Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
 
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
 
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
 
  45#include <linux/stop_machine.h>
 
  46#include <linux/sort.h>
  47#include <linux/pfn.h>
  48#include <linux/backing-dev.h>
  49#include <linux/fault-inject.h>
  50#include <linux/page-isolation.h>
  51#include <linux/page_cgroup.h>
  52#include <linux/debugobjects.h>
  53#include <linux/kmemleak.h>
  54#include <linux/memory.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <linux/ftrace_event.h>
  58#include <linux/memcontrol.h>
  59#include <linux/prefetch.h>
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61#include <asm/tlbflush.h>
  62#include <asm/div64.h>
  63#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  66DEFINE_PER_CPU(int, numa_node);
  67EXPORT_PER_CPU_SYMBOL(numa_node);
  68#endif
  69
 
 
  70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  71/*
  72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  75 * defined in <linux/topology.h>.
  76 */
  77DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  79#endif
  80
 
 
 
 
 
 
 
 
 
 
 
 
 
  81/*
  82 * Array of node states.
  83 */
  84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  85	[N_POSSIBLE] = NODE_MASK_ALL,
  86	[N_ONLINE] = { { [0] = 1UL } },
  87#ifndef CONFIG_NUMA
  88	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
  89#ifdef CONFIG_HIGHMEM
  90	[N_HIGH_MEMORY] = { { [0] = 1UL } },
  91#endif
 
  92	[N_CPU] = { { [0] = 1UL } },
  93#endif	/* NUMA */
  94};
  95EXPORT_SYMBOL(node_states);
  96
  97unsigned long totalram_pages __read_mostly;
 
  98unsigned long totalreserve_pages __read_mostly;
  99int percpu_pagelist_fraction;
 
 
 100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101
 102#ifdef CONFIG_PM_SLEEP
 103/*
 104 * The following functions are used by the suspend/hibernate code to temporarily
 105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 106 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 109 * guaranteed not to run in parallel with that modification).
 
 110 */
 111
 112static gfp_t saved_gfp_mask;
 113
 114void pm_restore_gfp_mask(void)
 115{
 116	WARN_ON(!mutex_is_locked(&pm_mutex));
 117	if (saved_gfp_mask) {
 118		gfp_allowed_mask = saved_gfp_mask;
 119		saved_gfp_mask = 0;
 120	}
 121}
 122
 123void pm_restrict_gfp_mask(void)
 124{
 125	WARN_ON(!mutex_is_locked(&pm_mutex));
 126	WARN_ON(saved_gfp_mask);
 127	saved_gfp_mask = gfp_allowed_mask;
 128	gfp_allowed_mask &= ~GFP_IOFS;
 
 
 
 
 
 
 
 129}
 130#endif /* CONFIG_PM_SLEEP */
 131
 132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 133int pageblock_order __read_mostly;
 134#endif
 135
 136static void __free_pages_ok(struct page *page, unsigned int order);
 
 137
 138/*
 139 * results with 256, 32 in the lowmem_reserve sysctl:
 140 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 141 *	1G machine -> (16M dma, 784M normal, 224M high)
 142 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 143 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 144 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 145 *
 146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 147 * don't need any ZONE_NORMAL reservation
 148 */
 149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 150#ifdef CONFIG_ZONE_DMA
 151	 256,
 152#endif
 153#ifdef CONFIG_ZONE_DMA32
 154	 256,
 155#endif
 
 156#ifdef CONFIG_HIGHMEM
 157	 32,
 158#endif
 159	 32,
 160};
 161
 162EXPORT_SYMBOL(totalram_pages);
 163
 164static char * const zone_names[MAX_NR_ZONES] = {
 165#ifdef CONFIG_ZONE_DMA
 166	 "DMA",
 167#endif
 168#ifdef CONFIG_ZONE_DMA32
 169	 "DMA32",
 170#endif
 171	 "Normal",
 172#ifdef CONFIG_HIGHMEM
 173	 "HighMem",
 174#endif
 175	 "Movable",
 
 
 
 176};
 177
 178int min_free_kbytes = 1024;
 
 
 
 
 
 
 
 
 
 
 
 179
 180static unsigned long __meminitdata nr_kernel_pages;
 181static unsigned long __meminitdata nr_all_pages;
 182static unsigned long __meminitdata dma_reserve;
 183
 184#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 185  /*
 186   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
 187   * ranges of memory (RAM) that may be registered with add_active_range().
 188   * Ranges passed to add_active_range() will be merged if possible
 189   * so the number of times add_active_range() can be called is
 190   * related to the number of nodes and the number of holes
 191   */
 192  #ifdef CONFIG_MAX_ACTIVE_REGIONS
 193    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
 194    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
 195  #else
 196    #if MAX_NUMNODES >= 32
 197      /* If there can be many nodes, allow up to 50 holes per node */
 198      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
 199    #else
 200      /* By default, allow up to 256 distinct regions */
 201      #define MAX_ACTIVE_REGIONS 256
 202    #endif
 203  #endif
 204
 205  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
 206  static int __meminitdata nr_nodemap_entries;
 207  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 208  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 209  static unsigned long __initdata required_kernelcore;
 210  static unsigned long __initdata required_movablecore;
 211  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 212
 213  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 214  int movable_zone;
 215  EXPORT_SYMBOL(movable_zone);
 216#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 217
 218#if MAX_NUMNODES > 1
 219int nr_node_ids __read_mostly = MAX_NUMNODES;
 220int nr_online_nodes __read_mostly = 1;
 221EXPORT_SYMBOL(nr_node_ids);
 222EXPORT_SYMBOL(nr_online_nodes);
 223#endif
 224
 225int page_group_by_mobility_disabled __read_mostly;
 226
 227static void set_pageblock_migratetype(struct page *page, int migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 
 
 
 
 
 229
 230	if (unlikely(page_group_by_mobility_disabled))
 231		migratetype = MIGRATE_UNMOVABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233	set_pageblock_flags_group(page, (unsigned long)migratetype,
 234					PB_migrate, PB_migrate_end);
 
 
 235}
 236
 237bool oom_killer_disabled __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239#ifdef CONFIG_DEBUG_VM
 240static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 241{
 242	int ret = 0;
 243	unsigned seq;
 244	unsigned long pfn = page_to_pfn(page);
 
 245
 246	do {
 247		seq = zone_span_seqbegin(zone);
 248		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
 249			ret = 1;
 250		else if (pfn < zone->zone_start_pfn)
 251			ret = 1;
 252	} while (zone_span_seqretry(zone, seq));
 253
 
 
 
 
 
 254	return ret;
 255}
 256
 257static int page_is_consistent(struct zone *zone, struct page *page)
 258{
 259	if (!pfn_valid_within(page_to_pfn(page)))
 260		return 0;
 261	if (zone != page_zone(page))
 262		return 0;
 263
 264	return 1;
 265}
 266/*
 267 * Temporary debugging check for pages not lying within a given zone.
 268 */
 269static int bad_range(struct zone *zone, struct page *page)
 270{
 271	if (page_outside_zone_boundaries(zone, page))
 272		return 1;
 273	if (!page_is_consistent(zone, page))
 274		return 1;
 275
 276	return 0;
 277}
 278#else
 279static inline int bad_range(struct zone *zone, struct page *page)
 280{
 281	return 0;
 282}
 283#endif
 284
 285static void bad_page(struct page *page)
 286{
 287	static unsigned long resume;
 288	static unsigned long nr_shown;
 289	static unsigned long nr_unshown;
 290
 291	/* Don't complain about poisoned pages */
 292	if (PageHWPoison(page)) {
 293		reset_page_mapcount(page); /* remove PageBuddy */
 294		return;
 295	}
 296
 297	/*
 298	 * Allow a burst of 60 reports, then keep quiet for that minute;
 299	 * or allow a steady drip of one report per second.
 300	 */
 301	if (nr_shown == 60) {
 302		if (time_before(jiffies, resume)) {
 303			nr_unshown++;
 304			goto out;
 305		}
 306		if (nr_unshown) {
 307			printk(KERN_ALERT
 308			      "BUG: Bad page state: %lu messages suppressed\n",
 309				nr_unshown);
 310			nr_unshown = 0;
 311		}
 312		nr_shown = 0;
 313	}
 314	if (nr_shown++ == 0)
 315		resume = jiffies + 60 * HZ;
 316
 317	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 318		current->comm, page_to_pfn(page));
 319	dump_page(page);
 320
 
 321	dump_stack();
 322out:
 323	/* Leave bad fields for debug, except PageBuddy could make trouble */
 324	reset_page_mapcount(page); /* remove PageBuddy */
 325	add_taint(TAINT_BAD_PAGE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326}
 327
 328/*
 329 * Higher-order pages are called "compound pages".  They are structured thusly:
 330 *
 331 * The first PAGE_SIZE page is called the "head page".
 332 *
 333 * The remaining PAGE_SIZE pages are called "tail pages".
 
 334 *
 335 * All pages have PG_compound set.  All pages have their ->private pointing at
 336 * the head page (even the head page has this).
 337 *
 338 * The first tail page's ->lru.next holds the address of the compound page's
 339 * put_page() function.  Its ->lru.prev holds the order of allocation.
 340 * This usage means that zero-order pages may not be compound.
 341 */
 342
 343static void free_compound_page(struct page *page)
 344{
 345	__free_pages_ok(page, compound_order(page));
 
 346}
 347
 348void prep_compound_page(struct page *page, unsigned long order)
 349{
 350	int i;
 351	int nr_pages = 1 << order;
 352
 353	set_compound_page_dtor(page, free_compound_page);
 354	set_compound_order(page, order);
 355	__SetPageHead(page);
 356	for (i = 1; i < nr_pages; i++) {
 357		struct page *p = page + i;
 358
 359		__SetPageTail(p);
 360		p->first_page = page;
 361	}
 
 
 
 
 
 
 362}
 363
 364/* update __split_huge_page_refcount if you change this function */
 365static int destroy_compound_page(struct page *page, unsigned long order)
 366{
 367	int i;
 368	int nr_pages = 1 << order;
 369	int bad = 0;
 370
 371	if (unlikely(compound_order(page) != order) ||
 372	    unlikely(!PageHead(page))) {
 373		bad_page(page);
 374		bad++;
 375	}
 376
 377	__ClearPageHead(page);
 378
 379	for (i = 1; i < nr_pages; i++) {
 380		struct page *p = page + i;
 381
 382		if (unlikely(!PageTail(p) || (p->first_page != page))) {
 383			bad_page(page);
 384			bad++;
 385		}
 386		__ClearPageTail(p);
 387	}
 388
 389	return bad;
 390}
 
 391
 392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 393{
 394	int i;
 395
 396	/*
 397	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 398	 * and __GFP_HIGHMEM from hard or soft interrupt context.
 399	 */
 400	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 401	for (i = 0; i < (1 << order); i++)
 402		clear_highpage(page + i);
 403}
 
 404
 405static inline void set_page_order(struct page *page, int order)
 
 406{
 
 
 
 
 
 
 
 
 407	set_page_private(page, order);
 408	__SetPageBuddy(page);
 
 
 
 409}
 410
 411static inline void rmv_page_order(struct page *page)
 
 412{
 413	__ClearPageBuddy(page);
 
 
 
 
 414	set_page_private(page, 0);
 
 
 415}
 
 
 
 
 
 
 416
 417/*
 418 * Locate the struct page for both the matching buddy in our
 419 * pair (buddy1) and the combined O(n+1) page they form (page).
 420 *
 421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 422 * the following equation:
 423 *     B2 = B1 ^ (1 << O)
 424 * For example, if the starting buddy (buddy2) is #8 its order
 425 * 1 buddy is #10:
 426 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 427 *
 428 * 2) Any buddy B will have an order O+1 parent P which
 429 * satisfies the following equation:
 430 *     P = B & ~(1 << O)
 431 *
 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 433 */
 434static inline unsigned long
 435__find_buddy_index(unsigned long page_idx, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436{
 437	return page_idx ^ (1 << order);
 
 438}
 439
 440/*
 441 * This function checks whether a page is free && is the buddy
 442 * we can do coalesce a page and its buddy if
 443 * (a) the buddy is not in a hole &&
 444 * (b) the buddy is in the buddy system &&
 445 * (c) a page and its buddy have the same order &&
 446 * (d) a page and its buddy are in the same zone.
 447 *
 448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
 449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
 450 *
 451 * For recording page's order, we use page_private(page).
 452 */
 453static inline int page_is_buddy(struct page *page, struct page *buddy,
 454								int order)
 455{
 456	if (!pfn_valid_within(page_to_pfn(buddy)))
 457		return 0;
 
 
 
 458
 
 
 
 
 459	if (page_zone_id(page) != page_zone_id(buddy))
 460		return 0;
 461
 462	if (PageBuddy(buddy) && page_order(buddy) == order) {
 463		VM_BUG_ON(page_count(buddy) != 0);
 464		return 1;
 465	}
 466	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467}
 468
 469/*
 470 * Freeing function for a buddy system allocator.
 471 *
 472 * The concept of a buddy system is to maintain direct-mapped table
 473 * (containing bit values) for memory blocks of various "orders".
 474 * The bottom level table contains the map for the smallest allocatable
 475 * units of memory (here, pages), and each level above it describes
 476 * pairs of units from the levels below, hence, "buddies".
 477 * At a high level, all that happens here is marking the table entry
 478 * at the bottom level available, and propagating the changes upward
 479 * as necessary, plus some accounting needed to play nicely with other
 480 * parts of the VM system.
 481 * At each level, we keep a list of pages, which are heads of continuous
 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
 483 * order is recorded in page_private(page) field.
 484 * So when we are allocating or freeing one, we can derive the state of the
 485 * other.  That is, if we allocate a small block, and both were   
 486 * free, the remainder of the region must be split into blocks.   
 487 * If a block is freed, and its buddy is also free, then this
 488 * triggers coalescing into a block of larger size.            
 489 *
 490 * -- wli
 491 */
 492
 493static inline void __free_one_page(struct page *page,
 
 494		struct zone *zone, unsigned int order,
 495		int migratetype)
 496{
 497	unsigned long page_idx;
 498	unsigned long combined_idx;
 499	unsigned long uninitialized_var(buddy_idx);
 
 500	struct page *buddy;
 
 501
 502	if (unlikely(PageCompound(page)))
 503		if (unlikely(destroy_compound_page(page, order)))
 504			return;
 
 505
 506	VM_BUG_ON(migratetype == -1);
 
 
 507
 508	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 
 509
 510	VM_BUG_ON(page_idx & ((1 << order) - 1));
 511	VM_BUG_ON(bad_range(zone, page));
 
 
 
 
 
 
 
 512
 513	while (order < MAX_ORDER-1) {
 514		buddy_idx = __find_buddy_index(page_idx, order);
 515		buddy = page + (buddy_idx - page_idx);
 516		if (!page_is_buddy(page, buddy, order))
 517			break;
 518
 519		/* Our buddy is free, merge with it and move up one order. */
 520		list_del(&buddy->lru);
 521		zone->free_area[order].nr_free--;
 522		rmv_page_order(buddy);
 523		combined_idx = buddy_idx & page_idx;
 524		page = page + (combined_idx - page_idx);
 525		page_idx = combined_idx;
 
 
 
 526		order++;
 527	}
 528	set_page_order(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530	/*
 531	 * If this is not the largest possible page, check if the buddy
 532	 * of the next-highest order is free. If it is, it's possible
 533	 * that pages are being freed that will coalesce soon. In case,
 534	 * that is happening, add the free page to the tail of the list
 535	 * so it's less likely to be used soon and more likely to be merged
 536	 * as a higher order page
 537	 */
 538	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 539		struct page *higher_page, *higher_buddy;
 540		combined_idx = buddy_idx & page_idx;
 541		higher_page = page + (combined_idx - page_idx);
 542		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 543		higher_buddy = page + (buddy_idx - combined_idx);
 544		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 545			list_add_tail(&page->lru,
 546				&zone->free_area[order].free_list[migratetype]);
 
 
 
 
 
 
 
 
 
 
 547			goto out;
 548		}
 
 549	}
 550
 551	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 
 
 
 
 
 
 
 552out:
 553	zone->free_area[order].nr_free++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554}
 555
 
 556/*
 557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
 558 * Page should not be on lru, so no need to fix that up.
 559 * free_pages_check() will verify...
 560 */
 561static inline void free_page_mlock(struct page *page)
 562{
 563	__dec_zone_page_state(page, NR_MLOCK);
 564	__count_vm_event(UNEVICTABLE_MLOCKFREED);
 565}
 566
 567static inline int free_pages_check(struct page *page)
 568{
 569	if (unlikely(page_mapcount(page) |
 570		(page->mapping != NULL)  |
 571		(atomic_read(&page->_count) != 0) |
 572		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
 573		(mem_cgroup_bad_page_check(page)))) {
 574		bad_page(page);
 575		return 1;
 576	}
 577	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 578		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 579	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580}
 581
 582/*
 583 * Frees a number of pages from the PCP lists
 584 * Assumes all pages on list are in same zone, and of same order.
 585 * count is the number of pages to free.
 586 *
 587 * If the zone was previously in an "all pages pinned" state then look to
 588 * see if this freeing clears that state.
 589 *
 590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 591 * pinned" detection logic.
 592 */
 593static void free_pcppages_bulk(struct zone *zone, int count,
 594					struct per_cpu_pages *pcp)
 595{
 596	int migratetype = 0;
 597	int batch_free = 0;
 598	int to_free = count;
 599
 600	spin_lock(&zone->lock);
 601	zone->all_unreclaimable = 0;
 602	zone->pages_scanned = 0;
 
 603
 604	while (to_free) {
 605		struct page *page;
 
 
 
 
 606		struct list_head *list;
 607
 608		/*
 609		 * Remove pages from lists in a round-robin fashion. A
 610		 * batch_free count is maintained that is incremented when an
 611		 * empty list is encountered.  This is so more pages are freed
 612		 * off fuller lists instead of spinning excessively around empty
 613		 * lists
 614		 */
 615		do {
 616			batch_free++;
 617			if (++migratetype == MIGRATE_PCPTYPES)
 618				migratetype = 0;
 619			list = &pcp->lists[migratetype];
 620		} while (list_empty(list));
 621
 622		/* This is the only non-empty list. Free them all. */
 623		if (batch_free == MIGRATE_PCPTYPES)
 624			batch_free = to_free;
 625
 
 
 626		do {
 627			page = list_entry(list->prev, struct page, lru);
 628			/* must delete as __free_one_page list manipulates */
 629			list_del(&page->lru);
 630			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
 631			__free_one_page(page, zone, 0, page_private(page));
 632			trace_mm_page_pcpu_drain(page, 0, page_private(page));
 633		} while (--to_free && --batch_free && !list_empty(list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634	}
 635	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
 636	spin_unlock(&zone->lock);
 637}
 638
 639static void free_one_page(struct zone *zone, struct page *page, int order,
 640				int migratetype)
 
 
 641{
 642	spin_lock(&zone->lock);
 643	zone->all_unreclaimable = 0;
 644	zone->pages_scanned = 0;
 645
 646	__free_one_page(page, zone, order, migratetype);
 647	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
 648	spin_unlock(&zone->lock);
 
 
 
 
 649}
 650
 651static bool free_pages_prepare(struct page *page, unsigned int order)
 
 652{
 653	int i;
 654	int bad = 0;
 
 
 
 
 655
 656	trace_mm_page_free_direct(page, order);
 657	kmemcheck_free_shadow(page, order);
 
 
 
 
 
 658
 659	if (PageAnon(page))
 660		page->mapping = NULL;
 661	for (i = 0; i < (1 << order); i++)
 662		bad += free_pages_check(page + i);
 663	if (bad)
 664		return false;
 665
 666	if (!PageHighMem(page)) {
 667		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
 668		debug_check_no_obj_freed(page_address(page),
 669					   PAGE_SIZE << order);
 
 
 
 
 
 
 
 670	}
 671	arch_free_page(page, order);
 672	kernel_map_pages(page, 1 << order, 0);
 
 
 
 
 
 673
 674	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675}
 676
 677static void __free_pages_ok(struct page *page, unsigned int order)
 
 678{
 679	unsigned long flags;
 680	int wasMlocked = __TestClearPageMlocked(page);
 
 
 681
 682	if (!free_pages_prepare(page, order))
 683		return;
 684
 685	local_irq_save(flags);
 686	if (unlikely(wasMlocked))
 687		free_page_mlock(page);
 
 
 
 
 
 
 
 688	__count_vm_events(PGFREE, 1 << order);
 689	free_one_page(page_zone(page), page, order,
 690					get_pageblock_migratetype(page));
 691	local_irq_restore(flags);
 692}
 693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694/*
 695 * permit the bootmem allocator to evade page validation on high-order frees
 
 
 
 
 
 
 
 
 
 
 
 
 
 696 */
 697void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
 
 698{
 699	if (order == 0) {
 700		__ClearPageReserved(page);
 701		set_page_count(page, 0);
 702		set_page_refcounted(page);
 703		__free_page(page);
 704	} else {
 705		int loop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707		prefetchw(page);
 708		for (loop = 0; loop < BITS_PER_LONG; loop++) {
 709			struct page *p = &page[loop];
 710
 711			if (loop + 1 < BITS_PER_LONG)
 712				prefetchw(p + 1);
 713			__ClearPageReserved(p);
 714			set_page_count(p, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715		}
 
 
 
 
 716
 717		set_page_refcounted(page);
 718		__free_pages(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719	}
 
 720}
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722
 723/*
 724 * The order of subdivision here is critical for the IO subsystem.
 725 * Please do not alter this order without good reasons and regression
 726 * testing. Specifically, as large blocks of memory are subdivided,
 727 * the order in which smaller blocks are delivered depends on the order
 728 * they're subdivided in this function. This is the primary factor
 729 * influencing the order in which pages are delivered to the IO
 730 * subsystem according to empirical testing, and this is also justified
 731 * by considering the behavior of a buddy system containing a single
 732 * large block of memory acted on by a series of small allocations.
 733 * This behavior is a critical factor in sglist merging's success.
 734 *
 735 * -- wli
 736 */
 737static inline void expand(struct zone *zone, struct page *page,
 738	int low, int high, struct free_area *area,
 739	int migratetype)
 740{
 741	unsigned long size = 1 << high;
 742
 743	while (high > low) {
 744		area--;
 745		high--;
 746		size >>= 1;
 747		VM_BUG_ON(bad_range(zone, &page[size]));
 748		list_add(&page[size].lru, &area->free_list[migratetype]);
 749		area->nr_free++;
 750		set_page_order(&page[size], high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751	}
 
 
 
