Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.1
 
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
 
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
 
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/stop_machine.h>
  46#include <linux/sort.h>
  47#include <linux/pfn.h>
  48#include <linux/backing-dev.h>
  49#include <linux/fault-inject.h>
  50#include <linux/page-isolation.h>
  51#include <linux/page_cgroup.h>
  52#include <linux/debugobjects.h>
  53#include <linux/kmemleak.h>
  54#include <linux/memory.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <linux/ftrace_event.h>
  58#include <linux/memcontrol.h>
  59#include <linux/prefetch.h>
  60
  61#include <asm/tlbflush.h>
 
 
 
 
 
 
 
 
 
 
 
 
  62#include <asm/div64.h>
  63#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  66DEFINE_PER_CPU(int, numa_node);
  67EXPORT_PER_CPU_SYMBOL(numa_node);
  68#endif
  69
 
 
  70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  71/*
  72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  75 * defined in <linux/topology.h>.
  76 */
  77DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  79#endif
  80
 
 
 
 
 
 
 
  81/*
  82 * Array of node states.
  83 */
  84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  85	[N_POSSIBLE] = NODE_MASK_ALL,
  86	[N_ONLINE] = { { [0] = 1UL } },
  87#ifndef CONFIG_NUMA
  88	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
  89#ifdef CONFIG_HIGHMEM
  90	[N_HIGH_MEMORY] = { { [0] = 1UL } },
  91#endif
 
  92	[N_CPU] = { { [0] = 1UL } },
  93#endif	/* NUMA */
  94};
  95EXPORT_SYMBOL(node_states);
  96
  97unsigned long totalram_pages __read_mostly;
  98unsigned long totalreserve_pages __read_mostly;
  99int percpu_pagelist_fraction;
 100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 101
 102#ifdef CONFIG_PM_SLEEP
 103/*
 104 * The following functions are used by the suspend/hibernate code to temporarily
 105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 106 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 109 * guaranteed not to run in parallel with that modification).
 110 */
 111
 112static gfp_t saved_gfp_mask;
 113
 114void pm_restore_gfp_mask(void)
 115{
 116	WARN_ON(!mutex_is_locked(&pm_mutex));
 117	if (saved_gfp_mask) {
 118		gfp_allowed_mask = saved_gfp_mask;
 119		saved_gfp_mask = 0;
 120	}
 121}
 122
 123void pm_restrict_gfp_mask(void)
 124{
 125	WARN_ON(!mutex_is_locked(&pm_mutex));
 126	WARN_ON(saved_gfp_mask);
 127	saved_gfp_mask = gfp_allowed_mask;
 128	gfp_allowed_mask &= ~GFP_IOFS;
 129}
 130#endif /* CONFIG_PM_SLEEP */
 131
 132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 133int pageblock_order __read_mostly;
 134#endif
 135
 136static void __free_pages_ok(struct page *page, unsigned int order);
 
 137
 138/*
 139 * results with 256, 32 in the lowmem_reserve sysctl:
 140 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 141 *	1G machine -> (16M dma, 784M normal, 224M high)
 142 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 143 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 144 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 145 *
 146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 147 * don't need any ZONE_NORMAL reservation
 148 */
 149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 150#ifdef CONFIG_ZONE_DMA
 151	 256,
 152#endif
 153#ifdef CONFIG_ZONE_DMA32
 154	 256,
 155#endif
 
 156#ifdef CONFIG_HIGHMEM
 157	 32,
 158#endif
 159	 32,
 160};
 161
 162EXPORT_SYMBOL(totalram_pages);
 163
 164static char * const zone_names[MAX_NR_ZONES] = {
 165#ifdef CONFIG_ZONE_DMA
 166	 "DMA",
 167#endif
 168#ifdef CONFIG_ZONE_DMA32
 169	 "DMA32",
 170#endif
 171	 "Normal",
 172#ifdef CONFIG_HIGHMEM
 173	 "HighMem",
 174#endif
 175	 "Movable",
 
 
 
 176};
 177
 178int min_free_kbytes = 1024;
 
 
 
 
 
 
 
 
 
 
 
 179
 180static unsigned long __meminitdata nr_kernel_pages;
 181static unsigned long __meminitdata nr_all_pages;
 182static unsigned long __meminitdata dma_reserve;
 183
 184#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 185  /*
 186   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
 187   * ranges of memory (RAM) that may be registered with add_active_range().
 188   * Ranges passed to add_active_range() will be merged if possible
 189   * so the number of times add_active_range() can be called is
 190   * related to the number of nodes and the number of holes
 191   */
 192  #ifdef CONFIG_MAX_ACTIVE_REGIONS
 193    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
 194    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
 195  #else
 196    #if MAX_NUMNODES >= 32
 197      /* If there can be many nodes, allow up to 50 holes per node */
 198      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
 199    #else
 200      /* By default, allow up to 256 distinct regions */
 201      #define MAX_ACTIVE_REGIONS 256
 202    #endif
 203  #endif
 204
 205  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
 206  static int __meminitdata nr_nodemap_entries;
 207  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 208  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 209  static unsigned long __initdata required_kernelcore;
 210  static unsigned long __initdata required_movablecore;
 211  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 212
 213  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 214  int movable_zone;
 215  EXPORT_SYMBOL(movable_zone);
 216#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 217
 218#if MAX_NUMNODES > 1
 219int nr_node_ids __read_mostly = MAX_NUMNODES;
 220int nr_online_nodes __read_mostly = 1;
 221EXPORT_SYMBOL(nr_node_ids);
 222EXPORT_SYMBOL(nr_online_nodes);
 223#endif
 224
 
 
 
 
 225int page_group_by_mobility_disabled __read_mostly;
 226
 227static void set_pageblock_migratetype(struct page *page, int migratetype)
 
 
 
 
 
 
 
 
 228{
 
 
 229
 230	if (unlikely(page_group_by_mobility_disabled))
 231		migratetype = MIGRATE_UNMOVABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233	set_pageblock_flags_group(page, (unsigned long)migratetype,
 234					PB_migrate, PB_migrate_end);
 
 
 235}
 236
 237bool oom_killer_disabled __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239#ifdef CONFIG_DEBUG_VM
 240static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 241{
 242	int ret = 0;
 243	unsigned seq;
 244	unsigned long pfn = page_to_pfn(page);
 
 245
 246	do {
 247		seq = zone_span_seqbegin(zone);
 248		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
 249			ret = 1;
 250		else if (pfn < zone->zone_start_pfn)
 251			ret = 1;
 252	} while (zone_span_seqretry(zone, seq));
 253
 
 
 
 
 
 254	return ret;
 255}
 256
 257static int page_is_consistent(struct zone *zone, struct page *page)
 258{
 259	if (!pfn_valid_within(page_to_pfn(page)))
 260		return 0;
 261	if (zone != page_zone(page))
 262		return 0;
 263
 264	return 1;
 265}
 266/*
 267 * Temporary debugging check for pages not lying within a given zone.
 268 */
 269static int bad_range(struct zone *zone, struct page *page)
 270{
 271	if (page_outside_zone_boundaries(zone, page))
 272		return 1;
 273	if (!page_is_consistent(zone, page))
 274		return 1;
 275
 276	return 0;
 277}
 278#else
 279static inline int bad_range(struct zone *zone, struct page *page)
 280{
 281	return 0;
 282}
 283#endif
 284
 285static void bad_page(struct page *page)
 286{
 287	static unsigned long resume;
 288	static unsigned long nr_shown;
 289	static unsigned long nr_unshown;
 290
 291	/* Don't complain about poisoned pages */
 292	if (PageHWPoison(page)) {
 293		reset_page_mapcount(page); /* remove PageBuddy */
 294		return;
 295	}
 296
 297	/*
 298	 * Allow a burst of 60 reports, then keep quiet for that minute;
 299	 * or allow a steady drip of one report per second.
 300	 */
 301	if (nr_shown == 60) {
 302		if (time_before(jiffies, resume)) {
 303			nr_unshown++;
 304			goto out;
 305		}
 306		if (nr_unshown) {
 307			printk(KERN_ALERT
 308			      "BUG: Bad page state: %lu messages suppressed\n",
 309				nr_unshown);
 310			nr_unshown = 0;
 311		}
 312		nr_shown = 0;
 313	}
 314	if (nr_shown++ == 0)
 315		resume = jiffies + 60 * HZ;
 316
 317	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 318		current->comm, page_to_pfn(page));
 319	dump_page(page);
 320
 
 321	dump_stack();
 322out:
 323	/* Leave bad fields for debug, except PageBuddy could make trouble */
 324	reset_page_mapcount(page); /* remove PageBuddy */
 325	add_taint(TAINT_BAD_PAGE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326}
 327
 328/*
 329 * Higher-order pages are called "compound pages".  They are structured thusly:
 330 *
 331 * The first PAGE_SIZE page is called the "head page".
 332 *
 333 * The remaining PAGE_SIZE pages are called "tail pages".
 334 *
 335 * All pages have PG_compound set.  All pages have their ->private pointing at
 336 * the head page (even the head page has this).
 337 *
 338 * The first tail page's ->lru.next holds the address of the compound page's
 339 * put_page() function.  Its ->lru.prev holds the order of allocation.
 340 * This usage means that zero-order pages may not be compound.
 341 */
 342
 343static void free_compound_page(struct page *page)
 344{
 345	__free_pages_ok(page, compound_order(page));
 346}
 347
 348void prep_compound_page(struct page *page, unsigned long order)
 349{
 350	int i;
 351	int nr_pages = 1 << order;
 352
 353	set_compound_page_dtor(page, free_compound_page);
 354	set_compound_order(page, order);
 355	__SetPageHead(page);
 356	for (i = 1; i < nr_pages; i++) {
 357		struct page *p = page + i;
 358
 359		__SetPageTail(p);
 360		p->first_page = page;
 361	}
 362}
 363
 364/* update __split_huge_page_refcount if you change this function */
 365static int destroy_compound_page(struct page *page, unsigned long order)
 366{
 367	int i;
 368	int nr_pages = 1 << order;
 369	int bad = 0;
 370
 371	if (unlikely(compound_order(page) != order) ||
 372	    unlikely(!PageHead(page))) {
 373		bad_page(page);
 374		bad++;
 375	}
 376
 377	__ClearPageHead(page);
 
 
 
 
 378
 379	for (i = 1; i < nr_pages; i++) {
 380		struct page *p = page + i;
 
 
 
 
 381
 382		if (unlikely(!PageTail(p) || (p->first_page != page))) {
 383			bad_page(page);
 384			bad++;
 385		}
 386		__ClearPageTail(p);
 387	}
 388
 389	return bad;
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 391
 392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 
 393{
 394	int i;
 
 395
 396	/*
 397	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 398	 * and __GFP_HIGHMEM from hard or soft interrupt context.
 399	 */
 400	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 401	for (i = 0; i < (1 << order); i++)
 402		clear_highpage(page + i);
 403}
 
 404
 405static inline void set_page_order(struct page *page, int order)
 
 406{
 407	set_page_private(page, order);
 408	__SetPageBuddy(page);
 
 
 
 
 
 
 
 
 
 
 409}
 410
 411static inline void rmv_page_order(struct page *page)
 
 
 
 412{
 413	__ClearPageBuddy(page);
 414	set_page_private(page, 0);
 
 
 
 
 
 
 
 
 
 415}
 416
 417/*
 418 * Locate the struct page for both the matching buddy in our
 419 * pair (buddy1) and the combined O(n+1) page they form (page).
 420 *
 421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 422 * the following equation:
 423 *     B2 = B1 ^ (1 << O)
 424 * For example, if the starting buddy (buddy2) is #8 its order
 425 * 1 buddy is #10:
 426 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 427 *
 428 * 2) Any buddy B will have an order O+1 parent P which
 429 * satisfies the following equation:
 430 *     P = B & ~(1 << O)
 431 *
 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 433 */
 434static inline unsigned long
 435__find_buddy_index(unsigned long page_idx, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436{
 437	return page_idx ^ (1 << order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438}
 439
 440/*
 441 * This function checks whether a page is free && is the buddy
 442 * we can do coalesce a page and its buddy if
 443 * (a) the buddy is not in a hole &&
 444 * (b) the buddy is in the buddy system &&
 445 * (c) a page and its buddy have the same order &&
 446 * (d) a page and its buddy are in the same zone.
 447 *
 448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
 449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
 450 *
 451 * For recording page's order, we use page_private(page).
 452 */
 453static inline int page_is_buddy(struct page *page, struct page *buddy,
 454								int order)
 
 455{
 456	if (!pfn_valid_within(page_to_pfn(buddy)))
 457		return 0;
 458
 459	if (page_zone_id(page) != page_zone_id(buddy))
 460		return 0;
 461
 462	if (PageBuddy(buddy) && page_order(buddy) == order) {
 463		VM_BUG_ON(page_count(buddy) != 0);
 464		return 1;
 465	}
 466	return 0;
 467}
 468
 469/*
 470 * Freeing function for a buddy system allocator.
 471 *
 472 * The concept of a buddy system is to maintain direct-mapped table
 473 * (containing bit values) for memory blocks of various "orders".
 474 * The bottom level table contains the map for the smallest allocatable
 475 * units of memory (here, pages), and each level above it describes
 476 * pairs of units from the levels below, hence, "buddies".
 477 * At a high level, all that happens here is marking the table entry
 478 * at the bottom level available, and propagating the changes upward
 479 * as necessary, plus some accounting needed to play nicely with other
 480 * parts of the VM system.
 481 * At each level, we keep a list of pages, which are heads of continuous
 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
 483 * order is recorded in page_private(page) field.
 484 * So when we are allocating or freeing one, we can derive the state of the
 485 * other.  That is, if we allocate a small block, and both were   
 486 * free, the remainder of the region must be split into blocks.   
 487 * If a block is freed, and its buddy is also free, then this
 488 * triggers coalescing into a block of larger size.            
 489 *
 490 * -- wli
 491 */
 492
 493static inline void __free_one_page(struct page *page,
 
 494		struct zone *zone, unsigned int order,
 495		int migratetype)
 496{
 497	unsigned long page_idx;
 498	unsigned long combined_idx;
 499	unsigned long uninitialized_var(buddy_idx);
 500	struct page *buddy;
 
 501
 502	if (unlikely(PageCompound(page)))
 503		if (unlikely(destroy_compound_page(page, order)))
 504			return;
 505
 506	VM_BUG_ON(migratetype == -1);
 
 
 507
 508	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 509
 510	VM_BUG_ON(page_idx & ((1 << order) - 1));
 511	VM_BUG_ON(bad_range(zone, page));
 512
 513	while (order < MAX_ORDER-1) {
 514		buddy_idx = __find_buddy_index(page_idx, order);
 515		buddy = page + (buddy_idx - page_idx);
 516		if (!page_is_buddy(page, buddy, order))
 517			break;
 518
 519		/* Our buddy is free, merge with it and move up one order. */
 520		list_del(&buddy->lru);
 521		zone->free_area[order].nr_free--;
 522		rmv_page_order(buddy);
 523		combined_idx = buddy_idx & page_idx;
 524		page = page + (combined_idx - page_idx);
 525		page_idx = combined_idx;
 526		order++;
 527	}
 528	set_page_order(page, order);
 529
 530	/*
 531	 * If this is not the largest possible page, check if the buddy
 532	 * of the next-highest order is free. If it is, it's possible
 533	 * that pages are being freed that will coalesce soon. In case,
 534	 * that is happening, add the free page to the tail of the list
 535	 * so it's less likely to be used soon and more likely to be merged
 536	 * as a higher order page
 537	 */
 538	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 539		struct page *higher_page, *higher_buddy;
 540		combined_idx = buddy_idx & page_idx;
 541		higher_page = page + (combined_idx - page_idx);
 542		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 543		higher_buddy = page + (buddy_idx - combined_idx);
 544		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 545			list_add_tail(&page->lru,
 546				&zone->free_area[order].free_list[migratetype]);
 547			goto out;
 548		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549	}
 550
 551	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 552out:
 553	zone->free_area[order].nr_free++;
 
 
 
 
 
 
 
 
 
 
 
 
 554}
 555
 556/*
 557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
 558 * Page should not be on lru, so no need to fix that up.
 559 * free_pages_check() will verify...
 560 */
 561static inline void free_page_mlock(struct page *page)
 
 562{
 563	__dec_zone_page_state(page, NR_MLOCK);
 564	__count_vm_event(UNEVICTABLE_MLOCKFREED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 565}
 566
 567static inline int free_pages_check(struct page *page)
 568{
 569	if (unlikely(page_mapcount(page) |
 570		(page->mapping != NULL)  |
 571		(atomic_read(&page->_count) != 0) |
 572		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
 573		(mem_cgroup_bad_page_check(page)))) {
 574		bad_page(page);
 575		return 1;
 
 
 
 
 
 
 576	}
 577	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 578		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 579	return 0;
 
 
 
 
 
 
 580}
 581
 582/*
 583 * Frees a number of pages from the PCP lists
 584 * Assumes all pages on list are in same zone, and of same order.
 585 * count is the number of pages to free.
 586 *
 587 * If the zone was previously in an "all pages pinned" state then look to
 588 * see if this freeing clears that state.
 589 *
 590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 591 * pinned" detection logic.
 592 */
 593static void free_pcppages_bulk(struct zone *zone, int count,
 594					struct per_cpu_pages *pcp)
 595{
 596	int migratetype = 0;
 597	int batch_free = 0;
 598	int to_free = count;
 599
 600	spin_lock(&zone->lock);
 601	zone->all_unreclaimable = 0;
 602	zone->pages_scanned = 0;
 
 603
 604	while (to_free) {
 605		struct page *page;
 606		struct list_head *list;
 
 607
 608		/*
 609		 * Remove pages from lists in a round-robin fashion. A
 610		 * batch_free count is maintained that is incremented when an
 611		 * empty list is encountered.  This is so more pages are freed
 612		 * off fuller lists instead of spinning excessively around empty
 613		 * lists
 614		 */
 615		do {
 616			batch_free++;
 617			if (++migratetype == MIGRATE_PCPTYPES)
 618				migratetype = 0;
 619			list = &pcp->lists[migratetype];
 620		} while (list_empty(list));
 621
 622		/* This is the only non-empty list. Free them all. */
 623		if (batch_free == MIGRATE_PCPTYPES)
 624			batch_free = to_free;
 
 625
 626		do {
 627			page = list_entry(list->prev, struct page, lru);
 628			/* must delete as __free_one_page list manipulates */
 629			list_del(&page->lru);
 630			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
 631			__free_one_page(page, zone, 0, page_private(page));
 632			trace_mm_page_pcpu_drain(page, 0, page_private(page));
 633		} while (--to_free && --batch_free && !list_empty(list));
 
 634	}
 635	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
 636	spin_unlock(&zone->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637}
 638
 639static void free_one_page(struct zone *zone, struct page *page, int order,
 640				int migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641{
 642	spin_lock(&zone->lock);
 643	zone->all_unreclaimable = 0;
 644	zone->pages_scanned = 0;
 645
 646	__free_one_page(page, zone, order, migratetype);
 647	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
 648	spin_unlock(&zone->lock);
 649}
 650
 651static bool free_pages_prepare(struct page *page, unsigned int order)
 652{
 653	int i;
 
 
 
 
 
 
 
 
 
 
 
 654	int bad = 0;
 
 
 
 
 655
 656	trace_mm_page_free_direct(page, order);
 657	kmemcheck_free_shadow(page, order);
 658
 659	if (PageAnon(page))
 660		page->mapping = NULL;
 661	for (i = 0; i < (1 << order); i++)
 662		bad += free_pages_check(page + i);
 663	if (bad)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666	if (!PageHighMem(page)) {
 667		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
 
 668		debug_check_no_obj_freed(page_address(page),
 669					   PAGE_SIZE << order);
 670	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	arch_free_page(page, order);
 672	kernel_map_pages(page, 1 << order, 0);
 
 673
 674	return true;
 675}
 676
 677static void __free_pages_ok(struct page *page, unsigned int order)
 
 
 
 
 
 
 
 678{
 679	unsigned long flags;
 680	int wasMlocked = __TestClearPageMlocked(page);
 
 681
 682	if (!free_pages_prepare(page, order))
 683		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684
 685	local_irq_save(flags);
 686	if (unlikely(wasMlocked))
 687		free_page_mlock(page);
 688	__count_vm_events(PGFREE, 1 << order);
 689	free_one_page(page_zone(page), page, order,
 690					get_pageblock_migratetype(page));
 691	local_irq_restore(flags);
 692}
 693
 694/*
 695 * permit the bootmem allocator to evade page validation on high-order frees
 696 */
 697void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
 698{
 699	if (order == 0) {
 700		__ClearPageReserved(page);
 701		set_page_count(page, 0);
 702		set_page_refcounted(page);
 703		__free_page(page);
 704	} else {
 705		int loop;
 
 
 
 
 
 
 706
 707		prefetchw(page);
 708		for (loop = 0; loop < BITS_PER_LONG; loop++) {
 709			struct page *p = &page[loop];
 
 
 
 
 
 
 
 
 
 
 
 
 710
 711			if (loop + 1 < BITS_PER_LONG)
 712				prefetchw(p + 1);
 
 
 
 
 
 
 
 713			__ClearPageReserved(p);
 714			set_page_count(p, 0);
 715		}
 716
 717		set_page_refcounted(page);
 718		__free_pages(page, order);
 719	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 720}
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722
 723/*
 724 * The order of subdivision here is critical for the IO subsystem.
 725 * Please do not alter this order without good reasons and regression
 726 * testing. Specifically, as large blocks of memory are subdivided,
 727 * the order in which smaller blocks are delivered depends on the order
 728 * they're subdivided in this function. This is the primary factor
 729 * influencing the order in which pages are delivered to the IO
 730 * subsystem according to empirical testing, and this is also justified
 731 * by considering the behavior of a buddy system containing a single
 732 * large block of memory acted on by a series of small allocations.
 733 * This behavior is a critical factor in sglist merging's success.
 734 *
 735 * -- wli
 736 */
 737static inline void expand(struct zone *zone, struct page *page,
 738	int low, int high, struct free_area *area,
 739	int migratetype)
 740{
 741	unsigned long size = 1 << high;
 
 742
 743	while (high > low) {
 744		area--;
 745		high--;
 746		size >>= 1;
 747		VM_BUG_ON(bad_range(zone, &page[size]));
 748		list_add(&page[size].lru, &area->free_list[migratetype]);
 749		area->nr_free++;
 750		set_page_order(&page[size], high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751	}
 
 
 
 752}
 753
 754/*
 755 * This page is about to be returned from the page allocator
 756 */
 757static inline int check_new_page(struct page *page)
 758{
 759	if (unlikely(page_mapcount(page) |
 760		(page->mapping != NULL)  |
 761		(atomic_read(&page->_count) != 0)  |
 762		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
 763		(mem_cgroup_bad_page_check(page)))) {
 764		bad_page(page);
 765		return 1;
 766	}
 767	return 0;
 768}
 769
 770static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 771{
 772	int i;
 
 
 773
 774	for (i = 0; i < (1 << order); i++) {
 775		struct page *p = page + i;
 776		if (unlikely(check_new_page(p)))
 777			return 1;
 778	}
 779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780	set_page_private(page, 0);
 781	set_page_refcounted(page);
 782
 783	arch_alloc_page(page, order);
 784	kernel_map_pages(page, 1 << order, 1);
 785
 786	if (gfp_flags & __GFP_ZERO)
 787		prep_zero_page(page, order, gfp_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788
 789	if (order && (gfp_flags & __GFP_COMP))
 790		prep_compound_page(page, order);
 791
 792	return 0;
 
 
 
 
 
 
 
 
 
 793}
 794
 795/*
 796 * Go through the free lists for the given migratetype and remove
 797 * the smallest available page from the freelists
 798 */
 799static inline
 800struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 801						int migratetype)
 802{
 803	unsigned int current_order;
 804	struct free_area * area;
 805	struct page *page;
 806
 807	/* Find a page of the appropriate size in the preferred list */
 808	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 809		area = &(zone->free_area[current_order]);
 810		if (list_empty(&area->free_list[migratetype]))
 
 811			continue;
 812
 813		page = list_entry(area->free_list[migratetype].next,
 814							struct page, lru);
 815		list_del(&page->lru);
 816		rmv_page_order(page);
 817		area->nr_free--;
 818		expand(zone, page, order, current_order, area, migratetype);
 819		return page;
 820	}
 821
 822	return NULL;
 823}
 824
 825
 826/*
 827 * This array describes the order lists are fallen back to when
 828 * the free lists for the desirable migrate type are depleted
 
 
 829 */
 830static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
 831	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
 832	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
 833	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 834	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
 835};
 836
 
 
 
 
 
 
 
 
 
 
 
 837/*
 838 * Move the free pages in a range to the free lists of the requested type.
 839 * Note that start_page and end_pages are not aligned on a pageblock
 840 * boundary. If alignment is required, use move_freepages_block()
 841 */
 842static int move_freepages(struct zone *zone,
 843			  struct page *start_page, struct page *end_page,
 844			  int migratetype)
 845{
 846	struct page *page;
 847	unsigned long order;
 
 848	int pages_moved = 0;
 849
 850#ifndef CONFIG_HOLES_IN_ZONE
 851	/*
 852	 * page_zone is not safe to call in this context when
 853	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 854	 * anyway as we check zone boundaries in move_freepages_block().
 855	 * Remove at a later date when no bug reports exist related to
 856	 * grouping pages by mobility
 857	 */
 858	BUG_ON(page_zone(start_page) != page_zone(end_page));
 859#endif
 860
 861	for (page = start_page; page <= end_page;) {
 862		/* Make sure we are not inadvertently changing nodes */
 863		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
 864
 865		if (!pfn_valid_within(page_to_pfn(page))) {
 866			page++;
 867			continue;
 868		}
 869
 
 
 870		if (!PageBuddy(page)) {
 871			page++;
 872			continue;
 873		}
 874
 875		order = page_order(page);
 876		list_move(&page->lru,
 877			  &zone->free_area[order].free_list[migratetype]);
 878		page += 1 << order;
 
 
 
 
 
 879		pages_moved += 1 << order;
 880	}
 881
 
 
 882	return pages_moved;
 883}
 884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885static int move_freepages_block(struct zone *zone, struct page *page,
 886				int migratetype)
 887{
 888	unsigned long start_pfn, end_pfn;
 889	struct page *start_page, *end_page;
 890
 891	start_pfn = page_to_pfn(page);
 892	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
 893	start_page = pfn_to_page(start_pfn);
 894	end_page = start_page + pageblock_nr_pages - 1;
 895	end_pfn = start_pfn + pageblock_nr_pages - 1;
 896
 897	/* Do not cross zone boundaries */
 898	if (start_pfn < zone->zone_start_pfn)
 899		start_page = page;
 900	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
 901		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903	return move_freepages(zone, start_page, end_page, migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904}
 
 905
 906static void change_pageblock_range(struct page *pageblock_page,
 907					int start_order, int migratetype)
 908{
 909	int nr_pageblocks = 1 << (start_order - pageblock_order);
 910
 911	while (nr_pageblocks--) {
 912		set_pageblock_migratetype(pageblock_page, migratetype);
 913		pageblock_page += pageblock_nr_pages;
 914	}
 915}
 916
 917/* Remove an element from the buddy allocator from the fallback list */
 918static inline struct page *
 919__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920{
 921	struct free_area * area;
 922	int current_order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923	struct page *page;
 924	int migratetype, i;
 
 925
 926	/* Find the largest possible block of pages in the other list */
 927	for (current_order = MAX_ORDER-1; current_order >= order;
 928						--current_order) {
 929		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
 930			migratetype = fallbacks[start_migratetype][i];
 
 
 
 
 931
 932			/* MIGRATE_RESERVE handled later if necessary */
 933			if (migratetype == MIGRATE_RESERVE)
 934				continue;
 
 935
 936			area = &(zone->free_area[current_order]);
 937			if (list_empty(&area->free_list[migratetype]))
 938				continue;
 939
 940			page = list_entry(area->free_list[migratetype].next,
 941					struct page, lru);
 942			area->nr_free--;
 943
 944			/*
 945			 * If breaking a large block of pages, move all free
 946			 * pages to the preferred allocation list. If falling
 947			 * back for a reclaimable kernel allocation, be more
 948			 * aggressive about taking ownership of free pages
 
 949			 */
 950			if (unlikely(current_order >= (pageblock_order >> 1)) ||
 951					start_migratetype == MIGRATE_RECLAIMABLE ||
 952					page_group_by_mobility_disabled) {
 953				unsigned long pages;
 954				pages = move_freepages_block(zone, page,
 955								start_migratetype);
 956
 957				/* Claim the whole block if over half of it is free */
 958				if (pages >= (1 << (pageblock_order-1)) ||
 959						page_group_by_mobility_disabled)
 960					set_pageblock_migratetype(page,
 961								start_migratetype);
 
 962
 963				migratetype = start_migratetype;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964			}
 
 
 
 
 
 
 
 
 
 
 
 
 965
 966			/* Remove the page from the freelists */
 967			list_del(&page->lru);
 968			rmv_page_order(page);
 969
 970			/* Take ownership for orders >= pageblock_order */
 971			if (current_order >= pageblock_order)
 972				change_pageblock_range(page, current_order,
 973							start_migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975			expand(zone, page, order, current_order, area, migratetype);
 
 
 
 
 
 
 976
 977			trace_mm_page_alloc_extfrag(page, order, current_order,
 978				start_migratetype, migratetype);
 
 
 
 
 
 
 
 
 
 
 979
 980			return page;
 981		}
 
 
 
 
 
 
 
 
 
 
 
 982	}
 983
 984	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985}
 986
 987/*
 988 * Do the hard work of removing an element from the buddy allocator.
 989 * Call me with the zone->lock already held.
 990 */
 991static struct page *__rmqueue(struct zone *zone, unsigned int order,
 992						int migratetype)
 
 993{
 994	struct page *page;
 995
 996retry_reserve:
 997	page = __rmqueue_smallest(zone, order, migratetype);
 998
 999	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000		page = __rmqueue_fallback(zone, order, migratetype);
1001
1002		/*
1003		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004		 * is used because __rmqueue_smallest is an inline function
1005		 * and we want just one call site
1006		 */
1007		if (!page) {
1008			migratetype = MIGRATE_RESERVE;
1009			goto retry_reserve;
 
 
 
1010		}
1011	}
1012
1013	trace_mm_page_alloc_zone_locked(page, order, migratetype);
 
 
 
 
 
 
 
 
1014	return page;
1015}
1016
1017/* 
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1021 */
1022static int rmqueue_bulk(struct zone *zone, unsigned int order, 
1023			unsigned long count, struct list_head *list,
1024			int migratetype, int cold)
1025{
 
1026	int i;
1027	
1028	spin_lock(&zone->lock);
1029	for (i = 0; i < count; ++i) {
1030		struct page *page = __rmqueue(zone, order, migratetype);
 
1031		if (unlikely(page == NULL))
1032			break;
1033
1034		/*
1035		 * Split buddy pages returned by expand() are received here
1036		 * in physical page order. The page is added to the callers and
1037		 * list and the list head then moves forward. From the callers
1038		 * perspective, the linked list is ordered by page number in
1039		 * some conditions. This is useful for IO devices that can
1040		 * merge IO requests if the physical pages are ordered
1041		 * properly.
 
1042		 */
1043		if (likely(cold == 0))
1044			list_add(&page->lru, list);
1045		else
1046			list_add_tail(&page->lru, list);
1047		set_page_private(page, migratetype);
1048		list = &page->lru;
1049	}
1050	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051	spin_unlock(&zone->lock);
1052	return i;
1053}
1054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055#ifdef CONFIG_NUMA
1056/*
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1060 *
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1063 */
1064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1065{
1066	unsigned long flags;
1067	int to_drain;
1068
1069	local_irq_save(flags);
1070	if (pcp->count >= pcp->batch)
1071		to_drain = pcp->batch;
1072	else
1073		to_drain = pcp->count;
1074	free_pcppages_bulk(zone, to_drain, pcp);
1075	pcp->count -= to_drain;
1076	local_irq_restore(flags);
1077}
1078#endif
1079
1080/*
1081 * Drain pages of the indicated processor.
1082 *
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086 */
1087static void drain_pages(unsigned int cpu)
1088{
1089	unsigned long flags;
1090	struct zone *zone;
1091
1092	for_each_populated_zone(zone) {
1093		struct per_cpu_pageset *pset;
1094		struct per_cpu_pages *pcp;
1095
1096		local_irq_save(flags);
1097		pset = per_cpu_ptr(zone->pageset, cpu);
1098
1099		pcp = &pset->pcp;
1100		if (pcp->count) {
1101			free_pcppages_bulk(zone, pcp->count, pcp);
1102			pcp->count = 0;
1103		}
1104		local_irq_restore(flags);
1105	}
1106}
1107
1108/*
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110 */
1111void drain_local_pages(void *arg)
1112{
1113	drain_pages(smp_processor_id());
 
 
 
 
 
1114}
1115
1116/*
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
 
 
 
 
 
 
 
1118 */
1119void drain_all_pages(void)
1120{
1121	on_each_cpu(drain_local_pages, NULL, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122}
1123
1124#ifdef CONFIG_HIBERNATION
 
 
 
 
 
 
 
 
1125
1126void mark_free_pages(struct zone *zone)
1127{
1128	unsigned long pfn, max_zone_pfn;
1129	unsigned long flags;
1130	int order, t;
1131	struct list_head *curr;
1132
1133	if (!zone->spanned_pages)
1134		return;
 
1135
1136	spin_lock_irqsave(&zone->lock, flags);
 
 
1137
1138	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140		if (pfn_valid(pfn)) {
1141			struct page *page = pfn_to_page(pfn);
1142
1143			if (!swsusp_page_is_forbidden(page))
1144				swsusp_unset_page_free(page);
1145		}
1146
1147	for_each_migratetype_order(order, t) {
1148		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1149			unsigned long i;
1150
1151			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152			for (i = 0; i < (1UL << order); i++)
1153				swsusp_set_page_free(pfn_to_page(pfn + i));
1154		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155	}
1156	spin_unlock_irqrestore(&zone->lock, flags);
1157}
1158#endif /* CONFIG_PM */
1159
1160/*
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1163 */
1164void free_hot_cold_page(struct page *page, int cold)
1165{
1166	struct zone *zone = page_zone(page);
1167	struct per_cpu_pages *pcp;
1168	unsigned long flags;
 
1169	int migratetype;
1170	int wasMlocked = __TestClearPageMlocked(page);
1171
1172	if (!free_pages_prepare(page, 0))
 
1173		return;
 
1174
1175	migratetype = get_pageblock_migratetype(page);
1176	set_page_private(page, migratetype);
1177	local_irq_save(flags);
1178	if (unlikely(wasMlocked))
1179		free_page_mlock(page);
1180	__count_vm_event(PGFREE);
1181
1182	/*
1183	 * We only track unmovable, reclaimable and movable on pcp lists.
1184	 * Free ISOLATE pages back to the allocator because they are being
1185	 * offlined but treat RESERVE as movable pages so we can get those
1186	 * areas back if necessary. Otherwise, we may have to free
1187	 * excessively into the page allocator
1188	 */
1189	if (migratetype >= MIGRATE_PCPTYPES) {
1190		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191			free_one_page(zone, page, 0, migratetype);
1192			goto out;
 
1193		}
1194		migratetype = MIGRATE_MOVABLE;
1195	}
1196
1197	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1198	if (cold)
1199		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1200	else
1201		list_add(&page->lru, &pcp->lists[migratetype]);
1202	pcp->count++;
1203	if (pcp->count >= pcp->high) {
1204		free_pcppages_bulk(zone, pcp->batch, pcp);
1205		pcp->count -= pcp->batch;
1206	}
 
 
1207
1208out:
1209	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210}
1211
1212/*
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220void split_page(struct page *page, unsigned int order)
1221{
1222	int i;
1223
1224	VM_BUG_ON(PageCompound(page));
1225	VM_BUG_ON(!page_count(page));
1226
1227#ifdef CONFIG_KMEMCHECK
1228	/*
1229	 * Split shadow pages too, because free(page[0]) would
1230	 * otherwise free the whole shadow.
1231	 */
1232	if (kmemcheck_page_is_tracked(page))
1233		split_page(virt_to_page(page[0].shadow), order);
1234#endif
1235
1236	for (i = 1; i < (1 << order); i++)
1237		set_page_refcounted(page + i);
 
 
 
1238}
 
1239
1240/*
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1246 *
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1249 */
1250int split_free_page(struct page *page)
1251{
1252	unsigned int order;
1253	unsigned long watermark;
1254	struct zone *zone;
1255
1256	BUG_ON(!PageBuddy(page));
1257
1258	zone = page_zone(page);
1259	order = page_order(page);
1260
1261	/* Obey watermarks as if the page was being allocated */
1262	watermark = low_wmark_pages(zone) + (1 << order);
1263	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264		return 0;
1265
1266	/* Remove page from free list */
1267	list_del(&page->lru);
1268	zone->free_area[order].nr_free--;
1269	rmv_page_order(page);
1270	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
 
 
 
 
 
 
 
1271
1272	/* Split into individual pages */
1273	set_page_refcounted(page);
1274	split_page(page, order);
1275
 
 
 
 
1276	if (order >= pageblock_order - 1) {
1277		struct page *endpage = page + (1 << order) - 1;
1278		for (; page < endpage; page += pageblock_nr_pages)
1279			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 
 
 
 
 
 
 
 
1280	}
1281
1282	return 1 << order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283}
1284
1285/*
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1287 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1288 * or two.
1289 */
1290static inline
1291struct page *buffered_rmqueue(struct zone *preferred_zone,
1292			struct zone *zone, int order, gfp_t gfp_flags,
1293			int migratetype)
1294{
1295	unsigned long flags;
1296	struct page *page;
1297	int cold = !!(gfp_flags & __GFP_COLD);
1298
1299again:
1300	if (likely(order == 0)) {
1301		struct per_cpu_pages *pcp;
1302		struct list_head *list;
1303
1304		local_irq_save(flags);
1305		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306		list = &pcp->lists[migratetype];
1307		if (list_empty(list)) {
1308			pcp->count += rmqueue_bulk(zone, 0,
1309					pcp->batch, list,
1310					migratetype, cold);
1311			if (unlikely(list_empty(list)))
1312				goto failed;
1313		}
1314
1315		if (cold)
1316			page = list_entry(list->prev, struct page, lru);
1317		else
1318			page = list_entry(list->next, struct page, lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319
1320		list_del(&page->lru);
1321		pcp->count--;
1322	} else {
1323		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324			/*
1325			 * __GFP_NOFAIL is not to be used in new code.
1326			 *
1327			 * All __GFP_NOFAIL callers should be fixed so that they
1328			 * properly detect and handle allocation failures.
1329			 *
1330			 * We most definitely don't want callers attempting to
1331			 * allocate greater than order-1 page units with
1332			 * __GFP_NOFAIL.
1333			 */
1334			WARN_ON_ONCE(order > 1);
 
 
 
 
 
 
1335		}
1336		spin_lock_irqsave(&zone->lock, flags);
1337		page = __rmqueue(zone, order, migratetype);
1338		spin_unlock(&zone->lock);
1339		if (!page)
1340			goto failed;
1341		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1342	}
1343
1344	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1345	zone_statistics(preferred_zone, zone, gfp_flags);
1346	local_irq_restore(flags);
1347
1348	VM_BUG_ON(bad_range(zone, page));
1349	if (prep_new_page(page, order, gfp_flags))
1350		goto again;
1351	return page;
1352
1353failed:
1354	local_irq_restore(flags);
1355	return NULL;
1356}
1357
1358/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359#define ALLOC_WMARK_MIN		WMARK_MIN
1360#define ALLOC_WMARK_LOW		WMARK_LOW
1361#define ALLOC_WMARK_HIGH	WMARK_HIGH
1362#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1363
1364/* Mask to get the watermark bits */
1365#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1366
1367#define ALLOC_HARDER		0x10 /* try to alloc harder */
1368#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1369#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1370
1371#ifdef CONFIG_FAIL_PAGE_ALLOC
1372
1373static struct {
1374	struct fault_attr attr;
1375
1376	u32 ignore_gfp_highmem;
1377	u32 ignore_gfp_wait;
1378	u32 min_order;
1379} fail_page_alloc = {
1380	.attr = FAULT_ATTR_INITIALIZER,
1381	.ignore_gfp_wait = 1,
1382	.ignore_gfp_highmem = 1,
1383	.min_order = 1,
1384};
1385
1386static int __init setup_fail_page_alloc(char *str)
1387{
1388	return setup_fault_attr(&fail_page_alloc.attr, str);
1389}
1390__setup("fail_page_alloc=", setup_fail_page_alloc);
1391
1392static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393{
1394	if (order < fail_page_alloc.min_order)
1395		return 0;
1396	if (gfp_mask & __GFP_NOFAIL)
1397		return 0;
1398	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399		return 0;
1400	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401		return 0;
1402
1403	return should_fail(&fail_page_alloc.attr, 1 << order);
1404}
 
1405
1406#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 
 
 
1407
1408static int __init fail_page_alloc_debugfs(void)
1409{
1410	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411	struct dentry *dir;
1412
1413	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1414					&fail_page_alloc.attr);
1415	if (IS_ERR(dir))
1416		return PTR_ERR(dir);
1417
1418	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1419				&fail_page_alloc.ignore_gfp_wait))
1420		goto fail;
1421	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1422				&fail_page_alloc.ignore_gfp_highmem))
1423		goto fail;
1424	if (!debugfs_create_u32("min-order", mode, dir,
1425				&fail_page_alloc.min_order))
1426		goto fail;
1427
1428	return 0;
1429fail:
1430	debugfs_remove_recursive(dir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431
1432	return -ENOMEM;
1433}
1434
1435late_initcall(fail_page_alloc_debugfs);
 
 
 
 
 
 
 
 
1436
1437#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 
 
 
1438
1439#else /* CONFIG_FAIL_PAGE_ALLOC */
 
 
1440
1441static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442{
1443	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444}
1445
1446#endif /* CONFIG_FAIL_PAGE_ALLOC */
 
 
 
1447
1448/*
1449 * Return true if free pages are above 'mark'. This takes into account the order
1450 * of the allocation.
 
 
1451 */
1452static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1453		      int classzone_idx, int alloc_flags, long free_pages)
 
 
 
 
1454{
1455	/* free_pages my go negative - that's OK */
1456	long min = mark;
1457	int o;
1458
1459	free_pages -= (1 << order) + 1;
1460	if (alloc_flags & ALLOC_HIGH)
1461		min -= min / 2;
1462	if (alloc_flags & ALLOC_HARDER)
1463		min -= min / 4;
1464
1465	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1466		return false;
1467	for (o = 0; o < order; o++) {
1468		/* At the next order, this order's pages become unavailable */
1469		free_pages -= z->free_area[o].nr_free << o;
 
1470
1471		/* Require fewer higher order pages to be free */
1472		min >>= 1;
1473
1474		if (free_pages <= min)
1475			return false;
 
 
 
 
1476	}
1477	return true;
1478}
1479
1480bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1481		      int classzone_idx, int alloc_flags)
1482{
1483	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1484					zone_page_state(z, NR_FREE_PAGES));
1485}
1486
1487bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1488		      int classzone_idx, int alloc_flags)
1489{
1490	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1491
1492	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1493		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
 
 
 
 
1494
1495	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1496								free_pages);
 
 
 
 
 
1497}
1498
1499#ifdef CONFIG_NUMA
1500/*
1501 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1502 * skip over zones that are not allowed by the cpuset, or that have
1503 * been recently (in last second) found to be nearly full.  See further
1504 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1505 * that have to skip over a lot of full or unallowed zones.
1506 *
1507 * If the zonelist cache is present in the passed in zonelist, then
1508 * returns a pointer to the allowed node mask (either the current
1509 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1510 *
1511 * If the zonelist cache is not available for this zonelist, does
1512 * nothing and returns NULL.
1513 *
1514 * If the fullzones BITMAP in the zonelist cache is stale (more than
1515 * a second since last zap'd) then we zap it out (clear its bits.)
1516 *
1517 * We hold off even calling zlc_setup, until after we've checked the
1518 * first zone in the zonelist, on the theory that most allocations will
1519 * be satisfied from that first zone, so best to examine that zone as
1520 * quickly as we can.
1521 */
1522static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
 
 
1523{
1524	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1525	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1526
1527	zlc = zonelist->zlcache_ptr;
1528	if (!zlc)
1529		return NULL;
1530
1531	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1532		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1533		zlc->last_full_zap = jiffies;
1534	}
1535
1536	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1537					&cpuset_current_mems_allowed :
1538					&node_states[N_HIGH_MEMORY];
1539	return allowednodes;
1540}
1541
1542/*
1543 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1544 * if it is worth looking at further for free memory:
1545 *  1) Check that the zone isn't thought to be full (doesn't have its
1546 *     bit set in the zonelist_cache fullzones BITMAP).
1547 *  2) Check that the zones node (obtained from the zonelist_cache
1548 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1549 * Return true (non-zero) if zone is worth looking at further, or
1550 * else return false (zero) if it is not.
1551 *
1552 * This check -ignores- the distinction between various watermarks,
1553 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1554 * found to be full for any variation of these watermarks, it will
1555 * be considered full for up to one second by all requests, unless
1556 * we are so low on memory on all allowed nodes that we are forced
1557 * into the second scan of the zonelist.
1558 *
1559 * In the second scan we ignore this zonelist cache and exactly
1560 * apply the watermarks to all zones, even it is slower to do so.
1561 * We are low on memory in the second scan, and should leave no stone
1562 * unturned looking for a free page.
1563 */
1564static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1565						nodemask_t *allowednodes)
1566{
1567	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1568	int i;				/* index of *z in zonelist zones */
1569	int n;				/* node that zone *z is on */
1570
1571	zlc = zonelist->zlcache_ptr;
1572	if (!zlc)
1573		return 1;
 
 
 
 
 
 
1574
1575	i = z - zonelist->_zonerefs;
1576	n = zlc->z_to_n[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577
1578	/* This zone is worth trying if it is allowed but not full */
1579	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
 
 
 
1580}
1581
1582/*
1583 * Given 'z' scanning a zonelist, set the corresponding bit in
1584 * zlc->fullzones, so that subsequent attempts to allocate a page
1585 * from that zone don't waste time re-examining it.
1586 */
1587static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1588{
1589	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1590	int i;				/* index of *z in zonelist zones */
1591
1592	zlc = zonelist->zlcache_ptr;
1593	if (!zlc)
1594		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595
1596	i = z - zonelist->_zonerefs;
 
 
 
 
 
 
 
 
 
 
 
1597
1598	set_bit(i, zlc->fullzones);
1599}
1600
1601/*
1602 * clear all zones full, called after direct reclaim makes progress so that
1603 * a zone that was recently full is not skipped over for up to a second
1604 */
1605static void zlc_clear_zones_full(struct zonelist *zonelist)
1606{
1607	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1608
1609	zlc = zonelist->zlcache_ptr;
1610	if (!zlc)
1611		return;
1612
1613	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
 
1614}
1615
1616#else	/* CONFIG_NUMA */
 
1617
1618static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1619{
1620	return NULL;
 
1621}
1622
1623static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1624				nodemask_t *allowednodes)
1625{
1626	return 1;
1627}
 
1628
1629static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
 
 
 
 
 
 
 
 
 
1630{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631}
1632
1633static void zlc_clear_zones_full(struct zonelist *zonelist)
1634{
 
 
 
 
 
 
 
1635}
1636#endif	/* CONFIG_NUMA */
1637
1638/*
1639 * get_page_from_freelist goes through the zonelist trying to allocate
1640 * a page.
1641 */
1642static struct page *
1643get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1644		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1645		struct zone *preferred_zone, int migratetype)
1646{
1647	struct zoneref *z;
1648	struct page *page = NULL;
1649	int classzone_idx;
1650	struct zone *zone;
1651	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1652	int zlc_active = 0;		/* set if using zonelist_cache */
1653	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1654
1655	classzone_idx = zone_idx(preferred_zone);
1656zonelist_scan:
1657	/*
1658	 * Scan zonelist, looking for a zone with enough free.
1659	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1660	 */
1661	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1662						high_zoneidx, nodemask) {
1663		if (NUMA_BUILD && zlc_active &&
1664			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1665				continue;
1666		if ((alloc_flags & ALLOC_CPUSET) &&
1667			!cpuset_zone_allowed_softwall(zone, gfp_mask))
 
 
 
1668				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669
1670		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1671		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1672			unsigned long mark;
1673			int ret;
1674
1675			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1676			if (zone_watermark_ok(zone, order, mark,
1677				    classzone_idx, alloc_flags))
1678				goto try_this_zone;
1679
1680			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1681				/*
1682				 * we do zlc_setup if there are multiple nodes
1683				 * and before considering the first zone allowed
1684				 * by the cpuset.
1685				 */
1686				allowednodes = zlc_setup(zonelist, alloc_flags);
1687				zlc_active = 1;
1688				did_zlc_setup = 1;
1689			}
 
 
 
 
 
 
 
 
 
 
 
 
 
1690
1691			if (zone_reclaim_mode == 0)
1692				goto this_zone_full;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693
1694			/*
1695			 * As we may have just activated ZLC, check if the first
1696			 * eligible zone has failed zone_reclaim recently.
1697			 */
1698			if (NUMA_BUILD && zlc_active &&
1699				!zlc_zone_worth_trying(zonelist, z, allowednodes))
 
 
 
 
 
 
 
 
 
1700				continue;
1701
1702			ret = zone_reclaim(zone, gfp_mask, order);
1703			switch (ret) {
1704			case ZONE_RECLAIM_NOSCAN:
1705				/* did not scan */
1706				continue;
1707			case ZONE_RECLAIM_FULL:
1708				/* scanned but unreclaimable */
1709				continue;
1710			default:
1711				/* did we reclaim enough */
1712				if (!zone_watermark_ok(zone, order, mark,
1713						classzone_idx, alloc_flags))
1714					goto this_zone_full;
 
 
1715			}
1716		}
1717
1718try_this_zone:
1719		page = buffered_rmqueue(preferred_zone, zone, order,
1720						gfp_mask, migratetype);
1721		if (page)
1722			break;
1723this_zone_full:
1724		if (NUMA_BUILD)
1725			zlc_mark_zone_full(zonelist, z);
1726	}
 
 
 
1727
1728	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1729		/* Disable zlc cache for second zonelist scan */
1730		zlc_active = 0;
1731		goto zonelist_scan;
 
 
 
 
 
 
 
1732	}
1733	return page;
1734}
1735
1736/*
1737 * Large machines with many possible nodes should not always dump per-node
1738 * meminfo in irq context.
1739 */
1740static inline bool should_suppress_show_mem(void)
1741{
1742	bool ret = false;
 
1743
1744#if NODES_SHIFT > 8
1745	ret = in_interrupt();
1746#endif
1747	return ret;
1748}
1749
1750static DEFINE_RATELIMIT_STATE(nopage_rs,
1751		DEFAULT_RATELIMIT_INTERVAL,
1752		DEFAULT_RATELIMIT_BURST);
1753
1754void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1755{
1756	va_list args;
1757	unsigned int filter = SHOW_MEM_FILTER_NODES;
1758
1759	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1760		return;
1761
1762	/*
1763	 * This documents exceptions given to allocations in certain
1764	 * contexts that are allowed to allocate outside current's set
1765	 * of allowed nodes.
1766	 */
1767	if (!(gfp_mask & __GFP_NOMEMALLOC))
1768		if (test_thread_flag(TIF_MEMDIE) ||
1769		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1770			filter &= ~SHOW_MEM_FILTER_NODES;
1771	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1772		filter &= ~SHOW_MEM_FILTER_NODES;
1773
1774	if (fmt) {
1775		printk(KERN_WARNING);
1776		va_start(args, fmt);
1777		vprintk(fmt, args);
1778		va_end(args);
1779	}
 
 
1780
1781	pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1782		   current->comm, order, gfp_mask);
 
 
1783
 
 
 
 
 
 
 
 
 
 
1784	dump_stack();
1785	if (!should_suppress_show_mem())
1786		show_mem(filter);
1787}
1788
1789static inline int
1790should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1791				unsigned long pages_reclaimed)
 
1792{
1793	/* Do not loop if specifically requested */
1794	if (gfp_mask & __GFP_NORETRY)
1795		return 0;
1796
1797	/*
1798	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1799	 * means __GFP_NOFAIL, but that may not be true in other
1800	 * implementations.
1801	 */
1802	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1803		return 1;
1804
1805	/*
1806	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1807	 * specified, then we retry until we no longer reclaim any pages
1808	 * (above), or we've reclaimed an order of pages at least as
1809	 * large as the allocation's order. In both cases, if the
1810	 * allocation still fails, we stop retrying.
1811	 */
1812	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1813		return 1;
1814
 
 
1815	/*
1816	 * Don't let big-order allocations loop unless the caller
1817	 * explicitly requests that.
1818	 */
1819	if (gfp_mask & __GFP_NOFAIL)
1820		return 1;
 
1821
1822	return 0;
1823}
1824
1825static inline struct page *
1826__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1827	struct zonelist *zonelist, enum zone_type high_zoneidx,
1828	nodemask_t *nodemask, struct zone *preferred_zone,
1829	int migratetype)
1830{
 
 
 
 
 
 
 
1831	struct page *page;
1832
1833	/* Acquire the OOM killer lock for the zones in zonelist */
1834	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
 
 
 
 
 
 
1835		schedule_timeout_uninterruptible(1);
1836		return NULL;
1837	}
1838
1839	/*
1840	 * Go through the zonelist yet one more time, keep very high watermark
1841	 * here, this is only to catch a parallel oom killing, we must fail if
1842	 * we're still under heavy pressure.
1843	 */
1844	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1845		order, zonelist, high_zoneidx,
1846		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1847		preferred_zone, migratetype);
 
1848	if (page)
1849		goto out;
1850
1851	if (!(gfp_mask & __GFP_NOFAIL)) {
1852		/* The OOM killer will not help higher order allocs */
1853		if (order > PAGE_ALLOC_COSTLY_ORDER)
1854			goto out;
1855		/* The OOM killer does not needlessly kill tasks for lowmem */
1856		if (high_zoneidx < ZONE_NORMAL)
1857			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858		/*
1859		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1860		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1861		 * The caller should handle page allocation failure by itself if
1862		 * it specifies __GFP_THISNODE.
1863		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1864		 */
1865		if (gfp_mask & __GFP_THISNODE)
1866			goto out;
 
1867	}
1868	/* Exhausted what can be done so it's blamo time */
1869	out_of_memory(zonelist, gfp_mask, order, nodemask);
1870
1871out:
1872	clear_zonelist_oom(zonelist, gfp_mask);
1873	return page;
1874}
1875
 
 
 
 
 
 
1876#ifdef CONFIG_COMPACTION
1877/* Try memory compaction for high-order allocations before reclaim */
1878static struct page *
1879__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1880	struct zonelist *zonelist, enum zone_type high_zoneidx,
1881	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1882	int migratetype, unsigned long *did_some_progress,
1883	bool sync_migration)
1884{
1885	struct page *page;
 
 
1886
1887	if (!order || compaction_deferred(preferred_zone))
1888		return NULL;
1889
1890	current->flags |= PF_MEMALLOC;
1891	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1892						nodemask, sync_migration);
1893	current->flags &= ~PF_MEMALLOC;
1894	if (*did_some_progress != COMPACT_SKIPPED) {
1895
1896		/* Page migration frees to the PCP lists but we want merging */
1897		drain_pages(get_cpu());
1898		put_cpu();
1899
1900		page = get_page_from_freelist(gfp_mask, nodemask,
1901				order, zonelist, high_zoneidx,
1902				alloc_flags, preferred_zone,
1903				migratetype);
1904		if (page) {
1905			preferred_zone->compact_considered = 0;
1906			preferred_zone->compact_defer_shift = 0;
1907			count_vm_event(COMPACTSUCCESS);
1908			return page;
1909		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911		/*
1912		 * It's bad if compaction run occurs and fails.
1913		 * The most likely reason is that pages exist,
1914		 * but not enough to satisfy watermarks.
 
