This function is called from scan_swap_map() and it's called
  85	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  86	 * We have to use trylock for avoiding deadlock. This is a special
  87	 * case and you should use try_to_free_swap() with explicit lock_page()
  88	 * in usual operations.
  89	 */
  90	if (trylock_page(page)) {
  91		ret = try_to_free_swap(page);
 
 
 
  92		unlock_page(page);
  93	}
  94	page_cache_release(page);
  95	return ret;
  96}
  97
 
 
 
 
 
 
 
 
 
 
 
 
  98/*
  99 * swapon tell device that all the old swap contents can be discarded,
 100 * to allow the swap device to optimize its wear-levelling.
 101 */
 102static int discard_swap(struct swap_info_struct *si)
 103{
 104	struct swap_extent *se;
 105	sector_t start_block;
 106	sector_t nr_blocks;
 107	int err = 0;
 108
 109	/* Do not discard the swap header page! */
 110	se = &si->first_swap_extent;
 111	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 112	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 113	if (nr_blocks) {
 114		err = blkdev_issue_discard(si->bdev, start_block,
 115				nr_blocks, GFP_KERNEL, 0);
 116		if (err)
 117			return err;
 118		cond_resched();
 119	}
 120
 121	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 122		start_block = se->start_block << (PAGE_SHIFT - 9);
 123		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 124
 125		err = blkdev_issue_discard(si->bdev, start_block,
 126				nr_blocks, GFP_KERNEL, 0);
 127		if (err)
 128			break;
 129
 130		cond_resched();
 131	}
 132	return err;		/* That will often be -EOPNOTSUPP */
 133}
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135/*
 136 * swap allocation tell device that a cluster of swap can now be discarded,
 137 * to allow the swap device to optimize its wear-levelling.
 138 */
 139static void discard_swap_cluster(struct swap_info_struct *si,
 140				 pgoff_t start_page, pgoff_t nr_pages)
 141{
 142	struct swap_extent *se = si->curr_swap_extent;
 143	int found_extent = 0;
 144
 145	while (nr_pages) {
 146		struct list_head *lh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148		if (se->start_page <= start_page &&
 149		    start_page < se->start_page + se->nr_pages) {
 150			pgoff_t offset = start_page - se->start_page;
 151			sector_t start_block = se->start_block + offset;
 152			sector_t nr_blocks = se->nr_pages - offset;
 153
 154			if (nr_blocks > nr_pages)
 155				nr_blocks = nr_pages;
 156			start_page += nr_blocks;
 157			nr_pages -= nr_blocks;
 158
 159			if (!found_extent++)
 160				si->curr_swap_extent = se;
 161
 162			start_block <<= PAGE_SHIFT - 9;
 163			nr_blocks <<= PAGE_SHIFT - 9;
 164			if (blkdev_issue_discard(si->bdev, start_block,
 165				    nr_blocks, GFP_NOIO, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166				break;
 
 167		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168
 169		lh = se->list.next;
 170		se = list_entry(lh, struct swap_extent, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171	}
 172}
 173
 174static int wait_for_discard(void *word)
 175{
 176	schedule();
 177	return 0;
 
 
 
 
 
 
 178}
 179
 180#define SWAPFILE_CLUSTER	256
 181#define LATENCY_LIMIT		256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183static unsigned long scan_swap_map(struct swap_info_struct *si,
 184				   unsigned char usage)
 185{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186	unsigned long offset;
 187	unsigned long scan_base;
 188	unsigned long last_in_cluster = 0;
 189	int latency_ration = LATENCY_LIMIT;
 190	int found_free_cluster = 0;
 
 191
 192	/*
 193	 * We try to cluster swap pages by allocating them sequentially
 194	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 195	 * way, however, we resort to first-free allocation, starting
 196	 * a new cluster.  This prevents us from scattering swap pages
 197	 * all over the entire swap partition, so that we reduce
 198	 * overall disk seek times between swap pages.  -- sct
 199	 * But we do now try to find an empty cluster.  -Andrea
 200	 * And we let swap pages go all over an SSD partition.  Hugh
 201	 */
 202
 203	si->flags += SWP_SCANNING;
 204	scan_base = offset = si->cluster_next;
 
 
 
 
 
 
 
 
 
 205
 206	if (unlikely(!si->cluster_nr--)) {
 
 
 
 
 207		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 208			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 209			goto checks;
 210		}
 211		if (si->flags & SWP_DISCARDABLE) {
 212			/*
 213			 * Start range check on racing allocations, in case
 214			 * they overlap the cluster we eventually decide on
 215			 * (we scan without swap_lock to allow preemption).
 216			 * It's hardly conceivable that cluster_nr could be
 217			 * wrapped during our scan, but don't depend on it.
 218			 */
 219			if (si->lowest_alloc)
 220				goto checks;
 221			si->lowest_alloc = si->max;
 222			si->highest_alloc = 0;
 223		}
 224		spin_unlock(&swap_lock);
 225
 226		/*
 227		 * If seek is expensive, start searching for new cluster from
 228		 * start of partition, to minimize the span of allocated swap.
 229		 * But if seek is cheap, search from our current position, so
 230		 * that swap is allocated from all over the partition: if the
 231		 * Flash Translation Layer only remaps within limited zones,
 232		 * we don't want to wear out the first zone too quickly.
 233		 */
 234		if (!(si->flags & SWP_SOLIDSTATE))
 235			scan_base = offset = si->lowest_bit;
 236		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 237
 238		/* Locate the first empty (unaligned) cluster */
 239		for (; last_in_cluster <= si->highest_bit; offset++) {
 240			if (si->swap_map[offset])
 241				last_in_cluster = offset + SWAPFILE_CLUSTER;
 242			else if (offset == last_in_cluster) {
 243				spin_lock(&swap_lock);
 244				offset -= SWAPFILE_CLUSTER - 1;
 245				si->cluster_next = offset;
 246				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 247				found_free_cluster = 1;
 248				goto checks;
 249			}
 250			if (unlikely(--latency_ration < 0)) {
 251				cond_resched();
 252				latency_ration = LATENCY_LIMIT;
 253			}
 254		}
 255
 256		offset = si->lowest_bit;
 257		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 258
 259		/* Locate the first empty (unaligned) cluster */
 260		for (; last_in_cluster < scan_base; offset++) {
 261			if (si->swap_map[offset])
 262				last_in_cluster = offset + SWAPFILE_CLUSTER;
 263			else if (offset == last_in_cluster) {
 264				spin_lock(&swap_lock);
 265				offset -= SWAPFILE_CLUSTER - 1;
 266				si->cluster_next = offset;
 267				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 268				found_free_cluster = 1;
 269				goto checks;
 270			}
 271			if (unlikely(--latency_ration < 0)) {
 272				cond_resched();
 273				latency_ration = LATENCY_LIMIT;
 274			}
 275		}
 276
 277		offset = scan_base;
 278		spin_lock(&swap_lock);
 279		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 280		si->lowest_alloc = 0;
 281	}
 282
 283checks:
 
 
 
 
 
 
 
 
 
 
 284	if (!(si->flags & SWP_WRITEOK))
 285		goto no_page;
 286	if (!si->highest_bit)
 287		goto no_page;
 288	if (offset > si->highest_bit)
 289		scan_base = offset = si->lowest_bit;
 290
 
 291	/* reuse swap entry of cache-only swap if not busy. */
 292	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 293		int swap_was_freed;
 294		spin_unlock(&swap_lock);
 295		swap_was_freed = __try_to_reclaim_swap(si, offset);
 296		spin_lock(&swap_lock);
 
 297		/* entry was freed successfully, try to use this again */
 298		if (swap_was_freed)
 299			goto checks;
 300		goto scan; /* check next one */
 301	}
 302
 303	if (si->swap_map[offset])
 304		goto scan;
 305
 306	if (offset == si->lowest_bit)
 307		si->lowest_bit++;
 308	if (offset == si->highest_bit)
 309		si->highest_bit--;
 310	si->inuse_pages++;
 311	if (si->inuse_pages == si->pages) {
 312		si->lowest_bit = si->max;
 313		si->highest_bit = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314	}
 315	si->swap_map[offset] = usage;
 316	si->cluster_next = offset + 1;
 317	si->flags -= SWP_SCANNING;
 318
 319	if (si->lowest_alloc) {
 320		/*
 321		 * Only set when SWP_DISCARDABLE, and there's a scan
 322		 * for a free cluster in progress or just completed.
 323		 */
 324		if (found_free_cluster) {
 325			/*
 326			 * To optimize wear-levelling, discard the
 327			 * old data of the cluster, taking care not to
 328			 * discard any of its pages that have already
 329			 * been allocated by racing tasks (offset has
 330			 * already stepped over any at the beginning).
 331			 */
 332			if (offset < si->highest_alloc &&
 333			    si->lowest_alloc <= last_in_cluster)
 334				last_in_cluster = si->lowest_alloc - 1;
 335			si->flags |= SWP_DISCARDING;
 336			spin_unlock(&swap_lock);
 337
 338			if (offset < last_in_cluster)
 339				discard_swap_cluster(si, offset,
 340					last_in_cluster - offset + 1);
 341
 342			spin_lock(&swap_lock);
 343			si->lowest_alloc = 0;
 344			si->flags &= ~SWP_DISCARDING;
 345
 346			smp_mb();	/* wake_up_bit advises this */
 347			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
 
 
 
 
 
 348
 349		} else if (si->flags & SWP_DISCARDING) {
 350			/*
 351			 * Delay using pages allocated by racing tasks
 352			 * until the whole discard has been issued. We
 353			 * could defer that delay until swap_writepage,
 354			 * but it's easier to keep this self-contained.
 355			 */
 356			spin_unlock(&swap_lock);
 357			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
 358				wait_for_discard, TASK_UNINTERRUPTIBLE);
 359			spin_lock(&swap_lock);
 360		} else {
 361			/*
 362			 * Note pages allocated by racing tasks while
 363			 * scan for a free cluster is in progress, so
 364			 * that its final discard can exclude them.
 365			 */
 366			if (offset < si->lowest_alloc)
 367				si->lowest_alloc = offset;
 368			if (offset > si->highest_alloc)
 369				si->highest_alloc = offset;
 370		}
 371	}
 372	return offset;
 
 
 
 
 373
 374scan:
 375	spin_unlock(&swap_lock);
 376	while (++offset <= si->highest_bit) {
 377		if (!si->swap_map[offset]) {
 378			spin_lock(&swap_lock);
 379			goto checks;
 380		}
 381		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 382			spin_lock(&swap_lock);
 
 383			goto checks;
 384		}
 385		if (unlikely(--latency_ration < 0)) {
 386			cond_resched();
 387			latency_ration = LATENCY_LIMIT;
 
 388		}
 389	}
 390	offset = si->lowest_bit;
 391	while (++offset < scan_base) {
 392		if (!si->swap_map[offset]) {
 393			spin_lock(&swap_lock);
 394			goto checks;
 395		}
 396		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 397			spin_lock(&swap_lock);
 
 398			goto checks;
 399		}
 400		if (unlikely(--latency_ration < 0)) {
 401			cond_resched();
 402			latency_ration = LATENCY_LIMIT;
 
 403		}
 
 404	}
 405	spin_lock(&swap_lock);
 406
 407no_page:
 408	si->flags -= SWP_SCANNING;
 409	return 0;
 410}
 411
 412swp_entry_t get_swap_page(void)
 413{
 414	struct swap_info_struct *si;
 415	pgoff_t offset;
 416	int type, next;
 417	int wrapped = 0;
 418
 419	spin_lock(&swap_lock);
 420	if (nr_swap_pages <= 0)
 421		goto noswap;
 422	nr_swap_pages--;
 
 
 
 
 423
 424	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 425		si = swap_info[type];
 426		next = si->next;
 427		if (next < 0 ||
 428		    (!wrapped && si->prio != swap_info[next]->prio)) {
 429			next = swap_list.head;
 430			wrapped++;
 431		}
 432
 433		if (!si->highest_bit)
 434			continue;
 435		if (!(si->flags & SWP_WRITEOK))
 436			continue;
 
 
 
 
 
 
 437
 438		swap_list.next = next;
 439		/* This is called for allocating swap entry for cache */
 440		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 441		if (offset) {
 442			spin_unlock(&swap_lock);
 443			return swp_entry(type, offset);
 444		}
 445		next = swap_list.next;
 446	}
 447
 448	nr_swap_pages++;
 449noswap:
 450	spin_unlock(&swap_lock);
 451	return (swp_entry_t) {0};
 
 
 
 
 
 
 
 452}
 453
 454/* The only caller of this function is now susupend routine */
 455swp_entry_t get_swap_page_of_type(int type)
 456{
 457	struct swap_info_struct *si;
 458	pgoff_t offset;
 
 
 
 459
 460	spin_lock(&swap_lock);
 461	si = swap_info[type];
 462	if (si && (si->flags & SWP_WRITEOK)) {
 463		nr_swap_pages--;
 464		/* This is called for allocating swap entry, not cache */
 465		offset = scan_swap_map(si, 1);
 466		if (offset) {
 467			spin_unlock(&swap_lock);
 468			return swp_entry(type, offset);
 469		}
 470		nr_swap_pages++;
 471	}
 472	spin_unlock(&swap_lock);
 473	return (swp_entry_t) {0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474}
 475
 476static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 477{
 478	struct swap_info_struct *p;
 479	unsigned long offset, type;
 480
 481	if (!entry.val)
 482		goto out;
 483	type = swp_type(entry);
 484	if (type >= nr_swapfiles)
 485		goto bad_nofile;
 486	p = swap_info[type];
 487	if (!(p->flags & SWP_USED))
 488		goto bad_device;
 489	offset = swp_offset(entry);
 490	if (offset >= p->max)
 491		goto bad_offset;
 492	if (!p->swap_map[offset])
 493		goto bad_free;
 494	spin_lock(&swap_lock);
 495	return p;
 496
 497bad_free:
 498	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
 499	goto out;
 500bad_offset:
 501	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
 502	goto out;
 503bad_device:
 504	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
 505	goto out;
 506bad_nofile:
 507	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
 508out:
 509	return NULL;
 510}
 511
 512static unsigned char swap_entry_free(struct swap_info_struct *p,
 513				     swp_entry_t entry, unsigned char usage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514{
 515	unsigned long offset = swp_offset(entry);
 516	unsigned char count;
 517	unsigned char has_cache;
 518
 519	count = p->swap_map[offset];
 
 520	has_cache = count & SWAP_HAS_CACHE;
 521	count &= ~SWAP_HAS_CACHE;
 522
 523	if (usage == SWAP_HAS_CACHE) {
 524		VM_BUG_ON(!has_cache);
 525		has_cache = 0;
 526	} else if (count == SWAP_MAP_SHMEM) {
 527		/*
 528		 * Or we could insist on shmem.c using a special
 529		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 530		 */
 531		count = 0;
 532	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 533		if (count == COUNT_CONTINUED) {
 534			if (swap_count_continued(p, offset, count))
 535				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 536			else
 537				count = SWAP_MAP_MAX;
 538		} else
 539			count--;
 540	}
 541
 542	if (!count)
 543		mem_cgroup_uncharge_swap(entry);
 544
 545	usage = count | has_cache;
 546	p->swap_map[offset] = usage;
 
 
 
 547
 548	/* free if no reference */
 549	if (!usage) {
 550		struct gendisk *disk = p->bdev->bd_disk;
 551		if (offset < p->lowest_bit)
 552			p->lowest_bit = offset;
 553		if (offset > p->highest_bit)
 554			p->highest_bit = offset;
 555		if (swap_list.next >= 0 &&
 556		    p->prio > swap_info[swap_list.next]->prio)
 557			swap_list.next = p->type;
 558		nr_swap_pages++;
 559		p->inuse_pages--;
 560		if ((p->flags & SWP_BLKDEV) &&
 561				disk->fops->swap_slot_free_notify)
 562			disk->fops->swap_slot_free_notify(p->bdev, offset);
 563	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565	return usage;
 566}
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568/*
 569 * Caller has made sure that the swapdevice corresponding to entry
 570 * is still around or has not been recycled.
 571 */
 572void swap_free(swp_entry_t entry)
 573{
 574	struct swap_info_struct *p;
 575
 576	p = swap_info_get(entry);
 577	if (p) {
 578		swap_entry_free(p, entry, 1);
 579		spin_unlock(&swap_lock);
 580	}
 581}
 582
 583/*
 584 * Called after dropping swapcache to decrease refcnt to swap entries.
 585 */
 586void swapcache_free(swp_entry_t entry, struct page *page)
 587{
 588	struct swap_info_struct *p;
 589	unsigned char count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590
 591	p = swap_info_get(entry);
 592	if (p) {
 593		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 594		if (page)
 595			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 596		spin_unlock(&swap_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597	}
 
 
 598}
 599
 600/*
 601 * How many references to page are currently swapped out?
 602 * This does not give an exact answer when swap count is continued,
 603 * but does include the high COUNT_CONTINUED flag to allow for that.
 604 */
 605static inline int page_swapcount(struct page *page)
 606{
 607	int count = 0;
 608	struct swap_info_struct *p;
 
 609	swp_entry_t entry;
 
 610
 611	entry.val = page_private(page);
 612	p = swap_info_get(entry);
 613	if (p) {
 614		count = swap_count(p->swap_map[swp_offset(entry)]);
 615		spin_unlock(&swap_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616	}
 617	return count;
 618}
 619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620/*
 621 * We can write to an anon page without COW if there are no other references
 622 * to it.  And as a side-effect, free up its swap: because the old content
 623 * on disk will never be read, and seeking back there to write new content
 624 * later would only waste time away from clustering.
 
 
 
 
 625 */
 626int reuse_swap_page(struct page *page)
 627{
 628	int count;
 629
 630	VM_BUG_ON(!PageLocked(page));
 631	if (unlikely(PageKsm(page)))
 632		return 0;
 633	count = page_mapcount(page);
 634	if (count <= 1 && PageSwapCache(page)) {
 635		count += page_swapcount(page);
 636		if (count == 1 && !PageWriteback(page)) {
 
 
 
 
 
 
 637			delete_from_swap_cache(page);
 638			SetPageDirty(page);
 
 
 
 
 
 
 
 
 
 
 
 639		}
 640	}
 
 641	return count <= 1;
 642}
 643
 644/*
 645 * If swap is getting full, or if there are no more mappings of this page,
 646 * then try_to_free_swap is called to free its swap space.
 647 */
 648int try_to_free_swap(struct page *page)
 649{
 650	VM_BUG_ON(!PageLocked(page));
 651
 652	if (!PageSwapCache(page))
 653		return 0;
 654	if (PageWriteback(page))
 655		return 0;
 656	if (page_swapcount(page))
 657		return 0;
 658
 659	/*
 660	 * Once hibernation has begun to create its image of memory,
 661	 * there's a danger that one of the calls to try_to_free_swap()
 662	 * - most probably a call from __try_to_reclaim_swap() while
 663	 * hibernation is allocating its own swap pages for the image,
 664	 * but conceivably even a call from memory reclaim - will free
 665	 * the swap from a page which has already been recorded in the
 666	 * image as a clean swapcache page, and then reuse its swap for
 667	 * another page of the image.  On waking from hibernation, the
 668	 * original page might be freed under memory pressure, then
 669	 * later read back in from swap, now with the wrong data.
 670	 *
 671	 * Hibernation clears bits from gfp_allowed_mask to prevent
 672	 * memory reclaim from writing to disk, so check that here.
 673	 */
 674	if (!(gfp_allowed_mask & __GFP_IO))
 675		return 0;
 676
 
 677	delete_from_swap_cache(page);
 678	SetPageDirty(page);
 679	return 1;
 680}
 681
 682/*
 683 * Free the swap entry like above, but also try to
 684 * free the page cache entry if it is the last user.
 685 */
 686int free_swap_and_cache(swp_entry_t entry)
 687{
 688	struct swap_info_struct *p;
 689	struct page *page = NULL;
 690
 691	if (non_swap_entry(entry))
 692		return 1;
 693
 694	p = swap_info_get(entry);
 695	if (p) {
 696		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 697			page = find_get_page(&swapper_space, entry.val);
 698			if (page && !trylock_page(page)) {
 699				page_cache_release(page);
 700				page = NULL;
 701			}
 702		}
 703		spin_unlock(&swap_lock);
 704	}
 705	if (page) {
 706		/*
 707		 * Not mapped elsewhere, or swap space full? Free it!
 708		 * Also recheck PageSwapCache now page is locked (above).
 709		 */
 710		if (PageSwapCache(page) && !PageWriteback(page) &&
 711				(!page_mapped(page) || vm_swap_full())) {
 712			delete_from_swap_cache(page);
 713			SetPageDirty(page);
 714		}
 715		unlock_page(page);
 716		page_cache_release(page);
 717	}
 718	return p != NULL;
 719}
 720
 721#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 722/**
 723 * mem_cgroup_count_swap_user - count the user of a swap entry
 724 * @ent: the swap entry to be checked
 725 * @pagep: the pointer for the swap cache page of the entry to be stored
 726 *
 727 * Returns the number of the user of the swap entry. The number is valid only
 728 * for swaps of anonymous pages.
 729 * If the entry is found on swap cache, the page is stored to pagep with
 730 * refcount of it being incremented.
 731 */
 732int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
 733{
 734	struct page *page;
 735	struct swap_info_struct *p;
 736	int count = 0;
 737
 738	page = find_get_page(&swapper_space, ent.val);
 739	if (page)
 740		count += page_mapcount(page);
 741	p = swap_info_get(ent);
 742	if (p) {
 743		count += swap_count(p->swap_map[swp_offset(ent)]);
 744		spin_unlock(&swap_lock);
 745	}
 746
 747	*pagep = page;
 748	return count;
 
 
 
 
 
 749}
 750#endif
 751
 752#ifdef CONFIG_HIBERNATION
 753/*
 754 * Find the swap type that corresponds to given device (if any).
 755 *
 756 * @offset - number of the PAGE_SIZE-sized block of the device, starting
 757 * from 0, in which the swap header is expected to be located.
 758 *
 759 * This is needed for the suspend to disk (aka swsusp).
 760 */
 761int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
 762{
 763	struct block_device *bdev = NULL;
 764	int type;
 765
 766	if (device)
 767		bdev = bdget(device);
 768
 769	spin_lock(&swap_lock);
 770	for (type = 0; type < nr_swapfiles; type++) {
 771		struct swap_info_struct *sis = swap_info[type];
 772
 773		if (!(sis->flags & SWP_WRITEOK))
 774			continue;
 775
 776		if (!bdev) {
 777			if (bdev_p)
 778				*bdev_p = bdgrab(sis->bdev);
 779
 780			spin_unlock(&swap_lock);
 781			return type;
 782		}
 783		if (bdev == sis->bdev) {
 784			struct swap_extent *se = &sis->first_swap_extent;
 785
 786			if (se->start_block == offset) {
 787				if (bdev_p)
 788					*bdev_p = bdgrab(sis->bdev);
 789
 790				spin_unlock(&swap_lock);
 791				bdput(bdev);
 792				return type;
 793			}
 794		}
 795	}
 796	spin_unlock(&swap_lock);
 797	if (bdev)
 798		bdput(bdev);
 799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800	return -ENODEV;
 801}
 802
 803/*
 804 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 805 * corresponding to given index in swap_info (swap type).
 806 */
 807sector_t swapdev_block(int type, pgoff_t offset)
 808{
 809	struct block_device *bdev;
 
 810
 811	if ((unsigned int)type >= nr_swapfiles)
 812		return 0;
 813	if (!(swap_info[type]->flags & SWP_WRITEOK))
 814		return 0;
 815	return map_swap_entry(swp_entry(type, offset), &bdev);
 816}
 817
 818/*
 819 * Return either the total number of swap pages of given type, or the number
 820 * of free pages of that type (depending on @free)
 821 *
 822 * This is needed for software suspend
 823 */
 824unsigned int count_swap_pages(int type, int free)
 825{
 826	unsigned int n = 0;
 827
 828	spin_lock(&swap_lock);
 829	if ((unsigned int)type < nr_swapfiles) {
 830		struct swap_info_struct *sis = swap_info[type];
 831
 
 832		if (sis->flags & SWP_WRITEOK) {
 833			n = sis->pages;
 834			if (free)
 835				n -= sis->inuse_pages;
 836		}
 
