Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef MM_SLAB_H
  3#define MM_SLAB_H
  4
  5#include <linux/reciprocal_div.h>
  6#include <linux/list_lru.h>
  7#include <linux/local_lock.h>
  8#include <linux/random.h>
  9#include <linux/kobject.h>
 10#include <linux/sched/mm.h>
 11#include <linux/memcontrol.h>
 12#include <linux/kfence.h>
 13#include <linux/kasan.h>
 14
 15/*
 16 * Internal slab definitions
 17 */
 18
 19#ifdef CONFIG_64BIT
 20# ifdef system_has_cmpxchg128
 21# define system_has_freelist_aba()	system_has_cmpxchg128()
 22# define try_cmpxchg_freelist		try_cmpxchg128
 23# endif
 24#define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg128
 25typedef u128 freelist_full_t;
 26#else /* CONFIG_64BIT */
 27# ifdef system_has_cmpxchg64
 28# define system_has_freelist_aba()	system_has_cmpxchg64()
 29# define try_cmpxchg_freelist		try_cmpxchg64
 30# endif
 31#define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg64
 32typedef u64 freelist_full_t;
 33#endif /* CONFIG_64BIT */
 34
 35#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 36#undef system_has_freelist_aba
 37#endif
 38
 39/*
 40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
 41 * problems with cmpxchg of just a pointer.
 42 */
 43typedef union {
 44	struct {
 45		void *freelist;
 46		unsigned long counter;
 47	};
 48	freelist_full_t full;
 49} freelist_aba_t;
 50
 51/* Reuses the bits in struct page */
 52struct slab {
 53	unsigned long __page_flags;
 54
 55	struct kmem_cache *slab_cache;
 56	union {
 57		struct {
 58			union {
 59				struct list_head slab_list;
 60#ifdef CONFIG_SLUB_CPU_PARTIAL
 61				struct {
 62					struct slab *next;
 63					int slabs;	/* Nr of slabs left */
 64				};
 65#endif
 66			};
 67			/* Double-word boundary */
 68			union {
 69				struct {
 70					void *freelist;		/* first free object */
 71					union {
 72						unsigned long counters;
 73						struct {
 74							unsigned inuse:16;
 75							unsigned objects:15;
 76							/*
 77							 * If slab debugging is enabled then the
 78							 * frozen bit can be reused to indicate
 79							 * that the slab was corrupted
 80							 */
 81							unsigned frozen:1;
 82						};
 83					};
 84				};
 85#ifdef system_has_freelist_aba
 86				freelist_aba_t freelist_counter;
 87#endif
 88			};
 89		};
 90		struct rcu_head rcu_head;
 91	};
 92
 93	unsigned int __page_type;
 94	atomic_t __page_refcount;
 95#ifdef CONFIG_SLAB_OBJ_EXT
 96	unsigned long obj_exts;
 97#endif
 98};
 99
100#define SLAB_MATCH(pg, sl)						\
101	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
102SLAB_MATCH(flags, __page_flags);
103SLAB_MATCH(compound_head, slab_cache);	/* Ensure bit 0 is clear */
104SLAB_MATCH(_refcount, __page_refcount);
105#ifdef CONFIG_MEMCG
106SLAB_MATCH(memcg_data, obj_exts);
107#elif defined(CONFIG_SLAB_OBJ_EXT)
108SLAB_MATCH(_unused_slab_obj_exts, obj_exts);
109#endif
110#undef SLAB_MATCH
111static_assert(sizeof(struct slab) <= sizeof(struct page));
112#if defined(system_has_freelist_aba)
113static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
114#endif
115
116/**
117 * folio_slab - Converts from folio to slab.
118 * @folio: The folio.
119 *
120 * Currently struct slab is a different representation of a folio where
121 * folio_test_slab() is true.
122 *
123 * Return: The slab which contains this folio.
124 */
125#define folio_slab(folio)	(_Generic((folio),			\
126	const struct folio *:	(const struct slab *)(folio),		\
127	struct folio *:		(struct slab *)(folio)))
128
129/**
130 * slab_folio - The folio allocated for a slab
131 * @slab: The slab.
132 *
133 * Slabs are allocated as folios that contain the individual objects and are
134 * using some fields in the first struct page of the folio - those fields are
135 * now accessed by struct slab. It is occasionally necessary to convert back to
136 * a folio in order to communicate with the rest of the mm.  Please use this
137 * helper function instead of casting yourself, as the implementation may change
138 * in the future.