 752}
 753
 754/*
 755 * This page is about to be returned from the page allocator
 756 */
 757static inline int check_new_page(struct page *page)
 758{
 759	if (unlikely(page_mapcount(page) |
 760		(page->mapping != NULL)  |
 761		(atomic_read(&page->_count) != 0)  |
 762		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
 763		(mem_cgroup_bad_page_check(page)))) {
 764		bad_page(page);
 765		return 1;
 766	}
 767	return 0;
 
 
 
 
 
 
 
 
 
 
 
 768}
 769
 770static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 771{
 772	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773
 
 
 
 774	for (i = 0; i < (1 << order); i++) {
 775		struct page *p = page + i;
 
 776		if (unlikely(check_new_page(p)))
 777			return 1;
 778	}
 779
 
 
 
 
 
 
 780	set_page_private(page, 0);
 781	set_page_refcounted(page);
 782
 783	arch_alloc_page(page, order);
 784	kernel_map_pages(page, 1 << order, 1);
 785
 786	if (gfp_flags & __GFP_ZERO)
 787		prep_zero_page(page, order, gfp_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788
 789	if (order && (gfp_flags & __GFP_COMP))
 790		prep_compound_page(page, order);
 791
 792	return 0;
 
 
 
 
 
 
 
 
 
 793}
 794
 795/*
 796 * Go through the free lists for the given migratetype and remove
 797 * the smallest available page from the freelists
 798 */
 799static inline
 800struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 801						int migratetype)
 802{
 803	unsigned int current_order;
 804	struct free_area * area;
 805	struct page *page;
 806
 807	/* Find a page of the appropriate size in the preferred list */
 808	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 809		area = &(zone->free_area[current_order]);
 810		if (list_empty(&area->free_list[migratetype]))
 
 811			continue;
 812
 813		page = list_entry(area->free_list[migratetype].next,
 814							struct page, lru);
 815		list_del(&page->lru);
 816		rmv_page_order(page);
 817		area->nr_free--;
 818		expand(zone, page, order, current_order, area, migratetype);
 819		return page;
 820	}
 821
 822	return NULL;
 823}
 824
 825
 826/*
 827 * This array describes the order lists are fallen back to when
 828 * the free lists for the desirable migrate type are depleted
 829 */
 830static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
 831	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
 832	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
 833	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 834	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
 
 
 
 
 
 835};
 836
 
 
 
 
 
 
 
 
 
 
 
 837/*
 838 * Move the free pages in a range to the free lists of the requested type.
 839 * Note that start_page and end_pages are not aligned on a pageblock
 840 * boundary. If alignment is required, use move_freepages_block()
 841 */
 842static int move_freepages(struct zone *zone,
 843			  struct page *start_page, struct page *end_page,
 844			  int migratetype)
 845{
 846	struct page *page;
 847	unsigned long order;
 
 848	int pages_moved = 0;
 849
 850#ifndef CONFIG_HOLES_IN_ZONE
 851	/*
 852	 * page_zone is not safe to call in this context when
 853	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 854	 * anyway as we check zone boundaries in move_freepages_block().
 855	 * Remove at a later date when no bug reports exist related to
 856	 * grouping pages by mobility
 857	 */
 858	BUG_ON(page_zone(start_page) != page_zone(end_page));
 859#endif
 860
 861	for (page = start_page; page <= end_page;) {
 862		/* Make sure we are not inadvertently changing nodes */
 863		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
 864
 865		if (!pfn_valid_within(page_to_pfn(page))) {
 866			page++;
 867			continue;
 868		}
 869
 
 870		if (!PageBuddy(page)) {
 871			page++;
 
 
 
 
 
 
 
 
 872			continue;
 873		}
 874
 875		order = page_order(page);
 876		list_move(&page->lru,
 877			  &zone->free_area[order].free_list[migratetype]);
 878		page += 1 << order;
 
 
 
 879		pages_moved += 1 << order;
 880	}
 881
 882	return pages_moved;
 883}
 884
 885static int move_freepages_block(struct zone *zone, struct page *page,
 886				int migratetype)
 887{
 888	unsigned long start_pfn, end_pfn;
 889	struct page *start_page, *end_page;
 
 
 890
 891	start_pfn = page_to_pfn(page);
 892	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
 893	start_page = pfn_to_page(start_pfn);
 894	end_page = start_page + pageblock_nr_pages - 1;
 895	end_pfn = start_pfn + pageblock_nr_pages - 1;
 896
 897	/* Do not cross zone boundaries */
 898	if (start_pfn < zone->zone_start_pfn)
 899		start_page = page;
 900	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
 901		return 0;
 902
 903	return move_freepages(zone, start_page, end_page, migratetype);
 
 904}
 905
 906static void change_pageblock_range(struct page *pageblock_page,
 907					int start_order, int migratetype)
 908{
 909	int nr_pageblocks = 1 << (start_order - pageblock_order);
 910
 911	while (nr_pageblocks--) {
 912		set_pageblock_migratetype(pageblock_page, migratetype);
 913		pageblock_page += pageblock_nr_pages;
 914	}
 915}
 916
 917/* Remove an element from the buddy allocator from the fallback list */
 918static inline struct page *
 919__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920{
 921	struct free_area * area;
 922	int current_order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923	struct page *page;
 924	int migratetype, i;
 
 925
 926	/* Find the largest possible block of pages in the other list */
 927	for (current_order = MAX_ORDER-1; current_order >= order;
 928						--current_order) {
 929		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
 930			migratetype = fallbacks[start_migratetype][i];
 
 
 
 
 931
 932			/* MIGRATE_RESERVE handled later if necessary */
 933			if (migratetype == MIGRATE_RESERVE)
 934				continue;
 935
 936			area = &(zone->free_area[current_order]);
 937			if (list_empty(&area->free_list[migratetype]))
 938				continue;
 939
 940			page = list_entry(area->free_list[migratetype].next,
 941					struct page, lru);
 942			area->nr_free--;
 943
 944			/*
 945			 * If breaking a large block of pages, move all free
 946			 * pages to the preferred allocation list. If falling
 947			 * back for a reclaimable kernel allocation, be more
 948			 * aggressive about taking ownership of free pages
 
 949			 */
 950			if (unlikely(current_order >= (pageblock_order >> 1)) ||
 951					start_migratetype == MIGRATE_RECLAIMABLE ||
 952					page_group_by_mobility_disabled) {
 953				unsigned long pages;
 954				pages = move_freepages_block(zone, page,
 955								start_migratetype);
 956
 957				/* Claim the whole block if over half of it is free */
 958				if (pages >= (1 << (pageblock_order-1)) ||
 959						page_group_by_mobility_disabled)
 960					set_pageblock_migratetype(page,
 961								start_migratetype);
 962
 963				migratetype = start_migratetype;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964			}
 
 
 
 965
 966			/* Remove the page from the freelists */
 967			list_del(&page->lru);
 968			rmv_page_order(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969
 970			/* Take ownership for orders >= pageblock_order */
 971			if (current_order >= pageblock_order)
 972				change_pageblock_range(page, current_order,
 973							start_migratetype);
 
 
 
 
 
 
 
 974
 975			expand(zone, page, order, current_order, area, migratetype);
 
 976
 977			trace_mm_page_alloc_extfrag(page, order, current_order,
 978				start_migratetype, migratetype);
 979
 980			return page;
 981		}
 
 
 
 
 
 
 982	}
 983
 984	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985}
 986
 987/*
 988 * Do the hard work of removing an element from the buddy allocator.
 989 * Call me with the zone->lock already held.
 990 */
 991static struct page *__rmqueue(struct zone *zone, unsigned int order,
 992						int migratetype)
 
 993{
 994	struct page *page;
 995
 996retry_reserve:
 997	page = __rmqueue_smallest(zone, order, migratetype);
 998
 999	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000		page = __rmqueue_fallback(zone, order, migratetype);
1001
1002		/*
1003		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004		 * is used because __rmqueue_smallest is an inline function
1005		 * and we want just one call site
1006		 */
1007		if (!page) {
1008			migratetype = MIGRATE_RESERVE;
1009			goto retry_reserve;
 
 
 
1010		}
1011	}
1012
1013	trace_mm_page_alloc_zone_locked(page, order, migratetype);
 
 
 
 
 
 
 
 
 
 
 
1014	return page;
1015}
1016
1017/* 
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1021 */
1022static int rmqueue_bulk(struct zone *zone, unsigned int order, 
1023			unsigned long count, struct list_head *list,
1024			int migratetype, int cold)
1025{
1026	int i;
1027	
 
 
 
 
1028	spin_lock(&zone->lock);
1029	for (i = 0; i < count; ++i) {
1030		struct page *page = __rmqueue(zone, order, migratetype);
 
1031		if (unlikely(page == NULL))
1032			break;
1033
 
 
 
1034		/*
1035		 * Split buddy pages returned by expand() are received here
1036		 * in physical page order. The page is added to the callers and
1037		 * list and the list head then moves forward. From the callers
1038		 * perspective, the linked list is ordered by page number in
1039		 * some conditions. This is useful for IO devices that can
1040		 * merge IO requests if the physical pages are ordered
1041		 * properly.
 
1042		 */
1043		if (likely(cold == 0))
1044			list_add(&page->lru, list);
1045		else
1046			list_add_tail(&page->lru, list);
1047		set_page_private(page, migratetype);
1048		list = &page->lru;
1049	}
 
 
 
 
 
 
 
1050	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051	spin_unlock(&zone->lock);
1052	return i;
1053}
1054
1055#ifdef CONFIG_NUMA
1056/*
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1060 *
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1063 */
1064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1065{
1066	unsigned long flags;
1067	int to_drain;
1068
1069	local_irq_save(flags);
1070	if (pcp->count >= pcp->batch)
1071		to_drain = pcp->batch;
1072	else
1073		to_drain = pcp->count;
1074	free_pcppages_bulk(zone, to_drain, pcp);
1075	pcp->count -= to_drain;
1076	local_irq_restore(flags);
1077}
1078#endif
1079
1080/*
1081 * Drain pages of the indicated processor.
1082 *
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1086 */
1087static void drain_pages(unsigned int cpu)
1088{
1089	unsigned long flags;
1090	struct zone *zone;
1091
1092	for_each_populated_zone(zone) {
1093		struct per_cpu_pageset *pset;
1094		struct per_cpu_pages *pcp;
1095
1096		local_irq_save(flags);
1097		pset = per_cpu_ptr(zone->pageset, cpu);
 
1098
1099		pcp = &pset->pcp;
1100		if (pcp->count) {
1101			free_pcppages_bulk(zone, pcp->count, pcp);
1102			pcp->count = 0;
1103		}
1104		local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
1105	}
1106}
1107
1108/*
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110 */
1111void drain_local_pages(void *arg)
1112{
1113	drain_pages(smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114}
1115
1116/*
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
 
 
 
 
1118 */
1119void drain_all_pages(void)
1120{
1121	on_each_cpu(drain_local_pages, NULL, 1);
1122}
1123
1124#ifdef CONFIG_HIBERNATION
1125
 
 
 
 
 
1126void mark_free_pages(struct zone *zone)
1127{
1128	unsigned long pfn, max_zone_pfn;
1129	unsigned long flags;
1130	int order, t;
1131	struct list_head *curr;
1132
1133	if (!zone->spanned_pages)
1134		return;
1135
1136	spin_lock_irqsave(&zone->lock, flags);
1137
1138	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140		if (pfn_valid(pfn)) {
1141			struct page *page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
1142
1143			if (!swsusp_page_is_forbidden(page))
1144				swsusp_unset_page_free(page);
1145		}
1146
1147	for_each_migratetype_order(order, t) {
1148		list_for_each(curr, &zone->free_area[order].free_list[t]) {
 
1149			unsigned long i;
1150
1151			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152			for (i = 0; i < (1UL << order); i++)
 
 
 
 
1153				swsusp_set_page_free(pfn_to_page(pfn + i));
 
1154		}
1155	}
1156	spin_unlock_irqrestore(&zone->lock, flags);
1157}
1158#endif /* CONFIG_PM */
1159
1160/*
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1163 */
1164void free_hot_cold_page(struct page *page, int cold)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165{
1166	struct zone *zone = page_zone(page);
1167	struct per_cpu_pages *pcp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168	unsigned long flags;
 
1169	int migratetype;
1170	int wasMlocked = __TestClearPageMlocked(page);
1171
1172	if (!free_pages_prepare(page, 0))
1173		return;
1174
1175	migratetype = get_pageblock_migratetype(page);
1176	set_page_private(page, migratetype);
1177	local_irq_save(flags);
1178	if (unlikely(wasMlocked))
1179		free_page_mlock(page);
1180	__count_vm_event(PGFREE);
1181
1182	/*
1183	 * We only track unmovable, reclaimable and movable on pcp lists.
1184	 * Free ISOLATE pages back to the allocator because they are being
1185	 * offlined but treat RESERVE as movable pages so we can get those
1186	 * areas back if necessary. Otherwise, we may have to free
1187	 * excessively into the page allocator
1188	 */
1189	if (migratetype >= MIGRATE_PCPTYPES) {
1190		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191			free_one_page(zone, page, 0, migratetype);
1192			goto out;
 
1193		}
1194		migratetype = MIGRATE_MOVABLE;
1195	}
1196
1197	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1198	if (cold)
1199		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1200	else
1201		list_add(&page->lru, &pcp->lists[migratetype]);
1202	pcp->count++;
1203	if (pcp->count >= pcp->high) {
1204		free_pcppages_bulk(zone, pcp->batch, pcp);
1205		pcp->count -= pcp->batch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206	}
1207
1208out:
1209	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210}
1211
1212/*
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220void split_page(struct page *page, unsigned int order)
1221{
1222	int i;
1223
1224	VM_BUG_ON(PageCompound(page));
1225	VM_BUG_ON(!page_count(page));
1226
1227#ifdef CONFIG_KMEMCHECK
1228	/*
1229	 * Split shadow pages too, because free(page[0]) would
1230	 * otherwise free the whole shadow.
1231	 */
1232	if (kmemcheck_page_is_tracked(page))
1233		split_page(virt_to_page(page[0].shadow), order);
1234#endif
1235
1236	for (i = 1; i < (1 << order); i++)
1237		set_page_refcounted(page + i);
 
 
1238}
 
1239
1240/*
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1246 *
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1249 */
1250int split_free_page(struct page *page)
1251{
1252	unsigned int order;
1253	unsigned long watermark;
1254	struct zone *zone;
 
1255
1256	BUG_ON(!PageBuddy(page));
1257
1258	zone = page_zone(page);
1259	order = page_order(page);
1260
1261	/* Obey watermarks as if the page was being allocated */
1262	watermark = low_wmark_pages(zone) + (1 << order);
1263	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264		return 0;
 
 
 
 
 
 
 
 
 
1265
1266	/* Remove page from free list */
1267	list_del(&page->lru);
1268	zone->free_area[order].nr_free--;
1269	rmv_page_order(page);
1270	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271
1272	/* Split into individual pages */
1273	set_page_refcounted(page);
1274	split_page(page, order);
1275
 
 
 
 
1276	if (order >= pageblock_order - 1) {
1277		struct page *endpage = page + (1 << order) - 1;
1278		for (; page < endpage; page += pageblock_nr_pages)
1279			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281
1282	return 1 << order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283}
1284
1285/*
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1287 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1288 * or two.
1289 */
1290static inline
1291struct page *buffered_rmqueue(struct zone *preferred_zone,
1292			struct zone *zone, int order, gfp_t gfp_flags,
 
1293			int migratetype)
1294{
1295	unsigned long flags;
1296	struct page *page;
1297	int cold = !!(gfp_flags & __GFP_COLD);
1298
1299again:
1300	if (likely(order == 0)) {
1301		struct per_cpu_pages *pcp;
1302		struct list_head *list;
1303
1304		local_irq_save(flags);
1305		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306		list = &pcp->lists[migratetype];
1307		if (list_empty(list)) {
1308			pcp->count += rmqueue_bulk(zone, 0,
1309					pcp->batch, list,
1310					migratetype, cold);
1311			if (unlikely(list_empty(list)))
1312				goto failed;
 
1313		}
 
1314
1315		if (cold)
1316			page = list_entry(list->prev, struct page, lru);
1317		else
1318			page = list_entry(list->next, struct page, lru);
 
 
1319
1320		list_del(&page->lru);
1321		pcp->count--;
1322	} else {
1323		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324			/*
1325			 * __GFP_NOFAIL is not to be used in new code.
1326			 *
1327			 * All __GFP_NOFAIL callers should be fixed so that they
1328			 * properly detect and handle allocation failures.
1329			 *
1330			 * We most definitely don't want callers attempting to
1331			 * allocate greater than order-1 page units with
1332			 * __GFP_NOFAIL.
1333			 */
1334			WARN_ON_ONCE(order > 1);
1335		}
1336		spin_lock_irqsave(&zone->lock, flags);
1337		page = __rmqueue(zone, order, migratetype);
1338		spin_unlock(&zone->lock);
1339		if (!page)
1340			goto failed;
1341		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1342	}
 
 
 
 
 
 
 
 
1343
1344	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1345	zone_statistics(preferred_zone, zone, gfp_flags);
1346	local_irq_restore(flags);
 
 
 
1347
1348	VM_BUG_ON(bad_range(zone, page));
1349	if (prep_new_page(page, order, gfp_flags))
1350		goto again;
1351	return page;
1352
1353failed:
1354	local_irq_restore(flags);
1355	return NULL;
1356}
1357
1358/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359#define ALLOC_WMARK_MIN		WMARK_MIN
1360#define ALLOC_WMARK_LOW		WMARK_LOW
1361#define ALLOC_WMARK_HIGH	WMARK_HIGH
1362#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1363
1364/* Mask to get the watermark bits */
1365#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1366
1367#define ALLOC_HARDER		0x10 /* try to alloc harder */
1368#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1369#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1370
1371#ifdef CONFIG_FAIL_PAGE_ALLOC
1372
1373static struct {
1374	struct fault_attr attr;
1375
1376	u32 ignore_gfp_highmem;
1377	u32 ignore_gfp_wait;
1378	u32 min_order;
1379} fail_page_alloc = {
1380	.attr = FAULT_ATTR_INITIALIZER,
1381	.ignore_gfp_wait = 1,
1382	.ignore_gfp_highmem = 1,
1383	.min_order = 1,
1384};
1385
1386static int __init setup_fail_page_alloc(char *str)
1387{
1388	return setup_fault_attr(&fail_page_alloc.attr, str);
1389}
1390__setup("fail_page_alloc=", setup_fail_page_alloc);
1391
1392static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393{
1394	if (order < fail_page_alloc.min_order)
1395		return 0;
1396	if (gfp_mask & __GFP_NOFAIL)
1397		return 0;
1398	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399		return 0;
1400	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401		return 0;
 
1402
1403	return should_fail(&fail_page_alloc.attr, 1 << order);
1404}
1405
1406#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407
1408static int __init fail_page_alloc_debugfs(void)
1409{
1410	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411	struct dentry *dir;
1412
1413	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1414					&fail_page_alloc.attr);
1415	if (IS_ERR(dir))
1416		return PTR_ERR(dir);
1417
1418	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1419				&fail_page_alloc.ignore_gfp_wait))
1420		goto fail;
1421	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1422				&fail_page_alloc.ignore_gfp_highmem))
1423		goto fail;
1424	if (!debugfs_create_u32("min-order", mode, dir,
1425				&fail_page_alloc.min_order))
1426		goto fail;
1427
1428	return 0;
1429fail:
1430	debugfs_remove_recursive(dir);
1431
1432	return -ENOMEM;
1433}
1434
1435late_initcall(fail_page_alloc_debugfs);
1436
1437#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1438
1439#else /* CONFIG_FAIL_PAGE_ALLOC */
1440
1441static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1442{
1443	return 0;
1444}
1445
1446#endif /* CONFIG_FAIL_PAGE_ALLOC */
1447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448/*
1449 * Return true if free pages are above 'mark'. This takes into account the order
1450 * of the allocation.
 
