Loading...
Note: File does not exist in v3.1.
1#ifndef MM_SLAB_H
2#define MM_SLAB_H
3/*
4 * Internal slab definitions
5 */
6
7/*
8 * State of the slab allocator.
9 *
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
14 */
15enum slab_state {
16 DOWN, /* No slab functionality yet */
17 PARTIAL, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
19 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
20 UP, /* Slab caches usable but not all extras yet */
21 FULL /* Everything is working */
22};
23
24extern enum slab_state slab_state;
25
26/* The slab cache mutex protects the management structures during changes */
27extern struct mutex slab_mutex;
28
29/* The list of all slab caches on the system */
30extern struct list_head slab_caches;
31
32/* The slab cache that manages slab cache information */
33extern struct kmem_cache *kmem_cache;
34
35unsigned long calculate_alignment(unsigned long flags,
36 unsigned long align, unsigned long size);
37
38#ifndef CONFIG_SLOB
39/* Kmalloc array related functions */
40void create_kmalloc_caches(unsigned long);
41
42/* Find the kmalloc slab corresponding for a certain size */
43struct kmem_cache *kmalloc_slab(size_t, gfp_t);
44#endif
45
46
47/* Functions provided by the slab allocators */
48extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
49
50extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
51 unsigned long flags);
52extern void create_boot_cache(struct kmem_cache *, const char *name,
53 size_t size, unsigned long flags);
54
55struct mem_cgroup;
56#ifdef CONFIG_SLUB
57struct kmem_cache *
58__kmem_cache_alias(const char *name, size_t size, size_t align,
59 unsigned long flags, void (*ctor)(void *));
60#else
61static inline struct kmem_cache *
62__kmem_cache_alias(const char *name, size_t size, size_t align,
63 unsigned long flags, void (*ctor)(void *))
64{ return NULL; }
65#endif
66
67
68/* Legal flag mask for kmem_cache_create(), for various configurations */
69#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
70 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
71
72#if defined(CONFIG_DEBUG_SLAB)
73#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
74#elif defined(CONFIG_SLUB_DEBUG)
75#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
76 SLAB_TRACE | SLAB_DEBUG_FREE)
77#else
78#define SLAB_DEBUG_FLAGS (0)
79#endif
80
81#if defined(CONFIG_SLAB)
82#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
83 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
84#elif defined(CONFIG_SLUB)
85#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
86 SLAB_TEMPORARY | SLAB_NOTRACK)
87#else
88#define SLAB_CACHE_FLAGS (0)
89#endif
90
91#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
92
93int __kmem_cache_shutdown(struct kmem_cache *);
94void slab_kmem_cache_release(struct kmem_cache *);
95
96struct seq_file;
97struct file;
98
99struct slabinfo {
100 unsigned long active_objs;
101 unsigned long num_objs;
102 unsigned long active_slabs;
103 unsigned long num_slabs;
104 unsigned long shared_avail;
105 unsigned int limit;
106 unsigned int batchcount;
107 unsigned int shared;
108 unsigned int objects_per_slab;
109 unsigned int cache_order;
110};
111
112void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
113void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
114ssize_t slabinfo_write(struct file *file, const char __user *buffer,
115 size_t count, loff_t *ppos);
116
117#ifdef CONFIG_MEMCG_KMEM
118static inline bool is_root_cache(struct kmem_cache *s)
119{
120 return !s->memcg_params || s->memcg_params->is_root_cache;
121}
122
123static inline void memcg_bind_pages(struct kmem_cache *s, int order)
124{
125 if (!is_root_cache(s))
126 atomic_add(1 << order, &s->memcg_params->nr_pages);
127}
128
129static inline void memcg_release_pages(struct kmem_cache *s, int order)
130{
131 if (is_root_cache(s))
132 return;
133
134 if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
135 mem_cgroup_destroy_cache(s);
136}
137
138static inline bool slab_equal_or_root(struct kmem_cache *s,
139 struct kmem_cache *p)
140{
141 return (p == s) ||
142 (s->memcg_params && (p == s->memcg_params->root_cache));
143}
144
145/*
146 * We use suffixes to the name in memcg because we can't have caches
147 * created in the system with the same name. But when we print them
148 * locally, better refer to them with the base name
149 */
150static inline const char *cache_name(struct kmem_cache *s)
151{
152 if (!is_root_cache(s))
153 return s->memcg_params->root_cache->name;
154 return s->name;
155}
156
157/*
158 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
159 * That said the caller must assure the memcg's cache won't go away. Since once
160 * created a memcg's cache is destroyed only along with the root cache, it is
161 * true if we are going to allocate from the cache or hold a reference to the
162 * root cache by other means. Otherwise, we should hold either the slab_mutex
163 * or the memcg's slab_caches_mutex while calling this function and accessing
164 * the returned value.