 
 
 
1915		 */
1916		count_vm_event(COMPACTFAIL);
1917		defer_compaction(preferred_zone);
1918
1919		cond_resched();
 
 
 
1920	}
1921
1922	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1923}
1924#else
1925static inline struct page *
1926__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1927	struct zonelist *zonelist, enum zone_type high_zoneidx,
1928	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1929	int migratetype, unsigned long *did_some_progress,
1930	bool sync_migration)
1931{
 
1932	return NULL;
1933}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934#endif /* CONFIG_COMPACTION */
1935
1936/* The really slow allocator path where we enter direct reclaim */
1937static inline struct page *
1938__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1939	struct zonelist *zonelist, enum zone_type high_zoneidx,
1940	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1941	int migratetype, unsigned long *did_some_progress)
1942{
1943	struct page *page = NULL;
1944	struct reclaim_state reclaim_state;
1945	bool drained = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947	cond_resched();
1948
1949	/* We now go into synchronous reclaim */
1950	cpuset_memory_pressure_bump();
1951	current->flags |= PF_MEMALLOC;
1952	lockdep_set_current_reclaim_state(gfp_mask);
1953	reclaim_state.reclaimed_slab = 0;
1954	current->reclaim_state = &reclaim_state;
1955
1956	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1957
1958	current->reclaim_state = NULL;
1959	lockdep_clear_current_reclaim_state();
1960	current->flags &= ~PF_MEMALLOC;
1961
1962	cond_resched();
1963
1964	if (unlikely(!(*did_some_progress)))
1965		return NULL;
1966
1967	/* After successful reclaim, reconsider all zones for allocation */
1968	if (NUMA_BUILD)
1969		zlc_clear_zones_full(zonelist);
 
 
 
 
 
 
 
 
 
 
 
1970
1971retry:
1972	page = get_page_from_freelist(gfp_mask, nodemask, order,
1973					zonelist, high_zoneidx,
1974					alloc_flags, preferred_zone,
1975					migratetype);
1976
1977	/*
1978	 * If an allocation failed after direct reclaim, it could be because
1979	 * pages are pinned on the per-cpu lists. Drain them and try again
 
1980	 */
1981	if (!page && !drained) {
1982		drain_all_pages();
 
1983		drained = true;
1984		goto retry;
1985	}
 
 
1986
1987	return page;
1988}
1989
1990/*
1991 * This is called in the allocator slow-path if the allocation request is of
1992 * sufficient urgency to ignore watermarks and take other desperate measures
1993 */
1994static inline struct page *
1995__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1996	struct zonelist *zonelist, enum zone_type high_zoneidx,
1997	nodemask_t *nodemask, struct zone *preferred_zone,
1998	int migratetype)
1999{
2000	struct page *page;
2001
2002	do {
2003		page = get_page_from_freelist(gfp_mask, nodemask, order,
2004			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2005			preferred_zone, migratetype);
2006
2007		if (!page && gfp_mask & __GFP_NOFAIL)
2008			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2009	} while (!page && (gfp_mask & __GFP_NOFAIL));
2010
2011	return page;
2012}
2013
2014static inline
2015void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2016						enum zone_type high_zoneidx,
2017						enum zone_type classzone_idx)
2018{
2019	struct zoneref *z;
2020	struct zone *zone;
 
 
2021
2022	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2023		wakeup_kswapd(zone, order, classzone_idx);
 
 
 
 
 
 
 
2024}
2025
2026static inline int
2027gfp_to_alloc_flags(gfp_t gfp_mask)
2028{
2029	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2030	const gfp_t wait = gfp_mask & __GFP_WAIT;
2031
2032	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2033	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
 
 
 
 
2034
2035	/*
2036	 * The caller may dip into page reserves a bit more if the caller
2037	 * cannot run direct reclaim, or if the caller has realtime scheduling
2038	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2039	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2040	 */
2041	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
2042
2043	if (!wait) {
2044		/*
2045		 * Not worth trying to allocate harder for
2046		 * __GFP_NOMEMALLOC even if it can't schedule.
2047		 */
2048		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2049			alloc_flags |= ALLOC_HARDER;
 
 
 
 
 
2050		/*
2051		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2052		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
 
2053		 */
2054		alloc_flags &= ~ALLOC_CPUSET;
2055	} else if (unlikely(rt_task(current)) && !in_interrupt())
2056		alloc_flags |= ALLOC_HARDER;
 
2057
2058	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2059		if (!in_interrupt() &&
2060		    ((current->flags & PF_MEMALLOC) ||
2061		     unlikely(test_thread_flag(TIF_MEMDIE))))
2062			alloc_flags |= ALLOC_NO_WATERMARKS;
2063	}
2064
2065	return alloc_flags;
2066}
2067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068static inline struct page *
2069__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2070	struct zonelist *zonelist, enum zone_type high_zoneidx,
2071	nodemask_t *nodemask, struct zone *preferred_zone,
2072	int migratetype)
2073{
2074	const gfp_t wait = gfp_mask & __GFP_WAIT;
 
 
 
2075	struct page *page = NULL;
2076	int alloc_flags;
2077	unsigned long pages_reclaimed = 0;
2078	unsigned long did_some_progress;
2079	bool sync_migration = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080
2081	/*
2082	 * In the slowpath, we sanity check order to avoid ever trying to
2083	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2084	 * be using allocators in order of preference for an area that is
2085	 * too large.
2086	 */
2087	if (order >= MAX_ORDER) {
2088		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2089		return NULL;
2090	}
2091
2092	/*
2093	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2094	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2095	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2096	 * using a larger set of nodes after it has established that the
2097	 * allowed per node queues are empty and that nodes are
2098	 * over allocated.
2099	 */
2100	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
 
 
2101		goto nopage;
2102
2103restart:
2104	if (!(gfp_mask & __GFP_NO_KSWAPD))
2105		wake_all_kswapd(order, zonelist, high_zoneidx,
2106						zone_idx(preferred_zone));
2107
2108	/*
2109	 * OK, we're below the kswapd watermark and have kicked background
2110	 * reclaim. Now things get more complex, so set up alloc_flags according
2111	 * to how we want to proceed.
2112	 */
2113	alloc_flags = gfp_to_alloc_flags(gfp_mask);
 
 
 
 
 
 
 
 
 
2114
2115	/*
2116	 * Find the true preferred zone if the allocation is unconstrained by
2117	 * cpusets.
2118	 */
2119	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2120		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2121					&preferred_zone);
2122
2123rebalance:
2124	/* This is the last chance, in general, before the goto nopage. */
2125	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2126			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2127			preferred_zone, migratetype);
2128	if (page)
2129		goto got_pg;
2130
2131	/* Allocate without watermarks if the context allows */
2132	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2133		page = __alloc_pages_high_priority(gfp_mask, order,
2134				zonelist, high_zoneidx, nodemask,
2135				preferred_zone, migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
2136		if (page)
2137			goto got_pg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138	}
2139
2140	/* Atomic allocations - we can't balance anything */
2141	if (!wait)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142		goto nopage;
2143
2144	/* Avoid recursion of direct reclaim */
2145	if (current->flags & PF_MEMALLOC)
2146		goto nopage;
2147
2148	/* Avoid allocations with no watermarks from looping endlessly */
2149	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2150		goto nopage;
2151
2152	/*
2153	 * Try direct compaction. The first pass is asynchronous. Subsequent
2154	 * attempts after direct reclaim are synchronous
2155	 */
2156	page = __alloc_pages_direct_compact(gfp_mask, order,
2157					zonelist, high_zoneidx,
2158					nodemask,
2159					alloc_flags, preferred_zone,
2160					migratetype, &did_some_progress,
2161					sync_migration);
2162	if (page)
2163		goto got_pg;
2164	sync_migration = true;
2165
2166	/* Try direct reclaim and then allocating */
2167	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2168					zonelist, high_zoneidx,
2169					nodemask,
2170					alloc_flags, preferred_zone,
2171					migratetype, &did_some_progress);
2172	if (page)
2173		goto got_pg;
2174
 
 
 
 
2175	/*
2176	 * If we failed to make any progress reclaiming, then we are
2177	 * running out of options and have to consider going OOM
2178	 */
2179	if (!did_some_progress) {
2180		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2181			if (oom_killer_disabled)
2182				goto nopage;
2183			page = __alloc_pages_may_oom(gfp_mask, order,
2184					zonelist, high_zoneidx,
2185					nodemask, preferred_zone,
2186					migratetype);
2187			if (page)
2188				goto got_pg;
2189
2190			if (!(gfp_mask & __GFP_NOFAIL)) {
2191				/*
2192				 * The oom killer is not called for high-order
2193				 * allocations that may fail, so if no progress
2194				 * is being made, there are no other options and
2195				 * retrying is unlikely to help.
2196				 */
2197				if (order > PAGE_ALLOC_COSTLY_ORDER)
2198					goto nopage;
2199				/*
2200				 * The oom killer is not called for lowmem
2201				 * allocations to prevent needlessly killing
2202				 * innocent tasks.
2203				 */
2204				if (high_zoneidx < ZONE_NORMAL)
2205					goto nopage;
2206			}
2207
2208			goto restart;
2209		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2210	}
2211
2212	/* Check if we should retry the allocation */
2213	pages_reclaimed += did_some_progress;
2214	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2215		/* Wait for some write requests to complete then retry */
2216		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2217		goto rebalance;
2218	} else {
 
 
 
 
 
 
 
2219		/*
2220		 * High-order allocations do not necessarily loop after
2221		 * direct reclaim and reclaim/compaction depends on compaction
2222		 * being called after reclaim so call directly if necessary
2223		 */
2224		page = __alloc_pages_direct_compact(gfp_mask, order,
2225					zonelist, high_zoneidx,
2226					nodemask,
2227					alloc_flags, preferred_zone,
2228					migratetype, &did_some_progress,
2229					sync_migration);
 
 
 
 
 
2230		if (page)
2231			goto got_pg;
2232	}
2233
2234nopage:
2235	warn_alloc_failed(gfp_mask, order, NULL);
2236	return page;
 
 
 
2237got_pg:
2238	if (kmemcheck_enabled)
2239		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2240	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2242}
2243
2244/*
2245 * This is the 'heart' of the zoned buddy allocator.
2246 */
2247struct page *
2248__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2249			struct zonelist *zonelist, nodemask_t *nodemask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250{
2251	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2252	struct zone *preferred_zone;
2253	struct page *page;
2254	int migratetype = allocflags_to_migratetype(gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255
2256	gfp_mask &= gfp_allowed_mask;
 
 
2257
2258	lockdep_trace_alloc(gfp_mask);
 
 
2259
2260	might_sleep_if(gfp_mask & __GFP_WAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261
2262	if (should_fail_alloc_page(gfp_mask, order))
2263		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2264
2265	/*
2266	 * Check the zones suitable for the gfp_mask contain at least one
2267	 * valid zone. It's possible to have an empty zonelist as a result
2268	 * of GFP_THISNODE and a memoryless node
2269	 */
2270	if (unlikely(!zonelist->_zonerefs->zone))
2271		return NULL;
2272
2273	get_mems_allowed();
2274	/* The preferred zone is used for statistics later */
2275	first_zones_zonelist(zonelist, high_zoneidx,
2276				nodemask ? : &cpuset_current_mems_allowed,
2277				&preferred_zone);
2278	if (!preferred_zone) {
2279		put_mems_allowed();
2280		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2281	}
2282
2283	/* First allocation attempt */
2284	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2285			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2286			preferred_zone, migratetype);
2287	if (unlikely(!page))
2288		page = __alloc_pages_slowpath(gfp_mask, order,
2289				zonelist, high_zoneidx, nodemask,
2290				preferred_zone, migratetype);
2291	put_mems_allowed();
2292
2293	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2294	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295}
2296EXPORT_SYMBOL(__alloc_pages_nodemask);
2297
2298/*
2299 * Common helper functions.
2300 */
2301unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
 
2302{
2303	struct page *page;
 
 
 
2304
2305	/*
2306	 * __get_free_pages() returns a 32-bit address, which cannot represent
2307	 * a highmem page
2308	 */
2309	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
 
2310
2311	page = alloc_pages(gfp_mask, order);
2312	if (!page)
2313		return 0;
2314	return (unsigned long) page_address(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315}
2316EXPORT_SYMBOL(__get_free_pages);
2317
2318unsigned long get_zeroed_page(gfp_t gfp_mask)
 
2319{
2320	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
 
 
2321}
2322EXPORT_SYMBOL(get_zeroed_page);
2323
2324void __pagevec_free(struct pagevec *pvec)
 
 
 
 
 
2325{
2326	int i = pagevec_count(pvec);
2327
2328	while (--i >= 0) {
2329		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2330		free_hot_cold_page(pvec->pages[i], pvec->cold);
2331	}
2332}
 
2333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334void __free_pages(struct page *page, unsigned int order)
2335{
2336	if (put_page_testzero(page)) {
2337		if (order == 0)
2338			free_hot_cold_page(page, 0);
2339		else
2340			__free_pages_ok(page, order);
 
 
 
 
 
2341	}
2342}
2343
2344EXPORT_SYMBOL(__free_pages);
2345
2346void free_pages(unsigned long addr, unsigned int order)
2347{
2348	if (addr != 0) {
2349		VM_BUG_ON(!virt_addr_valid((void *)addr));
2350		__free_pages(virt_to_page((void *)addr), order);
2351	}
2352}
2353
2354EXPORT_SYMBOL(free_pages);
2355
2356static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
 
2357{
2358	if (addr) {
2359		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2360		unsigned long used = addr + PAGE_ALIGN(size);
2361
2362		split_page(virt_to_page((void *)addr), order);
2363		while (used < alloc_end) {
2364			free_page(used);
2365			used += PAGE_SIZE;
2366		}
 
 
 
 
 
2367	}
2368	return (void *)addr;
2369}
2370
2371/**
2372 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2373 * @size: the number of bytes to allocate
2374 * @gfp_mask: GFP flags for the allocation
2375 *
2376 * This function is similar to alloc_pages(), except that it allocates the
2377 * minimum number of pages to satisfy the request.  alloc_pages() can only
2378 * allocate memory in power-of-two pages.
2379 *
2380 * This function is also limited by MAX_ORDER.
2381 *
2382 * Memory allocated by this function must be released by free_pages_exact().
 
 
2383 */
2384void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2385{
2386	unsigned int order = get_order(size);
2387	unsigned long addr;
2388
2389	addr = __get_free_pages(gfp_mask, order);
 
 
 
2390	return make_alloc_exact(addr, order, size);
2391}
2392EXPORT_SYMBOL(alloc_pages_exact);
2393
2394/**
2395 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2396 *			   pages on a node.
2397 * @nid: the preferred node ID where memory should be allocated
2398 * @size: the number of bytes to allocate
2399 * @gfp_mask: GFP flags for the allocation
2400 *
2401 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2402 * back.
2403 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2404 * but is not exact.
2405 */
2406void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2407{
2408	unsigned order = get_order(size);
2409	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 
 
 
 
 
2410	if (!p)
2411		return NULL;
2412	return make_alloc_exact((unsigned long)page_address(p), order, size);
2413}
2414EXPORT_SYMBOL(alloc_pages_exact_nid);
2415
2416/**
2417 * free_pages_exact - release memory allocated via alloc_pages_exact()
2418 * @virt: the value returned by alloc_pages_exact.
2419 * @size: size of allocation, same value as passed to alloc_pages_exact().
2420 *
2421 * Release the memory allocated by a previous call to alloc_pages_exact.
2422 */
2423void free_pages_exact(void *virt, size_t size)
2424{
2425	unsigned long addr = (unsigned long)virt;
2426	unsigned long end = addr + PAGE_ALIGN(size);
2427
2428	while (addr < end) {
2429		free_page(addr);
2430		addr += PAGE_SIZE;
2431	}
2432}
2433EXPORT_SYMBOL(free_pages_exact);
2434
2435static unsigned int nr_free_zone_pages(int offset)
 
 
 
 
 
 
 
 
 
 
 
 
2436{
2437	struct zoneref *z;
2438	struct zone *zone;
2439
2440	/* Just pick one node, since fallback list is circular */
2441	unsigned int sum = 0;
2442
2443	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2444
2445	for_each_zone_zonelist(zone, z, zonelist, offset) {
2446		unsigned long size = zone->present_pages;
2447		unsigned long high = high_wmark_pages(zone);
2448		if (size > high)
2449			sum += size - high;
2450	}
2451
2452	return sum;
2453}
2454
2455/*
2456 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
 
 
 
 
 
 
2457 */
2458unsigned int nr_free_buffer_pages(void)
2459{
2460	return nr_free_zone_pages(gfp_zone(GFP_USER));
2461}
2462EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2463
2464/*
2465 * Amount of free RAM allocatable within all zones
2466 */
2467unsigned int nr_free_pagecache_pages(void)
2468{
2469	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2470}
2471
2472static inline void show_node(struct zone *zone)
2473{
2474	if (NUMA_BUILD)
2475		printk("Node %d ", zone_to_nid(zone));
2476}
2477
2478void si_meminfo(struct sysinfo *val)
2479{
2480	val->totalram = totalram_pages;
2481	val->sharedram = 0;
2482	val->freeram = global_page_state(NR_FREE_PAGES);
2483	val->bufferram = nr_blockdev_pages();
2484	val->totalhigh = totalhigh_pages;
2485	val->freehigh = nr_free_highpages();
2486	val->mem_unit = PAGE_SIZE;
2487}
2488
2489EXPORT_SYMBOL(si_meminfo);
2490
2491#ifdef CONFIG_NUMA
2492void si_meminfo_node(struct sysinfo *val, int nid)
2493{
2494	pg_data_t *pgdat = NODE_DATA(nid);
2495
2496	val->totalram = pgdat->node_present_pages;
2497	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2498#ifdef CONFIG_HIGHMEM
2499	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2500	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2501			NR_FREE_PAGES);
2502#else
2503	val->totalhigh = 0;
2504	val->freehigh = 0;
2505#endif
2506	val->mem_unit = PAGE_SIZE;
2507}
2508#endif
2509
2510/*
2511 * Determine whether the node should be displayed or not, depending on whether
2512 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2513 */
2514bool skip_free_areas_node(unsigned int flags, int nid)
2515{
2516	bool ret = false;
2517
2518	if (!(flags & SHOW_MEM_FILTER_NODES))
2519		goto out;
2520
2521	get_mems_allowed();
2522	ret = !node_isset(nid, cpuset_current_mems_allowed);
2523	put_mems_allowed();
2524out:
2525	return ret;
2526}
2527
2528#define K(x) ((x) << (PAGE_SHIFT-10))
2529
2530/*
2531 * Show free area list (used inside shift_scroll-lock stuff)
2532 * We also calculate the percentage fragmentation. We do this by counting the
2533 * memory on each free list with the exception of the first item on the list.
2534 * Suppresses nodes that are not allowed by current's cpuset if
2535 * SHOW_MEM_FILTER_NODES is passed.
2536 */
2537void show_free_areas(unsigned int filter)
2538{
2539	int cpu;
2540	struct zone *zone;
2541
2542	for_each_populated_zone(zone) {
2543		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2544			continue;
2545		show_node(zone);
2546		printk("%s per-cpu:\n", zone->name);
2547
2548		for_each_online_cpu(cpu) {
2549			struct per_cpu_pageset *pageset;
2550
2551			pageset = per_cpu_ptr(zone->pageset, cpu);
2552
2553			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2554			       cpu, pageset->pcp.high,
2555			       pageset->pcp.batch, pageset->pcp.count);
2556		}
2557	}
2558
2559	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2560		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2561		" unevictable:%lu"
2562		" dirty:%lu writeback:%lu unstable:%lu\n"
2563		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2564		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2565		global_page_state(NR_ACTIVE_ANON),
2566		global_page_state(NR_INACTIVE_ANON),
2567		global_page_state(NR_ISOLATED_ANON),
2568		global_page_state(NR_ACTIVE_FILE),
2569		global_page_state(NR_INACTIVE_FILE),
2570		global_page_state(NR_ISOLATED_FILE),
2571		global_page_state(NR_UNEVICTABLE),
2572		global_page_state(NR_FILE_DIRTY),
2573		global_page_state(NR_WRITEBACK),
2574		global_page_state(NR_UNSTABLE_NFS),
2575		global_page_state(NR_FREE_PAGES),
2576		global_page_state(NR_SLAB_RECLAIMABLE),
2577		global_page_state(NR_SLAB_UNRECLAIMABLE),
2578		global_page_state(NR_FILE_MAPPED),
2579		global_page_state(NR_SHMEM),
2580		global_page_state(NR_PAGETABLE),
2581		global_page_state(NR_BOUNCE));
2582
2583	for_each_populated_zone(zone) {
2584		int i;
2585
2586		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2587			continue;
2588		show_node(zone);
2589		printk("%s"
2590			" free:%lukB"
2591			" min:%lukB"
2592			" low:%lukB"
2593			" high:%lukB"
2594			" active_anon:%lukB"
2595			" inactive_anon:%lukB"
2596			" active_file:%lukB"
2597			" inactive_file:%lukB"
2598			" unevictable:%lukB"
2599			" isolated(anon):%lukB"
2600			" isolated(file):%lukB"
2601			" present:%lukB"
2602			" mlocked:%lukB"
2603			" dirty:%lukB"
2604			" writeback:%lukB"
2605			" mapped:%lukB"
2606			" shmem:%lukB"
2607			" slab_reclaimable:%lukB"
2608			" slab_unreclaimable:%lukB"
2609			" kernel_stack:%lukB"
2610			" pagetables:%lukB"
2611			" unstable:%lukB"
2612			" bounce:%lukB"
2613			" writeback_tmp:%lukB"
2614			" pages_scanned:%lu"
2615			" all_unreclaimable? %s"
2616			"\n",
2617			zone->name,
2618			K(zone_page_state(zone, NR_FREE_PAGES)),
2619			K(min_wmark_pages(zone)),
2620			K(low_wmark_pages(zone)),
2621			K(high_wmark_pages(zone)),
2622			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2623			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2624			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2625			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2626			K(zone_page_state(zone, NR_UNEVICTABLE)),
2627			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2628			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2629			K(zone->present_pages),
2630			K(zone_page_state(zone, NR_MLOCK)),
2631			K(zone_page_state(zone, NR_FILE_DIRTY)),
2632			K(zone_page_state(zone, NR_WRITEBACK)),
2633			K(zone_page_state(zone, NR_FILE_MAPPED)),
2634			K(zone_page_state(zone, NR_SHMEM)),
2635			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2636			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2637			zone_page_state(zone, NR_KERNEL_STACK) *
2638				THREAD_SIZE / 1024,
2639			K(zone_page_state(zone, NR_PAGETABLE)),
2640			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2641			K(zone_page_state(zone, NR_BOUNCE)),
2642			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2643			zone->pages_scanned,
2644			(zone->all_unreclaimable ? "yes" : "no")
2645			);
2646		printk("lowmem_reserve[]:");
2647		for (i = 0; i < MAX_NR_ZONES; i++)
2648			printk(" %lu", zone->lowmem_reserve[i]);
2649		printk("\n");
2650	}
2651
2652	for_each_populated_zone(zone) {
2653 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2654
2655		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2656			continue;
2657		show_node(zone);
2658		printk("%s: ", zone->name);
2659
2660		spin_lock_irqsave(&zone->lock, flags);
2661		for (order = 0; order < MAX_ORDER; order++) {
2662			nr[order] = zone->free_area[order].nr_free;
2663			total += nr[order] << order;
2664		}
2665		spin_unlock_irqrestore(&zone->lock, flags);
2666		for (order = 0; order < MAX_ORDER; order++)
2667			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2668		printk("= %lukB\n", K(total));
2669	}
2670
2671	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2672
2673	show_swap_cache_info();
2674}
2675
2676static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2677{
2678	zoneref->zone = zone;
2679	zoneref->zone_idx = zone_idx(zone);
2680}
2681
2682/*
2683 * Builds allocation fallback zone lists.
2684 *
2685 * Add all populated zones of a node to the zonelist.
2686 */
2687static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2688				int nr_zones, enum zone_type zone_type)
2689{
2690	struct zone *zone;
2691
2692	BUG_ON(zone_type >= MAX_NR_ZONES);
2693	zone_type++;
2694
2695	do {
2696		zone_type--;
2697		zone = pgdat->node_zones + zone_type;
2698		if (populated_zone(zone)) {
2699			zoneref_set_zone(zone,
2700				&zonelist->_zonerefs[nr_zones++]);
2701			check_highest_zone(zone_type);
2702		}
2703
2704	} while (zone_type);
 
2705	return nr_zones;
2706}
2707
2708
2709/*
2710 *  zonelist_order:
2711 *  0 = automatic detection of better ordering.
2712 *  1 = order by ([node] distance, -zonetype)
2713 *  2 = order by (-zonetype, [node] distance)
2714 *
2715 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2716 *  the same zonelist. So only NUMA can configure this param.
2717 */
2718#define ZONELIST_ORDER_DEFAULT  0
2719#define ZONELIST_ORDER_NODE     1
2720#define ZONELIST_ORDER_ZONE     2
2721
2722/* zonelist order in the kernel.
2723 * set_zonelist_order() will set this to NODE or ZONE.
2724 */
2725static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2726static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2727
2728
2729#ifdef CONFIG_NUMA
2730/* The value user specified ....changed by config */
2731static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2732/* string for sysctl */
2733#define NUMA_ZONELIST_ORDER_LEN	16
2734char numa_zonelist_order[16] = "default";
2735
2736/*
2737 * interface for configure zonelist ordering.
2738 * command line option "numa_zonelist_order"
2739 *	= "[dD]efault	- default, automatic configuration.
2740 *	= "[nN]ode 	- order by node locality, then by zone within node
2741 *	= "[zZ]one      - order by zone, then by locality within zone
2742 */
2743
2744static int __parse_numa_zonelist_order(char *s)
2745{
2746	if (*s == 'd' || *s == 'D') {
2747		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2748	} else if (*s == 'n' || *s == 'N') {
2749		user_zonelist_order = ZONELIST_ORDER_NODE;
2750	} else if (*s == 'z' || *s == 'Z') {
2751		user_zonelist_order = ZONELIST_ORDER_ZONE;
2752	} else {
2753		printk(KERN_WARNING
2754			"Ignoring invalid numa_zonelist_order value:  "
2755			"%s\n", s);
2756		return -EINVAL;
2757	}
2758	return 0;
2759}
2760
2761static __init int setup_numa_zonelist_order(char *s)
2762{
2763	int ret;
2764
2765	if (!s)
2766		return 0;
2767
2768	ret = __parse_numa_zonelist_order(s);
2769	if (ret == 0)
2770		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2771
2772	return ret;
2773}
2774early_param("numa_zonelist_order", setup_numa_zonelist_order);
2775
2776/*
2777 * sysctl handler for numa_zonelist_order
2778 */
2779int numa_zonelist_order_handler(ctl_table *table, int write,
2780		void __user *buffer, size_t *length,
2781		loff_t *ppos)
2782{
2783	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2784	int ret;
2785	static DEFINE_MUTEX(zl_order_mutex);
2786
2787	mutex_lock(&zl_order_mutex);
2788	if (write)
2789		strcpy(saved_string, (char*)table->data);
2790	ret = proc_dostring(table, write, buffer, length, ppos);
2791	if (ret)
2792		goto out;
2793	if (write) {
2794		int oldval = user_zonelist_order;
2795		if (__parse_numa_zonelist_order((char*)table->data)) {
2796			/*
2797			 * bogus value.  restore saved string
2798			 */
2799			strncpy((char*)table->data, saved_string,
2800				NUMA_ZONELIST_ORDER_LEN);
2801			user_zonelist_order = oldval;
2802		} else if (oldval != user_zonelist_order) {
2803			mutex_lock(&zonelists_mutex);
2804			build_all_zonelists(NULL);
2805			mutex_unlock(&zonelists_mutex);
2806		}
2807	}
2808out:
2809	mutex_unlock(&zl_order_mutex);
2810	return ret;
2811}
2812
2813
2814#define MAX_NODE_LOAD (nr_online_nodes)
2815static int node_load[MAX_NUMNODES];
2816
2817/**
2818 * find_next_best_node - find the next node that should appear in a given node's fallback list
2819 * @node: node whose fallback list we're appending
2820 * @used_node_mask: nodemask_t of already used nodes
2821 *
2822 * We use a number of factors to determine which is the next node that should
2823 * appear on a given node's fallback list.  The node should not have appeared
2824 * already in @node's fallback list, and it should be the next closest node
2825 * according to the distance array (which contains arbitrary distance values
2826 * from each node to each node in the system), and should also prefer nodes
2827 * with no CPUs, since presumably they'll have very little allocation pressure
2828 * on them otherwise.
2829 * It returns -1 if no node is found.
 
2830 */
2831static int find_next_best_node(int node, nodemask_t *used_node_mask)
2832{
2833	int n, val;
2834	int min_val = INT_MAX;
2835	int best_node = -1;
2836	const struct cpumask *tmp = cpumask_of_node(0);
2837
2838	/* Use the local node if we haven't already */
2839	if (!node_isset(node, *used_node_mask)) {
 
 
 
2840		node_set(node, *used_node_mask);
2841		return node;
2842	}
2843
2844	for_each_node_state(n, N_HIGH_MEMORY) {
2845
2846		/* Don't want a node to appear more than once */
2847		if (node_isset(n, *used_node_mask))
2848			continue;
2849
2850		/* Use the distance array to find the distance */
2851		val = node_distance(node, n);
2852
2853		/* Penalize nodes under us ("prefer the next node") */
2854		val += (n < node);
2855
2856		/* Give preference to headless and unused nodes */
2857		tmp = cpumask_of_node(n);
2858		if (!cpumask_empty(tmp))
2859			val += PENALTY_FOR_NODE_WITH_CPUS;
2860
2861		/* Slight preference for less loaded node */
2862		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2863		val += node_load[n];
2864
2865		if (val < min_val) {
2866			min_val = val;
2867			best_node = n;
2868		}
2869	}
2870
2871	if (best_node >= 0)
2872		node_set(best_node, *used_node_mask);
2873
2874	return best_node;
2875}
2876
2877
2878/*
2879 * Build zonelists ordered by node and zones within node.
2880 * This results in maximum locality--normal zone overflows into local
2881 * DMA zone, if any--but risks exhausting DMA zone.
2882 */
2883static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 
2884{
2885	int j;
2886	struct zonelist *zonelist;
 
 
2887
2888	zonelist = &pgdat->node_zonelists[0];
2889	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2890		;
2891	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2892							MAX_NR_ZONES - 1);
2893	zonelist->_zonerefs[j].zone = NULL;
2894	zonelist->_zonerefs[j].zone_idx = 0;
 
 
 
2895}
2896
2897/*
2898 * Build gfp_thisnode zonelists
2899 */
2900static void build_thisnode_zonelists(pg_data_t *pgdat)
2901{
2902	int j;
2903	struct zonelist *zonelist;
2904
2905	zonelist = &pgdat->node_zonelists[1];
2906	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2907	zonelist->_zonerefs[j].zone = NULL;
2908	zonelist->_zonerefs[j].zone_idx = 0;
 
2909}
2910
2911/*
2912 * Build zonelists ordered by zone and nodes within zones.
2913 * This results in conserving DMA zone[s] until all Normal memory is
2914 * exhausted, but results in overflowing to remote node while memory
2915 * may still exist in local DMA zone.
2916 */
2917static int node_order[MAX_NUMNODES];
2918
2919static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2920{
2921	int pos, j, node;
2922	int zone_type;		/* needs to be signed */
2923	struct zone *z;
2924	struct zonelist *zonelist;
2925
2926	zonelist = &pgdat->node_zonelists[0];
2927	pos = 0;
2928	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2929		for (j = 0; j < nr_nodes; j++) {
2930			node = node_order[j];
2931			z = &NODE_DATA(node)->node_zones[zone_type];
2932			if (populated_zone(z)) {
2933				zoneref_set_zone(z,
2934					&zonelist->_zonerefs[pos++]);
2935				check_highest_zone(zone_type);
2936			}
2937		}
2938	}
2939	zonelist->_zonerefs[pos].zone = NULL;
2940	zonelist->_zonerefs[pos].zone_idx = 0;
2941}
2942
2943static int default_zonelist_order(void)
2944{
2945	int nid, zone_type;
2946	unsigned long low_kmem_size,total_size;
2947	struct zone *z;
2948	int average_size;
2949	/*
2950         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2951	 * If they are really small and used heavily, the system can fall
2952	 * into OOM very easily.
2953	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2954	 */
2955	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2956	low_kmem_size = 0;
2957	total_size = 0;
2958	for_each_online_node(nid) {
2959		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2960			z = &NODE_DATA(nid)->node_zones[zone_type];
2961			if (populated_zone(z)) {
2962				if (zone_type < ZONE_NORMAL)
2963					low_kmem_size += z->present_pages;
2964				total_size += z->present_pages;
2965			} else if (zone_type == ZONE_NORMAL) {
2966				/*
2967				 * If any node has only lowmem, then node order
2968				 * is preferred to allow kernel allocations
2969				 * locally; otherwise, they can easily infringe
2970				 * on other nodes when there is an abundance of
2971				 * lowmem available to allocate from.
2972				 */
2973				return ZONELIST_ORDER_NODE;
2974			}
2975		}
2976	}
2977	if (!low_kmem_size ||  /* there are no DMA area. */
2978	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2979		return ZONELIST_ORDER_NODE;
2980	/*
2981	 * look into each node's config.
2982  	 * If there is a node whose DMA/DMA32 memory is very big area on
2983 	 * local memory, NODE_ORDER may be suitable.
2984         */
2985	average_size = total_size /
2986				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2987	for_each_online_node(nid) {
2988		low_kmem_size = 0;
2989		total_size = 0;
2990		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2991			z = &NODE_DATA(nid)->node_zones[zone_type];
2992			if (populated_zone(z)) {
2993				if (zone_type < ZONE_NORMAL)
2994					low_kmem_size += z->present_pages;
2995				total_size += z->present_pages;
2996			}
2997		}
2998		if (low_kmem_size &&
2999		    total_size > average_size && /* ignore small node */
3000		    low_kmem_size > total_size * 70/100)
3001			return ZONELIST_ORDER_NODE;
3002	}
3003	return ZONELIST_ORDER_ZONE;
3004}
3005
3006static void set_zonelist_order(void)
3007{
3008	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3009		current_zonelist_order = default_zonelist_order();
3010	else
3011		current_zonelist_order = user_zonelist_order;
3012}
3013
3014static void build_zonelists(pg_data_t *pgdat)
3015{
3016	int j, node, load;
3017	enum zone_type i;
3018	nodemask_t used_mask;
3019	int local_node, prev_node;
3020	struct zonelist *zonelist;
3021	int order = current_zonelist_order;
3022
3023	/* initialize zonelists */
3024	for (i = 0; i < MAX_ZONELISTS; i++) {
3025		zonelist = pgdat->node_zonelists + i;
3026		zonelist->_zonerefs[0].zone = NULL;
3027		zonelist->_zonerefs[0].zone_idx = 0;
3028	}
3029
3030	/* NUMA-aware ordering of nodes */
3031	local_node = pgdat->node_id;
3032	load = nr_online_nodes;
3033	prev_node = local_node;
3034	nodes_clear(used_mask);
3035
3036	memset(node_order, 0, sizeof(node_order));
3037	j = 0;
3038
3039	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3040		int distance = node_distance(local_node, node);
3041
3042		/*
3043		 * If another node is sufficiently far away then it is better
3044		 * to reclaim pages in a zone before going off node.
3045		 */
3046		if (distance > RECLAIM_DISTANCE)
3047			zone_reclaim_mode = 1;
3048
3049		/*
3050		 * We don't want to pressure a particular node.
3051		 * So adding penalty to the first node in same
3052		 * distance group to make it round-robin.
3053		 */
3054		if (distance != node_distance(local_node, prev_node))
3055			node_load[node] = load;
 
3056
 
3057		prev_node = node;
3058		load--;
3059		if (order == ZONELIST_ORDER_NODE)
3060			build_zonelists_in_node_order(pgdat, node);
3061		else
3062			node_order[j++] = node;	/* remember order */
3063	}
3064
3065	if (order == ZONELIST_ORDER_ZONE) {
3066		/* calculate node order -- i.e., DMA last! */
3067		build_zonelists_in_zone_order(pgdat, j);
3068	}
3069
 
3070	build_thisnode_zonelists(pgdat);
3071}
3072
3073/* Construct the zonelist performance cache - see further mmzone.h */
3074static void build_zonelist_cache(pg_data_t *pgdat)
3075{
3076	struct zonelist *zonelist;
3077	struct zonelist_cache *zlc;
3078	struct zoneref *z;
3079
3080	zonelist = &pgdat->node_zonelists[0];
3081	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3082	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3083	for (z = zonelist->_zonerefs; z->zone; z++)
3084		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3085}
3086
3087#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3088/*
3089 * Return node id of node used for "local" allocations.
3090 * I.e., first node id of first zone in arg node's generic zonelist.
3091 * Used for initializing percpu 'numa_mem', which is used primarily
3092 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3093 */
3094int local_memory_node(int node)
3095{
3096	struct zone *zone;
3097
3098	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3099				   gfp_zone(GFP_KERNEL),
3100				   NULL,
3101				   &zone);
3102	return zone->node;
3103}
3104#endif
3105
 
 
3106#else	/* CONFIG_NUMA */
3107
3108static void set_zonelist_order(void)
3109{
3110	current_zonelist_order = ZONELIST_ORDER_ZONE;
3111}
3112
3113static void build_zonelists(pg_data_t *pgdat)
3114{
3115	int node, local_node;
3116	enum zone_type j;
3117	struct zonelist *zonelist;
3118
3119	local_node = pgdat->node_id;
3120
3121	zonelist = &pgdat->node_zonelists[0];
3122	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3123
3124	/*
3125	 * Now we build the zonelist so that it contains the zones
3126	 * of all the other nodes.
3127	 * We don't want to pressure a particular node, so when
3128	 * building the zones for node N, we make sure that the
3129	 * zones coming right after the local ones are those from
3130	 * node N+1 (modulo N)
3131	 */
3132	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3133		if (!node_online(node))
3134			continue;
3135		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3136							MAX_NR_ZONES - 1);
3137	}
3138	for (node = 0; node < local_node; node++) {
3139		if (!node_online(node))
3140			continue;
3141		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3142							MAX_NR_ZONES - 1);
3143	}
3144
3145	zonelist->_zonerefs[j].zone = NULL;
3146	zonelist->_zonerefs[j].zone_idx = 0;
3147}
3148
3149/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3150static void build_zonelist_cache(pg_data_t *pgdat)
3151{
3152	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3153}
3154
3155#endif	/* CONFIG_NUMA */
3156
3157/*
3158 * Boot pageset table. One per cpu which is going to be used for all
3159 * zones and all nodes. The parameters will be set in such a way
3160 * that an item put on a list will immediately be handed over to
3161 * the buddy list. This is safe since pageset manipulation is done
3162 * with interrupts disabled.
3163 *
3164 * The boot_pagesets must be kept even after bootup is complete for
3165 * unused processors and/or zones. They do play a role for bootstrapping
3166 * hotplugged processors.
3167 *
3168 * zoneinfo_show() and maybe other functions do
3169 * not check if the processor is online before following the pageset pointer.
3170 * Other parts of the kernel may not check if the zone is available.
3171 */
3172static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3173static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3174static void setup_zone_pageset(struct zone *zone);
3175
3176/*
3177 * Global mutex to protect against size modification of zonelists
3178 * as well as to serialize pageset setup for the new populated zone.
3179 */
3180DEFINE_MUTEX(zonelists_mutex);
3181
3182/* return values int ....just for stop_machine() */
3183static __init_refok int __build_all_zonelists(void *data)
3184{
3185	int nid;
3186	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187
3188#ifdef CONFIG_NUMA
3189	memset(node_load, 0, sizeof(node_load));
3190#endif
3191	for_each_online_node(nid) {
3192		pg_data_t *pgdat = NODE_DATA(nid);
3193
3194		build_zonelists(pgdat);
3195		build_zonelist_cache(pgdat);
3196	}
3197
3198	/*
3199	 * Initialize the boot_pagesets that are going to be used
3200	 * for bootstrapping processors. The real pagesets for
3201	 * each zone will be allocated later when the per cpu
3202	 * allocator is available.
3203	 *
3204	 * boot_pagesets are used also for bootstrapping offline
3205	 * cpus if the system is already booted because the pagesets
3206	 * are needed to initialize allocators on a specific cpu too.
3207	 * F.e. the percpu allocator needs the page allocator which
3208	 * needs the percpu allocator in order to allocate its pagesets
3209	 * (a chicken-egg dilemma).
3210	 */
3211	for_each_possible_cpu(cpu) {
3212		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
 
 
 
 
 
 
 
 
 
 
3213
3214#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3215		/*
3216		 * We now know the "local memory node" for each node--
3217		 * i.e., the node of the first zone in the generic zonelist.
3218		 * Set up numa_mem percpu variable for on-line cpus.  During
3219		 * boot, only the boot cpu should be on-line;  we'll init the
3220		 * secondary cpus' numa_mem as they come on-line.  During
3221		 * node/memory hotplug, we'll fixup all on-line cpus.
3222		 */
3223		if (cpu_online(cpu))
3224			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3225#endif
3226	}
3227
3228	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229}
3230
3231/*
3232 * Called with zonelists_mutex held always
3233 * unless system_state == SYSTEM_BOOTING.
 