 837	}
 838	spin_unlock(&swap_lock);
 839	return n;
 840}
 841#endif /* CONFIG_HIBERNATION */
 842
 
 
 
 
 
 843/*
 844 * No need to decide whether this PTE shares the swap entry with others,
 845 * just let do_wp_page work it out if a write is requested later - to
 846 * force COW, vm_page_prot omits write permission from any private vma.
 847 */
 848static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 849		unsigned long addr, swp_entry_t entry, struct page *page)
 850{
 851	struct mem_cgroup *ptr;
 852	spinlock_t *ptl;
 853	pte_t *pte;
 854	int ret = 1;
 855
 856	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
 857		ret = -ENOMEM;
 858		goto out_nolock;
 859	}
 860
 861	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 862	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
 863		if (ret > 0)
 864			mem_cgroup_cancel_charge_swapin(ptr);
 865		ret = 0;
 866		goto out;
 867	}
 868
 869	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 870	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 871	get_page(page);
 872	set_pte_at(vma->vm_mm, addr, pte,
 873		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
 874	page_add_anon_rmap(page, vma, addr);
 875	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 876	swap_free(entry);
 877	/*
 878	 * Move the page to the active list so it is not
 879	 * immediately swapped out again after swapon.
 880	 */
 881	activate_page(page);
 882out:
 883	pte_unmap_unlock(pte, ptl);
 884out_nolock:
 
 
 
 885	return ret;
 886}
 887
 888static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 889				unsigned long addr, unsigned long end,
 890				swp_entry_t entry, struct page *page)
 
 891{
 892	pte_t swp_pte = swp_entry_to_pte(entry);
 
 893	pte_t *pte;
 
 
 894	int ret = 0;
 
 895
 896	/*
 897	 * We don't actually need pte lock while scanning for swp_pte: since
 898	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
 899	 * page table while we're scanning; though it could get zapped, and on
 900	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
 901	 * of unmatched parts which look like swp_pte, so unuse_pte must
 902	 * recheck under pte lock.  Scanning without pte lock lets it be
 903	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
 904	 */
 905	pte = pte_offset_map(pmd, addr);
 906	do {
 907		/*
 908		 * swapoff spends a _lot_ of time in this loop!
 909		 * Test inline before going to call unuse_pte.
 910		 */
 911		if (unlikely(pte_same(*pte, swp_pte))) {
 912			pte_unmap(pte);
 913			ret = unuse_pte(vma, pmd, addr, entry, page);
 914			if (ret)
 915				goto out;
 916			pte = pte_offset_map(pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	} while (pte++, addr += PAGE_SIZE, addr != end);
 919	pte_unmap(pte - 1);
 
 
 920out:
 921	return ret;
 922}
 923
 924static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 925				unsigned long addr, unsigned long end,
 926				swp_entry_t entry, struct page *page)
 
 927{
 928	pmd_t *pmd;
 929	unsigned long next;
 930	int ret;
 931
 932	pmd = pmd_offset(pud, addr);
 933	do {
 
 934		next = pmd_addr_end(addr, end);
 935		if (unlikely(pmd_trans_huge(*pmd)))
 936			continue;
 937		if (pmd_none_or_clear_bad(pmd))
 938			continue;
 939		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 
 940		if (ret)
 941			return ret;
 942	} while (pmd++, addr = next, addr != end);
 943	return 0;
 944}
 945
 946static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 947				unsigned long addr, unsigned long end,
 948				swp_entry_t entry, struct page *page)
 
 949{
 950	pud_t *pud;
 951	unsigned long next;
 952	int ret;
 953
 954	pud = pud_offset(pgd, addr);
 955	do {
 956		next = pud_addr_end(addr, end);
 957		if (pud_none_or_clear_bad(pud))
 958			continue;
 959		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 
 960		if (ret)
 961			return ret;
 962	} while (pud++, addr = next, addr != end);
 963	return 0;
 964}
 965
 966static int unuse_vma(struct vm_area_struct *vma,
 967				swp_entry_t entry, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968{
 969	pgd_t *pgd;
 970	unsigned long addr, end, next;
 971	int ret;
 972
 973	if (page_anon_vma(page)) {
 974		addr = page_address_in_vma(page, vma);
 975		if (addr == -EFAULT)
 976			return 0;
 977		else
 978			end = addr + PAGE_SIZE;
 979	} else {
 980		addr = vma->vm_start;
 981		end = vma->vm_end;
 982	}
 983
 984	pgd = pgd_offset(vma->vm_mm, addr);
 985	do {
 986		next = pgd_addr_end(addr, end);
 987		if (pgd_none_or_clear_bad(pgd))
 988			continue;
 989		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 
 990		if (ret)
 991			return ret;
 992	} while (pgd++, addr = next, addr != end);
 993	return 0;
 994}
 995
 996static int unuse_mm(struct mm_struct *mm,
 997				swp_entry_t entry, struct page *page)
 998{
 999	struct vm_area_struct *vma;
1000	int ret = 0;
1001
1002	if (!down_read_trylock(&mm->mmap_sem)) {
1003		/*
1004		 * Activate page so shrink_inactive_list is unlikely to unmap
1005		 * its ptes while lock is dropped, so swapoff can make progress.
1006		 */
1007		activate_page(page);
1008		unlock_page(page);
1009		down_read(&mm->mmap_sem);
1010		lock_page(page);
1011	}
1012	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1013		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1014			break;
 
 
 
 
 
1015	}
1016	up_read(&mm->mmap_sem);
1017	return (ret < 0)? ret: 0;
1018}
1019
1020/*
1021 * Scan swap_map from current position to next entry still in use.
1022 * Recycle to start on reaching the end, returning 0 when empty.
 
1023 */
1024static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1025					unsigned int prev)
1026{
1027	unsigned int max = si->max;
1028	unsigned int i = prev;
1029	unsigned char count;
1030
1031	/*
1032	 * No need for swap_lock here: we're just looking
1033	 * for whether an entry is in use, not modifying it; false
1034	 * hits are okay, and sys_swapoff() has already prevented new
1035	 * allocations from this area (while holding swap_lock).
1036	 */
1037	for (;;) {
1038		if (++i >= max) {
1039			if (!prev) {
1040				i = 0;
1041				break;
1042			}
1043			/*
1044			 * No entries in use at top of swap_map,
1045			 * loop back to start and recheck there.
1046			 */
1047			max = prev + 1;
1048			prev = 0;
1049			i = 1;
1050		}
1051		count = si->swap_map[i];
1052		if (count && swap_count(count) != SWAP_MAP_BAD)
1053			break;
 
 
 
1054	}
 
 
 
 
1055	return i;
1056}
1057
1058/*
1059 * We completely avoid races by reading each swap page in advance,
1060 * and then search for the process using it.  All the necessary
1061 * page table adjustments can then be made atomically.
1062 */
1063static int try_to_unuse(unsigned int type)
 
1064{
 
 
 
 
1065	struct swap_info_struct *si = swap_info[type];
1066	struct mm_struct *start_mm;
1067	unsigned char *swap_map;
1068	unsigned char swcount;
1069	struct page *page;
1070	swp_entry_t entry;
1071	unsigned int i = 0;
1072	int retval = 0;
1073
1074	/*
1075	 * When searching mms for an entry, a good strategy is to
1076	 * start at the first mm we freed the previous entry from
1077	 * (though actually we don't notice whether we or coincidence
1078	 * freed the entry).  Initialize this start_mm with a hold.
1079	 *
1080	 * A simpler strategy would be to start at the last mm we
1081	 * freed the previous entry from; but that would take less
1082	 * advantage of mmlist ordering, which clusters forked mms
1083	 * together, child after parent.  If we race with dup_mmap(), we
1084	 * prefer to resolve parent before child, lest we miss entries
1085	 * duplicated after we scanned child: using last mm would invert
1086	 * that.
1087	 */
1088	start_mm = &init_mm;
1089	atomic_inc(&init_mm.mm_users);
1090
1091	/*
1092	 * Keep on scanning until all entries have gone.  Usually,
1093	 * one pass through swap_map is enough, but not necessarily:
1094	 * there are races when an instance of an entry might be missed.
1095	 */
1096	while ((i = find_next_to_unuse(si, i)) != 0) {
1097		if (signal_pending(current)) {
1098			retval = -EINTR;
1099			break;
1100		}
1101
1102		/*
1103		 * Get a page for the entry, using the existing swap
1104		 * cache page if there is one.  Otherwise, get a clean
1105		 * page and read the swap into it.
1106		 */
1107		swap_map = &si->swap_map[i];
1108		entry = swp_entry(type, i);
1109		page = read_swap_cache_async(entry,
1110					GFP_HIGHUSER_MOVABLE, NULL, 0);
1111		if (!page) {
1112			/*
1113			 * Either swap_duplicate() failed because entry
1114			 * has been freed independently, and will not be
1115			 * reused since sys_swapoff() already disabled
1116			 * allocation from here, or alloc_page() failed.
1117			 */
1118			if (!*swap_map)
1119				continue;
1120			retval = -ENOMEM;
1121			break;
1122		}
1123
1124		/*
1125		 * Don't hold on to start_mm if it looks like exiting.
1126		 */
1127		if (atomic_read(&start_mm->mm_users) == 1) {
1128			mmput(start_mm);
1129			start_mm = &init_mm;
1130			atomic_inc(&init_mm.mm_users);
1131		}
1132
1133		/*
1134		 * Wait for and lock page.  When do_swap_page races with
1135		 * try_to_unuse, do_swap_page can handle the fault much
1136		 * faster than try_to_unuse can locate the entry.  This
1137		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1138		 * defer to do_swap_page in such a case - in some tests,
1139		 * do_swap_page and try_to_unuse repeatedly compete.
1140		 */
1141		wait_on_page_locked(page);
1142		wait_on_page_writeback(page);
1143		lock_page(page);
1144		wait_on_page_writeback(page);
1145
1146		/*
1147		 * Remove all references to entry.
1148		 */
1149		swcount = *swap_map;
1150		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1151			retval = shmem_unuse(entry, page);
1152			/* page has already been unlocked and released */
1153			if (retval < 0)
1154				break;
1155			continue;
1156		}
1157		if (swap_count(swcount) && start_mm != &init_mm)
1158			retval = unuse_mm(start_mm, entry, page);
1159
1160		if (swap_count(*swap_map)) {
1161			int set_start_mm = (*swap_map >= swcount);
1162			struct list_head *p = &start_mm->mmlist;
1163			struct mm_struct *new_start_mm = start_mm;
1164			struct mm_struct *prev_mm = start_mm;
1165			struct mm_struct *mm;
1166
1167			atomic_inc(&new_start_mm->mm_users);
1168			atomic_inc(&prev_mm->mm_users);
1169			spin_lock(&mmlist_lock);
1170			while (swap_count(*swap_map) && !retval &&
1171					(p = p->next) != &start_mm->mmlist) {
1172				mm = list_entry(p, struct mm_struct, mmlist);
1173				if (!atomic_inc_not_zero(&mm->mm_users))
1174					continue;
1175				spin_unlock(&mmlist_lock);
1176				mmput(prev_mm);
1177				prev_mm = mm;
1178
1179				cond_resched();
 
 
 
 
 
 
1180
1181				swcount = *swap_map;
1182				if (!swap_count(swcount)) /* any usage ? */
1183					;
1184				else if (mm == &init_mm)
1185					set_start_mm = 1;
1186				else
1187					retval = unuse_mm(mm, entry, page);
1188
1189				if (set_start_mm && *swap_map < swcount) {
1190					mmput(new_start_mm);
1191					atomic_inc(&mm->mm_users);
1192					new_start_mm = mm;
1193					set_start_mm = 0;
1194				}
1195				spin_lock(&mmlist_lock);
1196			}
1197			spin_unlock(&mmlist_lock);
1198			mmput(prev_mm);
1199			mmput(start_mm);
1200			start_mm = new_start_mm;
1201		}
1202		if (retval) {
1203			unlock_page(page);
1204			page_cache_release(page);
1205			break;
1206		}
1207
1208		/*
1209		 * If a reference remains (rare), we would like to leave
1210		 * the page in the swap cache; but try_to_unmap could
1211		 * then re-duplicate the entry once we drop page lock,
1212		 * so we might loop indefinitely; also, that page could
1213		 * not be swapped out to other storage meanwhile.  So:
1214		 * delete from cache even if there's another reference,
1215		 * after ensuring that the data has been saved to disk -
1216		 * since if the reference remains (rarer), it will be
1217		 * read from disk into another page.  Splitting into two
1218		 * pages would be incorrect if swap supported "shared
1219		 * private" pages, but they are handled by tmpfs files.
1220		 *
1221		 * Given how unuse_vma() targets one particular offset
1222		 * in an anon_vma, once the anon_vma has been determined,
1223		 * this splitting happens to be just what is needed to
1224		 * handle where KSM pages have been swapped out: re-reading
1225		 * is unnecessarily slow, but we can fix that later on.
1226		 */
1227		if (swap_count(*swap_map) &&
1228		     PageDirty(page) && PageSwapCache(page)) {
1229			struct writeback_control wbc = {
1230				.sync_mode = WB_SYNC_NONE,
1231			};
1232
1233			swap_writepage(page, &wbc);
1234			lock_page(page);
1235			wait_on_page_writeback(page);
1236		}
1237
1238		/*
1239		 * It is conceivable that a racing task removed this page from
1240		 * swap cache just before we acquired the page lock at the top,
1241		 * or while we dropped it in unuse_mm().  The page might even
1242		 * be back in swap cache on another swap area: that we must not
1243		 * delete, since it may not have been written out to swap yet.
1244		 */
1245		if (PageSwapCache(page) &&
1246		    likely(page_private(page) == entry.val))
1247			delete_from_swap_cache(page);
1248
1249		/*
1250		 * So we could skip searching mms once swap count went
1251		 * to 1, we did not mark any present ptes as dirty: must
1252		 * mark page dirty so shrink_page_list will preserve it.
 
1253		 */
1254		SetPageDirty(page);
 
 
1255		unlock_page(page);
1256		page_cache_release(page);
1257
1258		/*
1259		 * Make sure that we aren't completely killing
1260		 * interactive performance.
 
1261		 */
1262		cond_resched();
 
1263	}
1264
1265	mmput(start_mm);
1266	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267}
1268
1269/*
1270 * After a successful try_to_unuse, if no swap is now in use, we know
1271 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1272 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1273 * added to the mmlist just after page_duplicate - before would be racy.
1274 */
1275static void drain_mmlist(void)
1276{
1277	struct list_head *p, *next;
1278	unsigned int type;
1279
1280	for (type = 0; type < nr_swapfiles; type++)
1281		if (swap_info[type]->inuse_pages)
1282			return;
1283	spin_lock(&mmlist_lock);
1284	list_for_each_safe(p, next, &init_mm.mmlist)
1285		list_del_init(p);
1286	spin_unlock(&mmlist_lock);
1287}
1288
1289/*
1290 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1291 * corresponds to page offset for the specified swap entry.
1292 * Note that the type of this function is sector_t, but it returns page offset
1293 * into the bdev, not sector offset.
1294 */
1295static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1296{
1297	struct swap_info_struct *sis;
1298	struct swap_extent *start_se;
1299	struct swap_extent *se;
1300	pgoff_t offset;
1301
1302	sis = swap_info[swp_type(entry)];
1303	*bdev = sis->bdev;
1304
1305	offset = swp_offset(entry);
1306	start_se = sis->curr_swap_extent;
1307	se = start_se;
1308
1309	for ( ; ; ) {
1310		struct list_head *lh;
1311
1312		if (se->start_page <= offset &&
1313				offset < (se->start_page + se->nr_pages)) {
1314			return se->start_block + (offset - se->start_page);
1315		}
1316		lh = se->list.next;
1317		se = list_entry(lh, struct swap_extent, list);
1318		sis->curr_swap_extent = se;
1319		BUG_ON(se == start_se);		/* It *must* be present */
1320	}
1321}
1322
1323/*
1324 * Returns the page offset into bdev for the specified page's swap entry.
1325 */
1326sector_t map_swap_page(struct page *page, struct block_device **bdev)
1327{
1328	swp_entry_t entry;
1329	entry.val = page_private(page);
1330	return map_swap_entry(entry, bdev);
1331}
1332
1333/*
1334 * Free all of a swapdev's extent information
1335 */
1336static void destroy_swap_extents(struct swap_info_struct *sis)
1337{
1338	while (!list_empty(&sis->first_swap_extent.list)) {
1339		struct swap_extent *se;
 
1340
1341		se = list_entry(sis->first_swap_extent.list.next,
1342				struct swap_extent, list);
1343		list_del(&se->list);
1344		kfree(se);
1345	}
 
 
 
 
 
 
 
 
 
1346}
1347
1348/*
1349 * Add a block range (and the corresponding page range) into this swapdev's
1350 * extent list.  The extent list is kept sorted in page order.
1351 *
1352 * This function rather assumes that it is called in ascending page order.
1353 */
1354static int
1355add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1356		unsigned long nr_pages, sector_t start_block)
1357{
 
1358	struct swap_extent *se;
1359	struct swap_extent *new_se;
1360	struct list_head *lh;
1361
1362	if (start_page == 0) {
1363		se = &sis->first_swap_extent;
1364		sis->curr_swap_extent = se;
1365		se->start_page = 0;
1366		se->nr_pages = nr_pages;
1367		se->start_block = start_block;
1368		return 1;
1369	} else {
1370		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1371		se = list_entry(lh, struct swap_extent, list);
 
1372		BUG_ON(se->start_page + se->nr_pages != start_page);
1373		if (se->start_block + se->nr_pages == start_block) {
1374			/* Merge it */
1375			se->nr_pages += nr_pages;
1376			return 0;
1377		}
1378	}
1379
1380	/*
1381	 * No merge.  Insert a new extent, preserving ordering.
1382	 */
1383	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1384	if (new_se == NULL)
1385		return -ENOMEM;
1386	new_se->start_page = start_page;
1387	new_se->nr_pages = nr_pages;
1388	new_se->start_block = start_block;
1389
1390	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 
1391	return 1;
1392}
 
1393
1394/*
1395 * A `swap extent' is a simple thing which maps a contiguous range of pages
1396 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1397 * is built at swapon time and is then used at swap_writepage/swap_readpage
1398 * time for locating where on disk a page belongs.
1399 *
1400 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1401 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1402 * swap files identically.
1403 *
1404 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1405 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1406 * swapfiles are handled *identically* after swapon time.
1407 *
1408 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1409 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1410 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1411 * requirements, they are simply tossed out - we will never use those blocks
1412 * for swapping.
1413 *
1414 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1415 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1416 * which will scribble on the fs.
1417 *
1418 * The amount of disk space which a single swap extent represents varies.
1419 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1420 * extents in the list.  To avoid much list walking, we cache the previous
1421 * search location in `curr_swap_extent', and start new searches from there.
1422 * This is extremely effective.  The average number of iterations in
1423 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1424 */
1425static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1426{
1427	struct inode *inode;
1428	unsigned blocks_per_page;
1429	unsigned long page_no;
1430	unsigned blkbits;
1431	sector_t probe_block;
1432	sector_t last_block;
1433	sector_t lowest_block = -1;
1434	sector_t highest_block = 0;
1435	int nr_extents = 0;
1436	int ret;
1437
1438	inode = sis->swap_file->f_mapping->host;
1439	if (S_ISBLK(inode->i_mode)) {
1440		ret = add_swap_extent(sis, 0, sis->max, 0);
1441		*span = sis->pages;
1442		goto out;
1443	}
1444
1445	blkbits = inode->i_blkbits;
1446	blocks_per_page = PAGE_SIZE >> blkbits;
 
 
 
 
 
 
 
 
 
1447
1448	/*
1449	 * Map all the blocks into the extent list.  This code doesn't try
1450	 * to be very smart.
1451	 */
1452	probe_block = 0;
1453	page_no = 0;
1454	last_block = i_size_read(inode) >> blkbits;
1455	while ((probe_block + blocks_per_page) <= last_block &&
1456			page_no < sis->max) {
1457		unsigned block_in_page;
1458		sector_t first_block;
1459
1460		first_block = bmap(inode, probe_block);
1461		if (first_block == 0)
1462			goto bad_bmap;
1463
1464		/*
1465		 * It must be PAGE_SIZE aligned on-disk
1466		 */
1467		if (first_block & (blocks_per_page - 1)) {
1468			probe_block++;
1469			goto reprobe;
1470		}
1471
1472		for (block_in_page = 1; block_in_page < blocks_per_page;
1473					block_in_page++) {
1474			sector_t block;
1475
1476			block = bmap(inode, probe_block + block_in_page);
1477			if (block == 0)
1478				goto bad_bmap;
1479			if (block != first_block + block_in_page) {
1480				/* Discontiguity */
1481				probe_block++;
1482				goto reprobe;
1483			}
1484		}
1485
1486		first_block >>= (PAGE_SHIFT - blkbits);
1487		if (page_no) {	/* exclude the header page */
1488			if (first_block < lowest_block)
1489				lowest_block = first_block;
1490			if (first_block > highest_block)
1491				highest_block = first_block;
1492		}
1493
1494		/*
1495		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1496		 */
1497		ret = add_swap_extent(sis, page_no, 1, first_block);
1498		if (ret < 0)
1499			goto out;
1500		nr_extents += ret;
1501		page_no++;
1502		probe_block += blocks_per_page;
1503reprobe:
1504		continue;
1505	}
1506	ret = nr_extents;
1507	*span = 1 + highest_block - lowest_block;
1508	if (page_no == 0)
1509		page_no = 1;	/* force Empty message */
1510	sis->max = page_no;
1511	sis->pages = page_no - 1;
1512	sis->highest_bit = page_no - 1;
1513out:
1514	return ret;
1515bad_bmap:
1516	printk(KERN_ERR "swapon: swapfile has holes\n");
1517	ret = -EINVAL;
1518	goto out;
1519}
1520
1521static void enable_swap_info(struct swap_info_struct *p, int prio,
1522				unsigned char *swap_map)
 
1523{
1524	int i, prev;
1525
1526	spin_lock(&swap_lock);
1527	if (prio >= 0)
1528		p->prio = prio;
1529	else
1530		p->prio = --least_priority;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	p->swap_map = swap_map;
 
 
 
 
 
1532	p->flags |= SWP_WRITEOK;
1533	nr_swap_pages += p->pages;
1534	total_swap_pages += p->pages;
1535
1536	/* insert swap space into swap_list: */
1537	prev = -1;
1538	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1539		if (p->prio >= swap_info[i]->prio)
1540			break;
1541		prev = i;
1542	}
1543	p->next = i;
1544	if (prev < 0)
1545		swap_list.head = swap_list.next = p->type;
1546	else
1547		swap_info[prev]->next = p->type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548	spin_unlock(&swap_lock);
1549}
1550
 
 
 
 
 
 
 
 
 
 
 
1551SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1552{
1553	struct swap_info_struct *p = NULL;
1554	unsigned char *swap_map;
 
 
1555	struct file *swap_file, *victim;
1556	struct address_space *mapping;
1557	struct inode *inode;
1558	char *pathname;
1559	int oom_score_adj;
1560	int i, type, prev;
1561	int err;
1562
1563	if (!capable(CAP_SYS_ADMIN))
1564		return -EPERM;
1565
 
 
1566	pathname = getname(specialfile);
1567	err = PTR_ERR(pathname);
1568	if (IS_ERR(pathname))
1569		goto out;
1570
1571	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1572	putname(pathname);
1573	err = PTR_ERR(victim);
1574	if (IS_ERR(victim))
1575		goto out;
1576
1577	mapping = victim->f_mapping;
1578	prev = -1;
1579	spin_lock(&swap_lock);
1580	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1581		p = swap_info[type];
1582		if (p->flags & SWP_WRITEOK) {
1583			if (p->swap_file->f_mapping == mapping)
 
1584				break;
 
1585		}
1586		prev = type;
1587	}
1588	if (type < 0) {
1589		err = -EINVAL;
1590		spin_unlock(&swap_lock);
1591		goto out_dput;
1592	}
1593	if (!security_vm_enough_memory(p->pages))
1594		vm_unacct_memory(p->pages);
1595	else {
1596		err = -ENOMEM;
1597		spin_unlock(&swap_lock);
1598		goto out_dput;
1599	}
1600	if (prev < 0)
1601		swap_list.head = p->next;
1602	else
1603		swap_info[prev]->next = p->next;
1604	if (type == swap_list.next) {
1605		/* just pick something that's safe... */
1606		swap_list.next = swap_list.head;
1607	}
1608	if (p->prio < 0) {
1609		for (i = p->next; i >= 0; i = swap_info[i]->next)
1610			swap_info[i]->prio = p->prio--;
 