 
1451 */
1452static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1453		      int classzone_idx, int alloc_flags, long free_pages)
 
1454{
1455	/* free_pages my go negative - that's OK */
1456	long min = mark;
1457	int o;
 
 
 
 
1458
1459	free_pages -= (1 << order) + 1;
1460	if (alloc_flags & ALLOC_HIGH)
1461		min -= min / 2;
1462	if (alloc_flags & ALLOC_HARDER)
1463		min -= min / 4;
1464
1465	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466		return false;
1467	for (o = 0; o < order; o++) {
1468		/* At the next order, this order's pages become unavailable */
1469		free_pages -= z->free_area[o].nr_free << o;
1470
1471		/* Require fewer higher order pages to be free */
1472		min >>= 1;
 
1473
1474		if (free_pages <= min)
1475			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476	}
1477	return true;
1478}
1479
1480bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1481		      int classzone_idx, int alloc_flags)
1482{
1483	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1484					zone_page_state(z, NR_FREE_PAGES));
1485}
1486
1487bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1488		      int classzone_idx, int alloc_flags)
 
1489{
1490	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1491
1492	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1493		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1494
1495	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1496								free_pages);
1497}
 
 
 
1498
1499#ifdef CONFIG_NUMA
1500/*
1501 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1502 * skip over zones that are not allowed by the cpuset, or that have
1503 * been recently (in last second) found to be nearly full.  See further
1504 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1505 * that have to skip over a lot of full or unallowed zones.
1506 *
1507 * If the zonelist cache is present in the passed in zonelist, then
1508 * returns a pointer to the allowed node mask (either the current
1509 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1510 *
1511 * If the zonelist cache is not available for this zonelist, does
1512 * nothing and returns NULL.
1513 *
1514 * If the fullzones BITMAP in the zonelist cache is stale (more than
1515 * a second since last zap'd) then we zap it out (clear its bits.)
1516 *
1517 * We hold off even calling zlc_setup, until after we've checked the
1518 * first zone in the zonelist, on the theory that most allocations will
1519 * be satisfied from that first zone, so best to examine that zone as
1520 * quickly as we can.
1521 */
1522static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1523{
1524	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1525	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1526
1527	zlc = zonelist->zlcache_ptr;
1528	if (!zlc)
1529		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1530
1531	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1532		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1533		zlc->last_full_zap = jiffies;
1534	}
1535
1536	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1537					&cpuset_current_mems_allowed :
1538					&node_states[N_HIGH_MEMORY];
1539	return allowednodes;
1540}
1541
1542/*
1543 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1544 * if it is worth looking at further for free memory:
1545 *  1) Check that the zone isn't thought to be full (doesn't have its
1546 *     bit set in the zonelist_cache fullzones BITMAP).
1547 *  2) Check that the zones node (obtained from the zonelist_cache
1548 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1549 * Return true (non-zero) if zone is worth looking at further, or
1550 * else return false (zero) if it is not.
1551 *
1552 * This check -ignores- the distinction between various watermarks,
1553 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1554 * found to be full for any variation of these watermarks, it will
1555 * be considered full for up to one second by all requests, unless
1556 * we are so low on memory on all allowed nodes that we are forced
1557 * into the second scan of the zonelist.
1558 *
1559 * In the second scan we ignore this zonelist cache and exactly
1560 * apply the watermarks to all zones, even it is slower to do so.
1561 * We are low on memory in the second scan, and should leave no stone
1562 * unturned looking for a free page.
1563 */
1564static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1565						nodemask_t *allowednodes)
1566{
1567	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1568	int i;				/* index of *z in zonelist zones */
1569	int n;				/* node that zone *z is on */
1570
1571	zlc = zonelist->zlcache_ptr;
1572	if (!zlc)
1573		return 1;
1574
1575	i = z - zonelist->_zonerefs;
1576	n = zlc->z_to_n[i];
1577
1578	/* This zone is worth trying if it is allowed but not full */
1579	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1580}
1581
1582/*
1583 * Given 'z' scanning a zonelist, set the corresponding bit in
1584 * zlc->fullzones, so that subsequent attempts to allocate a page
1585 * from that zone don't waste time re-examining it.
1586 */
1587static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1588{
1589	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1590	int i;				/* index of *z in zonelist zones */
1591
1592	zlc = zonelist->zlcache_ptr;
1593	if (!zlc)
1594		return;
1595
1596	i = z - zonelist->_zonerefs;
1597
1598	set_bit(i, zlc->fullzones);
1599}
 
 
 
 
 
 
1600
1601/*
1602 * clear all zones full, called after direct reclaim makes progress so that
1603 * a zone that was recently full is not skipped over for up to a second
 
 
 
 
1604 */
1605static void zlc_clear_zones_full(struct zonelist *zonelist)
 
1606{
1607	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1608
1609	zlc = zonelist->zlcache_ptr;
1610	if (!zlc)
1611		return;
1612
1613	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1614}
1615
1616#else	/* CONFIG_NUMA */
 
 
1617
1618static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1619{
1620	return NULL;
1621}
1622
1623static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1624				nodemask_t *allowednodes)
1625{
1626	return 1;
1627}
 
 
 
1628
1629static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1630{
 
1631}
1632
1633static void zlc_clear_zones_full(struct zonelist *zonelist)
1634{
 
 
 
 
 
 
 
1635}
1636#endif	/* CONFIG_NUMA */
1637
1638/*
1639 * get_page_from_freelist goes through the zonelist trying to allocate
1640 * a page.
1641 */
1642static struct page *
1643get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1644		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1645		struct zone *preferred_zone, int migratetype)
1646{
1647	struct zoneref *z;
1648	struct page *page = NULL;
1649	int classzone_idx;
1650	struct zone *zone;
1651	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1652	int zlc_active = 0;		/* set if using zonelist_cache */
1653	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1654
1655	classzone_idx = zone_idx(preferred_zone);
1656zonelist_scan:
1657	/*
1658	 * Scan zonelist, looking for a zone with enough free.
1659	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1660	 */
1661	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1662						high_zoneidx, nodemask) {
1663		if (NUMA_BUILD && zlc_active &&
1664			!zlc_zone_worth_trying(zonelist, z, allowednodes))
 
 
 
 
 
 
1665				continue;
1666		if ((alloc_flags & ALLOC_CPUSET) &&
1667			!cpuset_zone_allowed_softwall(zone, gfp_mask))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1668				continue;
1669
1670		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1671		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1672			unsigned long mark;
1673			int ret;
 
1674
1675			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1676			if (zone_watermark_ok(zone, order, mark,
1677				    classzone_idx, alloc_flags))
1678				goto try_this_zone;
1679
1680			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1681				/*
1682				 * we do zlc_setup if there are multiple nodes
1683				 * and before considering the first zone allowed
1684				 * by the cpuset.
1685				 */
1686				allowednodes = zlc_setup(zonelist, alloc_flags);
1687				zlc_active = 1;
1688				did_zlc_setup = 1;
1689			}
 
1690
1691			if (zone_reclaim_mode == 0)
1692				goto this_zone_full;
 
 
 
1693
 
1694			/*
1695			 * As we may have just activated ZLC, check if the first
1696			 * eligible zone has failed zone_reclaim recently.
1697			 */
1698			if (NUMA_BUILD && zlc_active &&
1699				!zlc_zone_worth_trying(zonelist, z, allowednodes))
 
 
 
 
 
 
 
 
 
 
1700				continue;
1701
1702			ret = zone_reclaim(zone, gfp_mask, order);
1703			switch (ret) {
1704			case ZONE_RECLAIM_NOSCAN:
1705				/* did not scan */
1706				continue;
1707			case ZONE_RECLAIM_FULL:
1708				/* scanned but unreclaimable */
1709				continue;
1710			default:
1711				/* did we reclaim enough */
1712				if (!zone_watermark_ok(zone, order, mark,
1713						classzone_idx, alloc_flags))
1714					goto this_zone_full;
 
 
1715			}
1716		}
1717
1718try_this_zone:
1719		page = buffered_rmqueue(preferred_zone, zone, order,
1720						gfp_mask, migratetype);
1721		if (page)
1722			break;
1723this_zone_full:
1724		if (NUMA_BUILD)
1725			zlc_mark_zone_full(zonelist, z);
1726	}
1727
1728	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1729		/* Disable zlc cache for second zonelist scan */
1730		zlc_active = 0;
1731		goto zonelist_scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
1732	}
1733	return page;
1734}
1735
1736/*
1737 * Large machines with many possible nodes should not always dump per-node
1738 * meminfo in irq context.
1739 */
1740static inline bool should_suppress_show_mem(void)
1741{
1742	bool ret = false;
 
1743
1744#if NODES_SHIFT > 8
1745	ret = in_interrupt();
1746#endif
1747	return ret;
1748}
1749
1750static DEFINE_RATELIMIT_STATE(nopage_rs,
1751		DEFAULT_RATELIMIT_INTERVAL,
1752		DEFAULT_RATELIMIT_BURST);
1753
1754void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1755{
1756	va_list args;
1757	unsigned int filter = SHOW_MEM_FILTER_NODES;
1758
1759	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1760		return;
1761
1762	/*
1763	 * This documents exceptions given to allocations in certain
1764	 * contexts that are allowed to allocate outside current's set
1765	 * of allowed nodes.
1766	 */
1767	if (!(gfp_mask & __GFP_NOMEMALLOC))
1768		if (test_thread_flag(TIF_MEMDIE) ||
1769		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1770			filter &= ~SHOW_MEM_FILTER_NODES;
1771	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1772		filter &= ~SHOW_MEM_FILTER_NODES;
1773
1774	if (fmt) {
1775		printk(KERN_WARNING);
1776		va_start(args, fmt);
1777		vprintk(fmt, args);
1778		va_end(args);
1779	}
1780
1781	pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1782		   current->comm, order, gfp_mask);
 
 
 
1783
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	dump_stack();
1785	if (!should_suppress_show_mem())
1786		show_mem(filter);
1787}
1788
1789static inline int
1790should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1791				unsigned long pages_reclaimed)
 
1792{
1793	/* Do not loop if specifically requested */
1794	if (gfp_mask & __GFP_NORETRY)
1795		return 0;
1796
1797	/*
1798	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1799	 * means __GFP_NOFAIL, but that may not be true in other
1800	 * implementations.
1801	 */
1802	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1803		return 1;
1804
1805	/*
1806	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1807	 * specified, then we retry until we no longer reclaim any pages
1808	 * (above), or we've reclaimed an order of pages at least as
1809	 * large as the allocation's order. In both cases, if the
1810	 * allocation still fails, we stop retrying.
1811	 */
1812	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1813		return 1;
1814
 
 
1815	/*
1816	 * Don't let big-order allocations loop unless the caller
1817	 * explicitly requests that.
1818	 */
1819	if (gfp_mask & __GFP_NOFAIL)
1820		return 1;
 
1821
1822	return 0;
1823}
1824
1825static inline struct page *
1826__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1827	struct zonelist *zonelist, enum zone_type high_zoneidx,
1828	nodemask_t *nodemask, struct zone *preferred_zone,
1829	int migratetype)
1830{
 
 
 
 
 
 
 
1831	struct page *page;
1832
1833	/* Acquire the OOM killer lock for the zones in zonelist */
1834	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
 
 
 
 
 
 
1835		schedule_timeout_uninterruptible(1);
1836		return NULL;
1837	}
1838
1839	/*
1840	 * Go through the zonelist yet one more time, keep very high watermark
1841	 * here, this is only to catch a parallel oom killing, we must fail if
1842	 * we're still under heavy pressure.
1843	 */
1844	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1845		order, zonelist, high_zoneidx,
1846		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1847		preferred_zone, migratetype);
 
1848	if (page)
1849		goto out;
1850
1851	if (!(gfp_mask & __GFP_NOFAIL)) {
1852		/* The OOM killer will not help higher order allocs */
1853		if (order > PAGE_ALLOC_COSTLY_ORDER)
1854			goto out;
1855		/* The OOM killer does not needlessly kill tasks for lowmem */
1856		if (high_zoneidx < ZONE_NORMAL)
1857			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858		/*
1859		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1860		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1861		 * The caller should handle page allocation failure by itself if
1862		 * it specifies __GFP_THISNODE.
1863		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1864		 */
1865		if (gfp_mask & __GFP_THISNODE)
1866			goto out;
 
1867	}
1868	/* Exhausted what can be done so it's blamo time */
1869	out_of_memory(zonelist, gfp_mask, order, nodemask);
1870
1871out:
1872	clear_zonelist_oom(zonelist, gfp_mask);
1873	return page;
1874}
1875
 
 
 
 
 
 
1876#ifdef CONFIG_COMPACTION
1877/* Try memory compaction for high-order allocations before reclaim */
1878static struct page *
1879__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1880	struct zonelist *zonelist, enum zone_type high_zoneidx,
1881	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1882	int migratetype, unsigned long *did_some_progress,
1883	bool sync_migration)
1884{
1885	struct page *page;
 
 
1886
1887	if (!order || compaction_deferred(preferred_zone))
1888		return NULL;
1889
1890	current->flags |= PF_MEMALLOC;
1891	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1892						nodemask, sync_migration);
1893	current->flags &= ~PF_MEMALLOC;
1894	if (*did_some_progress != COMPACT_SKIPPED) {
1895
1896		/* Page migration frees to the PCP lists but we want merging */
1897		drain_pages(get_cpu());
1898		put_cpu();
1899
1900		page = get_page_from_freelist(gfp_mask, nodemask,
1901				order, zonelist, high_zoneidx,
1902				alloc_flags, preferred_zone,
1903				migratetype);
1904		if (page) {
1905			preferred_zone->compact_considered = 0;
1906			preferred_zone->compact_defer_shift = 0;
1907			count_vm_event(COMPACTSUCCESS);
1908			return page;
1909		}
1910
1911		/*
1912		 * It's bad if compaction run occurs and fails.
1913		 * The most likely reason is that pages exist,
1914		 * but not enough to satisfy watermarks.
1915		 */
1916		count_vm_event(COMPACTFAIL);
1917		defer_compaction(preferred_zone);
1918
1919		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920	}
1921
 
 
 
 
 
 
 
 
1922	return NULL;
1923}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924#else
1925static inline struct page *
1926__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1927	struct zonelist *zonelist, enum zone_type high_zoneidx,
1928	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1929	int migratetype, unsigned long *did_some_progress,
1930	bool sync_migration)
1931{
 
1932	return NULL;
1933}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934#endif /* CONFIG_COMPACTION */
1935
1936/* The really slow allocator path where we enter direct reclaim */
1937static inline struct page *
1938__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1939	struct zonelist *zonelist, enum zone_type high_zoneidx,
1940	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1941	int migratetype, unsigned long *did_some_progress)
1942{
1943	struct page *page = NULL;
1944	struct reclaim_state reclaim_state;
1945	bool drained = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947	cond_resched();
1948
1949	/* We now go into synchronous reclaim */
1950	cpuset_memory_pressure_bump();
1951	current->flags |= PF_MEMALLOC;
1952	lockdep_set_current_reclaim_state(gfp_mask);
1953	reclaim_state.reclaimed_slab = 0;
1954	current->reclaim_state = &reclaim_state;
1955
1956	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1957
1958	current->reclaim_state = NULL;
1959	lockdep_clear_current_reclaim_state();
1960	current->flags &= ~PF_MEMALLOC;
1961
1962	cond_resched();
1963
 
 
 
 
 
 
 
 
 
 
 
 
 
1964	if (unlikely(!(*did_some_progress)))
1965		return NULL;
1966
1967	/* After successful reclaim, reconsider all zones for allocation */
1968	if (NUMA_BUILD)
1969		zlc_clear_zones_full(zonelist);
1970
1971retry:
1972	page = get_page_from_freelist(gfp_mask, nodemask, order,
1973					zonelist, high_zoneidx,
1974					alloc_flags, preferred_zone,
1975					migratetype);
1976
1977	/*
1978	 * If an allocation failed after direct reclaim, it could be because
1979	 * pages are pinned on the per-cpu lists. Drain them and try again
 
1980	 */
1981	if (!page && !drained) {
1982		drain_all_pages();
 
1983		drained = true;
1984		goto retry;
1985	}
1986
1987	return page;
1988}
1989
1990/*
1991 * This is called in the allocator slow-path if the allocation request is of
1992 * sufficient urgency to ignore watermarks and take other desperate measures
1993 */
1994static inline struct page *
1995__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1996	struct zonelist *zonelist, enum zone_type high_zoneidx,
1997	nodemask_t *nodemask, struct zone *preferred_zone,
1998	int migratetype)
1999{
2000	struct page *page;
2001
2002	do {
2003		page = get_page_from_freelist(gfp_mask, nodemask, order,
2004			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2005			preferred_zone, migratetype);
2006
2007		if (!page && gfp_mask & __GFP_NOFAIL)
2008			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2009	} while (!page && (gfp_mask & __GFP_NOFAIL));
2010
2011	return page;
2012}
2013
2014static inline
2015void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2016						enum zone_type high_zoneidx,
2017						enum zone_type classzone_idx)
2018{
2019	struct zoneref *z;
2020	struct zone *zone;
 
 
2021
2022	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2023		wakeup_kswapd(zone, order, classzone_idx);
 
 
 
 
2024}
2025
2026static inline int
2027gfp_to_alloc_flags(gfp_t gfp_mask)
2028{
2029	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2030	const gfp_t wait = gfp_mask & __GFP_WAIT;
2031
2032	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
 
 
 
 
2033	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
2034
2035	/*
2036	 * The caller may dip into page reserves a bit more if the caller
2037	 * cannot run direct reclaim, or if the caller has realtime scheduling
2038	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2039	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2040	 */
2041	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
2042
2043	if (!wait) {
2044		/*
2045		 * Not worth trying to allocate harder for
2046		 * __GFP_NOMEMALLOC even if it can't schedule.
2047		 */
2048		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2049			alloc_flags |= ALLOC_HARDER;
2050		/*
2051		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2052		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2053		 */
2054		alloc_flags &= ~ALLOC_CPUSET;
2055	} else if (unlikely(rt_task(current)) && !in_interrupt())
2056		alloc_flags |= ALLOC_HARDER;
2057
2058	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2059		if (!in_interrupt() &&
2060		    ((current->flags & PF_MEMALLOC) ||
2061		     unlikely(test_thread_flag(TIF_MEMDIE))))
2062			alloc_flags |= ALLOC_NO_WATERMARKS;
2063	}
2064
2065	return alloc_flags;
2066}
2067
2068static inline struct page *
2069__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2070	struct zonelist *zonelist, enum zone_type high_zoneidx,
2071	nodemask_t *nodemask, struct zone *preferred_zone,
2072	int migratetype)
2073{
2074	const gfp_t wait = gfp_mask & __GFP_WAIT;
2075	struct page *page = NULL;
2076	int alloc_flags;
2077	unsigned long pages_reclaimed = 0;
2078	unsigned long did_some_progress;
2079	bool sync_migration = false;
2080
2081	/*
2082	 * In the slowpath, we sanity check order to avoid ever trying to
2083	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2084	 * be using allocators in order of preference for an area that is
2085	 * too large.
2086	 */
2087	if (order >= MAX_ORDER) {
2088		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2089		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090	}
2091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092	/*
2093	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2094	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2095	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2096	 * using a larger set of nodes after it has established that the
2097	 * allowed per node queues are empty and that nodes are
2098	 * over allocated.
2099	 */
2100	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2101		goto nopage;
 
 
2102
2103restart:
2104	if (!(gfp_mask & __GFP_NO_KSWAPD))
2105		wake_all_kswapd(order, zonelist, high_zoneidx,
2106						zone_idx(preferred_zone));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107
2108	/*
2109	 * OK, we're below the kswapd watermark and have kicked background
2110	 * reclaim. Now things get more complex, so set up alloc_flags according
2111	 * to how we want to proceed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112	 */
2113	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2114
2115	/*
2116	 * Find the true preferred zone if the allocation is unconstrained by
2117	 * cpusets.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118	 */
2119	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2120		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2121					&preferred_zone);
2122
2123rebalance:
2124	/* This is the last chance, in general, before the goto nopage. */
2125	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2126			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2127			preferred_zone, migratetype);
2128	if (page)
2129		goto got_pg;
2130
2131	/* Allocate without watermarks if the context allows */
2132	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2133		page = __alloc_pages_high_priority(gfp_mask, order,
2134				zonelist, high_zoneidx, nodemask,
2135				preferred_zone, migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
2136		if (page)
2137			goto got_pg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138	}
2139
2140	/* Atomic allocations - we can't balance anything */
2141	if (!wait)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142		goto nopage;
2143
2144	/* Avoid recursion of direct reclaim */
2145	if (current->flags & PF_MEMALLOC)
2146		goto nopage;
2147
2148	/* Avoid allocations with no watermarks from looping endlessly */
2149	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
 
 
 
 
 
 
 
 
 
 
 
 
2150		goto nopage;
2151
2152	/*
2153	 * Try direct compaction. The first pass is asynchronous. Subsequent
2154	 * attempts after direct reclaim are synchronous
2155	 */
2156	page = __alloc_pages_direct_compact(gfp_mask, order,
2157					zonelist, high_zoneidx,
2158					nodemask,
2159					alloc_flags, preferred_zone,
2160					migratetype, &did_some_progress,
2161					sync_migration);
2162	if (page)
2163		goto got_pg;
2164	sync_migration = true;
2165
2166	/* Try direct reclaim and then allocating */
2167	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2168					zonelist, high_zoneidx,
2169					nodemask,
2170					alloc_flags, preferred_zone,
2171					migratetype, &did_some_progress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172	if (page)
2173		goto got_pg;
2174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2175	/*
2176	 * If we failed to make any progress reclaiming, then we are
2177	 * running out of options and have to consider going OOM
2178	 */
2179	if (!did_some_progress) {
2180		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2181			if (oom_killer_disabled)
2182				goto nopage;
2183			page = __alloc_pages_may_oom(gfp_mask, order,
2184					zonelist, high_zoneidx,
2185					nodemask, preferred_zone,
2186					migratetype);
2187			if (page)
2188				goto got_pg;
2189
2190			if (!(gfp_mask & __GFP_NOFAIL)) {
2191				/*
2192				 * The oom killer is not called for high-order
2193				 * allocations that may fail, so if no progress
2194				 * is being made, there are no other options and
2195				 * retrying is unlikely to help.
2196				 */
2197				if (order > PAGE_ALLOC_COSTLY_ORDER)
2198					goto nopage;
2199				/*
2200				 * The oom killer is not called for lowmem
2201				 * allocations to prevent needlessly killing
2202				 * innocent tasks.
2203				 */
2204				if (high_zoneidx < ZONE_NORMAL)
2205					goto nopage;
2206			}
2207
2208			goto restart;
2209		}
2210	}
 
 
 
 
2211
2212	/* Check if we should retry the allocation */
2213	pages_reclaimed += did_some_progress;
2214	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2215		/* Wait for some write requests to complete then retry */
2216		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2217		goto rebalance;
2218	} else {
2219		/*
2220		 * High-order allocations do not necessarily loop after
2221		 * direct reclaim and reclaim/compaction depends on compaction
2222		 * being called after reclaim so call directly if necessary
 
2223		 */
2224		page = __alloc_pages_direct_compact(gfp_mask, order,
2225					zonelist, high_zoneidx,
2226					nodemask,
2227					alloc_flags, preferred_zone,
2228					migratetype, &did_some_progress,
2229					sync_migration);
2230		if (page)
2231			goto got_pg;
2232	}
2233
2234nopage:
2235	warn_alloc_failed(gfp_mask, order, NULL);
2236	return page;
 
 
 
2237got_pg:
2238	if (kmemcheck_enabled)
2239		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2240	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2242}
2243
2244/*
2245 * This is the 'heart' of the zoned buddy allocator.
2246 */
2247struct page *
2248__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2249			struct zonelist *zonelist, nodemask_t *nodemask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250{
2251	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2252	struct zone *preferred_zone;
2253	struct page *page;
2254	int migratetype = allocflags_to_migratetype(gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255
2256	gfp_mask &= gfp_allowed_mask;
 
 
2257
2258	lockdep_trace_alloc(gfp_mask);
 
 
2259
2260	might_sleep_if(gfp_mask & __GFP_WAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261
2262	if (should_fail_alloc_page(gfp_mask, order))
2263		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2264
2265	/*
2266	 * Check the zones suitable for the gfp_mask contain at least one
2267	 * valid zone. It's possible to have an empty zonelist as a result
2268	 * of GFP_THISNODE and a memoryless node
2269	 */
2270	if (unlikely(!zonelist->_zonerefs->zone))
2271		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2272
2273	get_mems_allowed();
2274	/* The preferred zone is used for statistics later */
2275	first_zones_zonelist(zonelist, high_zoneidx,
2276				nodemask ? : &cpuset_current_mems_allowed,
2277				&preferred_zone);
2278	if (!preferred_zone) {
2279		put_mems_allowed();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2280		return NULL;
2281	}
2282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2283	/* First allocation attempt */
2284	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2285			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2286			preferred_zone, migratetype);
2287	if (unlikely(!page))
2288		page = __alloc_pages_slowpath(gfp_mask, order,
2289				zonelist, high_zoneidx, nodemask,
2290				preferred_zone, migratetype);
2291	put_mems_allowed();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292
2293	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2294	return page;
2295}
2296EXPORT_SYMBOL(__alloc_pages_nodemask);
2297
2298/*
2299 * Common helper functions.
 