 
 
3234 */
3235void __ref build_all_zonelists(void *data)
3236{
3237	set_zonelist_order();
3238
3239	if (system_state == SYSTEM_BOOTING) {
3240		__build_all_zonelists(NULL);
3241		mminit_verify_zonelist();
3242		cpuset_init_current_mems_allowed();
3243	} else {
3244		/* we have to stop all cpus to guarantee there is no user
3245		   of zonelist */
3246#ifdef CONFIG_MEMORY_HOTPLUG
3247		if (data)
3248			setup_zone_pageset((struct zone *)data);
3249#endif
3250		stop_machine(__build_all_zonelists, NULL, NULL);
3251		/* cpuset refresh routine should be here */
3252	}
3253	vm_total_pages = nr_free_pagecache_pages();
 
3254	/*
3255	 * Disable grouping by mobility if the number of pages in the
3256	 * system is too low to allow the mechanism to work. It would be
3257	 * more accurate, but expensive to check per-zone. This check is
3258	 * made on memory-hotadd so a system can start with mobility
3259	 * disabled and enable it later
3260	 */
3261	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3262		page_group_by_mobility_disabled = 1;
3263	else
3264		page_group_by_mobility_disabled = 0;
3265
3266	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3267		"Total pages: %ld\n",
3268			nr_online_nodes,
3269			zonelist_order_name[current_zonelist_order],
3270			page_group_by_mobility_disabled ? "off" : "on",
3271			vm_total_pages);
3272#ifdef CONFIG_NUMA
3273	printk("Policy zone: %s\n", zone_names[policy_zone]);
3274#endif
3275}
3276
3277/*
3278 * Helper functions to size the waitqueue hash table.
3279 * Essentially these want to choose hash table sizes sufficiently
3280 * large so that collisions trying to wait on pages are rare.
3281 * But in fact, the number of active page waitqueues on typical
3282 * systems is ridiculously low, less than 200. So this is even
3283 * conservative, even though it seems large.
3284 *
3285 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3286 * waitqueues, i.e. the size of the waitq table given the number of pages.
3287 */
3288#define PAGES_PER_WAITQUEUE	256
3289
3290#ifndef CONFIG_MEMORY_HOTPLUG
3291static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3292{
3293	unsigned long size = 1;
3294
3295	pages /= PAGES_PER_WAITQUEUE;
3296
3297	while (size < pages)
3298		size <<= 1;
3299
3300	/*
3301	 * Once we have dozens or even hundreds of threads sleeping
3302	 * on IO we've got bigger problems than wait queue collision.
3303	 * Limit the size of the wait table to a reasonable size.
3304	 */
3305	size = min(size, 4096UL);
3306
3307	return max(size, 4UL);
3308}
3309#else
3310/*
3311 * A zone's size might be changed by hot-add, so it is not possible to determine
3312 * a suitable size for its wait_table.  So we use the maximum size now.
3313 *
3314 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3315 *
3316 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3317 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3318 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3319 *
3320 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3321 * or more by the traditional way. (See above).  It equals:
3322 *
3323 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3324 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3325 *    powerpc (64K page size)             : =  (32G +16M)byte.
3326 */
3327static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3328{
3329	return 4096UL;
3330}
3331#endif
3332
3333/*
3334 * This is an integer logarithm so that shifts can be used later
3335 * to extract the more random high bits from the multiplicative
3336 * hash function before the remainder is taken.
3337 */
3338static inline unsigned long wait_table_bits(unsigned long size)
3339{
3340	return ffz(~size);
3341}
3342
3343#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3344
3345/*
3346 * Check if a pageblock contains reserved pages
3347 */
3348static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3349{
3350	unsigned long pfn;
3351
3352	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3353		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3354			return 1;
3355	}
3356	return 0;
3357}
3358
3359/*
3360 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3361 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3362 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3363 * higher will lead to a bigger reserve which will get freed as contiguous
3364 * blocks as reclaim kicks in
3365 */
3366static void setup_zone_migrate_reserve(struct zone *zone)
3367{
3368	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3369	struct page *page;
3370	unsigned long block_migratetype;
3371	int reserve;
3372
3373	/* Get the start pfn, end pfn and the number of blocks to reserve */
3374	start_pfn = zone->zone_start_pfn;
3375	end_pfn = start_pfn + zone->spanned_pages;
3376	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3377							pageblock_order;
3378
3379	/*
3380	 * Reserve blocks are generally in place to help high-order atomic
3381	 * allocations that are short-lived. A min_free_kbytes value that
3382	 * would result in more than 2 reserve blocks for atomic allocations
3383	 * is assumed to be in place to help anti-fragmentation for the
3384	 * future allocation of hugepages at runtime.
3385	 */
3386	reserve = min(2, reserve);
3387
3388	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3389		if (!pfn_valid(pfn))
3390			continue;
3391		page = pfn_to_page(pfn);
3392
3393		/* Watch out for overlapping nodes */
3394		if (page_to_nid(page) != zone_to_nid(zone))
3395			continue;
3396
3397		/* Blocks with reserved pages will never free, skip them. */
3398		block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3399		if (pageblock_is_reserved(pfn, block_end_pfn))
3400			continue;
3401
3402		block_migratetype = get_pageblock_migratetype(page);
3403
3404		/* If this block is reserved, account for it */
3405		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3406			reserve--;
3407			continue;
3408		}
3409
3410		/* Suitable for reserving if this block is movable */
3411		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3412			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3413			move_freepages_block(zone, page, MIGRATE_RESERVE);
3414			reserve--;
3415			continue;
3416		}
3417
3418		/*
3419		 * If the reserve is met and this is a previous reserved block,
3420		 * take it back
3421		 */
3422		if (block_migratetype == MIGRATE_RESERVE) {
3423			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3424			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3425		}
3426	}
3427}
3428
3429/*
3430 * Initially all pages are reserved - free ones are freed
3431 * up by free_all_bootmem() once the early boot process is
3432 * done. Non-atomic initialization, single-pass.
3433 */
3434void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3435		unsigned long start_pfn, enum memmap_context context)
3436{
3437	struct page *page;
3438	unsigned long end_pfn = start_pfn + size;
3439	unsigned long pfn;
3440	struct zone *z;
3441
3442	if (highest_memmap_pfn < end_pfn - 1)
3443		highest_memmap_pfn = end_pfn - 1;
3444
3445	z = &NODE_DATA(nid)->node_zones[zone];
3446	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3447		/*
3448		 * There can be holes in boot-time mem_map[]s
3449		 * handed to this function.  They do not
3450		 * exist on hotplugged memory.
3451		 */
3452		if (context == MEMMAP_EARLY) {
3453			if (!early_pfn_valid(pfn))
3454				continue;
3455			if (!early_pfn_in_nid(pfn, nid))
3456				continue;
3457		}
3458		page = pfn_to_page(pfn);
3459		set_page_links(page, zone, nid, pfn);
3460		mminit_verify_page_links(page, zone, nid, pfn);
3461		init_page_count(page);
3462		reset_page_mapcount(page);
3463		SetPageReserved(page);
3464		/*
3465		 * Mark the block movable so that blocks are reserved for
3466		 * movable at startup. This will force kernel allocations
3467		 * to reserve their blocks rather than leaking throughout
3468		 * the address space during boot when many long-lived
3469		 * kernel allocations are made. Later some blocks near
3470		 * the start are marked MIGRATE_RESERVE by
3471		 * setup_zone_migrate_reserve()
3472		 *
3473		 * bitmap is created for zone's valid pfn range. but memmap
3474		 * can be created for invalid pages (for alignment)
3475		 * check here not to call set_pageblock_migratetype() against
3476		 * pfn out of zone.
3477		 */
3478		if ((z->zone_start_pfn <= pfn)
3479		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3480		    && !(pfn & (pageblock_nr_pages - 1)))
3481			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3482
3483		INIT_LIST_HEAD(&page->lru);
3484#ifdef WANT_PAGE_VIRTUAL
3485		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3486		if (!is_highmem_idx(zone))
3487			set_page_address(page, __va(pfn << PAGE_SHIFT));
3488#endif
3489	}
3490}
3491
3492static void __meminit zone_init_free_lists(struct zone *zone)
3493{
3494	int order, t;
3495	for_each_migratetype_order(order, t) {
3496		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3497		zone->free_area[order].nr_free = 0;
3498	}
3499}
3500
3501#ifndef __HAVE_ARCH_MEMMAP_INIT
3502#define memmap_init(size, nid, zone, start_pfn) \
3503	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3504#endif
3505
3506static int zone_batchsize(struct zone *zone)
3507{
3508#ifdef CONFIG_MMU
3509	int batch;
3510
3511	/*
3512	 * The per-cpu-pages pools are set to around 1000th of the
3513	 * size of the zone.  But no more than 1/2 of a meg.
3514	 *
3515	 * OK, so we don't know how big the cache is.  So guess.
3516	 */
3517	batch = zone->present_pages / 1024;
3518	if (batch * PAGE_SIZE > 512 * 1024)
3519		batch = (512 * 1024) / PAGE_SIZE;
3520	batch /= 4;		/* We effectively *= 4 below */
3521	if (batch < 1)
3522		batch = 1;
3523
3524	/*
3525	 * Clamp the batch to a 2^n - 1 value. Having a power
3526	 * of 2 value was found to be more likely to have
3527	 * suboptimal cache aliasing properties in some cases.
3528	 *
3529	 * For example if 2 tasks are alternately allocating
3530	 * batches of pages, one task can end up with a lot
3531	 * of pages of one half of the possible page colors
3532	 * and the other with pages of the other colors.
3533	 */
3534	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3535
3536	return batch;
3537
3538#else
3539	/* The deferral and batching of frees should be suppressed under NOMMU
3540	 * conditions.
3541	 *
3542	 * The problem is that NOMMU needs to be able to allocate large chunks
3543	 * of contiguous memory as there's no hardware page translation to
3544	 * assemble apparent contiguous memory from discontiguous pages.
3545	 *
3546	 * Queueing large contiguous runs of pages for batching, however,
3547	 * causes the pages to actually be freed in smaller chunks.  As there
3548	 * can be a significant delay between the individual batches being
3549	 * recycled, this leads to the once large chunks of space being
3550	 * fragmented and becoming unavailable for high-order allocations.
3551	 */
3552	return 0;
3553#endif
3554}
3555
3556static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3557{
3558	struct per_cpu_pages *pcp;
3559	int migratetype;
3560
3561	memset(p, 0, sizeof(*p));
3562
3563	pcp = &p->pcp;
3564	pcp->count = 0;
3565	pcp->high = 6 * batch;
3566	pcp->batch = max(1UL, 1 * batch);
3567	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3568		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3569}
3570
3571/*
3572 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3573 * to the value high for the pageset p.
3574 */
3575
3576static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3577				unsigned long high)
3578{
3579	struct per_cpu_pages *pcp;
3580
3581	pcp = &p->pcp;
3582	pcp->high = high;
3583	pcp->batch = max(1UL, high/4);
3584	if ((high/4) > (PAGE_SHIFT * 8))
3585		pcp->batch = PAGE_SHIFT * 8;
3586}
3587
3588static void setup_zone_pageset(struct zone *zone)
3589{
3590	int cpu;
3591
3592	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3593
3594	for_each_possible_cpu(cpu) {
3595		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3596
3597		setup_pageset(pcp, zone_batchsize(zone));
3598
3599		if (percpu_pagelist_fraction)
3600			setup_pagelist_highmark(pcp,
3601				(zone->present_pages /
3602					percpu_pagelist_fraction));
3603	}
3604}
3605
3606/*
3607 * Allocate per cpu pagesets and initialize them.
3608 * Before this call only boot pagesets were available.
3609 */
3610void __init setup_per_cpu_pageset(void)
3611{
3612	struct zone *zone;
3613
3614	for_each_populated_zone(zone)
3615		setup_zone_pageset(zone);
3616}
3617
3618static noinline __init_refok
3619int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3620{
3621	int i;
3622	struct pglist_data *pgdat = zone->zone_pgdat;
3623	size_t alloc_size;
3624
3625	/*
3626	 * The per-page waitqueue mechanism uses hashed waitqueues
3627	 * per zone.
3628	 */
3629	zone->wait_table_hash_nr_entries =
3630		 wait_table_hash_nr_entries(zone_size_pages);
3631	zone->wait_table_bits =
3632		wait_table_bits(zone->wait_table_hash_nr_entries);
3633	alloc_size = zone->wait_table_hash_nr_entries
3634					* sizeof(wait_queue_head_t);
3635
3636	if (!slab_is_available()) {
3637		zone->wait_table = (wait_queue_head_t *)
3638			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3639	} else {
3640		/*
3641		 * This case means that a zone whose size was 0 gets new memory
3642		 * via memory hot-add.
3643		 * But it may be the case that a new node was hot-added.  In
3644		 * this case vmalloc() will not be able to use this new node's
3645		 * memory - this wait_table must be initialized to use this new
3646		 * node itself as well.
3647		 * To use this new node's memory, further consideration will be
3648		 * necessary.
3649		 */
3650		zone->wait_table = vmalloc(alloc_size);
3651	}
3652	if (!zone->wait_table)
3653		return -ENOMEM;
3654
3655	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3656		init_waitqueue_head(zone->wait_table + i);
3657
3658	return 0;
3659}
3660
3661static int __zone_pcp_update(void *data)
3662{
3663	struct zone *zone = data;
3664	int cpu;
3665	unsigned long batch = zone_batchsize(zone), flags;
3666
3667	for_each_possible_cpu(cpu) {
3668		struct per_cpu_pageset *pset;
3669		struct per_cpu_pages *pcp;
3670
3671		pset = per_cpu_ptr(zone->pageset, cpu);
3672		pcp = &pset->pcp;
3673
3674		local_irq_save(flags);
3675		free_pcppages_bulk(zone, pcp->count, pcp);
3676		setup_pageset(pset, batch);
3677		local_irq_restore(flags);
3678	}
3679	return 0;
3680}
3681
3682void zone_pcp_update(struct zone *zone)
3683{
3684	stop_machine(__zone_pcp_update, zone, NULL);
3685}
3686
3687static __meminit void zone_pcp_init(struct zone *zone)
3688{
3689	/*
3690	 * per cpu subsystem is not up at this point. The following code
3691	 * relies on the ability of the linker to provide the
3692	 * offset of a (static) per cpu variable into the per cpu area.
 
 
 
3693	 */
3694	zone->pageset = &boot_pageset;
3695
3696	if (zone->present_pages)
3697		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3698			zone->name, zone->present_pages,
3699					 zone_batchsize(zone));
3700}
3701
3702__meminit int init_currently_empty_zone(struct zone *zone,
3703					unsigned long zone_start_pfn,
3704					unsigned long size,
3705					enum memmap_context context)
3706{
3707	struct pglist_data *pgdat = zone->zone_pgdat;
3708	int ret;
3709	ret = zone_wait_table_init(zone, size);
3710	if (ret)
3711		return ret;
3712	pgdat->nr_zones = zone_idx(zone) + 1;
3713
3714	zone->zone_start_pfn = zone_start_pfn;
3715
3716	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3717			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3718			pgdat->node_id,
3719			(unsigned long)zone_idx(zone),
3720			zone_start_pfn, (zone_start_pfn + size));
3721
3722	zone_init_free_lists(zone);
3723
3724	return 0;
3725}
3726
3727#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3728/*
3729 * Basic iterator support. Return the first range of PFNs for a node
3730 * Note: nid == MAX_NUMNODES returns first region regardless of node
3731 */
3732static int __meminit first_active_region_index_in_nid(int nid)
3733{
3734	int i;
3735
3736	for (i = 0; i < nr_nodemap_entries; i++)
3737		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3738			return i;
3739
3740	return -1;
3741}
3742
3743/*
3744 * Basic iterator support. Return the next active range of PFNs for a node
3745 * Note: nid == MAX_NUMNODES returns next region regardless of node
3746 */
3747static int __meminit next_active_region_index_in_nid(int index, int nid)
3748{
3749	for (index = index + 1; index < nr_nodemap_entries; index++)
3750		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3751			return index;
3752
3753	return -1;
3754}
3755
3756#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3757/*
3758 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3759 * Architectures may implement their own version but if add_active_range()
3760 * was used and there are no special requirements, this is a convenient
3761 * alternative
3762 */
3763int __meminit __early_pfn_to_nid(unsigned long pfn)
3764{
3765	int i;
3766
3767	for (i = 0; i < nr_nodemap_entries; i++) {
3768		unsigned long start_pfn = early_node_map[i].start_pfn;
3769		unsigned long end_pfn = early_node_map[i].end_pfn;
3770
3771		if (start_pfn <= pfn && pfn < end_pfn)
3772			return early_node_map[i].nid;
3773	}
3774	/* This is a memory hole */
3775	return -1;
3776}
3777#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3778
3779int __meminit early_pfn_to_nid(unsigned long pfn)
3780{
3781	int nid;
3782
3783	nid = __early_pfn_to_nid(pfn);
3784	if (nid >= 0)
3785		return nid;
3786	/* just returns 0 */
3787	return 0;
3788}
3789
3790#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3791bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3792{
3793	int nid;
3794
3795	nid = __early_pfn_to_nid(pfn);
3796	if (nid >= 0 && nid != node)
3797		return false;
3798	return true;
3799}
3800#endif
3801
3802/* Basic iterator support to walk early_node_map[] */
3803#define for_each_active_range_index_in_nid(i, nid) \
3804	for (i = first_active_region_index_in_nid(nid); i != -1; \
3805				i = next_active_region_index_in_nid(i, nid))
3806
3807/**
3808 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3809 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3810 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3811 *
3812 * If an architecture guarantees that all ranges registered with
3813 * add_active_ranges() contain no holes and may be freed, this
3814 * this function may be used instead of calling free_bootmem() manually.
3815 */
3816void __init free_bootmem_with_active_regions(int nid,
3817						unsigned long max_low_pfn)
3818{
3819	int i;
3820
3821	for_each_active_range_index_in_nid(i, nid) {
3822		unsigned long size_pages = 0;
3823		unsigned long end_pfn = early_node_map[i].end_pfn;
3824
3825		if (early_node_map[i].start_pfn >= max_low_pfn)
3826			continue;
3827
3828		if (end_pfn > max_low_pfn)
3829			end_pfn = max_low_pfn;
3830
3831		size_pages = end_pfn - early_node_map[i].start_pfn;
3832		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3833				PFN_PHYS(early_node_map[i].start_pfn),
3834				size_pages << PAGE_SHIFT);
3835	}
3836}
3837
3838#ifdef CONFIG_HAVE_MEMBLOCK
3839/*
3840 * Basic iterator support. Return the last range of PFNs for a node
3841 * Note: nid == MAX_NUMNODES returns last region regardless of node
3842 */
3843static int __meminit last_active_region_index_in_nid(int nid)
3844{
3845	int i;
3846
3847	for (i = nr_nodemap_entries - 1; i >= 0; i--)
3848		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3849			return i;
3850
3851	return -1;
3852}
3853
3854/*
3855 * Basic iterator support. Return the previous active range of PFNs for a node
3856 * Note: nid == MAX_NUMNODES returns next region regardless of node
 
 
 
 
 
 
 
 
 
 
 
 
 
3857 */
3858static int __meminit previous_active_region_index_in_nid(int index, int nid)
 
3859{
3860	for (index = index - 1; index >= 0; index--)
3861		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3862			return index;
3863
3864	return -1;
3865}
3866
3867#define for_each_active_range_index_in_nid_reverse(i, nid) \
3868	for (i = last_active_region_index_in_nid(nid); i != -1; \
3869				i = previous_active_region_index_in_nid(i, nid))
3870
3871u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3872					u64 goal, u64 limit)
3873{
3874	int i;
3875
3876	/* Need to go over early_node_map to find out good range for node */
3877	for_each_active_range_index_in_nid_reverse(i, nid) {
3878		u64 addr;
3879		u64 ei_start, ei_last;
3880		u64 final_start, final_end;
3881
3882		ei_last = early_node_map[i].end_pfn;
3883		ei_last <<= PAGE_SHIFT;
3884		ei_start = early_node_map[i].start_pfn;
3885		ei_start <<= PAGE_SHIFT;
3886
3887		final_start = max(ei_start, goal);
3888		final_end = min(ei_last, limit);
3889
3890		if (final_start >= final_end)
3891			continue;
3892
3893		addr = memblock_find_in_range(final_start, final_end, size, align);
3894
3895		if (addr == MEMBLOCK_ERROR)
3896			continue;
3897
3898		return addr;
3899	}
3900
3901	return MEMBLOCK_ERROR;
3902}
3903#endif
3904
3905int __init add_from_early_node_map(struct range *range, int az,
3906				   int nr_range, int nid)
3907{
3908	int i;
3909	u64 start, end;
3910
3911	/* need to go over early_node_map to find out good range for node */
3912	for_each_active_range_index_in_nid(i, nid) {
3913		start = early_node_map[i].start_pfn;
3914		end = early_node_map[i].end_pfn;
3915		nr_range = add_range(range, az, nr_range, start, end);
3916	}
3917	return nr_range;
3918}
3919
3920void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3921{
3922	int i;
3923	int ret;
3924
3925	for_each_active_range_index_in_nid(i, nid) {
3926		ret = work_fn(early_node_map[i].start_pfn,
3927			      early_node_map[i].end_pfn, data);
3928		if (ret)
3929			break;
3930	}
3931}
3932/**
3933 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3934 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3935 *
3936 * If an architecture guarantees that all ranges registered with
3937 * add_active_ranges() contain no holes and may be freed, this
3938 * function may be used instead of calling memory_present() manually.
3939 */
3940void __init sparse_memory_present_with_active_regions(int nid)
3941{
3942	int i;
3943
3944	for_each_active_range_index_in_nid(i, nid)
3945		memory_present(early_node_map[i].nid,
3946				early_node_map[i].start_pfn,
3947				early_node_map[i].end_pfn);
3948}
3949
3950/**
3951 * get_pfn_range_for_nid - Return the start and end page frames for a node
3952 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3953 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3954 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3955 *
3956 * It returns the start and end page frame of a node based on information
3957 * provided by an arch calling add_active_range(). If called for a node
3958 * with no available memory, a warning is printed and the start and end
3959 * PFNs will be 0.
3960 */
3961void __meminit get_pfn_range_for_nid(unsigned int nid,
3962			unsigned long *start_pfn, unsigned long *end_pfn)
3963{
3964	int i;
3965	*start_pfn = -1UL;
3966	*end_pfn = 0;
3967
3968	for_each_active_range_index_in_nid(i, nid) {
3969		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3970		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3971	}
3972
3973	if (*start_pfn == -1UL)
3974		*start_pfn = 0;
3975}
3976
3977/*
3978 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3979 * assumption is made that zones within a node are ordered in monotonic
3980 * increasing memory addresses so that the "highest" populated zone is used
3981 */
3982static void __init find_usable_zone_for_movable(void)
3983{
3984	int zone_index;
3985	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3986		if (zone_index == ZONE_MOVABLE)
3987			continue;
3988
3989		if (arch_zone_highest_possible_pfn[zone_index] >
3990				arch_zone_lowest_possible_pfn[zone_index])
3991			break;
3992	}
3993
3994	VM_BUG_ON(zone_index == -1);
3995	movable_zone = zone_index;
3996}
3997
3998/*
3999 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4000 * because it is sized independent of architecture. Unlike the other zones,
4001 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4002 * in each node depending on the size of each node and how evenly kernelcore
4003 * is distributed. This helper function adjusts the zone ranges
4004 * provided by the architecture for a given node by using the end of the
4005 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4006 * zones within a node are in order of monotonic increases memory addresses
4007 */
4008static void __meminit adjust_zone_range_for_zone_movable(int nid,
4009					unsigned long zone_type,
4010					unsigned long node_start_pfn,
4011					unsigned long node_end_pfn,
4012					unsigned long *zone_start_pfn,
4013					unsigned long *zone_end_pfn)
4014{
4015	/* Only adjust if ZONE_MOVABLE is on this node */
4016	if (zone_movable_pfn[nid]) {
4017		/* Size ZONE_MOVABLE */
4018		if (zone_type == ZONE_MOVABLE) {
4019			*zone_start_pfn = zone_movable_pfn[nid];
4020			*zone_end_pfn = min(node_end_pfn,
4021				arch_zone_highest_possible_pfn[movable_zone]);
4022
4023		/* Adjust for ZONE_MOVABLE starting within this range */
4024		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4025				*zone_end_pfn > zone_movable_pfn[nid]) {
4026			*zone_end_pfn = zone_movable_pfn[nid];
4027
4028		/* Check if this whole range is within ZONE_MOVABLE */
4029		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4030			*zone_start_pfn = *zone_end_pfn;
4031	}
4032}
4033
4034/*
4035 * Return the number of pages a zone spans in a node, including holes
4036 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4037 */
4038static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4039					unsigned long zone_type,
4040					unsigned long *ignored)
4041{
4042	unsigned long node_start_pfn, node_end_pfn;
4043	unsigned long zone_start_pfn, zone_end_pfn;
4044
4045	/* Get the start and end of the node and zone */
4046	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4047	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4048	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4049	adjust_zone_range_for_zone_movable(nid, zone_type,
4050				node_start_pfn, node_end_pfn,
4051				&zone_start_pfn, &zone_end_pfn);
4052
4053	/* Check that this node has pages within the zone's required range */
4054	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4055		return 0;
 
4056
4057	/* Move the zone boundaries inside the node if necessary */
4058	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4059	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4060
4061	/* Return the spanned pages */
4062	return zone_end_pfn - zone_start_pfn;
4063}
4064
4065/*
4066 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4067 * then all holes in the requested range will be accounted for.
4068 */
4069unsigned long __meminit __absent_pages_in_range(int nid,
4070				unsigned long range_start_pfn,
4071				unsigned long range_end_pfn)
4072{
4073	int i = 0;
4074	unsigned long prev_end_pfn = 0, hole_pages = 0;
4075	unsigned long start_pfn;
4076
4077	/* Find the end_pfn of the first active range of pfns in the node */
4078	i = first_active_region_index_in_nid(nid);
4079	if (i == -1)
4080		return 0;
4081
4082	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4083
4084	/* Account for ranges before physical memory on this node */
4085	if (early_node_map[i].start_pfn > range_start_pfn)
4086		hole_pages = prev_end_pfn - range_start_pfn;
4087
4088	/* Find all holes for the zone within the node */
4089	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4090
4091		/* No need to continue if prev_end_pfn is outside the zone */
4092		if (prev_end_pfn >= range_end_pfn)
4093			break;
4094
4095		/* Make sure the end of the zone is not within the hole */
4096		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4097		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
 
4098
4099		/* Update the hole size cound and move on */
4100		if (start_pfn > range_start_pfn) {
4101			BUG_ON(prev_end_pfn > start_pfn);
4102			hole_pages += start_pfn - prev_end_pfn;
4103		}
4104		prev_end_pfn = early_node_map[i].end_pfn;
4105	}
4106
4107	/* Account for ranges past physical memory on this node */
4108	if (range_end_pfn > prev_end_pfn)
4109		hole_pages += range_end_pfn -
4110				max(range_start_pfn, prev_end_pfn);
4111
4112	return hole_pages;
4113}
4114
4115/**
4116 * absent_pages_in_range - Return number of page frames in holes within a range
4117 * @start_pfn: The start PFN to start searching for holes
4118 * @end_pfn: The end PFN to stop searching for holes
4119 *
4120 * It returns the number of pages frames in memory holes within a range.
4121 */
4122unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4123							unsigned long end_pfn)
4124{
4125	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4126}
4127
4128/* Return the number of page frames in holes in a zone on a node */
4129static unsigned long __meminit zone_absent_pages_in_node(int nid,
4130					unsigned long zone_type,
4131					unsigned long *ignored)
4132{
4133	unsigned long node_start_pfn, node_end_pfn;
4134	unsigned long zone_start_pfn, zone_end_pfn;
4135
4136	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4137	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4138							node_start_pfn);
4139	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4140							node_end_pfn);
4141
4142	adjust_zone_range_for_zone_movable(nid, zone_type,
4143			node_start_pfn, node_end_pfn,
4144			&zone_start_pfn, &zone_end_pfn);
4145	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4146}
4147
4148#else
4149static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4150					unsigned long zone_type,
4151					unsigned long *zones_size)
4152{
4153	return zones_size[zone_type];
4154}
4155
4156static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4157						unsigned long zone_type,
4158						unsigned long *zholes_size)
4159{
4160	if (!zholes_size)
4161		return 0;
4162
4163	return zholes_size[zone_type];
4164}
4165
4166#endif
4167
4168static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4169		unsigned long *zones_size, unsigned long *zholes_size)
4170{
4171	unsigned long realtotalpages, totalpages = 0;
4172	enum zone_type i;
4173
4174	for (i = 0; i < MAX_NR_ZONES; i++)
4175		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4176								zones_size);
4177	pgdat->node_spanned_pages = totalpages;
4178
4179	realtotalpages = totalpages;
4180	for (i = 0; i < MAX_NR_ZONES; i++)
4181		realtotalpages -=
4182			zone_absent_pages_in_node(pgdat->node_id, i,
4183								zholes_size);
4184	pgdat->node_present_pages = realtotalpages;
4185	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4186							realtotalpages);
4187}
4188
4189#ifndef CONFIG_SPARSEMEM
4190/*
4191 * Calculate the size of the zone->blockflags rounded to an unsigned long
4192 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4193 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4194 * round what is now in bits to nearest long in bits, then return it in
4195 * bytes.
4196 */
4197static unsigned long __init usemap_size(unsigned long zonesize)
4198{
4199	unsigned long usemapsize;
4200
4201	usemapsize = roundup(zonesize, pageblock_nr_pages);
4202	usemapsize = usemapsize >> pageblock_order;
4203	usemapsize *= NR_PAGEBLOCK_BITS;
4204	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4205
4206	return usemapsize / 8;
4207}
4208
4209static void __init setup_usemap(struct pglist_data *pgdat,
4210				struct zone *zone, unsigned long zonesize)
4211{
4212	unsigned long usemapsize = usemap_size(zonesize);
4213	zone->pageblock_flags = NULL;
4214	if (usemapsize)
4215		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4216								   usemapsize);
4217}
4218#else
4219static inline void setup_usemap(struct pglist_data *pgdat,
4220				struct zone *zone, unsigned long zonesize) {}
4221#endif /* CONFIG_SPARSEMEM */
4222
4223#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4224
4225/* Return a sensible default order for the pageblock size. */
4226static inline int pageblock_default_order(void)
4227{
4228	if (HPAGE_SHIFT > PAGE_SHIFT)
4229		return HUGETLB_PAGE_ORDER;
4230
4231	return MAX_ORDER-1;
4232}
4233
4234/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4235static inline void __init set_pageblock_order(unsigned int order)
4236{
4237	/* Check that pageblock_nr_pages has not already been setup */
4238	if (pageblock_order)
4239		return;
4240
 
 
4241	/*
4242	 * Assume the largest contiguous order of interest is a huge page.
4243	 * This value may be variable depending on boot parameters on IA64
4244	 */
4245	pageblock_order = order;
 
 
 
 
 
 
 
 
4246}
4247#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4248
4249/*
4250 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4251 * and pageblock_default_order() are unused as pageblock_order is set
4252 * at compile-time. See include/linux/pageblock-flags.h for the values of
4253 * pageblock_order based on the kernel config
4254 */
4255static inline int pageblock_default_order(unsigned int order)
4256{
4257	return MAX_ORDER-1;
4258}
4259#define set_pageblock_order(x)	do {} while (0)
4260
4261#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 
 
4262
4263/*
4264 * Set up the zone data structures:
4265 *   - mark all pages reserved
4266 *   - mark all memory queues empty
4267 *   - clear the memory bitmaps
4268 */
4269static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4270		unsigned long *zones_size, unsigned long *zholes_size)
4271{
4272	enum zone_type j;
4273	int nid = pgdat->node_id;
4274	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4275	int ret;
4276
4277	pgdat_resize_init(pgdat);
4278	pgdat->nr_zones = 0;
4279	init_waitqueue_head(&pgdat->kswapd_wait);
4280	pgdat->kswapd_max_order = 0;
4281	pgdat_page_cgroup_init(pgdat);
4282	
4283	for (j = 0; j < MAX_NR_ZONES; j++) {
4284		struct zone *zone = pgdat->node_zones + j;
4285		unsigned long size, realsize, memmap_pages;
4286		enum lru_list l;
4287
4288		size = zone_spanned_pages_in_node(nid, j, zones_size);
4289		realsize = size - zone_absent_pages_in_node(nid, j,
4290								zholes_size);
4291
4292		/*
4293		 * Adjust realsize so that it accounts for how much memory
4294		 * is used by this zone for memmap. This affects the watermark
4295		 * and per-cpu initialisations
4296		 */
4297		memmap_pages =
4298			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4299		if (realsize >= memmap_pages) {
4300			realsize -= memmap_pages;
4301			if (memmap_pages)
4302				printk(KERN_DEBUG
4303				       "  %s zone: %lu pages used for memmap\n",
4304				       zone_names[j], memmap_pages);
4305		} else
4306			printk(KERN_WARNING
4307				"  %s zone: %lu pages exceeds realsize %lu\n",
4308				zone_names[j], memmap_pages, realsize);
4309
4310		/* Account for reserved pages */
4311		if (j == 0 && realsize > dma_reserve) {
4312			realsize -= dma_reserve;
4313			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4314					zone_names[0], dma_reserve);
4315		}
4316
4317		if (!is_highmem_idx(j))
4318			nr_kernel_pages += realsize;
4319		nr_all_pages += realsize;
4320
4321		zone->spanned_pages = size;
4322		zone->present_pages = realsize;
4323#ifdef CONFIG_NUMA
4324		zone->node = nid;
4325		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4326						/ 100;
4327		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4328#endif
4329		zone->name = zone_names[j];
4330		spin_lock_init(&zone->lock);
4331		spin_lock_init(&zone->lru_lock);
4332		zone_seqlock_init(zone);
4333		zone->zone_pgdat = pgdat;
4334
4335		zone_pcp_init(zone);
4336		for_each_lru(l)
4337			INIT_LIST_HEAD(&zone->lru[l].list);
4338		zone->reclaim_stat.recent_rotated[0] = 0;
4339		zone->reclaim_stat.recent_rotated[1] = 0;
4340		zone->reclaim_stat.recent_scanned[0] = 0;
4341		zone->reclaim_stat.recent_scanned[1] = 0;
4342		zap_zone_vm_stats(zone);
4343		zone->flags = 0;
4344		if (!size)
4345			continue;
4346
4347		set_pageblock_order(pageblock_default_order());
4348		setup_usemap(pgdat, zone, size);
4349		ret = init_currently_empty_zone(zone, zone_start_pfn,
4350						size, MEMMAP_EARLY);
4351		BUG_ON(ret);
4352		memmap_init(size, nid, j, zone_start_pfn);
4353		zone_start_pfn += size;
4354	}
4355}
4356
4357static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4358{
4359	/* Skip empty nodes */
4360	if (!pgdat->node_spanned_pages)
4361		return;
4362
4363#ifdef CONFIG_FLAT_NODE_MEM_MAP
4364	/* ia64 gets its own node_mem_map, before this, without bootmem */
4365	if (!pgdat->node_mem_map) {
4366		unsigned long size, start, end;
4367		struct page *map;
4368
4369		/*
4370		 * The zone's endpoints aren't required to be MAX_ORDER
4371		 * aligned but the node_mem_map endpoints must be in order
4372		 * for the buddy allocator to function correctly.
4373		 */
4374		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4375		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4376		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4377		size =  (end - start) * sizeof(struct page);
4378		map = alloc_remap(pgdat->node_id, size);
4379		if (!map)
4380			map = alloc_bootmem_node_nopanic(pgdat, size);
4381		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4382	}
4383#ifndef CONFIG_NEED_MULTIPLE_NODES
4384	/*
4385	 * With no DISCONTIG, the global mem_map is just set as node 0's
 
 
 
4386	 */
4387	if (pgdat == NODE_DATA(0)) {
4388		mem_map = NODE_DATA(0)->node_mem_map;
4389#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4390		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4391			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4392#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4393	}
4394#endif
4395#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4396}
4397
4398void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4399		unsigned long node_start_pfn, unsigned long *zholes_size)
4400{
4401	pg_data_t *pgdat = NODE_DATA(nid);
4402
4403	pgdat->node_id = nid;
4404	pgdat->node_start_pfn = node_start_pfn;
4405	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4406
4407	alloc_node_mem_map(pgdat);
4408#ifdef CONFIG_FLAT_NODE_MEM_MAP
4409	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4410		nid, (unsigned long)pgdat,
4411		(unsigned long)pgdat->node_mem_map);
4412#endif
4413
4414	free_area_init_core(pgdat, zones_size, zholes_size);
4415}
4416
4417#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4418
4419#if MAX_NUMNODES > 1
4420/*
4421 * Figure out the number of possible node ids.
4422 */
4423static void __init setup_nr_node_ids(void)
4424{
4425	unsigned int node;
4426	unsigned int highest = 0;
4427
4428	for_each_node_mask(node, node_possible_map)
4429		highest = node;
4430	nr_node_ids = highest + 1;
4431}
4432#else
4433static inline void setup_nr_node_ids(void)
4434{
4435}
4436#endif
4437
4438/**
4439 * add_active_range - Register a range of PFNs backed by physical memory
4440 * @nid: The node ID the range resides on
4441 * @start_pfn: The start PFN of the available physical memory
4442 * @end_pfn: The end PFN of the available physical memory
4443 *
4444 * These ranges are stored in an early_node_map[] and later used by
4445 * free_area_init_nodes() to calculate zone sizes and holes. If the
4446 * range spans a memory hole, it is up to the architecture to ensure
4447 * the memory is not freed by the bootmem allocator. If possible
4448 * the range being registered will be merged with existing ranges.
4449 */
4450void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4451						unsigned long end_pfn)
4452{
4453	int i;
4454
4455	mminit_dprintk(MMINIT_TRACE, "memory_register",
4456			"Entering add_active_range(%d, %#lx, %#lx) "
4457			"%d entries of %d used\n",
4458			nid, start_pfn, end_pfn,
4459			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4460
4461	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4462
4463	/* Merge with existing active regions if possible */
4464	for (i = 0; i < nr_nodemap_entries; i++) {
4465		if (early_node_map[i].nid != nid)
4466			continue;
4467
4468		/* Skip if an existing region covers this new one */
4469		if (start_pfn >= early_node_map[i].start_pfn &&
4470				end_pfn <= early_node_map[i].end_pfn)
4471			return;
4472
4473		/* Merge forward if suitable */
4474		if (start_pfn <= early_node_map[i].end_pfn &&
4475				end_pfn > early_node_map[i].end_pfn) {
4476			early_node_map[i].end_pfn = end_pfn;
4477			return;
4478		}
4479
4480		/* Merge backward if suitable */
4481		if (start_pfn < early_node_map[i].start_pfn &&
4482				end_pfn >= early_node_map[i].start_pfn) {
4483			early_node_map[i].start_pfn = start_pfn;
4484			return;
4485		}
4486	}
4487
4488	/* Check that early_node_map is large enough */
4489	if (i >= MAX_ACTIVE_REGIONS) {
4490		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4491							MAX_ACTIVE_REGIONS);
4492		return;
4493	}
4494
4495	early_node_map[i].nid = nid;
4496	early_node_map[i].start_pfn = start_pfn;
4497	early_node_map[i].end_pfn = end_pfn;
4498	nr_nodemap_entries = i + 1;
4499}
4500
4501/**
4502 * remove_active_range - Shrink an existing registered range of PFNs
4503 * @nid: The node id the range is on that should be shrunk
4504 * @start_pfn: The new PFN of the range
4505 * @end_pfn: The new PFN of the range
4506 *
4507 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4508 * The map is kept near the end physical page range that has already been
4509 * registered. This function allows an arch to shrink an existing registered
4510 * range.
4511 */
4512void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4513				unsigned long end_pfn)
4514{
4515	int i, j;
4516	int removed = 0;
4517
4518	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4519			  nid, start_pfn, end_pfn);
4520
4521	/* Find the old active region end and shrink */
4522	for_each_active_range_index_in_nid(i, nid) {
4523		if (early_node_map[i].start_pfn >= start_pfn &&
4524		    early_node_map[i].end_pfn <= end_pfn) {
4525			/* clear it */
4526			early_node_map[i].start_pfn = 0;
4527			early_node_map[i].end_pfn = 0;
4528			removed = 1;
4529			continue;
4530		}
4531		if (early_node_map[i].start_pfn < start_pfn &&
4532		    early_node_map[i].end_pfn > start_pfn) {
4533			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4534			early_node_map[i].end_pfn = start_pfn;
4535			if (temp_end_pfn > end_pfn)
4536				add_active_range(nid, end_pfn, temp_end_pfn);
4537			continue;
4538		}
4539		if (early_node_map[i].start_pfn >= start_pfn &&
4540		    early_node_map[i].end_pfn > end_pfn &&
4541		    early_node_map[i].start_pfn < end_pfn) {
4542			early_node_map[i].start_pfn = end_pfn;
4543			continue;
4544		}
4545	}
4546
4547	if (!removed)
4548		return;
4549
4550	/* remove the blank ones */
4551	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4552		if (early_node_map[i].nid != nid)
4553			continue;
4554		if (early_node_map[i].end_pfn)
4555			continue;
4556		/* we found it, get rid of it */
4557		for (j = i; j < nr_nodemap_entries - 1; j++)
4558			memcpy(&early_node_map[j], &early_node_map[j+1],
4559				sizeof(early_node_map[j]));
4560		j = nr_nodemap_entries - 1;
4561		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4562		nr_nodemap_entries--;
4563	}
4564}
4565
4566/**
4567 * remove_all_active_ranges - Remove all currently registered regions
4568 *
4569 * During discovery, it may be found that a table like SRAT is invalid
4570 * and an alternative discovery method must be used. This function removes
4571 * all currently registered regions.
4572 */
4573void __init remove_all_active_ranges(void)
4574{
4575	memset(early_node_map, 0, sizeof(early_node_map));
4576	nr_nodemap_entries = 0;
4577}
4578
4579/* Compare two active node_active_regions */
4580static int __init cmp_node_active_region(const void *a, const void *b)
4581{
4582	struct node_active_region *arange = (struct node_active_region *)a;
4583	struct node_active_region *brange = (struct node_active_region *)b;
4584
4585	/* Done this way to avoid overflows */
4586	if (arange->start_pfn > brange->start_pfn)
4587		return 1;
4588	if (arange->start_pfn < brange->start_pfn)
4589		return -1;
4590
4591	return 0;
4592}
4593
4594/* sort the node_map by start_pfn */
4595void __init sort_node_map(void)
4596{
4597	sort(early_node_map, (size_t)nr_nodemap_entries,
4598			sizeof(struct node_active_region),
4599			cmp_node_active_region, NULL);
4600}
 
4601
4602/**
4603 * node_map_pfn_alignment - determine the maximum internode alignment
4604 *
4605 * This function should be called after node map is populated and sorted.
4606 * It calculates the maximum power of two alignment which can distinguish
4607 * all the nodes.
4608 *
4609 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4610 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4611 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4612 * shifted, 1GiB is enough and this function will indicate so.
4613 *
4614 * This is used to test whether pfn -> nid mapping of the chosen memory
4615 * model has fine enough granularity to avoid incorrect mapping for the
4616 * populated node map.
4617 *
4618 * Returns the determined alignment in pfn's.  0 if there is no alignment
4619 * requirement (single node).
4620 */
4621unsigned long __init node_map_pfn_alignment(void)
4622{
4623	unsigned long accl_mask = 0, last_end = 0;
4624	int last_nid = -1;
4625	int i;
4626
4627	for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4628		int nid = early_node_map[i].nid;
4629		unsigned long start = early_node_map[i].start_pfn;
4630		unsigned long end = early_node_map[i].end_pfn;
4631		unsigned long mask;
4632
4633		if (!start || last_nid < 0 || last_nid == nid) {
4634			last_nid = nid;
4635			last_end = end;
4636			continue;
4637		}
4638
4639		/*
4640		 * Start with a mask granular enough to pin-point to the
4641		 * start pfn and tick off bits one-by-one until it becomes
4642		 * too coarse to separate the current node from the last.
 