165 */
166static inline struct kmem_cache *
167cache_from_memcg_idx(struct kmem_cache *s, int idx)
168{
169 struct kmem_cache *cachep;
170 struct memcg_cache_params *params;
171
172 if (!s->memcg_params)
173 return NULL;
174
175 rcu_read_lock();
176 params = rcu_dereference(s->memcg_params);
177 cachep = params->memcg_caches[idx];
178 rcu_read_unlock();
179
180 /*
181 * Make sure we will access the up-to-date value. The code updating
182 * memcg_caches issues a write barrier to match this (see
183 * memcg_register_cache()).
184 */
185 smp_read_barrier_depends();
186 return cachep;
187}
188
189static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
190{
191 if (is_root_cache(s))
192 return s;
193 return s->memcg_params->root_cache;
194}
195#else
196static inline bool is_root_cache(struct kmem_cache *s)
197{
198 return true;
199}
200
201static inline void memcg_bind_pages(struct kmem_cache *s, int order)
202{
203}
204
205static inline void memcg_release_pages(struct kmem_cache *s, int order)
206{
207}
208
209static inline bool slab_equal_or_root(struct kmem_cache *s,
210 struct kmem_cache *p)
211{
212 return true;
213}
214
215static inline const char *cache_name(struct kmem_cache *s)
216{
217 return s->name;
218}
219
220static inline struct kmem_cache *
221cache_from_memcg_idx(struct kmem_cache *s, int idx)
222{
223 return NULL;
224}
225
226static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
227{
228 return s;
229}
230#endif
231
232static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
233{
234 struct kmem_cache *cachep;
235 struct page *page;
236
237 /*
238 * When kmemcg is not being used, both assignments should return the
239 * same value. but we don't want to pay the assignment price in that
240 * case. If it is not compiled in, the compiler should be smart enough
241 * to not do even the assignment. In that case, slab_equal_or_root
242 * will also be a constant.
243 */
244 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
245 return s;
246
247 page = virt_to_head_page(x);
248 cachep = page->slab_cache;
249 if (slab_equal_or_root(cachep, s))
250 return cachep;
251
252 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
253 __FUNCTION__, cachep->name, s->name);
254 WARN_ON_ONCE(1);
255 return s;
256}
257#endif
258
259
260/*
261 * The slab lists for all objects.
262 */
263struct kmem_cache_node {
264 spinlock_t list_lock;
265
266#ifdef CONFIG_SLAB
267 struct list_head slabs_partial; /* partial list first, better asm code */
268 struct list_head slabs_full;
269 struct list_head slabs_free;
270 unsigned long free_objects;
271 unsigned int free_limit;
272 unsigned int colour_next; /* Per-node cache coloring */
273 struct array_cache *shared; /* shared per node */
274 struct array_cache **alien; /* on other nodes */
275 unsigned long next_reap; /* updated without locking */
276 int free_touched; /* updated without locking */
277#endif
278
279#ifdef CONFIG_SLUB
280 unsigned long nr_partial;
281 struct list_head partial;
282#ifdef CONFIG_SLUB_DEBUG
283 atomic_long_t nr_slabs;
284 atomic_long_t total_objects;
285 struct list_head full;
286#endif
287#endif
288
289};
290
291void *slab_next(struct seq_file *m, void *p, loff_t *pos);
292void slab_stop(struct seq_file *m, void *p);