 
 
 
 
 
 
 
 
1611		least_priority++;
1612	}
1613	nr_swap_pages -= p->pages;
 
1614	total_swap_pages -= p->pages;
1615	p->flags &= ~SWP_WRITEOK;
 
1616	spin_unlock(&swap_lock);
1617
1618	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1619	err = try_to_unuse(type);
1620	test_set_oom_score_adj(oom_score_adj);
 
 
1621
1622	if (err) {
1623		/*
1624		 * reading p->prio and p->swap_map outside the lock is
1625		 * safe here because only sys_swapon and sys_swapoff
1626		 * change them, and there can be no other sys_swapon or
1627		 * sys_swapoff for this swap_info_struct at this point.
1628		 */
1629		/* re-insert swap space back into swap_list */
1630		enable_swap_info(p, p->prio, p->swap_map);
 
1631		goto out_dput;
1632	}
1633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634	destroy_swap_extents(p);
1635	if (p->flags & SWP_CONTINUED)
1636		free_swap_count_continuations(p);
1637
 
 
 
1638	mutex_lock(&swapon_mutex);
1639	spin_lock(&swap_lock);
 
1640	drain_mmlist();
1641
1642	/* wait for anyone still in scan_swap_map */
1643	p->highest_bit = 0;		/* cuts scans short */
1644	while (p->flags >= SWP_SCANNING) {
 
1645		spin_unlock(&swap_lock);
1646		schedule_timeout_uninterruptible(1);
1647		spin_lock(&swap_lock);
 
1648	}
1649
1650	swap_file = p->swap_file;
 
1651	p->swap_file = NULL;
1652	p->max = 0;
1653	swap_map = p->swap_map;
1654	p->swap_map = NULL;
1655	p->flags = 0;
 
 
 
1656	spin_unlock(&swap_lock);
 
 
 
1657	mutex_unlock(&swapon_mutex);
 
 
 
 
1658	vfree(swap_map);
1659	/* Destroy swap account informatin */
1660	swap_cgroup_swapoff(type);
 
 
 
1661
1662	inode = mapping->host;
1663	if (S_ISBLK(inode->i_mode)) {
1664		struct block_device *bdev = I_BDEV(inode);
1665		set_blocksize(bdev, p->old_block_size);
 
1666		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1667	} else {
1668		mutex_lock(&inode->i_mutex);
1669		inode->i_flags &= ~S_SWAPFILE;
1670		mutex_unlock(&inode->i_mutex);
1671	}
 
 
 
 
1672	filp_close(swap_file, NULL);
 
 
 
 
 
 
 
 
 
 
1673	err = 0;
1674	atomic_inc(&proc_poll_event);
1675	wake_up_interruptible(&proc_poll_wait);
1676
1677out_dput:
1678	filp_close(victim, NULL);
1679out:
 
1680	return err;
1681}
1682
1683#ifdef CONFIG_PROC_FS
1684static unsigned swaps_poll(struct file *file, poll_table *wait)
1685{
1686	struct seq_file *seq = file->private_data;
1687
1688	poll_wait(file, &proc_poll_wait, wait);
1689
1690	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1691		seq->poll_event = atomic_read(&proc_poll_event);
1692		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1693	}
1694
1695	return POLLIN | POLLRDNORM;
1696}
1697
1698/* iterator */
1699static void *swap_start(struct seq_file *swap, loff_t *pos)
1700{
1701	struct swap_info_struct *si;
1702	int type;
1703	loff_t l = *pos;
1704
1705	mutex_lock(&swapon_mutex);
1706
1707	if (!l)
1708		return SEQ_START_TOKEN;
1709
1710	for (type = 0; type < nr_swapfiles; type++) {
1711		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1712		si = swap_info[type];
1713		if (!(si->flags & SWP_USED) || !si->swap_map)
1714			continue;
1715		if (!--l)
1716			return si;
1717	}
1718
1719	return NULL;
1720}
1721
1722static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1723{
1724	struct swap_info_struct *si = v;
1725	int type;
1726
1727	if (v == SEQ_START_TOKEN)
1728		type = 0;
1729	else
1730		type = si->type + 1;
1731
1732	for (; type < nr_swapfiles; type++) {
1733		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1734		si = swap_info[type];
1735		if (!(si->flags & SWP_USED) || !si->swap_map)
1736			continue;
1737		++*pos;
1738		return si;
1739	}
1740
1741	return NULL;
1742}
1743
1744static void swap_stop(struct seq_file *swap, void *v)
1745{
1746	mutex_unlock(&swapon_mutex);
1747}
1748
1749static int swap_show(struct seq_file *swap, void *v)
1750{
1751	struct swap_info_struct *si = v;
1752	struct file *file;
1753	int len;
 
1754
1755	if (si == SEQ_START_TOKEN) {
1756		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1757		return 0;
1758	}
1759
 
 
 
1760	file = si->swap_file;
1761	len = seq_path(swap, &file->f_path, " \t\n\\");
1762	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1763			len < 40 ? 40 - len : 1, " ",
1764			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1765				"partition" : "file\t",
1766			si->pages << (PAGE_SHIFT - 10),
1767			si->inuse_pages << (PAGE_SHIFT - 10),
1768			si->prio);
1769	return 0;
1770}
1771
1772static const struct seq_operations swaps_op = {
1773	.start =	swap_start,
1774	.next =		swap_next,
1775	.stop =		swap_stop,
1776	.show =		swap_show
1777};
1778
1779static int swaps_open(struct inode *inode, struct file *file)
1780{
1781	struct seq_file *seq;
1782	int ret;
1783
1784	ret = seq_open(file, &swaps_op);
1785	if (ret)
1786		return ret;
1787
1788	seq = file->private_data;
1789	seq->poll_event = atomic_read(&proc_poll_event);
1790	return 0;
1791}
1792
1793static const struct file_operations proc_swaps_operations = {
1794	.open		= swaps_open,
1795	.read		= seq_read,
1796	.llseek		= seq_lseek,
1797	.release	= seq_release,
1798	.poll		= swaps_poll,
 
1799};
1800
1801static int __init procswaps_init(void)
1802{
1803	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1804	return 0;
1805}
1806__initcall(procswaps_init);
1807#endif /* CONFIG_PROC_FS */
1808
1809#ifdef MAX_SWAPFILES_CHECK
1810static int __init max_swapfiles_check(void)
1811{
1812	MAX_SWAPFILES_CHECK();
1813	return 0;
1814}
1815late_initcall(max_swapfiles_check);
1816#endif
1817
1818static struct swap_info_struct *alloc_swap_info(void)
1819{
1820	struct swap_info_struct *p;
 
1821	unsigned int type;
 
1822
1823	p = kzalloc(sizeof(*p), GFP_KERNEL);
1824	if (!p)
1825		return ERR_PTR(-ENOMEM);
1826
 
 
 
 
 
 
1827	spin_lock(&swap_lock);
1828	for (type = 0; type < nr_swapfiles; type++) {
1829		if (!(swap_info[type]->flags & SWP_USED))
1830			break;
1831	}
1832	if (type >= MAX_SWAPFILES) {
1833		spin_unlock(&swap_lock);
1834		kfree(p);
 
1835		return ERR_PTR(-EPERM);
1836	}
1837	if (type >= nr_swapfiles) {
1838		p->type = type;
1839		swap_info[type] = p;
1840		/*
1841		 * Write swap_info[type] before nr_swapfiles, in case a
1842		 * racing procfs swap_start() or swap_next() is reading them.
1843		 * (We never shrink nr_swapfiles, we never free this entry.)
1844		 */
1845		smp_wmb();
1846		nr_swapfiles++;
1847	} else {
1848		kfree(p);
1849		p = swap_info[type];
1850		/*
1851		 * Do not memset this entry: a racing procfs swap_next()
1852		 * would be relying on p->type to remain valid.
1853		 */
1854	}
1855	INIT_LIST_HEAD(&p->first_swap_extent.list);
 
 
 
1856	p->flags = SWP_USED;
1857	p->next = -1;
1858	spin_unlock(&swap_lock);
 
 
 
 
 
 
 
1859
1860	return p;
1861}
1862
1863static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1864{
1865	int error;
1866
1867	if (S_ISBLK(inode->i_mode)) {
1868		p->bdev = bdgrab(I_BDEV(inode));
1869		error = blkdev_get(p->bdev,
1870				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1871				   sys_swapon);
1872		if (error < 0) {
1873			p->bdev = NULL;
1874			return -EINVAL;
1875		}
1876		p->old_block_size = block_size(p->bdev);
1877		error = set_blocksize(p->bdev, PAGE_SIZE);
1878		if (error < 0)
1879			return error;
 
 
 
 
 
 
 
1880		p->flags |= SWP_BLKDEV;
1881	} else if (S_ISREG(inode->i_mode)) {
1882		p->bdev = inode->i_sb->s_bdev;
1883		mutex_lock(&inode->i_mutex);
1884		if (IS_SWAPFILE(inode))
1885			return -EBUSY;
1886	} else
1887		return -EINVAL;
1888
1889	return 0;
1890}
1891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892static unsigned long read_swap_header(struct swap_info_struct *p,
1893					union swap_header *swap_header,
1894					struct inode *inode)
1895{
1896	int i;
1897	unsigned long maxpages;
1898	unsigned long swapfilepages;
 
1899
1900	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1901		printk(KERN_ERR "Unable to find swap-space signature\n");
1902		return 0;
1903	}
1904
1905	/* swap partition endianess hack... */
1906	if (swab32(swap_header->info.version) == 1) {
1907		swab32s(&swap_header->info.version);
1908		swab32s(&swap_header->info.last_page);
1909		swab32s(&swap_header->info.nr_badpages);
 
 
1910		for (i = 0; i < swap_header->info.nr_badpages; i++)
1911			swab32s(&swap_header->info.badpages[i]);
1912	}
1913	/* Check the swap header's sub-version */
1914	if (swap_header->info.version != 1) {
1915		printk(KERN_WARNING
1916		       "Unable to handle swap header version %d\n",
1917		       swap_header->info.version);
1918		return 0;
1919	}
1920
1921	p->lowest_bit  = 1;
1922	p->cluster_next = 1;
1923	p->cluster_nr = 0;
1924
1925	/*
1926	 * Find out how many pages are allowed for a single swap
1927	 * device. There are three limiting factors: 1) the number
1928	 * of bits for the swap offset in the swp_entry_t type, and
1929	 * 2) the number of bits in the swap pte as defined by the
1930	 * the different architectures, and 3) the number of free bits
1931	 * in an exceptional radix_tree entry. In order to find the
1932	 * largest possible bit mask, a swap entry with swap type 0
1933	 * and swap offset ~0UL is created, encoded to a swap pte,
1934	 * decoded to a swp_entry_t again, and finally the swap
1935	 * offset is extracted. This will mask all the bits from
1936	 * the initial ~0UL mask that can't be encoded in either
1937	 * the swp_entry_t or the architecture definition of a
1938	 * swap pte.  Then the same is done for a radix_tree entry.
1939	 */
1940	maxpages = swp_offset(pte_to_swp_entry(
1941			swp_entry_to_pte(swp_entry(0, ~0UL))));
1942	maxpages = swp_offset(radix_to_swp_entry(
1943			swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1944
1945	if (maxpages > swap_header->info.last_page) {
1946		maxpages = swap_header->info.last_page + 1;
1947		/* p->max is an unsigned int: don't overflow it */
1948		if ((unsigned int)maxpages == 0)
1949			maxpages = UINT_MAX;
1950	}
1951	p->highest_bit = maxpages - 1;
1952
1953	if (!maxpages)
1954		return 0;
1955	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1956	if (swapfilepages && maxpages > swapfilepages) {
1957		printk(KERN_WARNING
1958		       "Swap area shorter than signature indicates\n");
1959		return 0;
1960	}
1961	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1962		return 0;
1963	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1964		return 0;
1965
1966	return maxpages;
1967}
1968
 
 
 
 
 
 
 
1969static int setup_swap_map_and_extents(struct swap_info_struct *p,
1970					union swap_header *swap_header,
1971					unsigned char *swap_map,
 
1972					unsigned long maxpages,
1973					sector_t *span)
1974{
1975	int i;
1976	unsigned int nr_good_pages;
1977	int nr_extents;
 
 
 
1978
1979	nr_good_pages = maxpages - 1;	/* omit header page */
1980
 
 
 
1981	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1982		unsigned int page_nr = swap_header->info.badpages[i];
1983		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1984			return -EINVAL;
1985		if (page_nr < maxpages) {
1986			swap_map[page_nr] = SWAP_MAP_BAD;
1987			nr_good_pages--;
 
 
 
 
 
1988		}
1989	}
1990
 
 
 
 
1991	if (nr_good_pages) {
1992		swap_map[0] = SWAP_MAP_BAD;
 
 
 
 
 
1993		p->max = maxpages;
1994		p->pages = nr_good_pages;
1995		nr_extents = setup_swap_extents(p, span);
1996		if (nr_extents < 0)
1997			return nr_extents;
1998		nr_good_pages = p->pages;
1999	}
2000	if (!nr_good_pages) {
2001		printk(KERN_WARNING "Empty swap-file\n");
2002		return -EINVAL;
2003	}
2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005	return nr_extents;
2006}
2007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2009{
2010	struct swap_info_struct *p;
2011	char *name;
2012	struct file *swap_file = NULL;
2013	struct address_space *mapping;
2014	int i;
2015	int prio;
2016	int error;
2017	union swap_header *swap_header;
2018	int nr_extents;
2019	sector_t span;
2020	unsigned long maxpages;
2021	unsigned char *swap_map = NULL;
 
 
2022	struct page *page = NULL;
2023	struct inode *inode = NULL;
 
 
 
 
2024
2025	if (!capable(CAP_SYS_ADMIN))
2026		return -EPERM;
2027
 
 
 
2028	p = alloc_swap_info();
2029	if (IS_ERR(p))
2030		return PTR_ERR(p);
2031
 
 
2032	name = getname(specialfile);
2033	if (IS_ERR(name)) {
2034		error = PTR_ERR(name);
2035		name = NULL;
2036		goto bad_swap;
2037	}
2038	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2039	if (IS_ERR(swap_file)) {
2040		error = PTR_ERR(swap_file);
2041		swap_file = NULL;
2042		goto bad_swap;
2043	}
2044
2045	p->swap_file = swap_file;
2046	mapping = swap_file->f_mapping;
2047
2048	for (i = 0; i < nr_swapfiles; i++) {
2049		struct swap_info_struct *q = swap_info[i];
2050
2051		if (q == p || !q->swap_file)
2052			continue;
2053		if (mapping == q->swap_file->f_mapping) {
2054			error = -EBUSY;
2055			goto bad_swap;
2056		}
2057	}
2058
2059	inode = mapping->host;
2060	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2061	error = claim_swapfile(p, inode);
2062	if (unlikely(error))
2063		goto bad_swap;
2064
 
 
 
 
 
 
2065	/*
2066	 * Read the swap header.
2067	 */
2068	if (!mapping->a_ops->readpage) {
2069		error = -EINVAL;
2070		goto bad_swap;
2071	}
2072	page = read_mapping_page(mapping, 0, swap_file);
2073	if (IS_ERR(page)) {
2074		error = PTR_ERR(page);
2075		goto bad_swap;
2076	}
2077	swap_header = kmap(page);
2078
2079	maxpages = read_swap_header(p, swap_header, inode);
2080	if (unlikely(!maxpages)) {
2081		error = -EINVAL;
2082		goto bad_swap;
2083	}
2084
2085	/* OK, set up the swap map and apply the bad block list */
2086	swap_map = vzalloc(maxpages);
2087	if (!swap_map) {
2088		error = -ENOMEM;
2089		goto bad_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090	}
2091
2092	error = swap_cgroup_swapon(p->type, maxpages);
2093	if (error)
2094		goto bad_swap;
2095
2096	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2097		maxpages, &span);
2098	if (unlikely(nr_extents < 0)) {
2099		error = nr_extents;
2100		goto bad_swap;
2101	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102
2103	if (p->bdev) {
2104		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2105			p->flags |= SWP_SOLIDSTATE;
2106			p->cluster_next = 1 + (random32() % p->highest_bit);
 
 
2107		}
2108		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2109			p->flags |= SWP_DISCARDABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
2110	}
2111
2112	mutex_lock(&swapon_mutex);
2113	prio = -1;
2114	if (swap_flags & SWAP_FLAG_PREFER)
2115		prio =
2116		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2117	enable_swap_info(p, prio, swap_map);
2118
2119	printk(KERN_INFO "Adding %uk swap on %s.  "
2120			"Priority:%d extents:%d across:%lluk %s%s\n",
2121		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2122		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2123		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2124		(p->flags & SWP_DISCARDABLE) ? "D" : "");
 
 
 
2125
2126	mutex_unlock(&swapon_mutex);
2127	atomic_inc(&proc_poll_event);
2128	wake_up_interruptible(&proc_poll_wait);
2129
2130	if (S_ISREG(inode->i_mode))
2131		inode->i_flags |= S_SWAPFILE;
2132	error = 0;
2133	goto out;
 
 
 
 
2134bad_swap:
 
 
 
 
2135	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2136		set_blocksize(p->bdev, p->old_block_size);
2137		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2138	}
 
2139	destroy_swap_extents(p);
2140	swap_cgroup_swapoff(p->type);
2141	spin_lock(&swap_lock);
2142	p->swap_file = NULL;
2143	p->flags = 0;
2144	spin_unlock(&swap_lock);
2145	vfree(swap_map);
2146	if (swap_file) {
2147		if (inode && S_ISREG(inode->i_mode)) {
2148			mutex_unlock(&inode->i_mutex);
2149			inode = NULL;
2150		}
2151		filp_close(swap_file, NULL);
2152	}
2153out:
2154	if (page && !IS_ERR(page)) {
2155		kunmap(page);
2156		page_cache_release(page);
2157	}
2158	if (name)
2159		putname(name);
2160	if (inode && S_ISREG(inode->i_mode))
2161		mutex_unlock(&inode->i_mutex);
 
 
2162	return error;
2163}
2164
2165void si_swapinfo(struct sysinfo *val)
2166{
2167	unsigned int type;
2168	unsigned long nr_to_be_unused = 0;
2169
2170	spin_lock(&swap_lock);
2171	for (type = 0; type < nr_swapfiles; type++) {
2172		struct swap_info_struct *si = swap_info[type];
2173
2174		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2175			nr_to_be_unused += si->inuse_pages;
2176	}
2177	val->freeswap = nr_swap_pages + nr_to_be_unused;
2178	val->totalswap = total_swap_pages + nr_to_be_unused;
2179	spin_unlock(&swap_lock);
2180}
2181
2182/*
2183 * Verify that a swap entry is valid and increment its swap map count.
2184 *
2185 * Returns error code in following case.
2186 * - success -> 0
2187 * - swp_entry is invalid -> EINVAL
2188 * - swp_entry is migration entry -> EINVAL
2189 * - swap-cache reference is requested but there is already one. -> EEXIST
2190 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2191 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2192 */
2193static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2194{
2195	struct swap_info_struct *p;
2196	unsigned long offset, type;
 
2197	unsigned char count;
2198	unsigned char has_cache;
2199	int err = -EINVAL;
2200
2201	if (non_swap_entry(entry))
2202		goto out;
 
2203
2204	type = swp_type(entry);
2205	if (type >= nr_swapfiles)
2206		goto bad_file;
2207	p = swap_info[type];
2208	offset = swp_offset(entry);
 
2209
2210	spin_lock(&swap_lock);
2211	if (unlikely(offset >= p->max))
 
 
 
 
 
 
2212		goto unlock_out;
 
2213
2214	count = p->swap_map[offset];
2215	has_cache = count & SWAP_HAS_CACHE;
2216	count &= ~SWAP_HAS_CACHE;
2217	err = 0;
2218
2219	if (usage == SWAP_HAS_CACHE) {
2220
2221		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2222		if (!has_cache && count)
2223			has_cache = SWAP_HAS_CACHE;
2224		else if (has_cache)		/* someone else added cache */
2225			err = -EEXIST;
2226		else				/* no users remaining */
2227			err = -ENOENT;
2228
2229	} else if (count || has_cache) {
2230
2231		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2232			count += usage;
2233		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2234			err = -EINVAL;
2235		else if (swap_count_continued(p, offset, count))
2236			count = COUNT_CONTINUED;
2237		else
2238			err = -ENOMEM;
2239	} else
2240		err = -ENOENT;			/* unused swap entry */
2241
2242	p->swap_map[offset] = count | has_cache;
2243
2244unlock_out:
2245	spin_unlock(&swap_lock);
2246out:
 
2247	return err;
2248
2249bad_file:
2250	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2251	goto out;
2252}
2253
2254/*
2255 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2256 * (in which case its reference count is never incremented).
2257 */
2258void swap_shmem_alloc(swp_entry_t entry)
2259{
2260	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2261}
2262
2263/*
2264 * Increase reference count of swap entry by 1.
2265 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2266 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2267 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2268 * might occur if a page table entry has got corrupted.
2269 */
2270int swap_duplicate(swp_entry_t entry)
2271{
2272	int err = 0;
2273
2274	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2275		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2276	return err;
2277}
2278
2279/*
2280 * @entry: swap entry for which we allocate swap cache.
2281 *
2282 * Called when allocating swap cache for existing swap entry,
2283 * This can return error codes. Returns 0 at success.
2284 * -EBUSY means there is a swap cache.
2285 * Note: return code is different from swap_duplicate().
2286 */
2287int swapcache_prepare(swp_entry_t entry)
2288{
2289	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2290}
2291
2292/*
2293 * swap_lock prevents swap_map being freed. Don't grab an extra
2294 * reference on the swaphandle, it doesn't matter if it becomes unused.
2295 */
2296int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2297{
2298	struct swap_info_struct *si;
2299	int our_page_cluster = page_cluster;
2300	pgoff_t target, toff;
2301	pgoff_t base, end;
2302	int nr_pages = 0;
2303
2304	if (!our_page_cluster)	/* no readahead */
2305		return 0;
2306
2307	si = swap_info[swp_type(entry)];
2308	target = swp_offset(entry);
2309	base = (target >> our_page_cluster) << our_page_cluster;
2310	end = base + (1 << our_page_cluster);
2311	if (!base)		/* first page is swap header */
2312		base++;
2313
2314	spin_lock(&swap_lock);
2315	if (end > si->max)	/* don't go beyond end of map */
2316		end = si->max;
 
 
2317
2318	/* Count contiguous allocated slots above our target */
2319	for (toff = target; ++toff < end; nr_pages++) {
2320		/* Don't read in free or bad pages */
2321		if (!si->swap_map[toff])
2322			break;
2323		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2324			break;
2325	}
2326	/* Count contiguous allocated slots below our target */
2327	for (toff = target; --toff >= base; nr_pages++) {
2328		/* Don't read in free or bad pages */
2329		if (!si->swap_map[toff])
2330			break;
2331		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2332			break;
2333	}
2334	spin_unlock(&swap_lock);
2335
2336	/*
2337	 * Indicate starting offset, and return number of pages to get:
2338	 * if only 1, say 0, since there's then no readahead to be done.
2339	 */
2340	*offset = ++toff;
2341	return nr_pages? ++nr_pages: 0;
2342}
 
2343
2344/*
2345 * add_swap_count_continuation - called when a swap count is duplicated
2346 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2347 * page of the original vmalloc'ed swap_map, to hold the continuation count
2348 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2349 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2350 *
2351 * These continuation pages are seldom referenced: the common paths all work
2352 * on the original swap_map, only referring to a continuation page when the
2353 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2354 *
2355 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2356 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2357 * can be called after dropping locks.
2358 */
2359int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2360{
2361	struct swap_info_struct *si;
 
2362	struct page *head;
2363	struct page *page;
2364	struct page *list_page;
2365	pgoff_t offset;
2366	unsigned char count;
 
2367
2368	/*
2369	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2370	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2371	 */
2372	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2373
2374	si = swap_info_get(entry);
2375	if (!si) {
2376		/*
2377		 * An acceptable race has occurred since the failing
2378		 * __swap_duplicate(): the swap entry has been freed,
2379		 * perhaps even the whole swap_map cleared for swapoff.
2380		 */
2381		goto outer;
2382	}
 