 
4643		 */
4644		mask = ~((1 << __ffs(start)) - 1);
4645		while (mask && last_end <= (start & (mask << 1)))
4646			mask <<= 1;
 
 
 
 
 
4647
4648		/* accumulate all internode masks */
4649		accl_mask |= mask;
4650	}
4651
4652	/* convert mask to number of pages */
4653	return ~accl_mask + 1;
4654}
4655
4656/* Find the lowest pfn for a node */
4657static unsigned long __init find_min_pfn_for_node(int nid)
4658{
4659	int i;
4660	unsigned long min_pfn = ULONG_MAX;
4661
4662	/* Assuming a sorted map, the first range found has the starting pfn */
4663	for_each_active_range_index_in_nid(i, nid)
4664		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4665
4666	if (min_pfn == ULONG_MAX) {
4667		printk(KERN_WARNING
4668			"Could not find start_pfn for node %d\n", nid);
4669		return 0;
4670	}
4671
4672	return min_pfn;
4673}
4674
4675/**
4676 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4677 *
4678 * It returns the minimum PFN based on information provided via
4679 * add_active_range().
4680 */
4681unsigned long __init find_min_pfn_with_active_regions(void)
4682{
4683	return find_min_pfn_for_node(MAX_NUMNODES);
 
 
 
 
4684}
 
4685
4686/*
4687 * early_calculate_totalpages()
4688 * Sum pages in active regions for movable zone.
4689 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4690 */
4691static unsigned long __init early_calculate_totalpages(void)
4692{
4693	int i;
4694	unsigned long totalpages = 0;
4695
4696	for (i = 0; i < nr_nodemap_entries; i++) {
4697		unsigned long pages = early_node_map[i].end_pfn -
4698						early_node_map[i].start_pfn;
4699		totalpages += pages;
4700		if (pages)
4701			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4702	}
4703  	return totalpages;
4704}
4705
4706/*
4707 * Find the PFN the Movable zone begins in each node. Kernel memory
4708 * is spread evenly between nodes as long as the nodes have enough
4709 * memory. When they don't, some nodes will have more kernelcore than
4710 * others
4711 */
4712static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4713{
4714	int i, nid;
4715	unsigned long usable_startpfn;
4716	unsigned long kernelcore_node, kernelcore_remaining;
4717	/* save the state before borrow the nodemask */
4718	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4719	unsigned long totalpages = early_calculate_totalpages();
4720	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4721
4722	/*
4723	 * If movablecore was specified, calculate what size of
4724	 * kernelcore that corresponds so that memory usable for
4725	 * any allocation type is evenly spread. If both kernelcore
4726	 * and movablecore are specified, then the value of kernelcore
4727	 * will be used for required_kernelcore if it's greater than
4728	 * what movablecore would have allowed.
4729	 */
4730	if (required_movablecore) {
4731		unsigned long corepages;
4732
4733		/*
4734		 * Round-up so that ZONE_MOVABLE is at least as large as what
4735		 * was requested by the user
4736		 */
4737		required_movablecore =
4738			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4739		corepages = totalpages - required_movablecore;
4740
4741		required_kernelcore = max(required_kernelcore, corepages);
4742	}
4743
4744	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4745	if (!required_kernelcore)
4746		goto out;
4747
4748	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4749	find_usable_zone_for_movable();
4750	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4751
4752restart:
4753	/* Spread kernelcore memory as evenly as possible throughout nodes */
4754	kernelcore_node = required_kernelcore / usable_nodes;
4755	for_each_node_state(nid, N_HIGH_MEMORY) {
4756		/*
4757		 * Recalculate kernelcore_node if the division per node
4758		 * now exceeds what is necessary to satisfy the requested
4759		 * amount of memory for the kernel
4760		 */
4761		if (required_kernelcore < kernelcore_node)
4762			kernelcore_node = required_kernelcore / usable_nodes;
4763
4764		/*
4765		 * As the map is walked, we track how much memory is usable
4766		 * by the kernel using kernelcore_remaining. When it is
4767		 * 0, the rest of the node is usable by ZONE_MOVABLE
4768		 */
4769		kernelcore_remaining = kernelcore_node;
4770
4771		/* Go through each range of PFNs within this node */
4772		for_each_active_range_index_in_nid(i, nid) {
4773			unsigned long start_pfn, end_pfn;
4774			unsigned long size_pages;
4775
4776			start_pfn = max(early_node_map[i].start_pfn,
4777						zone_movable_pfn[nid]);
4778			end_pfn = early_node_map[i].end_pfn;
4779			if (start_pfn >= end_pfn)
4780				continue;
4781
4782			/* Account for what is only usable for kernelcore */
4783			if (start_pfn < usable_startpfn) {
4784				unsigned long kernel_pages;
4785				kernel_pages = min(end_pfn, usable_startpfn)
4786								- start_pfn;
4787
4788				kernelcore_remaining -= min(kernel_pages,
4789							kernelcore_remaining);
4790				required_kernelcore -= min(kernel_pages,
4791							required_kernelcore);
4792
4793				/* Continue if range is now fully accounted */
4794				if (end_pfn <= usable_startpfn) {
4795
4796					/*
4797					 * Push zone_movable_pfn to the end so
4798					 * that if we have to rebalance
4799					 * kernelcore across nodes, we will
4800					 * not double account here
4801					 */
4802					zone_movable_pfn[nid] = end_pfn;
4803					continue;
4804				}
4805				start_pfn = usable_startpfn;
4806			}
4807
4808			/*
4809			 * The usable PFN range for ZONE_MOVABLE is from
4810			 * start_pfn->end_pfn. Calculate size_pages as the
4811			 * number of pages used as kernelcore
4812			 */
4813			size_pages = end_pfn - start_pfn;
4814			if (size_pages > kernelcore_remaining)
4815				size_pages = kernelcore_remaining;
4816			zone_movable_pfn[nid] = start_pfn + size_pages;
4817
4818			/*
4819			 * Some kernelcore has been met, update counts and
4820			 * break if the kernelcore for this node has been
4821			 * satisified
4822			 */
4823			required_kernelcore -= min(required_kernelcore,
4824								size_pages);
4825			kernelcore_remaining -= size_pages;
4826			if (!kernelcore_remaining)
4827				break;
4828		}
4829	}
4830
4831	/*
4832	 * If there is still required_kernelcore, we do another pass with one
4833	 * less node in the count. This will push zone_movable_pfn[nid] further
4834	 * along on the nodes that still have memory until kernelcore is
4835	 * satisified
 
4836	 */
4837	usable_nodes--;
4838	if (usable_nodes && required_kernelcore > usable_nodes)
4839		goto restart;
4840
4841	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4842	for (nid = 0; nid < MAX_NUMNODES; nid++)
4843		zone_movable_pfn[nid] =
4844			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4845
4846out:
4847	/* restore the node_state */
4848	node_states[N_HIGH_MEMORY] = saved_node_state;
4849}
4850
4851/* Any regular memory on that node ? */
4852static void check_for_regular_memory(pg_data_t *pgdat)
4853{
4854#ifdef CONFIG_HIGHMEM
4855	enum zone_type zone_type;
4856
4857	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4858		struct zone *zone = &pgdat->node_zones[zone_type];
4859		if (zone->present_pages)
4860			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4861	}
4862#endif
4863}
4864
4865/**
4866 * free_area_init_nodes - Initialise all pg_data_t and zone data
4867 * @max_zone_pfn: an array of max PFNs for each zone
4868 *
4869 * This will call free_area_init_node() for each active node in the system.
4870 * Using the page ranges provided by add_active_range(), the size of each
4871 * zone in each node and their holes is calculated. If the maximum PFN
4872 * between two adjacent zones match, it is assumed that the zone is empty.
4873 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4874 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4875 * starts where the previous one ended. For example, ZONE_DMA32 starts
4876 * at arch_max_dma_pfn.
4877 */
4878void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4879{
4880	unsigned long nid;
4881	int i;
4882
4883	/* Sort early_node_map as initialisation assumes it is sorted */
4884	sort_node_map();
4885
4886	/* Record where the zone boundaries are */
4887	memset(arch_zone_lowest_possible_pfn, 0,
4888				sizeof(arch_zone_lowest_possible_pfn));
4889	memset(arch_zone_highest_possible_pfn, 0,
4890				sizeof(arch_zone_highest_possible_pfn));
4891	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4892	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4893	for (i = 1; i < MAX_NR_ZONES; i++) {
4894		if (i == ZONE_MOVABLE)
4895			continue;
4896		arch_zone_lowest_possible_pfn[i] =
4897			arch_zone_highest_possible_pfn[i-1];
4898		arch_zone_highest_possible_pfn[i] =
4899			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4900	}
4901	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4902	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4903
4904	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4905	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4906	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4907
4908	/* Print out the zone ranges */
4909	printk("Zone PFN ranges:\n");
4910	for (i = 0; i < MAX_NR_ZONES; i++) {
4911		if (i == ZONE_MOVABLE)
4912			continue;
4913		printk("  %-8s ", zone_names[i]);
4914		if (arch_zone_lowest_possible_pfn[i] ==
4915				arch_zone_highest_possible_pfn[i])
4916			printk("empty\n");
4917		else
4918			printk("%0#10lx -> %0#10lx\n",
4919				arch_zone_lowest_possible_pfn[i],
4920				arch_zone_highest_possible_pfn[i]);
4921	}
4922
4923	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4924	printk("Movable zone start PFN for each node\n");
4925	for (i = 0; i < MAX_NUMNODES; i++) {
4926		if (zone_movable_pfn[i])
4927			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4928	}
4929
4930	/* Print out the early_node_map[] */
4931	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4932	for (i = 0; i < nr_nodemap_entries; i++)
4933		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4934						early_node_map[i].start_pfn,
4935						early_node_map[i].end_pfn);
4936
4937	/* Initialise every node */
4938	mminit_verify_pageflags_layout();
4939	setup_nr_node_ids();
4940	for_each_online_node(nid) {
4941		pg_data_t *pgdat = NODE_DATA(nid);
4942		free_area_init_node(nid, NULL,
4943				find_min_pfn_for_node(nid), NULL);
4944
4945		/* Any memory on that node */
4946		if (pgdat->node_present_pages)
4947			node_set_state(nid, N_HIGH_MEMORY);
4948		check_for_regular_memory(pgdat);
4949	}
4950}
4951
4952static int __init cmdline_parse_core(char *p, unsigned long *core)
4953{
4954	unsigned long long coremem;
4955	if (!p)
4956		return -EINVAL;
4957
4958	coremem = memparse(p, &p);
4959	*core = coremem >> PAGE_SHIFT;
4960
4961	/* Paranoid check that UL is enough for the coremem value */
4962	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4963
4964	return 0;
4965}
4966
4967/*
4968 * kernelcore=size sets the amount of memory for use for allocations that
4969 * cannot be reclaimed or migrated.
4970 */
4971static int __init cmdline_parse_kernelcore(char *p)
4972{
4973	return cmdline_parse_core(p, &required_kernelcore);
4974}
4975
4976/*
4977 * movablecore=size sets the amount of memory for use for allocations that
4978 * can be reclaimed or migrated.
4979 */
4980static int __init cmdline_parse_movablecore(char *p)
4981{
4982	return cmdline_parse_core(p, &required_movablecore);
4983}
4984
4985early_param("kernelcore", cmdline_parse_kernelcore);
4986early_param("movablecore", cmdline_parse_movablecore);
4987
4988#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4989
4990/**
4991 * set_dma_reserve - set the specified number of pages reserved in the first zone
4992 * @new_dma_reserve: The number of pages to mark reserved
4993 *
4994 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4995 * In the DMA zone, a significant percentage may be consumed by kernel image
4996 * and other unfreeable allocations which can skew the watermarks badly. This
4997 * function may optionally be used to account for unfreeable pages in the
4998 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4999 * smaller per-cpu batchsize.
5000 */
5001void __init set_dma_reserve(unsigned long new_dma_reserve)
5002{
5003	dma_reserve = new_dma_reserve;
5004}
5005
5006void __init free_area_init(unsigned long *zones_size)
5007{
5008	free_area_init_node(0, zones_size,
5009			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5010}
5011
5012static int page_alloc_cpu_notify(struct notifier_block *self,
5013				 unsigned long action, void *hcpu)
5014{
5015	int cpu = (unsigned long)hcpu;
5016
5017	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5018		drain_pages(cpu);
5019
5020		/*
5021		 * Spill the event counters of the dead processor
5022		 * into the current processors event counters.
5023		 * This artificially elevates the count of the current
5024		 * processor.
5025		 */
5026		vm_events_fold_cpu(cpu);
5027
5028		/*
5029		 * Zero the differential counters of the dead processor
5030		 * so that the vm statistics are consistent.
5031		 *
5032		 * This is only okay since the processor is dead and cannot
5033		 * race with what we are doing.
5034		 */
5035		refresh_cpu_vm_stats(cpu);
5036	}
5037	return NOTIFY_OK;
5038}
5039
5040void __init page_alloc_init(void)
5041{
5042	hotcpu_notifier(page_alloc_cpu_notify, 0);
 
 
5043}
5044
5045/*
5046 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5047 *	or min_free_kbytes changes.
5048 */
5049static void calculate_totalreserve_pages(void)
5050{
5051	struct pglist_data *pgdat;
5052	unsigned long reserve_pages = 0;
5053	enum zone_type i, j;
5054
5055	for_each_online_pgdat(pgdat) {
 
 
 
5056		for (i = 0; i < MAX_NR_ZONES; i++) {
5057			struct zone *zone = pgdat->node_zones + i;
5058			unsigned long max = 0;
 
5059
5060			/* Find valid and maximum lowmem_reserve in the zone */
5061			for (j = i; j < MAX_NR_ZONES; j++) {
5062				if (zone->lowmem_reserve[j] > max)
5063					max = zone->lowmem_reserve[j];
5064			}
5065
5066			/* we treat the high watermark as reserved pages. */
5067			max += high_wmark_pages(zone);
5068
5069			if (max > zone->present_pages)
5070				max = zone->present_pages;
 
 
 
5071			reserve_pages += max;
5072		}
5073	}
5074	totalreserve_pages = reserve_pages;
5075}
5076
5077/*
5078 * setup_per_zone_lowmem_reserve - called whenever
5079 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5080 *	has a correct pages reserved value, so an adequate number of
5081 *	pages are left in the zone after a successful __alloc_pages().
5082 */
5083static void setup_per_zone_lowmem_reserve(void)
5084{
5085	struct pglist_data *pgdat;
5086	enum zone_type j, idx;
5087
5088	for_each_online_pgdat(pgdat) {
5089		for (j = 0; j < MAX_NR_ZONES; j++) {
5090			struct zone *zone = pgdat->node_zones + j;
5091			unsigned long present_pages = zone->present_pages;
5092
5093			zone->lowmem_reserve[j] = 0;
5094
5095			idx = j;
5096			while (idx) {
5097				struct zone *lower_zone;
5098
5099				idx--;
5100
5101				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5102					sysctl_lowmem_reserve_ratio[idx] = 1;
5103
5104				lower_zone = pgdat->node_zones + idx;
5105				lower_zone->lowmem_reserve[j] = present_pages /
5106					sysctl_lowmem_reserve_ratio[idx];
5107				present_pages += lower_zone->present_pages;
5108			}
5109		}
5110	}
5111
5112	/* update totalreserve_pages */
5113	calculate_totalreserve_pages();
5114}
5115
5116/**
5117 * setup_per_zone_wmarks - called when min_free_kbytes changes
5118 * or when memory is hot-{added|removed}
5119 *
5120 * Ensures that the watermark[min,low,high] values for each zone are set
5121 * correctly with respect to min_free_kbytes.
5122 */
5123void setup_per_zone_wmarks(void)
5124{
5125	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5126	unsigned long lowmem_pages = 0;
5127	struct zone *zone;
5128	unsigned long flags;
5129
5130	/* Calculate total number of !ZONE_HIGHMEM pages */
5131	for_each_zone(zone) {
5132		if (!is_highmem(zone))
5133			lowmem_pages += zone->present_pages;
5134	}
5135
5136	for_each_zone(zone) {
5137		u64 tmp;
5138
5139		spin_lock_irqsave(&zone->lock, flags);
5140		tmp = (u64)pages_min * zone->present_pages;
5141		do_div(tmp, lowmem_pages);
5142		if (is_highmem(zone)) {
5143			/*
5144			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5145			 * need highmem pages, so cap pages_min to a small
5146			 * value here.
5147			 *
5148			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5149			 * deltas controls asynch page reclaim, and so should
5150			 * not be capped for highmem.
5151			 */
5152			int min_pages;
5153
5154			min_pages = zone->present_pages / 1024;
5155			if (min_pages < SWAP_CLUSTER_MAX)
5156				min_pages = SWAP_CLUSTER_MAX;
5157			if (min_pages > 128)
5158				min_pages = 128;
5159			zone->watermark[WMARK_MIN] = min_pages;
5160		} else {
5161			/*
5162			 * If it's a lowmem zone, reserve a number of pages
5163			 * proportionate to the zone's size.
5164			 */
5165			zone->watermark[WMARK_MIN] = tmp;
5166		}
5167
5168		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5169		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5170		setup_zone_migrate_reserve(zone);
 
 
 
 
 
 
 
 
 
 
 
5171		spin_unlock_irqrestore(&zone->lock, flags);
5172	}
5173
5174	/* update totalreserve_pages */
5175	calculate_totalreserve_pages();
5176}
5177
5178/*
5179 * The inactive anon list should be small enough that the VM never has to
5180 * do too much work, but large enough that each inactive page has a chance
5181 * to be referenced again before it is swapped out.
5182 *
5183 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5184 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5185 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5186 * the anonymous pages are kept on the inactive list.
5187 *
5188 * total     target    max
5189 * memory    ratio     inactive anon
5190 * -------------------------------------
5191 *   10MB       1         5MB
5192 *  100MB       1        50MB
5193 *    1GB       3       250MB
5194 *   10GB      10       0.9GB
5195 *  100GB      31         3GB
5196 *    1TB     101        10GB
5197 *   10TB     320        32GB
5198 */
5199static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5200{
5201	unsigned int gb, ratio;
5202
5203	/* Zone size in gigabytes */
5204	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5205	if (gb)
5206		ratio = int_sqrt(10 * gb);
5207	else
5208		ratio = 1;
5209
5210	zone->inactive_ratio = ratio;
5211}
5212
5213static void __meminit setup_per_zone_inactive_ratio(void)
5214{
5215	struct zone *zone;
 
5216
 
 
 
 
 
 
 
 
5217	for_each_zone(zone)
5218		calculate_zone_inactive_ratio(zone);
5219}
5220
5221/*
5222 * Initialise min_free_kbytes.
5223 *
5224 * For small machines we want it small (128k min).  For large machines
5225 * we want it large (64MB max).  But it is not linear, because network
5226 * bandwidth does not increase linearly with machine size.  We use
5227 *
5228 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5229 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5230 *
5231 * which yields
5232 *
5233 * 16MB:	512k
5234 * 32MB:	724k
5235 * 64MB:	1024k
5236 * 128MB:	1448k
5237 * 256MB:	2048k
5238 * 512MB:	2896k
5239 * 1024MB:	4096k
5240 * 2048MB:	5792k
5241 * 4096MB:	8192k
5242 * 8192MB:	11584k
5243 * 16384MB:	16384k
5244 */
5245int __meminit init_per_zone_wmark_min(void)
5246{
5247	unsigned long lowmem_kbytes;
 
5248
5249	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
 
 
 
 
 
 
 
5250
5251	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5252	if (min_free_kbytes < 128)
5253		min_free_kbytes = 128;
5254	if (min_free_kbytes > 65536)
5255		min_free_kbytes = 65536;
5256	setup_per_zone_wmarks();
5257	refresh_zone_stat_thresholds();
5258	setup_per_zone_lowmem_reserve();
5259	setup_per_zone_inactive_ratio();
 
 
 
 
 
 
 
5260	return 0;
5261}
5262module_init(init_per_zone_wmark_min)
5263
5264/*
5265 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 
5266 *	that we can call two helper functions whenever min_free_kbytes
5267 *	changes.
5268 */
5269int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 
5270	void __user *buffer, size_t *length, loff_t *ppos)
5271{
5272	proc_dointvec(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5273	if (write)
5274		setup_per_zone_wmarks();
 
5275	return 0;
5276}
5277
5278#ifdef CONFIG_NUMA
5279int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5280	void __user *buffer, size_t *length, loff_t *ppos)
5281{
 
5282	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
5283	int rc;
5284
5285	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5286	if (rc)
5287		return rc;
5288
5289	for_each_zone(zone)
5290		zone->min_unmapped_pages = (zone->present_pages *
5291				sysctl_min_unmapped_ratio) / 100;
5292	return 0;
5293}
5294
5295int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5296	void __user *buffer, size_t *length, loff_t *ppos)
5297{
 
5298	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
5299	int rc;
5300
5301	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5302	if (rc)
5303		return rc;
5304
5305	for_each_zone(zone)
5306		zone->min_slab_pages = (zone->present_pages *
5307				sysctl_min_slab_ratio) / 100;
5308	return 0;
5309}
5310#endif
5311
5312/*
5313 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5314 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5315 *	whenever sysctl_lowmem_reserve_ratio changes.
5316 *
5317 * The reserve ratio obviously has absolutely no relation with the
5318 * minimum watermarks. The lowmem reserve ratio can only make sense
5319 * if in function of the boot time zone sizes.
5320 */
5321int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5322	void __user *buffer, size_t *length, loff_t *ppos)
5323{
 
 
5324	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
5325	setup_per_zone_lowmem_reserve();
5326	return 0;
5327}
5328
5329/*
5330 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5331 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5332 * can have before it gets flushed back to buddy allocator.
5333 */
5334
5335int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5336	void __user *buffer, size_t *length, loff_t *ppos)
5337{
5338	struct zone *zone;
5339	unsigned int cpu;
5340	int ret;
5341
 
 
 
5342	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5343	if (!write || (ret == -EINVAL))
5344		return ret;
5345	for_each_populated_zone(zone) {
5346		for_each_possible_cpu(cpu) {
5347			unsigned long  high;
5348			high = zone->present_pages / percpu_pagelist_fraction;
5349			setup_pagelist_highmark(
5350				per_cpu_ptr(zone->pageset, cpu), high);
5351		}
5352	}
5353	return 0;
5354}
5355
5356int hashdist = HASHDIST_DEFAULT;
 
 
 
 
 
 
 
 
 
5357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5358#ifdef CONFIG_NUMA
5359static int __init set_hashdist(char *str)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5360{
5361	if (!str)
5362		return 0;
5363	hashdist = simple_strtoul(str, &str, 0);
5364	return 1;
5365}
5366__setup("hashdist=", set_hashdist);
5367#endif
5368
5369/*
5370 * allocate a large system hash table from bootmem
5371 * - it is assumed that the hash table must contain an exact power-of-2
5372 *   quantity of entries
5373 * - limit is the number of hash buckets, not the total allocation size
5374 */
5375void *__init alloc_large_system_hash(const char *tablename,
5376				     unsigned long bucketsize,
5377				     unsigned long numentries,
5378				     int scale,
5379				     int flags,
5380				     unsigned int *_hash_shift,
5381				     unsigned int *_hash_mask,
5382				     unsigned long limit)
5383{
5384	unsigned long long max = limit;
5385	unsigned long log2qty, size;
5386	void *table = NULL;
5387
5388	/* allow the kernel cmdline to have a say */
5389	if (!numentries) {
5390		/* round applicable memory size up to nearest megabyte */
5391		numentries = nr_kernel_pages;
5392		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5393		numentries >>= 20 - PAGE_SHIFT;
5394		numentries <<= 20 - PAGE_SHIFT;
5395
5396		/* limit to 1 bucket per 2^scale bytes of low memory */
5397		if (scale > PAGE_SHIFT)
5398			numentries >>= (scale - PAGE_SHIFT);
5399		else
5400			numentries <<= (PAGE_SHIFT - scale);
5401
5402		/* Make sure we've got at least a 0-order allocation.. */
5403		if (unlikely(flags & HASH_SMALL)) {
5404			/* Makes no sense without HASH_EARLY */
5405			WARN_ON(!(flags & HASH_EARLY));
5406			if (!(numentries >> *_hash_shift)) {
5407				numentries = 1UL << *_hash_shift;
5408				BUG_ON(!numentries);
5409			}
5410		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5411			numentries = PAGE_SIZE / bucketsize;
5412	}
5413	numentries = roundup_pow_of_two(numentries);
5414
5415	/* limit allocation size to 1/16 total memory by default */
5416	if (max == 0) {
5417		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5418		do_div(max, bucketsize);
5419	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5420
5421	if (numentries > max)
5422		numentries = max;
 
 
 
 
 
 
 
 
 
5423
5424	log2qty = ilog2(numentries);
 
 
 
 
 
 
 
5425
5426	do {
5427		size = bucketsize << log2qty;
5428		if (flags & HASH_EARLY)
5429			table = alloc_bootmem_nopanic(size);
5430		else if (hashdist)
5431			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5432		else {
5433			/*
5434			 * If bucketsize is not a power-of-two, we may free
5435			 * some pages at the end of hash table which
5436			 * alloc_pages_exact() automatically does
5437			 */
5438			if (get_order(size) < MAX_ORDER) {
5439				table = alloc_pages_exact(size, GFP_ATOMIC);
5440				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5441			}
5442		}
5443	} while (!table && size > PAGE_SIZE && --log2qty);
5444
5445	if (!table)
5446		panic("Failed to allocate %s hash table\n", tablename);
5447
5448	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5449	       tablename,
5450	       (1UL << log2qty),
5451	       ilog2(size) - PAGE_SHIFT,
5452	       size);
5453
5454	if (_hash_shift)
5455		*_hash_shift = log2qty;
5456	if (_hash_mask)
5457		*_hash_mask = (1 << log2qty) - 1;
5458
5459	return table;
5460}
 
 
 
 
 
5461
5462/* Return a pointer to the bitmap storing bits affecting a block of pages */
5463static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5464							unsigned long pfn)
5465{
5466#ifdef CONFIG_SPARSEMEM
5467	return __pfn_to_section(pfn)->pageblock_flags;
5468#else
5469	return zone->pageblock_flags;
5470#endif /* CONFIG_SPARSEMEM */
 
 
 
5471}
5472
5473static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5474{
5475#ifdef CONFIG_SPARSEMEM
5476	pfn &= (PAGES_PER_SECTION-1);
5477	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5478#else
5479	pfn = pfn - zone->zone_start_pfn;
5480	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5481#endif /* CONFIG_SPARSEMEM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5482}
5483
5484/**
5485 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5486 * @page: The page within the block of interest
5487 * @start_bitidx: The first bit of interest to retrieve
5488 * @end_bitidx: The last bit of interest
5489 * returns pageblock_bits flags
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5490 */
5491unsigned long get_pageblock_flags_group(struct page *page,
5492					int start_bitidx, int end_bitidx)
5493{
5494	struct zone *zone;
5495	unsigned long *bitmap;
5496	unsigned long pfn, bitidx;
5497	unsigned long flags = 0;
5498	unsigned long value = 1;
5499
5500	zone = page_zone(page);
5501	pfn = page_to_pfn(page);
5502	bitmap = get_pageblock_bitmap(zone, pfn);
5503	bitidx = pfn_to_bitidx(zone, pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5504
5505	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5506		if (test_bit(bitidx + start_bitidx, bitmap))
5507			flags |= value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5508
5509	return flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5510}
 
5511
5512/**
5513 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5514 * @page: The page within the block of interest
5515 * @start_bitidx: The first bit of interest
5516 * @end_bitidx: The last bit of interest
5517 * @flags: The flags to set
5518 */
5519void set_pageblock_flags_group(struct page *page, unsigned long flags,
5520					int start_bitidx, int end_bitidx)
5521{
5522	struct zone *zone;
5523	unsigned long *bitmap;
5524	unsigned long pfn, bitidx;
5525	unsigned long value = 1;
5526
5527	zone = page_zone(page);
5528	pfn = page_to_pfn(page);
5529	bitmap = get_pageblock_bitmap(zone, pfn);
5530	bitidx = pfn_to_bitidx(zone, pfn);
5531	VM_BUG_ON(pfn < zone->zone_start_pfn);
5532	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5533
5534	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5535		if (flags & value)
5536			__set_bit(bitidx + start_bitidx, bitmap);
5537		else
5538			__clear_bit(bitidx + start_bitidx, bitmap);
5539}
5540
5541/*
5542 * This is designed as sub function...plz see page_isolation.c also.
5543 * set/clear page block's type to be ISOLATE.
5544 * page allocater never alloc memory from ISOLATE block.
5545 */
5546
5547static int
5548__count_immobile_pages(struct zone *zone, struct page *page, int count)
5549{
5550	unsigned long pfn, iter, found;
5551	/*
5552	 * For avoiding noise data, lru_add_drain_all() should be called
5553	 * If ZONE_MOVABLE, the zone never contains immobile pages
5554	 */
5555	if (zone_idx(zone) == ZONE_MOVABLE)
5556		return true;
5557
5558	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5559		return true;
 
 
5560
5561	pfn = page_to_pfn(page);
5562	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5563		unsigned long check = pfn + iter;
5564
5565		if (!pfn_valid_within(check))
5566			continue;
5567
5568		page = pfn_to_page(check);
5569		if (!page_count(page)) {
5570			if (PageBuddy(page))
5571				iter += (1 << page_order(page)) - 1;
5572			continue;
5573		}
5574		if (!PageLRU(page))
5575			found++;
5576		/*
5577		 * If there are RECLAIMABLE pages, we need to check it.
5578		 * But now, memory offline itself doesn't call shrink_slab()
5579		 * and it still to be fixed.
5580		 */
5581		/*
5582		 * If the page is not RAM, page_count()should be 0.
5583		 * we don't need more check. This is an _used_ not-movable page.
5584		 *
5585		 * The problematic thing here is PG_reserved pages. PG_reserved
5586		 * is set to both of a memory hole page and a _used_ kernel
5587		 * page at boot.
5588		 */
5589		if (found > count)
5590			return false;
5591	}
5592	return true;
5593}
5594
5595bool is_pageblock_removable_nolock(struct page *page)
 
5596{
5597	struct zone *zone = page_zone(page);
5598	return __count_immobile_pages(zone, page, 0);
 
5599}
5600
5601int set_migratetype_isolate(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5602{
 
 
5603	struct zone *zone;
5604	unsigned long flags, pfn;
5605	struct memory_isolate_notify arg;
5606	int notifier_ret;
5607	int ret = -EBUSY;
5608
5609	zone = page_zone(page);
 
 
 
5610
5611	spin_lock_irqsave(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5612
5613	pfn = page_to_pfn(page);
5614	arg.start_pfn = pfn;
5615	arg.nr_pages = pageblock_nr_pages;
5616	arg.pages_found = 0;
5617
5618	/*
5619	 * It may be possible to isolate a pageblock even if the
5620	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5621	 * notifier chain is used by balloon drivers to return the
5622	 * number of pages in a range that are held by the balloon
5623	 * driver to shrink memory. If all the pages are accounted for
5624	 * by balloons, are free, or on the LRU, isolation can continue.
5625	 * Later, for example, when memory hotplug notifier runs, these
5626	 * pages reported as "can be isolated" should be isolated(freed)
5627	 * by the balloon driver through the memory notifier chain.
5628	 */
5629	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5630	notifier_ret = notifier_to_errno(notifier_ret);
5631	if (notifier_ret)
5632		goto out;
5633	/*
5634	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5635	 * We just check MOVABLE pages.
5636	 */
5637	if (__count_immobile_pages(zone, page, arg.pages_found))
5638		ret = 0;
5639
5640	/*
5641	 * immobile means "not-on-lru" paes. If immobile is larger than
5642	 * removable-by-driver pages reported by notifier, we'll fail.
5643	 */
5644
5645out:
5646	if (!ret) {
5647		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5648		move_freepages_block(zone, page, MIGRATE_ISOLATE);
 
 
5649	}
5650
5651	spin_unlock_irqrestore(&zone->lock, flags);
5652	if (!ret)
5653		drain_all_pages();
5654	return ret;
 
 
 
5655}
 
5656
5657void unset_migratetype_isolate(struct page *page)
 
 
 
 
 
 
 
 
5658{
5659	struct zone *zone;
5660	unsigned long flags;
5661	zone = page_zone(page);
5662	spin_lock_irqsave(&zone->lock, flags);
5663	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5664		goto out;
5665	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5666	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5667out:
5668	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5669}
5670
5671#ifdef CONFIG_MEMORY_HOTREMOVE
5672/*
5673 * All pages in the range must be isolated before calling this.
 
 
 
 
 
5674 */
5675void
5676__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5677{
 
 
5678	struct page *page;
5679	struct zone *zone;
5680	int order, i;
5681	unsigned long pfn;
5682	unsigned long flags;
5683	/* find the first valid pfn */
5684	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5685		if (pfn_valid(pfn))
5686			break;
5687	if (pfn == end_pfn)
5688		return;
5689	zone = page_zone(pfn_to_page(pfn));
5690	spin_lock_irqsave(&zone->lock, flags);
5691	pfn = start_pfn;
5692	while (pfn < end_pfn) {
5693		if (!pfn_valid(pfn)) {
 
 
 
 
 
5694			pfn++;
5695			continue;
5696		}
5697		page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
 
5698		BUG_ON(page_count(page));
5699		BUG_ON(!PageBuddy(page));
5700		order = page_order(page);
5701#ifdef CONFIG_DEBUG_VM
5702		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5703		       pfn, 1 << order, end_pfn);
5704#endif
5705		list_del(&page->lru);
5706		rmv_page_order(page);
5707		zone->free_area[order].nr_free--;
5708		__mod_zone_page_state(zone, NR_FREE_PAGES,
5709				      - (1UL << order));
5710		for (i = 0; i < (1 << order); i++)
5711			SetPageReserved((page+i));
5712		pfn += (1 << order);
5713	}
5714	spin_unlock_irqrestore(&zone->lock, flags);
 
 
5715}
5716#endif
5717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5718#ifdef CONFIG_MEMORY_FAILURE
5719bool is_free_buddy_page(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5720{
5721	struct zone *zone = page_zone(page);
5722	unsigned long pfn = page_to_pfn(page);
5723	unsigned long flags;
5724	int order;
 
5725
5726	spin_lock_irqsave(&zone->lock, flags);
5727	for (order = 0; order < MAX_ORDER; order++) {
5728		struct page *page_head = page - (pfn & ((1 << order) - 1));
 
5729
5730		if (PageBuddy(page_head) && page_order(page_head) >= order)
 
 
 
 
 
 
 
 
 
 
 
 
 
5731			break;
5732	}
5733	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
5734
5735	return order < MAX_ORDER;
 
 
 
 
 
 
 
 
 
 
 
 
 
5736}
5737#endif
5738
5739static struct trace_print_flags pageflag_names[] = {
5740	{1UL << PG_locked,		"locked"	},
5741	{1UL << PG_error,		"error"		},
5742	{1UL << PG_referenced,		"referenced"	},
5743	{1UL << PG_uptodate,		"uptodate"	},
5744	{1UL << PG_dirty,		"dirty"		},
5745	{1UL << PG_lru,			"lru"		},
5746	{1UL << PG_active,		"active"	},
5747	{1UL << PG_slab,		"slab"		},
5748	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5749	{1UL << PG_arch_1,		"arch_1"	},
5750	{1UL << PG_reserved,		"reserved"	},
5751	{1UL << PG_private,		"private"	},
5752	{1UL << PG_private_2,		"private_2"	},
5753	{1UL << PG_writeback,		"writeback"	},
5754#ifdef CONFIG_PAGEFLAGS_EXTENDED
5755	{1UL << PG_head,		"head"		},
5756	{1UL << PG_tail,		"tail"		},
5757#else
5758	{1UL << PG_compound,		"compound"	},
5759#endif
5760	{1UL << PG_swapcache,		"swapcache"	},
5761	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5762	{1UL << PG_reclaim,		"reclaim"	},
5763	{1UL << PG_swapbacked,		"swapbacked"	},
5764	{1UL << PG_unevictable,		"unevictable"	},
5765#ifdef CONFIG_MMU
5766	{1UL << PG_mlocked,		"mlocked"	},
5767#endif
5768#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5769	{1UL << PG_uncached,		"uncached"	},
5770#endif
5771#ifdef CONFIG_MEMORY_FAILURE
5772	{1UL << PG_hwpoison,		"hwpoison"	},
5773#endif
5774	{-1UL,				NULL		},
5775};
5776
5777static void dump_page_flags(unsigned long flags)
 
 
 
 
 
 
 
5778{
5779	const char *delim = "";
5780	unsigned long mask;
5781	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5782
5783	printk(KERN_ALERT "page flags: %#lx(", flags);
 
 
 
5784
5785	/* remove zone id */
5786	flags &= (1UL << NR_PAGEFLAGS) - 1;
5787
5788	for (i = 0; pageflag_names[i].name && flags; i++) {
 
 
 
5789
5790		mask = pageflag_names[i].mask;
5791		if ((flags & mask) != mask)
5792			continue;
5793
5794		flags &= ~mask;
5795		printk("%s%s", delim, pageflag_names[i].name);
5796		delim = "|";
 
 
 
 
 
 
 
 
 
 
 
 
5797	}
5798
5799	/* check for left over flags */
5800	if (flags)
5801		printk("%s%#lx", delim, flags);
5802
5803	printk(")\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5804}
5805
5806void dump_page(struct page *page)
5807{
5808	printk(KERN_ALERT
5809	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5810		page, atomic_read(&page->_count), page_mapcount(page),
5811		page->mapping, page->index);
5812	dump_page_flags(page->flags);
5813	mem_cgroup_print_bad_page(page);
5814}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/interrupt.h>
 
  22#include <linux/jiffies.h>
 
 
  23#include <linux/compiler.h>
  24#include <linux/kernel.h>
  25#include <linux/kasan.h>
  26#include <linux/kmsan.h>
  27#include <linux/module.h>
  28#include <linux/suspend.h>
 
 
 
  29#include <linux/ratelimit.h>
  30#include <linux/oom.h>
 
  31#include <linux/topology.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/pagevec.h>
  36#include <linux/memory_hotplug.h>
  37#include <linux/nodemask.h>
 
  38#include <linux/vmstat.h>
 
 
 
 
 
  39#include <linux/fault-inject.h>
 
 
 
 
 
  40#include <linux/compaction.h>
  41#include <trace/events/kmem.h>
  42#include <trace/events/oom.h>
 
  43#include <linux/prefetch.h>
  44#include <linux/mm_inline.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/migrate.h>
  47#include <linux/sched/mm.h>
  48#include <linux/page_owner.h>
  49#include <linux/page_table_check.h>
  50#include <linux/memcontrol.h>
  51#include <linux/ftrace.h>
  52#include <linux/lockdep.h>
  53#include <linux/psi.h>
  54#include <linux/khugepaged.h>
  55#include <linux/delayacct.h>
  56#include <linux/cacheinfo.h>
  57#include <linux/pgalloc_tag.h>
  58#include <asm/div64.h>
  59#include "internal.h"
  60#include "shuffle.h"
  61#include "page_reporting.h"
  62
  63/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  64typedef int __bitwise fpi_t;
  65
  66/* No special request */
  67#define FPI_NONE		((__force fpi_t)0)
  68
  69/*
  70 * Skip free page reporting notification for the (possibly merged) page.
  71 * This does not hinder free page reporting from grabbing the page,
  72 * reporting it and marking it "reported" -  it only skips notifying
  73 * the free page reporting infrastructure about a newly freed page. For
  74 * example, used when temporarily pulling a page from a freelist and
  75 * putting it back unmodified.
  76 */
  77#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
  78
  79/*
  80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
  81 * page shuffling (relevant code - e.g., memory onlining - is expected to
  82 * shuffle the whole zone).
  83 *
  84 * Note: No code should rely on this flag for correctness - it's purely
  85 *       to allow for optimizations when handing back either fresh pages
  86 *       (memory onlining) or untouched pages (page isolation, free page
  87 *       reporting).
  88 */
  89#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
  90
  91/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  92static DEFINE_MUTEX(pcp_batch_high_lock);
  93#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
  94
  95#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
  96/*
  97 * On SMP, spin_trylock is sufficient protection.
  98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
  99 */
 100#define pcp_trylock_prepare(flags)	do { } while (0)
 101#define pcp_trylock_finish(flag)	do { } while (0)
 102#else
 103
 104/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
 105#define pcp_trylock_prepare(flags)	local_irq_save(flags)
 106#define pcp_trylock_finish(flags)	local_irq_restore(flags)
 107#endif
 108
 109/*
 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
 111 * a migration causing the wrong PCP to be locked and remote memory being
 112 * potentially allocated, pin the task to the CPU for the lookup+lock.
 113 * preempt_disable is used on !RT because it is faster than migrate_disable.
 114 * migrate_disable is used on RT because otherwise RT spinlock usage is
 115 * interfered with and a high priority task cannot preempt the allocator.
 116 */
 117#ifndef CONFIG_PREEMPT_RT
 118#define pcpu_task_pin()		preempt_disable()
 119#define pcpu_task_unpin()	preempt_enable()
 120#else
 121#define pcpu_task_pin()		migrate_disable()
 122#define pcpu_task_unpin()	migrate_enable()
 123#endif
 124
 125/*
 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
 127 * Return value should be used with equivalent unlock helper.
 128 */
 129#define pcpu_spin_lock(type, member, ptr)				\
 130({									\
 131	type *_ret;							\
 132	pcpu_task_pin();						\
 133	_ret = this_cpu_ptr(ptr);					\
 134	spin_lock(&_ret->member);					\
 135	_ret;								\
 136})
 137
 138#define pcpu_spin_trylock(type, member, ptr)				\
 139({									\
 140	type *_ret;							\
 141	pcpu_task_pin();						\
 142	_ret = this_cpu_ptr(ptr);					\
 143	if (!spin_trylock(&_ret->member)) {				\
 144		pcpu_task_unpin();					\
 145		_ret = NULL;						\
 146	}								\
 147	_ret;								\
 148})
 149
 150#define pcpu_spin_unlock(member, ptr)					\
 151({									\
 152	spin_unlock(&ptr->member);					\
 153	pcpu_task_unpin();						\
 154})
 155
 156/* struct per_cpu_pages specific helpers. */
 157#define pcp_spin_lock(ptr)						\
 158	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
 159
 160#define pcp_spin_trylock(ptr)						\
 161	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
 162
 163#define pcp_spin_unlock(ptr)						\
 164	pcpu_spin_unlock(lock, ptr)
 165
 166#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 167DEFINE_PER_CPU(int, numa_node);
 168EXPORT_PER_CPU_SYMBOL(numa_node);
 169#endif
 170
 171DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 172
 173#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 174/*
 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 178 * defined in <linux/topology.h>.
 179 */
 180DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 181EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 182#endif
 183
 184static DEFINE_MUTEX(pcpu_drain_mutex);
 185
 186#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 187volatile unsigned long latent_entropy __latent_entropy;
 188EXPORT_SYMBOL(latent_entropy);
 189#endif
 190
 191/*
 192 * Array of node states.
 193 */
 194nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 195	[N_POSSIBLE] = NODE_MASK_ALL,
 196	[N_ONLINE] = { { [0] = 1UL } },
 197#ifndef CONFIG_NUMA
 198	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 199#ifdef CONFIG_HIGHMEM
 200	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 201#endif
 202	[N_MEMORY] = { { [0] = 1UL } },
 203	[N_CPU] = { { [0] = 1UL } },
 204#endif	/* NUMA */
 205};
 206EXPORT_SYMBOL(node_states);
 207
 
 
 
 208gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 211unsigned int pageblock_order __read_mostly;
 212#endif
 213
 214static void __free_pages_ok(struct page *page, unsigned int order,
 215			    fpi_t fpi_flags);
 216
 217/*
 218 * results with 256, 32 in the lowmem_reserve sysctl:
 219 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 220 *	1G machine -> (16M dma, 784M normal, 224M high)
 221 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 222 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 223 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 224 *
 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 226 * don't need any ZONE_NORMAL reservation
 227 */
 228static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 229#ifdef CONFIG_ZONE_DMA
 230	[ZONE_DMA] = 256,
 231#endif
 232#ifdef CONFIG_ZONE_DMA32
 233	[ZONE_DMA32] = 256,
 234#endif
 235	[ZONE_NORMAL] = 32,
 236#ifdef CONFIG_HIGHMEM
 237	[ZONE_HIGHMEM] = 0,
 238#endif
 239	[ZONE_MOVABLE] = 0,
 240};
 241
 242char * const zone_names[MAX_NR_ZONES] = {
 
 
 243#ifdef CONFIG_ZONE_DMA
 244	 "DMA",
 245#endif
 246#ifdef CONFIG_ZONE_DMA32
 247	 "DMA32",
 248#endif
 249	 "Normal",
 250#ifdef CONFIG_HIGHMEM
 251	 "HighMem",
 252#endif
 253	 "Movable",
 254#ifdef CONFIG_ZONE_DEVICE
 255	 "Device",
 256#endif
 257};
 258
 259const char * const migratetype_names[MIGRATE_TYPES] = {
 260	"Unmovable",
 261	"Movable",
 262	"Reclaimable",
 263	"HighAtomic",
 264#ifdef CONFIG_CMA
 265	"CMA",
 266#endif
 267#ifdef CONFIG_MEMORY_ISOLATION
 268	"Isolate",
 269#endif
 270};
 271
 272int min_free_kbytes = 1024;
 273int user_min_free_kbytes = -1;
 274static int watermark_boost_factor __read_mostly = 15000;
 275static int watermark_scale_factor = 10;
 276
 277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 278int movable_zone;
 279EXPORT_SYMBOL(movable_zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281#if MAX_NUMNODES > 1
 282unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 283unsigned int nr_online_nodes __read_mostly = 1;
 284EXPORT_SYMBOL(nr_node_ids);
 285EXPORT_SYMBOL(nr_online_nodes);
 286#endif
 287
 288static bool page_contains_unaccepted(struct page *page, unsigned int order);
 289static bool cond_accept_memory(struct zone *zone, unsigned int order);
 290static bool __free_unaccepted(struct page *page);
 291
 292int page_group_by_mobility_disabled __read_mostly;
 293
 294#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 295/*
 296 * During boot we initialize deferred pages on-demand, as needed, but once
 297 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 298 * and we can permanently disable that path.
 299 */
 300DEFINE_STATIC_KEY_TRUE(deferred_pages);
 301
 302static inline bool deferred_pages_enabled(void)
 303{
 304	return static_branch_unlikely(&deferred_pages);
 305}
 306
 307/*
 308 * deferred_grow_zone() is __init, but it is called from
 309 * get_page_from_freelist() during early boot until deferred_pages permanently
 310 * disables this call. This is why we have refdata wrapper to avoid warning,
 311 * and to ensure that the function body gets unloaded.
 312 */
 313static bool __ref
 314_deferred_grow_zone(struct zone *zone, unsigned int order)
 315{
 316	return deferred_grow_zone(zone, order);
 317}
 318#else
 319static inline bool deferred_pages_enabled(void)
 320{
 321	return false;
 322}
 323
 324static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
 325{
 326	return false;
 327}
 328#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 329
 330/* Return a pointer to the bitmap storing bits affecting a block of pages */
 331static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 332							unsigned long pfn)
 333{
 334#ifdef CONFIG_SPARSEMEM
 335	return section_to_usemap(__pfn_to_section(pfn));
 336#else
 337	return page_zone(page)->pageblock_flags;
 338#endif /* CONFIG_SPARSEMEM */
 339}
 340
 341static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 342{
 343#ifdef CONFIG_SPARSEMEM
 344	pfn &= (PAGES_PER_SECTION-1);
 345#else
 346	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
 347#endif /* CONFIG_SPARSEMEM */
 348	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 349}
 350
 351/**
 352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 353 * @page: The page within the block of interest
 354 * @pfn: The target page frame number
 355 * @mask: mask of bits that the caller is interested in
 356 *
 357 * Return: pageblock_bits flags
 358 */
 359unsigned long get_pfnblock_flags_mask(const struct page *page,
 360					unsigned long pfn, unsigned long mask)
 361{
 362	unsigned long *bitmap;
 363	unsigned long bitidx, word_bitidx;
 364	unsigned long word;
 365
 366	bitmap = get_pageblock_bitmap(page, pfn);
 367	bitidx = pfn_to_bitidx(page, pfn);
 368	word_bitidx = bitidx / BITS_PER_LONG;
 369	bitidx &= (BITS_PER_LONG-1);
 370	/*
 371	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
 372	 * a consistent read of the memory array, so that results, even though
 373	 * racy, are not corrupted.
 374	 */
 375	word = READ_ONCE(bitmap[word_bitidx]);
 376	return (word >> bitidx) & mask;
 377}
 378
 379static __always_inline int get_pfnblock_migratetype(const struct page *page,
 380					unsigned long pfn)
 381{
 382	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 383}
 384
 385/**
 386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 387 * @page: The page within the block of interest
 388 * @flags: The flags to set
 389 * @pfn: The target page frame number
 390 * @mask: mask of bits that the caller is interested in
 391 */
 392void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 393					unsigned long pfn,
 394					unsigned long mask)
 395{
 396	unsigned long *bitmap;
 397	unsigned long bitidx, word_bitidx;
 398	unsigned long word;
 399
 400	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 401	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 402
 403	bitmap = get_pageblock_bitmap(page, pfn);
 404	bitidx = pfn_to_bitidx(page, pfn);
 405	word_bitidx = bitidx / BITS_PER_LONG;
 406	bitidx &= (BITS_PER_LONG-1);
 407
 408	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 409
 410	mask <<= bitidx;
 411	flags <<= bitidx;
 412
 413	word = READ_ONCE(bitmap[word_bitidx]);
 414	do {
 415	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
 416}
 417
 418void set_pageblock_migratetype(struct page *page, int migratetype)
 419{
 420	if (unlikely(page_group_by_mobility_disabled &&
 421		     migratetype < MIGRATE_PCPTYPES))
 422		migratetype = MIGRATE_UNMOVABLE;
 423
 424	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 425				page_to_pfn(page), MIGRATETYPE_MASK);
 426}
 427
 428#ifdef CONFIG_DEBUG_VM
 429static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 430{
 431	int ret;
 432	unsigned seq;
 433	unsigned long pfn = page_to_pfn(page);
 434	unsigned long sp, start_pfn;
 435
 436	do {
 437		seq = zone_span_seqbegin(zone);
 438		start_pfn = zone->zone_start_pfn;
 439		sp = zone->spanned_pages;
 440		ret = !zone_spans_pfn(zone, pfn);
 
 441	} while (zone_span_seqretry(zone, seq));
 442
 443	if (ret)
 444		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 445			pfn, zone_to_nid(zone), zone->name,
 446			start_pfn, start_pfn + sp);
 447
 448	return ret;
 449}
 450
 
 
 
 
 
 
 
 
 
 451/*
 452 * Temporary debugging check for pages not lying within a given zone.
 453 */
 454static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
 455{
 456	if (page_outside_zone_boundaries(zone, page))
 457		return true;
 458	if (zone != page_zone(page))
 459		return true;
 460
 461	return false;
 462}
 463#else
 464static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
 465{
 466	return false;
 467}
 468#endif
 469
 470static void bad_page(struct page *page, const char *reason)
 471{
 472	static unsigned long resume;
 473	static unsigned long nr_shown;
 474	static unsigned long nr_unshown;
 475
 
 
 
 
 
 
 476	/*
 477	 * Allow a burst of 60 reports, then keep quiet for that minute;
 478	 * or allow a steady drip of one report per second.
 479	 */
 480	if (nr_shown == 60) {
 481		if (time_before(jiffies, resume)) {
 482			nr_unshown++;
 483			goto out;
 484		}
 485		if (nr_unshown) {
 486			pr_alert(
 487			      "BUG: Bad page state: %lu messages suppressed\n",
 488				nr_unshown);
 489			nr_unshown = 0;
 490		}
 491		nr_shown = 0;
 492	}
 493	if (nr_shown++ == 0)
 494		resume = jiffies + 60 * HZ;
 495
 496	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 497		current->comm, page_to_pfn(page));
 498	dump_page(page, reason);
 499
 500	print_modules();
 501	dump_stack();
 502out:
 503	/* Leave bad fields for debug, except PageBuddy could make trouble */
 504	if (PageBuddy(page))
 505		__ClearPageBuddy(page);
 506	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 507}
 508
 509static inline unsigned int order_to_pindex(int migratetype, int order)
 510{
 511	bool __maybe_unused movable;
 512
 513#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 514	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 515		VM_BUG_ON(order != HPAGE_PMD_ORDER);
 516
 517		movable = migratetype == MIGRATE_MOVABLE;
 518
 519		return NR_LOWORDER_PCP_LISTS + movable;
 520	}
 521#else
 522	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 523#endif
 524
 525	return (MIGRATE_PCPTYPES * order) + migratetype;
 526}
 527
 528static inline int pindex_to_order(unsigned int pindex)
 529{
 530	int order = pindex / MIGRATE_PCPTYPES;
 531
 532#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 533	if (pindex >= NR_LOWORDER_PCP_LISTS)
 534		order = HPAGE_PMD_ORDER;
 535#else
 536	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 537#endif
 538
 539	return order;
 540}
 541
 542static inline bool pcp_allowed_order(unsigned int order)
 543{
 544	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 545		return true;
 546#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 547	if (order == HPAGE_PMD_ORDER)
 548		return true;
 549#endif
 550	return false;
 551}
 552
 553/*
 554 * Higher-order pages are called "compound pages".  They are structured thusly:
 555 *
 556 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 
 
 557 *
 558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 560 *
 561 * The first tail page's ->compound_order holds the order of allocation.
 