139 */
140#define slab_folio(s)		(_Generic((s),				\
141	const struct slab *:	(const struct folio *)s,		\
142	struct slab *:		(struct folio *)s))
143
144/**
145 * page_slab - Converts from first struct page to slab.
146 * @p: The first (either head of compound or single) page of slab.
147 *
148 * A temporary wrapper to convert struct page to struct slab in situations where
149 * we know the page is the compound head, or single order-0 page.
150 *
151 * Long-term ideally everything would work with struct slab directly or go
152 * through folio to struct slab.
153 *
154 * Return: The slab which contains this page
155 */
156#define page_slab(p)		(_Generic((p),				\
157	const struct page *:	(const struct slab *)(p),		\
158	struct page *:		(struct slab *)(p)))
159
160/**
161 * slab_page - The first struct page allocated for a slab
162 * @slab: The slab.
163 *
164 * A convenience wrapper for converting slab to the first struct page of the
165 * underlying folio, to communicate with code not yet converted to folio or
166 * struct slab.
167 */
168#define slab_page(s) folio_page(slab_folio(s), 0)
169
170/*
171 * If network-based swap is enabled, sl*b must keep track of whether pages
172 * were allocated from pfmemalloc reserves.
173 */
174static inline bool slab_test_pfmemalloc(const struct slab *slab)
175{
176	return folio_test_active(slab_folio(slab));
177}
178
179static inline void slab_set_pfmemalloc(struct slab *slab)
180{
181	folio_set_active(slab_folio(slab));
182}
183
184static inline void slab_clear_pfmemalloc(struct slab *slab)
185{
186	folio_clear_active(slab_folio(slab));
187}
188
189static inline void __slab_clear_pfmemalloc(struct slab *slab)
190{
191	__folio_clear_active(slab_folio(slab));
192}
193
194static inline void *slab_address(const struct slab *slab)
195{
196	return folio_address(slab_folio(slab));
197}
198
199static inline int slab_nid(const struct slab *slab)
200{
201	return folio_nid(slab_folio(slab));
202}
203
204static inline pg_data_t *slab_pgdat(const struct slab *slab)
205{
206	return folio_pgdat(slab_folio(slab));
207}
208
209static inline struct slab *virt_to_slab(const void *addr)
210{
211	struct folio *folio = virt_to_folio(addr);
212
213	if (!folio_test_slab(folio))
214		return NULL;
215
216	return folio_slab(folio);
217}
218
219static inline int slab_order(const struct slab *slab)
220{
221	return folio_order(slab_folio(slab));
222}
223
224static inline size_t slab_size(const struct slab *slab)
225{
226	return PAGE_SIZE << slab_order(slab);
227}
228
229#ifdef CONFIG_SLUB_CPU_PARTIAL
230#define slub_percpu_partial(c)			((c)->partial)
231
232#define slub_set_percpu_partial(c, p)		\
233({						\
234	slub_percpu_partial(c) = (p)->next;	\
235})
236
237#define slub_percpu_partial_read_once(c)	READ_ONCE(slub_percpu_partial(c))
238#else
239#define slub_percpu_partial(c)			NULL
240
241#define slub_set_percpu_partial(c, p)
242
243#define slub_percpu_partial_read_once(c)	NULL
244#endif // CONFIG_SLUB_CPU_PARTIAL
245
246/*
247 * Word size structure that can be atomically updated or read and that
248 * contains both the order and the number of objects that a slab of the
249 * given order would contain.
250 */
251struct kmem_cache_order_objects {
252	unsigned int x;
253};
254
255/*
256 * Slab cache management.
