Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1#ifndef MM_SLAB_H
  2#define MM_SLAB_H
  3/*
  4 * Internal slab definitions
  5 */
  6
  7/*
  8 * State of the slab allocator.
  9 *
 10 * This is used to describe the states of the allocator during bootup.
 11 * Allocators use this to gradually bootstrap themselves. Most allocators
 12 * have the problem that the structures used for managing slab caches are
 13 * allocated from slab caches themselves.
 14 */
 15enum slab_state {
 16	DOWN,			/* No slab functionality yet */
 17	PARTIAL,		/* SLUB: kmem_cache_node available */
 18	PARTIAL_ARRAYCACHE,	/* SLAB: kmalloc size for arraycache available */
 19	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
 20	UP,			/* Slab caches usable but not all extras yet */
 21	FULL			/* Everything is working */
 22};
 23
 24extern enum slab_state slab_state;
 25
 26/* The slab cache mutex protects the management structures during changes */
 27extern struct mutex slab_mutex;
 28
 29/* The list of all slab caches on the system */
 30extern struct list_head slab_caches;
 31
 32/* The slab cache that manages slab cache information */
 33extern struct kmem_cache *kmem_cache;
 34
 35unsigned long calculate_alignment(unsigned long flags,
 36		unsigned long align, unsigned long size);
 37
 38#ifndef CONFIG_SLOB
 39/* Kmalloc array related functions */
 40void create_kmalloc_caches(unsigned long);
 41
 42/* Find the kmalloc slab corresponding for a certain size */
 43struct kmem_cache *kmalloc_slab(size_t, gfp_t);
 44#endif
 45
 46
 47/* Functions provided by the slab allocators */
 48extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
 49
 50extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
 51			unsigned long flags);
 52extern void create_boot_cache(struct kmem_cache *, const char *name,
 53			size_t size, unsigned long flags);
 54
 55struct mem_cgroup;
 56#ifdef CONFIG_SLUB
 57struct kmem_cache *
 58__kmem_cache_alias(const char *name, size_t size, size_t align,
 59		   unsigned long flags, void (*ctor)(void *));
 60#else
 61static inline struct kmem_cache *
 62__kmem_cache_alias(const char *name, size_t size, size_t align,
 63		   unsigned long flags, void (*ctor)(void *))
 64{ return NULL; }
 65#endif
 66
 67
 68/* Legal flag mask for kmem_cache_create(), for various configurations */
 69#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
 70			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
 71
 72#if defined(CONFIG_DEBUG_SLAB)
 73#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 74#elif defined(CONFIG_SLUB_DEBUG)
 75#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 76			  SLAB_TRACE | SLAB_DEBUG_FREE)
 77#else
 78#define SLAB_DEBUG_FLAGS (0)
 79#endif
 80
 81#if defined(CONFIG_SLAB)
 82#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
 83			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
 84#elif defined(CONFIG_SLUB)
 85#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
 86			  SLAB_TEMPORARY | SLAB_NOTRACK)
 87#else
 88#define SLAB_CACHE_FLAGS (0)
 89#endif
 90
 91#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
 92
 93int __kmem_cache_shutdown(struct kmem_cache *);
 94void slab_kmem_cache_release(struct kmem_cache *);
 95
 96struct seq_file;
 97struct file;
 98
 99struct slabinfo {
100	unsigned long active_objs;
101	unsigned long num_objs;
102	unsigned long active_slabs;
103	unsigned long num_slabs;
104	unsigned long shared_avail;
105	unsigned int limit;
106	unsigned int batchcount;
107	unsigned int shared;
108	unsigned int objects_per_slab;
109	unsigned int cache_order;
110};
111
112void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
113void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
114ssize_t slabinfo_write(struct file *file, const char __user *buffer,
115		       size_t count, loff_t *ppos);
116
117#ifdef CONFIG_MEMCG_KMEM
118static inline bool is_root_cache(struct kmem_cache *s)
119{
120	return !s->memcg_params || s->memcg_params->is_root_cache;
121}
122
123static inline void memcg_bind_pages(struct kmem_cache *s, int order)
124{
125	if (!is_root_cache(s))
126		atomic_add(1 << order, &s->memcg_params->nr_pages);
127}
128
129static inline void memcg_release_pages(struct kmem_cache *s, int order)
130{
131	if (is_root_cache(s))
132		return;
133
134	if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
135		mem_cgroup_destroy_cache(s);
136}
137
138static inline bool slab_equal_or_root(struct kmem_cache *s,
139					struct kmem_cache *p)
140{
141	return (p == s) ||
142		(s->memcg_params && (p == s->memcg_params->root_cache));
143}
144
145/*
146 * We use suffixes to the name in memcg because we can't have caches
147 * created in the system with the same name. But when we print them
148 * locally, better refer to them with the base name
149 */
150static inline const char *cache_name(struct kmem_cache *s)
151{
152	if (!is_root_cache(s))
153		return s->memcg_params->root_cache->name;
154	return s->name;
155}
156
157/*
158 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
159 * That said the caller must assure the memcg's cache won't go away. Since once
160 * created a memcg's cache is destroyed only along with the root cache, it is
161 * true if we are going to allocate from the cache or hold a reference to the
162 * root cache by other means. Otherwise, we should hold either the slab_mutex
163 * or the memcg's slab_caches_mutex while calling this function and accessing
164 * the returned value.