2383
2384	offset = swp_offset(entry);
2385	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
 
 
 
2386
2387	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2388		/*
2389		 * The higher the swap count, the more likely it is that tasks
2390		 * will race to add swap count continuation: we need to avoid
2391		 * over-provisioning.
2392		 */
2393		goto out;
2394	}
2395
2396	if (!page) {
2397		spin_unlock(&swap_lock);
2398		return -ENOMEM;
2399	}
2400
2401	/*
2402	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2403	 * no architecture is using highmem pages for kernel pagetables: so it
2404	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2405	 */
2406	head = vmalloc_to_page(si->swap_map + offset);
2407	offset &= ~PAGE_MASK;
2408
 
2409	/*
2410	 * Page allocation does not initialize the page's lru field,
2411	 * but it does always reset its private field.
2412	 */
2413	if (!page_private(head)) {
2414		BUG_ON(count & COUNT_CONTINUED);
2415		INIT_LIST_HEAD(&head->lru);
2416		set_page_private(head, SWP_CONTINUED);
2417		si->flags |= SWP_CONTINUED;
2418	}
2419
2420	list_for_each_entry(list_page, &head->lru, lru) {
2421		unsigned char *map;
2422
2423		/*
2424		 * If the previous map said no continuation, but we've found
2425		 * a continuation page, free our allocation and use this one.
2426		 */
2427		if (!(count & COUNT_CONTINUED))
2428			goto out;
2429
2430		map = kmap_atomic(list_page, KM_USER0) + offset;
2431		count = *map;
2432		kunmap_atomic(map, KM_USER0);
2433
2434		/*
2435		 * If this continuation count now has some space in it,
2436		 * free our allocation and use this one.
2437		 */
2438		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2439			goto out;
2440	}
2441
2442	list_add_tail(&page->lru, &head->lru);
2443	page = NULL;			/* now it's attached, don't free it */
 
 
2444out:
2445	spin_unlock(&swap_lock);
 
 
2446outer:
2447	if (page)
2448		__free_page(page);
2449	return 0;
2450}
2451
2452/*
2453 * swap_count_continued - when the original swap_map count is incremented
2454 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2455 * into, carry if so, or else fail until a new continuation page is allocated;
2456 * when the original swap_map count is decremented from 0 with continuation,
2457 * borrow from the continuation and report whether it still holds more.
2458 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 
2459 */
2460static bool swap_count_continued(struct swap_info_struct *si,
2461				 pgoff_t offset, unsigned char count)
2462{
2463	struct page *head;
2464	struct page *page;
2465	unsigned char *map;
 
2466
2467	head = vmalloc_to_page(si->swap_map + offset);
2468	if (page_private(head) != SWP_CONTINUED) {
2469		BUG_ON(count & COUNT_CONTINUED);
2470		return false;		/* need to add count continuation */
2471	}
2472
 
2473	offset &= ~PAGE_MASK;
2474	page = list_entry(head->lru.next, struct page, lru);
2475	map = kmap_atomic(page, KM_USER0) + offset;
2476
2477	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2478		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2479
2480	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2481		/*
2482		 * Think of how you add 1 to 999
2483		 */
2484		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2485			kunmap_atomic(map, KM_USER0);
2486			page = list_entry(page->lru.next, struct page, lru);
2487			BUG_ON(page == head);
2488			map = kmap_atomic(page, KM_USER0) + offset;
2489		}
2490		if (*map == SWAP_CONT_MAX) {
2491			kunmap_atomic(map, KM_USER0);
2492			page = list_entry(page->lru.next, struct page, lru);
2493			if (page == head)
2494				return false;	/* add count continuation */
2495			map = kmap_atomic(page, KM_USER0) + offset;
 
 
2496init_map:		*map = 0;		/* we didn't zero the page */
2497		}
2498		*map += 1;
2499		kunmap_atomic(map, KM_USER0);
2500		page = list_entry(page->lru.prev, struct page, lru);
2501		while (page != head) {
2502			map = kmap_atomic(page, KM_USER0) + offset;
2503			*map = COUNT_CONTINUED;
2504			kunmap_atomic(map, KM_USER0);
2505			page = list_entry(page->lru.prev, struct page, lru);
2506		}
2507		return true;			/* incremented */
2508
2509	} else {				/* decrementing */
2510		/*
2511		 * Think of how you subtract 1 from 1000
2512		 */
2513		BUG_ON(count != COUNT_CONTINUED);
2514		while (*map == COUNT_CONTINUED) {
2515			kunmap_atomic(map, KM_USER0);
2516			page = list_entry(page->lru.next, struct page, lru);
2517			BUG_ON(page == head);
2518			map = kmap_atomic(page, KM_USER0) + offset;
2519		}
2520		BUG_ON(*map == 0);
2521		*map -= 1;
2522		if (*map == 0)
2523			count = 0;
2524		kunmap_atomic(map, KM_USER0);
2525		page = list_entry(page->lru.prev, struct page, lru);
2526		while (page != head) {
2527			map = kmap_atomic(page, KM_USER0) + offset;
2528			*map = SWAP_CONT_MAX | count;
2529			count = COUNT_CONTINUED;
2530			kunmap_atomic(map, KM_USER0);
2531			page = list_entry(page->lru.prev, struct page, lru);
2532		}
2533		return count == COUNT_CONTINUED;
2534	}
 
 
 
2535}
2536
2537/*
2538 * free_swap_count_continuations - swapoff free all the continuation pages
2539 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2540 */
2541static void free_swap_count_continuations(struct swap_info_struct *si)
2542{
2543	pgoff_t offset;
2544
2545	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2546		struct page *head;
2547		head = vmalloc_to_page(si->swap_map + offset);
2548		if (page_private(head)) {
2549			struct list_head *this, *next;
2550			list_for_each_safe(this, next, &head->lru) {
2551				struct page *page;
2552				page = list_entry(this, struct page, lru);
2553				list_del(this);
2554				__free_page(page);
2555			}
2556		}
2557	}
2558}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/mm.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/hugetlb.h>
  13#include <linux/mman.h>
  14#include <linux/slab.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/swap.h>
  17#include <linux/vmalloc.h>
  18#include <linux/pagemap.h>
  19#include <linux/namei.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/blkdev.h>
  22#include <linux/random.h>
  23#include <linux/writeback.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/init.h>
 
  27#include <linux/ksm.h>
  28#include <linux/rmap.h>
  29#include <linux/security.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mutex.h>
  32#include <linux/capability.h>
  33#include <linux/syscalls.h>
  34#include <linux/memcontrol.h>
  35#include <linux/poll.h>
  36#include <linux/oom.h>
  37#include <linux/frontswap.h>
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43
 
  44#include <asm/tlbflush.h>
  45#include <linux/swapops.h>
  46#include <linux/swap_cgroup.h>
  47
  48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  49				 unsigned char);
  50static void free_swap_count_continuations(struct swap_info_struct *);
 
  51
  52DEFINE_SPINLOCK(swap_lock);
  53static unsigned int nr_swapfiles;
  54atomic_long_t nr_swap_pages;
  55/*
  56 * Some modules use swappable objects and may try to swap them out under
  57 * memory pressure (via the shrinker). Before doing so, they may wish to
  58 * check to see if any swap space is available.
  59 */
  60EXPORT_SYMBOL_GPL(nr_swap_pages);
  61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  62long total_swap_pages;
  63static int least_priority = -1;
  64
  65static const char Bad_file[] = "Bad swap file entry ";
  66static const char Unused_file[] = "Unused swap file entry ";
  67static const char Bad_offset[] = "Bad swap offset entry ";
  68static const char Unused_offset[] = "Unused swap offset entry ";
  69
  70/*
  71 * all active swap_info_structs
  72 * protected with swap_lock, and ordered by priority.
  73 */
  74PLIST_HEAD(swap_active_head);
  75
  76/*
  77 * all available (active, not full) swap_info_structs
  78 * protected with swap_avail_lock, ordered by priority.
  79 * This is used by get_swap_page() instead of swap_active_head
  80 * because swap_active_head includes all swap_info_structs,
  81 * but get_swap_page() doesn't need to look at full ones.
  82 * This uses its own lock instead of swap_lock because when a
  83 * swap_info_struct changes between not-full/full, it needs to
  84 * add/remove itself to/from this list, but the swap_info_struct->lock
  85 * is held and the locking order requires swap_lock to be taken
  86 * before any swap_info_struct->lock.
  87 */
  88static struct plist_head *swap_avail_heads;
  89static DEFINE_SPINLOCK(swap_avail_lock);
  90
  91struct swap_info_struct *swap_info[MAX_SWAPFILES];
  92
  93static DEFINE_MUTEX(swapon_mutex);
  94
  95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  96/* Activity counter to indicate that a swapon or swapoff has occurred */
  97static atomic_t proc_poll_event = ATOMIC_INIT(0);
  98
  99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 100
 101static struct swap_info_struct *swap_type_to_swap_info(int type)
 102{
 103	if (type >= MAX_SWAPFILES)
 104		return NULL;
 105
 106	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 107}
 108
 109static inline unsigned char swap_count(unsigned char ent)
 110{
 111	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 112}
 113
 114/* Reclaim the swap entry anyway if possible */
 115#define TTRS_ANYWAY		0x1
 116/*
 117 * Reclaim the swap entry if there are no more mappings of the
 118 * corresponding page
 119 */
 120#define TTRS_UNMAPPED		0x2
 121/* Reclaim the swap entry if swap is getting full*/
 122#define TTRS_FULL		0x4
 123
 124/* returns 1 if swap entry is freed */
 125static int __try_to_reclaim_swap(struct swap_info_struct *si,
 126				 unsigned long offset, unsigned long flags)
 127{
 128	swp_entry_t entry = swp_entry(si->type, offset);
 129	struct page *page;
 130	int ret = 0;
 131
 132	page = find_get_page(swap_address_space(entry), offset);
 133	if (!page)
 134		return 0;
 135	/*
 136	 * When this function is called from scan_swap_map_slots() and it's
 137	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
 138	 * here. We have to use trylock for avoiding deadlock. This is a special
 139	 * case and you should use try_to_free_swap() with explicit lock_page()
 140	 * in usual operations.
 141	 */
 142	if (trylock_page(page)) {
 143		if ((flags & TTRS_ANYWAY) ||
 144		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
 145		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
 146			ret = try_to_free_swap(page);
 147		unlock_page(page);
 148	}
 149	put_page(page);
 150	return ret;
 151}
 152
 153static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 154{
 155	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 156	return rb_entry(rb, struct swap_extent, rb_node);
 157}
 158
 159static inline struct swap_extent *next_se(struct swap_extent *se)
 160{
 161	struct rb_node *rb = rb_next(&se->rb_node);
 162	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 163}
 164
 165/*
 166 * swapon tell device that all the old swap contents can be discarded,
 167 * to allow the swap device to optimize its wear-levelling.
 168 */
 169static int discard_swap(struct swap_info_struct *si)
 170{
 171	struct swap_extent *se;
 172	sector_t start_block;
 173	sector_t nr_blocks;
 174	int err = 0;
 175
 176	/* Do not discard the swap header page! */
 177	se = first_se(si);
 178	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 179	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 180	if (nr_blocks) {
 181		err = blkdev_issue_discard(si->bdev, start_block,
 182				nr_blocks, GFP_KERNEL, 0);
 183		if (err)
 184			return err;
 185		cond_resched();
 186	}
 187
 188	for (se = next_se(se); se; se = next_se(se)) {
 189		start_block = se->start_block << (PAGE_SHIFT - 9);
 190		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 191
 192		err = blkdev_issue_discard(si->bdev, start_block,
 193				nr_blocks, GFP_KERNEL, 0);
 194		if (err)
 195			break;
 196
 197		cond_resched();
 198	}
 199	return err;		/* That will often be -EOPNOTSUPP */
 200}
 201
 202static struct swap_extent *
 203offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 204{
 205	struct swap_extent *se;
 206	struct rb_node *rb;
 207
 208	rb = sis->swap_extent_root.rb_node;
 209	while (rb) {
 210		se = rb_entry(rb, struct swap_extent, rb_node);
 211		if (offset < se->start_page)
 212			rb = rb->rb_left;
 213		else if (offset >= se->start_page + se->nr_pages)
 214			rb = rb->rb_right;
 215		else
 216			return se;
 217	}
 218	/* It *must* be present */
 219	BUG();
 220}
 221
 222sector_t swap_page_sector(struct page *page)
 223{
 224	struct swap_info_struct *sis = page_swap_info(page);
 225	struct swap_extent *se;
 226	sector_t sector;
 227	pgoff_t offset;
 228
 229	offset = __page_file_index(page);
 230	se = offset_to_swap_extent(sis, offset);
 231	sector = se->start_block + (offset - se->start_page);
 232	return sector << (PAGE_SHIFT - 9);
 233}
 234
 235/*
 236 * swap allocation tell device that a cluster of swap can now be discarded,
 237 * to allow the swap device to optimize its wear-levelling.
 238 */
 239static void discard_swap_cluster(struct swap_info_struct *si,
 240				 pgoff_t start_page, pgoff_t nr_pages)
 241{
 242	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 
 243
 244	while (nr_pages) {
 245		pgoff_t offset = start_page - se->start_page;
 246		sector_t start_block = se->start_block + offset;
 247		sector_t nr_blocks = se->nr_pages - offset;
 248
 249		if (nr_blocks > nr_pages)
 250			nr_blocks = nr_pages;
 251		start_page += nr_blocks;
 252		nr_pages -= nr_blocks;
 253
 254		start_block <<= PAGE_SHIFT - 9;
 255		nr_blocks <<= PAGE_SHIFT - 9;
 256		if (blkdev_issue_discard(si->bdev, start_block,
 257					nr_blocks, GFP_NOIO, 0))
 258			break;
 259
 260		se = next_se(se);
 261	}
 262}
 263
 264#ifdef CONFIG_THP_SWAP
 265#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 266
 267#define swap_entry_size(size)	(size)
 268#else
 269#define SWAPFILE_CLUSTER	256
 270
 271/*
 272 * Define swap_entry_size() as constant to let compiler to optimize
 273 * out some code if !CONFIG_THP_SWAP
 274 */
 275#define swap_entry_size(size)	1
 276#endif
 277#define LATENCY_LIMIT		256
 278
 279static inline void cluster_set_flag(struct swap_cluster_info *info,
 280	unsigned int flag)
 281{
 282	info->flags = flag;
 283}
 284
 285static inline unsigned int cluster_count(struct swap_cluster_info *info)
 286{
 287	return info->data;
 288}
 289
 290static inline void cluster_set_count(struct swap_cluster_info *info,
 291				     unsigned int c)
 292{
 293	info->data = c;
 294}
 295
 296static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 297					 unsigned int c, unsigned int f)
 298{
 299	info->flags = f;
 300	info->data = c;
 301}
 302
 303static inline unsigned int cluster_next(struct swap_cluster_info *info)
 304{
 305	return info->data;
 306}
 307
 308static inline void cluster_set_next(struct swap_cluster_info *info,
 309				    unsigned int n)
 310{
 311	info->data = n;
 312}
 313
 314static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 315					 unsigned int n, unsigned int f)
 316{
 317	info->flags = f;
 318	info->data = n;
 319}
 320
 321static inline bool cluster_is_free(struct swap_cluster_info *info)
 322{
 323	return info->flags & CLUSTER_FLAG_FREE;
 324}
 325
 326static inline bool cluster_is_null(struct swap_cluster_info *info)
 327{
 328	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 329}
 330
 331static inline void cluster_set_null(struct swap_cluster_info *info)
 332{
 333	info->flags = CLUSTER_FLAG_NEXT_NULL;
 334	info->data = 0;
 335}
 336
 337static inline bool cluster_is_huge(struct swap_cluster_info *info)
 338{
 339	if (IS_ENABLED(CONFIG_THP_SWAP))
 340		return info->flags & CLUSTER_FLAG_HUGE;
 341	return false;
 342}
 343
 344static inline void cluster_clear_huge(struct swap_cluster_info *info)
 345{
 346	info->flags &= ~CLUSTER_FLAG_HUGE;
 347}
 348
 349static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 350						     unsigned long offset)
 351{
 352	struct swap_cluster_info *ci;
 353
 354	ci = si->cluster_info;
 355	if (ci) {
 356		ci += offset / SWAPFILE_CLUSTER;
 357		spin_lock(&ci->lock);
 358	}
 359	return ci;
 360}
 361
 362static inline void unlock_cluster(struct swap_cluster_info *ci)
 363{
 364	if (ci)
 365		spin_unlock(&ci->lock);
 366}
 367
 368/*
 369 * Determine the locking method in use for this device.  Return
 370 * swap_cluster_info if SSD-style cluster-based locking is in place.
 371 */
 372static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 373		struct swap_info_struct *si, unsigned long offset)
 374{
 375	struct swap_cluster_info *ci;
 376
 377	/* Try to use fine-grained SSD-style locking if available: */
 378	ci = lock_cluster(si, offset);
 379	/* Otherwise, fall back to traditional, coarse locking: */
 380	if (!ci)
 381		spin_lock(&si->lock);
 382
 383	return ci;
 384}
 385
 386static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 387					       struct swap_cluster_info *ci)
 388{
 389	if (ci)
 390		unlock_cluster(ci);
 391	else
 392		spin_unlock(&si->lock);
 393}
 394
 395static inline bool cluster_list_empty(struct swap_cluster_list *list)
 396{
 397	return cluster_is_null(&list->head);
 398}
 399
 400static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 401{
 402	return cluster_next(&list->head);
 403}
 404
 405static void cluster_list_init(struct swap_cluster_list *list)
 406{
 407	cluster_set_null(&list->head);
 408	cluster_set_null(&list->tail);
 409}
 410
 411static void cluster_list_add_tail(struct swap_cluster_list *list,
 412				  struct swap_cluster_info *ci,
 413				  unsigned int idx)
 414{
 415	if (cluster_list_empty(list)) {
 416		cluster_set_next_flag(&list->head, idx, 0);
 417		cluster_set_next_flag(&list->tail, idx, 0);
 418	} else {
 419		struct swap_cluster_info *ci_tail;
 420		unsigned int tail = cluster_next(&list->tail);
 421
 422		/*
 423		 * Nested cluster lock, but both cluster locks are
 424		 * only acquired when we held swap_info_struct->lock
 425		 */
 426		ci_tail = ci + tail;
 427		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 428		cluster_set_next(ci_tail, idx);
 429		spin_unlock(&ci_tail->lock);
 430		cluster_set_next_flag(&list->tail, idx, 0);
 431	}
 432}
 433
 434static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 435					   struct swap_cluster_info *ci)
 436{
 437	unsigned int idx;
 438
 439	idx = cluster_next(&list->head);
 440	if (cluster_next(&list->tail) == idx) {
 441		cluster_set_null(&list->head);
 442		cluster_set_null(&list->tail);
 443	} else
 444		cluster_set_next_flag(&list->head,
 445				      cluster_next(&ci[idx]), 0);
 446
 447	return idx;
 448}
 449
 450/* Add a cluster to discard list and schedule it to do discard */
 451static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 452		unsigned int idx)
 453{
 454	/*
 455	 * If scan_swap_map_slots() can't find a free cluster, it will check
 456	 * si->swap_map directly. To make sure the discarding cluster isn't
 457	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 458	 * It will be cleared after discard
 459	 */
 460	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 461			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 462
 463	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 464
 465	schedule_work(&si->discard_work);
 466}
 467
 468static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 469{
 470	struct swap_cluster_info *ci = si->cluster_info;
 471
 472	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 473	cluster_list_add_tail(&si->free_clusters, ci, idx);
 474}
 475
 476/*
 477 * Doing discard actually. After a cluster discard is finished, the cluster
 478 * will be added to free cluster list. caller should hold si->lock.
 479*/
 480static void swap_do_scheduled_discard(struct swap_info_struct *si)
 481{
 482	struct swap_cluster_info *info, *ci;
 483	unsigned int idx;
 484
 485	info = si->cluster_info;
 486
 487	while (!cluster_list_empty(&si->discard_clusters)) {
 488		idx = cluster_list_del_first(&si->discard_clusters, info);
 489		spin_unlock(&si->lock);
 490
 491		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 492				SWAPFILE_CLUSTER);
 493
 494		spin_lock(&si->lock);
 495		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 496		__free_cluster(si, idx);
 497		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 498				0, SWAPFILE_CLUSTER);
 499		unlock_cluster(ci);
 500	}
 501}
 502
 503static void swap_discard_work(struct work_struct *work)
 504{
 505	struct swap_info_struct *si;
 506
 507	si = container_of(work, struct swap_info_struct, discard_work);
 508
 509	spin_lock(&si->lock);
 510	swap_do_scheduled_discard(si);
 511	spin_unlock(&si->lock);
 512}
 513
 514static void swap_users_ref_free(struct percpu_ref *ref)
 515{
 516	struct swap_info_struct *si;
 517
 518	si = container_of(ref, struct swap_info_struct, users);
 519	complete(&si->comp);
 520}
 521
 522static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 523{
 524	struct swap_cluster_info *ci = si->cluster_info;
 525
 526	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 527	cluster_list_del_first(&si->free_clusters, ci);
 528	cluster_set_count_flag(ci + idx, 0, 0);
 529}
 530
 531static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 532{
 533	struct swap_cluster_info *ci = si->cluster_info + idx;
 534
 535	VM_BUG_ON(cluster_count(ci) != 0);
 536	/*
 537	 * If the swap is discardable, prepare discard the cluster
 538	 * instead of free it immediately. The cluster will be freed
 539	 * after discard.
 540	 */
 541	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 542	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 543		swap_cluster_schedule_discard(si, idx);
 544		return;
 545	}
 546
 547	__free_cluster(si, idx);
 548}
 549
 550/*
 551 * The cluster corresponding to page_nr will be used. The cluster will be
 552 * removed from free cluster list and its usage counter will be increased.
 553 */
 554static void inc_cluster_info_page(struct swap_info_struct *p,
 555	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 556{
 557	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 558
 559	if (!cluster_info)
 560		return;
 561	if (cluster_is_free(&cluster_info[idx]))
 562		alloc_cluster(p, idx);
 563
 564	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 565	cluster_set_count(&cluster_info[idx],
 566		cluster_count(&cluster_info[idx]) + 1);
 567}
 568
 569/*
 570 * The cluster corresponding to page_nr decreases one usage. If the usage
 571 * counter becomes 0, which means no page in the cluster is in using, we can
 572 * optionally discard the cluster and add it to free cluster list.
 573 */
 574static void dec_cluster_info_page(struct swap_info_struct *p,
 575	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 576{
 577	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 578
 579	if (!cluster_info)
 580		return;
 581
 582	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 583	cluster_set_count(&cluster_info[idx],
 584		cluster_count(&cluster_info[idx]) - 1);
 585
 586	if (cluster_count(&cluster_info[idx]) == 0)
 587		free_cluster(p, idx);
 588}
 589
 590/*
 591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
 592 * cluster list. Avoiding such abuse to avoid list corruption.
 593 */
 594static bool
 595scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 596	unsigned long offset)
 597{
 598	struct percpu_cluster *percpu_cluster;
 599	bool conflict;
 600
 601	offset /= SWAPFILE_CLUSTER;
 602	conflict = !cluster_list_empty(&si->free_clusters) &&
 603		offset != cluster_list_first(&si->free_clusters) &&
 604		cluster_is_free(&si->cluster_info[offset]);
 605
 606	if (!conflict)
 607		return false;
 608
 609	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 610	cluster_set_null(&percpu_cluster->index);
 611	return true;
 612}
 613
 614/*
 615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 616 * might involve allocating a new cluster for current CPU too.
 617 */
 618static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 619	unsigned long *offset, unsigned long *scan_base)
 620{
 621	struct percpu_cluster *cluster;
 622	struct swap_cluster_info *ci;
 623	unsigned long tmp, max;
 624
 625new_cluster:
 626	cluster = this_cpu_ptr(si->percpu_cluster);
 627	if (cluster_is_null(&cluster->index)) {
 628		if (!cluster_list_empty(&si->free_clusters)) {
 629			cluster->index = si->free_clusters.head;
 630			cluster->next = cluster_next(&cluster->index) *
 631					SWAPFILE_CLUSTER;
 632		} else if (!cluster_list_empty(&si->discard_clusters)) {
 633			/*
 634			 * we don't have free cluster but have some clusters in
 635			 * discarding, do discard now and reclaim them, then
 636			 * reread cluster_next_cpu since we dropped si->lock
 637			 */
 638			swap_do_scheduled_discard(si);
 639			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 640			*offset = *scan_base;
 641			goto new_cluster;
 642		} else
 643			return false;
 644	}
 645
 646	/*
 647	 * Other CPUs can use our cluster if they can't find a free cluster,
 648	 * check if there is still free entry in the cluster
 649	 */
 650	tmp = cluster->next;
 651	max = min_t(unsigned long, si->max,
 652		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 653	if (tmp < max) {
 654		ci = lock_cluster(si, tmp);
 655		while (tmp < max) {
 656			if (!si->swap_map[tmp])
 657				break;
 658			tmp++;
 659		}
 660		unlock_cluster(ci);
 661	}
 662	if (tmp >= max) {
 663		cluster_set_null(&cluster->index);
 664		goto new_cluster;
 665	}
 666	cluster->next = tmp + 1;
 667	*offset = tmp;
 668	*scan_base = tmp;
 669	return true;
 670}
 671
 672static void __del_from_avail_list(struct swap_info_struct *p)
 673{
 674	int nid;
 675
 676	for_each_node(nid)
 677		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 678}
 679
 680static void del_from_avail_list(struct swap_info_struct *p)
 681{
 682	spin_lock(&swap_avail_lock);
 683	__del_from_avail_list(p);
 684	spin_unlock(&swap_avail_lock);
 685}
 686
 687static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 688			     unsigned int nr_entries)
 689{
 690	unsigned int end = offset + nr_entries - 1;
 691
 692	if (offset == si->lowest_bit)
 693		si->lowest_bit += nr_entries;
 694	if (end == si->highest_bit)
 695		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 696	si->inuse_pages += nr_entries;
 697	if (si->inuse_pages == si->pages) {
 698		si->lowest_bit = si->max;
 699		si->highest_bit = 0;
 700		del_from_avail_list(si);
 701	}
 702}
 703
 704static void add_to_avail_list(struct swap_info_struct *p)
 705{
 706	int nid;
 707
 708	spin_lock(&swap_avail_lock);
 709	for_each_node(nid) {
 710		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 711		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 712	}
 713	spin_unlock(&swap_avail_lock);
 714}
 715
 716static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 717			    unsigned int nr_entries)
 718{
 719	unsigned long begin = offset;
 720	unsigned long end = offset + nr_entries - 1;
 721	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 722
 723	if (offset < si->lowest_bit)
 724		si->lowest_bit = offset;
 725	if (end > si->highest_bit) {
 726		bool was_full = !si->highest_bit;
 727
 728		WRITE_ONCE(si->highest_bit, end);
 729		if (was_full && (si->flags & SWP_WRITEOK))
 730			add_to_avail_list(si);
 731	}
 732	atomic_long_add(nr_entries, &nr_swap_pages);
 733	si->inuse_pages -= nr_entries;
 734	if (si->flags & SWP_BLKDEV)
 735		swap_slot_free_notify =
 736			si->bdev->bd_disk->fops->swap_slot_free_notify;
 737	else
 738		swap_slot_free_notify = NULL;
 739	while (offset <= end) {
 740		arch_swap_invalidate_page(si->type, offset);
 741		frontswap_invalidate_page(si->type, offset);
 742		if (swap_slot_free_notify)
 743			swap_slot_free_notify(si->bdev, offset);
 744		offset++;
 745	}
 746	clear_shadow_from_swap_cache(si->type, begin, end);
 747}
 748
 749static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 
 750{
 751	unsigned long prev;
 752
 753	if (!(si->flags & SWP_SOLIDSTATE)) {
 754		si->cluster_next = next;
 755		return;
 756	}
 757
 758	prev = this_cpu_read(*si->cluster_next_cpu);
 759	/*
 760	 * Cross the swap address space size aligned trunk, choose
 761	 * another trunk randomly to avoid lock contention on swap
 762	 * address space if possible.
 763	 */
 764	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 765	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 766		/* No free swap slots available */
 767		if (si->highest_bit <= si->lowest_bit)
 768			return;
 769		next = si->lowest_bit +
 770			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
 771		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 772		next = max_t(unsigned int, next, si->lowest_bit);
 773	}
 774	this_cpu_write(*si->cluster_next_cpu, next);
 775}
 776
 777static int scan_swap_map_slots(struct swap_info_struct *si,
 778			       unsigned char usage, int nr,
 779			       swp_entry_t slots[])
 780{
 781	struct swap_cluster_info *ci;
 782	unsigned long offset;
 783	unsigned long scan_base;
 784	unsigned long last_in_cluster = 0;
 785	int latency_ration = LATENCY_LIMIT;
 786	int n_ret = 0;
 787	bool scanned_many = false;
 788
 789	/*
 790	 * We try to cluster swap pages by allocating them sequentially
 791	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 792	 * way, however, we resort to first-free allocation, starting
 793	 * a new cluster.  This prevents us from scattering swap pages
 794	 * all over the entire swap partition, so that we reduce
 795	 * overall disk seek times between swap pages.  -- sct
 796	 * But we do now try to find an empty cluster.  -Andrea
 797	 * And we let swap pages go all over an SSD partition.  Hugh
 798	 */
 799
 800	si->flags += SWP_SCANNING;
 801	/*
 802	 * Use percpu scan base for SSD to reduce lock contention on
 803	 * cluster and swap cache.  For HDD, sequential access is more
 804	 * important.
 805	 */
 806	if (si->flags & SWP_SOLIDSTATE)
 807		scan_base = this_cpu_read(*si->cluster_next_cpu);
 808	else
 809		scan_base = si->cluster_next;
 810	offset = scan_base;
 811
 812	/* SSD algorithm */
 813	if (si->cluster_info) {
 814		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 815			goto scan;
 816	} else if (unlikely(!si->cluster_nr--)) {
 817		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 818			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 819			goto checks;
 820		}
 821
 822		spin_unlock(&si->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 823
 824		/*
 825		 * If seek is expensive, start searching for new cluster from
 826		 * start of partition, to minimize the span of allocated swap.
 827		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 828		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 
 