 562 * This usage means that zero-order pages may not be compound.
 563 */
 564
 565void prep_compound_page(struct page *page, unsigned int order)
 
 
 
 
 
 566{
 567	int i;
 568	int nr_pages = 1 << order;
 569
 
 
 570	__SetPageHead(page);
 571	for (i = 1; i < nr_pages; i++)
 572		prep_compound_tail(page, i);
 573
 574	prep_compound_head(page, order);
 
 
 575}
 576
 577static inline void set_buddy_order(struct page *page, unsigned int order)
 
 578{
 579	set_page_private(page, order);
 580	__SetPageBuddy(page);
 581}
 582
 583#ifdef CONFIG_COMPACTION
 584static inline struct capture_control *task_capc(struct zone *zone)
 585{
 586	struct capture_control *capc = current->capture_control;
 
 587
 588	return unlikely(capc) &&
 589		!(current->flags & PF_KTHREAD) &&
 590		!capc->page &&
 591		capc->cc->zone == zone ? capc : NULL;
 592}
 593
 594static inline bool
 595compaction_capture(struct capture_control *capc, struct page *page,
 596		   int order, int migratetype)
 597{
 598	if (!capc || order != capc->cc->order)
 599		return false;
 600
 601	/* Do not accidentally pollute CMA or isolated regions*/
 602	if (is_migrate_cma(migratetype) ||
 603	    is_migrate_isolate(migratetype))
 604		return false;
 
 
 605
 606	/*
 607	 * Do not let lower order allocations pollute a movable pageblock
 608	 * unless compaction is also requesting movable pages.
 609	 * This might let an unmovable request use a reclaimable pageblock
 610	 * and vice-versa but no more than normal fallback logic which can
 611	 * have trouble finding a high-order free page.
 612	 */
 613	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
 614	    capc->cc->migratetype != MIGRATE_MOVABLE)
 615		return false;
 616
 617	capc->page = page;
 618	return true;
 619}
 620
 621#else
 622static inline struct capture_control *task_capc(struct zone *zone)
 623{
 624	return NULL;
 625}
 626
 627static inline bool
 628compaction_capture(struct capture_control *capc, struct page *page,
 629		   int order, int migratetype)
 630{
 631	return false;
 
 
 632}
 633#endif /* CONFIG_COMPACTION */
 634
 635static inline void account_freepages(struct zone *zone, int nr_pages,
 636				     int migratetype)
 637{
 638	lockdep_assert_held(&zone->lock);
 639
 640	if (is_migrate_isolate(migratetype))
 641		return;
 642
 643	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
 644
 645	if (is_migrate_cma(migratetype))
 646		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
 647	else if (is_migrate_highatomic(migratetype))
 648		WRITE_ONCE(zone->nr_free_highatomic,
 649			   zone->nr_free_highatomic + nr_pages);
 650}
 651
 652/* Used for pages not on another list */
 653static inline void __add_to_free_list(struct page *page, struct zone *zone,
 654				      unsigned int order, int migratetype,
 655				      bool tail)
 656{
 657	struct free_area *area = &zone->free_area[order];
 658
 659	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
 660		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
 661		     get_pageblock_migratetype(page), migratetype, 1 << order);
 662
 663	if (tail)
 664		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
 665	else
 666		list_add(&page->buddy_list, &area->free_list[migratetype]);
 667	area->nr_free++;
 668}
 669
 670/*
 671 * Used for pages which are on another list. Move the pages to the tail
 672 * of the list - so the moved pages won't immediately be considered for
 673 * allocation again (e.g., optimization for memory onlining).
 
 
 
 
 
 
 
 
 
 
 
 
 674 */
 675static inline void move_to_free_list(struct page *page, struct zone *zone,
 676				     unsigned int order, int old_mt, int new_mt)
 677{
 678	struct free_area *area = &zone->free_area[order];
 679
 680	/* Free page moving can fail, so it happens before the type update */
 681	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
 682		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
 683		     get_pageblock_migratetype(page), old_mt, 1 << order);
 684
 685	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
 686
 687	account_freepages(zone, -(1 << order), old_mt);
 688	account_freepages(zone, 1 << order, new_mt);
 689}
 690
 691static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
 692					     unsigned int order, int migratetype)
 693{
 694        VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
 695		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
 696		     get_pageblock_migratetype(page), migratetype, 1 << order);
 697
 698	/* clear reported state and update reported page count */
 699	if (page_reported(page))
 700		__ClearPageReported(page);
 701
 702	list_del(&page->buddy_list);
 703	__ClearPageBuddy(page);
 704	set_page_private(page, 0);
 705	zone->free_area[order].nr_free--;
 706}
 707
 708static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 709					   unsigned int order, int migratetype)
 710{
 711	__del_page_from_free_list(page, zone, order, migratetype);
 712	account_freepages(zone, -(1 << order), migratetype);
 713}
 714
 715static inline struct page *get_page_from_free_area(struct free_area *area,
 716					    int migratetype)
 717{
 718	return list_first_entry_or_null(&area->free_list[migratetype],
 719					struct page, buddy_list);
 720}
 721
 722/*
 723 * If this is less than the 2nd largest possible page, check if the buddy
 724 * of the next-higher order is free. If it is, it's possible
 725 * that pages are being freed that will coalesce soon. In case,
 726 * that is happening, add the free page to the tail of the list
 727 * so it's less likely to be used soon and more likely to be merged
 728 * as a 2-level higher order page
 
 
 
 
 
 729 */
 730static inline bool
 731buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
 732		   struct page *page, unsigned int order)
 733{
 734	unsigned long higher_page_pfn;
 735	struct page *higher_page;
 736
 737	if (order >= MAX_PAGE_ORDER - 1)
 738		return false;
 739
 740	higher_page_pfn = buddy_pfn & pfn;
 741	higher_page = page + (higher_page_pfn - pfn);
 742
 743	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
 744			NULL) != NULL;
 745}
 746
 747/*
 748 * Freeing function for a buddy system allocator.
 749 *
 750 * The concept of a buddy system is to maintain direct-mapped table
 751 * (containing bit values) for memory blocks of various "orders".
 752 * The bottom level table contains the map for the smallest allocatable
 753 * units of memory (here, pages), and each level above it describes
 754 * pairs of units from the levels below, hence, "buddies".
 755 * At a high level, all that happens here is marking the table entry
 756 * at the bottom level available, and propagating the changes upward
 757 * as necessary, plus some accounting needed to play nicely with other
 758 * parts of the VM system.
 759 * At each level, we keep a list of pages, which are heads of continuous
 760 * free pages of length of (1 << order) and marked with PageBuddy.
 761 * Page's order is recorded in page_private(page) field.
 762 * So when we are allocating or freeing one, we can derive the state of the
 763 * other.  That is, if we allocate a small block, and both were
 764 * free, the remainder of the region must be split into blocks.
 765 * If a block is freed, and its buddy is also free, then this
 766 * triggers coalescing into a block of larger size.
 767 *
 768 * -- nyc
 769 */
 770
 771static inline void __free_one_page(struct page *page,
 772		unsigned long pfn,
 773		struct zone *zone, unsigned int order,
 774		int migratetype, fpi_t fpi_flags)
 775{
 776	struct capture_control *capc = task_capc(zone);
 777	unsigned long buddy_pfn = 0;
 778	unsigned long combined_pfn;
 779	struct page *buddy;
 780	bool to_tail;
 781
 782	VM_BUG_ON(!zone_is_initialized(zone));
 783	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 
 784
 785	VM_BUG_ON(migratetype == -1);
 786	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 787	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 788
 789	account_freepages(zone, 1 << order, migratetype);
 790
 791	while (order < MAX_PAGE_ORDER) {
 792		int buddy_mt = migratetype;
 793
 794		if (compaction_capture(capc, page, order, migratetype)) {
 795			account_freepages(zone, -(1 << order), migratetype);
 796			return;
 797		}
 
 798
 799		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
 800		if (!buddy)
 801			goto done_merging;
 
 
 
 
 
 
 
 802
 803		if (unlikely(order >= pageblock_order)) {
 804			/*
 805			 * We want to prevent merge between freepages on pageblock
 806			 * without fallbacks and normal pageblock. Without this,
 807			 * pageblock isolation could cause incorrect freepage or CMA
 808			 * accounting or HIGHATOMIC accounting.
 809			 */
 810			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
 811
 812			if (migratetype != buddy_mt &&
 813			    (!migratetype_is_mergeable(migratetype) ||
 814			     !migratetype_is_mergeable(buddy_mt)))
 815				goto done_merging;
 
 
 
 
 
 816		}
 817
 818		/*
 819		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 820		 * merge with it and move up one order.
 821		 */
 822		if (page_is_guard(buddy))
 823			clear_page_guard(zone, buddy, order);
 824		else
 825			__del_page_from_free_list(buddy, zone, order, buddy_mt);
 826
 827		if (unlikely(buddy_mt != migratetype)) {
 828			/*
 829			 * Match buddy type. This ensures that an
 830			 * expand() down the line puts the sub-blocks
 831			 * on the right freelists.
 832			 */
 833			set_pageblock_migratetype(buddy, migratetype);
 834		}
 835
 836		combined_pfn = buddy_pfn & pfn;
 837		page = page + (combined_pfn - pfn);
 838		pfn = combined_pfn;
 839		order++;
 840	}
 841
 842done_merging:
 843	set_buddy_order(page, order);
 844
 845	if (fpi_flags & FPI_TO_TAIL)
 846		to_tail = true;
 847	else if (is_shuffle_order(order))
 848		to_tail = shuffle_pick_tail();
 849	else
 850		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
 851
 852	__add_to_free_list(page, zone, order, migratetype, to_tail);
 853
 854	/* Notify page reporting subsystem of freed page */
 855	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
 856		page_reporting_notify_free(order);
 857}
 858
 859/*
 860 * A bad page could be due to a number of fields. Instead of multiple branches,
 861 * try and check multiple fields with one check. The caller must do a detailed
 862 * check if necessary.
 863 */
 864static inline bool page_expected_state(struct page *page,
 865					unsigned long check_flags)
 866{
 867	if (unlikely(atomic_read(&page->_mapcount) != -1))
 868		return false;
 869
 870	if (unlikely((unsigned long)page->mapping |
 871			page_ref_count(page) |
 872#ifdef CONFIG_MEMCG
 873			page->memcg_data |
 874#endif
 875#ifdef CONFIG_PAGE_POOL
 876			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
 877#endif
 878			(page->flags & check_flags)))
 879		return false;
 880
 881	return true;
 882}
 883
 884static const char *page_bad_reason(struct page *page, unsigned long flags)
 885{
 886	const char *bad_reason = NULL;
 887
 888	if (unlikely(atomic_read(&page->_mapcount) != -1))
 889		bad_reason = "nonzero mapcount";
 890	if (unlikely(page->mapping != NULL))
 891		bad_reason = "non-NULL mapping";
 892	if (unlikely(page_ref_count(page) != 0))
 893		bad_reason = "nonzero _refcount";
 894	if (unlikely(page->flags & flags)) {
 895		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
 896			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
 897		else
 898			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 899	}
 900#ifdef CONFIG_MEMCG
 901	if (unlikely(page->memcg_data))
 902		bad_reason = "page still charged to cgroup";
 903#endif
 904#ifdef CONFIG_PAGE_POOL
 905	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
 906		bad_reason = "page_pool leak";
 907#endif
 908	return bad_reason;
 909}
 910
 911static void free_page_is_bad_report(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 912{
 913	bad_page(page,
 914		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
 915}
 916
 917static inline bool free_page_is_bad(struct page *page)
 918{
 919	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 920		return false;
 921
 922	/* Something has gone sideways, find it */
 923	free_page_is_bad_report(page);
 924	return true;
 925}
 926
 927static inline bool is_check_pages_enabled(void)
 928{
 929	return static_branch_unlikely(&check_pages_enabled);
 930}
 
 
 
 
 
 
 
 
 
 931
 932static int free_tail_page_prepare(struct page *head_page, struct page *page)
 933{
 934	struct folio *folio = (struct folio *)head_page;
 935	int ret = 1;
 936
 937	/*
 938	 * We rely page->lru.next never has bit 0 set, unless the page
 939	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 940	 */
 941	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 942
 943	if (!is_check_pages_enabled()) {
 944		ret = 0;
 945		goto out;
 946	}
 947	switch (page - head_page) {
 948	case 1:
 949		/* the first tail page: these may be in place of ->mapping */
 950		if (unlikely(folio_entire_mapcount(folio))) {
 951			bad_page(page, "nonzero entire_mapcount");
 952			goto out;
 953		}
 954		if (unlikely(folio_large_mapcount(folio))) {
 955			bad_page(page, "nonzero large_mapcount");
 956			goto out;
 957		}
 958		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
 959			bad_page(page, "nonzero nr_pages_mapped");
 960			goto out;
 961		}
 962		if (unlikely(atomic_read(&folio->_pincount))) {
 963			bad_page(page, "nonzero pincount");
 964			goto out;
 965		}
 966		break;
 967	case 2:
 968		/* the second tail page: deferred_list overlaps ->mapping */
 969		if (unlikely(!list_empty(&folio->_deferred_list))) {
 970			bad_page(page, "on deferred list");
 971			goto out;
 972		}
 973		break;
 974	default:
 975		if (page->mapping != TAIL_MAPPING) {
 976			bad_page(page, "corrupted mapping in tail page");
 977			goto out;
 978		}
 979		break;
 980	}
 981	if (unlikely(!PageTail(page))) {
 982		bad_page(page, "PageTail not set");
 983		goto out;
 984	}
 985	if (unlikely(compound_head(page) != head_page)) {
 986		bad_page(page, "compound_head not consistent");
 987		goto out;
 988	}
 989	ret = 0;
 990out:
 991	page->mapping = NULL;
 992	clear_compound_head(page);
 993	return ret;
 994}
 995
 996/*
 997 * Skip KASAN memory poisoning when either:
 998 *
 999 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000 *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1001 *    using page tags instead (see below).
1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003 *    that error detection is disabled for accesses via the page address.
1004 *
1005 * Pages will have match-all tags in the following circumstances:
1006 *
1007 * 1. Pages are being initialized for the first time, including during deferred
1008 *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010 *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011 * 3. The allocation was excluded from being checked due to sampling,
1012 *    see the call to kasan_unpoison_pages.
1013 *
1014 * Poisoning pages during deferred memory init will greatly lengthen the
1015 * process and cause problem in large memory systems as the deferred pages
1016 * initialization is done with interrupt disabled.
1017 *
1018 * Assuming that there will be no reference to those newly initialized
1019 * pages before they are ever allocated, this should have no effect on
1020 * KASAN memory tracking as the poison will be properly inserted at page
1021 * allocation time. The only corner case is when pages are allocated by
1022 * on-demand allocation and then freed again before the deferred pages
1023 * initialization is done, but this is not likely to happen.
1024 */
1025static inline bool should_skip_kasan_poison(struct page *page)
1026{
1027	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028		return deferred_pages_enabled();
 
1029
1030	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
 
 
1031}
1032
1033static void kernel_init_pages(struct page *page, int numpages)
1034{
1035	int i;
1036
1037	/* s390's use of memset() could override KASAN redzones. */
1038	kasan_disable_current();
1039	for (i = 0; i < numpages; i++)
1040		clear_highpage_kasan_tagged(page + i);
1041	kasan_enable_current();
1042}
1043
1044__always_inline bool free_pages_prepare(struct page *page,
1045			unsigned int order)
1046{
1047	int bad = 0;
1048	bool skip_kasan_poison = should_skip_kasan_poison(page);
1049	bool init = want_init_on_free();
1050	bool compound = PageCompound(page);
1051	struct folio *folio = page_folio(page);
1052
1053	VM_BUG_ON_PAGE(PageTail(page), page);
 
1054
1055	trace_mm_page_free(page, order);
1056	kmsan_free_page(page, order);
1057
1058	if (memcg_kmem_online() && PageMemcgKmem(page))
1059		__memcg_kmem_uncharge_page(page, order);
1060
1061	/*
1062	 * In rare cases, when truncation or holepunching raced with
1063	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1064	 * found set here.  This does not indicate a problem, unless
1065	 * "unevictable_pgs_cleared" appears worryingly large.
1066	 */
1067	if (unlikely(folio_test_mlocked(folio))) {
1068		long nr_pages = folio_nr_pages(folio);
1069
1070		__folio_clear_mlocked(folio);
1071		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1072		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1073	}
1074
1075	if (unlikely(PageHWPoison(page)) && !order) {
1076		/* Do not let hwpoison pages hit pcplists/buddy */
1077		reset_page_owner(page, order);
1078		page_table_check_free(page, order);
1079		pgalloc_tag_sub(page, 1 << order);
1080
1081		/*
1082		 * The page is isolated and accounted for.
1083		 * Mark the codetag as empty to avoid accounting error
1084		 * when the page is freed by unpoison_memory().
1085		 */
1086		clear_page_tag_ref(page);
1087		return false;
1088	}
1089
1090	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1091
1092	/*
1093	 * Check tail pages before head page information is cleared to
1094	 * avoid checking PageCompound for order-0 pages.
1095	 */
1096	if (unlikely(order)) {
1097		int i;
1098
1099		if (compound)
1100			page[1].flags &= ~PAGE_FLAGS_SECOND;
1101		for (i = 1; i < (1 << order); i++) {
1102			if (compound)
1103				bad += free_tail_page_prepare(page, page + i);
1104			if (is_check_pages_enabled()) {
1105				if (free_page_is_bad(page + i)) {
1106					bad++;
1107					continue;
1108				}
1109			}
1110			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1111		}
1112	}
1113	if (PageMappingFlags(page)) {
1114		if (PageAnon(page))
1115			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1116		page->mapping = NULL;
1117	}
1118	if (is_check_pages_enabled()) {
1119		if (free_page_is_bad(page))
1120			bad++;
1121		if (bad)
1122			return false;
1123	}
1124
1125	page_cpupid_reset_last(page);
1126	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127	reset_page_owner(page, order);
1128	page_table_check_free(page, order);
1129	pgalloc_tag_sub(page, 1 << order);
1130
1131	if (!PageHighMem(page)) {
1132		debug_check_no_locks_freed(page_address(page),
1133					   PAGE_SIZE << order);
1134		debug_check_no_obj_freed(page_address(page),
1135					   PAGE_SIZE << order);
1136	}
1137
1138	kernel_poison_pages(page, 1 << order);
1139
1140	/*
1141	 * As memory initialization might be integrated into KASAN,
1142	 * KASAN poisoning and memory initialization code must be
1143	 * kept together to avoid discrepancies in behavior.
1144	 *
1145	 * With hardware tag-based KASAN, memory tags must be set before the
1146	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1147	 */
1148	if (!skip_kasan_poison) {
1149		kasan_poison_pages(page, order, init);
1150
1151		/* Memory is already initialized if KASAN did it internally. */
1152		if (kasan_has_integrated_init())
1153			init = false;
1154	}
1155	if (init)
1156		kernel_init_pages(page, 1 << order);
1157
1158	/*
1159	 * arch_free_page() can make the page's contents inaccessible.  s390
1160	 * does this.  So nothing which can access the page's contents should
1161	 * happen after this.
1162	 */
1163	arch_free_page(page, order);
1164
1165	debug_pagealloc_unmap_pages(page, 1 << order);
1166
1167	return true;
1168}
1169
1170/*
1171 * Frees a number of pages from the PCP lists
1172 * Assumes all pages on list are in same zone.
1173 * count is the number of pages to free.
1174 */
1175static void free_pcppages_bulk(struct zone *zone, int count,
1176					struct per_cpu_pages *pcp,
1177					int pindex)
1178{
1179	unsigned long flags;
1180	unsigned int order;
1181	struct page *page;
1182
1183	/*
1184	 * Ensure proper count is passed which otherwise would stuck in the
1185	 * below while (list_empty(list)) loop.
1186	 */
1187	count = min(pcp->count, count);
1188
1189	/* Ensure requested pindex is drained first. */
1190	pindex = pindex - 1;
1191
1192	spin_lock_irqsave(&zone->lock, flags);
1193
1194	while (count > 0) {
1195		struct list_head *list;
1196		int nr_pages;
1197
1198		/* Remove pages from lists in a round-robin fashion. */
1199		do {
1200			if (++pindex > NR_PCP_LISTS - 1)
1201				pindex = 0;
1202			list = &pcp->lists[pindex];
1203		} while (list_empty(list));
1204
1205		order = pindex_to_order(pindex);
1206		nr_pages = 1 << order;
1207		do {
1208			unsigned long pfn;
1209			int mt;
1210
1211			page = list_last_entry(list, struct page, pcp_list);
1212			pfn = page_to_pfn(page);
1213			mt = get_pfnblock_migratetype(page, pfn);
1214
1215			/* must delete to avoid corrupting pcp list */
1216			list_del(&page->pcp_list);
1217			count -= nr_pages;
1218			pcp->count -= nr_pages;
1219
1220			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1221			trace_mm_page_pcpu_drain(page, order, mt);
1222		} while (count > 0 && !list_empty(list));
1223	}
1224
1225	spin_unlock_irqrestore(&zone->lock, flags);
1226}
1227
1228/* Split a multi-block free page into its individual pageblocks. */
1229static void split_large_buddy(struct zone *zone, struct page *page,
1230			      unsigned long pfn, int order, fpi_t fpi)
1231{
1232	unsigned long end = pfn + (1 << order);
1233
1234	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1235	/* Caller removed page from freelist, buddy info cleared! */
1236	VM_WARN_ON_ONCE(PageBuddy(page));
1237
1238	if (order > pageblock_order)
1239		order = pageblock_order;
1240
1241	do {
1242		int mt = get_pfnblock_migratetype(page, pfn);
1243
1244		__free_one_page(page, pfn, zone, order, mt, fpi);
1245		pfn += 1 << order;
1246		if (pfn == end)
1247			break;
1248		page = pfn_to_page(pfn);
1249	} while (1);
1250}
1251
1252static void free_one_page(struct zone *zone, struct page *page,
1253			  unsigned long pfn, unsigned int order,
1254			  fpi_t fpi_flags)
1255{
1256	unsigned long flags;
1257
1258	spin_lock_irqsave(&zone->lock, flags);
1259	split_large_buddy(zone, page, pfn, order, fpi_flags);
1260	spin_unlock_irqrestore(&zone->lock, flags);
1261
 
 
 
1262	__count_vm_events(PGFREE, 1 << order);
 
 
 
1263}
1264
1265static void __free_pages_ok(struct page *page, unsigned int order,
1266			    fpi_t fpi_flags)
 
 
1267{
1268	unsigned long pfn = page_to_pfn(page);
1269	struct zone *zone = page_zone(page);
1270
1271	if (free_pages_prepare(page, order))
1272		free_one_page(zone, page, pfn, order, fpi_flags);
1273}
1274
1275void __meminit __free_pages_core(struct page *page, unsigned int order,
1276		enum meminit_context context)
1277{
1278	unsigned int nr_pages = 1 << order;
1279	struct page *p = page;
1280	unsigned int loop;
1281
1282	/*
1283	 * When initializing the memmap, __init_single_page() sets the refcount
1284	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1285	 * refcount of all involved pages to 0.
1286	 *
1287	 * Note that hotplugged memory pages are initialized to PageOffline().
1288	 * Pages freed from memblock might be marked as reserved.
1289	 */
1290	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1291	    unlikely(context == MEMINIT_HOTPLUG)) {
1292		for (loop = 0; loop < nr_pages; loop++, p++) {
1293			VM_WARN_ON_ONCE(PageReserved(p));
1294			__ClearPageOffline(p);
1295			set_page_count(p, 0);
1296		}
1297
1298		/*
1299		 * Freeing the page with debug_pagealloc enabled will try to
1300		 * unmap it; some archs don't like double-unmappings, so
1301		 * map it first.
1302		 */
1303		debug_pagealloc_map_pages(page, nr_pages);
1304		adjust_managed_page_count(page, nr_pages);
1305	} else {
1306		for (loop = 0; loop < nr_pages; loop++, p++) {
1307			__ClearPageReserved(p);
1308			set_page_count(p, 0);
1309		}
1310
1311		/* memblock adjusts totalram_pages() manually. */
1312		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1313	}
1314
1315	if (page_contains_unaccepted(page, order)) {
1316		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1317			return;
1318
1319		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1320	}
1321
1322	/*
1323	 * Bypass PCP and place fresh pages right to the tail, primarily
1324	 * relevant for memory onlining.
1325	 */
1326	__free_pages_ok(page, order, FPI_TO_TAIL);
1327}
1328
1329/*
1330 * Check that the whole (or subset of) a pageblock given by the interval of
1331 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1332 * with the migration of free compaction scanner.
1333 *
1334 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1335 *
1336 * It's possible on some configurations to have a setup like node0 node1 node0
1337 * i.e. it's possible that all pages within a zones range of pages do not
1338 * belong to a single zone. We assume that a border between node0 and node1
1339 * can occur within a single pageblock, but not a node0 node1 node0
1340 * interleaving within a single pageblock. It is therefore sufficient to check
1341 * the first and last page of a pageblock and avoid checking each individual
1342 * page in a pageblock.
1343 *
1344 * Note: the function may return non-NULL struct page even for a page block
1345 * which contains a memory hole (i.e. there is no physical memory for a subset
1346 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1347 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1348 * even though the start pfn is online and valid. This should be safe most of
1349 * the time because struct pages are still initialized via init_unavailable_range()
1350 * and pfn walkers shouldn't touch any physical memory range for which they do
1351 * not recognize any specific metadata in struct pages.
1352 */
1353struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1354				     unsigned long end_pfn, struct zone *zone)
1355{
1356	struct page *start_page;
1357	struct page *end_page;
1358
1359	/* end_pfn is one past the range we are checking */
1360	end_pfn--;
1361
1362	if (!pfn_valid(end_pfn))
1363		return NULL;
1364
1365	start_page = pfn_to_online_page(start_pfn);
1366	if (!start_page)
1367		return NULL;
1368
1369	if (page_zone(start_page) != zone)
1370		return NULL;
1371
1372	end_page = pfn_to_page(end_pfn);
1373
1374	/* This gives a shorter code than deriving page_zone(end_page) */
1375	if (page_zone_id(start_page) != page_zone_id(end_page))
1376		return NULL;
1377
1378	return start_page;
1379}
1380
1381/*
1382 * The order of subdivision here is critical for the IO subsystem.
1383 * Please do not alter this order without good reasons and regression
1384 * testing. Specifically, as large blocks of memory are subdivided,
1385 * the order in which smaller blocks are delivered depends on the order
1386 * they're subdivided in this function. This is the primary factor
1387 * influencing the order in which pages are delivered to the IO
1388 * subsystem according to empirical testing, and this is also justified
1389 * by considering the behavior of a buddy system containing a single
1390 * large block of memory acted on by a series of small allocations.
1391 * This behavior is a critical factor in sglist merging's success.
1392 *
1393 * -- nyc
1394 */
1395static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1396				  int high, int migratetype)
 
1397{
1398	unsigned int size = 1 << high;
1399	unsigned int nr_added = 0;
1400
1401	while (high > low) {
 
1402		high--;
1403		size >>= 1;
1404		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1405
1406		/*
1407		 * Mark as guard pages (or page), that will allow to
1408		 * merge back to allocator when buddy will be freed.
1409		 * Corresponding page table entries will not be touched,
1410		 * pages will stay not present in virtual address space
1411		 */
1412		if (set_page_guard(zone, &page[size], high))
1413			continue;
1414
1415		__add_to_free_list(&page[size], zone, high, migratetype, false);
1416		set_buddy_order(&page[size], high);
1417		nr_added += size;
1418	}
1419
1420	return nr_added;
1421}
1422
1423static __always_inline void page_del_and_expand(struct zone *zone,
1424						struct page *page, int low,
1425						int high, int migratetype)
1426{
1427	int nr_pages = 1 << high;
1428
1429	__del_page_from_free_list(page, zone, high, migratetype);
1430	nr_pages -= expand(zone, page, low, high, migratetype);
1431	account_freepages(zone, -nr_pages, migratetype);
1432}
1433
1434static void check_new_page_bad(struct page *page)
1435{
1436	if (unlikely(page->flags & __PG_HWPOISON)) {
1437		/* Don't complain about hwpoisoned pages */
1438		if (PageBuddy(page))
1439			__ClearPageBuddy(page);
1440		return;
1441	}
1442
1443	bad_page(page,
1444		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1445}
1446
1447/*
1448 * This page is about to be returned from the page allocator
1449 */
1450static bool check_new_page(struct page *page)
1451{
1452	if (likely(page_expected_state(page,
1453				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1454		return false;
1455
1456	check_new_page_bad(page);
1457	return true;
 
 
 
1458}
1459
1460static inline bool check_new_pages(struct page *page, unsigned int order)
1461{
1462	if (is_check_pages_enabled()) {
1463		for (int i = 0; i < (1 << order); i++) {
1464			struct page *p = page + i;
1465
1466			if (check_new_page(p))
1467				return true;
1468		}
 
1469	}
1470
1471	return false;
1472}
1473
1474static inline bool should_skip_kasan_unpoison(gfp_t flags)
1475{
1476	/* Don't skip if a software KASAN mode is enabled. */
1477	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1478	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1479		return false;
1480
1481	/* Skip, if hardware tag-based KASAN is not enabled. */
1482	if (!kasan_hw_tags_enabled())
1483		return true;
1484
1485	/*
1486	 * With hardware tag-based KASAN enabled, skip if this has been
1487	 * requested via __GFP_SKIP_KASAN.
1488	 */
1489	return flags & __GFP_SKIP_KASAN;
1490}
1491
1492static inline bool should_skip_init(gfp_t flags)
1493{
1494	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1495	if (!kasan_hw_tags_enabled())
1496		return false;
1497
1498	/* For hardware tag-based KASAN, skip if requested. */
1499	return (flags & __GFP_SKIP_ZERO);
1500}
1501
1502inline void post_alloc_hook(struct page *page, unsigned int order,
1503				gfp_t gfp_flags)
1504{
1505	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1506			!should_skip_init(gfp_flags);
1507	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1508	int i;
1509
1510	set_page_private(page, 0);
1511	set_page_refcounted(page);
1512
1513	arch_alloc_page(page, order);
1514	debug_pagealloc_map_pages(page, 1 << order);
1515
1516	/*
1517	 * Page unpoisoning must happen before memory initialization.
1518	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1519	 * allocations and the page unpoisoning code will complain.
1520	 */
1521	kernel_unpoison_pages(page, 1 << order);
1522
1523	/*
1524	 * As memory initialization might be integrated into KASAN,
1525	 * KASAN unpoisoning and memory initializion code must be
1526	 * kept together to avoid discrepancies in behavior.
1527	 */
1528
1529	/*
1530	 * If memory tags should be zeroed
1531	 * (which happens only when memory should be initialized as well).
1532	 */
1533	if (zero_tags) {
1534		/* Initialize both memory and memory tags. */
1535		for (i = 0; i != 1 << order; ++i)
1536			tag_clear_highpage(page + i);
1537
1538		/* Take note that memory was initialized by the loop above. */
1539		init = false;
1540	}
1541	if (!should_skip_kasan_unpoison(gfp_flags) &&
1542	    kasan_unpoison_pages(page, order, init)) {
1543		/* Take note that memory was initialized by KASAN. */
1544		if (kasan_has_integrated_init())
1545			init = false;
1546	} else {
1547		/*
1548		 * If memory tags have not been set by KASAN, reset the page
1549		 * tags to ensure page_address() dereferencing does not fault.
1550		 */
1551		for (i = 0; i != 1 << order; ++i)
1552			page_kasan_tag_reset(page + i);
1553	}
1554	/* If memory is still not initialized, initialize it now. */
1555	if (init)
1556		kernel_init_pages(page, 1 << order);
1557
1558	set_page_owner(page, order, gfp_flags);
1559	page_table_check_alloc(page, order);
1560	pgalloc_tag_add(page, current, 1 << order);
1561}
1562
1563static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1564							unsigned int alloc_flags)
1565{
1566	post_alloc_hook(page, order, gfp_flags);
1567
1568	if (order && (gfp_flags & __GFP_COMP))
1569		prep_compound_page(page, order);
1570
1571	/*
1572	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1573	 * allocate the page. The expectation is that the caller is taking
1574	 * steps that will free more memory. The caller should avoid the page
1575	 * being used for !PFMEMALLOC purposes.
1576	 */
1577	if (alloc_flags & ALLOC_NO_WATERMARKS)
1578		set_page_pfmemalloc(page);
1579	else
1580		clear_page_pfmemalloc(page);
1581}
1582
1583/*
1584 * Go through the free lists for the given migratetype and remove
1585 * the smallest available page from the freelists
1586 */
1587static __always_inline
1588struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1589						int migratetype)
1590{
1591	unsigned int current_order;
1592	struct free_area *area;
1593	struct page *page;
1594
1595	/* Find a page of the appropriate size in the preferred list */
1596	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1597		area = &(zone->free_area[current_order]);
1598		page = get_page_from_free_area(area, migratetype);
1599		if (!page)
1600			continue;
1601
1602		page_del_and_expand(zone, page, order, current_order,
1603				    migratetype);
1604		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1605				pcp_allowed_order(order) &&
1606				migratetype < MIGRATE_PCPTYPES);
 
1607		return page;
1608	}
1609
1610	return NULL;
1611}
1612
1613
1614/*
1615 * This array describes the order lists are fallen back to when
1616 * the free lists for the desirable migrate type are depleted
1617 *
1618 * The other migratetypes do not have fallbacks.
1619 */
1620static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1621	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1622	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1623	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
 
1624};
1625
1626#ifdef CONFIG_CMA
1627static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1628					unsigned int order)
1629{
1630	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1631}
1632#else
1633static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1634					unsigned int order) { return NULL; }
1635#endif
1636
1637/*
1638 * Change the type of a block and move all its free pages to that
1639 * type's freelist.
1640 */
1641static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1642				  int old_mt, int new_mt)
 
 
1643{
1644	struct page *page;
1645	unsigned long pfn, end_pfn;
1646	unsigned int order;
1647	int pages_moved = 0;
1648
1649	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1650	end_pfn = pageblock_end_pfn(start_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651
1652	for (pfn = start_pfn; pfn < end_pfn;) {
1653		page = pfn_to_page(pfn);
1654		if (!PageBuddy(page)) {
1655			pfn++;
1656			continue;
1657		}
1658
1659		/* Make sure we are not inadvertently changing nodes */
1660		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1661		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1662
1663		order = buddy_order(page);
1664
1665		move_to_free_list(page, zone, order, old_mt, new_mt);
1666
1667		pfn += 1 << order;
1668		pages_moved += 1 << order;
1669	}
1670
1671	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1672
1673	return pages_moved;
1674}
1675
1676static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1677				      unsigned long *start_pfn,
1678				      int *num_free, int *num_movable)
1679{
1680	unsigned long pfn, start, end;
1681
1682	pfn = page_to_pfn(page);
1683	start = pageblock_start_pfn(pfn);
1684	end = pageblock_end_pfn(pfn);
1685
1686	/*
1687	 * The caller only has the lock for @zone, don't touch ranges
1688	 * that straddle into other zones. While we could move part of
1689	 * the range that's inside the zone, this call is usually
1690	 * accompanied by other operations such as migratetype updates
1691	 * which also should be locked.
1692	 */
1693	if (!zone_spans_pfn(zone, start))
1694		return false;
1695	if (!zone_spans_pfn(zone, end - 1))
1696		return false;
1697
1698	*start_pfn = start;
1699
1700	if (num_free) {
1701		*num_free = 0;
1702		*num_movable = 0;
1703		for (pfn = start; pfn < end;) {
1704			page = pfn_to_page(pfn);
1705			if (PageBuddy(page)) {
1706				int nr = 1 << buddy_order(page);
1707
1708				*num_free += nr;
1709				pfn += nr;
1710				continue;
1711			}
1712			/*
1713			 * We assume that pages that could be isolated for
1714			 * migration are movable. But we don't actually try
1715			 * isolating, as that would be expensive.
1716			 */
1717			if (PageLRU(page) || __PageMovable(page))
1718				(*num_movable)++;
1719			pfn++;
1720		}
1721	}
1722
1723	return true;
1724}
1725
1726static int move_freepages_block(struct zone *zone, struct page *page,
1727				int old_mt, int new_mt)
1728{
1729	unsigned long start_pfn;
 
1730
1731	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1732		return -1;
1733
1734	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1735}
1736
1737#ifdef CONFIG_MEMORY_ISOLATION
1738/* Look for a buddy that straddles start_pfn */
1739static unsigned long find_large_buddy(unsigned long start_pfn)
1740{
1741	int order = 0;
1742	struct page *page;
1743	unsigned long pfn = start_pfn;
1744
1745	while (!PageBuddy(page = pfn_to_page(pfn))) {
1746		/* Nothing found */
1747		if (++order > MAX_PAGE_ORDER)
1748			return start_pfn;
1749		pfn &= ~0UL << order;
1750	}
1751
1752	/*
1753	 * Found a preceding buddy, but does it straddle?
1754	 */
1755	if (pfn + (1 << buddy_order(page)) > start_pfn)
1756		return pfn;
1757
1758	/* Nothing found */
1759	return start_pfn;
1760}
1761
1762/**
1763 * move_freepages_block_isolate - move free pages in block for page isolation
1764 * @zone: the zone
1765 * @page: the pageblock page
1766 * @migratetype: migratetype to set on the pageblock
1767 *
1768 * This is similar to move_freepages_block(), but handles the special
1769 * case encountered in page isolation, where the block of interest
1770 * might be part of a larger buddy spanning multiple pageblocks.
1771 *
1772 * Unlike the regular page allocator path, which moves pages while
1773 * stealing buddies off the freelist, page isolation is interested in
1774 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1775 *
1776 * This function handles that. Straddling buddies are split into
1777 * individual pageblocks. Only the block of interest is moved.
1778 *
1779 * Returns %true if pages could be moved, %false otherwise.
1780 */
1781bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1782				  int migratetype)
1783{
1784	unsigned long start_pfn, pfn;
1785
1786	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1787		return false;
1788
1789	/* No splits needed if buddies can't span multiple blocks */
1790	if (pageblock_order == MAX_PAGE_ORDER)
1791		goto move;
1792
1793	/* We're a tail block in a larger buddy */
1794	pfn = find_large_buddy(start_pfn);
1795	if (pfn != start_pfn) {
1796		struct page *buddy = pfn_to_page(pfn);
1797		int order = buddy_order(buddy);
1798
1799		del_page_from_free_list(buddy, zone, order,
1800					get_pfnblock_migratetype(buddy, pfn));
1801		set_pageblock_migratetype(page, migratetype);
1802		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1803		return true;
1804	}
1805
1806	/* We're the starting block of a larger buddy */
1807	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1808		int order = buddy_order(page);
1809
1810		del_page_from_free_list(page, zone, order,
1811					get_pfnblock_migratetype(page, pfn));
1812		set_pageblock_migratetype(page, migratetype);
1813		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1814		return true;
1815	}
1816move:
1817	__move_freepages_block(zone, start_pfn,
1818			       get_pfnblock_migratetype(page, start_pfn),
1819			       migratetype);
1820	return true;
1821}
1822#endif /* CONFIG_MEMORY_ISOLATION */
1823
1824static void change_pageblock_range(struct page *pageblock_page,
1825					int start_order, int migratetype)
1826{
1827	int nr_pageblocks = 1 << (start_order - pageblock_order);
1828
1829	while (nr_pageblocks--) {
1830		set_pageblock_migratetype(pageblock_page, migratetype);
1831		pageblock_page += pageblock_nr_pages;
1832	}
1833}
1834
1835/*
1836 * When we are falling back to another migratetype during allocation, try to
1837 * steal extra free pages from the same pageblocks to satisfy further
1838 * allocations, instead of polluting multiple pageblocks.
1839 *
1840 * If we are stealing a relatively large buddy page, it is likely there will
1841 * be more free pages in the pageblock, so try to steal them all. For
1842 * reclaimable and unmovable allocations, we steal regardless of page size,
1843 * as fragmentation caused by those allocations polluting movable pageblocks
1844 * is worse than movable allocations stealing from unmovable and reclaimable
1845 * pageblocks.
1846 */
1847static bool can_steal_fallback(unsigned int order, int start_mt)
1848{
1849	/*
1850	 * Leaving this order check is intended, although there is
1851	 * relaxed order check in next check. The reason is that
1852	 * we can actually steal whole pageblock if this condition met,
1853	 * but, below check doesn't guarantee it and that is just heuristic
1854	 * so could be changed anytime.
1855	 */
1856	if (order >= pageblock_order)
1857		return true;
1858
1859	if (order >= pageblock_order / 2 ||
1860		start_mt == MIGRATE_RECLAIMABLE ||
1861		start_mt == MIGRATE_UNMOVABLE ||
1862		page_group_by_mobility_disabled)
1863		return true;
1864
1865	return false;
1866}
1867
1868static inline bool boost_watermark(struct zone *zone)
1869{
1870	unsigned long max_boost;
1871
1872	if (!watermark_boost_factor)
1873		return false;
1874	/*
1875	 * Don't bother in zones that are unlikely to produce results.
1876	 * On small machines, including kdump capture kernels running
1877	 * in a small area, boosting the watermark can cause an out of
1878	 * memory situation immediately.
1879	 */
1880	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1881		return false;
1882
1883	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1884			watermark_boost_factor, 10000);
1885
1886	/*
1887	 * high watermark may be uninitialised if fragmentation occurs
1888	 * very early in boot so do not boost. We do not fall
1889	 * through and boost by pageblock_nr_pages as failing
1890	 * allocations that early means that reclaim is not going
1891	 * to help and it may even be impossible to reclaim the
1892	 * boosted watermark resulting in a hang.
1893	 */
1894	if (!max_boost)
1895		return false;
1896
1897	max_boost = max(pageblock_nr_pages, max_boost);
1898
1899	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1900		max_boost);
1901
1902	return true;
1903}
1904
1905/*
1906 * This function implements actual steal behaviour. If order is large enough, we
1907 * can claim the whole pageblock for the requested migratetype. If not, we check
1908 * the pageblock for constituent pages; if at least half of the pages are free
1909 * or compatible, we can still claim the whole block, so pages freed in the
1910 * future will be put on the correct free list. Otherwise, we isolate exactly
1911 * the order we need from the fallback block and leave its migratetype alone.
1912 */
1913static struct page *
1914steal_suitable_fallback(struct zone *zone, struct page *page,
1915			int current_order, int order, int start_type,
1916			unsigned int alloc_flags, bool whole_block)
1917{
1918	int free_pages, movable_pages, alike_pages;
1919	unsigned long start_pfn;
1920	int block_type;
1921
1922	block_type = get_pageblock_migratetype(page);
1923
1924	/*
1925	 * This can happen due to races and we want to prevent broken
1926	 * highatomic accounting.
1927	 */
1928	if (is_migrate_highatomic(block_type))
1929		goto single_page;
1930
1931	/* Take ownership for orders >= pageblock_order */
1932	if (current_order >= pageblock_order) {
1933		unsigned int nr_added;
1934
1935		del_page_from_free_list(page, zone, current_order, block_type);
1936		change_pageblock_range(page, current_order, start_type);
1937		nr_added = expand(zone, page, order, current_order, start_type);
1938		account_freepages(zone, nr_added, start_type);
1939		return page;
1940	}
1941
1942	/*
1943	 * Boost watermarks to increase reclaim pressure to reduce the
1944	 * likelihood of future fallbacks. Wake kswapd now as the node
1945	 * may be balanced overall and kswapd will not wake naturally.
1946	 */
1947	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1948		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1949
1950	/* We are not allowed to try stealing from the whole block */
1951	if (!whole_block)
1952		goto single_page;
1953
1954	/* moving whole block can fail due to zone boundary conditions */
1955	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1956				       &movable_pages))
1957		goto single_page;
1958
1959	/*
1960	 * Determine how many pages are compatible with our allocation.
1961	 * For movable allocation, it's the number of movable pages which
1962	 * we just obtained. For other types it's a bit more tricky.
1963	 */
1964	if (start_type == MIGRATE_MOVABLE) {
1965		alike_pages = movable_pages;
1966	} else {
1967		/*
1968		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1969		 * to MOVABLE pageblock, consider all non-movable pages as
1970		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1971		 * vice versa, be conservative since we can't distinguish the
1972		 * exact migratetype of non-movable pages.
1973		 */
1974		if (block_type == MIGRATE_MOVABLE)
1975			alike_pages = pageblock_nr_pages
1976						- (free_pages + movable_pages);
1977		else
1978			alike_pages = 0;
1979	}
1980	/*
1981	 * If a sufficient number of pages in the block are either free or of
1982	 * compatible migratability as our allocation, claim the whole block.
1983	 */
1984	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1985			page_group_by_mobility_disabled) {
1986		__move_freepages_block(zone, start_pfn, block_type, start_type);
1987		return __rmqueue_smallest(zone, order, start_type);
1988	}
1989
1990single_page:
1991	page_del_and_expand(zone, page, order, current_order, block_type);
1992	return page;
1993}
1994
1995/*
1996 * Check whether there is a suitable fallback freepage with requested order.
1997 * If only_stealable is true, this function returns fallback_mt only if
1998 * we can steal other freepages all together. This would help to reduce
1999 * fragmentation due to mixed migratetype pages in one pageblock.
2000 */
2001int find_suitable_fallback(struct free_area *area, unsigned int order,
2002			int migratetype, bool only_stealable, bool *can_steal)
2003{
2004	int i;
2005	int fallback_mt;
2006
2007	if (area->nr_free == 0)
2008		return -1;
2009
2010	*can_steal = false;
2011	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2012		fallback_mt = fallbacks[migratetype][i];
2013		if (free_area_empty(area, fallback_mt))
2014			continue;
2015
2016		if (can_steal_fallback(order, migratetype))
2017			*can_steal = true;
2018
2019		if (!only_stealable)
2020			return fallback_mt;
2021
2022		if (*can_steal)
2023			return fallback_mt;
2024	}
2025
2026	return -1;
2027}
2028
2029/*
2030 * Reserve the pageblock(s) surrounding an allocation request for
2031 * exclusive use of high-order atomic allocations if there are no
2032 * empty page blocks that contain a page with a suitable order
2033 */
2034static void reserve_highatomic_pageblock(struct page *page, int order,
2035					 struct zone *zone)
2036{
2037	int mt;
2038	unsigned long max_managed, flags;
2039
2040	/*
2041	 * The number reserved as: minimum is 1 pageblock, maximum is
2042	 * roughly 1% of a zone. But if 1% of a zone falls below a
2043	 * pageblock size, then don't reserve any pageblocks.
2044	 * Check is race-prone but harmless.
2045	 */
2046	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2047		return;
2048	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2049	if (zone->nr_reserved_highatomic >= max_managed)
2050		return;
2051
2052	spin_lock_irqsave(&zone->lock, flags);
2053
2054	/* Recheck the nr_reserved_highatomic limit under the lock */
2055	if (zone->nr_reserved_highatomic >= max_managed)
2056		goto out_unlock;
2057
2058	/* Yoink! */
2059	mt = get_pageblock_migratetype(page);
2060	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2061	if (!migratetype_is_mergeable(mt))
2062		goto out_unlock;
2063
2064	if (order < pageblock_order) {
2065		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2066			goto out_unlock;
2067		zone->nr_reserved_highatomic += pageblock_nr_pages;
2068	} else {
2069		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2070		zone->nr_reserved_highatomic += 1 << order;
2071	}
2072
2073out_unlock:
2074	spin_unlock_irqrestore(&zone->lock, flags);
2075}
2076
2077/*
2078 * Used when an allocation is about to fail under memory pressure. This
2079 * potentially hurts the reliability of high-order allocations when under
2080 * intense memory pressure but failed atomic allocations should be easier
2081 * to recover from than an OOM.
2082 *
2083 * If @force is true, try to unreserve pageblocks even though highatomic
2084 * pageblock is exhausted.
2085 */
2086static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2087						bool force)
2088{
2089	struct zonelist *zonelist = ac->zonelist;
2090	unsigned long flags;
2091	struct zoneref *z;
2092	struct zone *zone;
2093	struct page *page;
2094	int order;
2095	int ret;
2096
2097	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2098								ac->nodemask) {
2099		/*
2100		 * Preserve at least one pageblock unless memory pressure
2101		 * is really high.
2102		 */
2103		if (!force && zone->nr_reserved_highatomic <=
2104					pageblock_nr_pages)
2105			continue;
2106
2107		spin_lock_irqsave(&zone->lock, flags);
2108		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2109			struct free_area *area = &(zone->free_area[order]);
2110			int mt;
2111
2112			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2113			if (!page)
2114				continue;
2115
2116			mt = get_pageblock_migratetype(page);
 
 
 
2117			/*
2118			 * In page freeing path, migratetype change is racy so
2119			 * we can counter several free pages in a pageblock
2120			 * in this loop although we changed the pageblock type
2121			 * from highatomic to ac->migratetype. So we should
2122			 * adjust the count once.
2123			 */
2124			if (is_migrate_highatomic(mt)) {
2125				unsigned long size;
2126				/*
2127				 * It should never happen but changes to
2128				 * locking could inadvertently allow a per-cpu
2129				 * drain to add pages to MIGRATE_HIGHATOMIC
2130				 * while unreserving so be safe and watch for
2131				 * underflows.
2132				 */
2133				size = max(pageblock_nr_pages, 1UL << order);
2134				size = min(size, zone->nr_reserved_highatomic);
2135				zone->nr_reserved_highatomic -= size;
2136			}
2137
2138			/*
2139			 * Convert to ac->migratetype and avoid the normal
2140			 * pageblock stealing heuristics. Minimally, the caller
2141			 * is doing the work and needs the pages. More
2142			 * importantly, if the block was always converted to
2143			 * MIGRATE_UNMOVABLE or another type then the number
2144			 * of pageblocks that cannot be completely freed
2145			 * may increase.
2146			 */
2147			if (order < pageblock_order)
2148				ret = move_freepages_block(zone, page, mt,
2149							   ac->migratetype);
2150			else {
2151				move_to_free_list(page, zone, order, mt,
2152						  ac->migratetype);
2153				change_pageblock_range(page, order,
2154						       ac->migratetype);
2155				ret = 1;
2156			}
2157			/*
2158			 * Reserving the block(s) already succeeded,
2159			 * so this should not fail on zone boundaries.
2160			 */
2161			WARN_ON_ONCE(ret == -1);
2162			if (ret > 0) {
2163				spin_unlock_irqrestore(&zone->lock, flags);
2164				return ret;
2165			}
2166		}
2167		spin_unlock_irqrestore(&zone->lock, flags);
2168	}
2169
2170	return false;
2171}
 
2172
2173/*
2174 * Try finding a free buddy page on the fallback list and put it on the free
2175 * list of requested migratetype, possibly along with other pages from the same
2176 * block, depending on fragmentation avoidance heuristics. Returns true if
2177 * fallback was found so that __rmqueue_smallest() can grab it.
2178 *
2179 * The use of signed ints for order and current_order is a deliberate
2180 * deviation from the rest of this file, to make the for loop
2181 * condition simpler.
2182 */
2183static __always_inline struct page *
2184__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2185						unsigned int alloc_flags)
2186{
2187	struct free_area *area;
2188	int current_order;
2189	int min_order = order;
2190	struct page *page;
2191	int fallback_mt;
2192	bool can_steal;
2193
2194	/*
2195	 * Do not steal pages from freelists belonging to other pageblocks
2196	 * i.e. orders < pageblock_order. If there are no local zones free,
2197	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2198	 */
2199	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2200		min_order = pageblock_order;
2201
2202	/*
2203	 * Find the largest available free page in the other list. This roughly
2204	 * approximates finding the pageblock with the most free pages, which
2205	 * would be too costly to do exactly.
2206	 */
2207	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2208				--current_order) {
2209		area = &(zone->free_area[current_order]);
2210		fallback_mt = find_suitable_fallback(area, current_order,
2211				start_migratetype, false, &can_steal);
2212		if (fallback_mt == -1)
2213			continue;
2214
2215		/*
2216		 * We cannot steal all free pages from the pageblock and the
2217		 * requested migratetype is movable. In that case it's better to
2218		 * steal and split the smallest available page instead of the
2219		 * largest available page, because even if the next movable
2220		 * allocation falls back into a different pageblock than this
2221		 * one, it won't cause permanent fragmentation.
2222		 */
2223		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2224					&& current_order > order)
2225			goto find_smallest;
2226
2227		goto do_steal;
2228	}
2229
2230	return NULL;
2231
2232find_smallest:
2233	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2234		area = &(zone->free_area[current_order]);
2235		fallback_mt = find_suitable_fallback(area, current_order,
2236				start_migratetype, false, &can_steal);
2237		if (fallback_mt != -1)
2238			break;
2239	}
2240
2241	/*
2242	 * This should not happen - we already found a suitable fallback
2243	 * when looking for the largest page.
2244	 */
2245	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2246
2247do_steal:
2248	page = get_page_from_free_area(area, fallback_mt);
2249
2250	/* take off list, maybe claim block, expand remainder */
2251	page = steal_suitable_fallback(zone, page, current_order, order,
2252				       start_migratetype, alloc_flags, can_steal);
2253
2254	trace_mm_page_alloc_extfrag(page, order, current_order,
2255		start_migratetype, fallback_mt);
2256
2257	return page;
2258}
2259
2260/*
2261 * Do the hard work of removing an element from the buddy allocator.
2262 * Call me with the zone->lock already held.
2263 */
2264static __always_inline struct page *
2265__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2266						unsigned int alloc_flags)
2267{
2268	struct page *page;
2269
2270	if (IS_ENABLED(CONFIG_CMA)) {
 
 
 
 
 
2271		/*
2272		 * Balance movable allocations between regular and CMA areas by
2273		 * allocating from CMA when over half of the zone's free memory
2274		 * is in the CMA area.
2275		 */
2276		if (alloc_flags & ALLOC_CMA &&
2277		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2278		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2279			page = __rmqueue_cma_fallback(zone, order);
2280			if (page)
2281				return page;
2282		}
2283	}
2284
2285	page = __rmqueue_smallest(zone, order, migratetype);
2286	if (unlikely(!page)) {
2287		if (alloc_flags & ALLOC_CMA)
2288			page = __rmqueue_cma_fallback(zone, order);
2289
2290		if (!page)
2291			page = __rmqueue_fallback(zone, order, migratetype,
2292						  alloc_flags);
2293	}
2294	return page;
2295}
2296
2297/*
2298 * Obtain a specified number of elements from the buddy allocator, all under
2299 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2300 * Returns the number of new pages which were placed at *list.
2301 */
2302static int rmqueue_bulk(struct zone *zone, unsigned int order,
2303			unsigned long count, struct list_head *list,
2304			int migratetype, unsigned int alloc_flags)
2305{
2306	unsigned long flags;
2307	int i;
2308
2309	spin_lock_irqsave(&zone->lock, flags);
2310	for (i = 0; i < count; ++i) {
2311		struct page *page = __rmqueue(zone, order, migratetype,
2312								alloc_flags);
2313		if (unlikely(page == NULL))
2314			break;
2315
2316		/*
2317		 * Split buddy pages returned by expand() are received here in
2318		 * physical page order. The page is added to the tail of
2319		 * caller's list. From the callers perspective, the linked list
2320		 * is ordered by page number under some conditions. This is
2321		 * useful for IO devices that can forward direction from the
2322		 * head, thus also in the physical page order. This is useful
2323		 * for IO devices that can merge IO requests if the physical
2324		 * pages are ordered properly.
2325		 */
2326		list_add_tail(&page->pcp_list, list);
 
 
 
 
 
2327	}
2328	spin_unlock_irqrestore(&zone->lock, flags);
2329
2330	return i;
2331}
2332
2333/*
2334 * Called from the vmstat counter updater to decay the PCP high.
2335 * Return whether there are addition works to do.
2336 */
2337int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2338{
2339	int high_min, to_drain, batch;
2340	int todo = 0;
2341
2342	high_min = READ_ONCE(pcp->high_min);
2343	batch = READ_ONCE(pcp->batch);
2344	/*
2345	 * Decrease pcp->high periodically to try to free possible
2346	 * idle PCP pages.  And, avoid to free too many pages to
2347	 * control latency.  This caps pcp->high decrement too.
2348	 */
2349	if (pcp->high > high_min) {
2350		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2351				 pcp->high - (pcp->high >> 3), high_min);
2352		if (pcp->high > high_min)
2353			todo++;
2354	}
2355
2356	to_drain = pcp->count - pcp->high;
2357	if (to_drain > 0) {
2358		spin_lock(&pcp->lock);
2359		free_pcppages_bulk(zone, to_drain, pcp, 0);
2360		spin_unlock(&pcp->lock);
2361		todo++;
2362	}
2363
2364	return todo;
2365}
2366
2367#ifdef CONFIG_NUMA
2368/*
2369 * Called from the vmstat counter updater to drain pagesets of this
2370 * currently executing processor on remote nodes after they have
2371 * expired.
 