 
2300 */
2301unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2302{
2303	struct page *page;
2304
2305	/*
2306	 * __get_free_pages() returns a 32-bit address, which cannot represent
2307	 * a highmem page
2308	 */
2309	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2310
2311	page = alloc_pages(gfp_mask, order);
2312	if (!page)
2313		return 0;
2314	return (unsigned long) page_address(page);
2315}
2316EXPORT_SYMBOL(__get_free_pages);
2317
2318unsigned long get_zeroed_page(gfp_t gfp_mask)
2319{
2320	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2321}
2322EXPORT_SYMBOL(get_zeroed_page);
2323
2324void __pagevec_free(struct pagevec *pvec)
2325{
2326	int i = pagevec_count(pvec);
2327
2328	while (--i >= 0) {
2329		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2330		free_hot_cold_page(pvec->pages[i], pvec->cold);
2331	}
2332}
2333
 
 
 
 
 
 
 
 
 
 
2334void __free_pages(struct page *page, unsigned int order)
2335{
2336	if (put_page_testzero(page)) {
2337		if (order == 0)
2338			free_hot_cold_page(page, 0);
2339		else
2340			__free_pages_ok(page, order);
2341	}
2342}
2343
2344EXPORT_SYMBOL(__free_pages);
2345
2346void free_pages(unsigned long addr, unsigned int order)
2347{
2348	if (addr != 0) {
2349		VM_BUG_ON(!virt_addr_valid((void *)addr));
2350		__free_pages(virt_to_page((void *)addr), order);
2351	}
2352}
2353
2354EXPORT_SYMBOL(free_pages);
2355
2356static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357{
2358	if (addr) {
2359		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2360		unsigned long used = addr + PAGE_ALIGN(size);
2361
2362		split_page(virt_to_page((void *)addr), order);
2363		while (used < alloc_end) {
2364			free_page(used);
2365			used += PAGE_SIZE;
2366		}
2367	}
2368	return (void *)addr;
2369}
2370
2371/**
2372 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2373 * @size: the number of bytes to allocate
2374 * @gfp_mask: GFP flags for the allocation
2375 *
2376 * This function is similar to alloc_pages(), except that it allocates the
2377 * minimum number of pages to satisfy the request.  alloc_pages() can only
2378 * allocate memory in power-of-two pages.
2379 *
2380 * This function is also limited by MAX_ORDER.
2381 *
2382 * Memory allocated by this function must be released by free_pages_exact().
 
 
2383 */
2384void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2385{
2386	unsigned int order = get_order(size);
2387	unsigned long addr;
2388
 
 
 
2389	addr = __get_free_pages(gfp_mask, order);
2390	return make_alloc_exact(addr, order, size);
2391}
2392EXPORT_SYMBOL(alloc_pages_exact);
2393
2394/**
2395 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2396 *			   pages on a node.
2397 * @nid: the preferred node ID where memory should be allocated
2398 * @size: the number of bytes to allocate
2399 * @gfp_mask: GFP flags for the allocation
2400 *
2401 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2402 * back.
2403 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2404 * but is not exact.
2405 */
2406void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2407{
2408	unsigned order = get_order(size);
2409	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 
 
 
 
 
2410	if (!p)
2411		return NULL;
2412	return make_alloc_exact((unsigned long)page_address(p), order, size);
2413}
2414EXPORT_SYMBOL(alloc_pages_exact_nid);
2415
2416/**
2417 * free_pages_exact - release memory allocated via alloc_pages_exact()
2418 * @virt: the value returned by alloc_pages_exact.
2419 * @size: size of allocation, same value as passed to alloc_pages_exact().
2420 *
2421 * Release the memory allocated by a previous call to alloc_pages_exact.
2422 */
2423void free_pages_exact(void *virt, size_t size)
2424{
2425	unsigned long addr = (unsigned long)virt;
2426	unsigned long end = addr + PAGE_ALIGN(size);
2427
2428	while (addr < end) {
2429		free_page(addr);
2430		addr += PAGE_SIZE;
2431	}
2432}
2433EXPORT_SYMBOL(free_pages_exact);
2434
2435static unsigned int nr_free_zone_pages(int offset)
 
 
 
 
 
 
 
 
 
 
 
 
2436{
2437	struct zoneref *z;
2438	struct zone *zone;
2439
2440	/* Just pick one node, since fallback list is circular */
2441	unsigned int sum = 0;
2442
2443	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2444
2445	for_each_zone_zonelist(zone, z, zonelist, offset) {
2446		unsigned long size = zone->present_pages;
2447		unsigned long high = high_wmark_pages(zone);
2448		if (size > high)
2449			sum += size - high;
2450	}
2451
2452	return sum;
2453}
2454
2455/*
2456 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
 
 
 
 
 
 
2457 */
2458unsigned int nr_free_buffer_pages(void)
2459{
2460	return nr_free_zone_pages(gfp_zone(GFP_USER));
2461}
2462EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2463
2464/*
2465 * Amount of free RAM allocatable within all zones
2466 */
2467unsigned int nr_free_pagecache_pages(void)
2468{
2469	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
 
2470}
2471
2472static inline void show_node(struct zone *zone)
2473{
2474	if (NUMA_BUILD)
2475		printk("Node %d ", zone_to_nid(zone));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476}
 
2477
2478void si_meminfo(struct sysinfo *val)
2479{
2480	val->totalram = totalram_pages;
2481	val->sharedram = 0;
2482	val->freeram = global_page_state(NR_FREE_PAGES);
2483	val->bufferram = nr_blockdev_pages();
2484	val->totalhigh = totalhigh_pages;
2485	val->freehigh = nr_free_highpages();
2486	val->mem_unit = PAGE_SIZE;
2487}
2488
2489EXPORT_SYMBOL(si_meminfo);
2490
2491#ifdef CONFIG_NUMA
2492void si_meminfo_node(struct sysinfo *val, int nid)
2493{
 
 
 
 
2494	pg_data_t *pgdat = NODE_DATA(nid);
2495
2496	val->totalram = pgdat->node_present_pages;
2497	val->freeram = node_page_state(nid, NR_FREE_PAGES);
 
 
 
2498#ifdef CONFIG_HIGHMEM
2499	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2500	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2501			NR_FREE_PAGES);
 
 
 
 
 
 
 
2502#else
2503	val->totalhigh = 0;
2504	val->freehigh = 0;
2505#endif
2506	val->mem_unit = PAGE_SIZE;
2507}
2508#endif
2509
2510/*
2511 * Determine whether the node should be displayed or not, depending on whether
2512 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2513 */
2514bool skip_free_areas_node(unsigned int flags, int nid)
2515{
2516	bool ret = false;
2517
2518	if (!(flags & SHOW_MEM_FILTER_NODES))
2519		goto out;
2520
2521	get_mems_allowed();
2522	ret = !node_isset(nid, cpuset_current_mems_allowed);
2523	put_mems_allowed();
2524out:
2525	return ret;
 
 
 
 
2526}
2527
2528#define K(x) ((x) << (PAGE_SHIFT-10))
2529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2530/*
2531 * Show free area list (used inside shift_scroll-lock stuff)
2532 * We also calculate the percentage fragmentation. We do this by counting the
2533 * memory on each free list with the exception of the first item on the list.
2534 * Suppresses nodes that are not allowed by current's cpuset if
2535 * SHOW_MEM_FILTER_NODES is passed.
 
 
2536 */
2537void show_free_areas(unsigned int filter)
2538{
 
2539	int cpu;
2540	struct zone *zone;
 
2541
2542	for_each_populated_zone(zone) {
2543		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2544			continue;
2545		show_node(zone);
2546		printk("%s per-cpu:\n", zone->name);
2547
2548		for_each_online_cpu(cpu) {
2549			struct per_cpu_pageset *pageset;
2550
2551			pageset = per_cpu_ptr(zone->pageset, cpu);
2552
2553			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2554			       cpu, pageset->pcp.high,
2555			       pageset->pcp.batch, pageset->pcp.count);
2556		}
2557	}
2558
2559	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2560		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2561		" unevictable:%lu"
2562		" dirty:%lu writeback:%lu unstable:%lu\n"
2563		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2564		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2565		global_page_state(NR_ACTIVE_ANON),
2566		global_page_state(NR_INACTIVE_ANON),
2567		global_page_state(NR_ISOLATED_ANON),
2568		global_page_state(NR_ACTIVE_FILE),
2569		global_page_state(NR_INACTIVE_FILE),
2570		global_page_state(NR_ISOLATED_FILE),
2571		global_page_state(NR_UNEVICTABLE),
2572		global_page_state(NR_FILE_DIRTY),
2573		global_page_state(NR_WRITEBACK),
2574		global_page_state(NR_UNSTABLE_NFS),
2575		global_page_state(NR_FREE_PAGES),
2576		global_page_state(NR_SLAB_RECLAIMABLE),
2577		global_page_state(NR_SLAB_UNRECLAIMABLE),
2578		global_page_state(NR_FILE_MAPPED),
2579		global_page_state(NR_SHMEM),
2580		global_page_state(NR_PAGETABLE),
2581		global_page_state(NR_BOUNCE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582
2583	for_each_populated_zone(zone) {
2584		int i;
2585
2586		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2587			continue;
 
 
 
 
 
2588		show_node(zone);
2589		printk("%s"
 
2590			" free:%lukB"
2591			" min:%lukB"
2592			" low:%lukB"
2593			" high:%lukB"
 
2594			" active_anon:%lukB"
2595			" inactive_anon:%lukB"
2596			" active_file:%lukB"
2597			" inactive_file:%lukB"
2598			" unevictable:%lukB"
2599			" isolated(anon):%lukB"
2600			" isolated(file):%lukB"
2601			" present:%lukB"
 
2602			" mlocked:%lukB"
2603			" dirty:%lukB"
2604			" writeback:%lukB"
2605			" mapped:%lukB"
2606			" shmem:%lukB"
2607			" slab_reclaimable:%lukB"
2608			" slab_unreclaimable:%lukB"
2609			" kernel_stack:%lukB"
2610			" pagetables:%lukB"
2611			" unstable:%lukB"
2612			" bounce:%lukB"
2613			" writeback_tmp:%lukB"
2614			" pages_scanned:%lu"
2615			" all_unreclaimable? %s"
2616			"\n",
2617			zone->name,
2618			K(zone_page_state(zone, NR_FREE_PAGES)),
2619			K(min_wmark_pages(zone)),
2620			K(low_wmark_pages(zone)),
2621			K(high_wmark_pages(zone)),
2622			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2623			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2624			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2625			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2626			K(zone_page_state(zone, NR_UNEVICTABLE)),
2627			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2628			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2629			K(zone->present_pages),
 
2630			K(zone_page_state(zone, NR_MLOCK)),
2631			K(zone_page_state(zone, NR_FILE_DIRTY)),
2632			K(zone_page_state(zone, NR_WRITEBACK)),
2633			K(zone_page_state(zone, NR_FILE_MAPPED)),
2634			K(zone_page_state(zone, NR_SHMEM)),
2635			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2636			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2637			zone_page_state(zone, NR_KERNEL_STACK) *
2638				THREAD_SIZE / 1024,
2639			K(zone_page_state(zone, NR_PAGETABLE)),
2640			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2641			K(zone_page_state(zone, NR_BOUNCE)),
2642			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2643			zone->pages_scanned,
2644			(zone->all_unreclaimable ? "yes" : "no")
2645			);
2646		printk("lowmem_reserve[]:");
2647		for (i = 0; i < MAX_NR_ZONES; i++)
2648			printk(" %lu", zone->lowmem_reserve[i]);
2649		printk("\n");
2650	}
2651
2652	for_each_populated_zone(zone) {
2653 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
 
 
2654
2655		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2656			continue;
2657		show_node(zone);
2658		printk("%s: ", zone->name);
2659
2660		spin_lock_irqsave(&zone->lock, flags);
2661		for (order = 0; order < MAX_ORDER; order++) {
2662			nr[order] = zone->free_area[order].nr_free;
 
 
 
2663			total += nr[order] << order;
 
 
 
 
 
 
2664		}
2665		spin_unlock_irqrestore(&zone->lock, flags);
2666		for (order = 0; order < MAX_ORDER; order++)
2667			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2668		printk("= %lukB\n", K(total));
 
 
 
 
2669	}
2670
2671	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
 
 
2672
2673	show_swap_cache_info();
2674}
2675
2676static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2677{
2678	zoneref->zone = zone;
2679	zoneref->zone_idx = zone_idx(zone);
2680}
2681
2682/*
2683 * Builds allocation fallback zone lists.
2684 *
2685 * Add all populated zones of a node to the zonelist.
2686 */
2687static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2688				int nr_zones, enum zone_type zone_type)
2689{
2690	struct zone *zone;
2691
2692	BUG_ON(zone_type >= MAX_NR_ZONES);
2693	zone_type++;
2694
2695	do {
2696		zone_type--;
2697		zone = pgdat->node_zones + zone_type;
2698		if (populated_zone(zone)) {
2699			zoneref_set_zone(zone,
2700				&zonelist->_zonerefs[nr_zones++]);
2701			check_highest_zone(zone_type);
2702		}
2703
2704	} while (zone_type);
 
2705	return nr_zones;
2706}
2707
2708
2709/*
2710 *  zonelist_order:
2711 *  0 = automatic detection of better ordering.
2712 *  1 = order by ([node] distance, -zonetype)
2713 *  2 = order by (-zonetype, [node] distance)
2714 *
2715 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2716 *  the same zonelist. So only NUMA can configure this param.
2717 */
2718#define ZONELIST_ORDER_DEFAULT  0
2719#define ZONELIST_ORDER_NODE     1
2720#define ZONELIST_ORDER_ZONE     2
2721
2722/* zonelist order in the kernel.
2723 * set_zonelist_order() will set this to NODE or ZONE.
2724 */
2725static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2726static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2727
2728
2729#ifdef CONFIG_NUMA
2730/* The value user specified ....changed by config */
2731static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2732/* string for sysctl */
2733#define NUMA_ZONELIST_ORDER_LEN	16
2734char numa_zonelist_order[16] = "default";
2735
2736/*
2737 * interface for configure zonelist ordering.
2738 * command line option "numa_zonelist_order"
2739 *	= "[dD]efault	- default, automatic configuration.
2740 *	= "[nN]ode 	- order by node locality, then by zone within node
2741 *	= "[zZ]one      - order by zone, then by locality within zone
2742 */
2743
2744static int __parse_numa_zonelist_order(char *s)
2745{
2746	if (*s == 'd' || *s == 'D') {
2747		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2748	} else if (*s == 'n' || *s == 'N') {
2749		user_zonelist_order = ZONELIST_ORDER_NODE;
2750	} else if (*s == 'z' || *s == 'Z') {
2751		user_zonelist_order = ZONELIST_ORDER_ZONE;
2752	} else {
2753		printk(KERN_WARNING
2754			"Ignoring invalid numa_zonelist_order value:  "
2755			"%s\n", s);
2756		return -EINVAL;
2757	}
2758	return 0;
2759}
2760
2761static __init int setup_numa_zonelist_order(char *s)
2762{
2763	int ret;
2764
2765	if (!s)
2766		return 0;
2767
2768	ret = __parse_numa_zonelist_order(s);
2769	if (ret == 0)
2770		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2771
2772	return ret;
2773}
2774early_param("numa_zonelist_order", setup_numa_zonelist_order);
2775
2776/*
2777 * sysctl handler for numa_zonelist_order
2778 */
2779int numa_zonelist_order_handler(ctl_table *table, int write,
2780		void __user *buffer, size_t *length,
2781		loff_t *ppos)
2782{
2783	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2784	int ret;
2785	static DEFINE_MUTEX(zl_order_mutex);
2786
2787	mutex_lock(&zl_order_mutex);
2788	if (write)
2789		strcpy(saved_string, (char*)table->data);
2790	ret = proc_dostring(table, write, buffer, length, ppos);
2791	if (ret)
2792		goto out;
2793	if (write) {
2794		int oldval = user_zonelist_order;
2795		if (__parse_numa_zonelist_order((char*)table->data)) {
2796			/*
2797			 * bogus value.  restore saved string
2798			 */
2799			strncpy((char*)table->data, saved_string,
2800				NUMA_ZONELIST_ORDER_LEN);
2801			user_zonelist_order = oldval;
2802		} else if (oldval != user_zonelist_order) {
2803			mutex_lock(&zonelists_mutex);
2804			build_all_zonelists(NULL);
2805			mutex_unlock(&zonelists_mutex);
2806		}
2807	}
2808out:
2809	mutex_unlock(&zl_order_mutex);
2810	return ret;
2811}
2812
2813
2814#define MAX_NODE_LOAD (nr_online_nodes)
2815static int node_load[MAX_NUMNODES];
2816
2817/**
2818 * find_next_best_node - find the next node that should appear in a given node's fallback list
2819 * @node: node whose fallback list we're appending
2820 * @used_node_mask: nodemask_t of already used nodes
2821 *
2822 * We use a number of factors to determine which is the next node that should
2823 * appear on a given node's fallback list.  The node should not have appeared
2824 * already in @node's fallback list, and it should be the next closest node
2825 * according to the distance array (which contains arbitrary distance values
2826 * from each node to each node in the system), and should also prefer nodes
2827 * with no CPUs, since presumably they'll have very little allocation pressure
2828 * on them otherwise.
2829 * It returns -1 if no node is found.
 
2830 */
2831static int find_next_best_node(int node, nodemask_t *used_node_mask)
2832{
2833	int n, val;
2834	int min_val = INT_MAX;
2835	int best_node = -1;
2836	const struct cpumask *tmp = cpumask_of_node(0);
2837
2838	/* Use the local node if we haven't already */
2839	if (!node_isset(node, *used_node_mask)) {
2840		node_set(node, *used_node_mask);
2841		return node;
2842	}
2843
2844	for_each_node_state(n, N_HIGH_MEMORY) {
2845
2846		/* Don't want a node to appear more than once */
2847		if (node_isset(n, *used_node_mask))
2848			continue;
2849
2850		/* Use the distance array to find the distance */
2851		val = node_distance(node, n);
2852
2853		/* Penalize nodes under us ("prefer the next node") */
2854		val += (n < node);
2855
2856		/* Give preference to headless and unused nodes */
2857		tmp = cpumask_of_node(n);
2858		if (!cpumask_empty(tmp))
2859			val += PENALTY_FOR_NODE_WITH_CPUS;
2860
2861		/* Slight preference for less loaded node */
2862		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2863		val += node_load[n];
2864
2865		if (val < min_val) {
2866			min_val = val;
2867			best_node = n;
2868		}
2869	}
2870
2871	if (best_node >= 0)
2872		node_set(best_node, *used_node_mask);
2873
2874	return best_node;
2875}
2876
2877
2878/*
2879 * Build zonelists ordered by node and zones within node.
2880 * This results in maximum locality--normal zone overflows into local
2881 * DMA zone, if any--but risks exhausting DMA zone.
2882 */
2883static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 
2884{
2885	int j;
2886	struct zonelist *zonelist;
 
 
 
 
 
2887
2888	zonelist = &pgdat->node_zonelists[0];
2889	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2890		;
2891	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2892							MAX_NR_ZONES - 1);
2893	zonelist->_zonerefs[j].zone = NULL;
2894	zonelist->_zonerefs[j].zone_idx = 0;
2895}
2896
2897/*
2898 * Build gfp_thisnode zonelists
2899 */
2900static void build_thisnode_zonelists(pg_data_t *pgdat)
2901{
2902	int j;
2903	struct zonelist *zonelist;
2904
2905	zonelist = &pgdat->node_zonelists[1];
2906	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2907	zonelist->_zonerefs[j].zone = NULL;
2908	zonelist->_zonerefs[j].zone_idx = 0;
 
2909}
2910
2911/*
2912 * Build zonelists ordered by zone and nodes within zones.
2913 * This results in conserving DMA zone[s] until all Normal memory is
2914 * exhausted, but results in overflowing to remote node while memory
2915 * may still exist in local DMA zone.
2916 */
2917static int node_order[MAX_NUMNODES];
2918
2919static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2920{
2921	int pos, j, node;
2922	int zone_type;		/* needs to be signed */
2923	struct zone *z;
2924	struct zonelist *zonelist;
2925
2926	zonelist = &pgdat->node_zonelists[0];
2927	pos = 0;
2928	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2929		for (j = 0; j < nr_nodes; j++) {
2930			node = node_order[j];
2931			z = &NODE_DATA(node)->node_zones[zone_type];
2932			if (populated_zone(z)) {
2933				zoneref_set_zone(z,
2934					&zonelist->_zonerefs[pos++]);
2935				check_highest_zone(zone_type);
2936			}
2937		}
2938	}
2939	zonelist->_zonerefs[pos].zone = NULL;
2940	zonelist->_zonerefs[pos].zone_idx = 0;
2941}
2942
2943static int default_zonelist_order(void)
2944{
2945	int nid, zone_type;
2946	unsigned long low_kmem_size,total_size;
2947	struct zone *z;
2948	int average_size;
2949	/*
2950         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2951	 * If they are really small and used heavily, the system can fall
2952	 * into OOM very easily.
2953	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2954	 */
2955	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2956	low_kmem_size = 0;
2957	total_size = 0;
2958	for_each_online_node(nid) {
2959		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2960			z = &NODE_DATA(nid)->node_zones[zone_type];
2961			if (populated_zone(z)) {
2962				if (zone_type < ZONE_NORMAL)
2963					low_kmem_size += z->present_pages;
2964				total_size += z->present_pages;
2965			} else if (zone_type == ZONE_NORMAL) {
2966				/*
2967				 * If any node has only lowmem, then node order
2968				 * is preferred to allow kernel allocations
2969				 * locally; otherwise, they can easily infringe
2970				 * on other nodes when there is an abundance of
2971				 * lowmem available to allocate from.
2972				 */
2973				return ZONELIST_ORDER_NODE;
2974			}
2975		}
2976	}
2977	if (!low_kmem_size ||  /* there are no DMA area. */
2978	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2979		return ZONELIST_ORDER_NODE;
2980	/*
2981	 * look into each node's config.
2982  	 * If there is a node whose DMA/DMA32 memory is very big area on
2983 	 * local memory, NODE_ORDER may be suitable.
2984         */
2985	average_size = total_size /
2986				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2987	for_each_online_node(nid) {
2988		low_kmem_size = 0;
2989		total_size = 0;
2990		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2991			z = &NODE_DATA(nid)->node_zones[zone_type];
2992			if (populated_zone(z)) {
2993				if (zone_type < ZONE_NORMAL)
2994					low_kmem_size += z->present_pages;
2995				total_size += z->present_pages;
2996			}
2997		}
2998		if (low_kmem_size &&
2999		    total_size > average_size && /* ignore small node */
3000		    low_kmem_size > total_size * 70/100)
3001			return ZONELIST_ORDER_NODE;
3002	}
3003	return ZONELIST_ORDER_ZONE;
3004}
3005
3006static void set_zonelist_order(void)
3007{
3008	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3009		current_zonelist_order = default_zonelist_order();
3010	else
3011		current_zonelist_order = user_zonelist_order;
3012}
3013
3014static void build_zonelists(pg_data_t *pgdat)
3015{
3016	int j, node, load;
3017	enum zone_type i;
3018	nodemask_t used_mask;
3019	int local_node, prev_node;
3020	struct zonelist *zonelist;
3021	int order = current_zonelist_order;
3022
3023	/* initialize zonelists */
3024	for (i = 0; i < MAX_ZONELISTS; i++) {
3025		zonelist = pgdat->node_zonelists + i;
3026		zonelist->_zonerefs[0].zone = NULL;
3027		zonelist->_zonerefs[0].zone_idx = 0;
3028	}
3029
3030	/* NUMA-aware ordering of nodes */
3031	local_node = pgdat->node_id;
3032	load = nr_online_nodes;
3033	prev_node = local_node;
3034	nodes_clear(used_mask);
3035
3036	memset(node_order, 0, sizeof(node_order));
3037	j = 0;
3038
3039	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3040		int distance = node_distance(local_node, node);
3041
3042		/*
3043		 * If another node is sufficiently far away then it is better
3044		 * to reclaim pages in a zone before going off node.
3045		 */
3046		if (distance > RECLAIM_DISTANCE)
3047			zone_reclaim_mode = 1;
3048
3049		/*
3050		 * We don't want to pressure a particular node.
3051		 * So adding penalty to the first node in same
3052		 * distance group to make it round-robin.
3053		 */
3054		if (distance != node_distance(local_node, prev_node))
 