165 */
166static inline struct kmem_cache *
167cache_from_memcg_idx(struct kmem_cache *s, int idx)
168{
169	struct kmem_cache *cachep;
170	struct memcg_cache_params *params;
171
172	if (!s->memcg_params)
173		return NULL;
174
175	rcu_read_lock();
176	params = rcu_dereference(s->memcg_params);
177	cachep = params->memcg_caches[idx];
178	rcu_read_unlock();
179
180	/*
181	 * Make sure we will access the up-to-date value. The code updating
182	 * memcg_caches issues a write barrier to match this (see
183	 * memcg_register_cache()).
184	 */
185	smp_read_barrier_depends();
186	return cachep;
187}
188
189static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
190{
191	if (is_root_cache(s))
192		return s;
193	return s->memcg_params->root_cache;
194}
195#else
196static inline bool is_root_cache(struct kmem_cache *s)
197{
198	return true;
199}
200
201static inline void memcg_bind_pages(struct kmem_cache *s, int order)
202{
203}
204
205static inline void memcg_release_pages(struct kmem_cache *s, int order)
206{
207}
208
209static inline bool slab_equal_or_root(struct kmem_cache *s,
210				      struct kmem_cache *p)
211{
212	return true;
213}
214
215static inline const char *cache_name(struct kmem_cache *s)
216{
217	return s->name;
218}
219
220static inline struct kmem_cache *
221cache_from_memcg_idx(struct kmem_cache *s, int idx)
222{
223	return NULL;
224}
225
226static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
227{
228	return s;
229}
230#endif
231
232static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
233{
234	struct kmem_cache *cachep;
235	struct page *page;
236
237	/*
238	 * When kmemcg is not being used, both assignments should return the
239	 * same value. but we don't want to pay the assignment price in that
240	 * case. If it is not compiled in, the compiler should be smart enough
241	 * to not do even the assignment. In that case, slab_equal_or_root
242	 * will also be a constant.
243	 */
244	if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
245		return s;
246
247	page = virt_to_head_page(x);
248	cachep = page->slab_cache;
249	if (slab_equal_or_root(cachep, s))
250		return cachep;
251
252	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
253		__FUNCTION__, cachep->name, s->name);
254	WARN_ON_ONCE(1);
255	return s;
256}
257#endif
258
259
260/*
261 * The slab lists for all objects.
262 */
263struct kmem_cache_node {
264	spinlock_t list_lock;
265
266#ifdef CONFIG_SLAB
267	struct list_head slabs_partial;	/* partial list first, better asm code */
268	struct list_head slabs_full;
269	struct list_head slabs_free;
270	unsigned long free_objects;
271	unsigned int free_limit;
272	unsigned int colour_next;	/* Per-node cache coloring */
273	struct array_cache *shared;	/* shared per node */
274	struct array_cache **alien;	/* on other nodes */
275	unsigned long next_reap;	/* updated without locking */
276	int free_touched;		/* updated without locking */
277#endif
278
279#ifdef CONFIG_SLUB
280	unsigned long nr_partial;
281	struct list_head partial;
282#ifdef CONFIG_SLUB_DEBUG
283	atomic_long_t nr_slabs;
284	atomic_long_t total_objects;
285	struct list_head full;
286#endif
287#endif
288
289};
290
291void *slab_next(struct seq_file *m, void *p, loff_t *pos);
292void slab_stop(struct seq_file *m, void *p);