 
 
2372 */
2373void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2374{
2375	int to_drain, batch;
 
2376
2377	batch = READ_ONCE(pcp->batch);
2378	to_drain = min(pcp->count, batch);
2379	if (to_drain > 0) {
2380		spin_lock(&pcp->lock);
2381		free_pcppages_bulk(zone, to_drain, pcp, 0);
2382		spin_unlock(&pcp->lock);
2383	}
 
2384}
2385#endif
2386
2387/*
2388 * Drain pcplists of the indicated processor and zone.
2389 */
2390static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2391{
2392	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2393	int count;
2394
2395	do {
2396		spin_lock(&pcp->lock);
2397		count = pcp->count;
2398		if (count) {
2399			int to_drain = min(count,
2400				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2401
2402			free_pcppages_bulk(zone, to_drain, pcp, 0);
2403			count -= to_drain;
2404		}
2405		spin_unlock(&pcp->lock);
2406	} while (count);
2407}
2408
2409/*
2410 * Drain pcplists of all zones on the indicated processor.
2411 */
2412static void drain_pages(unsigned int cpu)
2413{
 
2414	struct zone *zone;
2415
2416	for_each_populated_zone(zone) {
2417		drain_pages_zone(cpu, zone);
 
 
 
 
 
 
 
 
 
 
 
2418	}
2419}
2420
2421/*
2422 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2423 */
2424void drain_local_pages(struct zone *zone)
2425{
2426	int cpu = smp_processor_id();
2427
2428	if (zone)
2429		drain_pages_zone(cpu, zone);
2430	else
2431		drain_pages(cpu);
2432}
2433
2434/*
2435 * The implementation of drain_all_pages(), exposing an extra parameter to
2436 * drain on all cpus.
2437 *
2438 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2439 * not empty. The check for non-emptiness can however race with a free to
2440 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2441 * that need the guarantee that every CPU has drained can disable the
2442 * optimizing racy check.
2443 */
2444static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2445{
2446	int cpu;
2447
2448	/*
2449	 * Allocate in the BSS so we won't require allocation in
2450	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2451	 */
2452	static cpumask_t cpus_with_pcps;
2453
2454	/*
2455	 * Do not drain if one is already in progress unless it's specific to
2456	 * a zone. Such callers are primarily CMA and memory hotplug and need
2457	 * the drain to be complete when the call returns.
2458	 */
2459	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2460		if (!zone)
2461			return;
2462		mutex_lock(&pcpu_drain_mutex);
2463	}
2464
2465	/*
2466	 * We don't care about racing with CPU hotplug event
2467	 * as offline notification will cause the notified
2468	 * cpu to drain that CPU pcps and on_each_cpu_mask
2469	 * disables preemption as part of its processing
2470	 */
2471	for_each_online_cpu(cpu) {
2472		struct per_cpu_pages *pcp;
2473		struct zone *z;
2474		bool has_pcps = false;
2475
2476		if (force_all_cpus) {
2477			/*
2478			 * The pcp.count check is racy, some callers need a
2479			 * guarantee that no cpu is missed.
2480			 */
2481			has_pcps = true;
2482		} else if (zone) {
2483			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2484			if (pcp->count)
2485				has_pcps = true;
2486		} else {
2487			for_each_populated_zone(z) {
2488				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2489				if (pcp->count) {
2490					has_pcps = true;
2491					break;
2492				}
2493			}
2494		}
2495
2496		if (has_pcps)
2497			cpumask_set_cpu(cpu, &cpus_with_pcps);
2498		else
2499			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2500	}
2501
2502	for_each_cpu(cpu, &cpus_with_pcps) {
2503		if (zone)
2504			drain_pages_zone(cpu, zone);
2505		else
2506			drain_pages(cpu);
2507	}
2508
2509	mutex_unlock(&pcpu_drain_mutex);
2510}
2511
2512/*
2513 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2514 *
2515 * When zone parameter is non-NULL, spill just the single zone's pages.
2516 */
2517void drain_all_pages(struct zone *zone)
2518{
2519	__drain_all_pages(zone, false);
2520}
2521
2522static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2523{
2524	int min_nr_free, max_nr_free;
 
 
 
2525
2526	/* Free as much as possible if batch freeing high-order pages. */
2527	if (unlikely(free_high))
2528		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2529
2530	/* Check for PCP disabled or boot pageset */
2531	if (unlikely(high < batch))
2532		return 1;
2533
2534	/* Leave at least pcp->batch pages on the list */
2535	min_nr_free = batch;
2536	max_nr_free = high - batch;
2537
2538	/*
2539	 * Increase the batch number to the number of the consecutive
2540	 * freed pages to reduce zone lock contention.
2541	 */
2542	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2543
2544	return batch;
2545}
2546
2547static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2548		       int batch, bool free_high)
2549{
2550	int high, high_min, high_max;
2551
2552	high_min = READ_ONCE(pcp->high_min);
2553	high_max = READ_ONCE(pcp->high_max);
2554	high = pcp->high = clamp(pcp->high, high_min, high_max);
2555
2556	if (unlikely(!high))
2557		return 0;
2558
2559	if (unlikely(free_high)) {
2560		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2561				high_min);
2562		return 0;
2563	}
2564
2565	/*
2566	 * If reclaim is active, limit the number of pages that can be
2567	 * stored on pcp lists
2568	 */
2569	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2570		int free_count = max_t(int, pcp->free_count, batch);
2571
2572		pcp->high = max(high - free_count, high_min);
2573		return min(batch << 2, pcp->high);
2574	}
2575
2576	if (high_min == high_max)
2577		return high;
2578
2579	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2580		int free_count = max_t(int, pcp->free_count, batch);
2581
2582		pcp->high = max(high - free_count, high_min);
2583		high = max(pcp->count, high_min);
2584	} else if (pcp->count >= high) {
2585		int need_high = pcp->free_count + batch;
2586
2587		/* pcp->high should be large enough to hold batch freed pages */
2588		if (pcp->high < need_high)
2589			pcp->high = clamp(need_high, high_min, high_max);
2590	}
2591
2592	return high;
2593}
2594
2595static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2596				   struct page *page, int migratetype,
2597				   unsigned int order)
2598{
2599	int high, batch;
2600	int pindex;
2601	bool free_high = false;
2602
2603	/*
2604	 * On freeing, reduce the number of pages that are batch allocated.
2605	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2606	 * allocations.
2607	 */
2608	pcp->alloc_factor >>= 1;
2609	__count_vm_events(PGFREE, 1 << order);
2610	pindex = order_to_pindex(migratetype, order);
2611	list_add(&page->pcp_list, &pcp->lists[pindex]);
2612	pcp->count += 1 << order;
2613
2614	batch = READ_ONCE(pcp->batch);
2615	/*
2616	 * As high-order pages other than THP's stored on PCP can contribute
2617	 * to fragmentation, limit the number stored when PCP is heavily
2618	 * freeing without allocation. The remainder after bulk freeing
2619	 * stops will be drained from vmstat refresh context.
2620	 */
2621	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2622		free_high = (pcp->free_count >= batch &&
2623			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2624			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2625			      pcp->count >= READ_ONCE(batch)));
2626		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2627	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2628		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2629	}
2630	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2631		pcp->free_count += (1 << order);
2632	high = nr_pcp_high(pcp, zone, batch, free_high);
2633	if (pcp->count >= high) {
2634		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2635				   pcp, pindex);
2636		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2637		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2638				      ZONE_MOVABLE, 0))
2639			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2640	}
 
2641}
 
2642
2643/*
2644 * Free a pcp page
 
2645 */
2646void free_unref_page(struct page *page, unsigned int order)
2647{
2648	unsigned long __maybe_unused UP_flags;
2649	struct per_cpu_pages *pcp;
2650	struct zone *zone;
2651	unsigned long pfn = page_to_pfn(page);
2652	int migratetype;
 
2653
2654	if (!pcp_allowed_order(order)) {
2655		__free_pages_ok(page, order, FPI_NONE);
2656		return;
2657	}
2658
2659	if (!free_pages_prepare(page, order))
2660		return;
 
 
 
 
2661
2662	/*
2663	 * We only track unmovable, reclaimable and movable on pcp lists.
2664	 * Place ISOLATE pages on the isolated list because they are being
2665	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2666	 * get those areas back if necessary. Otherwise, we may have to free
2667	 * excessively into the page allocator
2668	 */
2669	migratetype = get_pfnblock_migratetype(page, pfn);
2670	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2671		if (unlikely(is_migrate_isolate(migratetype))) {
2672			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2673			return;
2674		}
2675		migratetype = MIGRATE_MOVABLE;
2676	}
2677
2678	zone = page_zone(page);
2679	pcp_trylock_prepare(UP_flags);
2680	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2681	if (pcp) {
2682		free_unref_page_commit(zone, pcp, page, migratetype, order);
2683		pcp_spin_unlock(pcp);
2684	} else {
2685		free_one_page(zone, page, pfn, order, FPI_NONE);
 
2686	}
2687	pcp_trylock_finish(UP_flags);
2688}
2689
2690/*
2691 * Free a batch of folios
2692 */
2693void free_unref_folios(struct folio_batch *folios)
2694{
2695	unsigned long __maybe_unused UP_flags;
2696	struct per_cpu_pages *pcp = NULL;
2697	struct zone *locked_zone = NULL;
2698	int i, j;
2699
2700	/* Prepare folios for freeing */
2701	for (i = 0, j = 0; i < folios->nr; i++) {
2702		struct folio *folio = folios->folios[i];
2703		unsigned long pfn = folio_pfn(folio);
2704		unsigned int order = folio_order(folio);
2705
2706		if (!free_pages_prepare(&folio->page, order))
2707			continue;
2708		/*
2709		 * Free orders not handled on the PCP directly to the
2710		 * allocator.
2711		 */
2712		if (!pcp_allowed_order(order)) {
2713			free_one_page(folio_zone(folio), &folio->page,
2714				      pfn, order, FPI_NONE);
2715			continue;
2716		}
2717		folio->private = (void *)(unsigned long)order;
2718		if (j != i)
2719			folios->folios[j] = folio;
2720		j++;
2721	}
2722	folios->nr = j;
2723
2724	for (i = 0; i < folios->nr; i++) {
2725		struct folio *folio = folios->folios[i];
2726		struct zone *zone = folio_zone(folio);
2727		unsigned long pfn = folio_pfn(folio);
2728		unsigned int order = (unsigned long)folio->private;
2729		int migratetype;
2730
2731		folio->private = NULL;
2732		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2733
2734		/* Different zone requires a different pcp lock */
2735		if (zone != locked_zone ||
2736		    is_migrate_isolate(migratetype)) {
2737			if (pcp) {
2738				pcp_spin_unlock(pcp);
2739				pcp_trylock_finish(UP_flags);
2740				locked_zone = NULL;
2741				pcp = NULL;
2742			}
2743
2744			/*
2745			 * Free isolated pages directly to the
2746			 * allocator, see comment in free_unref_page.
2747			 */
2748			if (is_migrate_isolate(migratetype)) {
2749				free_one_page(zone, &folio->page, pfn,
2750					      order, FPI_NONE);
2751				continue;
2752			}
2753
2754			/*
2755			 * trylock is necessary as folios may be getting freed
2756			 * from IRQ or SoftIRQ context after an IO completion.
2757			 */
2758			pcp_trylock_prepare(UP_flags);
2759			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2760			if (unlikely(!pcp)) {
2761				pcp_trylock_finish(UP_flags);
2762				free_one_page(zone, &folio->page, pfn,
2763					      order, FPI_NONE);
2764				continue;
2765			}
2766			locked_zone = zone;
2767		}
2768
2769		/*
2770		 * Non-isolated types over MIGRATE_PCPTYPES get added
2771		 * to the MIGRATE_MOVABLE pcp list.
2772		 */
2773		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2774			migratetype = MIGRATE_MOVABLE;
2775
2776		trace_mm_page_free_batched(&folio->page);
2777		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2778				order);
2779	}
2780
2781	if (pcp) {
2782		pcp_spin_unlock(pcp);
2783		pcp_trylock_finish(UP_flags);
2784	}
2785	folio_batch_reinit(folios);
2786}
2787
2788/*
2789 * split_page takes a non-compound higher-order page, and splits it into
2790 * n (1<<order) sub-pages: page[0..n]
2791 * Each sub-page must be freed individually.
2792 *
2793 * Note: this is probably too low level an operation for use in drivers.
2794 * Please consult with lkml before using this in your driver.
2795 */
2796void split_page(struct page *page, unsigned int order)
2797{
2798	int i;
2799
2800	VM_BUG_ON_PAGE(PageCompound(page), page);
2801	VM_BUG_ON_PAGE(!page_count(page), page);
 
 
 
 
 
 
 
 
 
2802
2803	for (i = 1; i < (1 << order); i++)
2804		set_page_refcounted(page + i);
2805	split_page_owner(page, order, 0);
2806	pgalloc_tag_split(page_folio(page), order, 0);
2807	split_page_memcg(page, order, 0);
2808}
2809EXPORT_SYMBOL_GPL(split_page);
2810
2811int __isolate_free_page(struct page *page, unsigned int order)
 
 
 
 
 
 
 
 
 
 
2812{
2813	struct zone *zone = page_zone(page);
2814	int mt = get_pageblock_migratetype(page);
 
 
 
 
 
 
 
 
 
 
 
2815
2816	if (!is_migrate_isolate(mt)) {
2817		unsigned long watermark;
2818		/*
2819		 * Obey watermarks as if the page was being allocated. We can
2820		 * emulate a high-order watermark check with a raised order-0
2821		 * watermark, because we already know our high-order page
2822		 * exists.
2823		 */
2824		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2825		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2826			return 0;
2827	}
2828
2829	del_page_from_free_list(page, zone, order, mt);
 
 
2830
2831	/*
2832	 * Set the pageblock if the isolated page is at least half of a
2833	 * pageblock
2834	 */
2835	if (order >= pageblock_order - 1) {
2836		struct page *endpage = page + (1 << order) - 1;
2837		for (; page < endpage; page += pageblock_nr_pages) {
2838			int mt = get_pageblock_migratetype(page);
2839			/*
2840			 * Only change normal pageblocks (i.e., they can merge
2841			 * with others)
2842			 */
2843			if (migratetype_is_mergeable(mt))
2844				move_freepages_block(zone, page, mt,
2845						     MIGRATE_MOVABLE);
2846		}
2847	}
2848
2849	return 1UL << order;
2850}
2851
2852/**
2853 * __putback_isolated_page - Return a now-isolated page back where we got it
2854 * @page: Page that was isolated
2855 * @order: Order of the isolated page
2856 * @mt: The page's pageblock's migratetype
2857 *
2858 * This function is meant to return a page pulled from the free lists via
2859 * __isolate_free_page back to the free lists they were pulled from.
2860 */
2861void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2862{
2863	struct zone *zone = page_zone(page);
2864
2865	/* zone lock should be held when this function is called */
2866	lockdep_assert_held(&zone->lock);
2867
2868	/* Return isolated page to tail of freelist. */
2869	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2870			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2871}
2872
2873/*
2874 * Update NUMA hit/miss statistics
 
 
2875 */
2876static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2877				   long nr_account)
 
 
2878{
2879#ifdef CONFIG_NUMA
2880	enum numa_stat_item local_stat = NUMA_LOCAL;
 
2881
2882	/* skip numa counters update if numa stats is disabled */
2883	if (!static_branch_likely(&vm_numa_stat_key))
2884		return;
 
2885
2886	if (zone_to_nid(z) != numa_node_id())
2887		local_stat = NUMA_OTHER;
 
 
 
 
 
 
 
 
2888
2889	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2890		__count_numa_events(z, NUMA_HIT, nr_account);
2891	else {
2892		__count_numa_events(z, NUMA_MISS, nr_account);
2893		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2894	}
2895	__count_numa_events(z, local_stat, nr_account);
2896#endif
2897}
2898
2899static __always_inline
2900struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2901			   unsigned int order, unsigned int alloc_flags,
2902			   int migratetype)
2903{
2904	struct page *page;
2905	unsigned long flags;
2906
2907	do {
2908		page = NULL;
2909		spin_lock_irqsave(&zone->lock, flags);
2910		if (alloc_flags & ALLOC_HIGHATOMIC)
2911			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2912		if (!page) {
2913			page = __rmqueue(zone, order, migratetype, alloc_flags);
2914
 
 
 
 
2915			/*
2916			 * If the allocation fails, allow OOM handling and
2917			 * order-0 (atomic) allocs access to HIGHATOMIC
2918			 * reserves as failing now is worse than failing a
2919			 * high-order atomic allocation in the future.
 
 
 
 
2920			 */
2921			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2922				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2923
2924			if (!page) {
2925				spin_unlock_irqrestore(&zone->lock, flags);
2926				return NULL;
2927			}
2928		}
2929		spin_unlock_irqrestore(&zone->lock, flags);
2930	} while (check_new_pages(page, order));
 
 
 
 
 
2931
2932	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2933	zone_statistics(preferred_zone, zone, 1);
 
2934
 
 
 
2935	return page;
 
 
 
 
2936}
2937
2938static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939{
2940	int high, base_batch, batch, max_nr_alloc;
2941	int high_max, high_min;
 
2942
2943	base_batch = READ_ONCE(pcp->batch);
2944	high_min = READ_ONCE(pcp->high_min);
2945	high_max = READ_ONCE(pcp->high_max);
2946	high = pcp->high = clamp(pcp->high, high_min, high_max);
 
 
 
 
 
 
2947
2948	/* Check for PCP disabled or boot pageset */
2949	if (unlikely(high < base_batch))
2950		return 1;
2951
2952	if (order)
2953		batch = base_batch;
2954	else
2955		batch = (base_batch << pcp->alloc_factor);
2956
2957	/*
2958	 * If we had larger pcp->high, we could avoid to allocate from
2959	 * zone.
2960	 */
2961	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2962		high = pcp->high = min(high + batch, high_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
2963
2964	if (!order) {
2965		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2966		/*
2967		 * Double the number of pages allocated each time there is
2968		 * subsequent allocation of order-0 pages without any freeing.
2969		 */
2970		if (batch <= max_nr_alloc &&
2971		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2972			pcp->alloc_factor++;
2973		batch = min(batch, max_nr_alloc);
2974	}
2975
2976	/*
2977	 * Scale batch relative to order if batch implies free pages
2978	 * can be stored on the PCP. Batch can be 1 for small zones or
2979	 * for boot pagesets which should never store free pages as
2980	 * the pages may belong to arbitrary zones.
2981	 */
2982	if (batch > 1)
2983		batch = max(batch >> order, 2);
2984
2985	return batch;
2986}
2987
2988/* Remove page from the per-cpu list, caller must protect the list */
2989static inline
2990struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2991			int migratetype,
2992			unsigned int alloc_flags,
2993			struct per_cpu_pages *pcp,
2994			struct list_head *list)
2995{
2996	struct page *page;
2997
2998	do {
2999		if (list_empty(list)) {
3000			int batch = nr_pcp_alloc(pcp, zone, order);
3001			int alloced;
3002
3003			alloced = rmqueue_bulk(zone, order,
3004					batch, list,
3005					migratetype, alloc_flags);
3006
3007			pcp->count += alloced << order;
3008			if (unlikely(list_empty(list)))
3009				return NULL;
3010		}
3011
3012		page = list_first_entry(list, struct page, pcp_list);
3013		list_del(&page->pcp_list);
3014		pcp->count -= 1 << order;
3015	} while (check_new_pages(page, order));
3016
3017	return page;
3018}
3019
3020/* Lock and remove page from the per-cpu list */
3021static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3022			struct zone *zone, unsigned int order,
3023			int migratetype, unsigned int alloc_flags)
3024{
3025	struct per_cpu_pages *pcp;
3026	struct list_head *list;
3027	struct page *page;
3028	unsigned long __maybe_unused UP_flags;
3029
3030	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3031	pcp_trylock_prepare(UP_flags);
3032	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3033	if (!pcp) {
3034		pcp_trylock_finish(UP_flags);
3035		return NULL;
3036	}
3037
3038	/*
3039	 * On allocation, reduce the number of pages that are batch freed.
3040	 * See nr_pcp_free() where free_factor is increased for subsequent
3041	 * frees.
3042	 */
3043	pcp->free_count >>= 1;
3044	list = &pcp->lists[order_to_pindex(migratetype, order)];
3045	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3046	pcp_spin_unlock(pcp);
3047	pcp_trylock_finish(UP_flags);
3048	if (page) {
3049		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3050		zone_statistics(preferred_zone, zone, 1);
3051	}
3052	return page;
3053}
3054
3055/*
3056 * Allocate a page from the given zone.
3057 * Use pcplists for THP or "cheap" high-order allocations.
3058 */
3059
3060/*
3061 * Do not instrument rmqueue() with KMSAN. This function may call
3062 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3063 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3064 * may call rmqueue() again, which will result in a deadlock.
3065 */
3066__no_sanitize_memory
3067static inline
3068struct page *rmqueue(struct zone *preferred_zone,
3069			struct zone *zone, unsigned int order,
3070			gfp_t gfp_flags, unsigned int alloc_flags,
3071			int migratetype)
3072{
3073	struct page *page;
 
 
 
 
 
 
 
 
3074
3075	if (likely(pcp_allowed_order(order))) {
3076		page = rmqueue_pcplist(preferred_zone, zone, order,
3077				       migratetype, alloc_flags);
3078		if (likely(page))
3079			goto out;
3080	}
3081
3082	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3083							migratetype);
3084
3085out:
3086	/* Separate test+clear to avoid unnecessary atomics */
3087	if ((alloc_flags & ALLOC_KSWAPD) &&
3088	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3089		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3090		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3091	}
 
 
3092
3093	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3094	return page;
 
 
 
3095}
3096
3097static inline long __zone_watermark_unusable_free(struct zone *z,
3098				unsigned int order, unsigned int alloc_flags)
3099{
3100	long unusable_free = (1 << order) - 1;
3101
3102	/*
3103	 * If the caller does not have rights to reserves below the min
3104	 * watermark then subtract the free pages reserved for highatomic.
3105	 */
3106	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3107		unusable_free += READ_ONCE(z->nr_free_highatomic);
3108
3109#ifdef CONFIG_CMA
3110	/* If allocation can't use CMA areas don't use free CMA pages */
3111	if (!(alloc_flags & ALLOC_CMA))
3112		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3113#endif
3114
3115	return unusable_free;
3116}
3117
 
3118/*
3119 * Return true if free base pages are above 'mark'. For high-order checks it
3120 * will return true of the order-0 watermark is reached and there is at least
3121 * one free page of a suitable size. Checking now avoids taking the zone lock
3122 * to check in the allocation paths if no pages are free.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3123 */
3124bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3125			 int highest_zoneidx, unsigned int alloc_flags,
3126			 long free_pages)
3127{
3128	long min = mark;
3129	int o;
3130
3131	/* free_pages may go negative - that's OK */
3132	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
 
3133
3134	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3135		/*
3136		 * __GFP_HIGH allows access to 50% of the min reserve as well
3137		 * as OOM.
3138		 */
3139		if (alloc_flags & ALLOC_MIN_RESERVE) {
3140			min -= min / 2;
 
 
 
3141
3142			/*
3143			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3144			 * access more reserves than just __GFP_HIGH. Other
3145			 * non-blocking allocations requests such as GFP_NOWAIT
3146			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3147			 * access to the min reserve.
3148			 */
3149			if (alloc_flags & ALLOC_NON_BLOCK)
3150				min -= min / 4;
3151		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3152
3153		/*
3154		 * OOM victims can try even harder than the normal reserve
3155		 * users on the grounds that it's definitely going to be in
3156		 * the exit path shortly and free memory. Any allocation it
3157		 * makes during the free path will be small and short-lived.
3158		 */
3159		if (alloc_flags & ALLOC_OOM)
3160			min -= min / 2;
3161	}
3162
3163	/*
3164	 * Check watermarks for an order-0 allocation request. If these
3165	 * are not met, then a high-order request also cannot go ahead
3166	 * even if a suitable page happened to be free.
3167	 */
3168	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3169		return false;
3170
3171	/* If this is an order-0 request then the watermark is fine */
3172	if (!order)
3173		return true;
3174
3175	/* For a high-order request, check at least one suitable page is free */
3176	for (o = order; o < NR_PAGE_ORDERS; o++) {
3177		struct free_area *area = &z->free_area[o];
3178		int mt;
3179
3180		if (!area->nr_free)
3181			continue;
3182
3183		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3184			if (!free_area_empty(area, mt))
3185				return true;
3186		}
3187
3188#ifdef CONFIG_CMA
3189		if ((alloc_flags & ALLOC_CMA) &&
3190		    !free_area_empty(area, MIGRATE_CMA)) {
3191			return true;
3192		}
3193#endif
3194		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3195		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3196			return true;
3197		}
3198	}
3199	return false;
3200}
3201
3202bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3203		      int highest_zoneidx, unsigned int alloc_flags)
3204{
3205	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3206					zone_page_state(z, NR_FREE_PAGES));
3207}
3208
3209static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3210				unsigned long mark, int highest_zoneidx,
3211				unsigned int alloc_flags, gfp_t gfp_mask)
 
 
 
3212{
3213	long free_pages;
 
3214
3215	free_pages = zone_page_state(z, NR_FREE_PAGES);
3216
3217	/*
3218	 * Fast check for order-0 only. If this fails then the reserves
3219	 * need to be calculated.
3220	 */
3221	if (!order) {
3222		long usable_free;
3223		long reserved;
3224
3225		usable_free = free_pages;
3226		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3227
3228		/* reserved may over estimate high-atomic reserves. */
3229		usable_free -= min(usable_free, reserved);
3230		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3231			return true;
3232	}
3233
3234	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3235					free_pages))
3236		return true;
3237
3238	/*
3239	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3240	 * when checking the min watermark. The min watermark is the
3241	 * point where boosting is ignored so that kswapd is woken up
3242	 * when below the low watermark.
3243	 */
3244	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3245		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3246		mark = z->_watermark[WMARK_MIN];
3247		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3248					alloc_flags, free_pages);
3249	}
3250
3251	return false;
3252}
3253
3254bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3255			unsigned long mark, int highest_zoneidx)
 
 
 
3256{
3257	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3258
3259	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3260		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
 
3261
3262	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3263								free_pages);
3264}
3265
3266#ifdef CONFIG_NUMA
3267int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3268
3269static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3270{
3271	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3272				node_reclaim_distance;
3273}
3274#else	/* CONFIG_NUMA */
3275static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 
3276{
3277	return true;
3278}
3279#endif	/* CONFIG_NUMA */
3280
3281/*
3282 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3283 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3284 * premature use of a lower zone may cause lowmem pressure problems that
3285 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3286 * probably too small. It only makes sense to spread allocations to avoid
3287 * fragmentation between the Normal and DMA32 zones.
3288 */
3289static inline unsigned int
3290alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3291{
3292	unsigned int alloc_flags;
3293
3294	/*
3295	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3296	 * to save a branch.
3297	 */
3298	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3299
3300#ifdef CONFIG_ZONE_DMA32
3301	if (!zone)
3302		return alloc_flags;
3303
3304	if (zone_idx(zone) != ZONE_NORMAL)
3305		return alloc_flags;
3306
3307	/*
3308	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3309	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3310	 * on UMA that if Normal is populated then so is DMA32.
3311	 */
3312	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3313	if (nr_online_nodes > 1 && !populated_zone(--zone))
3314		return alloc_flags;
3315
3316	alloc_flags |= ALLOC_NOFRAGMENT;
3317#endif /* CONFIG_ZONE_DMA32 */
3318	return alloc_flags;
3319}
3320
3321/* Must be called after current_gfp_context() which can change gfp_mask */
3322static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3323						  unsigned int alloc_flags)
3324{
3325#ifdef CONFIG_CMA
3326	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3327		alloc_flags |= ALLOC_CMA;
3328#endif
3329	return alloc_flags;
3330}
 
3331
3332/*
3333 * get_page_from_freelist goes through the zonelist trying to allocate
3334 * a page.
3335 */
3336static struct page *
3337get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3338						const struct alloc_context *ac)
 
3339{
3340	struct zoneref *z;
 
 
3341	struct zone *zone;
3342	struct pglist_data *last_pgdat = NULL;
3343	bool last_pgdat_dirty_ok = false;
3344	bool no_fallback;
3345
3346retry:
 
3347	/*
3348	 * Scan zonelist, looking for a zone with enough free.
3349	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3350	 */
3351	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3352	z = ac->preferred_zoneref;
3353	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3354					ac->nodemask) {
3355		struct page *page;
3356		unsigned long mark;
3357
3358		if (cpusets_enabled() &&
3359			(alloc_flags & ALLOC_CPUSET) &&
3360			!__cpuset_zone_allowed(zone, gfp_mask))
3361				continue;
3362		/*
3363		 * When allocating a page cache page for writing, we
3364		 * want to get it from a node that is within its dirty
3365		 * limit, such that no single node holds more than its
3366		 * proportional share of globally allowed dirty pages.
3367		 * The dirty limits take into account the node's
3368		 * lowmem reserves and high watermark so that kswapd
3369		 * should be able to balance it without having to
3370		 * write pages from its LRU list.
3371		 *
3372		 * XXX: For now, allow allocations to potentially
3373		 * exceed the per-node dirty limit in the slowpath
3374		 * (spread_dirty_pages unset) before going into reclaim,
3375		 * which is important when on a NUMA setup the allowed
3376		 * nodes are together not big enough to reach the
3377		 * global limit.  The proper fix for these situations
3378		 * will require awareness of nodes in the
3379		 * dirty-throttling and the flusher threads.
3380		 */
3381		if (ac->spread_dirty_pages) {
3382			if (last_pgdat != zone->zone_pgdat) {
3383				last_pgdat = zone->zone_pgdat;
3384				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3385			}
3386
3387			if (!last_pgdat_dirty_ok)
3388				continue;
3389		}
 
3390
3391		if (no_fallback && nr_online_nodes > 1 &&
3392		    zone != zonelist_zone(ac->preferred_zoneref)) {
3393			int local_nid;
 
3394
3395			/*
3396			 * If moving to a remote node, retry but allow
3397			 * fragmenting fallbacks. Locality is more important
3398			 * than fragmentation avoidance.
3399			 */
3400			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3401			if (zone_to_nid(zone) != local_nid) {
3402				alloc_flags &= ~ALLOC_NOFRAGMENT;
3403				goto retry;
3404			}
3405		}
3406
3407		cond_accept_memory(zone, order);
3408
3409		/*
3410		 * Detect whether the number of free pages is below high
3411		 * watermark.  If so, we will decrease pcp->high and free
3412		 * PCP pages in free path to reduce the possibility of
3413		 * premature page reclaiming.  Detection is done here to
3414		 * avoid to do that in hotter free path.
3415		 */
3416		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3417			goto check_alloc_wmark;
3418
3419		mark = high_wmark_pages(zone);
3420		if (zone_watermark_fast(zone, order, mark,
3421					ac->highest_zoneidx, alloc_flags,
3422					gfp_mask))
3423			goto try_this_zone;
3424		else
3425			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3426
3427check_alloc_wmark:
3428		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3429		if (!zone_watermark_fast(zone, order, mark,
3430				       ac->highest_zoneidx, alloc_flags,
3431				       gfp_mask)) {
3432			int ret;
3433
3434			if (cond_accept_memory(zone, order))
3435				goto try_this_zone;
3436
3437			/*
3438			 * Watermark failed for this zone, but see if we can
3439			 * grow this zone if it contains deferred pages.
3440			 */
3441			if (deferred_pages_enabled()) {
3442				if (_deferred_grow_zone(zone, order))
3443					goto try_this_zone;
3444			}
3445			/* Checked here to keep the fast path fast */
3446			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3447			if (alloc_flags & ALLOC_NO_WATERMARKS)
3448				goto try_this_zone;
3449
3450			if (!node_reclaim_enabled() ||
3451			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3452				continue;
3453
3454			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3455			switch (ret) {
3456			case NODE_RECLAIM_NOSCAN:
3457				/* did not scan */
3458				continue;
3459			case NODE_RECLAIM_FULL:
3460				/* scanned but unreclaimable */
3461				continue;
3462			default:
3463				/* did we reclaim enough */
3464				if (zone_watermark_ok(zone, order, mark,
3465					ac->highest_zoneidx, alloc_flags))
3466					goto try_this_zone;
3467
3468				continue;
3469			}
3470		}
3471
3472try_this_zone:
3473		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3474				gfp_mask, alloc_flags, ac->migratetype);
3475		if (page) {
3476			prep_new_page(page, order, gfp_mask, alloc_flags);
3477
3478			/*
3479			 * If this is a high-order atomic allocation then check
3480			 * if the pageblock should be reserved for the future
3481			 */
3482			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3483				reserve_highatomic_pageblock(page, order, zone);
3484
3485			return page;
3486		} else {
3487			if (cond_accept_memory(zone, order))
3488				goto try_this_zone;
3489
3490			/* Try again if zone has deferred pages */
3491			if (deferred_pages_enabled()) {
3492				if (_deferred_grow_zone(zone, order))
3493					goto try_this_zone;
3494			}
3495		}
3496	}
 
 
3497
3498	/*
3499	 * It's possible on a UMA machine to get through all zones that are
3500	 * fragmented. If avoiding fragmentation, reset and try again.
3501	 */
3502	if (no_fallback) {
3503		alloc_flags &= ~ALLOC_NOFRAGMENT;
3504		goto retry;
3505	}
3506
3507	return NULL;
 
 
 
3508}
3509
3510static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
 
 
 
 
3511{
 
3512	unsigned int filter = SHOW_MEM_FILTER_NODES;
3513
 
 
 
3514	/*
3515	 * This documents exceptions given to allocations in certain
3516	 * contexts that are allowed to allocate outside current's set
3517	 * of allowed nodes.
3518	 */
3519	if (!(gfp_mask & __GFP_NOMEMALLOC))
3520		if (tsk_is_oom_victim(current) ||
3521		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3522			filter &= ~SHOW_MEM_FILTER_NODES;
3523	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3524		filter &= ~SHOW_MEM_FILTER_NODES;
3525
3526	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3527}
3528
3529void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3530{
3531	struct va_format vaf;
3532	va_list args;
3533	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3534
3535	if ((gfp_mask & __GFP_NOWARN) ||
3536	     !__ratelimit(&nopage_rs) ||
3537	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3538		return;
3539
3540	va_start(args, fmt);
3541	vaf.fmt = fmt;
3542	vaf.va = &args;
3543	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3544			current->comm, &vaf, gfp_mask, &gfp_mask,
3545			nodemask_pr_args(nodemask));
3546	va_end(args);
3547
3548	cpuset_print_current_mems_allowed();
3549	pr_cont("\n");
3550	dump_stack();
3551	warn_alloc_show_mem(gfp_mask, nodemask);
 
3552}
3553
3554static inline struct page *
3555__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3556			      unsigned int alloc_flags,
3557			      const struct alloc_context *ac)
3558{
3559	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3560
3561	page = get_page_from_freelist(gfp_mask, order,
3562			alloc_flags|ALLOC_CPUSET, ac);
3563	/*
3564	 * fallback to ignore cpuset restriction if our nodes
3565	 * are depleted
3566	 */
3567	if (!page)
3568		page = get_page_from_freelist(gfp_mask, order,
3569				alloc_flags, ac);
3570
3571	return page;
3572}
3573
3574static inline struct page *
3575__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3576	const struct alloc_context *ac, unsigned long *did_some_progress)
 
 
3577{
3578	struct oom_control oc = {
3579		.zonelist = ac->zonelist,
3580		.nodemask = ac->nodemask,
3581		.memcg = NULL,
3582		.gfp_mask = gfp_mask,
3583		.order = order,
3584	};
3585	struct page *page;
3586
3587	*did_some_progress = 0;
3588
3589	/*
3590	 * Acquire the oom lock.  If that fails, somebody else is
3591	 * making progress for us.
3592	 */
3593	if (!mutex_trylock(&oom_lock)) {
3594		*did_some_progress = 1;
3595		schedule_timeout_uninterruptible(1);
3596		return NULL;
3597	}
3598
3599	/*
3600	 * Go through the zonelist yet one more time, keep very high watermark
3601	 * here, this is only to catch a parallel oom killing, we must fail if
3602	 * we're still under heavy pressure. But make sure that this reclaim
3603	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3604	 * allocation which will never fail due to oom_lock already held.
3605	 */
3606	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3607				      ~__GFP_DIRECT_RECLAIM, order,
3608				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3609	if (page)
3610		goto out;
3611
3612	/* Coredumps can quickly deplete all memory reserves */
3613	if (current->flags & PF_DUMPCORE)
3614		goto out;
3615	/* The OOM killer will not help higher order allocs */
3616	if (order > PAGE_ALLOC_COSTLY_ORDER)
3617		goto out;
3618	/*
3619	 * We have already exhausted all our reclaim opportunities without any
3620	 * success so it is time to admit defeat. We will skip the OOM killer
3621	 * because it is very likely that the caller has a more reasonable
3622	 * fallback than shooting a random task.
3623	 *
3624	 * The OOM killer may not free memory on a specific node.
3625	 */
3626	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3627		goto out;
3628	/* The OOM killer does not needlessly kill tasks for lowmem */
3629	if (ac->highest_zoneidx < ZONE_NORMAL)
3630		goto out;
3631	if (pm_suspended_storage())
3632		goto out;
3633	/*
3634	 * XXX: GFP_NOFS allocations should rather fail than rely on
3635	 * other request to make a forward progress.
3636	 * We are in an unfortunate situation where out_of_memory cannot
3637	 * do much for this context but let's try it to at least get
3638	 * access to memory reserved if the current task is killed (see
3639	 * out_of_memory). Once filesystems are ready to handle allocation
3640	 * failures more gracefully we should just bail out here.
3641	 */
3642
3643	/* Exhausted what can be done so it's blame time */
3644	if (out_of_memory(&oc) ||
3645	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3646		*did_some_progress = 1;
3647
3648		/*
3649		 * Help non-failing allocations by giving them access to memory
3650		 * reserves
 
 
 
3651		 */
3652		if (gfp_mask & __GFP_NOFAIL)
3653			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3654					ALLOC_NO_WATERMARKS, ac);
3655	}
 
 
 
3656out:
3657	mutex_unlock(&oom_lock);
3658	return page;
3659}
3660
3661/*
3662 * Maximum number of compaction retries with a progress before OOM
3663 * killer is consider as the only way to move forward.
3664 */
3665#define MAX_COMPACT_RETRIES 16
3666
3667#ifdef CONFIG_COMPACTION
3668/* Try memory compaction for high-order allocations before reclaim */
3669static struct page *
3670__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3671		unsigned int alloc_flags, const struct alloc_context *ac,
3672		enum compact_priority prio, enum compact_result *compact_result)
 
 
3673{
3674	struct page *page = NULL;
3675	unsigned long pflags;
3676	unsigned int noreclaim_flag;
3677
3678	if (!order)
3679		return NULL;
3680
3681	psi_memstall_enter(&pflags);
3682	delayacct_compact_start();
3683	noreclaim_flag = memalloc_noreclaim_save();
3684
3685	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3686								prio, &page);
3687
3688	memalloc_noreclaim_restore(noreclaim_flag);
3689	psi_memstall_leave(&pflags);
3690	delayacct_compact_end();
3691
3692	if (*compact_result == COMPACT_SKIPPED)
3693		return NULL;
3694	/*
3695	 * At least in one zone compaction wasn't deferred or skipped, so let's
3696	 * count a compaction stall
3697	 */
3698	count_vm_event(COMPACTSTALL);
3699
3700	/* Prep a captured page if available */
3701	if (page)
3702		prep_new_page(page, order, gfp_mask, alloc_flags);
3703
3704	/* Try get a page from the freelist if available */
3705	if (!page)
3706		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3707
3708	if (page) {
3709		struct zone *zone = page_zone(page);
3710
3711		zone->compact_blockskip_flush = false;
3712		compaction_defer_reset(zone, order, true);
3713		count_vm_event(COMPACTSUCCESS);
3714		return page;
3715	}
3716
3717	/*
3718	 * It's bad if compaction run occurs and fails. The most likely reason
3719	 * is that pages exist, but not enough to satisfy watermarks.
3720	 */
3721	count_vm_event(COMPACTFAIL);
3722
3723	cond_resched();
3724
3725	return NULL;
3726}
3727
3728static inline bool
3729should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3730		     enum compact_result compact_result,
3731		     enum compact_priority *compact_priority,
3732		     int *compaction_retries)
3733{
3734	int max_retries = MAX_COMPACT_RETRIES;
3735	int min_priority;
3736	bool ret = false;
3737	int retries = *compaction_retries;
3738	enum compact_priority priority = *compact_priority;
3739
3740	if (!order)
3741		return false;
3742
3743	if (fatal_signal_pending(current))
3744		return false;
3745
3746	/*
3747	 * Compaction was skipped due to a lack of free order-0
3748	 * migration targets. Continue if reclaim can help.
3749	 */
3750	if (compact_result == COMPACT_SKIPPED) {
3751		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3752		goto out;
3753	}
3754
3755	/*
3756	 * Compaction managed to coalesce some page blocks, but the
3757	 * allocation failed presumably due to a race. Retry some.
3758	 */
3759	if (compact_result == COMPACT_SUCCESS) {
3760		/*
3761		 * !costly requests are much more important than
3762		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3763		 * facto nofail and invoke OOM killer to move on while
3764		 * costly can fail and users are ready to cope with
3765		 * that. 1/4 retries is rather arbitrary but we would
3766		 * need much more detailed feedback from compaction to
3767		 * make a better decision.
3768		 */
3769		if (order > PAGE_ALLOC_COSTLY_ORDER)
3770			max_retries /= 4;
3771
3772		if (++(*compaction_retries) <= max_retries) {
3773			ret = true;
3774			goto out;
3775		}
3776	}
3777
3778	/*
3779	 * Compaction failed. Retry with increasing priority.
3780	 */
3781	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3782			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3783
3784	if (*compact_priority > min_priority) {
3785		(*compact_priority)--;
3786		*compaction_retries = 0;
3787		ret = true;
3788	}
3789out:
3790	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3791	return ret;
3792}
3793#else
3794static inline struct page *
3795__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3796		unsigned int alloc_flags, const struct alloc_context *ac,
3797		enum compact_priority prio, enum compact_result *compact_result)
 