 829		 */
 830		scan_base = offset = si->lowest_bit;
 
 831		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 832
 833		/* Locate the first empty (unaligned) cluster */
 834		for (; last_in_cluster <= si->highest_bit; offset++) {
 835			if (si->swap_map[offset])
 836				last_in_cluster = offset + SWAPFILE_CLUSTER;
 837			else if (offset == last_in_cluster) {
 838				spin_lock(&si->lock);
 839				offset -= SWAPFILE_CLUSTER - 1;
 840				si->cluster_next = offset;
 841				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842				goto checks;
 843			}
 844			if (unlikely(--latency_ration < 0)) {
 845				cond_resched();
 846				latency_ration = LATENCY_LIMIT;
 847			}
 848		}
 849
 850		offset = scan_base;
 851		spin_lock(&si->lock);
 852		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 
 853	}
 854
 855checks:
 856	if (si->cluster_info) {
 857		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 858		/* take a break if we already got some slots */
 859			if (n_ret)
 860				goto done;
 861			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 862							&scan_base))
 863				goto scan;
 864		}
 865	}
 866	if (!(si->flags & SWP_WRITEOK))
 867		goto no_page;
 868	if (!si->highest_bit)
 869		goto no_page;
 870	if (offset > si->highest_bit)
 871		scan_base = offset = si->lowest_bit;
 872
 873	ci = lock_cluster(si, offset);
 874	/* reuse swap entry of cache-only swap if not busy. */
 875	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 876		int swap_was_freed;
 877		unlock_cluster(ci);
 878		spin_unlock(&si->lock);
 879		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 880		spin_lock(&si->lock);
 881		/* entry was freed successfully, try to use this again */
 882		if (swap_was_freed)
 883			goto checks;
 884		goto scan; /* check next one */
 885	}
 886
 887	if (si->swap_map[offset]) {
 888		unlock_cluster(ci);
 889		if (!n_ret)
 890			goto scan;
 891		else
 892			goto done;
 893	}
 894	WRITE_ONCE(si->swap_map[offset], usage);
 895	inc_cluster_info_page(si, si->cluster_info, offset);
 896	unlock_cluster(ci);
 897
 898	swap_range_alloc(si, offset, 1);
 899	slots[n_ret++] = swp_entry(si->type, offset);
 900
 901	/* got enough slots or reach max slots? */
 902	if ((n_ret == nr) || (offset >= si->highest_bit))
 903		goto done;
 904
 905	/* search for next available slot */
 906
 907	/* time to take a break? */
 908	if (unlikely(--latency_ration < 0)) {
 909		if (n_ret)
 910			goto done;
 911		spin_unlock(&si->lock);
 912		cond_resched();
 913		spin_lock(&si->lock);
 914		latency_ration = LATENCY_LIMIT;
 915	}
 
 
 
 916
 917	/* try to get more slots in cluster */
 918	if (si->cluster_info) {
 919		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 920			goto checks;
 921	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 922		/* non-ssd case, still more slots in cluster? */
 923		--si->cluster_nr;
 924		goto checks;
 925	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926
 927	/*
 928	 * Even if there's no free clusters available (fragmented),
 929	 * try to scan a little more quickly with lock held unless we
 930	 * have scanned too many slots already.
 931	 */
 932	if (!scanned_many) {
 933		unsigned long scan_limit;
 934
 935		if (offset < scan_base)
 936			scan_limit = scan_base;
 937		else
 938			scan_limit = si->highest_bit;
 939		for (; offset <= scan_limit && --latency_ration > 0;
 940		     offset++) {
 941			if (!si->swap_map[offset])
 942				goto checks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 943		}
 944	}
 945
 946done:
 947	set_cluster_next(si, offset + 1);
 948	si->flags -= SWP_SCANNING;
 949	return n_ret;
 950
 951scan:
 952	spin_unlock(&si->lock);
 953	while (++offset <= READ_ONCE(si->highest_bit)) {
 954		if (data_race(!si->swap_map[offset])) {
 955			spin_lock(&si->lock);
 956			goto checks;
 957		}
 958		if (vm_swap_full() &&
 959		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 960			spin_lock(&si->lock);
 961			goto checks;
 962		}
 963		if (unlikely(--latency_ration < 0)) {
 964			cond_resched();
 965			latency_ration = LATENCY_LIMIT;
 966			scanned_many = true;
 967		}
 968	}
 969	offset = si->lowest_bit;
 970	while (offset < scan_base) {
 971		if (data_race(!si->swap_map[offset])) {
 972			spin_lock(&si->lock);
 973			goto checks;
 974		}
 975		if (vm_swap_full() &&
 976		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 977			spin_lock(&si->lock);
 978			goto checks;
 979		}
 980		if (unlikely(--latency_ration < 0)) {
 981			cond_resched();
 982			latency_ration = LATENCY_LIMIT;
 983			scanned_many = true;
 984		}
 985		offset++;
 986	}
 987	spin_lock(&si->lock);
 988
 989no_page:
 990	si->flags -= SWP_SCANNING;
 991	return n_ret;
 992}
 993
 994static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 995{
 996	unsigned long idx;
 997	struct swap_cluster_info *ci;
 998	unsigned long offset;
 
 999
1000	/*
1001	 * Should not even be attempting cluster allocations when huge
1002	 * page swap is disabled.  Warn and fail the allocation.
1003	 */
1004	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005		VM_WARN_ON_ONCE(1);
1006		return 0;
1007	}
1008
1009	if (cluster_list_empty(&si->free_clusters))
1010		return 0;
 
 
 
 
 
 
1011
1012	idx = cluster_list_first(&si->free_clusters);
1013	offset = idx * SWAPFILE_CLUSTER;
1014	ci = lock_cluster(si, offset);
1015	alloc_cluster(si, idx);
1016	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017
1018	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019	unlock_cluster(ci);
1020	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021	*slot = swp_entry(si->type, offset);
1022
1023	return 1;
1024}
 
 
 
 
 
 
 
1025
1026static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027{
1028	unsigned long offset = idx * SWAPFILE_CLUSTER;
1029	struct swap_cluster_info *ci;
1030
1031	ci = lock_cluster(si, offset);
1032	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033	cluster_set_count_flag(ci, 0, 0);
1034	free_cluster(si, idx);
1035	unlock_cluster(ci);
1036	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037}
1038
1039int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
 
1040{
1041	unsigned long size = swap_entry_size(entry_size);
1042	struct swap_info_struct *si, *next;
1043	long avail_pgs;
1044	int n_ret = 0;
1045	int node;
1046
1047	/* Only single cluster request supported */
1048	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049
1050	spin_lock(&swap_avail_lock);
1051
1052	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053	if (avail_pgs <= 0) {
1054		spin_unlock(&swap_avail_lock);
1055		goto noswap;
 
 
1056	}
1057
1058	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059
1060	atomic_long_sub(n_goal * size, &nr_swap_pages);
1061
1062start_over:
1063	node = numa_node_id();
1064	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065		/* requeue si to after same-priority siblings */
1066		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067		spin_unlock(&swap_avail_lock);
1068		spin_lock(&si->lock);
1069		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070			spin_lock(&swap_avail_lock);
1071			if (plist_node_empty(&si->avail_lists[node])) {
1072				spin_unlock(&si->lock);
1073				goto nextsi;
1074			}
1075			WARN(!si->highest_bit,
1076			     "swap_info %d in list but !highest_bit\n",
1077			     si->type);
1078			WARN(!(si->flags & SWP_WRITEOK),
1079			     "swap_info %d in list but !SWP_WRITEOK\n",
1080			     si->type);
1081			__del_from_avail_list(si);
1082			spin_unlock(&si->lock);
1083			goto nextsi;
1084		}
1085		if (size == SWAPFILE_CLUSTER) {
1086			if (si->flags & SWP_BLKDEV)
1087				n_ret = swap_alloc_cluster(si, swp_entries);
1088		} else
1089			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090						    n_goal, swp_entries);
1091		spin_unlock(&si->lock);
1092		if (n_ret || size == SWAPFILE_CLUSTER)
1093			goto check_out;
1094		pr_debug("scan_swap_map of si %d failed to find offset\n",
1095			si->type);
1096
1097		spin_lock(&swap_avail_lock);
1098nextsi:
1099		/*
1100		 * if we got here, it's likely that si was almost full before,
1101		 * and since scan_swap_map_slots() can drop the si->lock,
1102		 * multiple callers probably all tried to get a page from the
1103		 * same si and it filled up before we could get one; or, the si
1104		 * filled up between us dropping swap_avail_lock and taking
1105		 * si->lock. Since we dropped the swap_avail_lock, the
1106		 * swap_avail_head list may have been modified; so if next is
1107		 * still in the swap_avail_head list then try it, otherwise
1108		 * start over if we have not gotten any slots.
1109		 */
1110		if (plist_node_empty(&next->avail_lists[node]))
1111			goto start_over;
1112	}
1113
1114	spin_unlock(&swap_avail_lock);
1115
1116check_out:
1117	if (n_ret < n_goal)
1118		atomic_long_add((long)(n_goal - n_ret) * size,
1119				&nr_swap_pages);
1120noswap:
1121	return n_ret;
1122}
1123
1124static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125{
1126	struct swap_info_struct *p;
1127	unsigned long offset;
1128
1129	if (!entry.val)
1130		goto out;
1131	p = swp_swap_info(entry);
1132	if (!p)
1133		goto bad_nofile;
1134	if (data_race(!(p->flags & SWP_USED)))
 
1135		goto bad_device;
1136	offset = swp_offset(entry);
1137	if (offset >= p->max)
1138		goto bad_offset;
 
 
 
1139	return p;
1140
 
 
 
1141bad_offset:
1142	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143	goto out;
1144bad_device:
1145	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146	goto out;
1147bad_nofile:
1148	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149out:
1150	return NULL;
1151}
1152
1153static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154{
1155	struct swap_info_struct *p;
1156
1157	p = __swap_info_get(entry);
1158	if (!p)
1159		goto out;
1160	if (data_race(!p->swap_map[swp_offset(entry)]))
1161		goto bad_free;
1162	return p;
1163
1164bad_free:
1165	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166out:
1167	return NULL;
1168}
1169
1170static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171{
1172	struct swap_info_struct *p;
1173
1174	p = _swap_info_get(entry);
1175	if (p)
1176		spin_lock(&p->lock);
1177	return p;
1178}
1179
1180static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181					struct swap_info_struct *q)
1182{
1183	struct swap_info_struct *p;
1184
1185	p = _swap_info_get(entry);
1186
1187	if (p != q) {
1188		if (q != NULL)
1189			spin_unlock(&q->lock);
1190		if (p != NULL)
1191			spin_lock(&p->lock);
1192	}
1193	return p;
1194}
1195
1196static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197					      unsigned long offset,
1198					      unsigned char usage)
1199{
 
1200	unsigned char count;
1201	unsigned char has_cache;
1202
1203	count = p->swap_map[offset];
1204
1205	has_cache = count & SWAP_HAS_CACHE;
1206	count &= ~SWAP_HAS_CACHE;
1207
1208	if (usage == SWAP_HAS_CACHE) {
1209		VM_BUG_ON(!has_cache);
1210		has_cache = 0;
1211	} else if (count == SWAP_MAP_SHMEM) {
1212		/*
1213		 * Or we could insist on shmem.c using a special
1214		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1215		 */
1216		count = 0;
1217	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218		if (count == COUNT_CONTINUED) {
1219			if (swap_count_continued(p, offset, count))
1220				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221			else
1222				count = SWAP_MAP_MAX;
1223		} else
1224			count--;
1225	}
1226
 
 
 
1227	usage = count | has_cache;
1228	if (usage)
1229		WRITE_ONCE(p->swap_map[offset], usage);
1230	else
1231		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232
1233	return usage;
1234}
1235
1236/*
1237 * Check whether swap entry is valid in the swap device.  If so,
1238 * return pointer to swap_info_struct, and keep the swap entry valid
1239 * via preventing the swap device from being swapoff, until
1240 * put_swap_device() is called.  Otherwise return NULL.
1241 *
1242 * Notice that swapoff or swapoff+swapon can still happen before the
1243 * percpu_ref_tryget_live() in get_swap_device() or after the
1244 * percpu_ref_put() in put_swap_device() if there isn't any other way
1245 * to prevent swapoff, such as page lock, page table lock, etc.  The
1246 * caller must be prepared for that.  For example, the following
1247 * situation is possible.
1248 *
1249 *   CPU1				CPU2
1250 *   do_swap_page()
1251 *     ...				swapoff+swapon
1252 *     __read_swap_cache_async()
1253 *       swapcache_prepare()
1254 *         __swap_duplicate()
1255 *           // check swap_map
1256 *     // verify PTE not changed
1257 *
1258 * In __swap_duplicate(), the swap_map need to be checked before
1259 * changing partly because the specified swap entry may be for another
1260 * swap device which has been swapoff.  And in do_swap_page(), after
1261 * the page is read from the swap device, the PTE is verified not
1262 * changed with the page table locked to check whether the swap device
1263 * has been swapoff or swapoff+swapon.
1264 */
1265struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266{
1267	struct swap_info_struct *si;
1268	unsigned long offset;
1269
1270	if (!entry.val)
1271		goto out;
1272	si = swp_swap_info(entry);
1273	if (!si)
1274		goto bad_nofile;
1275	if (!percpu_ref_tryget_live(&si->users))
1276		goto out;
1277	/*
1278	 * Guarantee the si->users are checked before accessing other
1279	 * fields of swap_info_struct.
1280	 *
1281	 * Paired with the spin_unlock() after setup_swap_info() in
1282	 * enable_swap_info().
1283	 */
1284	smp_rmb();
1285	offset = swp_offset(entry);
1286	if (offset >= si->max)
1287		goto put_out;
1288
1289	return si;
1290bad_nofile:
1291	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292out:
1293	return NULL;
1294put_out:
1295	percpu_ref_put(&si->users);
1296	return NULL;
1297}
1298
1299static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300				       swp_entry_t entry)
1301{
1302	struct swap_cluster_info *ci;
1303	unsigned long offset = swp_offset(entry);
1304	unsigned char usage;
1305
1306	ci = lock_cluster_or_swap_info(p, offset);
1307	usage = __swap_entry_free_locked(p, offset, 1);
1308	unlock_cluster_or_swap_info(p, ci);
1309	if (!usage)
1310		free_swap_slot(entry);
1311
1312	return usage;
1313}
1314
1315static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316{
1317	struct swap_cluster_info *ci;
1318	unsigned long offset = swp_offset(entry);
1319	unsigned char count;
1320
1321	ci = lock_cluster(p, offset);
1322	count = p->swap_map[offset];
1323	VM_BUG_ON(count != SWAP_HAS_CACHE);
1324	p->swap_map[offset] = 0;
1325	dec_cluster_info_page(p, p->cluster_info, offset);
1326	unlock_cluster(ci);
1327
1328	mem_cgroup_uncharge_swap(entry, 1);
1329	swap_range_free(p, offset, 1);
1330}
1331
1332/*
1333 * Caller has made sure that the swap device corresponding to entry
1334 * is still around or has not been recycled.
1335 */
1336void swap_free(swp_entry_t entry)
1337{
1338	struct swap_info_struct *p;
1339
1340	p = _swap_info_get(entry);
1341	if (p)
1342		__swap_entry_free(p, entry);
 