257 */
258struct kmem_cache {
259#ifndef CONFIG_SLUB_TINY
260	struct kmem_cache_cpu __percpu *cpu_slab;
261#endif
262	/* Used for retrieving partial slabs, etc. */
263	slab_flags_t flags;
264	unsigned long min_partial;
265	unsigned int size;		/* Object size including metadata */
266	unsigned int object_size;	/* Object size without metadata */
267	struct reciprocal_value reciprocal_size;
268	unsigned int offset;		/* Free pointer offset */
269#ifdef CONFIG_SLUB_CPU_PARTIAL
270	/* Number of per cpu partial objects to keep around */
271	unsigned int cpu_partial;
272	/* Number of per cpu partial slabs to keep around */
273	unsigned int cpu_partial_slabs;
274#endif
275	struct kmem_cache_order_objects oo;
276
277	/* Allocation and freeing of slabs */
278	struct kmem_cache_order_objects min;
279	gfp_t allocflags;		/* gfp flags to use on each alloc */
280	int refcount;			/* Refcount for slab cache destroy */
281	void (*ctor)(void *object);	/* Object constructor */
282	unsigned int inuse;		/* Offset to metadata */
283	unsigned int align;		/* Alignment */
284	unsigned int red_left_pad;	/* Left redzone padding size */
285	const char *name;		/* Name (only for display!) */
286	struct list_head list;		/* List of slab caches */
287#ifdef CONFIG_SYSFS
288	struct kobject kobj;		/* For sysfs */
289#endif
290#ifdef CONFIG_SLAB_FREELIST_HARDENED
291	unsigned long random;
292#endif
293
294#ifdef CONFIG_NUMA
295	/*
296	 * Defragmentation by allocating from a remote node.
297	 */
298	unsigned int remote_node_defrag_ratio;
299#endif
300
301#ifdef CONFIG_SLAB_FREELIST_RANDOM
302	unsigned int *random_seq;
303#endif
304
305#ifdef CONFIG_KASAN_GENERIC
306	struct kasan_cache kasan_info;
307#endif
308
309#ifdef CONFIG_HARDENED_USERCOPY
310	unsigned int useroffset;	/* Usercopy region offset */
311	unsigned int usersize;		/* Usercopy region size */
312#endif
313
314	struct kmem_cache_node *node[MAX_NUMNODES];
315};
316
317#if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
318#define SLAB_SUPPORTS_SYSFS 1
319void sysfs_slab_unlink(struct kmem_cache *s);
320void sysfs_slab_release(struct kmem_cache *s);
321#else
322static inline void sysfs_slab_unlink(struct kmem_cache *s) { }
323static inline void sysfs_slab_release(struct kmem_cache *s) { }
324#endif
325
326void *fixup_red_left(struct kmem_cache *s, void *p);
327
328static inline void *nearest_obj(struct kmem_cache *cache,
329				const struct slab *slab, void *x)
330{
331	void *object = x - (x - slab_address(slab)) % cache->size;
332	void *last_object = slab_address(slab) +
333		(slab->objects - 1) * cache->size;
334	void *result = (unlikely(object > last_object)) ? last_object : object;
335
336	result = fixup_red_left(cache, result);
337	return result;
338}
339
340/* Determine object index from a given position */
341static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
342					  void *addr, void *obj)
343{
344	return reciprocal_divide(kasan_reset_tag(obj) - addr,
345				 cache->reciprocal_size);
346}
347
348static inline unsigned int obj_to_index(const struct kmem_cache *cache,
349					const struct slab *slab, void *obj)
350{
351	if (is_kfence_address(obj))
352		return 0;
353	return __obj_to_index(cache, slab_address(slab), obj);
354}
355
356static inline int objs_per_slab(const struct kmem_cache *cache,
357				const struct slab *slab)
358{
359	return slab->objects;
360}
361
362/*
363 * State of the slab allocator.
364 *
365 * This is used to describe the states of the allocator during bootup.
366 * Allocators use this to gradually bootstrap themselves. Most allocators
367 * have the problem that the structures used for managing slab caches are
368 * allocated from slab caches themselves.
369 */
370enum slab_state {
371	DOWN,			/* No slab functionality yet */
372	PARTIAL,		/* SLUB: kmem_cache_node available */
373	UP,			/* Slab caches usable but not all extras yet */
374	FULL			/* Everything is working */
375};
376
377extern enum slab_state slab_state;
378
379/* The slab cache mutex protects the management structures during changes */
380extern struct mutex slab_mutex;
381
382/* The list of all slab caches on the system */
383extern struct list_head slab_caches;
384
385/* The slab cache that manages slab cache information */
386extern struct kmem_cache *kmem_cache;
387
388/* A table of kmalloc cache names and sizes */
389extern const struct kmalloc_info_struct {
390	const char *name[NR_KMALLOC_TYPES];
391	unsigned int size;
392} kmalloc_info[];
393
394/* Kmalloc array related functions */
395void setup_kmalloc_cache_index_table(void);
396void create_kmalloc_caches(void);
397
398extern u8 kmalloc_size_index[24];
399
400static inline unsigned int size_index_elem(unsigned int bytes)
401{
402	return (bytes - 1) / 8;
403}
404
405/*
406 * Find the kmem_cache structure that serves a given size of
407 * allocation
408 *
409 * This assumes size is larger than zero and not larger than
410 * KMALLOC_MAX_CACHE_SIZE and the caller must check that.