 
3798{
3799	*compact_result = COMPACT_SKIPPED;
3800	return NULL;
3801}
3802
3803static inline bool
3804should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3805		     enum compact_result compact_result,
3806		     enum compact_priority *compact_priority,
3807		     int *compaction_retries)
3808{
3809	struct zone *zone;
3810	struct zoneref *z;
3811
3812	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3813		return false;
3814
3815	/*
3816	 * There are setups with compaction disabled which would prefer to loop
3817	 * inside the allocator rather than hit the oom killer prematurely.
3818	 * Let's give them a good hope and keep retrying while the order-0
3819	 * watermarks are OK.
3820	 */
3821	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3822				ac->highest_zoneidx, ac->nodemask) {
3823		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3824					ac->highest_zoneidx, alloc_flags))
3825			return true;
3826	}
3827	return false;
3828}
3829#endif /* CONFIG_COMPACTION */
3830
3831#ifdef CONFIG_LOCKDEP
3832static struct lockdep_map __fs_reclaim_map =
3833	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3834
3835static bool __need_reclaim(gfp_t gfp_mask)
 
3836{
3837	/* no reclaim without waiting on it */
3838	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3839		return false;
3840
3841	/* this guy won't enter reclaim */
3842	if (current->flags & PF_MEMALLOC)
3843		return false;
3844
3845	if (gfp_mask & __GFP_NOLOCKDEP)
3846		return false;
3847
3848	return true;
3849}
3850
3851void __fs_reclaim_acquire(unsigned long ip)
3852{
3853	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3854}
3855
3856void __fs_reclaim_release(unsigned long ip)
3857{
3858	lock_release(&__fs_reclaim_map, ip);
3859}
3860
3861void fs_reclaim_acquire(gfp_t gfp_mask)
3862{
3863	gfp_mask = current_gfp_context(gfp_mask);
3864
3865	if (__need_reclaim(gfp_mask)) {
3866		if (gfp_mask & __GFP_FS)
3867			__fs_reclaim_acquire(_RET_IP_);
3868
3869#ifdef CONFIG_MMU_NOTIFIER
3870		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3871		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3872#endif
3873
3874	}
3875}
3876EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3877
3878void fs_reclaim_release(gfp_t gfp_mask)
3879{
3880	gfp_mask = current_gfp_context(gfp_mask);
3881
3882	if (__need_reclaim(gfp_mask)) {
3883		if (gfp_mask & __GFP_FS)
3884			__fs_reclaim_release(_RET_IP_);
3885	}
3886}
3887EXPORT_SYMBOL_GPL(fs_reclaim_release);
3888#endif
3889
3890/*
3891 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3892 * have been rebuilt so allocation retries. Reader side does not lock and
3893 * retries the allocation if zonelist changes. Writer side is protected by the
3894 * embedded spin_lock.
3895 */
3896static DEFINE_SEQLOCK(zonelist_update_seq);
3897
3898static unsigned int zonelist_iter_begin(void)
3899{
3900	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3901		return read_seqbegin(&zonelist_update_seq);
3902
3903	return 0;
3904}
3905
3906static unsigned int check_retry_zonelist(unsigned int seq)
3907{
3908	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3909		return read_seqretry(&zonelist_update_seq, seq);
3910
3911	return seq;
3912}
3913
3914/* Perform direct synchronous page reclaim */
3915static unsigned long
3916__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3917					const struct alloc_context *ac)
3918{
3919	unsigned int noreclaim_flag;
3920	unsigned long progress;
3921
3922	cond_resched();
3923
3924	/* We now go into synchronous reclaim */
3925	cpuset_memory_pressure_bump();
3926	fs_reclaim_acquire(gfp_mask);
3927	noreclaim_flag = memalloc_noreclaim_save();
3928
3929	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3930								ac->nodemask);
3931
3932	memalloc_noreclaim_restore(noreclaim_flag);
3933	fs_reclaim_release(gfp_mask);
 
 
3934
3935	cond_resched();
3936
3937	return progress;
3938}
3939
3940/* The really slow allocator path where we enter direct reclaim */
3941static inline struct page *
3942__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3943		unsigned int alloc_flags, const struct alloc_context *ac,
3944		unsigned long *did_some_progress)
3945{
3946	struct page *page = NULL;
3947	unsigned long pflags;
3948	bool drained = false;
3949
3950	psi_memstall_enter(&pflags);
3951	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3952	if (unlikely(!(*did_some_progress)))
3953		goto out;
3954
3955retry:
3956	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
3957
3958	/*
3959	 * If an allocation failed after direct reclaim, it could be because
3960	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3961	 * Shrink them and try again
3962	 */
3963	if (!page && !drained) {
3964		unreserve_highatomic_pageblock(ac, false);
3965		drain_all_pages(NULL);
3966		drained = true;
3967		goto retry;
3968	}
3969out:
3970	psi_memstall_leave(&pflags);
3971
3972	return page;
3973}
3974
3975static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3976			     const struct alloc_context *ac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3977{
3978	struct zoneref *z;
3979	struct zone *zone;
3980	pg_data_t *last_pgdat = NULL;
3981	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3982
3983	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3984					ac->nodemask) {
3985		if (!managed_zone(zone))
3986			continue;
3987		if (last_pgdat != zone->zone_pgdat) {
3988			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3989			last_pgdat = zone->zone_pgdat;
3990		}
3991	}
3992}
3993
3994static inline unsigned int
3995gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3996{
3997	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
 
3998
3999	/*
4000	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4001	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4002	 * to save two branches.
4003	 */
4004	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4005	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4006
4007	/*
4008	 * The caller may dip into page reserves a bit more if the caller
4009	 * cannot run direct reclaim, or if the caller has realtime scheduling
4010	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4011	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4012	 */
4013	alloc_flags |= (__force int)
4014		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4015
4016	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4017		/*
4018		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4019		 * if it can't schedule.
4020		 */
4021		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4022			alloc_flags |= ALLOC_NON_BLOCK;
4023
4024			if (order > 0)
4025				alloc_flags |= ALLOC_HIGHATOMIC;
4026		}
4027
4028		/*
4029		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4030		 * GFP_ATOMIC) rather than fail, see the comment for
4031		 * cpuset_node_allowed().
4032		 */
4033		if (alloc_flags & ALLOC_MIN_RESERVE)
4034			alloc_flags &= ~ALLOC_CPUSET;
4035	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4036		alloc_flags |= ALLOC_MIN_RESERVE;
4037
4038	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
 
 
 
 
 
4039
4040	return alloc_flags;
4041}
4042
4043static bool oom_reserves_allowed(struct task_struct *tsk)
4044{
4045	if (!tsk_is_oom_victim(tsk))
4046		return false;
4047
4048	/*
4049	 * !MMU doesn't have oom reaper so give access to memory reserves
4050	 * only to the thread with TIF_MEMDIE set
4051	 */
4052	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4053		return false;
4054
4055	return true;
4056}
4057
4058/*
4059 * Distinguish requests which really need access to full memory
4060 * reserves from oom victims which can live with a portion of it
4061 */
4062static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4063{
4064	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4065		return 0;
4066	if (gfp_mask & __GFP_MEMALLOC)
4067		return ALLOC_NO_WATERMARKS;
4068	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4069		return ALLOC_NO_WATERMARKS;
4070	if (!in_interrupt()) {
4071		if (current->flags & PF_MEMALLOC)
4072			return ALLOC_NO_WATERMARKS;
4073		else if (oom_reserves_allowed(current))
4074			return ALLOC_OOM;
4075	}
4076
4077	return 0;
4078}
4079
4080bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4081{
4082	return !!__gfp_pfmemalloc_flags(gfp_mask);
4083}
4084
4085/*
4086 * Checks whether it makes sense to retry the reclaim to make a forward progress
4087 * for the given allocation request.
4088 *
4089 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4090 * without success, or when we couldn't even meet the watermark if we
4091 * reclaimed all remaining pages on the LRU lists.
4092 *
4093 * Returns true if a retry is viable or false to enter the oom path.
4094 */
4095static inline bool
4096should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4097		     struct alloc_context *ac, int alloc_flags,
4098		     bool did_some_progress, int *no_progress_loops)
4099{
4100	struct zone *zone;
4101	struct zoneref *z;
4102	bool ret = false;
4103
4104	/*
4105	 * Costly allocations might have made a progress but this doesn't mean
4106	 * their order will become available due to high fragmentation so
4107	 * always increment the no progress counter for them
4108	 */
4109	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4110		*no_progress_loops = 0;
4111	else
4112		(*no_progress_loops)++;
4113
4114	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4115		goto out;
4116
4117
4118	/*
4119	 * Keep reclaiming pages while there is a chance this will lead
4120	 * somewhere.  If none of the target zones can satisfy our allocation
4121	 * request even if all reclaimable pages are considered then we are
4122	 * screwed and have to go OOM.
4123	 */
4124	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4125				ac->highest_zoneidx, ac->nodemask) {
4126		unsigned long available;
4127		unsigned long reclaimable;
4128		unsigned long min_wmark = min_wmark_pages(zone);
4129		bool wmark;
4130
4131		if (cpusets_enabled() &&
4132			(alloc_flags & ALLOC_CPUSET) &&
4133			!__cpuset_zone_allowed(zone, gfp_mask))
4134				continue;
4135
4136		available = reclaimable = zone_reclaimable_pages(zone);
4137		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4138
4139		/*
4140		 * Would the allocation succeed if we reclaimed all
4141		 * reclaimable pages?
4142		 */
4143		wmark = __zone_watermark_ok(zone, order, min_wmark,
4144				ac->highest_zoneidx, alloc_flags, available);
4145		trace_reclaim_retry_zone(z, order, reclaimable,
4146				available, min_wmark, *no_progress_loops, wmark);
4147		if (wmark) {
4148			ret = true;
4149			break;
4150		}
4151	}
4152
4153	/*
4154	 * Memory allocation/reclaim might be called from a WQ context and the
4155	 * current implementation of the WQ concurrency control doesn't
4156	 * recognize that a particular WQ is congested if the worker thread is
4157	 * looping without ever sleeping. Therefore we have to do a short sleep
4158	 * here rather than calling cond_resched().
4159	 */
4160	if (current->flags & PF_WQ_WORKER)
4161		schedule_timeout_uninterruptible(1);
4162	else
4163		cond_resched();
4164out:
4165	/* Before OOM, exhaust highatomic_reserve */
4166	if (!ret)
4167		return unreserve_highatomic_pageblock(ac, true);
4168
4169	return ret;
4170}
4171
4172static inline bool
4173check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4174{
4175	/*
4176	 * It's possible that cpuset's mems_allowed and the nodemask from
4177	 * mempolicy don't intersect. This should be normally dealt with by
4178	 * policy_nodemask(), but it's possible to race with cpuset update in
4179	 * such a way the check therein was true, and then it became false
4180	 * before we got our cpuset_mems_cookie here.
4181	 * This assumes that for all allocations, ac->nodemask can come only
4182	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4183	 * when it does not intersect with the cpuset restrictions) or the
4184	 * caller can deal with a violated nodemask.
4185	 */
4186	if (cpusets_enabled() && ac->nodemask &&
4187			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4188		ac->nodemask = NULL;
4189		return true;
4190	}
4191
4192	/*
4193	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4194	 * possible to race with parallel threads in such a way that our
4195	 * allocation can fail while the mask is being updated. If we are about
4196	 * to fail, check if the cpuset changed during allocation and if so,
4197	 * retry.
4198	 */
4199	if (read_mems_allowed_retry(cpuset_mems_cookie))
4200		return true;
4201
4202	return false;
4203}
4204
4205static inline struct page *
4206__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4207						struct alloc_context *ac)
 
 
4208{
4209	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4210	bool can_compact = gfp_compaction_allowed(gfp_mask);
4211	bool nofail = gfp_mask & __GFP_NOFAIL;
4212	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4213	struct page *page = NULL;
4214	unsigned int alloc_flags;
 
4215	unsigned long did_some_progress;
4216	enum compact_priority compact_priority;
4217	enum compact_result compact_result;
4218	int compaction_retries;
4219	int no_progress_loops;
4220	unsigned int cpuset_mems_cookie;
4221	unsigned int zonelist_iter_cookie;
4222	int reserve_flags;
4223
4224	if (unlikely(nofail)) {
4225		/*
4226		 * We most definitely don't want callers attempting to
4227		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4228		 */
4229		WARN_ON_ONCE(order > 1);
4230		/*
4231		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4232		 * otherwise, we may result in lockup.
4233		 */
4234		WARN_ON_ONCE(!can_direct_reclaim);
4235		/*
4236		 * PF_MEMALLOC request from this context is rather bizarre
4237		 * because we cannot reclaim anything and only can loop waiting
4238		 * for somebody to do a work for us.
4239		 */
4240		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4241	}
4242
4243restart:
4244	compaction_retries = 0;
4245	no_progress_loops = 0;
4246	compact_result = COMPACT_SKIPPED;
4247	compact_priority = DEF_COMPACT_PRIORITY;
4248	cpuset_mems_cookie = read_mems_allowed_begin();
4249	zonelist_iter_cookie = zonelist_iter_begin();
4250
4251	/*
4252	 * The fast path uses conservative alloc_flags to succeed only until
4253	 * kswapd needs to be woken up, and to avoid the cost of setting up
4254	 * alloc_flags precisely. So we do that now.
 
4255	 */
4256	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
 
 
 
4257
4258	/*
4259	 * We need to recalculate the starting point for the zonelist iterator
4260	 * because we might have used different nodemask in the fast path, or
4261	 * there was a cpuset modification and we are retrying - otherwise we
4262	 * could end up iterating over non-eligible zones endlessly.
 
 
4263	 */
4264	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4265					ac->highest_zoneidx, ac->nodemask);
4266	if (!zonelist_zone(ac->preferred_zoneref))
4267		goto nopage;
4268
 
 
 
 
 
4269	/*
4270	 * Check for insane configurations where the cpuset doesn't contain
4271	 * any suitable zone to satisfy the request - e.g. non-movable
4272	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4273	 */
4274	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4275		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4276					ac->highest_zoneidx,
4277					&cpuset_current_mems_allowed);
4278		if (!zonelist_zone(z))
4279			goto nopage;
4280	}
4281
4282	if (alloc_flags & ALLOC_KSWAPD)
4283		wake_all_kswapds(order, gfp_mask, ac);
4284
4285	/*
4286	 * The adjusted alloc_flags might result in immediate success, so try
4287	 * that first
4288	 */
4289	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
 
 
4290	if (page)
4291		goto got_pg;
4292
4293	/*
4294	 * For costly allocations, try direct compaction first, as it's likely
4295	 * that we have enough base pages and don't need to reclaim. For non-
4296	 * movable high-order allocations, do that as well, as compaction will
4297	 * try prevent permanent fragmentation by migrating from blocks of the
4298	 * same migratetype.
4299	 * Don't try this for allocations that are allowed to ignore
4300	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4301	 */
4302	if (can_direct_reclaim && can_compact &&
4303			(costly_order ||
4304			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4305			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4306		page = __alloc_pages_direct_compact(gfp_mask, order,
4307						alloc_flags, ac,
4308						INIT_COMPACT_PRIORITY,
4309						&compact_result);
4310		if (page)
4311			goto got_pg;
4312
4313		/*
4314		 * Checks for costly allocations with __GFP_NORETRY, which
4315		 * includes some THP page fault allocations
4316		 */
4317		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4318			/*
4319			 * If allocating entire pageblock(s) and compaction
4320			 * failed because all zones are below low watermarks
4321			 * or is prohibited because it recently failed at this
4322			 * order, fail immediately unless the allocator has
4323			 * requested compaction and reclaim retry.
4324			 *
4325			 * Reclaim is
4326			 *  - potentially very expensive because zones are far
4327			 *    below their low watermarks or this is part of very
4328			 *    bursty high order allocations,
4329			 *  - not guaranteed to help because isolate_freepages()
4330			 *    may not iterate over freed pages as part of its
4331			 *    linear scan, and
4332			 *  - unlikely to make entire pageblocks free on its
4333			 *    own.
4334			 */
4335			if (compact_result == COMPACT_SKIPPED ||
4336			    compact_result == COMPACT_DEFERRED)
4337				goto nopage;
4338
4339			/*
4340			 * Looks like reclaim/compaction is worth trying, but
4341			 * sync compaction could be very expensive, so keep
4342			 * using async compaction.
4343			 */
4344			compact_priority = INIT_COMPACT_PRIORITY;
4345		}
4346	}
4347
4348retry:
4349	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4350	if (alloc_flags & ALLOC_KSWAPD)
4351		wake_all_kswapds(order, gfp_mask, ac);
4352
4353	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4354	if (reserve_flags)
4355		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4356					  (alloc_flags & ALLOC_KSWAPD);
4357
4358	/*
4359	 * Reset the nodemask and zonelist iterators if memory policies can be
4360	 * ignored. These allocations are high priority and system rather than
4361	 * user oriented.
4362	 */
4363	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4364		ac->nodemask = NULL;
4365		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4366					ac->highest_zoneidx, ac->nodemask);
4367	}
4368
4369	/* Attempt with potentially adjusted zonelist and alloc_flags */
4370	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4371	if (page)
4372		goto got_pg;
4373
4374	/* Caller is not willing to reclaim, we can't balance anything */
4375	if (!can_direct_reclaim)
4376		goto nopage;
4377
4378	/* Avoid recursion of direct reclaim */
4379	if (current->flags & PF_MEMALLOC)
4380		goto nopage;
4381
4382	/* Try direct reclaim and then allocating */
4383	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4384							&did_some_progress);
 
 
 
 
 
 
 
 
 
 
 
4385	if (page)
4386		goto got_pg;
 
4387
4388	/* Try direct compaction and then allocating */
4389	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4390					compact_priority, &compact_result);
 
 
 
4391	if (page)
4392		goto got_pg;
4393
4394	/* Do not loop if specifically requested */
4395	if (gfp_mask & __GFP_NORETRY)
4396		goto nopage;
4397
4398	/*
4399	 * Do not retry costly high order allocations unless they are
4400	 * __GFP_RETRY_MAYFAIL and we can compact
4401	 */
4402	if (costly_order && (!can_compact ||
4403			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4404		goto nopage;
 
 
 
 
 
 
 
4405
4406	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4407				 did_some_progress > 0, &no_progress_loops))
4408		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4409
4410	/*
4411	 * It doesn't make any sense to retry for the compaction if the order-0
4412	 * reclaim is not able to make any progress because the current
4413	 * implementation of the compaction depends on the sufficient amount
4414	 * of free memory (see __compaction_suitable)
4415	 */
4416	if (did_some_progress > 0 && can_compact &&
4417			should_compact_retry(ac, order, alloc_flags,
4418				compact_result, &compact_priority,
4419				&compaction_retries))
4420		goto retry;
4421
4422
4423	/*
4424	 * Deal with possible cpuset update races or zonelist updates to avoid
4425	 * a unnecessary OOM kill.
4426	 */
4427	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4428	    check_retry_zonelist(zonelist_iter_cookie))
4429		goto restart;
4430
4431	/* Reclaim has failed us, start killing things */
4432	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4433	if (page)
4434		goto got_pg;
4435
4436	/* Avoid allocations with no watermarks from looping endlessly */
4437	if (tsk_is_oom_victim(current) &&
4438	    (alloc_flags & ALLOC_OOM ||
4439	     (gfp_mask & __GFP_NOMEMALLOC)))
4440		goto nopage;
4441
4442	/* Retry as long as the OOM killer is making progress */
4443	if (did_some_progress) {
4444		no_progress_loops = 0;
4445		goto retry;
4446	}
4447
4448nopage:
4449	/*
4450	 * Deal with possible cpuset update races or zonelist updates to avoid
4451	 * a unnecessary OOM kill.
4452	 */
4453	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4454	    check_retry_zonelist(zonelist_iter_cookie))
4455		goto restart;
4456
4457	/*
4458	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4459	 * we always retry
4460	 */
4461	if (unlikely(nofail)) {
4462		/*
4463		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4464		 * we disregard these unreasonable nofail requests and still
4465		 * return NULL
4466		 */
4467		if (!can_direct_reclaim)
4468			goto fail;
4469
4470		/*
4471		 * Help non-failing allocations by giving some access to memory
4472		 * reserves normally used for high priority non-blocking
4473		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4474		 * could deplete whole memory reserves which would just make
4475		 * the situation worse.
4476		 */
4477		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4478		if (page)
4479			goto got_pg;
 
4480
4481		cond_resched();
4482		goto retry;
4483	}
4484fail:
4485	warn_alloc(gfp_mask, ac->nodemask,
4486			"page allocation failure: order:%u", order);
4487got_pg:
 
 
4488	return page;
4489}
4490
4491static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4492		int preferred_nid, nodemask_t *nodemask,
4493		struct alloc_context *ac, gfp_t *alloc_gfp,
4494		unsigned int *alloc_flags)
4495{
4496	ac->highest_zoneidx = gfp_zone(gfp_mask);
4497	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4498	ac->nodemask = nodemask;
4499	ac->migratetype = gfp_migratetype(gfp_mask);
4500
4501	if (cpusets_enabled()) {
4502		*alloc_gfp |= __GFP_HARDWALL;
4503		/*
4504		 * When we are in the interrupt context, it is irrelevant
4505		 * to the current task context. It means that any node ok.
4506		 */
4507		if (in_task() && !ac->nodemask)
4508			ac->nodemask = &cpuset_current_mems_allowed;
4509		else
4510			*alloc_flags |= ALLOC_CPUSET;
4511	}
4512
4513	might_alloc(gfp_mask);
4514
4515	if (should_fail_alloc_page(gfp_mask, order))
4516		return false;
4517
4518	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4519
4520	/* Dirty zone balancing only done in the fast path */
4521	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4522
4523	/*
4524	 * The preferred zone is used for statistics but crucially it is
4525	 * also used as the starting point for the zonelist iterator. It
4526	 * may get reset for allocations that ignore memory policies.
4527	 */
4528	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4529					ac->highest_zoneidx, ac->nodemask);
4530
4531	return true;
4532}
4533
4534/*
4535 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4536 * @gfp: GFP flags for the allocation
4537 * @preferred_nid: The preferred NUMA node ID to allocate from
4538 * @nodemask: Set of nodes to allocate from, may be NULL
4539 * @nr_pages: The number of pages desired on the list or array
4540 * @page_list: Optional list to store the allocated pages
4541 * @page_array: Optional array to store the pages
4542 *
4543 * This is a batched version of the page allocator that attempts to
4544 * allocate nr_pages quickly. Pages are added to page_list if page_list
4545 * is not NULL, otherwise it is assumed that the page_array is valid.
4546 *
4547 * For lists, nr_pages is the number of pages that should be allocated.
4548 *
4549 * For arrays, only NULL elements are populated with pages and nr_pages
4550 * is the maximum number of pages that will be stored in the array.
4551 *
4552 * Returns the number of pages on the list or array.
4553 */
4554unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4555			nodemask_t *nodemask, int nr_pages,
4556			struct list_head *page_list,
4557			struct page **page_array)
4558{
 
 
4559	struct page *page;
4560	unsigned long __maybe_unused UP_flags;
4561	struct zone *zone;
4562	struct zoneref *z;
4563	struct per_cpu_pages *pcp;
4564	struct list_head *pcp_list;
4565	struct alloc_context ac;
4566	gfp_t alloc_gfp;
4567	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4568	int nr_populated = 0, nr_account = 0;
4569
4570	/*
4571	 * Skip populated array elements to determine if any pages need
4572	 * to be allocated before disabling IRQs.
4573	 */
4574	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4575		nr_populated++;
4576
4577	/* No pages requested? */
4578	if (unlikely(nr_pages <= 0))
4579		goto out;
4580
4581	/* Already populated array? */
4582	if (unlikely(page_array && nr_pages - nr_populated == 0))
4583		goto out;
4584
4585	/* Bulk allocator does not support memcg accounting. */
4586	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4587		goto failed;
4588
4589	/* Use the single page allocator for one page. */
4590	if (nr_pages - nr_populated == 1)
4591		goto failed;
4592
4593#ifdef CONFIG_PAGE_OWNER
4594	/*
4595	 * PAGE_OWNER may recurse into the allocator to allocate space to
4596	 * save the stack with pagesets.lock held. Releasing/reacquiring
4597	 * removes much of the performance benefit of bulk allocation so
4598	 * force the caller to allocate one page at a time as it'll have
4599	 * similar performance to added complexity to the bulk allocator.
4600	 */
4601	if (static_branch_unlikely(&page_owner_inited))
4602		goto failed;
4603#endif
4604
4605	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4606	gfp &= gfp_allowed_mask;
4607	alloc_gfp = gfp;
4608	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4609		goto out;
4610	gfp = alloc_gfp;
4611
4612	/* Find an allowed local zone that meets the low watermark. */
4613	z = ac.preferred_zoneref;
4614	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4615		unsigned long mark;
4616
4617		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4618		    !__cpuset_zone_allowed(zone, gfp)) {
4619			continue;
4620		}
4621
4622		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4623		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4624			goto failed;
4625		}
4626
4627		cond_accept_memory(zone, 0);
4628retry_this_zone:
4629		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4630		if (zone_watermark_fast(zone, 0,  mark,
4631				zonelist_zone_idx(ac.preferred_zoneref),
4632				alloc_flags, gfp)) {
4633			break;
4634		}
4635
4636		if (cond_accept_memory(zone, 0))
4637			goto retry_this_zone;
4638
4639		/* Try again if zone has deferred pages */
4640		if (deferred_pages_enabled()) {
4641			if (_deferred_grow_zone(zone, 0))
4642				goto retry_this_zone;
4643		}
4644	}
4645
4646	/*
4647	 * If there are no allowed local zones that meets the watermarks then
4648	 * try to allocate a single page and reclaim if necessary.
 
4649	 */
4650	if (unlikely(!zone))
4651		goto failed;
4652
4653	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4654	pcp_trylock_prepare(UP_flags);
4655	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4656	if (!pcp)
4657		goto failed_irq;
4658
4659	/* Attempt the batch allocation */
4660	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4661	while (nr_populated < nr_pages) {
4662
4663		/* Skip existing pages */
4664		if (page_array && page_array[nr_populated]) {
4665			nr_populated++;
4666			continue;
4667		}
4668
4669		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4670								pcp, pcp_list);
4671		if (unlikely(!page)) {
4672			/* Try and allocate at least one page */
4673			if (!nr_account) {
4674				pcp_spin_unlock(pcp);
4675				goto failed_irq;
4676			}
4677			break;
4678		}
4679		nr_account++;
4680
4681		prep_new_page(page, 0, gfp, 0);
4682		if (page_list)
4683			list_add(&page->lru, page_list);
4684		else
4685			page_array[nr_populated] = page;
4686		nr_populated++;
4687	}
4688
4689	pcp_spin_unlock(pcp);
4690	pcp_trylock_finish(UP_flags);
 
 
 
 
 
 
 
4691
4692	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4693	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4694
4695out:
4696	return nr_populated;
4697
4698failed_irq:
4699	pcp_trylock_finish(UP_flags);
4700
4701failed:
4702	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4703	if (page) {
4704		if (page_list)
4705			list_add(&page->lru, page_list);
4706		else
4707			page_array[nr_populated] = page;
4708		nr_populated++;
4709	}
4710
4711	goto out;
4712}
4713EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4714
4715/*
4716 * This is the 'heart' of the zoned buddy allocator.
4717 */
4718struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4719				      int preferred_nid, nodemask_t *nodemask)
4720{
4721	struct page *page;
4722	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4723	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4724	struct alloc_context ac = { };
4725
4726	/*
4727	 * There are several places where we assume that the order value is sane
4728	 * so bail out early if the request is out of bound.
4729	 */
4730	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4731		return NULL;
4732
4733	gfp &= gfp_allowed_mask;
4734	/*
4735	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4736	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4737	 * from a particular context which has been marked by
4738	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4739	 * movable zones are not used during allocation.
4740	 */
4741	gfp = current_gfp_context(gfp);
4742	alloc_gfp = gfp;
4743	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4744			&alloc_gfp, &alloc_flags))
4745		return NULL;
4746
4747	/*
4748	 * Forbid the first pass from falling back to types that fragment
4749	 * memory until all local zones are considered.
4750	 */
4751	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4752
4753	/* First allocation attempt */
4754	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4755	if (likely(page))
4756		goto out;
4757
4758	alloc_gfp = gfp;
4759	ac.spread_dirty_pages = false;
4760
4761	/*
4762	 * Restore the original nodemask if it was potentially replaced with
4763	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4764	 */
4765	ac.nodemask = nodemask;
4766
4767	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4768
4769out:
4770	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4771	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4772		__free_pages(page, order);
4773		page = NULL;
4774	}
4775
4776	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4777	kmsan_alloc_page(page, order, alloc_gfp);
4778
4779	return page;
4780}
4781EXPORT_SYMBOL(__alloc_pages_noprof);
4782
4783struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4784		nodemask_t *nodemask)
4785{
4786	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4787					preferred_nid, nodemask);
4788	return page_rmappable_folio(page);
4789}
4790EXPORT_SYMBOL(__folio_alloc_noprof);
4791
4792/*
4793 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4794 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4795 * you need to access high mem.
4796 */
4797unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4798{
4799	struct page *page;
4800
4801	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4802	if (!page)
4803		return 0;
4804	return (unsigned long) page_address(page);
4805}
4806EXPORT_SYMBOL(get_free_pages_noprof);
4807
4808unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4809{
4810	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4811}
4812EXPORT_SYMBOL(get_zeroed_page_noprof);
4813
4814/**
4815 * __free_pages - Free pages allocated with alloc_pages().
4816 * @page: The page pointer returned from alloc_pages().
4817 * @order: The order of the allocation.
4818 *
4819 * This function can free multi-page allocations that are not compound
4820 * pages.  It does not check that the @order passed in matches that of
4821 * the allocation, so it is easy to leak memory.  Freeing more memory
4822 * than was allocated will probably emit a warning.
4823 *
4824 * If the last reference to this page is speculative, it will be released
4825 * by put_page() which only frees the first page of a non-compound
4826 * allocation.  To prevent the remaining pages from being leaked, we free
4827 * the subsequent pages here.  If you want to use the page's reference
4828 * count to decide when to free the allocation, you should allocate a
4829 * compound page, and use put_page() instead of __free_pages().
4830 *
4831 * Context: May be called in interrupt context or while holding a normal
4832 * spinlock, but not in NMI context or while holding a raw spinlock.
4833 */
4834void __free_pages(struct page *page, unsigned int order)
4835{
4836	/* get PageHead before we drop reference */
4837	int head = PageHead(page);
4838	struct alloc_tag *tag = pgalloc_tag_get(page);
4839
4840	if (put_page_testzero(page))
4841		free_unref_page(page, order);
4842	else if (!head) {
4843		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4844		while (order-- > 0)
4845			free_unref_page(page + (1 << order), order);
4846	}
4847}
 
4848EXPORT_SYMBOL(__free_pages);
4849
4850void free_pages(unsigned long addr, unsigned int order)
4851{
4852	if (addr != 0) {
4853		VM_BUG_ON(!virt_addr_valid((void *)addr));
4854		__free_pages(virt_to_page((void *)addr), order);
4855	}
4856}
4857
4858EXPORT_SYMBOL(free_pages);
4859
4860static void *make_alloc_exact(unsigned long addr, unsigned int order,
4861		size_t size)
4862{
4863	if (addr) {
4864		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4865		struct page *page = virt_to_page((void *)addr);
4866		struct page *last = page + nr;
4867
4868		split_page_owner(page, order, 0);
4869		pgalloc_tag_split(page_folio(page), order, 0);
4870		split_page_memcg(page, order, 0);
4871		while (page < --last)
4872			set_page_refcounted(last);
4873
4874		last = page + (1UL << order);
4875		for (page += nr; page < last; page++)
4876			__free_pages_ok(page, 0, FPI_TO_TAIL);
4877	}
4878	return (void *)addr;
4879}
4880
4881/**
4882 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4883 * @size: the number of bytes to allocate
4884 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4885 *
4886 * This function is similar to alloc_pages(), except that it allocates the
4887 * minimum number of pages to satisfy the request.  alloc_pages() can only
4888 * allocate memory in power-of-two pages.
4889 *
4890 * This function is also limited by MAX_PAGE_ORDER.
4891 *
4892 * Memory allocated by this function must be released by free_pages_exact().
4893 *
4894 * Return: pointer to the allocated area or %NULL in case of error.
4895 */
4896void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4897{
4898	unsigned int order = get_order(size);
4899	unsigned long addr;
4900
4901	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4902		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4903
4904	addr = get_free_pages_noprof(gfp_mask, order);
4905	return make_alloc_exact(addr, order, size);
4906}
4907EXPORT_SYMBOL(alloc_pages_exact_noprof);
4908
4909/**
4910 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4911 *			   pages on a node.
4912 * @nid: the preferred node ID where memory should be allocated
4913 * @size: the number of bytes to allocate
4914 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4915 *
4916 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4917 * back.
4918 *
4919 * Return: pointer to the allocated area or %NULL in case of error.
4920 */
4921void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4922{
4923	unsigned int order = get_order(size);
4924	struct page *p;
4925
4926	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4927		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4928
4929	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4930	if (!p)
4931		return NULL;
4932	return make_alloc_exact((unsigned long)page_address(p), order, size);
4933}
 
4934
4935/**
4936 * free_pages_exact - release memory allocated via alloc_pages_exact()
4937 * @virt: the value returned by alloc_pages_exact.
4938 * @size: size of allocation, same value as passed to alloc_pages_exact().
4939 *
4940 * Release the memory allocated by a previous call to alloc_pages_exact.
4941 */
4942void free_pages_exact(void *virt, size_t size)
4943{
4944	unsigned long addr = (unsigned long)virt;
4945	unsigned long end = addr + PAGE_ALIGN(size);
4946
4947	while (addr < end) {
4948		free_page(addr);
4949		addr += PAGE_SIZE;
4950	}
4951}
4952EXPORT_SYMBOL(free_pages_exact);
4953
4954/**
4955 * nr_free_zone_pages - count number of pages beyond high watermark
4956 * @offset: The zone index of the highest zone
4957 *
4958 * nr_free_zone_pages() counts the number of pages which are beyond the
4959 * high watermark within all zones at or below a given zone index.  For each
4960 * zone, the number of pages is calculated as:
4961 *
4962 *     nr_free_zone_pages = managed_pages - high_pages
4963 *
4964 * Return: number of pages beyond high watermark.
4965 */
4966static unsigned long nr_free_zone_pages(int offset)
4967{
4968	struct zoneref *z;
4969	struct zone *zone;
4970
4971	/* Just pick one node, since fallback list is circular */
4972	unsigned long sum = 0;
4973
4974	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4975
4976	for_each_zone_zonelist(zone, z, zonelist, offset) {
4977		unsigned long size = zone_managed_pages(zone);
4978		unsigned long high = high_wmark_pages(zone);
4979		if (size > high)
4980			sum += size - high;
4981	}
4982
4983	return sum;
4984}
4985
4986/**
4987 * nr_free_buffer_pages - count number of pages beyond high watermark
4988 *
4989 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4990 * watermark within ZONE_DMA and ZONE_NORMAL.
4991 *
4992 * Return: number of pages beyond high watermark within ZONE_DMA and
4993 * ZONE_NORMAL.
4994 */
4995unsigned long nr_free_buffer_pages(void)
4996{
4997	return nr_free_zone_pages(gfp_zone(GFP_USER));
4998}
4999EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5001static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5002{
5003	zoneref->zone = zone;
5004	zoneref->zone_idx = zone_idx(zone);
5005}
5006
5007/*
5008 * Builds allocation fallback zone lists.
5009 *
5010 * Add all populated zones of a node to the zonelist.
5011 */
5012static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
 
5013{
5014	struct zone *zone;
5015	enum zone_type zone_type = MAX_NR_ZONES;
5016	int nr_zones = 0;
 
5017
5018	do {
5019		zone_type--;
5020		zone = pgdat->node_zones + zone_type;
5021		if (populated_zone(zone)) {
5022			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
 
5023			check_highest_zone(zone_type);
5024		}
 
5025	} while (zone_type);
5026
5027	return nr_zones;
5028}
5029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5030#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
5031
5032static int __parse_numa_zonelist_order(char *s)
5033{
5034	/*
5035	 * We used to support different zonelists modes but they turned
5036	 * out to be just not useful. Let's keep the warning in place
5037	 * if somebody still use the cmd line parameter so that we do
5038	 * not fail it silently
5039	 */
5040	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5041		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
 
 
5042		return -EINVAL;
5043	}
5044	return 0;
5045}
5046
5047static char numa_zonelist_order[] = "Node";
5048#define NUMA_ZONELIST_ORDER_LEN	16
 
 
 
 
 
 
 
 
 
 
 
 
 
5049/*
5050 * sysctl handler for numa_zonelist_order
5051 */
5052static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5053		void *buffer, size_t *length, loff_t *ppos)
 
5054{
 
 
 
 
 
5055	if (write)
5056		return __parse_numa_zonelist_order(buffer);
5057	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5058}
5059
 
 
5060static int node_load[MAX_NUMNODES];
5061
5062/**
5063 * find_next_best_node - find the next node that should appear in a given node's fallback list
5064 * @node: node whose fallback list we're appending
5065 * @used_node_mask: nodemask_t of already used nodes
5066 *
5067 * We use a number of factors to determine which is the next node that should
5068 * appear on a given node's fallback list.  The node should not have appeared
5069 * already in @node's fallback list, and it should be the next closest node
5070 * according to the distance array (which contains arbitrary distance values
5071 * from each node to each node in the system), and should also prefer nodes
5072 * with no CPUs, since presumably they'll have very little allocation pressure
5073 * on them otherwise.
5074 *
5075 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5076 */
5077int find_next_best_node(int node, nodemask_t *used_node_mask)
5078{
5079	int n, val;
5080	int min_val = INT_MAX;
5081	int best_node = NUMA_NO_NODE;
 
5082
5083	/*
5084	 * Use the local node if we haven't already, but for memoryless local
5085	 * node, we should skip it and fall back to other nodes.
5086	 */
5087	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5088		node_set(node, *used_node_mask);
5089		return node;
5090	}
5091
5092	for_each_node_state(n, N_MEMORY) {
5093
5094		/* Don't want a node to appear more than once */
5095		if (node_isset(n, *used_node_mask))
5096			continue;
5097
5098		/* Use the distance array to find the distance */
5099		val = node_distance(node, n);
5100
5101		/* Penalize nodes under us ("prefer the next node") */
5102		val += (n < node);
5103
5104		/* Give preference to headless and unused nodes */
5105		if (!cpumask_empty(cpumask_of_node(n)))
 
5106			val += PENALTY_FOR_NODE_WITH_CPUS;
5107
5108		/* Slight preference for less loaded node */
5109		val *= MAX_NUMNODES;
5110		val += node_load[n];
5111
5112		if (val < min_val) {
5113			min_val = val;
5114			best_node = n;
5115		}
5116	}
5117
5118	if (best_node >= 0)
5119		node_set(best_node, *used_node_mask);
5120
5121	return best_node;
5122}
5123
5124
5125/*
5126 * Build zonelists ordered by node and zones within node.
5127 * This results in maximum locality--normal zone overflows into local
5128 * DMA zone, if any--but risks exhausting DMA zone.
5129 */
5130static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5131		unsigned nr_nodes)
5132{
5133	struct zoneref *zonerefs;
5134	int i;
5135
5136	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5137
5138	for (i = 0; i < nr_nodes; i++) {
5139		int nr_zones;
5140
5141		pg_data_t *node = NODE_DATA(node_order[i]);
5142
5143		nr_zones = build_zonerefs_node(node, zonerefs);
5144		zonerefs += nr_zones;
5145	}
5146	zonerefs->zone = NULL;
5147	zonerefs->zone_idx = 0;
5148}
5149
5150/*
5151 * Build __GFP_THISNODE zonelists
5152 */
5153static void build_thisnode_zonelists(pg_data_t *pgdat)
5154{
5155	struct zoneref *zonerefs;
5156	int nr_zones;
5157
5158	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5159	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5160	zonerefs += nr_zones;
5161	zonerefs->zone = NULL;
5162	zonerefs->zone_idx = 0;
5163}
5164
5165/*
5166 * Build zonelists ordered by zone and nodes within zones.
5167 * This results in conserving DMA zone[s] until all Normal memory is
5168 * exhausted, but results in overflowing to remote node while memory
5169 * may still exist in local DMA zone.
5170 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5171
5172static void build_zonelists(pg_data_t *pgdat)
5173{
5174	static int node_order[MAX_NUMNODES];
5175	int node, nr_nodes = 0;
5176	nodemask_t used_mask = NODE_MASK_NONE;
5177	int local_node, prev_node;
 
 
 
 
 
 
 
 
 
5178
5179	/* NUMA-aware ordering of nodes */
5180	local_node = pgdat->node_id;
 
5181	prev_node = local_node;
 
5182
5183	memset(node_order, 0, sizeof(node_order));
 
 
5184	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
 
 
 
 
 
 
 
 
 
5185		/*
5186		 * We don't want to pressure a particular node.
5187		 * So adding penalty to the first node in same
5188		 * distance group to make it round-robin.
5189		 */
5190		if (node_distance(local_node, node) !=
5191		    node_distance(local_node, prev_node))
5192			node_load[node] += 1;
5193
5194		node_order[nr_nodes++] = node;
5195		prev_node = node;
 
 
 
 
 
 
 
 
 
 
5196	}
5197
5198	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5199	build_thisnode_zonelists(pgdat);
5200	pr_info("Fallback order for Node %d: ", local_node);
5201	for (node = 0; node < nr_nodes; node++)
5202		pr_cont("%d ", node_order[node]);
5203	pr_cont("\n");
 
 
 
 
 
 
 
 
 
 
5204}
5205
5206#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5207/*
5208 * Return node id of node used for "local" allocations.
5209 * I.e., first node id of first zone in arg node's generic zonelist.
5210 * Used for initializing percpu 'numa_mem', which is used primarily
5211 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5212 */
5213int local_memory_node(int node)
5214{
5215	struct zoneref *z;
5216
5217	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5218				   gfp_zone(GFP_KERNEL),
5219				   NULL);
5220	return zonelist_node_idx(z);
 
5221}
5222#endif
5223
5224static void setup_min_unmapped_ratio(void);
5225static void setup_min_slab_ratio(void);
5226#else	/* CONFIG_NUMA */
5227
 
 
 
 
 
5228static void build_zonelists(pg_data_t *pgdat)
5229{
5230	struct zoneref *zonerefs;
5231	int nr_zones;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5232
5233	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5234	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5235	zonerefs += nr_zones;
5236
5237	zonerefs->zone = NULL;
5238	zonerefs->zone_idx = 0;
 
 
5239}
5240
5241#endif	/* CONFIG_NUMA */
5242
5243/*
5244 * Boot pageset table. One per cpu which is going to be used for all
5245 * zones and all nodes. The parameters will be set in such a way
5246 * that an item put on a list will immediately be handed over to
5247 * the buddy list. This is safe since pageset manipulation is done
5248 * with interrupts disabled.
5249 *
5250 * The boot_pagesets must be kept even after bootup is complete for
5251 * unused processors and/or zones. They do play a role for bootstrapping
5252 * hotplugged processors.
5253 *
5254 * zoneinfo_show() and maybe other functions do
5255 * not check if the processor is online before following the pageset pointer.
5256 * Other parts of the kernel may not check if the zone is available.
5257 */
5258static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5259/* These effectively disable the pcplists in the boot pageset completely */
5260#define BOOT_PAGESET_HIGH	0
5261#define BOOT_PAGESET_BATCH	1
5262static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5263static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
 
 
 
5264
5265static void __build_all_zonelists(void *data)
 
5266{
5267	int nid;
5268	int __maybe_unused cpu;
5269	pg_data_t *self = data;
5270	unsigned long flags;
5271
5272	/*
5273	 * The zonelist_update_seq must be acquired with irqsave because the
5274	 * reader can be invoked from IRQ with GFP_ATOMIC.
5275	 */
5276	write_seqlock_irqsave(&zonelist_update_seq, flags);
5277	/*
5278	 * Also disable synchronous printk() to prevent any printk() from
5279	 * trying to hold port->lock, for
5280	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5281	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5282	 */
5283	printk_deferred_enter();
5284
5285#ifdef CONFIG_NUMA
5286	memset(node_load, 0, sizeof(node_load));
5287#endif
 
 
 
 
 
 
5288
5289	/*
5290	 * This node is hotadded and no memory is yet present.   So just
5291	 * building zonelists is fine - no need to touch other nodes.
 
 
 
 
 
 
 
 
 
5292	 */
5293	if (self && !node_online(self->node_id)) {
5294		build_zonelists(self);
5295	} else {
5296		/*
5297		 * All possible nodes have pgdat preallocated
5298		 * in free_area_init
5299		 */
5300		for_each_node(nid) {
5301			pg_data_t *pgdat = NODE_DATA(nid);
5302
5303			build_zonelists(pgdat);
5304		}
5305
5306#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5307		/*
5308		 * We now know the "local memory node" for each node--
5309		 * i.e., the node of the first zone in the generic zonelist.
5310		 * Set up numa_mem percpu variable for on-line cpus.  During
5311		 * boot, only the boot cpu should be on-line;  we'll init the
5312		 * secondary cpus' numa_mem as they come on-line.  During
5313		 * node/memory hotplug, we'll fixup all on-line cpus.
5314		 */
5315		for_each_online_cpu(cpu)
5316			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5317#endif
5318	}
5319
5320	printk_deferred_exit();
5321	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5322}
5323
5324static noinline void __init
5325build_all_zonelists_init(void)
5326{
5327	int cpu;
5328
5329	__build_all_zonelists(NULL);
5330
5331	/*
5332	 * Initialize the boot_pagesets that are going to be used
5333	 * for bootstrapping processors. The real pagesets for
5334	 * each zone will be allocated later when the per cpu
5335	 * allocator is available.
5336	 *
5337	 * boot_pagesets are used also for bootstrapping offline
5338	 * cpus if the system is already booted because the pagesets
5339	 * are needed to initialize allocators on a specific cpu too.
5340	 * F.e. the percpu allocator needs the page allocator which
5341	 * needs the percpu allocator in order to allocate its pagesets
5342	 * (a chicken-egg dilemma).
5343	 */
5344	for_each_possible_cpu(cpu)
5345		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5346
5347	mminit_verify_zonelist();
5348	cpuset_init_current_mems_allowed();
5349}
5350
5351/*
 
5352 * unless system_state == SYSTEM_BOOTING.
5353 *
5354 * __ref due to call of __init annotated helper build_all_zonelists_init
5355 * [protected by SYSTEM_BOOTING].
5356 */
5357void __ref build_all_zonelists(pg_data_t *pgdat)
5358{
5359	unsigned long vm_total_pages;
5360
5361	if (system_state == SYSTEM_BOOTING) {
5362		build_all_zonelists_init();
 
 
5363	} else {
5364		__build_all_zonelists(pgdat);
 
 
 
 
 
 
5365		/* cpuset refresh routine should be here */
5366	}
5367	/* Get the number of free pages beyond high watermark in all zones. */
5368	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5369	/*
5370	 * Disable grouping by mobility if the number of pages in the
5371	 * system is too low to allow the mechanism to work. It would be
5372	 * more accurate, but expensive to check per-zone. This check is
5373	 * made on memory-hotadd so a system can start with mobility
5374	 * disabled and enable it later
5375	 */
5376	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5377		page_group_by_mobility_disabled = 1;
5378	else
5379		page_group_by_mobility_disabled = 0;
5380
5381	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5382		nr_online_nodes,
5383		str_off_on(page_group_by_mobility_disabled),
5384		vm_total_pages);
 
 
5385#ifdef CONFIG_NUMA
5386	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5387#endif
5388}
5389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5390static int zone_batchsize(struct zone *zone)
5391{
5392#ifdef CONFIG_MMU
5393	int batch;
5394
5395	/*
5396	 * The number of pages to batch allocate is either ~0.1%
5397	 * of the zone or 1MB, whichever is smaller. The batch
5398	 * size is striking a balance between allocation latency
5399	 * and zone lock contention.
5400	 */
5401	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
 
 
5402	batch /= 4;		/* We effectively *= 4 below */
5403	if (batch < 1)
5404		batch = 1;
5405
5406	/*
5407	 * Clamp the batch to a 2^n - 1 value. Having a power
5408	 * of 2 value was found to be more likely to have
5409	 * suboptimal cache aliasing properties in some cases.
5410	 *
5411	 * For example if 2 tasks are alternately allocating
5412	 * batches of pages, one task can end up with a lot
5413	 * of pages of one half of the possible page colors
5414	 * and the other with pages of the other colors.
5415	 */
5416	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5417
5418	return batch;
5419
5420#else
5421	/* The deferral and batching of frees should be suppressed under NOMMU
5422	 * conditions.
5423	 *
5424	 * The problem is that NOMMU needs to be able to allocate large chunks
5425	 * of contiguous memory as there's no hardware page translation to
5426	 * assemble apparent contiguous memory from discontiguous pages.
5427	 *
5428	 * Queueing large contiguous runs of pages for batching, however,
5429	 * causes the pages to actually be freed in smaller chunks.  As there
5430	 * can be a significant delay between the individual batches being
5431	 * recycled, this leads to the once large chunks of space being
5432	 * fragmented and becoming unavailable for high-order allocations.
5433	 */
5434	return 0;
5435#endif
5436}
5437
5438static int percpu_pagelist_high_fraction;
5439static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5440			 int high_fraction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5441{
5442#ifdef CONFIG_MMU
5443	int high;
5444	int nr_split_cpus;
5445	unsigned long total_pages;
 
 
 
 
 
 
 
 
5446
5447	if (!high_fraction) {
5448		/*
5449		 * By default, the high value of the pcp is based on the zone
5450		 * low watermark so that if they are full then background
5451		 * reclaim will not be started prematurely.
5452		 */
5453		total_pages = low_wmark_pages(zone);
 
 
 
 
 
 
 
5454	} else {
5455		/*
5456		 * If percpu_pagelist_high_fraction is configured, the high
5457		 * value is based on a fraction of the managed pages in the
5458		 * zone.
 