3055			node_load[node] = load;
3056
 
3057		prev_node = node;
3058		load--;
3059		if (order == ZONELIST_ORDER_NODE)
3060			build_zonelists_in_node_order(pgdat, node);
3061		else
3062			node_order[j++] = node;	/* remember order */
3063	}
3064
3065	if (order == ZONELIST_ORDER_ZONE) {
3066		/* calculate node order -- i.e., DMA last! */
3067		build_zonelists_in_zone_order(pgdat, j);
3068	}
3069
 
3070	build_thisnode_zonelists(pgdat);
3071}
3072
3073/* Construct the zonelist performance cache - see further mmzone.h */
3074static void build_zonelist_cache(pg_data_t *pgdat)
3075{
3076	struct zonelist *zonelist;
3077	struct zonelist_cache *zlc;
3078	struct zoneref *z;
3079
3080	zonelist = &pgdat->node_zonelists[0];
3081	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3082	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3083	for (z = zonelist->_zonerefs; z->zone; z++)
3084		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3085}
3086
3087#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3088/*
3089 * Return node id of node used for "local" allocations.
3090 * I.e., first node id of first zone in arg node's generic zonelist.
3091 * Used for initializing percpu 'numa_mem', which is used primarily
3092 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3093 */
3094int local_memory_node(int node)
3095{
3096	struct zone *zone;
3097
3098	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3099				   gfp_zone(GFP_KERNEL),
3100				   NULL,
3101				   &zone);
3102	return zone->node;
3103}
3104#endif
3105
 
 
3106#else	/* CONFIG_NUMA */
3107
3108static void set_zonelist_order(void)
3109{
3110	current_zonelist_order = ZONELIST_ORDER_ZONE;
3111}
3112
3113static void build_zonelists(pg_data_t *pgdat)
3114{
3115	int node, local_node;
3116	enum zone_type j;
3117	struct zonelist *zonelist;
3118
3119	local_node = pgdat->node_id;
3120
3121	zonelist = &pgdat->node_zonelists[0];
3122	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
 
3123
3124	/*
3125	 * Now we build the zonelist so that it contains the zones
3126	 * of all the other nodes.
3127	 * We don't want to pressure a particular node, so when
3128	 * building the zones for node N, we make sure that the
3129	 * zones coming right after the local ones are those from
3130	 * node N+1 (modulo N)
3131	 */
3132	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3133		if (!node_online(node))
3134			continue;
3135		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3136							MAX_NR_ZONES - 1);
3137	}
3138	for (node = 0; node < local_node; node++) {
3139		if (!node_online(node))
3140			continue;
3141		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3142							MAX_NR_ZONES - 1);
3143	}
3144
3145	zonelist->_zonerefs[j].zone = NULL;
3146	zonelist->_zonerefs[j].zone_idx = 0;
3147}
3148
3149/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3150static void build_zonelist_cache(pg_data_t *pgdat)
3151{
3152	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3153}
3154
3155#endif	/* CONFIG_NUMA */
3156
3157/*
3158 * Boot pageset table. One per cpu which is going to be used for all
3159 * zones and all nodes. The parameters will be set in such a way
3160 * that an item put on a list will immediately be handed over to
3161 * the buddy list. This is safe since pageset manipulation is done
3162 * with interrupts disabled.
3163 *
3164 * The boot_pagesets must be kept even after bootup is complete for
3165 * unused processors and/or zones. They do play a role for bootstrapping
3166 * hotplugged processors.
3167 *
3168 * zoneinfo_show() and maybe other functions do
3169 * not check if the processor is online before following the pageset pointer.
3170 * Other parts of the kernel may not check if the zone is available.
3171 */
3172static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3173static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3174static void setup_zone_pageset(struct zone *zone);
 
 
 
 
3175
3176/*
3177 * Global mutex to protect against size modification of zonelists
3178 * as well as to serialize pageset setup for the new populated zone.
3179 */
3180DEFINE_MUTEX(zonelists_mutex);
3181
3182/* return values int ....just for stop_machine() */
3183static __init_refok int __build_all_zonelists(void *data)
3184{
3185	int nid;
3186	int cpu;
 
 
 
 
3187
3188#ifdef CONFIG_NUMA
3189	memset(node_load, 0, sizeof(node_load));
3190#endif
3191	for_each_online_node(nid) {
3192		pg_data_t *pgdat = NODE_DATA(nid);
3193
3194		build_zonelists(pgdat);
3195		build_zonelist_cache(pgdat);
3196	}
3197
3198	/*
3199	 * Initialize the boot_pagesets that are going to be used
3200	 * for bootstrapping processors. The real pagesets for
3201	 * each zone will be allocated later when the per cpu
3202	 * allocator is available.
3203	 *
3204	 * boot_pagesets are used also for bootstrapping offline
3205	 * cpus if the system is already booted because the pagesets
3206	 * are needed to initialize allocators on a specific cpu too.
3207	 * F.e. the percpu allocator needs the page allocator which
3208	 * needs the percpu allocator in order to allocate its pagesets
3209	 * (a chicken-egg dilemma).
3210	 */
3211	for_each_possible_cpu(cpu) {
3212		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
 
 
 
 
 
 
3213
3214#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3215		/*
3216		 * We now know the "local memory node" for each node--
3217		 * i.e., the node of the first zone in the generic zonelist.
3218		 * Set up numa_mem percpu variable for on-line cpus.  During
3219		 * boot, only the boot cpu should be on-line;  we'll init the
3220		 * secondary cpus' numa_mem as they come on-line.  During
3221		 * node/memory hotplug, we'll fixup all on-line cpus.
3222		 */
3223		if (cpu_online(cpu))
3224			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3225#endif
3226	}
3227
3228	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229}
3230
3231/*
3232 * Called with zonelists_mutex held always
3233 * unless system_state == SYSTEM_BOOTING.
 
 
 
3234 */
3235void __ref build_all_zonelists(void *data)
3236{
3237	set_zonelist_order();
3238
3239	if (system_state == SYSTEM_BOOTING) {
3240		__build_all_zonelists(NULL);
3241		mminit_verify_zonelist();
3242		cpuset_init_current_mems_allowed();
3243	} else {
3244		/* we have to stop all cpus to guarantee there is no user
3245		   of zonelist */
3246#ifdef CONFIG_MEMORY_HOTPLUG
3247		if (data)
3248			setup_zone_pageset((struct zone *)data);
3249#endif
3250		stop_machine(__build_all_zonelists, NULL, NULL);
3251		/* cpuset refresh routine should be here */
3252	}
3253	vm_total_pages = nr_free_pagecache_pages();
 
3254	/*
3255	 * Disable grouping by mobility if the number of pages in the
3256	 * system is too low to allow the mechanism to work. It would be
3257	 * more accurate, but expensive to check per-zone. This check is
3258	 * made on memory-hotadd so a system can start with mobility
3259	 * disabled and enable it later
3260	 */
3261	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3262		page_group_by_mobility_disabled = 1;
3263	else
3264		page_group_by_mobility_disabled = 0;
3265
3266	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3267		"Total pages: %ld\n",
3268			nr_online_nodes,
3269			zonelist_order_name[current_zonelist_order],
3270			page_group_by_mobility_disabled ? "off" : "on",
3271			vm_total_pages);
3272#ifdef CONFIG_NUMA
3273	printk("Policy zone: %s\n", zone_names[policy_zone]);
3274#endif
3275}
3276
3277/*
3278 * Helper functions to size the waitqueue hash table.
3279 * Essentially these want to choose hash table sizes sufficiently
3280 * large so that collisions trying to wait on pages are rare.
3281 * But in fact, the number of active page waitqueues on typical
3282 * systems is ridiculously low, less than 200. So this is even
3283 * conservative, even though it seems large.
3284 *
3285 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3286 * waitqueues, i.e. the size of the waitq table given the number of pages.
3287 */
3288#define PAGES_PER_WAITQUEUE	256
3289
3290#ifndef CONFIG_MEMORY_HOTPLUG
3291static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3292{
3293	unsigned long size = 1;
3294
3295	pages /= PAGES_PER_WAITQUEUE;
3296
3297	while (size < pages)
3298		size <<= 1;
3299
3300	/*
3301	 * Once we have dozens or even hundreds of threads sleeping
3302	 * on IO we've got bigger problems than wait queue collision.
3303	 * Limit the size of the wait table to a reasonable size.
3304	 */
3305	size = min(size, 4096UL);
3306
3307	return max(size, 4UL);
3308}
3309#else
3310/*
3311 * A zone's size might be changed by hot-add, so it is not possible to determine
3312 * a suitable size for its wait_table.  So we use the maximum size now.
3313 *
3314 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3315 *
3316 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3317 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3318 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3319 *
3320 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3321 * or more by the traditional way. (See above).  It equals:
3322 *
3323 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3324 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3325 *    powerpc (64K page size)             : =  (32G +16M)byte.
3326 */
3327static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3328{
3329	return 4096UL;
3330}
3331#endif
3332
3333/*
3334 * This is an integer logarithm so that shifts can be used later
3335 * to extract the more random high bits from the multiplicative
3336 * hash function before the remainder is taken.
3337 */
3338static inline unsigned long wait_table_bits(unsigned long size)
3339{
3340	return ffz(~size);
3341}
3342
3343#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3344
3345/*
3346 * Check if a pageblock contains reserved pages
3347 */
3348static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3349{
3350	unsigned long pfn;
3351
3352	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3353		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3354			return 1;
 
 
 
 
 
 
 
 
 
3355	}
3356	return 0;
3357}
3358
3359/*
3360 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3361 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3362 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3363 * higher will lead to a bigger reserve which will get freed as contiguous
3364 * blocks as reclaim kicks in
3365 */
3366static void setup_zone_migrate_reserve(struct zone *zone)
 
 
 
 
 
3367{
3368	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3369	struct page *page;
3370	unsigned long block_migratetype;
3371	int reserve;
3372
3373	/* Get the start pfn, end pfn and the number of blocks to reserve */
3374	start_pfn = zone->zone_start_pfn;
3375	end_pfn = start_pfn + zone->spanned_pages;
3376	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3377							pageblock_order;
3378
3379	/*
3380	 * Reserve blocks are generally in place to help high-order atomic
3381	 * allocations that are short-lived. A min_free_kbytes value that
3382	 * would result in more than 2 reserve blocks for atomic allocations
3383	 * is assumed to be in place to help anti-fragmentation for the
3384	 * future allocation of hugepages at runtime.
3385	 */
3386	reserve = min(2, reserve);
3387
3388	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3389		if (!pfn_valid(pfn))
3390			continue;
3391		page = pfn_to_page(pfn);
3392
3393		/* Watch out for overlapping nodes */
3394		if (page_to_nid(page) != zone_to_nid(zone))
3395			continue;
3396
3397		/* Blocks with reserved pages will never free, skip them. */
3398		block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3399		if (pageblock_is_reserved(pfn, block_end_pfn))
3400			continue;
 
 
 
 
 
 
 
3401
3402		block_migratetype = get_pageblock_migratetype(page);
 
 
 
 
3403
3404		/* If this block is reserved, account for it */
3405		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3406			reserve--;
3407			continue;
 
 
 
 
 
 
3408		}
3409
3410		/* Suitable for reserving if this block is movable */
3411		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3412			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3413			move_freepages_block(zone, page, MIGRATE_RESERVE);
3414			reserve--;
3415			continue;
3416		}
3417
3418		/*
3419		 * If the reserve is met and this is a previous reserved block,
3420		 * take it back
 
3421		 */
3422		if (block_migratetype == MIGRATE_RESERVE) {
3423			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3424			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3425		}
 
3426	}
3427}
3428
3429/*
3430 * Initially all pages are reserved - free ones are freed
3431 * up by free_all_bootmem() once the early boot process is
3432 * done. Non-atomic initialization, single-pass.
3433 */
3434void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3435		unsigned long start_pfn, enum memmap_context context)
3436{
3437	struct page *page;
3438	unsigned long end_pfn = start_pfn + size;
3439	unsigned long pfn;
3440	struct zone *z;
 
 
3441
3442	if (highest_memmap_pfn < end_pfn - 1)
3443		highest_memmap_pfn = end_pfn - 1;
 
 
 
 
 
 
 
 
 
 
3444
3445	z = &NODE_DATA(nid)->node_zones[zone];
3446	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 
 
 
 
3447		/*
3448		 * There can be holes in boot-time mem_map[]s
3449		 * handed to this function.  They do not
3450		 * exist on hotplugged memory.
 
 
3451		 */
3452		if (context == MEMMAP_EARLY) {
3453			if (!early_pfn_valid(pfn))
3454				continue;
3455			if (!early_pfn_in_nid(pfn, nid))
3456				continue;
3457		}
3458		page = pfn_to_page(pfn);
3459		set_page_links(page, zone, nid, pfn);
3460		mminit_verify_page_links(page, zone, nid, pfn);
3461		init_page_count(page);
3462		reset_page_mapcount(page);
3463		SetPageReserved(page);
3464		/*
3465		 * Mark the block movable so that blocks are reserved for
3466		 * movable at startup. This will force kernel allocations
3467		 * to reserve their blocks rather than leaking throughout
3468		 * the address space during boot when many long-lived
3469		 * kernel allocations are made. Later some blocks near
3470		 * the start are marked MIGRATE_RESERVE by
3471		 * setup_zone_migrate_reserve()
3472		 *
3473		 * bitmap is created for zone's valid pfn range. but memmap
3474		 * can be created for invalid pages (for alignment)
3475		 * check here not to call set_pageblock_migratetype() against
3476		 * pfn out of zone.
3477		 */
3478		if ((z->zone_start_pfn <= pfn)
3479		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3480		    && !(pfn & (pageblock_nr_pages - 1)))
3481			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3482
3483		INIT_LIST_HEAD(&page->lru);
3484#ifdef WANT_PAGE_VIRTUAL
3485		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3486		if (!is_highmem_idx(zone))
3487			set_page_address(page, __va(pfn << PAGE_SHIFT));
3488#endif
3489	}
 
 
 
3490}
3491
 
3492static void __meminit zone_init_free_lists(struct zone *zone)
3493{
3494	int order, t;
3495	for_each_migratetype_order(order, t) {
3496		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3497		zone->free_area[order].nr_free = 0;
3498	}
3499}
3500
3501#ifndef __HAVE_ARCH_MEMMAP_INIT
3502#define memmap_init(size, nid, zone, start_pfn) \
3503	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3504#endif
3505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3506static int zone_batchsize(struct zone *zone)
3507{
3508#ifdef CONFIG_MMU
3509	int batch;
3510
3511	/*
3512	 * The per-cpu-pages pools are set to around 1000th of the
3513	 * size of the zone.  But no more than 1/2 of a meg.
3514	 *
3515	 * OK, so we don't know how big the cache is.  So guess.
3516	 */
3517	batch = zone->present_pages / 1024;
3518	if (batch * PAGE_SIZE > 512 * 1024)
3519		batch = (512 * 1024) / PAGE_SIZE;
3520	batch /= 4;		/* We effectively *= 4 below */
3521	if (batch < 1)
3522		batch = 1;
3523
3524	/*
3525	 * Clamp the batch to a 2^n - 1 value. Having a power
3526	 * of 2 value was found to be more likely to have
3527	 * suboptimal cache aliasing properties in some cases.
3528	 *
3529	 * For example if 2 tasks are alternately allocating
3530	 * batches of pages, one task can end up with a lot
3531	 * of pages of one half of the possible page colors
3532	 * and the other with pages of the other colors.
3533	 */
3534	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3535
3536	return batch;
3537
3538#else
3539	/* The deferral and batching of frees should be suppressed under NOMMU
3540	 * conditions.
3541	 *
3542	 * The problem is that NOMMU needs to be able to allocate large chunks
3543	 * of contiguous memory as there's no hardware page translation to
3544	 * assemble apparent contiguous memory from discontiguous pages.
3545	 *
3546	 * Queueing large contiguous runs of pages for batching, however,
3547	 * causes the pages to actually be freed in smaller chunks.  As there
3548	 * can be a significant delay between the individual batches being
3549	 * recycled, this leads to the once large chunks of space being
3550	 * fragmented and becoming unavailable for high-order allocations.
3551	 */
3552	return 0;
3553#endif
3554}
3555
3556static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3557{
3558	struct per_cpu_pages *pcp;
3559	int migratetype;
 
 
3560
3561	memset(p, 0, sizeof(*p));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3562
3563	pcp = &p->pcp;
3564	pcp->count = 0;
3565	pcp->high = 6 * batch;
3566	pcp->batch = max(1UL, 1 * batch);
3567	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3568		INIT_LIST_HEAD(&pcp->lists[migratetype]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3569}
3570
3571/*
3572 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3573 * to the value high for the pageset p.
 
 
 
 
 
 
 
 
 
 
 
 
3574 */
 
 
 
 
 
 
3575
3576static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3577				unsigned long high)
3578{
3579	struct per_cpu_pages *pcp;
3580
3581	pcp = &p->pcp;
3582	pcp->high = high;
3583	pcp->batch = max(1UL, high/4);
3584	if ((high/4) > (PAGE_SHIFT * 8))
3585		pcp->batch = PAGE_SHIFT * 8;
 
 
 
 
 
 
 
 
 
 
3586}
3587
3588static void setup_zone_pageset(struct zone *zone)
 
3589{
 
3590	int cpu;
3591
3592	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3593
3594	for_each_possible_cpu(cpu) {
3595		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3596
3597		setup_pageset(pcp, zone_batchsize(zone));
3598
3599		if (percpu_pagelist_fraction)
3600			setup_pagelist_highmark(pcp,
3601				(zone->present_pages /
3602					percpu_pagelist_fraction));
3603	}
3604}
3605
3606/*
3607 * Allocate per cpu pagesets and initialize them.
3608 * Before this call only boot pagesets were available.
3609 */
3610void __init setup_per_cpu_pageset(void)
3611{
3612	struct zone *zone;
3613
3614	for_each_populated_zone(zone)
3615		setup_zone_pageset(zone);
3616}
3617
3618static noinline __init_refok
3619int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3620{
3621	int i;
3622	struct pglist_data *pgdat = zone->zone_pgdat;
3623	size_t alloc_size;
3624
3625	/*
3626	 * The per-page waitqueue mechanism uses hashed waitqueues
3627	 * per zone.
3628	 */
3629	zone->wait_table_hash_nr_entries =
3630		 wait_table_hash_nr_entries(zone_size_pages);
3631	zone->wait_table_bits =
3632		wait_table_bits(zone->wait_table_hash_nr_entries);
3633	alloc_size = zone->wait_table_hash_nr_entries
3634					* sizeof(wait_queue_head_t);
3635
3636	if (!slab_is_available()) {
3637		zone->wait_table = (wait_queue_head_t *)
3638			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3639	} else {
3640		/*
3641		 * This case means that a zone whose size was 0 gets new memory
3642		 * via memory hot-add.
3643		 * But it may be the case that a new node was hot-added.  In
3644		 * this case vmalloc() will not be able to use this new node's
3645		 * memory - this wait_table must be initialized to use this new
3646		 * node itself as well.
3647		 * To use this new node's memory, further consideration will be
3648		 * necessary.
3649		 */
3650		zone->wait_table = vmalloc(alloc_size);
3651	}
3652	if (!zone->wait_table)
3653		return -ENOMEM;
3654
3655	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3656		init_waitqueue_head(zone->wait_table + i);
3657
3658	return 0;
3659}
3660
3661static int __zone_pcp_update(void *data)
3662{
3663	struct zone *zone = data;
3664	int cpu;
3665	unsigned long batch = zone_batchsize(zone), flags;
3666
 
 
 
 
 
3667	for_each_possible_cpu(cpu) {
3668		struct per_cpu_pageset *pset;
3669		struct per_cpu_pages *pcp;
 
3670
3671		pset = per_cpu_ptr(zone->pageset, cpu);
3672		pcp = &pset->pcp;
3673
3674		local_irq_save(flags);
3675		free_pcppages_bulk(zone, pcp->count, pcp);
3676		setup_pageset(pset, batch);
3677		local_irq_restore(flags);
3678	}
3679	return 0;
 
3680}
3681
3682void zone_pcp_update(struct zone *zone)
 
 
 
 
3683{
3684	stop_machine(__zone_pcp_update, zone, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3685}
3686
3687static __meminit void zone_pcp_init(struct zone *zone)
3688{
3689	/*
3690	 * per cpu subsystem is not up at this point. The following code
3691	 * relies on the ability of the linker to provide the
3692	 * offset of a (static) per cpu variable into the per cpu area.
3693	 */
3694	zone->pageset = &boot_pageset;
 
 
 