411 */
412static inline struct kmem_cache *
413kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller)
414{
415	unsigned int index;
416
417	if (!b)
418		b = &kmalloc_caches[kmalloc_type(flags, caller)];
419	if (size <= 192)
420		index = kmalloc_size_index[size_index_elem(size)];
421	else
422		index = fls(size - 1);
423
424	return (*b)[index];
425}
426
427gfp_t kmalloc_fix_flags(gfp_t flags);
428
429/* Functions provided by the slab allocators */
430int do_kmem_cache_create(struct kmem_cache *s, const char *name,
431			 unsigned int size, struct kmem_cache_args *args,
432			 slab_flags_t flags);
433
434void __init kmem_cache_init(void);
435extern void create_boot_cache(struct kmem_cache *, const char *name,
436			unsigned int size, slab_flags_t flags,
437			unsigned int useroffset, unsigned int usersize);
438
439int slab_unmergeable(struct kmem_cache *s);
440struct kmem_cache *find_mergeable(unsigned size, unsigned align,
441		slab_flags_t flags, const char *name, void (*ctor)(void *));
442struct kmem_cache *
443__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
444		   slab_flags_t flags, void (*ctor)(void *));
445
446slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name);
447
448static inline bool is_kmalloc_cache(struct kmem_cache *s)
449{
450	return (s->flags & SLAB_KMALLOC);
451}
452
453static inline bool is_kmalloc_normal(struct kmem_cache *s)
454{
455	if (!is_kmalloc_cache(s))
456		return false;
457	return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT));
458}
459
460/* Legal flag mask for kmem_cache_create(), for various configurations */
461#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
462			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
463			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
464
465#ifdef CONFIG_SLUB_DEBUG
466#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
467			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
468#else
469#define SLAB_DEBUG_FLAGS (0)
470#endif
471
472#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
473			  SLAB_TEMPORARY | SLAB_ACCOUNT | \
474			  SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
475
476/* Common flags available with current configuration */
477#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
478
479/* Common flags permitted for kmem_cache_create */
480#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
481			      SLAB_RED_ZONE | \
482			      SLAB_POISON | \
483			      SLAB_STORE_USER | \
484			      SLAB_TRACE | \
485			      SLAB_CONSISTENCY_CHECKS | \
486			      SLAB_NOLEAKTRACE | \
487			      SLAB_RECLAIM_ACCOUNT | \
488			      SLAB_TEMPORARY | \
489			      SLAB_ACCOUNT | \
490			      SLAB_KMALLOC | \
491			      SLAB_NO_MERGE | \
492			      SLAB_NO_USER_FLAGS)
493
494bool __kmem_cache_empty(struct kmem_cache *);
495int __kmem_cache_shutdown(struct kmem_cache *);
496void __kmem_cache_release(struct kmem_cache *);
497int __kmem_cache_shrink(struct kmem_cache *);
498void slab_kmem_cache_release(struct kmem_cache *);
499
500struct seq_file;
501struct file;
502
503struct slabinfo {
504	unsigned long active_objs;
505	unsigned long num_objs;
506	unsigned long active_slabs;
507	unsigned long num_slabs;
508	unsigned long shared_avail;
509	unsigned int limit;
510	unsigned int batchcount;
511	unsigned int shared;
512	unsigned int objects_per_slab;
513	unsigned int cache_order;
514};
515
516void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
517
518#ifdef CONFIG_SLUB_DEBUG
519#ifdef CONFIG_SLUB_DEBUG_ON
520DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
521#else
522DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
523#endif
524extern void print_tracking(struct kmem_cache *s, void *object);
525long validate_slab_cache(struct kmem_cache *s);
526static inline bool __slub_debug_enabled(void)
527{
528	return static_branch_unlikely(&slub_debug_enabled);
529}
530#else
531static inline void print_tracking(struct kmem_cache *s, void *object)
532{
533}
534static inline bool __slub_debug_enabled(void)
535{
536	return false;
537}
538#endif
539
540/*
541 * Returns true if any of the specified slab_debug flags is enabled for the
542 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
543 * the static key.