 
1343}
1344
1345/*
1346 * Called after dropping swapcache to decrease refcnt to swap entries.
1347 */
1348void put_swap_page(struct page *page, swp_entry_t entry)
1349{
1350	unsigned long offset = swp_offset(entry);
1351	unsigned long idx = offset / SWAPFILE_CLUSTER;
1352	struct swap_cluster_info *ci;
1353	struct swap_info_struct *si;
1354	unsigned char *map;
1355	unsigned int i, free_entries = 0;
1356	unsigned char val;
1357	int size = swap_entry_size(thp_nr_pages(page));
1358
1359	si = _swap_info_get(entry);
1360	if (!si)
1361		return;
1362
1363	ci = lock_cluster_or_swap_info(si, offset);
1364	if (size == SWAPFILE_CLUSTER) {
1365		VM_BUG_ON(!cluster_is_huge(ci));
1366		map = si->swap_map + offset;
1367		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368			val = map[i];
1369			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370			if (val == SWAP_HAS_CACHE)
1371				free_entries++;
1372		}
1373		cluster_clear_huge(ci);
1374		if (free_entries == SWAPFILE_CLUSTER) {
1375			unlock_cluster_or_swap_info(si, ci);
1376			spin_lock(&si->lock);
1377			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378			swap_free_cluster(si, idx);
1379			spin_unlock(&si->lock);
1380			return;
1381		}
1382	}
1383	for (i = 0; i < size; i++, entry.val++) {
1384		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385			unlock_cluster_or_swap_info(si, ci);
1386			free_swap_slot(entry);
1387			if (i == size - 1)
1388				return;
1389			lock_cluster_or_swap_info(si, offset);
1390		}
1391	}
1392	unlock_cluster_or_swap_info(si, ci);
1393}
1394
1395#ifdef CONFIG_THP_SWAP
1396int split_swap_cluster(swp_entry_t entry)
1397{
1398	struct swap_info_struct *si;
1399	struct swap_cluster_info *ci;
1400	unsigned long offset = swp_offset(entry);
1401
1402	si = _swap_info_get(entry);
1403	if (!si)
1404		return -EBUSY;
1405	ci = lock_cluster(si, offset);
1406	cluster_clear_huge(ci);
1407	unlock_cluster(ci);
1408	return 0;
1409}
1410#endif
1411
1412static int swp_entry_cmp(const void *ent1, const void *ent2)
1413{
1414	const swp_entry_t *e1 = ent1, *e2 = ent2;
1415
1416	return (int)swp_type(*e1) - (int)swp_type(*e2);
1417}
1418
1419void swapcache_free_entries(swp_entry_t *entries, int n)
1420{
1421	struct swap_info_struct *p, *prev;
1422	int i;
1423
1424	if (n <= 0)
1425		return;
1426
1427	prev = NULL;
1428	p = NULL;
1429
1430	/*
1431	 * Sort swap entries by swap device, so each lock is only taken once.
1432	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433	 * so low that it isn't necessary to optimize further.
1434	 */
1435	if (nr_swapfiles > 1)
1436		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437	for (i = 0; i < n; ++i) {
1438		p = swap_info_get_cont(entries[i], prev);
1439		if (p)
1440			swap_entry_free(p, entries[i]);
1441		prev = p;
1442	}
1443	if (p)
1444		spin_unlock(&p->lock);
1445}
1446
1447/*
1448 * How many references to page are currently swapped out?
1449 * This does not give an exact answer when swap count is continued,
1450 * but does include the high COUNT_CONTINUED flag to allow for that.
1451 */
1452int page_swapcount(struct page *page)
1453{
1454	int count = 0;
1455	struct swap_info_struct *p;
1456	struct swap_cluster_info *ci;
1457	swp_entry_t entry;
1458	unsigned long offset;
1459
1460	entry.val = page_private(page);
1461	p = _swap_info_get(entry);
1462	if (p) {
1463		offset = swp_offset(entry);
1464		ci = lock_cluster_or_swap_info(p, offset);
1465		count = swap_count(p->swap_map[offset]);
1466		unlock_cluster_or_swap_info(p, ci);
1467	}
1468	return count;
1469}
1470
1471int __swap_count(swp_entry_t entry)
1472{
1473	struct swap_info_struct *si;
1474	pgoff_t offset = swp_offset(entry);
1475	int count = 0;
1476
1477	si = get_swap_device(entry);
1478	if (si) {
1479		count = swap_count(si->swap_map[offset]);
1480		put_swap_device(si);
1481	}
1482	return count;
1483}
1484
1485static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486{
1487	int count = 0;
1488	pgoff_t offset = swp_offset(entry);
1489	struct swap_cluster_info *ci;
1490
1491	ci = lock_cluster_or_swap_info(si, offset);
1492	count = swap_count(si->swap_map[offset]);
1493	unlock_cluster_or_swap_info(si, ci);
1494	return count;
1495}
1496
1497/*
1498 * How many references to @entry are currently swapped out?
1499 * This does not give an exact answer when swap count is continued,
1500 * but does include the high COUNT_CONTINUED flag to allow for that.
1501 */
1502int __swp_swapcount(swp_entry_t entry)
1503{
1504	int count = 0;
1505	struct swap_info_struct *si;
1506
1507	si = get_swap_device(entry);
1508	if (si) {
1509		count = swap_swapcount(si, entry);
1510		put_swap_device(si);
1511	}
1512	return count;
1513}
1514
1515/*
1516 * How many references to @entry are currently swapped out?
1517 * This considers COUNT_CONTINUED so it returns exact answer.
1518 */
1519int swp_swapcount(swp_entry_t entry)
1520{
1521	int count, tmp_count, n;
1522	struct swap_info_struct *p;
1523	struct swap_cluster_info *ci;
1524	struct page *page;
1525	pgoff_t offset;
1526	unsigned char *map;
1527
1528	p = _swap_info_get(entry);
1529	if (!p)
1530		return 0;
1531
1532	offset = swp_offset(entry);
1533
1534	ci = lock_cluster_or_swap_info(p, offset);
1535
1536	count = swap_count(p->swap_map[offset]);
1537	if (!(count & COUNT_CONTINUED))
1538		goto out;
1539
1540	count &= ~COUNT_CONTINUED;
1541	n = SWAP_MAP_MAX + 1;
1542
1543	page = vmalloc_to_page(p->swap_map + offset);
1544	offset &= ~PAGE_MASK;
1545	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546
1547	do {
1548		page = list_next_entry(page, lru);
1549		map = kmap_atomic(page);
1550		tmp_count = map[offset];
1551		kunmap_atomic(map);
1552
1553		count += (tmp_count & ~COUNT_CONTINUED) * n;
1554		n *= (SWAP_CONT_MAX + 1);
1555	} while (tmp_count & COUNT_CONTINUED);
1556out:
1557	unlock_cluster_or_swap_info(p, ci);
1558	return count;
1559}
1560
1561static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562					 swp_entry_t entry)
1563{
1564	struct swap_cluster_info *ci;
1565	unsigned char *map = si->swap_map;
1566	unsigned long roffset = swp_offset(entry);
1567	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568	int i;
1569	bool ret = false;
1570
1571	ci = lock_cluster_or_swap_info(si, offset);
1572	if (!ci || !cluster_is_huge(ci)) {
1573		if (swap_count(map[roffset]))
1574			ret = true;
1575		goto unlock_out;
1576	}
1577	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578		if (swap_count(map[offset + i])) {
1579			ret = true;
1580			break;
1581		}
1582	}
1583unlock_out:
1584	unlock_cluster_or_swap_info(si, ci);
1585	return ret;
1586}
1587
1588static bool page_swapped(struct page *page)
1589{
1590	swp_entry_t entry;
1591	struct swap_info_struct *si;
1592
1593	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594		return page_swapcount(page) != 0;
1595
1596	page = compound_head(page);
1597	entry.val = page_private(page);
1598	si = _swap_info_get(entry);
1599	if (si)
1600		return swap_page_trans_huge_swapped(si, entry);
1601	return false;
1602}
1603
1604static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1605					 int *total_swapcount)
1606{
1607	int i, map_swapcount, _total_mapcount, _total_swapcount;
1608	unsigned long offset = 0;
1609	struct swap_info_struct *si;
1610	struct swap_cluster_info *ci = NULL;
1611	unsigned char *map = NULL;
1612	int mapcount, swapcount = 0;
1613
1614	/* hugetlbfs shouldn't call it */
1615	VM_BUG_ON_PAGE(PageHuge(page), page);
1616
1617	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1619		if (PageSwapCache(page))
1620			swapcount = page_swapcount(page);
1621		if (total_swapcount)
1622			*total_swapcount = swapcount;
1623		return mapcount + swapcount;
1624	}
1625
1626	page = compound_head(page);
1627
1628	_total_mapcount = _total_swapcount = map_swapcount = 0;
1629	if (PageSwapCache(page)) {
1630		swp_entry_t entry;
1631
1632		entry.val = page_private(page);
1633		si = _swap_info_get(entry);
1634		if (si) {
1635			map = si->swap_map;
1636			offset = swp_offset(entry);
1637		}
1638	}
1639	if (map)
1640		ci = lock_cluster(si, offset);
1641	for (i = 0; i < HPAGE_PMD_NR; i++) {
1642		mapcount = atomic_read(&page[i]._mapcount) + 1;
1643		_total_mapcount += mapcount;
1644		if (map) {
1645			swapcount = swap_count(map[offset + i]);
1646			_total_swapcount += swapcount;
1647		}
1648		map_swapcount = max(map_swapcount, mapcount + swapcount);
1649	}
1650	unlock_cluster(ci);
1651	if (PageDoubleMap(page)) {
1652		map_swapcount -= 1;
1653		_total_mapcount -= HPAGE_PMD_NR;
1654	}
1655	mapcount = compound_mapcount(page);
1656	map_swapcount += mapcount;
1657	_total_mapcount += mapcount;
1658	if (total_mapcount)
1659		*total_mapcount = _total_mapcount;
1660	if (total_swapcount)
1661		*total_swapcount = _total_swapcount;
1662
1663	return map_swapcount;
1664}
1665
1666/*
1667 * We can write to an anon page without COW if there are no other references
1668 * to it.  And as a side-effect, free up its swap: because the old content
1669 * on disk will never be read, and seeking back there to write new content
1670 * later would only waste time away from clustering.
1671 *
1672 * NOTE: total_map_swapcount should not be relied upon by the caller if
1673 * reuse_swap_page() returns false, but it may be always overwritten
1674 * (see the other implementation for CONFIG_SWAP=n).
1675 */
1676bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1677{
1678	int count, total_mapcount, total_swapcount;
1679
1680	VM_BUG_ON_PAGE(!PageLocked(page), page);
1681	if (unlikely(PageKsm(page)))
1682		return false;
1683	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1684					      &total_swapcount);
1685	if (total_map_swapcount)
1686		*total_map_swapcount = total_mapcount + total_swapcount;
1687	if (count == 1 && PageSwapCache(page) &&
1688	    (likely(!PageTransCompound(page)) ||
1689	     /* The remaining swap count will be freed soon */
1690	     total_swapcount == page_swapcount(page))) {
1691		if (!PageWriteback(page)) {
1692			page = compound_head(page);
1693			delete_from_swap_cache(page);
1694			SetPageDirty(page);
1695		} else {
1696			swp_entry_t entry;
1697			struct swap_info_struct *p;
1698
1699			entry.val = page_private(page);
1700			p = swap_info_get(entry);
1701			if (p->flags & SWP_STABLE_WRITES) {
1702				spin_unlock(&p->lock);
1703				return false;
1704			}
1705			spin_unlock(&p->lock);
1706		}
1707	}
1708
1709	return count <= 1;
1710}
1711
1712/*
1713 * If swap is getting full, or if there are no more mappings of this page,
1714 * then try_to_free_swap is called to free its swap space.
1715 */
1716int try_to_free_swap(struct page *page)
1717{
1718	VM_BUG_ON_PAGE(!PageLocked(page), page);
1719
1720	if (!PageSwapCache(page))
1721		return 0;
1722	if (PageWriteback(page))
1723		return 0;
1724	if (page_swapped(page))
1725		return 0;
1726
1727	/*
1728	 * Once hibernation has begun to create its image of memory,
1729	 * there's a danger that one of the calls to try_to_free_swap()
1730	 * - most probably a call from __try_to_reclaim_swap() while
1731	 * hibernation is allocating its own swap pages for the image,
1732	 * but conceivably even a call from memory reclaim - will free
1733	 * the swap from a page which has already been recorded in the
1734	 * image as a clean swapcache page, and then reuse its swap for
1735	 * another page of the image.  On waking from hibernation, the
1736	 * original page might be freed under memory pressure, then
1737	 * later read back in from swap, now with the wrong data.
1738	 *
1739	 * Hibernation suspends storage while it is writing the image
1740	 * to disk so check that here.
1741	 */
1742	if (pm_suspended_storage())
1743		return 0;
1744
1745	page = compound_head(page);
1746	delete_from_swap_cache(page);
1747	SetPageDirty(page);
1748	return 1;
1749}
1750
1751/*
1752 * Free the swap entry like above, but also try to
1753 * free the page cache entry if it is the last user.
1754 */
1755int free_swap_and_cache(swp_entry_t entry)
1756{
1757	struct swap_info_struct *p;
1758	unsigned char count;
1759
1760	if (non_swap_entry(entry))
1761		return 1;
1762
1763	p = _swap_info_get(entry);
1764	if (p) {
1765		count = __swap_entry_free(p, entry);
1766		if (count == SWAP_HAS_CACHE &&
1767		    !swap_page_trans_huge_swapped(p, entry))
1768			__try_to_reclaim_swap(p, swp_offset(entry),
1769					      TTRS_UNMAPPED | TTRS_FULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770	}
1771	return p != NULL;
1772}
1773
1774#ifdef CONFIG_HIBERNATION
1775
1776swp_entry_t get_swap_page_of_type(int type)
 
 
 
 
 
 
 
 
 
1777{
1778	struct swap_info_struct *si = swap_type_to_swap_info(type);
1779	swp_entry_t entry = {0};
 
1780
1781	if (!si)
1782		goto fail;
 
 
 
 
 
 
1783
1784	/* This is called for allocating swap entry, not cache */
1785	spin_lock(&si->lock);
1786	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1787		atomic_long_dec(&nr_swap_pages);
1788	spin_unlock(&si->lock);
1789fail:
1790	return entry;
1791}
 
1792
 
1793/*
1794 * Find the swap type that corresponds to given device (if any).
1795 *
1796 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797 * from 0, in which the swap header is expected to be located.
1798 *
1799 * This is needed for the suspend to disk (aka swsusp).
1800 */
1801int swap_type_of(dev_t device, sector_t offset)
1802{
 
1803	int type;
1804
1805	if (!device)
1806		return -1;
1807
1808	spin_lock(&swap_lock);
1809	for (type = 0; type < nr_swapfiles; type++) {
1810		struct swap_info_struct *sis = swap_info[type];
1811
1812		if (!(sis->flags & SWP_WRITEOK))
1813			continue;
1814
1815		if (device == sis->bdev->bd_dev) {
1816			struct swap_extent *se = first_se(sis);
 
 
 
 
 
 
 
1817
1818			if (se->start_block == offset) {
 
 
 
1819				spin_unlock(&swap_lock);
 
1820				return type;
1821			}
1822		}
1823	}
1824	spin_unlock(&swap_lock);
1825	return -ENODEV;
1826}
1827
1828int find_first_swap(dev_t *device)
1829{
1830	int type;
1831
1832	spin_lock(&swap_lock);
1833	for (type = 0; type < nr_swapfiles; type++) {
1834		struct swap_info_struct *sis = swap_info[type];
1835
1836		if (!(sis->flags & SWP_WRITEOK))
1837			continue;
1838		*device = sis->bdev->bd_dev;
1839		spin_unlock(&swap_lock);
1840		return type;
1841	}
1842	spin_unlock(&swap_lock);
1843	return -ENODEV;
1844}
1845
1846/*
1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848 * corresponding to given index in swap_info (swap type).
1849 */
1850sector_t swapdev_block(int type, pgoff_t offset)
1851{
1852	struct swap_info_struct *si = swap_type_to_swap_info(type);
1853	struct swap_extent *se;
1854
1855	if (!si || !(si->flags & SWP_WRITEOK))
1856		return 0;
1857	se = offset_to_swap_extent(si, offset);
1858	return se->start_block + (offset - se->start_page);
 
1859}
1860
1861/*
1862 * Return either the total number of swap pages of given type, or the number
1863 * of free pages of that type (depending on @free)
1864 *
1865 * This is needed for software suspend
1866 */
1867unsigned int count_swap_pages(int type, int free)
1868{
1869	unsigned int n = 0;
1870
1871	spin_lock(&swap_lock);
1872	if ((unsigned int)type < nr_swapfiles) {
1873		struct swap_info_struct *sis = swap_info[type];
1874
1875		spin_lock(&sis->lock);
1876		if (sis->flags & SWP_WRITEOK) {
1877			n = sis->pages;
1878			if (free)
1879				n -= sis->inuse_pages;
1880		}
1881		spin_unlock(&sis->lock);
1882	}
1883	spin_unlock(&swap_lock);
1884	return n;
1885}
1886#endif /* CONFIG_HIBERNATION */
1887
1888static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889{
1890	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1891}
1892
1893/*
1894 * No need to decide whether this PTE shares the swap entry with others,
1895 * just let do_wp_page work it out if a write is requested later - to
1896 * force COW, vm_page_prot omits write permission from any private vma.
1897 */
1898static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899		unsigned long addr, swp_entry_t entry, struct page *page)
1900{
1901	struct page *swapcache;
1902	spinlock_t *ptl;
1903	pte_t *pte;
1904	int ret = 1;
1905
1906	swapcache = page;
1907	page = ksm_might_need_to_copy(page, vma, addr);
1908	if (unlikely(!page))
1909		return -ENOMEM;
1910
1911	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
 
 
1913		ret = 0;
1914		goto out;
1915	}
1916
1917	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919	get_page(page);
1920	set_pte_at(vma->vm_mm, addr, pte,
1921		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922	if (page == swapcache) {
1923		page_add_anon_rmap(page, vma, addr, false);
1924	} else { /* ksm created a completely new copy */
1925		page_add_new_anon_rmap(page, vma, addr, false);
1926		lru_cache_add_inactive_or_unevictable(page, vma);
1927	}
1928	swap_free(entry);
 
 
 
 
 
1929out:
1930	pte_unmap_unlock(pte, ptl);
1931	if (page != swapcache) {
1932		unlock_page(page);
1933		put_page(page);
1934	}
1935	return ret;
1936}
1937
1938static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939			unsigned long addr, unsigned long end,
1940			unsigned int type, bool frontswap,
1941			unsigned long *fs_pages_to_unuse)
1942{
1943	struct page *page;
1944	swp_entry_t entry;
1945	pte_t *pte;
1946	struct swap_info_struct *si;
1947	unsigned long offset;
1948	int ret = 0;
1949	volatile unsigned char *swap_map;
1950
1951	si = swap_info[type];
 
 
 
 
 
 
 
 
1952	pte = pte_offset_map(pmd, addr);
1953	do {
1954		if (!is_swap_pte(*pte))
1955			continue;
1956
1957		entry = pte_to_swp_entry(*pte);
1958		if (swp_type(entry) != type)
1959			continue;
1960
1961		offset = swp_offset(entry);
1962		if (frontswap && !frontswap_test(si, offset))
1963			continue;
1964
1965		pte_unmap(pte);
1966		swap_map = &si->swap_map[offset];
1967		page = lookup_swap_cache(entry, vma, addr);
1968		if (!page) {
1969			struct vm_fault vmf = {
1970				.vma = vma,
1971				.address = addr,
1972				.pmd = pmd,
1973			};
1974
1975			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1976						&vmf);
1977		}
1978		if (!page) {
1979			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1980				goto try_next;
1981			return -ENOMEM;
1982		}
1983
1984		lock_page(page);
1985		wait_on_page_writeback(page);
1986		ret = unuse_pte(vma, pmd, addr, entry, page);
1987		if (ret < 0) {
1988			unlock_page(page);
1989			put_page(page);
1990			goto out;
1991		}
1992
1993		try_to_free_swap(page);
1994		unlock_page(page);
1995		put_page(page);
1996
1997		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1998			ret = FRONTSWAP_PAGES_UNUSED;
1999			goto out;
2000		}
2001try_next:
2002		pte = pte_offset_map(pmd, addr);
2003	} while (pte++, addr += PAGE_SIZE, addr != end);
2004	pte_unmap(pte - 1);
2005
2006	ret = 0;
2007out:
2008	return ret;
2009}
2010
2011static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2012				unsigned long addr, unsigned long end,
2013				unsigned int type, bool frontswap,
2014				unsigned long *fs_pages_to_unuse)
2015{
2016	pmd_t *pmd;
2017	unsigned long next;
2018	int ret;
2019
2020	pmd = pmd_offset(pud, addr);
2021	do {
2022		cond_resched();
2023		next = pmd_addr_end(addr, end);
2024		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 
 
2025			continue;
2026		ret = unuse_pte_range(vma, pmd, addr, next, type,
2027				      frontswap, fs_pages_to_unuse);
2028		if (ret)
2029			return ret;
2030	} while (pmd++, addr = next, addr != end);
2031	return 0;
2032}
2033
2034static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2035				unsigned long addr, unsigned long end,
2036				unsigned int type, bool frontswap,
2037				unsigned long *fs_pages_to_unuse)
2038{
2039	pud_t *pud;
2040	unsigned long next;
2041	int ret;
2042
2043	pud = pud_offset(p4d, addr);
2044	do {
2045		next = pud_addr_end(addr, end);
2046		if (pud_none_or_clear_bad(pud))
2047			continue;
2048		ret = unuse_pmd_range(vma, pud, addr, next, type,
2049				      frontswap, fs_pages_to_unuse);
2050		if (ret)
2051			return ret;
2052	} while (pud++, addr = next, addr != end);
2053	return 0;
2054}
2055
2056static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2057				unsigned long addr, unsigned long end,
2058				unsigned int type, bool frontswap,
2059				unsigned long *fs_pages_to_unuse)
2060{
2061	p4d_t *p4d;
2062	unsigned long next;
2063	int ret;
2064
2065	p4d = p4d_offset(pgd, addr);
2066	do {
2067		next = p4d_addr_end(addr, end);
2068		if (p4d_none_or_clear_bad(p4d))
2069			continue;
2070		ret = unuse_pud_range(vma, p4d, addr, next, type,
2071				      frontswap, fs_pages_to_unuse);
2072		if (ret)
2073			return ret;
2074	} while (p4d++, addr = next, addr != end);
2075	return 0;
2076}
2077
2078static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2079		     bool frontswap, unsigned long *fs_pages_to_unuse)
2080{
2081	pgd_t *pgd;
2082	unsigned long addr, end, next;
2083	int ret;
2084
2085	addr = vma->vm_start;
2086	end = vma->vm_end;
 
 
 
 
 
 
 
 
2087
2088	pgd = pgd_offset(vma->vm_mm, addr);
2089	do {
2090		next = pgd_addr_end(addr, end);
2091		if (pgd_none_or_clear_bad(pgd))
2092			continue;
2093		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2094				      frontswap, fs_pages_to_unuse);
2095		if (ret)
2096			return ret;
2097	} while (pgd++, addr = next, addr != end);
2098	return 0;
2099}
2100
2101static int unuse_mm(struct mm_struct *mm, unsigned int type,
2102		    bool frontswap, unsigned long *fs_pages_to_unuse)
2103{
2104	struct vm_area_struct *vma;
2105	int ret = 0;
2106
2107	mmap_read_lock(mm);
 
 
 
 
 
 
 
 
 
2108	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2109		if (vma->anon_vma) {
2110			ret = unuse_vma(vma, type, frontswap,
2111					fs_pages_to_unuse);
2112			if (ret)
2113				break;
2114		}
2115		cond_resched();
2116	}
2117	mmap_read_unlock(mm);
2118	return ret;
2119}
2120
2121/*
2122 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2123 * from current position to next entry still in use. Return 0
2124 * if there are no inuse entries after prev till end of the map.
2125 */
2126static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127					unsigned int prev, bool frontswap)
2128{
2129	unsigned int i;
 
2130	unsigned char count;
2131
2132	/*
2133	 * No need for swap_lock here: we're just looking
2134	 * for whether an entry is in use, not modifying it; false
2135	 * hits are okay, and sys_swapoff() has already prevented new
2136	 * allocations from this area (while holding swap_lock).
2137	 */
2138	for (i = prev + 1; i < si->max; i++) {
2139		count = READ_ONCE(si->swap_map[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
2140		if (count && swap_count(count) != SWAP_MAP_BAD)
2141			if (!frontswap || frontswap_test(si, i))
2142				break;
2143		if ((i % LATENCY_LIMIT) == 0)
2144			cond_resched();
2145	}
2146
2147	if (i == si->max)
2148		i = 0;
2149
2150	return i;
2151}
2152
2153/*
2154 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2155 * pages_to_unuse==0 means all pages; ignored if frontswap is false
 
2156 */
2157int try_to_unuse(unsigned int type, bool frontswap,
2158		 unsigned long pages_to_unuse)
2159{
2160	struct mm_struct *prev_mm;
2161	struct mm_struct *mm;
2162	struct list_head *p;
2163	int retval = 0;
2164	struct swap_info_struct *si = swap_info[type];
 
 
 
2165	struct page *page;
2166	swp_entry_t entry;
2167	unsigned int i;
 
2168
2169	if (!READ_ONCE(si->inuse_pages))
2170		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171
2172	if (!frontswap)
2173		pages_to_unuse = 0;
 
 
 
 
 
 
2174
2175retry:
2176	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2177	if (retval)
2178		goto out;
 
 
 
 
 
 
 
 
2179
2180	prev_mm = &init_mm;
2181	mmget(prev_mm);
 
 
 
 
 
 
 
 
 
 
 
2182
2183	spin_lock(&mmlist_lock);
2184	p = &init_mm.mmlist;
2185	while (READ_ONCE(si->inuse_pages) &&
2186	       !signal_pending(current) &&
2187	       (p = p->next) != &init_mm.mmlist) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2188
2189		mm = list_entry(p, struct mm_struct, mmlist);
2190		if (!mmget_not_zero(mm))
2191			continue;
2192		spin_unlock(&mmlist_lock);
2193		mmput(prev_mm);
2194		prev_mm = mm;
2195		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197		if (retval) {
2198			mmput(prev_mm);
2199			goto out;
 
2200		}
2201
2202		/*
2203		 * Make sure that we aren't completely killing
2204		 * interactive performance.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205		 */
2206		cond_resched();
2207		spin_lock(&mmlist_lock);
2208	}
2209	spin_unlock(&mmlist_lock);
 
2210
2211	mmput(prev_mm);
 
 
 
2212
2213	i = 0;
2214	while (READ_ONCE(si->inuse_pages) &&
2215	       !signal_pending(current) &&
2216	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2217
2218		entry = swp_entry(type, i);
2219		page = find_get_page(swap_address_space(entry), i);
2220		if (!page)
2221			continue;
 