3695
3696	if (zone->present_pages)
3697		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3698			zone->name, zone->present_pages,
3699					 zone_batchsize(zone));
3700}
3701
3702__meminit int init_currently_empty_zone(struct zone *zone,
3703					unsigned long zone_start_pfn,
3704					unsigned long size,
3705					enum memmap_context context)
3706{
3707	struct pglist_data *pgdat = zone->zone_pgdat;
3708	int ret;
3709	ret = zone_wait_table_init(zone, size);
3710	if (ret)
3711		return ret;
3712	pgdat->nr_zones = zone_idx(zone) + 1;
3713
3714	zone->zone_start_pfn = zone_start_pfn;
3715
3716	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3717			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3718			pgdat->node_id,
3719			(unsigned long)zone_idx(zone),
3720			zone_start_pfn, (zone_start_pfn + size));
3721
3722	zone_init_free_lists(zone);
3723
3724	return 0;
3725}
3726
3727#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3728/*
3729 * Basic iterator support. Return the first range of PFNs for a node
3730 * Note: nid == MAX_NUMNODES returns first region regardless of node
3731 */
3732static int __meminit first_active_region_index_in_nid(int nid)
3733{
3734	int i;
3735
3736	for (i = 0; i < nr_nodemap_entries; i++)
3737		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3738			return i;
3739
3740	return -1;
3741}
3742
3743/*
3744 * Basic iterator support. Return the next active range of PFNs for a node
3745 * Note: nid == MAX_NUMNODES returns next region regardless of node
3746 */
3747static int __meminit next_active_region_index_in_nid(int index, int nid)
3748{
3749	for (index = index + 1; index < nr_nodemap_entries; index++)
3750		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3751			return index;
3752
3753	return -1;
3754}
3755
3756#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3757/*
3758 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3759 * Architectures may implement their own version but if add_active_range()
3760 * was used and there are no special requirements, this is a convenient
3761 * alternative
3762 */
3763int __meminit __early_pfn_to_nid(unsigned long pfn)
3764{
3765	int i;
3766
3767	for (i = 0; i < nr_nodemap_entries; i++) {
3768		unsigned long start_pfn = early_node_map[i].start_pfn;
3769		unsigned long end_pfn = early_node_map[i].end_pfn;
3770
3771		if (start_pfn <= pfn && pfn < end_pfn)
3772			return early_node_map[i].nid;
3773	}
3774	/* This is a memory hole */
3775	return -1;
3776}
3777#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3778
3779int __meminit early_pfn_to_nid(unsigned long pfn)
3780{
3781	int nid;
3782
3783	nid = __early_pfn_to_nid(pfn);
3784	if (nid >= 0)
3785		return nid;
3786	/* just returns 0 */
3787	return 0;
3788}
3789
3790#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3791bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3792{
3793	int nid;
3794
3795	nid = __early_pfn_to_nid(pfn);
3796	if (nid >= 0 && nid != node)
3797		return false;
3798	return true;
3799}
3800#endif
3801
3802/* Basic iterator support to walk early_node_map[] */
3803#define for_each_active_range_index_in_nid(i, nid) \
3804	for (i = first_active_region_index_in_nid(nid); i != -1; \
3805				i = next_active_region_index_in_nid(i, nid))
3806
3807/**
3808 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3809 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3810 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3811 *
3812 * If an architecture guarantees that all ranges registered with
3813 * add_active_ranges() contain no holes and may be freed, this
3814 * this function may be used instead of calling free_bootmem() manually.
3815 */
3816void __init free_bootmem_with_active_regions(int nid,
3817						unsigned long max_low_pfn)
3818{
3819	int i;
3820
3821	for_each_active_range_index_in_nid(i, nid) {
3822		unsigned long size_pages = 0;
3823		unsigned long end_pfn = early_node_map[i].end_pfn;
3824
3825		if (early_node_map[i].start_pfn >= max_low_pfn)
3826			continue;
3827
3828		if (end_pfn > max_low_pfn)
3829			end_pfn = max_low_pfn;
3830
3831		size_pages = end_pfn - early_node_map[i].start_pfn;
3832		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3833				PFN_PHYS(early_node_map[i].start_pfn),
3834				size_pages << PAGE_SHIFT);
3835	}
3836}
3837
3838#ifdef CONFIG_HAVE_MEMBLOCK
3839/*
3840 * Basic iterator support. Return the last range of PFNs for a node
3841 * Note: nid == MAX_NUMNODES returns last region regardless of node
3842 */
3843static int __meminit last_active_region_index_in_nid(int nid)
3844{
3845	int i;
3846
3847	for (i = nr_nodemap_entries - 1; i >= 0; i--)
3848		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3849			return i;
3850
3851	return -1;
3852}
3853
3854/*
3855 * Basic iterator support. Return the previous active range of PFNs for a node
3856 * Note: nid == MAX_NUMNODES returns next region regardless of node
3857 */
3858static int __meminit previous_active_region_index_in_nid(int index, int nid)
3859{
3860	for (index = index - 1; index >= 0; index--)
3861		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3862			return index;
3863
3864	return -1;
3865}
3866
3867#define for_each_active_range_index_in_nid_reverse(i, nid) \
3868	for (i = last_active_region_index_in_nid(nid); i != -1; \
3869				i = previous_active_region_index_in_nid(i, nid))
3870
3871u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3872					u64 goal, u64 limit)
3873{
3874	int i;
3875
3876	/* Need to go over early_node_map to find out good range for node */
3877	for_each_active_range_index_in_nid_reverse(i, nid) {
3878		u64 addr;
3879		u64 ei_start, ei_last;
3880		u64 final_start, final_end;
3881
3882		ei_last = early_node_map[i].end_pfn;
3883		ei_last <<= PAGE_SHIFT;
3884		ei_start = early_node_map[i].start_pfn;
3885		ei_start <<= PAGE_SHIFT;
3886
3887		final_start = max(ei_start, goal);
3888		final_end = min(ei_last, limit);
3889
3890		if (final_start >= final_end)
3891			continue;
3892
3893		addr = memblock_find_in_range(final_start, final_end, size, align);
3894
3895		if (addr == MEMBLOCK_ERROR)
3896			continue;
3897
3898		return addr;
3899	}
3900
3901	return MEMBLOCK_ERROR;
3902}
3903#endif
3904
3905int __init add_from_early_node_map(struct range *range, int az,
3906				   int nr_range, int nid)
3907{
3908	int i;
3909	u64 start, end;
3910
3911	/* need to go over early_node_map to find out good range for node */
3912	for_each_active_range_index_in_nid(i, nid) {
3913		start = early_node_map[i].start_pfn;
3914		end = early_node_map[i].end_pfn;
3915		nr_range = add_range(range, az, nr_range, start, end);
3916	}
3917	return nr_range;
3918}
3919
3920void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3921{
3922	int i;
3923	int ret;
3924
3925	for_each_active_range_index_in_nid(i, nid) {
3926		ret = work_fn(early_node_map[i].start_pfn,
3927			      early_node_map[i].end_pfn, data);
3928		if (ret)
3929			break;
3930	}
3931}
3932/**
3933 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3934 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3935 *
3936 * If an architecture guarantees that all ranges registered with
3937 * add_active_ranges() contain no holes and may be freed, this
3938 * function may be used instead of calling memory_present() manually.
3939 */
3940void __init sparse_memory_present_with_active_regions(int nid)
3941{
3942	int i;
3943
3944	for_each_active_range_index_in_nid(i, nid)
3945		memory_present(early_node_map[i].nid,
3946				early_node_map[i].start_pfn,
3947				early_node_map[i].end_pfn);
3948}
3949
3950/**
3951 * get_pfn_range_for_nid - Return the start and end page frames for a node
3952 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3953 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3954 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3955 *
3956 * It returns the start and end page frame of a node based on information
3957 * provided by an arch calling add_active_range(). If called for a node
3958 * with no available memory, a warning is printed and the start and end
3959 * PFNs will be 0.
3960 */
3961void __meminit get_pfn_range_for_nid(unsigned int nid,
3962			unsigned long *start_pfn, unsigned long *end_pfn)
3963{
 
3964	int i;
 
3965	*start_pfn = -1UL;
3966	*end_pfn = 0;
3967
3968	for_each_active_range_index_in_nid(i, nid) {
3969		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3970		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3971	}
3972
3973	if (*start_pfn == -1UL)
3974		*start_pfn = 0;
3975}
3976
3977/*
3978 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3979 * assumption is made that zones within a node are ordered in monotonic
3980 * increasing memory addresses so that the "highest" populated zone is used
3981 */
3982static void __init find_usable_zone_for_movable(void)
3983{
3984	int zone_index;
3985	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3986		if (zone_index == ZONE_MOVABLE)
3987			continue;
3988
3989		if (arch_zone_highest_possible_pfn[zone_index] >
3990				arch_zone_lowest_possible_pfn[zone_index])
3991			break;
3992	}
3993
3994	VM_BUG_ON(zone_index == -1);
3995	movable_zone = zone_index;
3996}
3997
3998/*
3999 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4000 * because it is sized independent of architecture. Unlike the other zones,
4001 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4002 * in each node depending on the size of each node and how evenly kernelcore
4003 * is distributed. This helper function adjusts the zone ranges
4004 * provided by the architecture for a given node by using the end of the
4005 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4006 * zones within a node are in order of monotonic increases memory addresses
4007 */
4008static void __meminit adjust_zone_range_for_zone_movable(int nid,
4009					unsigned long zone_type,
4010					unsigned long node_start_pfn,
4011					unsigned long node_end_pfn,
4012					unsigned long *zone_start_pfn,
4013					unsigned long *zone_end_pfn)
4014{
4015	/* Only adjust if ZONE_MOVABLE is on this node */
4016	if (zone_movable_pfn[nid]) {
4017		/* Size ZONE_MOVABLE */
4018		if (zone_type == ZONE_MOVABLE) {
4019			*zone_start_pfn = zone_movable_pfn[nid];
4020			*zone_end_pfn = min(node_end_pfn,
4021				arch_zone_highest_possible_pfn[movable_zone]);
4022
4023		/* Adjust for ZONE_MOVABLE starting within this range */
4024		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4025				*zone_end_pfn > zone_movable_pfn[nid]) {
 
4026			*zone_end_pfn = zone_movable_pfn[nid];
4027
4028		/* Check if this whole range is within ZONE_MOVABLE */
4029		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4030			*zone_start_pfn = *zone_end_pfn;
4031	}
4032}
4033
4034/*
4035 * Return the number of pages a zone spans in a node, including holes
4036 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4037 */
4038static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4039					unsigned long zone_type,
4040					unsigned long *ignored)
 
 
 
4041{
4042	unsigned long node_start_pfn, node_end_pfn;
4043	unsigned long zone_start_pfn, zone_end_pfn;
 
 
 
4044
4045	/* Get the start and end of the node and zone */
4046	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4047	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4048	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4049	adjust_zone_range_for_zone_movable(nid, zone_type,
4050				node_start_pfn, node_end_pfn,
4051				&zone_start_pfn, &zone_end_pfn);
4052
4053	/* Check that this node has pages within the zone's required range */
4054	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4055		return 0;
4056
4057	/* Move the zone boundaries inside the node if necessary */
4058	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4059	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4060
4061	/* Return the spanned pages */
4062	return zone_end_pfn - zone_start_pfn;
4063}
4064
4065/*
4066 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4067 * then all holes in the requested range will be accounted for.
4068 */
4069unsigned long __meminit __absent_pages_in_range(int nid,
4070				unsigned long range_start_pfn,
4071				unsigned long range_end_pfn)
4072{
4073	int i = 0;
4074	unsigned long prev_end_pfn = 0, hole_pages = 0;
4075	unsigned long start_pfn;
4076
4077	/* Find the end_pfn of the first active range of pfns in the node */
4078	i = first_active_region_index_in_nid(nid);
4079	if (i == -1)
4080		return 0;
4081
4082	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4083
4084	/* Account for ranges before physical memory on this node */
4085	if (early_node_map[i].start_pfn > range_start_pfn)
4086		hole_pages = prev_end_pfn - range_start_pfn;
4087
4088	/* Find all holes for the zone within the node */
4089	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4090
4091		/* No need to continue if prev_end_pfn is outside the zone */
4092		if (prev_end_pfn >= range_end_pfn)
4093			break;
4094
4095		/* Make sure the end of the zone is not within the hole */
4096		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4097		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4098
4099		/* Update the hole size cound and move on */
4100		if (start_pfn > range_start_pfn) {
4101			BUG_ON(prev_end_pfn > start_pfn);
4102			hole_pages += start_pfn - prev_end_pfn;
4103		}
4104		prev_end_pfn = early_node_map[i].end_pfn;
4105	}
4106
4107	/* Account for ranges past physical memory on this node */
4108	if (range_end_pfn > prev_end_pfn)
4109		hole_pages += range_end_pfn -
4110				max(range_start_pfn, prev_end_pfn);
4111
4112	return hole_pages;
4113}
4114
4115/**
4116 * absent_pages_in_range - Return number of page frames in holes within a range
4117 * @start_pfn: The start PFN to start searching for holes
4118 * @end_pfn: The end PFN to stop searching for holes
4119 *
4120 * It returns the number of pages frames in memory holes within a range.
4121 */
4122unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4123							unsigned long end_pfn)
4124{
4125	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4126}
4127
4128/* Return the number of page frames in holes in a zone on a node */
4129static unsigned long __meminit zone_absent_pages_in_node(int nid,
4130					unsigned long zone_type,
4131					unsigned long *ignored)
 
4132{
4133	unsigned long node_start_pfn, node_end_pfn;
 
4134	unsigned long zone_start_pfn, zone_end_pfn;
 
4135
4136	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4137	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4138							node_start_pfn);
4139	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4140							node_end_pfn);
 
4141
4142	adjust_zone_range_for_zone_movable(nid, zone_type,
4143			node_start_pfn, node_end_pfn,
4144			&zone_start_pfn, &zone_end_pfn);
4145	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4146}
4147
4148#else
4149static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4150					unsigned long zone_type,
4151					unsigned long *zones_size)
4152{
4153	return zones_size[zone_type];
4154}
 
4155
4156static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4157						unsigned long zone_type,
4158						unsigned long *zholes_size)
4159{
4160	if (!zholes_size)
4161		return 0;
4162
4163	return zholes_size[zone_type];
4164}
 
4165
4166#endif
 
 
 
 
4167
4168static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4169		unsigned long *zones_size, unsigned long *zholes_size)
 
 
 
 
4170{
4171	unsigned long realtotalpages, totalpages = 0;
4172	enum zone_type i;
4173
4174	for (i = 0; i < MAX_NR_ZONES; i++)
4175		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4176								zones_size);
4177	pgdat->node_spanned_pages = totalpages;
 
 
 
 
 
 
 
 
 
 
4178
4179	realtotalpages = totalpages;
4180	for (i = 0; i < MAX_NR_ZONES; i++)
4181		realtotalpages -=
4182			zone_absent_pages_in_node(pgdat->node_id, i,
4183								zholes_size);
 
 
 
 
 
 
 
 
 
 
4184	pgdat->node_present_pages = realtotalpages;
4185	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4186							realtotalpages);
4187}
4188
4189#ifndef CONFIG_SPARSEMEM
4190/*
4191 * Calculate the size of the zone->blockflags rounded to an unsigned long
4192 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4193 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4194 * round what is now in bits to nearest long in bits, then return it in
4195 * bytes.
4196 */
4197static unsigned long __init usemap_size(unsigned long zonesize)
4198{
4199	unsigned long usemapsize;
4200
 
4201	usemapsize = roundup(zonesize, pageblock_nr_pages);
4202	usemapsize = usemapsize >> pageblock_order;
4203	usemapsize *= NR_PAGEBLOCK_BITS;
4204	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4205
4206	return usemapsize / 8;
4207}
4208
4209static void __init setup_usemap(struct pglist_data *pgdat,
4210				struct zone *zone, unsigned long zonesize)
4211{
4212	unsigned long usemapsize = usemap_size(zonesize);
 
4213	zone->pageblock_flags = NULL;
4214	if (usemapsize)
4215		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4216								   usemapsize);
 
 
 
 
 
4217}
4218#else
4219static inline void setup_usemap(struct pglist_data *pgdat,
4220				struct zone *zone, unsigned long zonesize) {}
4221#endif /* CONFIG_SPARSEMEM */
4222
4223#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4224
4225/* Return a sensible default order for the pageblock size. */
4226static inline int pageblock_default_order(void)
4227{
4228	if (HPAGE_SHIFT > PAGE_SHIFT)
4229		return HUGETLB_PAGE_ORDER;
4230
4231	return MAX_ORDER-1;
4232}
4233
4234/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4235static inline void __init set_pageblock_order(unsigned int order)
4236{
 
 
4237	/* Check that pageblock_nr_pages has not already been setup */
4238	if (pageblock_order)
4239		return;
4240
 
 
 
 
 
4241	/*
4242	 * Assume the largest contiguous order of interest is a huge page.
4243	 * This value may be variable depending on boot parameters on IA64
 
4244	 */
4245	pageblock_order = order;
4246}
4247#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4248
4249/*
4250 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4251 * and pageblock_default_order() are unused as pageblock_order is set
4252 * at compile-time. See include/linux/pageblock-flags.h for the values of
4253 * pageblock_order based on the kernel config
4254 */
4255static inline int pageblock_default_order(unsigned int order)
4256{
4257	return MAX_ORDER-1;
4258}
4259#define set_pageblock_order(x)	do {} while (0)
4260
4261#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4263/*
4264 * Set up the zone data structures:
4265 *   - mark all pages reserved
4266 *   - mark all memory queues empty
4267 *   - clear the memory bitmaps
 
 
 
4268 */
4269static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4270		unsigned long *zones_size, unsigned long *zholes_size)
4271{
4272	enum zone_type j;
4273	int nid = pgdat->node_id;
4274	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4275	int ret;
4276
4277	pgdat_resize_init(pgdat);
4278	pgdat->nr_zones = 0;
4279	init_waitqueue_head(&pgdat->kswapd_wait);
4280	pgdat->kswapd_max_order = 0;
4281	pgdat_page_cgroup_init(pgdat);
4282	
4283	for (j = 0; j < MAX_NR_ZONES; j++) {
4284		struct zone *zone = pgdat->node_zones + j;
4285		unsigned long size, realsize, memmap_pages;
4286		enum lru_list l;
4287
4288		size = zone_spanned_pages_in_node(nid, j, zones_size);
4289		realsize = size - zone_absent_pages_in_node(nid, j,
4290								zholes_size);
4291
4292		/*
4293		 * Adjust realsize so that it accounts for how much memory
4294		 * is used by this zone for memmap. This affects the watermark
4295		 * and per-cpu initialisations
4296		 */
4297		memmap_pages =
4298			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4299		if (realsize >= memmap_pages) {
4300			realsize -= memmap_pages;
4301			if (memmap_pages)
4302				printk(KERN_DEBUG
4303				       "  %s zone: %lu pages used for memmap\n",
4304				       zone_names[j], memmap_pages);
4305		} else
4306			printk(KERN_WARNING
4307				"  %s zone: %lu pages exceeds realsize %lu\n",
4308				zone_names[j], memmap_pages, realsize);
4309
4310		/* Account for reserved pages */
4311		if (j == 0 && realsize > dma_reserve) {
4312			realsize -= dma_reserve;
4313			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4314					zone_names[0], dma_reserve);
4315		}
4316
4317		if (!is_highmem_idx(j))
4318			nr_kernel_pages += realsize;
4319		nr_all_pages += realsize;
 
 
 
 
 
 
 
 
 
 
4320
4321		zone->spanned_pages = size;
4322		zone->present_pages = realsize;
4323#ifdef CONFIG_NUMA
4324		zone->node = nid;
4325		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4326						/ 100;
4327		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4328#endif
4329		zone->name = zone_names[j];
4330		spin_lock_init(&zone->lock);
4331		spin_lock_init(&zone->lru_lock);
4332		zone_seqlock_init(zone);
4333		zone->zone_pgdat = pgdat;
4334
4335		zone_pcp_init(zone);
4336		for_each_lru(l)
4337			INIT_LIST_HEAD(&zone->lru[l].list);
4338		zone->reclaim_stat.recent_rotated[0] = 0;
4339		zone->reclaim_stat.recent_rotated[1] = 0;
4340		zone->reclaim_stat.recent_scanned[0] = 0;
4341		zone->reclaim_stat.recent_scanned[1] = 0;
4342		zap_zone_vm_stats(zone);
4343		zone->flags = 0;
4344		if (!size)
4345			continue;
4346
4347		set_pageblock_order(pageblock_default_order());
4348		setup_usemap(pgdat, zone, size);
4349		ret = init_currently_empty_zone(zone, zone_start_pfn,
4350						size, MEMMAP_EARLY);
4351		BUG_ON(ret);
4352		memmap_init(size, nid, j, zone_start_pfn);
4353		zone_start_pfn += size;
4354	}
4355}
4356
4357static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
 
4358{
 
 
 
4359	/* Skip empty nodes */
4360	if (!pgdat->node_spanned_pages)
4361		return;
4362
4363#ifdef CONFIG_FLAT_NODE_MEM_MAP
 
4364	/* ia64 gets its own node_mem_map, before this, without bootmem */
4365	if (!pgdat->node_mem_map) {
4366		unsigned long size, start, end;
4367		struct page *map;
4368
4369		/*
4370		 * The zone's endpoints aren't required to be MAX_ORDER
4371		 * aligned but the node_mem_map endpoints must be in order
4372		 * for the buddy allocator to function correctly.
4373		 */
4374		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4375		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4376		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4377		size =  (end - start) * sizeof(struct page);
4378		map = alloc_remap(pgdat->node_id, size);
 
4379		if (!map)
4380			map = alloc_bootmem_node_nopanic(pgdat, size);
4381		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4382	}
4383#ifndef CONFIG_NEED_MULTIPLE_NODES
 
 
 
 
4384	/*
4385	 * With no DISCONTIG, the global mem_map is just set as node 0's
4386	 */
4387	if (pgdat == NODE_DATA(0)) {
4388		mem_map = NODE_DATA(0)->node_mem_map;
4389#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4390		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4391			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4392#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4393	}
4394#endif
4395#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4396}
 
 
 