544 */
545static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
546{
547	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
548		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
549	if (__slub_debug_enabled())
550		return s->flags & flags;
551	return false;
552}
553
554#if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT)
555bool slab_in_kunit_test(void);
556#else
557static inline bool slab_in_kunit_test(void) { return false; }
558#endif
559
560#ifdef CONFIG_SLAB_OBJ_EXT
561
562/*
563 * slab_obj_exts - get the pointer to the slab object extension vector
564 * associated with a slab.
565 * @slab: a pointer to the slab struct
566 *
567 * Returns a pointer to the object extension vector associated with the slab,
568 * or NULL if no such vector has been associated yet.
569 */
570static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
571{
572	unsigned long obj_exts = READ_ONCE(slab->obj_exts);
573
574#ifdef CONFIG_MEMCG
575	VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS),
576							slab_page(slab));
577	VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab));
578#endif
579	return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK);
580}
581
582int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
583                        gfp_t gfp, bool new_slab);
584
585#else /* CONFIG_SLAB_OBJ_EXT */
586
587static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
588{
589	return NULL;
590}
591
592#endif /* CONFIG_SLAB_OBJ_EXT */
593
594static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
595{
596	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
597		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
598}
599
600#ifdef CONFIG_MEMCG
601bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
602				  gfp_t flags, size_t size, void **p);
603void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
604			    void **p, int objects, struct slabobj_ext *obj_exts);
605#endif
606
607size_t __ksize(const void *objp);
608
609static inline size_t slab_ksize(const struct kmem_cache *s)
610{
611#ifdef CONFIG_SLUB_DEBUG
612	/*
613	 * Debugging requires use of the padding between object
614	 * and whatever may come after it.
615	 */
616	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
617		return s->object_size;
618#endif
619	if (s->flags & SLAB_KASAN)
620		return s->object_size;
621	/*
622	 * If we have the need to store the freelist pointer
623	 * back there or track user information then we can
624	 * only use the space before that information.
625	 */
626	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
627		return s->inuse;
628	/*
629	 * Else we can use all the padding etc for the allocation
630	 */
631	return s->size;
632}
633
634#ifdef CONFIG_SLUB_DEBUG
635void dump_unreclaimable_slab(void);
636#else
637static inline void dump_unreclaimable_slab(void)
638{
639}
640#endif
641
642void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
643
644#ifdef CONFIG_SLAB_FREELIST_RANDOM
645int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
646			gfp_t gfp);
647void cache_random_seq_destroy(struct kmem_cache *cachep);
648#else
649static inline int cache_random_seq_create(struct kmem_cache *cachep,
650					unsigned int count, gfp_t gfp)
651{
652	return 0;
653}
654static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
655#endif /* CONFIG_SLAB_FREELIST_RANDOM */
656
657static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
658{
659	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
660				&init_on_alloc)) {
661		if (c->ctor)
662			return false;
663		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
664			return flags & __GFP_ZERO;
665		return true;
666	}
667	return flags & __GFP_ZERO;
668}
669
670static inline bool slab_want_init_on_free(struct kmem_cache *c)
671{
672	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
673				&init_on_free))
674		return !(c->ctor ||
675			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
676	return false;
677}
678
679#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
680void debugfs_slab_release(struct kmem_cache *);
681#else
682static inline void debugfs_slab_release(struct kmem_cache *s) { }
683#endif
684
685#ifdef CONFIG_PRINTK
686#define KS_ADDRS_COUNT 16
687struct kmem_obj_info {
688	void *kp_ptr;
689	struct slab *kp_slab;
690	void *kp_objp;
691	unsigned long kp_data_offset;
692	struct kmem_cache *kp_slab_cache;
693	void *kp_ret;
694	void *kp_stack[KS_ADDRS_COUNT];
695	void *kp_free_stack[KS_ADDRS_COUNT];
696};
697void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
698#endif
699
700void __check_heap_object(const void *ptr, unsigned long n,
701			 const struct slab *slab, bool to_user);
702
703static inline bool slub_debug_orig_size(struct kmem_cache *s)
704{
705	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
706			(s->flags & SLAB_KMALLOC));
707}
708
709#ifdef CONFIG_SLUB_DEBUG
710void skip_orig_size_check(struct kmem_cache *s, const void *object);
711#endif
712
713#endif /* MM_SLAB_H */