2222
2223		/*
2224		 * It is conceivable that a racing task removed this page from
2225		 * swap cache just before we acquired the page lock. The page
2226		 * might even be back in swap cache on another swap area. But
2227		 * that is okay, try_to_free_swap() only removes stale pages.
2228		 */
2229		lock_page(page);
2230		wait_on_page_writeback(page);
2231		try_to_free_swap(page);
2232		unlock_page(page);
2233		put_page(page);
2234
2235		/*
2236		 * For frontswap, we just need to unuse pages_to_unuse, if
2237		 * it was specified. Need not check frontswap again here as
2238		 * we already zeroed out pages_to_unuse if not frontswap.
2239		 */
2240		if (pages_to_unuse && --pages_to_unuse == 0)
2241			goto out;
2242	}
2243
2244	/*
2245	 * Lets check again to see if there are still swap entries in the map.
2246	 * If yes, we would need to do retry the unuse logic again.
2247	 * Under global memory pressure, swap entries can be reinserted back
2248	 * into process space after the mmlist loop above passes over them.
2249	 *
2250	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2251	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2252	 * at its own independent pace; and even shmem_writepage() could have
2253	 * been preempted after get_swap_page(), temporarily hiding that swap.
2254	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2255	 */
2256	if (READ_ONCE(si->inuse_pages)) {
2257		if (!signal_pending(current))
2258			goto retry;
2259		retval = -EINTR;
2260	}
2261out:
2262	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2263}
2264
2265/*
2266 * After a successful try_to_unuse, if no swap is now in use, we know
2267 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2268 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2269 * added to the mmlist just after page_duplicate - before would be racy.
2270 */
2271static void drain_mmlist(void)
2272{
2273	struct list_head *p, *next;
2274	unsigned int type;
2275
2276	for (type = 0; type < nr_swapfiles; type++)
2277		if (swap_info[type]->inuse_pages)
2278			return;
2279	spin_lock(&mmlist_lock);
2280	list_for_each_safe(p, next, &init_mm.mmlist)
2281		list_del_init(p);
2282	spin_unlock(&mmlist_lock);
2283}
2284
2285/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286 * Free all of a swapdev's extent information
2287 */
2288static void destroy_swap_extents(struct swap_info_struct *sis)
2289{
2290	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2291		struct rb_node *rb = sis->swap_extent_root.rb_node;
2292		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2293
2294		rb_erase(rb, &sis->swap_extent_root);
 
 
2295		kfree(se);
2296	}
2297
2298	if (sis->flags & SWP_ACTIVATED) {
2299		struct file *swap_file = sis->swap_file;
2300		struct address_space *mapping = swap_file->f_mapping;
2301
2302		sis->flags &= ~SWP_ACTIVATED;
2303		if (mapping->a_ops->swap_deactivate)
2304			mapping->a_ops->swap_deactivate(swap_file);
2305	}
2306}
2307
2308/*
2309 * Add a block range (and the corresponding page range) into this swapdev's
2310 * extent tree.
2311 *
2312 * This function rather assumes that it is called in ascending page order.
2313 */
2314int
2315add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316		unsigned long nr_pages, sector_t start_block)
2317{
2318	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2319	struct swap_extent *se;
2320	struct swap_extent *new_se;
 
2321
2322	/*
2323	 * place the new node at the right most since the
2324	 * function is called in ascending page order.
2325	 */
2326	while (*link) {
2327		parent = *link;
2328		link = &parent->rb_right;
2329	}
2330
2331	if (parent) {
2332		se = rb_entry(parent, struct swap_extent, rb_node);
2333		BUG_ON(se->start_page + se->nr_pages != start_page);
2334		if (se->start_block + se->nr_pages == start_block) {
2335			/* Merge it */
2336			se->nr_pages += nr_pages;
2337			return 0;
2338		}
2339	}
2340
2341	/* No merge, insert a new extent. */
 
 
2342	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2343	if (new_se == NULL)
2344		return -ENOMEM;
2345	new_se->start_page = start_page;
2346	new_se->nr_pages = nr_pages;
2347	new_se->start_block = start_block;
2348
2349	rb_link_node(&new_se->rb_node, parent, link);
2350	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2351	return 1;
2352}
2353EXPORT_SYMBOL_GPL(add_swap_extent);
2354
2355/*
2356 * A `swap extent' is a simple thing which maps a contiguous range of pages
2357 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2358 * is built at swapon time and is then used at swap_writepage/swap_readpage
2359 * time for locating where on disk a page belongs.
2360 *
2361 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2362 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2363 * swap files identically.
2364 *
2365 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2366 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2367 * swapfiles are handled *identically* after swapon time.
2368 *
2369 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2370 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2371 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2372 * requirements, they are simply tossed out - we will never use those blocks
2373 * for swapping.
2374 *
2375 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2376 * prevents users from writing to the swap device, which will corrupt memory.
 
2377 *
2378 * The amount of disk space which a single swap extent represents varies.
2379 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2380 * extents in the list.  To avoid much list walking, we cache the previous
2381 * search location in `curr_swap_extent', and start new searches from there.
2382 * This is extremely effective.  The average number of iterations in
2383 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2384 */
2385static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2386{
2387	struct file *swap_file = sis->swap_file;
2388	struct address_space *mapping = swap_file->f_mapping;
2389	struct inode *inode = mapping->host;
 
 
 
 
 
 
2390	int ret;
2391
 
2392	if (S_ISBLK(inode->i_mode)) {
2393		ret = add_swap_extent(sis, 0, sis->max, 0);
2394		*span = sis->pages;
2395		return ret;
2396	}
2397
2398	if (mapping->a_ops->swap_activate) {
2399		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2400		if (ret >= 0)
2401			sis->flags |= SWP_ACTIVATED;
2402		if (!ret) {
2403			sis->flags |= SWP_FS_OPS;
2404			ret = add_swap_extent(sis, 0, sis->max, 0);
2405			*span = sis->pages;
2406		}
2407		return ret;
2408	}
2409
2410	return generic_swapfile_activate(sis, swap_file, span);
2411}
 
 
 
 
 
 
 
 
 
 
 
 
 
2412
2413static int swap_node(struct swap_info_struct *p)
2414{
2415	struct block_device *bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2416
2417	if (p->bdev)
2418		bdev = p->bdev;
2419	else
2420		bdev = p->swap_file->f_inode->i_sb->s_bdev;
 
 
 
2421
2422	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2423}
2424
2425static void setup_swap_info(struct swap_info_struct *p, int prio,
2426			    unsigned char *swap_map,
2427			    struct swap_cluster_info *cluster_info)
2428{
2429	int i;
2430
 
2431	if (prio >= 0)
2432		p->prio = prio;
2433	else
2434		p->prio = --least_priority;
2435	/*
2436	 * the plist prio is negated because plist ordering is
2437	 * low-to-high, while swap ordering is high-to-low
2438	 */
2439	p->list.prio = -p->prio;
2440	for_each_node(i) {
2441		if (p->prio >= 0)
2442			p->avail_lists[i].prio = -p->prio;
2443		else {
2444			if (swap_node(p) == i)
2445				p->avail_lists[i].prio = 1;
2446			else
2447				p->avail_lists[i].prio = -p->prio;
2448		}
2449	}
2450	p->swap_map = swap_map;
2451	p->cluster_info = cluster_info;
2452}
2453
2454static void _enable_swap_info(struct swap_info_struct *p)
2455{
2456	p->flags |= SWP_WRITEOK;
2457	atomic_long_add(p->pages, &nr_swap_pages);
2458	total_swap_pages += p->pages;
2459
2460	assert_spin_locked(&swap_lock);
2461	/*
2462	 * both lists are plists, and thus priority ordered.
2463	 * swap_active_head needs to be priority ordered for swapoff(),
2464	 * which on removal of any swap_info_struct with an auto-assigned
2465	 * (i.e. negative) priority increments the auto-assigned priority
2466	 * of any lower-priority swap_info_structs.
2467	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2468	 * which allocates swap pages from the highest available priority
2469	 * swap_info_struct.
2470	 */
2471	plist_add(&p->list, &swap_active_head);
2472	add_to_avail_list(p);
2473}
2474
2475static void enable_swap_info(struct swap_info_struct *p, int prio,
2476				unsigned char *swap_map,
2477				struct swap_cluster_info *cluster_info,
2478				unsigned long *frontswap_map)
2479{
2480	frontswap_init(p->type, frontswap_map);
2481	spin_lock(&swap_lock);
2482	spin_lock(&p->lock);
2483	setup_swap_info(p, prio, swap_map, cluster_info);
2484	spin_unlock(&p->lock);
2485	spin_unlock(&swap_lock);
2486	/*
2487	 * Finished initializing swap device, now it's safe to reference it.
2488	 */
2489	percpu_ref_resurrect(&p->users);
2490	spin_lock(&swap_lock);
2491	spin_lock(&p->lock);
2492	_enable_swap_info(p);
2493	spin_unlock(&p->lock);
2494	spin_unlock(&swap_lock);
2495}
2496
2497static void reinsert_swap_info(struct swap_info_struct *p)
2498{
2499	spin_lock(&swap_lock);
2500	spin_lock(&p->lock);
2501	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502	_enable_swap_info(p);
2503	spin_unlock(&p->lock);
2504	spin_unlock(&swap_lock);
2505}
2506
2507bool has_usable_swap(void)
2508{
2509	bool ret = true;
2510
2511	spin_lock(&swap_lock);
2512	if (plist_head_empty(&swap_active_head))
2513		ret = false;
2514	spin_unlock(&swap_lock);
2515	return ret;
2516}
2517
2518SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2519{
2520	struct swap_info_struct *p = NULL;
2521	unsigned char *swap_map;
2522	struct swap_cluster_info *cluster_info;
2523	unsigned long *frontswap_map;
2524	struct file *swap_file, *victim;
2525	struct address_space *mapping;
2526	struct inode *inode;
2527	struct filename *pathname;
2528	int err, found = 0;
2529	unsigned int old_block_size;
 
2530
2531	if (!capable(CAP_SYS_ADMIN))
2532		return -EPERM;
2533
2534	BUG_ON(!current->mm);
2535
2536	pathname = getname(specialfile);
 
2537	if (IS_ERR(pathname))
2538		return PTR_ERR(pathname);
2539
2540	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 
2541	err = PTR_ERR(victim);
2542	if (IS_ERR(victim))
2543		goto out;
2544
2545	mapping = victim->f_mapping;
 
2546	spin_lock(&swap_lock);
2547	plist_for_each_entry(p, &swap_active_head, list) {
 
2548		if (p->flags & SWP_WRITEOK) {
2549			if (p->swap_file->f_mapping == mapping) {
2550				found = 1;
2551				break;
2552			}
2553		}
 
2554	}
2555	if (!found) {
2556		err = -EINVAL;
2557		spin_unlock(&swap_lock);
2558		goto out_dput;
2559	}
2560	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561		vm_unacct_memory(p->pages);
2562	else {
2563		err = -ENOMEM;
2564		spin_unlock(&swap_lock);
2565		goto out_dput;
2566	}
2567	del_from_avail_list(p);
2568	spin_lock(&p->lock);
 
 
 
 
 
 
2569	if (p->prio < 0) {
2570		struct swap_info_struct *si = p;
2571		int nid;
2572
2573		plist_for_each_entry_continue(si, &swap_active_head, list) {
2574			si->prio++;
2575			si->list.prio--;
2576			for_each_node(nid) {
2577				if (si->avail_lists[nid].prio != 1)
2578					si->avail_lists[nid].prio--;
2579			}
2580		}
2581		least_priority++;
2582	}
2583	plist_del(&p->list, &swap_active_head);
2584	atomic_long_sub(p->pages, &nr_swap_pages);
2585	total_swap_pages -= p->pages;
2586	p->flags &= ~SWP_WRITEOK;
2587	spin_unlock(&p->lock);
2588	spin_unlock(&swap_lock);
2589
2590	disable_swap_slots_cache_lock();
2591
2592	set_current_oom_origin();
2593	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594	clear_current_oom_origin();
2595
2596	if (err) {
 
 
 
 
 
 
2597		/* re-insert swap space back into swap_list */
2598		reinsert_swap_info(p);
2599		reenable_swap_slots_cache_unlock();
2600		goto out_dput;
2601	}
2602
2603	reenable_swap_slots_cache_unlock();
2604
2605	/*
2606	 * Wait for swap operations protected by get/put_swap_device()
2607	 * to complete.
2608	 *
2609	 * We need synchronize_rcu() here to protect the accessing to
2610	 * the swap cache data structure.
2611	 */
2612	percpu_ref_kill(&p->users);
2613	synchronize_rcu();
2614	wait_for_completion(&p->comp);
2615
2616	flush_work(&p->discard_work);
2617
2618	destroy_swap_extents(p);
2619	if (p->flags & SWP_CONTINUED)
2620		free_swap_count_continuations(p);
2621
2622	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623		atomic_dec(&nr_rotate_swap);
2624
2625	mutex_lock(&swapon_mutex);
2626	spin_lock(&swap_lock);
2627	spin_lock(&p->lock);
2628	drain_mmlist();
2629
2630	/* wait for anyone still in scan_swap_map_slots */
2631	p->highest_bit = 0;		/* cuts scans short */
2632	while (p->flags >= SWP_SCANNING) {
2633		spin_unlock(&p->lock);
2634		spin_unlock(&swap_lock);
2635		schedule_timeout_uninterruptible(1);
2636		spin_lock(&swap_lock);
2637		spin_lock(&p->lock);
2638	}
2639
2640	swap_file = p->swap_file;
2641	old_block_size = p->old_block_size;
2642	p->swap_file = NULL;
2643	p->max = 0;
2644	swap_map = p->swap_map;
2645	p->swap_map = NULL;
2646	cluster_info = p->cluster_info;
2647	p->cluster_info = NULL;
2648	frontswap_map = frontswap_map_get(p);
2649	spin_unlock(&p->lock);
2650	spin_unlock(&swap_lock);
2651	arch_swap_invalidate_area(p->type);
2652	frontswap_invalidate_area(p->type);
2653	frontswap_map_set(p, NULL);
2654	mutex_unlock(&swapon_mutex);
2655	free_percpu(p->percpu_cluster);
2656	p->percpu_cluster = NULL;
2657	free_percpu(p->cluster_next_cpu);
2658	p->cluster_next_cpu = NULL;
2659	vfree(swap_map);
2660	kvfree(cluster_info);
2661	kvfree(frontswap_map);
2662	/* Destroy swap account information */
2663	swap_cgroup_swapoff(p->type);
2664	exit_swap_address_space(p->type);
2665
2666	inode = mapping->host;
2667	if (S_ISBLK(inode->i_mode)) {
2668		struct block_device *bdev = I_BDEV(inode);
2669
2670		set_blocksize(bdev, old_block_size);
2671		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 
 
 
 
2672	}
2673
2674	inode_lock(inode);
2675	inode->i_flags &= ~S_SWAPFILE;
2676	inode_unlock(inode);
2677	filp_close(swap_file, NULL);
2678
2679	/*
2680	 * Clear the SWP_USED flag after all resources are freed so that swapon
2681	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2682	 * not hold p->lock after we cleared its SWP_WRITEOK.
2683	 */
2684	spin_lock(&swap_lock);
2685	p->flags = 0;
2686	spin_unlock(&swap_lock);
2687
2688	err = 0;
2689	atomic_inc(&proc_poll_event);
2690	wake_up_interruptible(&proc_poll_wait);
2691
2692out_dput:
2693	filp_close(victim, NULL);
2694out:
2695	putname(pathname);
2696	return err;
2697}
2698
2699#ifdef CONFIG_PROC_FS
2700static __poll_t swaps_poll(struct file *file, poll_table *wait)
2701{
2702	struct seq_file *seq = file->private_data;
2703
2704	poll_wait(file, &proc_poll_wait, wait);
2705
2706	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707		seq->poll_event = atomic_read(&proc_poll_event);
2708		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2709	}
2710
2711	return EPOLLIN | EPOLLRDNORM;
2712}
2713
2714/* iterator */
2715static void *swap_start(struct seq_file *swap, loff_t *pos)
2716{
2717	struct swap_info_struct *si;
2718	int type;
2719	loff_t l = *pos;
2720
2721	mutex_lock(&swapon_mutex);
2722
2723	if (!l)
2724		return SEQ_START_TOKEN;
2725
2726	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 
 
2727		if (!(si->flags & SWP_USED) || !si->swap_map)
2728			continue;
2729		if (!--l)
2730			return si;
2731	}
2732
2733	return NULL;
2734}
2735
2736static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2737{
2738	struct swap_info_struct *si = v;
2739	int type;
2740
2741	if (v == SEQ_START_TOKEN)
2742		type = 0;
2743	else
2744		type = si->type + 1;
2745
2746	++(*pos);
2747	for (; (si = swap_type_to_swap_info(type)); type++) {
 
2748		if (!(si->flags & SWP_USED) || !si->swap_map)
2749			continue;
 
2750		return si;
2751	}
2752
2753	return NULL;
2754}
2755
2756static void swap_stop(struct seq_file *swap, void *v)
2757{
2758	mutex_unlock(&swapon_mutex);
2759}
2760
2761static int swap_show(struct seq_file *swap, void *v)
2762{
2763	struct swap_info_struct *si = v;
2764	struct file *file;
2765	int len;
2766	unsigned int bytes, inuse;
2767
2768	if (si == SEQ_START_TOKEN) {
2769		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2770		return 0;
2771	}
2772
2773	bytes = si->pages << (PAGE_SHIFT - 10);
2774	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2775
2776	file = si->swap_file;
2777	len = seq_file_path(swap, file, " \t\n\\");
2778	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2779			len < 40 ? 40 - len : 1, " ",
2780			S_ISBLK(file_inode(file)->i_mode) ?
2781				"partition" : "file\t",
2782			bytes, bytes < 10000000 ? "\t" : "",
2783			inuse, inuse < 10000000 ? "\t" : "",
2784			si->prio);
2785	return 0;
2786}
2787
2788static const struct seq_operations swaps_op = {
2789	.start =	swap_start,
2790	.next =		swap_next,
2791	.stop =		swap_stop,
2792	.show =		swap_show
2793};
2794
2795static int swaps_open(struct inode *inode, struct file *file)
2796{
2797	struct seq_file *seq;
2798	int ret;
2799
2800	ret = seq_open(file, &swaps_op);
2801	if (ret)
2802		return ret;
2803
2804	seq = file->private_data;
2805	seq->poll_event = atomic_read(&proc_poll_event);
2806	return 0;
2807}
2808
2809static const struct proc_ops swaps_proc_ops = {
2810	.proc_flags	= PROC_ENTRY_PERMANENT,
2811	.proc_open	= swaps_open,
2812	.proc_read	= seq_read,
2813	.proc_lseek	= seq_lseek,
2814	.proc_release	= seq_release,
2815	.proc_poll	= swaps_poll,
2816};
2817
2818static int __init procswaps_init(void)
2819{
2820	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2821	return 0;
2822}
2823__initcall(procswaps_init);
2824#endif /* CONFIG_PROC_FS */
2825
2826#ifdef MAX_SWAPFILES_CHECK
2827static int __init max_swapfiles_check(void)
2828{
2829	MAX_SWAPFILES_CHECK();
2830	return 0;
2831}
2832late_initcall(max_swapfiles_check);
2833#endif
2834
2835static struct swap_info_struct *alloc_swap_info(void)
2836{
2837	struct swap_info_struct *p;
2838	struct swap_info_struct *defer = NULL;
2839	unsigned int type;
2840	int i;
2841
2842	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2843	if (!p)
2844		return ERR_PTR(-ENOMEM);
2845
2846	if (percpu_ref_init(&p->users, swap_users_ref_free,
2847			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2848		kvfree(p);
2849		return ERR_PTR(-ENOMEM);
2850	}
2851
2852	spin_lock(&swap_lock);
2853	for (type = 0; type < nr_swapfiles; type++) {
2854		if (!(swap_info[type]->flags & SWP_USED))
2855			break;
2856	}
2857	if (type >= MAX_SWAPFILES) {
2858		spin_unlock(&swap_lock);
2859		percpu_ref_exit(&p->users);
2860		kvfree(p);
2861		return ERR_PTR(-EPERM);
2862	}
2863	if (type >= nr_swapfiles) {
2864		p->type = type;
 
2865		/*
2866		 * Publish the swap_info_struct after initializing it.
2867		 * Note that kvzalloc() above zeroes all its fields.
 
2868		 */
2869		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2870		nr_swapfiles++;
2871	} else {
2872		defer = p;
2873		p = swap_info[type];
2874		/*
2875		 * Do not memset this entry: a racing procfs swap_next()
2876		 * would be relying on p->type to remain valid.
2877		 */
2878	}
2879	p->swap_extent_root = RB_ROOT;
2880	plist_node_init(&p->list, 0);
2881	for_each_node(i)
2882		plist_node_init(&p->avail_lists[i], 0);
2883	p->flags = SWP_USED;
 
2884	spin_unlock(&swap_lock);
2885	if (defer) {
2886		percpu_ref_exit(&defer->users);
2887		kvfree(defer);
2888	}
2889	spin_lock_init(&p->lock);
2890	spin_lock_init(&p->cont_lock);
2891	init_completion(&p->comp);
2892
2893	return p;
2894}
2895
2896static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2897{
2898	int error;
2899
2900	if (S_ISBLK(inode->i_mode)) {
2901		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2902				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2903		if (IS_ERR(p->bdev)) {
2904			error = PTR_ERR(p->bdev);
 
2905			p->bdev = NULL;
2906			return error;
2907		}
2908		p->old_block_size = block_size(p->bdev);
2909		error = set_blocksize(p->bdev, PAGE_SIZE);
2910		if (error < 0)
2911			return error;
2912		/*
2913		 * Zoned block devices contain zones that have a sequential
2914		 * write only restriction.  Hence zoned block devices are not
2915		 * suitable for swapping.  Disallow them here.
2916		 */
2917		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2918			return -EINVAL;
2919		p->flags |= SWP_BLKDEV;
2920	} else if (S_ISREG(inode->i_mode)) {
2921		p->bdev = inode->i_sb->s_bdev;
2922	}
 
 
 
 
2923
2924	return 0;
2925}
2926
2927
2928/*
2929 * Find out how many pages are allowed for a single swap device. There
2930 * are two limiting factors:
2931 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2932 * 2) the number of bits in the swap pte, as defined by the different
2933 * architectures.
2934 *
2935 * In order to find the largest possible bit mask, a swap entry with
2936 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2937 * decoded to a swp_entry_t again, and finally the swap offset is
2938 * extracted.
2939 *
2940 * This will mask all the bits from the initial ~0UL mask that can't
2941 * be encoded in either the swp_entry_t or the architecture definition
2942 * of a swap pte.
2943 */
2944unsigned long generic_max_swapfile_size(void)
2945{
2946	return swp_offset(pte_to_swp_entry(
2947			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2948}
2949
2950/* Can be overridden by an architecture for additional checks. */
2951__weak unsigned long max_swapfile_size(void)
2952{
2953	return generic_max_swapfile_size();
2954}
2955
2956static unsigned long read_swap_header(struct swap_info_struct *p,
2957					union swap_header *swap_header,
2958					struct inode *inode)
2959{
2960	int i;
2961	unsigned long maxpages;
2962	unsigned long swapfilepages;
2963	unsigned long last_page;
2964
2965	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2966		pr_err("Unable to find swap-space signature\n");
2967		return 0;
2968	}
2969
2970	/* swap partition endianness hack... */
2971	if (swab32(swap_header->info.version) == 1) {
2972		swab32s(&swap_header->info.version);
2973		swab32s(&swap_header->info.last_page);
2974		swab32s(&swap_header->info.nr_badpages);
2975		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2976			return 0;
2977		for (i = 0; i < swap_header->info.nr_badpages; i++)
2978			swab32s(&swap_header->info.badpages[i]);
2979	}
2980	/* Check the swap header's sub-version */
2981	if (swap_header->info.version != 1) {
2982		pr_warn("Unable to handle swap header version %d\n",
2983			swap_header->info.version);
 
2984		return 0;
2985	}
2986
2987	p->lowest_bit  = 1;
2988	p->cluster_next = 1;
2989	p->cluster_nr = 0;
2990
2991	maxpages = max_swapfile_size();
2992	last_page = swap_header->info.last_page;
2993	if (!last_page) {
2994		pr_warn("Empty swap-file\n");
2995		return 0;
2996	}
2997	if (last_page > maxpages) {
2998		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2999			maxpages << (PAGE_SHIFT - 10),
3000			last_page << (PAGE_SHIFT - 10));
3001	}
3002	if (maxpages > last_page) {
3003		maxpages = last_page + 1;
 