4397
4398void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4399		unsigned long node_start_pfn, unsigned long *zholes_size)
4400{
4401	pg_data_t *pgdat = NODE_DATA(nid);
4402
4403	pgdat->node_id = nid;
4404	pgdat->node_start_pfn = node_start_pfn;
4405	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4406
4407	alloc_node_mem_map(pgdat);
4408#ifdef CONFIG_FLAT_NODE_MEM_MAP
4409	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4410		nid, (unsigned long)pgdat,
4411		(unsigned long)pgdat->node_mem_map);
4412#endif
4413
4414	free_area_init_core(pgdat, zones_size, zholes_size);
4415}
4416
4417#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4418
4419#if MAX_NUMNODES > 1
4420/*
4421 * Figure out the number of possible node ids.
4422 */
4423static void __init setup_nr_node_ids(void)
4424{
4425	unsigned int node;
4426	unsigned int highest = 0;
4427
4428	for_each_node_mask(node, node_possible_map)
4429		highest = node;
4430	nr_node_ids = highest + 1;
4431}
4432#else
4433static inline void setup_nr_node_ids(void)
4434{
4435}
4436#endif
4437
4438/**
4439 * add_active_range - Register a range of PFNs backed by physical memory
4440 * @nid: The node ID the range resides on
4441 * @start_pfn: The start PFN of the available physical memory
4442 * @end_pfn: The end PFN of the available physical memory
4443 *
4444 * These ranges are stored in an early_node_map[] and later used by
4445 * free_area_init_nodes() to calculate zone sizes and holes. If the
4446 * range spans a memory hole, it is up to the architecture to ensure
4447 * the memory is not freed by the bootmem allocator. If possible
4448 * the range being registered will be merged with existing ranges.
4449 */
4450void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4451						unsigned long end_pfn)
4452{
4453	int i;
4454
4455	mminit_dprintk(MMINIT_TRACE, "memory_register",
4456			"Entering add_active_range(%d, %#lx, %#lx) "
4457			"%d entries of %d used\n",
4458			nid, start_pfn, end_pfn,
4459			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4460
4461	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4462
4463	/* Merge with existing active regions if possible */
4464	for (i = 0; i < nr_nodemap_entries; i++) {
4465		if (early_node_map[i].nid != nid)
4466			continue;
4467
4468		/* Skip if an existing region covers this new one */
4469		if (start_pfn >= early_node_map[i].start_pfn &&
4470				end_pfn <= early_node_map[i].end_pfn)
4471			return;
4472
4473		/* Merge forward if suitable */
4474		if (start_pfn <= early_node_map[i].end_pfn &&
4475				end_pfn > early_node_map[i].end_pfn) {
4476			early_node_map[i].end_pfn = end_pfn;
4477			return;
4478		}
4479
4480		/* Merge backward if suitable */
4481		if (start_pfn < early_node_map[i].start_pfn &&
4482				end_pfn >= early_node_map[i].start_pfn) {
4483			early_node_map[i].start_pfn = start_pfn;
4484			return;
4485		}
4486	}
4487
4488	/* Check that early_node_map is large enough */
4489	if (i >= MAX_ACTIVE_REGIONS) {
4490		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4491							MAX_ACTIVE_REGIONS);
4492		return;
4493	}
4494
4495	early_node_map[i].nid = nid;
4496	early_node_map[i].start_pfn = start_pfn;
4497	early_node_map[i].end_pfn = end_pfn;
4498	nr_nodemap_entries = i + 1;
4499}
4500
4501/**
4502 * remove_active_range - Shrink an existing registered range of PFNs
4503 * @nid: The node id the range is on that should be shrunk
4504 * @start_pfn: The new PFN of the range
4505 * @end_pfn: The new PFN of the range
4506 *
4507 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4508 * The map is kept near the end physical page range that has already been
4509 * registered. This function allows an arch to shrink an existing registered
4510 * range.
4511 */
4512void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4513				unsigned long end_pfn)
4514{
4515	int i, j;
4516	int removed = 0;
4517
4518	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4519			  nid, start_pfn, end_pfn);
4520
4521	/* Find the old active region end and shrink */
4522	for_each_active_range_index_in_nid(i, nid) {
4523		if (early_node_map[i].start_pfn >= start_pfn &&
4524		    early_node_map[i].end_pfn <= end_pfn) {
4525			/* clear it */
4526			early_node_map[i].start_pfn = 0;
4527			early_node_map[i].end_pfn = 0;
4528			removed = 1;
4529			continue;
4530		}
4531		if (early_node_map[i].start_pfn < start_pfn &&
4532		    early_node_map[i].end_pfn > start_pfn) {
4533			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4534			early_node_map[i].end_pfn = start_pfn;
4535			if (temp_end_pfn > end_pfn)
4536				add_active_range(nid, end_pfn, temp_end_pfn);
4537			continue;
4538		}
4539		if (early_node_map[i].start_pfn >= start_pfn &&
4540		    early_node_map[i].end_pfn > end_pfn &&
4541		    early_node_map[i].start_pfn < end_pfn) {
4542			early_node_map[i].start_pfn = end_pfn;
4543			continue;
4544		}
4545	}
4546
4547	if (!removed)
4548		return;
4549
4550	/* remove the blank ones */
4551	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4552		if (early_node_map[i].nid != nid)
4553			continue;
4554		if (early_node_map[i].end_pfn)
4555			continue;
4556		/* we found it, get rid of it */
4557		for (j = i; j < nr_nodemap_entries - 1; j++)
4558			memcpy(&early_node_map[j], &early_node_map[j+1],
4559				sizeof(early_node_map[j]));
4560		j = nr_nodemap_entries - 1;
4561		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4562		nr_nodemap_entries--;
4563	}
4564}
4565
4566/**
4567 * remove_all_active_ranges - Remove all currently registered regions
4568 *
4569 * During discovery, it may be found that a table like SRAT is invalid
4570 * and an alternative discovery method must be used. This function removes
4571 * all currently registered regions.
4572 */
4573void __init remove_all_active_ranges(void)
4574{
4575	memset(early_node_map, 0, sizeof(early_node_map));
4576	nr_nodemap_entries = 0;
4577}
4578
4579/* Compare two active node_active_regions */
4580static int __init cmp_node_active_region(const void *a, const void *b)
 
 
 
4581{
4582	struct node_active_region *arange = (struct node_active_region *)a;
4583	struct node_active_region *brange = (struct node_active_region *)b;
4584
4585	/* Done this way to avoid overflows */
4586	if (arange->start_pfn > brange->start_pfn)
4587		return 1;
4588	if (arange->start_pfn < brange->start_pfn)
4589		return -1;
4590
4591	return 0;
4592}
4593
4594/* sort the node_map by start_pfn */
4595void __init sort_node_map(void)
4596{
4597	sort(early_node_map, (size_t)nr_nodemap_entries,
4598			sizeof(struct node_active_region),
4599			cmp_node_active_region, NULL);
4600}
 
4601
4602/**
4603 * node_map_pfn_alignment - determine the maximum internode alignment
4604 *
4605 * This function should be called after node map is populated and sorted.
4606 * It calculates the maximum power of two alignment which can distinguish
4607 * all the nodes.
4608 *
4609 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4610 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4611 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4612 * shifted, 1GiB is enough and this function will indicate so.
4613 *
4614 * This is used to test whether pfn -> nid mapping of the chosen memory
4615 * model has fine enough granularity to avoid incorrect mapping for the
4616 * populated node map.
4617 *
4618 * Returns the determined alignment in pfn's.  0 if there is no alignment
4619 * requirement (single node).
4620 */
4621unsigned long __init node_map_pfn_alignment(void)
4622{
4623	unsigned long accl_mask = 0, last_end = 0;
4624	int last_nid = -1;
4625	int i;
4626
4627	for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4628		int nid = early_node_map[i].nid;
4629		unsigned long start = early_node_map[i].start_pfn;
4630		unsigned long end = early_node_map[i].end_pfn;
4631		unsigned long mask;
4632
 
4633		if (!start || last_nid < 0 || last_nid == nid) {
4634			last_nid = nid;
4635			last_end = end;
4636			continue;
4637		}
4638
4639		/*
4640		 * Start with a mask granular enough to pin-point to the
4641		 * start pfn and tick off bits one-by-one until it becomes
4642		 * too coarse to separate the current node from the last.
4643		 */
4644		mask = ~((1 << __ffs(start)) - 1);
4645		while (mask && last_end <= (start & (mask << 1)))
4646			mask <<= 1;
4647
4648		/* accumulate all internode masks */
4649		accl_mask |= mask;
4650	}
4651
4652	/* convert mask to number of pages */
4653	return ~accl_mask + 1;
4654}
4655
4656/* Find the lowest pfn for a node */
4657static unsigned long __init find_min_pfn_for_node(int nid)
4658{
4659	int i;
4660	unsigned long min_pfn = ULONG_MAX;
4661
4662	/* Assuming a sorted map, the first range found has the starting pfn */
4663	for_each_active_range_index_in_nid(i, nid)
4664		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4665
4666	if (min_pfn == ULONG_MAX) {
4667		printk(KERN_WARNING
4668			"Could not find start_pfn for node %d\n", nid);
4669		return 0;
4670	}
4671
4672	return min_pfn;
4673}
4674
4675/**
4676 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4677 *
4678 * It returns the minimum PFN based on information provided via
4679 * add_active_range().
4680 */
4681unsigned long __init find_min_pfn_with_active_regions(void)
4682{
4683	return find_min_pfn_for_node(MAX_NUMNODES);
4684}
4685
4686/*
4687 * early_calculate_totalpages()
4688 * Sum pages in active regions for movable zone.
4689 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4690 */
4691static unsigned long __init early_calculate_totalpages(void)
4692{
4693	int i;
4694	unsigned long totalpages = 0;
 
 
 
 
 
4695
4696	for (i = 0; i < nr_nodemap_entries; i++) {
4697		unsigned long pages = early_node_map[i].end_pfn -
4698						early_node_map[i].start_pfn;
4699		totalpages += pages;
4700		if (pages)
4701			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4702	}
4703  	return totalpages;
4704}
4705
4706/*
4707 * Find the PFN the Movable zone begins in each node. Kernel memory
4708 * is spread evenly between nodes as long as the nodes have enough
4709 * memory. When they don't, some nodes will have more kernelcore than
4710 * others
4711 */
4712static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4713{
4714	int i, nid;
4715	unsigned long usable_startpfn;
4716	unsigned long kernelcore_node, kernelcore_remaining;
4717	/* save the state before borrow the nodemask */
4718	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4719	unsigned long totalpages = early_calculate_totalpages();
4720	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
 
 
 
 
4721
4722	/*
4723	 * If movablecore was specified, calculate what size of
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4724	 * kernelcore that corresponds so that memory usable for
4725	 * any allocation type is evenly spread. If both kernelcore
4726	 * and movablecore are specified, then the value of kernelcore
4727	 * will be used for required_kernelcore if it's greater than
4728	 * what movablecore would have allowed.
4729	 */
4730	if (required_movablecore) {
4731		unsigned long corepages;
4732
4733		/*
4734		 * Round-up so that ZONE_MOVABLE is at least as large as what
4735		 * was requested by the user
4736		 */
4737		required_movablecore =
4738			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
 
4739		corepages = totalpages - required_movablecore;
4740
4741		required_kernelcore = max(required_kernelcore, corepages);
4742	}
4743
4744	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4745	if (!required_kernelcore)
 
 
 
4746		goto out;
4747
4748	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4749	find_usable_zone_for_movable();
4750	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4751
4752restart:
4753	/* Spread kernelcore memory as evenly as possible throughout nodes */
4754	kernelcore_node = required_kernelcore / usable_nodes;
4755	for_each_node_state(nid, N_HIGH_MEMORY) {
 
 
4756		/*
4757		 * Recalculate kernelcore_node if the division per node
4758		 * now exceeds what is necessary to satisfy the requested
4759		 * amount of memory for the kernel
4760		 */
4761		if (required_kernelcore < kernelcore_node)
4762			kernelcore_node = required_kernelcore / usable_nodes;
4763
4764		/*
4765		 * As the map is walked, we track how much memory is usable
4766		 * by the kernel using kernelcore_remaining. When it is
4767		 * 0, the rest of the node is usable by ZONE_MOVABLE
4768		 */
4769		kernelcore_remaining = kernelcore_node;
4770
4771		/* Go through each range of PFNs within this node */
4772		for_each_active_range_index_in_nid(i, nid) {
4773			unsigned long start_pfn, end_pfn;
4774			unsigned long size_pages;
4775
4776			start_pfn = max(early_node_map[i].start_pfn,
4777						zone_movable_pfn[nid]);
4778			end_pfn = early_node_map[i].end_pfn;
4779			if (start_pfn >= end_pfn)
4780				continue;
4781
4782			/* Account for what is only usable for kernelcore */
4783			if (start_pfn < usable_startpfn) {
4784				unsigned long kernel_pages;
4785				kernel_pages = min(end_pfn, usable_startpfn)
4786								- start_pfn;
4787
4788				kernelcore_remaining -= min(kernel_pages,
4789							kernelcore_remaining);
4790				required_kernelcore -= min(kernel_pages,
4791							required_kernelcore);
4792
4793				/* Continue if range is now fully accounted */
4794				if (end_pfn <= usable_startpfn) {
4795
4796					/*
4797					 * Push zone_movable_pfn to the end so
4798					 * that if we have to rebalance
4799					 * kernelcore across nodes, we will
4800					 * not double account here
4801					 */
4802					zone_movable_pfn[nid] = end_pfn;
4803					continue;
4804				}
4805				start_pfn = usable_startpfn;
4806			}
4807
4808			/*
4809			 * The usable PFN range for ZONE_MOVABLE is from
4810			 * start_pfn->end_pfn. Calculate size_pages as the
4811			 * number of pages used as kernelcore
4812			 */
4813			size_pages = end_pfn - start_pfn;
4814			if (size_pages > kernelcore_remaining)
4815				size_pages = kernelcore_remaining;
4816			zone_movable_pfn[nid] = start_pfn + size_pages;
4817
4818			/*
4819			 * Some kernelcore has been met, update counts and
4820			 * break if the kernelcore for this node has been
4821			 * satisified
4822			 */
4823			required_kernelcore -= min(required_kernelcore,
4824								size_pages);
4825			kernelcore_remaining -= size_pages;
4826			if (!kernelcore_remaining)
4827				break;
4828		}
4829	}
4830
4831	/*
4832	 * If there is still required_kernelcore, we do another pass with one
4833	 * less node in the count. This will push zone_movable_pfn[nid] further
4834	 * along on the nodes that still have memory until kernelcore is
4835	 * satisified
4836	 */
4837	usable_nodes--;
4838	if (usable_nodes && required_kernelcore > usable_nodes)
4839		goto restart;
4840
 
4841	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4842	for (nid = 0; nid < MAX_NUMNODES; nid++)
4843		zone_movable_pfn[nid] =
4844			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4845
4846out:
4847	/* restore the node_state */
4848	node_states[N_HIGH_MEMORY] = saved_node_state;
4849}
4850
4851/* Any regular memory on that node ? */
4852static void check_for_regular_memory(pg_data_t *pgdat)
4853{
4854#ifdef CONFIG_HIGHMEM
4855	enum zone_type zone_type;
4856
4857	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4858		struct zone *zone = &pgdat->node_zones[zone_type];
4859		if (zone->present_pages)
4860			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 
 
 
 
 
4861	}
4862#endif
 
 
 
 
 
 
 
 
4863}
4864
4865/**
4866 * free_area_init_nodes - Initialise all pg_data_t and zone data
4867 * @max_zone_pfn: an array of max PFNs for each zone
4868 *
4869 * This will call free_area_init_node() for each active node in the system.
4870 * Using the page ranges provided by add_active_range(), the size of each
4871 * zone in each node and their holes is calculated. If the maximum PFN
4872 * between two adjacent zones match, it is assumed that the zone is empty.
4873 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4874 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4875 * starts where the previous one ended. For example, ZONE_DMA32 starts
4876 * at arch_max_dma_pfn.
4877 */
4878void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4879{
4880	unsigned long nid;
4881	int i;
4882
4883	/* Sort early_node_map as initialisation assumes it is sorted */
4884	sort_node_map();
4885
4886	/* Record where the zone boundaries are */
4887	memset(arch_zone_lowest_possible_pfn, 0,
4888				sizeof(arch_zone_lowest_possible_pfn));
4889	memset(arch_zone_highest_possible_pfn, 0,
4890				sizeof(arch_zone_highest_possible_pfn));
4891	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4892	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4893	for (i = 1; i < MAX_NR_ZONES; i++) {
4894		if (i == ZONE_MOVABLE)
 
 
 
 
 
 
 
4895			continue;
4896		arch_zone_lowest_possible_pfn[i] =
4897			arch_zone_highest_possible_pfn[i-1];
4898		arch_zone_highest_possible_pfn[i] =
4899			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
 
 
4900	}
4901	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4902	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4903
4904	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4905	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4906	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4907
4908	/* Print out the zone ranges */
4909	printk("Zone PFN ranges:\n");
4910	for (i = 0; i < MAX_NR_ZONES; i++) {
4911		if (i == ZONE_MOVABLE)
4912			continue;
4913		printk("  %-8s ", zone_names[i]);
4914		if (arch_zone_lowest_possible_pfn[i] ==
4915				arch_zone_highest_possible_pfn[i])
4916			printk("empty\n");
4917		else
4918			printk("%0#10lx -> %0#10lx\n",
4919				arch_zone_lowest_possible_pfn[i],
4920				arch_zone_highest_possible_pfn[i]);
 
 
4921	}
4922
4923	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4924	printk("Movable zone start PFN for each node\n");
4925	for (i = 0; i < MAX_NUMNODES; i++) {
4926		if (zone_movable_pfn[i])
4927			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
 
4928	}
4929
4930	/* Print out the early_node_map[] */
4931	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4932	for (i = 0; i < nr_nodemap_entries; i++)
4933		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4934						early_node_map[i].start_pfn,
4935						early_node_map[i].end_pfn);
 
 
 
 
 
 
4936
4937	/* Initialise every node */
4938	mminit_verify_pageflags_layout();
4939	setup_nr_node_ids();
4940	for_each_online_node(nid) {
4941		pg_data_t *pgdat = NODE_DATA(nid);
4942		free_area_init_node(nid, NULL,
4943				find_min_pfn_for_node(nid), NULL);
4944
4945		/* Any memory on that node */
4946		if (pgdat->node_present_pages)
4947			node_set_state(nid, N_HIGH_MEMORY);
4948		check_for_regular_memory(pgdat);
4949	}
 
 
4950}
4951
4952static int __init cmdline_parse_core(char *p, unsigned long *core)
 
4953{
4954	unsigned long long coremem;
 
 
4955	if (!p)
4956		return -EINVAL;
4957
4958	coremem = memparse(p, &p);
4959	*core = coremem >> PAGE_SHIFT;
 
 
 
4960
4961	/* Paranoid check that UL is enough for the coremem value */
4962	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 
 
 
4963
 
 
 
4964	return 0;
4965}
4966
4967/*
4968 * kernelcore=size sets the amount of memory for use for allocations that
4969 * cannot be reclaimed or migrated.
4970 */
4971static int __init cmdline_parse_kernelcore(char *p)
4972{
4973	return cmdline_parse_core(p, &required_kernelcore);
 
 
 
 
 
 
 
4974}
4975
4976/*
4977 * movablecore=size sets the amount of memory for use for allocations that
4978 * can be reclaimed or migrated.
4979 */
4980static int __init cmdline_parse_movablecore(char *p)
4981{
4982	return cmdline_parse_core(p, &required_movablecore);
 
4983}
4984
4985early_param("kernelcore", cmdline_parse_kernelcore);
4986early_param("movablecore", cmdline_parse_movablecore);
4987
4988#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4989
4990/**
4991 * set_dma_reserve - set the specified number of pages reserved in the first zone
4992 * @new_dma_reserve: The number of pages to mark reserved
4993 *
4994 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4995 * In the DMA zone, a significant percentage may be consumed by kernel image
4996 * and other unfreeable allocations which can skew the watermarks badly. This
4997 * function may optionally be used to account for unfreeable pages in the
4998 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4999 * smaller per-cpu batchsize.
5000 */
5001void __init set_dma_reserve(unsigned long new_dma_reserve)
5002{
5003	dma_reserve = new_dma_reserve;
5004}
5005
5006void __init free_area_init(unsigned long *zones_size)
5007{
5008	free_area_init_node(0, zones_size,
5009			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5010}
5011
5012static int page_alloc_cpu_notify(struct notifier_block *self,
5013				 unsigned long action, void *hcpu)
5014{
5015	int cpu = (unsigned long)hcpu;
5016
5017	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5018		drain_pages(cpu);
 
 
5019
5020		/*
5021		 * Spill the event counters of the dead processor
5022		 * into the current processors event counters.
5023		 * This artificially elevates the count of the current
5024		 * processor.
5025		 */
5026		vm_events_fold_cpu(cpu);
5027
5028		/*
5029		 * Zero the differential counters of the dead processor
5030		 * so that the vm statistics are consistent.
5031		 *
5032		 * This is only okay since the processor is dead and cannot
5033		 * race with what we are doing.
5034		 */
5035		refresh_cpu_vm_stats(cpu);
5036	}
5037	return NOTIFY_OK;
5038}
 
 
5039
5040void __init page_alloc_init(void)
5041{
5042	hotcpu_notifier(page_alloc_cpu_notify, 0);
 
 
 
 
 
 
 
 
 
 
 
5043}
5044
5045/*
5046 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5047 *	or min_free_kbytes changes.
5048 */
5049static void calculate_totalreserve_pages(void)
5050{
5051	struct pglist_data *pgdat;
5052	unsigned long reserve_pages = 0;
5053	enum zone_type i, j;
5054
5055	for_each_online_pgdat(pgdat) {
 
 
 
5056		for (i = 0; i < MAX_NR_ZONES; i++) {
5057			struct zone *zone = pgdat->node_zones + i;
5058			unsigned long max = 0;
 
5059
5060			/* Find valid and maximum lowmem_reserve in the zone */
5061			for (j = i; j < MAX_NR_ZONES; j++) {
5062				if (zone->lowmem_reserve[j] > max)
5063					max = zone->lowmem_reserve[j];
5064			}
5065
5066			/* we treat the high watermark as reserved pages. */
5067			max += high_wmark_pages(zone);
5068
5069			if (max > zone->present_pages)
5070				max = zone->present_pages;
 
 
 
5071			reserve_pages += max;
5072		}
5073	}
5074	totalreserve_pages = reserve_pages;
5075}
5076
5077/*
5078 * setup_per_zone_lowmem_reserve - called whenever
5079 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5080 *	has a correct pages reserved value, so an adequate number of
5081 *	pages are left in the zone after a successful __alloc_pages().
5082 */
5083static void setup_per_zone_lowmem_reserve(void)
5084{
5085	struct pglist_data *pgdat;
5086	enum zone_type j, idx;
5087
5088	for_each_online_pgdat(pgdat) {
5089		for (j = 0; j < MAX_NR_ZONES; j++) {
5090			struct zone *zone = pgdat->node_zones + j;
5091			unsigned long present_pages = zone->present_pages;
5092
5093			zone->lowmem_reserve[j] = 0;
5094
5095			idx = j;
5096			while (idx) {
5097				struct zone *lower_zone;
5098
5099				idx--;
5100
5101				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5102					sysctl_lowmem_reserve_ratio[idx] = 1;
5103
5104				lower_zone = pgdat->node_zones + idx;
5105				lower_zone->lowmem_reserve[j] = present_pages /
5106					sysctl_lowmem_reserve_ratio[idx];
5107				present_pages += lower_zone->present_pages;
5108			}
5109		}
5110	}
5111
5112	/* update totalreserve_pages */
5113	calculate_totalreserve_pages();
5114}
5115
5116/**
5117 * setup_per_zone_wmarks - called when min_free_kbytes changes
5118 * or when memory is hot-{added|removed}
5119 *
5120 * Ensures that the watermark[min,low,high] values for each zone are set
5121 * correctly with respect to min_free_kbytes.
5122 */
5123void setup_per_zone_wmarks(void)
5124{
5125	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5126	unsigned long lowmem_pages = 0;
5127	struct zone *zone;
5128	unsigned long flags;
5129
5130	/* Calculate total number of !ZONE_HIGHMEM pages */
5131	for_each_zone(zone) {
5132		if (!is_highmem(zone))
5133			lowmem_pages += zone->present_pages;
5134	}
5135
5136	for_each_zone(zone) {
5137		u64 tmp;
5138
5139		spin_lock_irqsave(&zone->lock, flags);
5140		tmp = (u64)pages_min * zone->present_pages;
5141		do_div(tmp, lowmem_pages);
5142		if (is_highmem(zone)) {
5143			/*
5144			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5145			 * need highmem pages, so cap pages_min to a small
5146			 * value here.
5147			 *
5148			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5149			 * deltas controls asynch page reclaim, and so should
5150			 * not be capped for highmem.
5151			 */
5152			int min_pages;
5153
5154			min_pages = zone->present_pages / 1024;
5155			if (min_pages < SWAP_CLUSTER_MAX)
5156				min_pages = SWAP_CLUSTER_MAX;
5157			if (min_pages > 128)
5158				min_pages = 128;
5159			zone->watermark[WMARK_MIN] = min_pages;
5160		} else {
5161			/*
5162			 * If it's a lowmem zone, reserve a number of pages
5163			 * proportionate to the zone's size.
5164			 */
5165			zone->watermark[WMARK_MIN] = tmp;
5166		}
5167
5168		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5169		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5170		setup_zone_migrate_reserve(zone);
 