 
 
 
 
5459		 */
5460		total_pages = zone_managed_pages(zone) / high_fraction;
5461	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5463	/*
5464	 * Split the high value across all online CPUs local to the zone. Note
5465	 * that early in boot that CPUs may not be online yet and that during
5466	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5467	 * onlined. For memory nodes that have no CPUs, split the high value
5468	 * across all online CPUs to mitigate the risk that reclaim is triggered
5469	 * prematurely due to pages stored on pcp lists.
5470	 */
5471	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5472	if (!nr_split_cpus)
5473		nr_split_cpus = num_online_cpus();
5474	high = total_pages / nr_split_cpus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5475
5476	/*
5477	 * Ensure high is at least batch*4. The multiple is based on the
5478	 * historical relationship between high and batch.
5479	 */
5480	high = max(high, batch << 2);
 
 
 
 
 
 
5481
5482	return high;
5483#else
 
 
5484	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
5485#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5486}
5487
5488/*
5489 * pcp->high and pcp->batch values are related and generally batch is lower
5490 * than high. They are also related to pcp->count such that count is lower
5491 * than high, and as soon as it reaches high, the pcplist is flushed.
5492 *
5493 * However, guaranteeing these relations at all times would require e.g. write
5494 * barriers here but also careful usage of read barriers at the read side, and
5495 * thus be prone to error and bad for performance. Thus the update only prevents
5496 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5497 * should ensure they can cope with those fields changing asynchronously, and
5498 * fully trust only the pcp->count field on the local CPU with interrupts
5499 * disabled.
5500 *
5501 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5502 * outside of boot time (or some other assurance that no concurrent updaters
5503 * exist).
5504 */
5505static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5506			   unsigned long high_max, unsigned long batch)
5507{
5508	WRITE_ONCE(pcp->batch, batch);
5509	WRITE_ONCE(pcp->high_min, high_min);
5510	WRITE_ONCE(pcp->high_max, high_max);
 
 
5511}
5512
5513static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
 
 
 
 
 
5514{
5515	int pindex;
 
 
 
 
 
 
 
 
 
 
 
5516
5517	memset(pcp, 0, sizeof(*pcp));
5518	memset(pzstats, 0, sizeof(*pzstats));
5519
5520	spin_lock_init(&pcp->lock);
5521	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5522		INIT_LIST_HEAD(&pcp->lists[pindex]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5523
5524	/*
5525	 * Set batch and high values safe for a boot pageset. A true percpu
5526	 * pageset's initialization will update them subsequently. Here we don't
5527	 * need to be as careful as pageset_update() as nobody can access the
5528	 * pageset yet.
5529	 */
5530	pcp->high_min = BOOT_PAGESET_HIGH;
5531	pcp->high_max = BOOT_PAGESET_HIGH;
5532	pcp->batch = BOOT_PAGESET_BATCH;
5533	pcp->free_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5534}
5535
5536static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5537					      unsigned long high_max, unsigned long batch)
 
 
 
 
 
 
 
 
 
 
 
5538{
5539	struct per_cpu_pages *pcp;
5540	int cpu;
 
5541
5542	for_each_possible_cpu(cpu) {
5543		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5544		pageset_update(pcp, high_min, high_max, batch);
5545	}
 
 
 
5546}
5547
5548/*
5549 * Calculate and set new high and batch values for all per-cpu pagesets of a
5550 * zone based on the zone's size.
 
5551 */
5552static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5553{
5554	int new_high_min, new_high_max, new_batch;
 
 
 
 
 
 
 
 
5555
5556	new_batch = max(1, zone_batchsize(zone));
5557	if (percpu_pagelist_high_fraction) {
5558		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5559					     percpu_pagelist_high_fraction);
5560		/*
5561		 * PCP high is tuned manually, disable auto-tuning via
5562		 * setting high_min and high_max to the manual value.
5563		 */
5564		new_high_max = new_high_min;
5565	} else {
5566		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5567		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5568					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5569	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5570
5571	if (zone->pageset_high_min == new_high_min &&
5572	    zone->pageset_high_max == new_high_max &&
5573	    zone->pageset_batch == new_batch)
5574		return;
5575
5576	zone->pageset_high_min = new_high_min;
5577	zone->pageset_high_max = new_high_max;
5578	zone->pageset_batch = new_batch;
5579
5580	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5581					  new_batch);
5582}
5583
5584void __meminit setup_zone_pageset(struct zone *zone)
 
 
 
 
 
 
5585{
5586	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5587
5588	/* Size may be 0 on !SMP && !NUMA */
5589	if (sizeof(struct per_cpu_zonestat) > 0)
5590		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5591
5592	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5593	for_each_possible_cpu(cpu) {
5594		struct per_cpu_pages *pcp;
5595		struct per_cpu_zonestat *pzstats;
5596
5597		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5598		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5599		per_cpu_pages_init(pcp, pzstats);
 
 
 
5600	}
5601
5602	zone_set_pageset_high_and_batch(zone, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5603}
5604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5605/*
5606 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5607 * page high values need to be recalculated.
 
 
 
5608 */
5609static void zone_pcp_update(struct zone *zone, int cpu_online)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5610{
5611	mutex_lock(&pcp_batch_high_lock);
5612	zone_set_pageset_high_and_batch(zone, cpu_online);
5613	mutex_unlock(&pcp_batch_high_lock);
 
5614}
5615
5616static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
 
5617{
5618	struct per_cpu_pages *pcp;
5619	struct cpu_cacheinfo *cci;
 
5620
5621	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5622	cci = get_cpu_cacheinfo(cpu);
5623	/*
5624	 * If data cache slice of CPU is large enough, "pcp->batch"
5625	 * pages can be preserved in PCP before draining PCP for
5626	 * consecutive high-order pages freeing without allocation.
5627	 * This can reduce zone lock contention without hurting
5628	 * cache-hot pages sharing.
5629	 */
5630	spin_lock(&pcp->lock);
5631	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5632		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5633	else
5634		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5635	spin_unlock(&pcp->lock);
5636}
 
5637
5638void setup_pcp_cacheinfo(unsigned int cpu)
 
 
 
 
 
 
5639{
5640	struct zone *zone;
 
 
5641
5642	for_each_populated_zone(zone)
5643		zone_pcp_update_cacheinfo(zone, cpu);
5644}
5645
5646/*
5647 * Allocate per cpu pagesets and initialize them.
5648 * Before this call only boot pagesets were available.
 
 
5649 */
5650void __init setup_per_cpu_pageset(void)
 
5651{
5652	struct pglist_data *pgdat;
5653	struct zone *zone;
5654	int __maybe_unused cpu;
 
5655
5656	for_each_populated_zone(zone)
5657		setup_zone_pageset(zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5658
 
 
5659#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5660	/*
5661	 * Unpopulated zones continue using the boot pagesets.
5662	 * The numa stats for these pagesets need to be reset.
5663	 * Otherwise, they will end up skewing the stats of
5664	 * the nodes these zones are associated with.
5665	 */
5666	for_each_possible_cpu(cpu) {
5667		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5668		memset(pzstats->vm_numa_event, 0,
5669		       sizeof(pzstats->vm_numa_event));
 
 
5670	}
5671#endif
 
 
5672
5673	for_each_online_pgdat(pgdat)
5674		pgdat->per_cpu_nodestats =
5675			alloc_percpu(struct per_cpu_nodestat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5676}
5677
5678__meminit void zone_pcp_init(struct zone *zone)
 
 
 
 
 
 
5679{
5680	/*
5681	 * per cpu subsystem is not up at this point. The following code
5682	 * relies on the ability of the linker to provide the
5683	 * offset of a (static) per cpu variable into the per cpu area.
5684	 */
5685	zone->per_cpu_pageset = &boot_pageset;
5686	zone->per_cpu_zonestats = &boot_zonestats;
5687	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5688	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5689	zone->pageset_batch = BOOT_PAGESET_BATCH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5690
5691	if (populated_zone(zone))
5692		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5693			 zone->present_pages, zone_batchsize(zone));
 
 
 
 
 
 
 
 
5694}
5695
5696static void setup_per_zone_lowmem_reserve(void);
 
 
 
 
5697
5698void adjust_managed_page_count(struct page *page, long count)
 
 
 
 
 
 
 
 
 
 
5699{
5700	atomic_long_add(count, &page_zone(page)->managed_pages);
5701	totalram_pages_add(count);
5702	setup_per_zone_lowmem_reserve();
5703}
5704EXPORT_SYMBOL(adjust_managed_page_count);
5705
5706unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5707{
5708	void *pos;
5709	unsigned long pages = 0;
 
5710
5711	start = (void *)PAGE_ALIGN((unsigned long)start);
5712	end = (void *)((unsigned long)end & PAGE_MASK);
5713	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5714		struct page *page = virt_to_page(pos);
5715		void *direct_map_addr;
 
 
 
 
 
 
5716
5717		/*
5718		 * 'direct_map_addr' might be different from 'pos'
5719		 * because some architectures' virt_to_page()
5720		 * work with aliases.  Getting the direct map
5721		 * address ensures that we get a _writeable_
5722		 * alias for the memset().
5723		 */
5724		direct_map_addr = page_address(page);
5725		/*
5726		 * Perform a kasan-unchecked memset() since this memory
5727		 * has not been initialized.
5728		 */
5729		direct_map_addr = kasan_reset_tag(direct_map_addr);
5730		if ((unsigned int)poison <= 0xFF)
5731			memset(direct_map_addr, poison, PAGE_SIZE);
5732
5733		free_reserved_page(page);
 
5734	}
5735
5736	if (pages && s)
5737		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5738
5739	return pages;
5740}
5741
5742void free_reserved_page(struct page *page)
 
 
 
 
 
 
5743{
5744	clear_page_tag_ref(page);
5745	ClearPageReserved(page);
5746	init_page_count(page);
5747	__free_page(page);
5748	adjust_managed_page_count(page, 1);
5749}
5750EXPORT_SYMBOL(free_reserved_page);
5751
5752static int page_alloc_cpu_dead(unsigned int cpu)
 
 
 
 
 
5753{
5754	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
5755
5756	lru_add_drain_cpu(cpu);
5757	mlock_drain_remote(cpu);
5758	drain_pages(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
5759
5760	/*
5761	 * Spill the event counters of the dead processor
5762	 * into the current processors event counters.
5763	 * This artificially elevates the count of the current
5764	 * processor.
 
 
5765	 */
5766	vm_events_fold_cpu(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5767
5768	/*
5769	 * Zero the differential counters of the dead processor
5770	 * so that the vm statistics are consistent.
5771	 *
5772	 * This is only okay since the processor is dead and cannot
5773	 * race with what we are doing.
5774	 */
5775	cpu_vm_stats_fold(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5776
5777	for_each_populated_zone(zone)
5778		zone_pcp_update(zone, 0);
 
 
 
5779
5780	return 0;
5781}
5782
5783static int page_alloc_cpu_online(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
5784{
5785	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5786
5787	for_each_populated_zone(zone)
5788		zone_pcp_update(zone, 1);
5789	return 0;
 
5790}
5791
5792void __init page_alloc_init_cpuhp(void)
 
5793{
5794	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5795
5796	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5797					"mm/page_alloc:pcp",
5798					page_alloc_cpu_online,
5799					page_alloc_cpu_dead);
5800	WARN_ON(ret < 0);
5801}
5802
5803/*
5804 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5805 *	or min_free_kbytes changes.
5806 */
5807static void calculate_totalreserve_pages(void)
5808{
5809	struct pglist_data *pgdat;
5810	unsigned long reserve_pages = 0;
5811	enum zone_type i, j;
5812
5813	for_each_online_pgdat(pgdat) {
5814
5815		pgdat->totalreserve_pages = 0;
5816
5817		for (i = 0; i < MAX_NR_ZONES; i++) {
5818			struct zone *zone = pgdat->node_zones + i;
5819			long max = 0;
5820			unsigned long managed_pages = zone_managed_pages(zone);
5821
5822			/* Find valid and maximum lowmem_reserve in the zone */
5823			for (j = i; j < MAX_NR_ZONES; j++) {
5824				if (zone->lowmem_reserve[j] > max)
5825					max = zone->lowmem_reserve[j];
5826			}
5827
5828			/* we treat the high watermark as reserved pages. */
5829			max += high_wmark_pages(zone);
5830
5831			if (max > managed_pages)
5832				max = managed_pages;
5833
5834			pgdat->totalreserve_pages += max;
5835
5836			reserve_pages += max;
5837		}
5838	}
5839	totalreserve_pages = reserve_pages;
5840}
5841
5842/*
5843 * setup_per_zone_lowmem_reserve - called whenever
5844 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5845 *	has a correct pages reserved value, so an adequate number of
5846 *	pages are left in the zone after a successful __alloc_pages().
5847 */
5848static void setup_per_zone_lowmem_reserve(void)
5849{
5850	struct pglist_data *pgdat;
5851	enum zone_type i, j;
5852
5853	for_each_online_pgdat(pgdat) {
5854		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5855			struct zone *zone = &pgdat->node_zones[i];
5856			int ratio = sysctl_lowmem_reserve_ratio[i];
5857			bool clear = !ratio || !zone_managed_pages(zone);
5858			unsigned long managed_pages = 0;
5859
5860			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5861				struct zone *upper_zone = &pgdat->node_zones[j];
5862
5863				managed_pages += zone_managed_pages(upper_zone);
5864
5865				if (clear)
5866					zone->lowmem_reserve[j] = 0;
5867				else
5868					zone->lowmem_reserve[j] = managed_pages / ratio;
 
 
 
 
5869			}
5870		}
5871	}
5872
5873	/* update totalreserve_pages */
5874	calculate_totalreserve_pages();
5875}
5876
5877static void __setup_per_zone_wmarks(void)
 
 
 
 
 
 
 
5878{
5879	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5880	unsigned long lowmem_pages = 0;
5881	struct zone *zone;
5882	unsigned long flags;
5883
5884	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5885	for_each_zone(zone) {
5886		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5887			lowmem_pages += zone_managed_pages(zone);
5888	}
5889
5890	for_each_zone(zone) {
5891		u64 tmp;
5892
5893		spin_lock_irqsave(&zone->lock, flags);
5894		tmp = (u64)pages_min * zone_managed_pages(zone);
5895		tmp = div64_ul(tmp, lowmem_pages);
5896		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5897			/*
5898			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5899			 * need highmem and movable zones pages, so cap pages_min
5900			 * to a small  value here.
5901			 *
5902			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5903			 * deltas control async page reclaim, and so should
5904			 * not be capped for highmem and movable zones.
5905			 */
5906			unsigned long min_pages;
5907
5908			min_pages = zone_managed_pages(zone) / 1024;
5909			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5910			zone->_watermark[WMARK_MIN] = min_pages;
 
 
 
5911		} else {
5912			/*
5913			 * If it's a lowmem zone, reserve a number of pages
5914			 * proportionate to the zone's size.
5915			 */
5916			zone->_watermark[WMARK_MIN] = tmp;
5917		}
5918
5919		/*
5920		 * Set the kswapd watermarks distance according to the
5921		 * scale factor in proportion to available memory, but
5922		 * ensure a minimum size on small systems.
5923		 */
5924		tmp = max_t(u64, tmp >> 2,
5925			    mult_frac(zone_managed_pages(zone),
5926				      watermark_scale_factor, 10000));
5927
5928		zone->watermark_boost = 0;
5929		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5930		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5931		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5932
5933		spin_unlock_irqrestore(&zone->lock, flags);
5934	}
5935
5936	/* update totalreserve_pages */
5937	calculate_totalreserve_pages();
5938}
5939
5940/**
5941 * setup_per_zone_wmarks - called when min_free_kbytes changes
5942 * or when memory is hot-{added|removed}
5943 *
5944 * Ensures that the watermark[min,low,high] values for each zone are set
5945 * correctly with respect to min_free_kbytes.
5946 */
5947void setup_per_zone_wmarks(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5948{
5949	struct zone *zone;
5950	static DEFINE_SPINLOCK(lock);
5951
5952	spin_lock(&lock);
5953	__setup_per_zone_wmarks();
5954	spin_unlock(&lock);
5955
5956	/*
5957	 * The watermark size have changed so update the pcpu batch
5958	 * and high limits or the limits may be inappropriate.
5959	 */
5960	for_each_zone(zone)
5961		zone_pcp_update(zone, 0);
5962}
5963
5964/*
5965 * Initialise min_free_kbytes.
5966 *
5967 * For small machines we want it small (128k min).  For large machines
5968 * we want it large (256MB max).  But it is not linear, because network
5969 * bandwidth does not increase linearly with machine size.  We use
5970 *
5971 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5972 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5973 *
5974 * which yields
5975 *
5976 * 16MB:	512k
5977 * 32MB:	724k
5978 * 64MB:	1024k
5979 * 128MB:	1448k
5980 * 256MB:	2048k
5981 * 512MB:	2896k
5982 * 1024MB:	4096k
5983 * 2048MB:	5792k
5984 * 4096MB:	8192k
5985 * 8192MB:	11584k
5986 * 16384MB:	16384k
5987 */
5988void calculate_min_free_kbytes(void)
5989{
5990	unsigned long lowmem_kbytes;
5991	int new_min_free_kbytes;
5992
5993	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5994	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5995
5996	if (new_min_free_kbytes > user_min_free_kbytes)
5997		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5998	else
5999		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6000				new_min_free_kbytes, user_min_free_kbytes);
6001
6002}
6003
6004int __meminit init_per_zone_wmark_min(void)
6005{
6006	calculate_min_free_kbytes();
6007	setup_per_zone_wmarks();
6008	refresh_zone_stat_thresholds();
6009	setup_per_zone_lowmem_reserve();
6010
6011#ifdef CONFIG_NUMA
6012	setup_min_unmapped_ratio();
6013	setup_min_slab_ratio();
6014#endif
6015
6016	khugepaged_min_free_kbytes_update();
6017
6018	return 0;
6019}
6020postcore_initcall(init_per_zone_wmark_min)
6021
6022/*
6023 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6024 *	that we can call two helper functions whenever min_free_kbytes
6025 *	changes.
6026 */
6027static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6028		void *buffer, size_t *length, loff_t *ppos)
6029{
6030	int rc;
6031
6032	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6033	if (rc)
6034		return rc;
6035
6036	if (write) {
6037		user_min_free_kbytes = min_free_kbytes;
6038		setup_per_zone_wmarks();
6039	}
6040	return 0;
6041}
6042
6043static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6044		void *buffer, size_t *length, loff_t *ppos)
6045{
6046	int rc;
6047
6048	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6049	if (rc)
6050		return rc;
6051
6052	if (write)
6053		setup_per_zone_wmarks();
6054
6055	return 0;
6056}
6057
6058#ifdef CONFIG_NUMA
6059static void setup_min_unmapped_ratio(void)
 
6060{
6061	pg_data_t *pgdat;
6062	struct zone *zone;
6063
6064	for_each_online_pgdat(pgdat)
6065		pgdat->min_unmapped_pages = 0;
6066
6067	for_each_zone(zone)
6068		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6069						         sysctl_min_unmapped_ratio) / 100;
6070}
6071
6072
6073static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6074		void *buffer, size_t *length, loff_t *ppos)
6075{
6076	int rc;
6077
6078	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6079	if (rc)
6080		return rc;
6081
6082	setup_min_unmapped_ratio();
6083
 
6084	return 0;
6085}
6086
6087static void setup_min_slab_ratio(void)
 
6088{
6089	pg_data_t *pgdat;
6090	struct zone *zone;
6091
6092	for_each_online_pgdat(pgdat)
6093		pgdat->min_slab_pages = 0;
6094
6095	for_each_zone(zone)
6096		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6097						     sysctl_min_slab_ratio) / 100;
6098}
6099
6100static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6101		void *buffer, size_t *length, loff_t *ppos)
6102{
6103	int rc;
6104
6105	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6106	if (rc)
6107		return rc;
6108
6109	setup_min_slab_ratio();
6110
 
6111	return 0;
6112}
6113#endif
6114
6115/*
6116 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6117 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6118 *	whenever sysctl_lowmem_reserve_ratio changes.
6119 *
6120 * The reserve ratio obviously has absolutely no relation with the
6121 * minimum watermarks. The lowmem reserve ratio can only make sense
6122 * if in function of the boot time zone sizes.
6123 */
6124static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6125		int write, void *buffer, size_t *length, loff_t *ppos)
6126{
6127	int i;
6128
6129	proc_dointvec_minmax(table, write, buffer, length, ppos);
6130
6131	for (i = 0; i < MAX_NR_ZONES; i++) {
6132		if (sysctl_lowmem_reserve_ratio[i] < 1)
6133			sysctl_lowmem_reserve_ratio[i] = 0;
6134	}
6135
6136	setup_per_zone_lowmem_reserve();
6137	return 0;
6138}
6139
6140/*
6141 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6142 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6143 * pagelist can have before it gets flushed back to buddy allocator.
6144 */
6145static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6146		int write, void *buffer, size_t *length, loff_t *ppos)
 
6147{
6148	struct zone *zone;
6149	int old_percpu_pagelist_high_fraction;
6150	int ret;
6151
6152	mutex_lock(&pcp_batch_high_lock);
6153	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6154
6155	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6156	if (!write || ret < 0)
6157		goto out;
6158
6159	/* Sanity checking to avoid pcp imbalance */
6160	if (percpu_pagelist_high_fraction &&
6161	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6162		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6163		ret = -EINVAL;
6164		goto out;
6165	}
 
 
6166
6167	/* No change? */
6168	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6169		goto out;
6170
6171	for_each_populated_zone(zone)
6172		zone_set_pageset_high_and_batch(zone, 0);
6173out:
6174	mutex_unlock(&pcp_batch_high_lock);
6175	return ret;
6176}
6177
6178static struct ctl_table page_alloc_sysctl_table[] = {
6179	{
6180		.procname	= "min_free_kbytes",
6181		.data		= &min_free_kbytes,
6182		.maxlen		= sizeof(min_free_kbytes),
6183		.mode		= 0644,
6184		.proc_handler	= min_free_kbytes_sysctl_handler,
6185		.extra1		= SYSCTL_ZERO,
6186	},
6187	{
6188		.procname	= "watermark_boost_factor",
6189		.data		= &watermark_boost_factor,
6190		.maxlen		= sizeof(watermark_boost_factor),
6191		.mode		= 0644,
6192		.proc_handler	= proc_dointvec_minmax,
6193		.extra1		= SYSCTL_ZERO,
6194	},
6195	{
6196		.procname	= "watermark_scale_factor",
6197		.data		= &watermark_scale_factor,
6198		.maxlen		= sizeof(watermark_scale_factor),
6199		.mode		= 0644,
6200		.proc_handler	= watermark_scale_factor_sysctl_handler,
6201		.extra1		= SYSCTL_ONE,
6202		.extra2		= SYSCTL_THREE_THOUSAND,
6203	},
6204	{
6205		.procname	= "percpu_pagelist_high_fraction",
6206		.data		= &percpu_pagelist_high_fraction,
6207		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6208		.mode		= 0644,
6209		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6210		.extra1		= SYSCTL_ZERO,
6211	},
6212	{
6213		.procname	= "lowmem_reserve_ratio",
6214		.data		= &sysctl_lowmem_reserve_ratio,
6215		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6216		.mode		= 0644,
6217		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6218	},
6219#ifdef CONFIG_NUMA
6220	{
6221		.procname	= "numa_zonelist_order",
6222		.data		= &numa_zonelist_order,
6223		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6224		.mode		= 0644,
6225		.proc_handler	= numa_zonelist_order_handler,
6226	},
6227	{
6228		.procname	= "min_unmapped_ratio",
6229		.data		= &sysctl_min_unmapped_ratio,
6230		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6231		.mode		= 0644,
6232		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6233		.extra1		= SYSCTL_ZERO,
6234		.extra2		= SYSCTL_ONE_HUNDRED,
6235	},
6236	{
6237		.procname	= "min_slab_ratio",
6238		.data		= &sysctl_min_slab_ratio,
6239		.maxlen		= sizeof(sysctl_min_slab_ratio),
6240		.mode		= 0644,
6241		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6242		.extra1		= SYSCTL_ZERO,
6243		.extra2		= SYSCTL_ONE_HUNDRED,
6244	},
6245#endif
6246};
6247
6248void __init page_alloc_sysctl_init(void)
6249{
6250	register_sysctl_init("vm", page_alloc_sysctl_table);
 
 
 
6251}
 
 
6252
6253#ifdef CONFIG_CONTIG_ALLOC
6254/* Usage: See admin-guide/dynamic-debug-howto.rst */
6255static void alloc_contig_dump_pages(struct list_head *page_list)
6256{
6257	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6258
6259	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6260		struct page *page;
 
 
 
 
 
 
 
 
 
 
6261
6262		dump_stack();
6263		list_for_each_entry(page, page_list, lru)
6264			dump_page(page, "migration failure");
 
6265	}
6266}
6267
6268/*
6269 * [start, end) must belong to a single zone.
6270 * @migratetype: using migratetype to filter the type of migration in
6271 *		trace_mm_alloc_contig_migrate_range_info.
6272 */
6273int __alloc_contig_migrate_range(struct compact_control *cc,
6274					unsigned long start, unsigned long end,
6275					int migratetype)
6276{
6277	/* This function is based on compact_zone() from compaction.c. */
6278	unsigned int nr_reclaimed;
6279	unsigned long pfn = start;
6280	unsigned int tries = 0;
6281	int ret = 0;
6282	struct migration_target_control mtc = {
6283		.nid = zone_to_nid(cc->zone),
6284		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6285		.reason = MR_CONTIG_RANGE,
6286	};
6287	struct page *page;
6288	unsigned long total_mapped = 0;
6289	unsigned long total_migrated = 0;
6290	unsigned long total_reclaimed = 0;
6291
6292	lru_cache_disable();
6293
6294	while (pfn < end || !list_empty(&cc->migratepages)) {
6295		if (fatal_signal_pending(current)) {
6296			ret = -EINTR;
6297			break;
6298		}
6299
6300		if (list_empty(&cc->migratepages)) {
6301			cc->nr_migratepages = 0;
6302			ret = isolate_migratepages_range(cc, pfn, end);
6303			if (ret && ret != -EAGAIN)
6304				break;
6305			pfn = cc->migrate_pfn;
6306			tries = 0;
6307		} else if (++tries == 5) {
6308			ret = -EBUSY;
6309			break;
6310		}
6311
6312		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6313							&cc->migratepages);
6314		cc->nr_migratepages -= nr_reclaimed;
6315
6316		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6317			total_reclaimed += nr_reclaimed;
6318			list_for_each_entry(page, &cc->migratepages, lru) {
6319				struct folio *folio = page_folio(page);
6320
6321				total_mapped += folio_mapped(folio) *
6322						folio_nr_pages(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
6323			}
6324		}
 
6325
6326		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6327			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6328
6329		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6330			total_migrated += cc->nr_migratepages;
 
 
 
 
 
 
 
 
6331
6332		/*
6333		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6334		 * to retry again over this error, so do the same here.
6335		 */
6336		if (ret == -ENOMEM)
6337			break;
6338	}
6339
6340	lru_cache_enable();
6341	if (ret < 0) {
6342		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6343			alloc_contig_dump_pages(&cc->migratepages);
6344		putback_movable_pages(&cc->migratepages);
6345	}
6346
6347	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6348						 total_migrated,
6349						 total_reclaimed,
6350						 total_mapped);
6351	return (ret < 0) ? ret : 0;
6352}
6353
6354static void split_free_pages(struct list_head *list)
6355{
6356	int order;
6357
6358	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6359		struct page *page, *next;
6360		int nr_pages = 1 << order;
6361
6362		list_for_each_entry_safe(page, next, &list[order], lru) {
6363			int i;
6364
6365			post_alloc_hook(page, order, __GFP_MOVABLE);
6366			if (!order)
6367				continue;
6368
6369			split_page(page, order);
6370
6371			/* Add all subpages to the order-0 head, in sequence. */
6372			list_del(&page->lru);
6373			for (i = 0; i < nr_pages; i++)
6374				list_add_tail(&page[i].lru, &list[0]);
6375		}
6376	}
6377}
6378
6379/**
6380 * alloc_contig_range() -- tries to allocate given range of pages
6381 * @start:	start PFN to allocate
6382 * @end:	one-past-the-last PFN to allocate
6383 * @migratetype:	migratetype of the underlying pageblocks (either
6384 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6385 *			in range must have the same migratetype and it must
6386 *			be either of the two.
6387 * @gfp_mask:	GFP mask to use during compaction
6388 *
6389 * The PFN range does not have to be pageblock aligned. The PFN range must
6390 * belong to a single zone.
6391 *
6392 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6393 * pageblocks in the range.  Once isolated, the pageblocks should not
6394 * be modified by others.
6395 *
6396 * Return: zero on success or negative error code.  On success all
6397 * pages which PFN is in [start, end) are allocated for the caller and
6398 * need to be freed with free_contig_range().
6399 */
6400int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6401		       unsigned migratetype, gfp_t gfp_mask)
6402{
6403	unsigned long outer_start, outer_end;
6404	int ret = 0;
 
 
 
6405
6406	struct compact_control cc = {
6407		.nr_migratepages = 0,
6408		.order = -1,
6409		.zone = page_zone(pfn_to_page(start)),
6410		.mode = MIGRATE_SYNC,
6411		.ignore_skip_hint = true,
6412		.no_set_skip_hint = true,
6413		.gfp_mask = current_gfp_context(gfp_mask),
6414		.alloc_contig = true,
6415	};
6416	INIT_LIST_HEAD(&cc.migratepages);
6417
6418	/*
6419	 * What we do here is we mark all pageblocks in range as
6420	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6421	 * have different sizes, and due to the way page allocator
6422	 * work, start_isolate_page_range() has special handlings for this.
6423	 *
6424	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6425	 * migrate the pages from an unaligned range (ie. pages that
6426	 * we are interested in). This will put all the pages in
6427	 * range back to page allocator as MIGRATE_ISOLATE.
6428	 *
6429	 * When this is done, we take the pages in range from page
6430	 * allocator removing them from the buddy system.  This way
6431	 * page allocator will never consider using them.
6432	 *
6433	 * This lets us mark the pageblocks back as
6434	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6435	 * aligned range but not in the unaligned, original range are
6436	 * put back to page allocator so that buddy can use them.
6437	 */
6438
6439	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6440	if (ret)
6441		goto done;
6442
6443	drain_all_pages(cc.zone);
6444
6445	/*
6446	 * In case of -EBUSY, we'd like to know which page causes problem.
6447	 * So, just fall through. test_pages_isolated() has a tracepoint
6448	 * which will report the busy page.
6449	 *
6450	 * It is possible that busy pages could become available before
6451	 * the call to test_pages_isolated, and the range will actually be
6452	 * allocated.  So, if we fall through be sure to clear ret so that
6453	 * -EBUSY is not accidentally used or returned to caller.
6454	 */
6455	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6456	if (ret && ret != -EBUSY)
6457		goto done;
6458	ret = 0;
6459
6460	/*
6461	 * Pages from [start, end) are within a pageblock_nr_pages
6462	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6463	 * more, all pages in [start, end) are free in page allocator.
6464	 * What we are going to do is to allocate all pages from
6465	 * [start, end) (that is remove them from page allocator).
6466	 *
6467	 * The only problem is that pages at the beginning and at the
6468	 * end of interesting range may be not aligned with pages that
6469	 * page allocator holds, ie. they can be part of higher order
6470	 * pages.  Because of this, we reserve the bigger range and
6471	 * once this is done free the pages we are not interested in.
6472	 *
6473	 * We don't have to hold zone->lock here because the pages are
6474	 * isolated thus they won't get removed from buddy.
6475	 */
6476	outer_start = find_large_buddy(start);
6477
6478	/* Make sure the range is really isolated. */
6479	if (test_pages_isolated(outer_start, end, 0)) {
6480		ret = -EBUSY;
6481		goto done;
6482	}
6483
6484	/* Grab isolated pages from freelists. */
6485	outer_end = isolate_freepages_range(&cc, outer_start, end);
6486	if (!outer_end) {
6487		ret = -EBUSY;
6488		goto done;
6489	}
6490
6491	if (!(gfp_mask & __GFP_COMP)) {
6492		split_free_pages(cc.freepages);
6493
6494		/* Free head and tail (if any) */
6495		if (start != outer_start)
6496			free_contig_range(outer_start, start - outer_start);
6497		if (end != outer_end)
6498			free_contig_range(end, outer_end - end);
6499	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6500		struct page *head = pfn_to_page(start);
6501		int order = ilog2(end - start);
6502
6503		check_new_pages(head, order);
6504		prep_new_page(head, order, gfp_mask, 0);
6505	} else {
6506		ret = -EINVAL;
6507		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6508		     start, end, outer_start, outer_end);
6509	}
6510done:
6511	undo_isolate_page_range(start, end, migratetype);
6512	return ret;
6513}
6514EXPORT_SYMBOL(alloc_contig_range_noprof);
6515
6516static int __alloc_contig_pages(unsigned long start_pfn,
6517				unsigned long nr_pages, gfp_t gfp_mask)
 
 
 
 
 
 
 
6518{
6519	unsigned long end_pfn = start_pfn + nr_pages;
 
 
 
6520
6521	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6522				   gfp_mask);
 
 
 
 
 
 
 
 
 
 
6523}
6524
6525static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6526				   unsigned long nr_pages)
 
 
 
 
 
 
6527{
6528	unsigned long i, end_pfn = start_pfn + nr_pages;
6529	struct page *page;
 
 
 
 
 
6530
6531	for (i = start_pfn; i < end_pfn; i++) {
6532		page = pfn_to_online_page(i);
6533		if (!page)
6534			return false;
6535
6536		if (page_zone(page) != z)
6537			return false;
 
6538
6539		if (PageReserved(page))
6540			return false;
6541
6542		if (PageHuge(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6543			return false;
6544	}
6545	return true;
6546}
6547
6548static bool zone_spans_last_pfn(const struct zone *zone,
6549				unsigned long start_pfn, unsigned long nr_pages)
6550{
6551	unsigned long last_pfn = start_pfn + nr_pages - 1;
6552
6553	return zone_spans_pfn(zone, last_pfn);
6554}
6555
6556/**
6557 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6558 * @nr_pages:	Number of contiguous pages to allocate
6559 * @gfp_mask:	GFP mask to limit search and used during compaction
6560 * @nid:	Target node
6561 * @nodemask:	Mask for other possible nodes
6562 *
6563 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6564 * on an applicable zonelist to find a contiguous pfn range which can then be
6565 * tried for allocation with alloc_contig_range(). This routine is intended
6566 * for allocation requests which can not be fulfilled with the buddy allocator.
6567 *
6568 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6569 * power of two, then allocated range is also guaranteed to be aligned to same
6570 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6571 *
6572 * Allocated pages can be freed with free_contig_range() or by manually calling
6573 * __free_page() on each allocated page.
6574 *
6575 * Return: pointer to contiguous pages on success, or NULL if not successful.
6576 */
6577struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6578				 int nid, nodemask_t *nodemask)
6579{
6580	unsigned long ret, pfn, flags;
6581	struct zonelist *zonelist;
6582	struct zone *zone;
6583	struct zoneref *z;
 
 
 
6584
6585	zonelist = node_zonelist(nid, gfp_mask);
6586	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6587					gfp_zone(gfp_mask), nodemask) {
6588		spin_lock_irqsave(&zone->lock, flags);
6589
6590		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6591		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6592			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6593				/*
6594				 * We release the zone lock here because
6595				 * alloc_contig_range() will also lock the zone
6596				 * at some point. If there's an allocation
6597				 * spinning on this lock, it may win the race
6598				 * and cause alloc_contig_range() to fail...
6599				 */
6600				spin_unlock_irqrestore(&zone->lock, flags);
6601				ret = __alloc_contig_pages(pfn, nr_pages,
6602							gfp_mask);
6603				if (!ret)
6604					return pfn_to_page(pfn);
6605				spin_lock_irqsave(&zone->lock, flags);
6606			}
6607			pfn += nr_pages;
6608		}
6609		spin_unlock_irqrestore(&zone->lock, flags);
6610	}
6611	return NULL;
6612}
6613#endif /* CONFIG_CONTIG_ALLOC */
6614
6615void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6616{
6617	unsigned long count = 0;
6618	struct folio *folio = pfn_folio(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6619
6620	if (folio_test_large(folio)) {
6621		int expected = folio_nr_pages(folio);
 
 
6622
6623		if (nr_pages == expected)
6624			folio_put(folio);
6625		else
6626			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6627			     pfn, nr_pages, expected);
6628		return;
6629	}
6630
6631	for (; nr_pages--; pfn++) {
6632		struct page *page = pfn_to_page(pfn);
6633
6634		count += page_count(page) != 1;
6635		__free_page(page);
6636	}
6637	WARN(count != 0, "%lu pages are still in use!\n", count);
6638}
6639EXPORT_SYMBOL(free_contig_range);
6640
6641/*
6642 * Effectively disable pcplists for the zone by setting the high limit to 0
6643 * and draining all cpus. A concurrent page freeing on another CPU that's about
6644 * to put the page on pcplist will either finish before the drain and the page
6645 * will be drained, or observe the new high limit and skip the pcplist.
6646 *
6647 * Must be paired with a call to zone_pcp_enable().
6648 */
6649void zone_pcp_disable(struct zone *zone)
6650{
6651	mutex_lock(&pcp_batch_high_lock);
6652	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6653	__drain_all_pages(zone, true);
6654}
6655
6656void zone_pcp_enable(struct zone *zone)
6657{
6658	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6659		zone->pageset_high_max, zone->pageset_batch);
6660	mutex_unlock(&pcp_batch_high_lock);
6661}
6662
6663void zone_pcp_reset(struct zone *zone)
6664{
6665	int cpu;
6666	struct per_cpu_zonestat *pzstats;
6667
6668	if (zone->per_cpu_pageset != &boot_pageset) {
6669		for_each_online_cpu(cpu) {
6670			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6671			drain_zonestat(zone, pzstats);
6672		}
6673		free_percpu(zone->per_cpu_pageset);
6674		zone->per_cpu_pageset = &boot_pageset;
6675		if (zone->per_cpu_zonestats != &boot_zonestats) {
6676			free_percpu(zone->per_cpu_zonestats);
6677			zone->per_cpu_zonestats = &boot_zonestats;
6678		}
6679	}
6680}
6681
6682#ifdef CONFIG_MEMORY_HOTREMOVE
6683/*
6684 * All pages in the range must be in a single zone, must not contain holes,
6685 * must span full sections, and must be isolated before calling this function.
6686 *
6687 * Returns the number of managed (non-PageOffline()) pages in the range: the
6688 * number of pages for which memory offlining code must adjust managed page
6689 * counters using adjust_managed_page_count().
6690 */
6691unsigned long __offline_isolated_pages(unsigned long start_pfn,
6692		unsigned long end_pfn)
6693{
6694	unsigned long already_offline = 0, flags;
6695	unsigned long pfn = start_pfn;
6696	struct page *page;
6697	struct zone *zone;
6698	unsigned int order;
6699
6700	offline_mem_sections(pfn, end_pfn);
 
 
 
 
 
 
6701	zone = page_zone(pfn_to_page(pfn));
6702	spin_lock_irqsave(&zone->lock, flags);
 
6703	while (pfn < end_pfn) {
6704		page = pfn_to_page(pfn);
6705		/*
6706		 * The HWPoisoned page may be not in buddy system, and
6707		 * page_count() is not 0.
6708		 */
6709		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6710			pfn++;
6711			continue;
6712		}
6713		/*
6714		 * At this point all remaining PageOffline() pages have a
6715		 * reference count of 0 and can simply be skipped.
6716		 */
6717		if (PageOffline(page)) {
6718			BUG_ON(page_count(page));
6719			BUG_ON(PageBuddy(page));
6720			already_offline++;
6721			pfn++;
6722			continue;
6723		}
6724
6725		BUG_ON(page_count(page));
6726		BUG_ON(!PageBuddy(page));
6727		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6728		order = buddy_order(page);
6729		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
 
 
 
 
 
 
 
 
 
6730		pfn += (1 << order);
6731	}
6732	spin_unlock_irqrestore(&zone->lock, flags);
6733
6734	return end_pfn - start_pfn - already_offline;
6735}
6736#endif
6737
6738/*
6739 * This function returns a stable result only if called under zone lock.
6740 */
6741bool is_free_buddy_page(const struct page *page)
6742{
6743	unsigned long pfn = page_to_pfn(page);
6744	unsigned int order;
6745
6746	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6747		const struct page *head = page - (pfn & ((1 << order) - 1));
6748
6749		if (PageBuddy(head) &&
6750		    buddy_order_unsafe(head) >= order)
6751			break;
6752	}
6753
6754	return order <= MAX_PAGE_ORDER;
6755}
6756EXPORT_SYMBOL(is_free_buddy_page);
6757
6758#ifdef CONFIG_MEMORY_FAILURE
6759static inline void add_to_free_list(struct page *page, struct zone *zone,
6760				    unsigned int order, int migratetype,
6761				    bool tail)
6762{
6763	__add_to_free_list(page, zone, order, migratetype, tail);
6764	account_freepages(zone, 1 << order, migratetype);
6765}
6766
6767/*
6768 * Break down a higher-order page in sub-pages, and keep our target out of
6769 * buddy allocator.
6770 */
6771static void break_down_buddy_pages(struct zone *zone, struct page *page,
6772				   struct page *target, int low, int high,
6773				   int migratetype)
6774{
6775	unsigned long size = 1 << high;
6776	struct page *current_buddy;
6777
6778	while (high > low) {
6779		high--;
6780		size >>= 1;
6781
6782		if (target >= &page[size]) {
6783			current_buddy = page;
6784			page = page + size;
6785		} else {
6786			current_buddy = page + size;
6787		}
6788
6789		if (set_page_guard(zone, current_buddy, high))
6790			continue;
6791
6792		add_to_free_list(current_buddy, zone, high, migratetype, false);
6793		set_buddy_order(current_buddy, high);
6794	}
6795}
6796
6797/*
6798 * Take a page that will be marked as poisoned off the buddy allocator.
6799 */
6800bool take_page_off_buddy(struct page *page)
6801{
6802	struct zone *zone = page_zone(page);
6803	unsigned long pfn = page_to_pfn(page);
6804	unsigned long flags;
6805	unsigned int order;
6806	bool ret = false;
6807
6808	spin_lock_irqsave(&zone->lock, flags);
6809	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6810		struct page *page_head = page - (pfn & ((1 << order) - 1));
6811		int page_order = buddy_order(page_head);
6812
6813		if (PageBuddy(page_head) && page_order >= order) {
6814			unsigned long pfn_head = page_to_pfn(page_head);
6815			int migratetype = get_pfnblock_migratetype(page_head,
6816								   pfn_head);
6817
6818			del_page_from_free_list(page_head, zone, page_order,
6819						migratetype);
6820			break_down_buddy_pages(zone, page_head, page, 0,
6821						page_order, migratetype);
6822			SetPageHWPoisonTakenOff(page);
6823			ret = true;
6824			break;
6825		}
6826		if (page_count(page_head) > 0)
6827			break;
6828	}
6829	spin_unlock_irqrestore(&zone->lock, flags);
6830	return ret;
6831}
6832
6833/*
6834 * Cancel takeoff done by take_page_off_buddy().
6835 */
6836bool put_page_back_buddy(struct page *page)
6837{
6838	struct zone *zone = page_zone(page);
6839	unsigned long flags;
6840	bool ret = false;
6841
6842	spin_lock_irqsave(&zone->lock, flags);
6843	if (put_page_testzero(page)) {
6844		unsigned long pfn = page_to_pfn(page);
6845		int migratetype = get_pfnblock_migratetype(page, pfn);
6846
6847		ClearPageHWPoisonTakenOff(page);
6848		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6849		if (TestClearPageHWPoison(page)) {
6850			ret = true;
6851		}
6852	}
6853	spin_unlock_irqrestore(&zone->lock, flags);
6854
6855	return ret;
6856}
6857#endif
6858
6859#ifdef CONFIG_ZONE_DMA
6860bool has_managed_dma(void)
6861{
6862	struct pglist_data *pgdat;
6863
6864	for_each_online_pgdat(pgdat) {
6865		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6866
6867		if (managed_zone(zone))
6868			return true;
6869	}
6870	return false;
6871}
6872#endif /* CONFIG_ZONE_DMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6873
6874#ifdef CONFIG_UNACCEPTED_MEMORY
6875
6876/* Counts number of zones with unaccepted pages. */
6877static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6878
6879static bool lazy_accept = true;
6880
6881static int __init accept_memory_parse(char *p)
6882{
6883	if (!strcmp(p, "lazy")) {
6884		lazy_accept = true;
6885		return 0;
6886	} else if (!strcmp(p, "eager")) {
6887		lazy_accept = false;
6888		return 0;
6889	} else {
6890		return -EINVAL;
6891	}
6892}
6893early_param("accept_memory", accept_memory_parse);
6894
6895static bool page_contains_unaccepted(struct page *page, unsigned int order)
6896{
6897	phys_addr_t start = page_to_phys(page);
6898
6899	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
6900}
6901
6902static void __accept_page(struct zone *zone, unsigned long *flags,
6903			  struct page *page)
6904{
6905	bool last;
6906
6907	list_del(&page->lru);
6908	last = list_empty(&zone->unaccepted_pages);
6909
6910	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6911	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6912	__ClearPageUnaccepted(page);
6913	spin_unlock_irqrestore(&zone->lock, *flags);
6914
6915	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
 
 
6916
6917	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6918
6919	if (last)
6920		static_branch_dec(&zones_with_unaccepted_pages);
6921}
6922
6923void accept_page(struct page *page)
6924{
6925	struct zone *zone = page_zone(page);
6926	unsigned long flags;
6927
6928	spin_lock_irqsave(&zone->lock, flags);
6929	if (!PageUnaccepted(page)) {
6930		spin_unlock_irqrestore(&zone->lock, flags);
6931		return;
6932	}
6933
6934	/* Unlocks zone->lock */
6935	__accept_page(zone, &flags, page);
6936}
6937
6938static bool try_to_accept_memory_one(struct zone *zone)
6939{
6940	unsigned long flags;
6941	struct page *page;
6942
6943	spin_lock_irqsave(&zone->lock, flags);
6944	page = list_first_entry_or_null(&zone->unaccepted_pages,
6945					struct page, lru);
6946	if (!page) {
6947		spin_unlock_irqrestore(&zone->lock, flags);
6948		return false;
6949	}
6950
6951	/* Unlocks zone->lock */
6952	__accept_page(zone, &flags, page);
6953
6954	return true;
6955}
6956
6957static inline bool has_unaccepted_memory(void)
6958{
6959	return static_branch_unlikely(&zones_with_unaccepted_pages);
 
 
 
 
 
6960}
6961
6962static bool cond_accept_memory(struct zone *zone, unsigned int order)
6963{
6964	long to_accept;
6965	bool ret = false;
6966
6967	if (!has_unaccepted_memory())
6968		return false;
6969
6970	if (list_empty(&zone->unaccepted_pages))
6971		return false;
6972
6973	/* How much to accept to get to promo watermark? */
6974	to_accept = promo_wmark_pages(zone) -
6975		    (zone_page_state(zone, NR_FREE_PAGES) -
6976		    __zone_watermark_unusable_free(zone, order, 0) -
6977		    zone_page_state(zone, NR_UNACCEPTED));
6978
6979	while (to_accept > 0) {
6980		if (!try_to_accept_memory_one(zone))
6981			break;
6982		ret = true;
6983		to_accept -= MAX_ORDER_NR_PAGES;
6984	}
6985
6986	return ret;
6987}
6988
6989static bool __free_unaccepted(struct page *page)
6990{
6991	struct zone *zone = page_zone(page);
6992	unsigned long flags;
6993	bool first = false;
6994
6995	if (!lazy_accept)
6996		return false;
6997
6998	spin_lock_irqsave(&zone->lock, flags);
6999	first = list_empty(&zone->unaccepted_pages);
7000	list_add_tail(&page->lru, &zone->unaccepted_pages);
7001	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7002	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7003	__SetPageUnaccepted(page);
7004	spin_unlock_irqrestore(&zone->lock, flags);
7005
7006	if (first)
7007		static_branch_inc(&zones_with_unaccepted_pages);
7008
7009	return true;
7010}
7011
7012#else
7013
7014static bool page_contains_unaccepted(struct page *page, unsigned int order)
7015{
7016	return false;
7017}
7018
7019static bool cond_accept_memory(struct zone *zone, unsigned int order)
7020{
7021	return false;
7022}
7023
7024static bool __free_unaccepted(struct page *page)
7025{
7026	BUILD_BUG();
7027	return false;
7028}
7029
7030#endif /* CONFIG_UNACCEPTED_MEMORY */