 
 
 
 
 
 
 
 
3004		/* p->max is an unsigned int: don't overflow it */
3005		if ((unsigned int)maxpages == 0)
3006			maxpages = UINT_MAX;
3007	}
3008	p->highest_bit = maxpages - 1;
3009
3010	if (!maxpages)
3011		return 0;
3012	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3013	if (swapfilepages && maxpages > swapfilepages) {
3014		pr_warn("Swap area shorter than signature indicates\n");
 
3015		return 0;
3016	}
3017	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3018		return 0;
3019	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3020		return 0;
3021
3022	return maxpages;
3023}
3024
3025#define SWAP_CLUSTER_INFO_COLS						\
3026	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3027#define SWAP_CLUSTER_SPACE_COLS						\
3028	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3029#define SWAP_CLUSTER_COLS						\
3030	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3031
3032static int setup_swap_map_and_extents(struct swap_info_struct *p,
3033					union swap_header *swap_header,
3034					unsigned char *swap_map,
3035					struct swap_cluster_info *cluster_info,
3036					unsigned long maxpages,
3037					sector_t *span)
3038{
3039	unsigned int j, k;
3040	unsigned int nr_good_pages;
3041	int nr_extents;
3042	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3043	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3044	unsigned long i, idx;
3045
3046	nr_good_pages = maxpages - 1;	/* omit header page */
3047
3048	cluster_list_init(&p->free_clusters);
3049	cluster_list_init(&p->discard_clusters);
3050
3051	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3052		unsigned int page_nr = swap_header->info.badpages[i];
3053		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3054			return -EINVAL;
3055		if (page_nr < maxpages) {
3056			swap_map[page_nr] = SWAP_MAP_BAD;
3057			nr_good_pages--;
3058			/*
3059			 * Haven't marked the cluster free yet, no list
3060			 * operation involved
3061			 */
3062			inc_cluster_info_page(p, cluster_info, page_nr);
3063		}
3064	}
3065
3066	/* Haven't marked the cluster free yet, no list operation involved */
3067	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3068		inc_cluster_info_page(p, cluster_info, i);
3069
3070	if (nr_good_pages) {
3071		swap_map[0] = SWAP_MAP_BAD;
3072		/*
3073		 * Not mark the cluster free yet, no list
3074		 * operation involved
3075		 */
3076		inc_cluster_info_page(p, cluster_info, 0);
3077		p->max = maxpages;
3078		p->pages = nr_good_pages;
3079		nr_extents = setup_swap_extents(p, span);
3080		if (nr_extents < 0)
3081			return nr_extents;
3082		nr_good_pages = p->pages;
3083	}
3084	if (!nr_good_pages) {
3085		pr_warn("Empty swap-file\n");
3086		return -EINVAL;
3087	}
3088
3089	if (!cluster_info)
3090		return nr_extents;
3091
3092
3093	/*
3094	 * Reduce false cache line sharing between cluster_info and
3095	 * sharing same address space.
3096	 */
3097	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3098		j = (k + col) % SWAP_CLUSTER_COLS;
3099		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3100			idx = i * SWAP_CLUSTER_COLS + j;
3101			if (idx >= nr_clusters)
3102				continue;
3103			if (cluster_count(&cluster_info[idx]))
3104				continue;
3105			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3106			cluster_list_add_tail(&p->free_clusters, cluster_info,
3107					      idx);
3108		}
3109	}
3110	return nr_extents;
3111}
3112
3113/*
3114 * Helper to sys_swapon determining if a given swap
3115 * backing device queue supports DISCARD operations.
3116 */
3117static bool swap_discardable(struct swap_info_struct *si)
3118{
3119	struct request_queue *q = bdev_get_queue(si->bdev);
3120
3121	if (!q || !blk_queue_discard(q))
3122		return false;
3123
3124	return true;
3125}
3126
3127SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3128{
3129	struct swap_info_struct *p;
3130	struct filename *name;
3131	struct file *swap_file = NULL;
3132	struct address_space *mapping;
 
3133	int prio;
3134	int error;
3135	union swap_header *swap_header;
3136	int nr_extents;
3137	sector_t span;
3138	unsigned long maxpages;
3139	unsigned char *swap_map = NULL;
3140	struct swap_cluster_info *cluster_info = NULL;
3141	unsigned long *frontswap_map = NULL;
3142	struct page *page = NULL;
3143	struct inode *inode = NULL;
3144	bool inced_nr_rotate_swap = false;
3145
3146	if (swap_flags & ~SWAP_FLAGS_VALID)
3147		return -EINVAL;
3148
3149	if (!capable(CAP_SYS_ADMIN))
3150		return -EPERM;
3151
3152	if (!swap_avail_heads)
3153		return -ENOMEM;
3154
3155	p = alloc_swap_info();
3156	if (IS_ERR(p))
3157		return PTR_ERR(p);
3158
3159	INIT_WORK(&p->discard_work, swap_discard_work);
3160
3161	name = getname(specialfile);
3162	if (IS_ERR(name)) {
3163		error = PTR_ERR(name);
3164		name = NULL;
3165		goto bad_swap;
3166	}
3167	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3168	if (IS_ERR(swap_file)) {
3169		error = PTR_ERR(swap_file);
3170		swap_file = NULL;
3171		goto bad_swap;
3172	}
3173
3174	p->swap_file = swap_file;
3175	mapping = swap_file->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
3176	inode = mapping->host;
3177
3178	error = claim_swapfile(p, inode);
3179	if (unlikely(error))
3180		goto bad_swap;
3181
3182	inode_lock(inode);
3183	if (IS_SWAPFILE(inode)) {
3184		error = -EBUSY;
3185		goto bad_swap_unlock_inode;
3186	}
3187
3188	/*
3189	 * Read the swap header.
3190	 */
3191	if (!mapping->a_ops->readpage) {
3192		error = -EINVAL;
3193		goto bad_swap_unlock_inode;
3194	}
3195	page = read_mapping_page(mapping, 0, swap_file);
3196	if (IS_ERR(page)) {
3197		error = PTR_ERR(page);
3198		goto bad_swap_unlock_inode;
3199	}
3200	swap_header = kmap(page);
3201
3202	maxpages = read_swap_header(p, swap_header, inode);
3203	if (unlikely(!maxpages)) {
3204		error = -EINVAL;
3205		goto bad_swap_unlock_inode;
3206	}
3207
3208	/* OK, set up the swap map and apply the bad block list */
3209	swap_map = vzalloc(maxpages);
3210	if (!swap_map) {
3211		error = -ENOMEM;
3212		goto bad_swap_unlock_inode;
3213	}
3214
3215	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3216		p->flags |= SWP_STABLE_WRITES;
3217
3218	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3219		p->flags |= SWP_SYNCHRONOUS_IO;
3220
3221	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3222		int cpu;
3223		unsigned long ci, nr_cluster;
3224
3225		p->flags |= SWP_SOLIDSTATE;
3226		p->cluster_next_cpu = alloc_percpu(unsigned int);
3227		if (!p->cluster_next_cpu) {
3228			error = -ENOMEM;
3229			goto bad_swap_unlock_inode;
3230		}
3231		/*
3232		 * select a random position to start with to help wear leveling
3233		 * SSD
3234		 */
3235		for_each_possible_cpu(cpu) {
3236			per_cpu(*p->cluster_next_cpu, cpu) =
3237				1 + prandom_u32_max(p->highest_bit);
3238		}
3239		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3240
3241		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3242					GFP_KERNEL);
3243		if (!cluster_info) {
3244			error = -ENOMEM;
3245			goto bad_swap_unlock_inode;
3246		}
3247
3248		for (ci = 0; ci < nr_cluster; ci++)
3249			spin_lock_init(&((cluster_info + ci)->lock));
3250
3251		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3252		if (!p->percpu_cluster) {
3253			error = -ENOMEM;
3254			goto bad_swap_unlock_inode;
3255		}
3256		for_each_possible_cpu(cpu) {
3257			struct percpu_cluster *cluster;
3258			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3259			cluster_set_null(&cluster->index);
3260		}
3261	} else {
3262		atomic_inc(&nr_rotate_swap);
3263		inced_nr_rotate_swap = true;
3264	}
3265
3266	error = swap_cgroup_swapon(p->type, maxpages);
3267	if (error)
3268		goto bad_swap_unlock_inode;
3269
3270	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3271		cluster_info, maxpages, &span);
3272	if (unlikely(nr_extents < 0)) {
3273		error = nr_extents;
3274		goto bad_swap_unlock_inode;
3275	}
3276	/* frontswap enabled? set up bit-per-page map for frontswap */
3277	if (IS_ENABLED(CONFIG_FRONTSWAP))
3278		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3279					 sizeof(long),
3280					 GFP_KERNEL);
3281
3282	if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3283		/*
3284		 * When discard is enabled for swap with no particular
3285		 * policy flagged, we set all swap discard flags here in
3286		 * order to sustain backward compatibility with older
3287		 * swapon(8) releases.
3288		 */
3289		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3290			     SWP_PAGE_DISCARD);
3291
3292		/*
3293		 * By flagging sys_swapon, a sysadmin can tell us to
3294		 * either do single-time area discards only, or to just
3295		 * perform discards for released swap page-clusters.
3296		 * Now it's time to adjust the p->flags accordingly.
3297		 */
3298		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3299			p->flags &= ~SWP_PAGE_DISCARD;
3300		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3301			p->flags &= ~SWP_AREA_DISCARD;
3302
3303		/* issue a swapon-time discard if it's still required */
3304		if (p->flags & SWP_AREA_DISCARD) {
3305			int err = discard_swap(p);
3306			if (unlikely(err))
3307				pr_err("swapon: discard_swap(%p): %d\n",
3308					p, err);
3309		}
3310	}
3311
3312	error = init_swap_address_space(p->type, maxpages);
3313	if (error)
3314		goto bad_swap_unlock_inode;
3315
3316	/*
3317	 * Flush any pending IO and dirty mappings before we start using this
3318	 * swap device.
3319	 */
3320	inode->i_flags |= S_SWAPFILE;
3321	error = inode_drain_writes(inode);
3322	if (error) {
3323		inode->i_flags &= ~S_SWAPFILE;
3324		goto free_swap_address_space;
3325	}
3326
3327	mutex_lock(&swapon_mutex);
3328	prio = -1;
3329	if (swap_flags & SWAP_FLAG_PREFER)
3330		prio =
3331		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3332	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3333
3334	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3335		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
 
3336		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3337		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3338		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3339		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3340		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3341		(frontswap_map) ? "FS" : "");
3342
3343	mutex_unlock(&swapon_mutex);
3344	atomic_inc(&proc_poll_event);
3345	wake_up_interruptible(&proc_poll_wait);
3346
 
 
3347	error = 0;
3348	goto out;
3349free_swap_address_space:
3350	exit_swap_address_space(p->type);
3351bad_swap_unlock_inode:
3352	inode_unlock(inode);
3353bad_swap:
3354	free_percpu(p->percpu_cluster);
3355	p->percpu_cluster = NULL;
3356	free_percpu(p->cluster_next_cpu);
3357	p->cluster_next_cpu = NULL;
3358	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3359		set_blocksize(p->bdev, p->old_block_size);
3360		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3361	}
3362	inode = NULL;
3363	destroy_swap_extents(p);
3364	swap_cgroup_swapoff(p->type);
3365	spin_lock(&swap_lock);
3366	p->swap_file = NULL;
3367	p->flags = 0;
3368	spin_unlock(&swap_lock);
3369	vfree(swap_map);
3370	kvfree(cluster_info);
3371	kvfree(frontswap_map);
3372	if (inced_nr_rotate_swap)
3373		atomic_dec(&nr_rotate_swap);
3374	if (swap_file)
3375		filp_close(swap_file, NULL);
 
3376out:
3377	if (page && !IS_ERR(page)) {
3378		kunmap(page);
3379		put_page(page);
3380	}
3381	if (name)
3382		putname(name);
3383	if (inode)
3384		inode_unlock(inode);
3385	if (!error)
3386		enable_swap_slots_cache();
3387	return error;
3388}
3389
3390void si_swapinfo(struct sysinfo *val)
3391{
3392	unsigned int type;
3393	unsigned long nr_to_be_unused = 0;
3394
3395	spin_lock(&swap_lock);
3396	for (type = 0; type < nr_swapfiles; type++) {
3397		struct swap_info_struct *si = swap_info[type];
3398
3399		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3400			nr_to_be_unused += si->inuse_pages;
3401	}
3402	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3403	val->totalswap = total_swap_pages + nr_to_be_unused;
3404	spin_unlock(&swap_lock);
3405}
3406
3407/*
3408 * Verify that a swap entry is valid and increment its swap map count.
3409 *
3410 * Returns error code in following case.
3411 * - success -> 0
3412 * - swp_entry is invalid -> EINVAL
3413 * - swp_entry is migration entry -> EINVAL
3414 * - swap-cache reference is requested but there is already one. -> EEXIST
3415 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3416 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3417 */
3418static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3419{
3420	struct swap_info_struct *p;
3421	struct swap_cluster_info *ci;
3422	unsigned long offset;
3423	unsigned char count;
3424	unsigned char has_cache;
3425	int err;
3426
3427	p = get_swap_device(entry);
3428	if (!p)
3429		return -EINVAL;
3430
 
 
 
 
3431	offset = swp_offset(entry);
3432	ci = lock_cluster_or_swap_info(p, offset);
3433
3434	count = p->swap_map[offset];
3435
3436	/*
3437	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3438	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3439	 */
3440	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3441		err = -ENOENT;
3442		goto unlock_out;
3443	}
3444
 
3445	has_cache = count & SWAP_HAS_CACHE;
3446	count &= ~SWAP_HAS_CACHE;
3447	err = 0;
3448
3449	if (usage == SWAP_HAS_CACHE) {
3450
3451		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3452		if (!has_cache && count)
3453			has_cache = SWAP_HAS_CACHE;
3454		else if (has_cache)		/* someone else added cache */
3455			err = -EEXIST;
3456		else				/* no users remaining */
3457			err = -ENOENT;
3458
3459	} else if (count || has_cache) {
3460
3461		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3462			count += usage;
3463		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3464			err = -EINVAL;
3465		else if (swap_count_continued(p, offset, count))
3466			count = COUNT_CONTINUED;
3467		else
3468			err = -ENOMEM;
3469	} else
3470		err = -ENOENT;			/* unused swap entry */
3471
3472	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3473
3474unlock_out:
3475	unlock_cluster_or_swap_info(p, ci);
3476	if (p)
3477		put_swap_device(p);
3478	return err;
 
 
 
 
3479}
3480
3481/*
3482 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3483 * (in which case its reference count is never incremented).
3484 */
3485void swap_shmem_alloc(swp_entry_t entry)
3486{
3487	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3488}
3489
3490/*
3491 * Increase reference count of swap entry by 1.
3492 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3493 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3494 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3495 * might occur if a page table entry has got corrupted.
3496 */
3497int swap_duplicate(swp_entry_t entry)
3498{
3499	int err = 0;
3500
3501	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3502		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3503	return err;
3504}
3505
3506/*
3507 * @entry: swap entry for which we allocate swap cache.
3508 *
3509 * Called when allocating swap cache for existing swap entry,
3510 * This can return error codes. Returns 0 at success.
3511 * -EEXIST means there is a swap cache.
3512 * Note: return code is different from swap_duplicate().
3513 */
3514int swapcache_prepare(swp_entry_t entry)
3515{
3516	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3517}
3518
3519struct swap_info_struct *swp_swap_info(swp_entry_t entry)
 
 
 
 
3520{
3521	return swap_type_to_swap_info(swp_type(entry));
3522}
 
 
 
 
 
 
 
 
 
 
 
 
 
3523
3524struct swap_info_struct *page_swap_info(struct page *page)
3525{
3526	swp_entry_t entry = { .val = page_private(page) };
3527	return swp_swap_info(entry);
3528}
3529
3530/*
3531 * out-of-line __page_file_ methods to avoid include hell.
3532 */
3533struct address_space *__page_file_mapping(struct page *page)
3534{
3535	return page_swap_info(page)->swap_file->f_mapping;
3536}
3537EXPORT_SYMBOL_GPL(__page_file_mapping);
 
 
 
 
 
 
 
 
 
3538
3539pgoff_t __page_file_index(struct page *page)
3540{
3541	swp_entry_t swap = { .val = page_private(page) };
3542	return swp_offset(swap);
 
 
3543}
3544EXPORT_SYMBOL_GPL(__page_file_index);
3545
3546/*
3547 * add_swap_count_continuation - called when a swap count is duplicated
3548 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3549 * page of the original vmalloc'ed swap_map, to hold the continuation count
3550 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3551 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3552 *
3553 * These continuation pages are seldom referenced: the common paths all work
3554 * on the original swap_map, only referring to a continuation page when the
3555 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3556 *
3557 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3558 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3559 * can be called after dropping locks.
3560 */
3561int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3562{
3563	struct swap_info_struct *si;
3564	struct swap_cluster_info *ci;
3565	struct page *head;
3566	struct page *page;
3567	struct page *list_page;
3568	pgoff_t offset;
3569	unsigned char count;
3570	int ret = 0;
3571
3572	/*
3573	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3574	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3575	 */
3576	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3577
3578	si = get_swap_device(entry);
3579	if (!si) {
3580		/*
3581		 * An acceptable race has occurred since the failing
3582		 * __swap_duplicate(): the swap device may be swapoff
 
3583		 */
3584		goto outer;
3585	}
3586	spin_lock(&si->lock);
3587
3588	offset = swp_offset(entry);
3589
3590	ci = lock_cluster(si, offset);
3591
3592	count = swap_count(si->swap_map[offset]);
3593
3594	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3595		/*
3596		 * The higher the swap count, the more likely it is that tasks
3597		 * will race to add swap count continuation: we need to avoid
3598		 * over-provisioning.
3599		 */
3600		goto out;
3601	}
3602
3603	if (!page) {
3604		ret = -ENOMEM;
3605		goto out;
3606	}
3607
3608	/*
3609	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3610	 * no architecture is using highmem pages for kernel page tables: so it
3611	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3612	 */
3613	head = vmalloc_to_page(si->swap_map + offset);
3614	offset &= ~PAGE_MASK;
3615
3616	spin_lock(&si->cont_lock);
3617	/*
3618	 * Page allocation does not initialize the page's lru field,
3619	 * but it does always reset its private field.
3620	 */
3621	if (!page_private(head)) {
3622		BUG_ON(count & COUNT_CONTINUED);
3623		INIT_LIST_HEAD(&head->lru);
3624		set_page_private(head, SWP_CONTINUED);
3625		si->flags |= SWP_CONTINUED;
3626	}
3627
3628	list_for_each_entry(list_page, &head->lru, lru) {
3629		unsigned char *map;
3630
3631		/*
3632		 * If the previous map said no continuation, but we've found
3633		 * a continuation page, free our allocation and use this one.
3634		 */
3635		if (!(count & COUNT_CONTINUED))
3636			goto out_unlock_cont;
3637
3638		map = kmap_atomic(list_page) + offset;
3639		count = *map;
3640		kunmap_atomic(map);
3641
3642		/*
3643		 * If this continuation count now has some space in it,
3644		 * free our allocation and use this one.
3645		 */
3646		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3647			goto out_unlock_cont;
3648	}
3649
3650	list_add_tail(&page->lru, &head->lru);
3651	page = NULL;			/* now it's attached, don't free it */
3652out_unlock_cont:
3653	spin_unlock(&si->cont_lock);
3654out:
3655	unlock_cluster(ci);
3656	spin_unlock(&si->lock);
3657	put_swap_device(si);
3658outer:
3659	if (page)
3660		__free_page(page);
3661	return ret;
3662}
3663
3664/*
3665 * swap_count_continued - when the original swap_map count is incremented
3666 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3667 * into, carry if so, or else fail until a new continuation page is allocated;
3668 * when the original swap_map count is decremented from 0 with continuation,
3669 * borrow from the continuation and report whether it still holds more.
3670 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3671 * lock.
3672 */
3673static bool swap_count_continued(struct swap_info_struct *si,
3674				 pgoff_t offset, unsigned char count)
3675{
3676	struct page *head;
3677	struct page *page;
3678	unsigned char *map;
3679	bool ret;
3680
3681	head = vmalloc_to_page(si->swap_map + offset);
3682	if (page_private(head) != SWP_CONTINUED) {
3683		BUG_ON(count & COUNT_CONTINUED);
3684		return false;		/* need to add count continuation */
3685	}
3686
3687	spin_lock(&si->cont_lock);
3688	offset &= ~PAGE_MASK;
3689	page = list_next_entry(head, lru);
3690	map = kmap_atomic(page) + offset;
3691
3692	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3693		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3694
3695	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3696		/*
3697		 * Think of how you add 1 to 999
3698		 */
3699		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3700			kunmap_atomic(map);
3701			page = list_next_entry(page, lru);
3702			BUG_ON(page == head);
3703			map = kmap_atomic(page) + offset;
3704		}
3705		if (*map == SWAP_CONT_MAX) {
3706			kunmap_atomic(map);
3707			page = list_next_entry(page, lru);
3708			if (page == head) {
3709				ret = false;	/* add count continuation */
3710				goto out;
3711			}
3712			map = kmap_atomic(page) + offset;
3713init_map:		*map = 0;		/* we didn't zero the page */
3714		}
3715		*map += 1;
3716		kunmap_atomic(map);
3717		while ((page = list_prev_entry(page, lru)) != head) {
3718			map = kmap_atomic(page) + offset;
 
3719			*map = COUNT_CONTINUED;
3720			kunmap_atomic(map);
 
3721		}
3722		ret = true;			/* incremented */
3723
3724	} else {				/* decrementing */
3725		/*
3726		 * Think of how you subtract 1 from 1000
3727		 */
3728		BUG_ON(count != COUNT_CONTINUED);
3729		while (*map == COUNT_CONTINUED) {
3730			kunmap_atomic(map);
3731			page = list_next_entry(page, lru);
3732			BUG_ON(page == head);
3733			map = kmap_atomic(page) + offset;
3734		}
3735		BUG_ON(*map == 0);
3736		*map -= 1;
3737		if (*map == 0)
3738			count = 0;
3739		kunmap_atomic(map);
3740		while ((page = list_prev_entry(page, lru)) != head) {
3741			map = kmap_atomic(page) + offset;
 
3742			*map = SWAP_CONT_MAX | count;
3743			count = COUNT_CONTINUED;
3744			kunmap_atomic(map);
 
3745		}
3746		ret = count == COUNT_CONTINUED;
3747	}
3748out:
3749	spin_unlock(&si->cont_lock);
3750	return ret;
3751}
3752
3753/*
3754 * free_swap_count_continuations - swapoff free all the continuation pages
3755 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3756 */
3757static void free_swap_count_continuations(struct swap_info_struct *si)
3758{
3759	pgoff_t offset;
3760
3761	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3762		struct page *head;
3763		head = vmalloc_to_page(si->swap_map + offset);
3764		if (page_private(head)) {
3765			struct page *page, *next;
3766
3767			list_for_each_entry_safe(page, next, &head->lru, lru) {
3768				list_del(&page->lru);
 
3769				__free_page(page);
3770			}
3771		}
3772	}
3773}
3774
3775#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3776void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3777{
3778	struct swap_info_struct *si, *next;
3779	int nid = page_to_nid(page);
3780
3781	if (!(gfp_mask & __GFP_IO))
3782		return;
3783
3784	if (!blk_cgroup_congested())
3785		return;
3786
3787	/*
3788	 * We've already scheduled a throttle, avoid taking the global swap
3789	 * lock.
3790	 */
3791	if (current->throttle_queue)
3792		return;
3793
3794	spin_lock(&swap_avail_lock);
3795	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3796				  avail_lists[nid]) {
3797		if (si->bdev) {
3798			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3799			break;
3800		}
3801	}
3802	spin_unlock(&swap_avail_lock);
3803}
3804#endif
3805
3806static int __init swapfile_init(void)
3807{
3808	int nid;
3809
3810	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3811					 GFP_KERNEL);
3812	if (!swap_avail_heads) {
3813		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3814		return -ENOMEM;
3815	}
3816
3817	for_each_node(nid)
3818		plist_head_init(&swap_avail_heads[nid]);
3819
3820	return 0;
3821}
3822subsys_initcall(swapfile_init);