 
 
 
 
 
 
 
 
 
5171		spin_unlock_irqrestore(&zone->lock, flags);
5172	}
5173
5174	/* update totalreserve_pages */
5175	calculate_totalreserve_pages();
5176}
5177
5178/*
5179 * The inactive anon list should be small enough that the VM never has to
5180 * do too much work, but large enough that each inactive page has a chance
5181 * to be referenced again before it is swapped out.
5182 *
5183 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5184 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5185 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5186 * the anonymous pages are kept on the inactive list.
5187 *
5188 * total     target    max
5189 * memory    ratio     inactive anon
5190 * -------------------------------------
5191 *   10MB       1         5MB
5192 *  100MB       1        50MB
5193 *    1GB       3       250MB
5194 *   10GB      10       0.9GB
5195 *  100GB      31         3GB
5196 *    1TB     101        10GB
5197 *   10TB     320        32GB
5198 */
5199static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5200{
5201	unsigned int gb, ratio;
5202
5203	/* Zone size in gigabytes */
5204	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5205	if (gb)
5206		ratio = int_sqrt(10 * gb);
5207	else
5208		ratio = 1;
5209
5210	zone->inactive_ratio = ratio;
5211}
5212
5213static void __meminit setup_per_zone_inactive_ratio(void)
5214{
5215	struct zone *zone;
 
 
 
 
 
5216
 
 
 
 
5217	for_each_zone(zone)
5218		calculate_zone_inactive_ratio(zone);
5219}
5220
5221/*
5222 * Initialise min_free_kbytes.
5223 *
5224 * For small machines we want it small (128k min).  For large machines
5225 * we want it large (64MB max).  But it is not linear, because network
5226 * bandwidth does not increase linearly with machine size.  We use
5227 *
5228 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5229 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5230 *
5231 * which yields
5232 *
5233 * 16MB:	512k
5234 * 32MB:	724k
5235 * 64MB:	1024k
5236 * 128MB:	1448k
5237 * 256MB:	2048k
5238 * 512MB:	2896k
5239 * 1024MB:	4096k
5240 * 2048MB:	5792k
5241 * 4096MB:	8192k
5242 * 8192MB:	11584k
5243 * 16384MB:	16384k
5244 */
5245int __meminit init_per_zone_wmark_min(void)
5246{
5247	unsigned long lowmem_kbytes;
 
5248
5249	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
 
5250
5251	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5252	if (min_free_kbytes < 128)
5253		min_free_kbytes = 128;
5254	if (min_free_kbytes > 65536)
5255		min_free_kbytes = 65536;
 
 
 
 
 
5256	setup_per_zone_wmarks();
5257	refresh_zone_stat_thresholds();
5258	setup_per_zone_lowmem_reserve();
5259	setup_per_zone_inactive_ratio();
 
 
 
 
 
 
 
5260	return 0;
5261}
5262module_init(init_per_zone_wmark_min)
5263
5264/*
5265 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 
5266 *	that we can call two helper functions whenever min_free_kbytes
5267 *	changes.
5268 */
5269int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 
5270	void __user *buffer, size_t *length, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5271{
5272	proc_dointvec(table, write, buffer, length, ppos);
 
 
 
 
 
5273	if (write)
5274		setup_per_zone_wmarks();
 
5275	return 0;
5276}
5277
5278#ifdef CONFIG_NUMA
5279int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5280	void __user *buffer, size_t *length, loff_t *ppos)
5281{
 
5282	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
5283	int rc;
5284
5285	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5286	if (rc)
5287		return rc;
5288
5289	for_each_zone(zone)
5290		zone->min_unmapped_pages = (zone->present_pages *
5291				sysctl_min_unmapped_ratio) / 100;
5292	return 0;
5293}
5294
5295int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5296	void __user *buffer, size_t *length, loff_t *ppos)
5297{
 
5298	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
5299	int rc;
5300
5301	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5302	if (rc)
5303		return rc;
5304
5305	for_each_zone(zone)
5306		zone->min_slab_pages = (zone->present_pages *
5307				sysctl_min_slab_ratio) / 100;
5308	return 0;
5309}
5310#endif
5311
5312/*
5313 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5314 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5315 *	whenever sysctl_lowmem_reserve_ratio changes.
5316 *
5317 * The reserve ratio obviously has absolutely no relation with the
5318 * minimum watermarks. The lowmem reserve ratio can only make sense
5319 * if in function of the boot time zone sizes.
5320 */
5321int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5322	void __user *buffer, size_t *length, loff_t *ppos)
5323{
 
 
5324	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
5325	setup_per_zone_lowmem_reserve();
5326	return 0;
5327}
5328
5329/*
5330 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5331 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5332 * can have before it gets flushed back to buddy allocator.
5333 */
5334
5335int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5336	void __user *buffer, size_t *length, loff_t *ppos)
5337{
5338	struct zone *zone;
5339	unsigned int cpu;
5340	int ret;
5341
 
 
 
5342	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5343	if (!write || (ret == -EINVAL))
5344		return ret;
5345	for_each_populated_zone(zone) {
5346		for_each_possible_cpu(cpu) {
5347			unsigned long  high;
5348			high = zone->present_pages / percpu_pagelist_fraction;
5349			setup_pagelist_highmark(
5350				per_cpu_ptr(zone->pageset, cpu), high);
5351		}
5352	}
5353	return 0;
5354}
5355
5356int hashdist = HASHDIST_DEFAULT;
 
 
5357
5358#ifdef CONFIG_NUMA
5359static int __init set_hashdist(char *str)
 
 
 
 
 
 
 
 
 
 
 
5360{
5361	if (!str)
5362		return 0;
5363	hashdist = simple_strtoul(str, &str, 0);
5364	return 1;
5365}
5366__setup("hashdist=", set_hashdist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5367#endif
5368
5369/*
5370 * allocate a large system hash table from bootmem
5371 * - it is assumed that the hash table must contain an exact power-of-2
5372 *   quantity of entries
5373 * - limit is the number of hash buckets, not the total allocation size
5374 */
5375void *__init alloc_large_system_hash(const char *tablename,
5376				     unsigned long bucketsize,
5377				     unsigned long numentries,
5378				     int scale,
5379				     int flags,
5380				     unsigned int *_hash_shift,
5381				     unsigned int *_hash_mask,
5382				     unsigned long limit)
 
5383{
5384	unsigned long long max = limit;
5385	unsigned long log2qty, size;
5386	void *table = NULL;
 
 
 
5387
5388	/* allow the kernel cmdline to have a say */
5389	if (!numentries) {
5390		/* round applicable memory size up to nearest megabyte */
5391		numentries = nr_kernel_pages;
5392		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5393		numentries >>= 20 - PAGE_SHIFT;
5394		numentries <<= 20 - PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
5395
5396		/* limit to 1 bucket per 2^scale bytes of low memory */
5397		if (scale > PAGE_SHIFT)
5398			numentries >>= (scale - PAGE_SHIFT);
5399		else
5400			numentries <<= (PAGE_SHIFT - scale);
5401
5402		/* Make sure we've got at least a 0-order allocation.. */
5403		if (unlikely(flags & HASH_SMALL)) {
5404			/* Makes no sense without HASH_EARLY */
5405			WARN_ON(!(flags & HASH_EARLY));
5406			if (!(numentries >> *_hash_shift)) {
5407				numentries = 1UL << *_hash_shift;
5408				BUG_ON(!numentries);
5409			}
5410		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5411			numentries = PAGE_SIZE / bucketsize;
5412	}
5413	numentries = roundup_pow_of_two(numentries);
5414
5415	/* limit allocation size to 1/16 total memory by default */
5416	if (max == 0) {
5417		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5418		do_div(max, bucketsize);
5419	}
 
5420
 
 
5421	if (numentries > max)
5422		numentries = max;
5423
5424	log2qty = ilog2(numentries);
5425
 
5426	do {
 
5427		size = bucketsize << log2qty;
5428		if (flags & HASH_EARLY)
5429			table = alloc_bootmem_nopanic(size);
5430		else if (hashdist)
5431			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5432		else {
 
 
 
 
 
 
5433			/*
5434			 * If bucketsize is not a power-of-two, we may free
5435			 * some pages at the end of hash table which
5436			 * alloc_pages_exact() automatically does
5437			 */
5438			if (get_order(size) < MAX_ORDER) {
5439				table = alloc_pages_exact(size, GFP_ATOMIC);
5440				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5441			}
5442		}
5443	} while (!table && size > PAGE_SIZE && --log2qty);
5444
5445	if (!table)
5446		panic("Failed to allocate %s hash table\n", tablename);
5447
5448	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5449	       tablename,
5450	       (1UL << log2qty),
5451	       ilog2(size) - PAGE_SHIFT,
5452	       size);
5453
5454	if (_hash_shift)
5455		*_hash_shift = log2qty;
5456	if (_hash_mask)
5457		*_hash_mask = (1 << log2qty) - 1;
5458
5459	return table;
5460}
5461
5462/* Return a pointer to the bitmap storing bits affecting a block of pages */
5463static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5464							unsigned long pfn)
 
 
 
 
 
 
 
 
 
 
 
 
5465{
5466#ifdef CONFIG_SPARSEMEM
5467	return __pfn_to_section(pfn)->pageblock_flags;
5468#else
5469	return zone->pageblock_flags;
5470#endif /* CONFIG_SPARSEMEM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5471}
5472
5473static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
 
5474{
5475#ifdef CONFIG_SPARSEMEM
5476	pfn &= (PAGES_PER_SECTION-1);
5477	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5478#else
5479	pfn = pfn - zone->zone_start_pfn;
5480	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5481#endif /* CONFIG_SPARSEMEM */
5482}
5483
5484/**
5485 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5486 * @page: The page within the block of interest
5487 * @start_bitidx: The first bit of interest to retrieve
5488 * @end_bitidx: The last bit of interest
5489 * returns pageblock_bits flags
5490 */
5491unsigned long get_pageblock_flags_group(struct page *page,
5492					int start_bitidx, int end_bitidx)
5493{
5494	struct zone *zone;
5495	unsigned long *bitmap;
5496	unsigned long pfn, bitidx;
5497	unsigned long flags = 0;
5498	unsigned long value = 1;
5499
5500	zone = page_zone(page);
5501	pfn = page_to_pfn(page);
5502	bitmap = get_pageblock_bitmap(zone, pfn);
5503	bitidx = pfn_to_bitidx(zone, pfn);
 
 
5504
5505	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5506		if (test_bit(bitidx + start_bitidx, bitmap))
5507			flags |= value;
5508
5509	return flags;
 
 
 
5510}
 
 
 
 
 
5511
5512/**
5513 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5514 * @page: The page within the block of interest
5515 * @start_bitidx: The first bit of interest
5516 * @end_bitidx: The last bit of interest
5517 * @flags: The flags to set
5518 */
5519void set_pageblock_flags_group(struct page *page, unsigned long flags,
5520					int start_bitidx, int end_bitidx)
5521{
5522	struct zone *zone;
5523	unsigned long *bitmap;
5524	unsigned long pfn, bitidx;
5525	unsigned long value = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
5526
5527	zone = page_zone(page);
5528	pfn = page_to_pfn(page);
5529	bitmap = get_pageblock_bitmap(zone, pfn);
5530	bitidx = pfn_to_bitidx(zone, pfn);
5531	VM_BUG_ON(pfn < zone->zone_start_pfn);
5532	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5533
5534	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5535		if (flags & value)
5536			__set_bit(bitidx + start_bitidx, bitmap);
5537		else
5538			__clear_bit(bitidx + start_bitidx, bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5539}
5540
5541/*
5542 * This is designed as sub function...plz see page_isolation.c also.
5543 * set/clear page block's type to be ISOLATE.
5544 * page allocater never alloc memory from ISOLATE block.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5545 */
5546
5547static int
5548__count_immobile_pages(struct zone *zone, struct page *page, int count)
5549{
5550	unsigned long pfn, iter, found;
5551	/*
5552	 * For avoiding noise data, lru_add_drain_all() should be called
5553	 * If ZONE_MOVABLE, the zone never contains immobile pages
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5554	 */
5555	if (zone_idx(zone) == ZONE_MOVABLE)
5556		return true;
5557
5558	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5559		return true;
 
 
5560
5561	pfn = page_to_pfn(page);
5562	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5563		unsigned long check = pfn + iter;
5564
5565		if (!pfn_valid_within(check))
5566			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5567
5568		page = pfn_to_page(check);
5569		if (!page_count(page)) {
5570			if (PageBuddy(page))
5571				iter += (1 << page_order(page)) - 1;
5572			continue;
 
5573		}
5574		if (!PageLRU(page))
5575			found++;
 
 
 
 
5576		/*
5577		 * If there are RECLAIMABLE pages, we need to check it.
5578		 * But now, memory offline itself doesn't call shrink_slab()
5579		 * and it still to be fixed.
 
5580		 */
5581		/*
5582		 * If the page is not RAM, page_count()should be 0.
5583		 * we don't need more check. This is an _used_ not-movable page.
5584		 *
5585		 * The problematic thing here is PG_reserved pages. PG_reserved
5586		 * is set to both of a memory hole page and a _used_ kernel
5587		 * page at boot.
5588		 */
5589		if (found > count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5590			return false;
5591	}
5592	return true;
5593}
5594
5595bool is_pageblock_removable_nolock(struct page *page)
 
5596{
5597	struct zone *zone = page_zone(page);
5598	return __count_immobile_pages(zone, page, 0);
 
5599}
5600
5601int set_migratetype_isolate(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5602{
 
 
5603	struct zone *zone;
5604	unsigned long flags, pfn;
5605	struct memory_isolate_notify arg;
5606	int notifier_ret;
5607	int ret = -EBUSY;
5608
5609	zone = page_zone(page);
 
 
 
5610
5611	spin_lock_irqsave(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5612
5613	pfn = page_to_pfn(page);
5614	arg.start_pfn = pfn;
5615	arg.nr_pages = pageblock_nr_pages;
5616	arg.pages_found = 0;
5617
5618	/*
5619	 * It may be possible to isolate a pageblock even if the
5620	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5621	 * notifier chain is used by balloon drivers to return the
5622	 * number of pages in a range that are held by the balloon
5623	 * driver to shrink memory. If all the pages are accounted for
5624	 * by balloons, are free, or on the LRU, isolation can continue.
5625	 * Later, for example, when memory hotplug notifier runs, these
5626	 * pages reported as "can be isolated" should be isolated(freed)
5627	 * by the balloon driver through the memory notifier chain.
5628	 */
5629	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5630	notifier_ret = notifier_to_errno(notifier_ret);
5631	if (notifier_ret)
5632		goto out;
5633	/*
5634	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5635	 * We just check MOVABLE pages.
5636	 */
5637	if (__count_immobile_pages(zone, page, arg.pages_found))
5638		ret = 0;
5639
5640	/*
5641	 * immobile means "not-on-lru" paes. If immobile is larger than
5642	 * removable-by-driver pages reported by notifier, we'll fail.
5643	 */
5644
5645out:
5646	if (!ret) {
5647		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5648		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5649	}
 
 
 
5650
5651	spin_unlock_irqrestore(&zone->lock, flags);
5652	if (!ret)
5653		drain_all_pages();
5654	return ret;
 
 
 
 
 
5655}
5656
5657void unset_migratetype_isolate(struct page *page)
 
 
 
 
 
 
 
 
5658{
5659	struct zone *zone;
5660	unsigned long flags;
5661	zone = page_zone(page);
5662	spin_lock_irqsave(&zone->lock, flags);
5663	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5664		goto out;
5665	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5666	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5667out:
5668	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5669}
5670
5671#ifdef CONFIG_MEMORY_HOTREMOVE
5672/*
5673 * All pages in the range must be isolated before calling this.
 
5674 */
5675void
5676__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5677{
 
5678	struct page *page;
5679	struct zone *zone;
5680	int order, i;
5681	unsigned long pfn;
5682	unsigned long flags;
5683	/* find the first valid pfn */
5684	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5685		if (pfn_valid(pfn))
5686			break;
5687	if (pfn == end_pfn)
5688		return;
5689	zone = page_zone(pfn_to_page(pfn));
5690	spin_lock_irqsave(&zone->lock, flags);
5691	pfn = start_pfn;
5692	while (pfn < end_pfn) {
5693		if (!pfn_valid(pfn)) {
 
 
 
 
 
5694			pfn++;
5695			continue;
5696		}
5697		page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
5698		BUG_ON(page_count(page));
5699		BUG_ON(!PageBuddy(page));
5700		order = page_order(page);
5701#ifdef CONFIG_DEBUG_VM
5702		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5703		       pfn, 1 << order, end_pfn);
5704#endif
5705		list_del(&page->lru);
5706		rmv_page_order(page);
5707		zone->free_area[order].nr_free--;
5708		__mod_zone_page_state(zone, NR_FREE_PAGES,
5709				      - (1UL << order));
5710		for (i = 0; i < (1 << order); i++)
5711			SetPageReserved((page+i));
5712		pfn += (1 << order);
5713	}
5714	spin_unlock_irqrestore(&zone->lock, flags);
5715}
5716#endif
5717
5718#ifdef CONFIG_MEMORY_FAILURE
5719bool is_free_buddy_page(struct page *page)
5720{
5721	struct zone *zone = page_zone(page);
5722	unsigned long pfn = page_to_pfn(page);
5723	unsigned long flags;
5724	int order;
5725
5726	spin_lock_irqsave(&zone->lock, flags);
5727	for (order = 0; order < MAX_ORDER; order++) {
5728		struct page *page_head = page - (pfn & ((1 << order) - 1));
5729
5730		if (PageBuddy(page_head) && page_order(page_head) >= order)
5731			break;
5732	}
5733	spin_unlock_irqrestore(&zone->lock, flags);
5734
5735	return order < MAX_ORDER;
5736}
5737#endif
5738
5739static struct trace_print_flags pageflag_names[] = {
5740	{1UL << PG_locked,		"locked"	},
5741	{1UL << PG_error,		"error"		},
5742	{1UL << PG_referenced,		"referenced"	},
5743	{1UL << PG_uptodate,		"uptodate"	},
5744	{1UL << PG_dirty,		"dirty"		},
5745	{1UL << PG_lru,			"lru"		},
5746	{1UL << PG_active,		"active"	},
5747	{1UL << PG_slab,		"slab"		},
5748	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5749	{1UL << PG_arch_1,		"arch_1"	},
5750	{1UL << PG_reserved,		"reserved"	},
5751	{1UL << PG_private,		"private"	},
5752	{1UL << PG_private_2,		"private_2"	},
5753	{1UL << PG_writeback,		"writeback"	},
5754#ifdef CONFIG_PAGEFLAGS_EXTENDED
5755	{1UL << PG_head,		"head"		},
5756	{1UL << PG_tail,		"tail"		},
5757#else
5758	{1UL << PG_compound,		"compound"	},
5759#endif
5760	{1UL << PG_swapcache,		"swapcache"	},
5761	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5762	{1UL << PG_reclaim,		"reclaim"	},
5763	{1UL << PG_swapbacked,		"swapbacked"	},
5764	{1UL << PG_unevictable,		"unevictable"	},
5765#ifdef CONFIG_MMU
5766	{1UL << PG_mlocked,		"mlocked"	},
5767#endif
5768#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5769	{1UL << PG_uncached,		"uncached"	},
5770#endif
5771#ifdef CONFIG_MEMORY_FAILURE
5772	{1UL << PG_hwpoison,		"hwpoison"	},
5773#endif
5774	{-1UL,				NULL		},
5775};
5776
5777static void dump_page_flags(unsigned long flags)
 
5778{
5779	const char *delim = "";
5780	unsigned long mask;
5781	int i;
5782
5783	printk(KERN_ALERT "page flags: %#lx(", flags);
5784
5785	/* remove zone id */
5786	flags &= (1UL << NR_PAGEFLAGS) - 1;
 
5787
5788	for (i = 0; pageflag_names[i].name && flags; i++) {
 
 
 
 
 
 
5789
5790		mask = pageflag_names[i].mask;
5791		if ((flags & mask) != mask)
5792			continue;
5793
5794		flags &= ~mask;
5795		printk("%s%s", delim, pageflag_names[i].name);
5796		delim = "|";
 
 
5797	}
5798
5799	/* check for left over flags */
5800	if (flags)
5801		printk("%s%#lx", delim, flags);
5802
5803	printk(")\n");
5804}
5805
5806void dump_page(struct page *page)
 
 
 
5807{
5808	printk(KERN_ALERT
5809	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5810		page, atomic_read(&page->_count), page_mapcount(page),
5811		page->mapping, page->index);
5812	dump_page_flags(page->flags);
5813	mem_cgroup_print_bad_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5814}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
 
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
 
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
 
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
 
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
 
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/mmu_notifier.h>
  61#include <linux/migrate.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/mm.h>
  65#include <linux/page_owner.h>
  66#include <linux/kthread.h>
  67#include <linux/memcontrol.h>
  68#include <linux/ftrace.h>
  69#include <linux/lockdep.h>
  70#include <linux/nmi.h>
  71#include <linux/psi.h>
  72#include <linux/padata.h>
  73#include <linux/khugepaged.h>
  74#include <linux/buffer_head.h>
  75#include <asm/sections.h>
  76#include <asm/tlbflush.h>
  77#include <asm/div64.h>
  78#include "internal.h"
  79#include "shuffle.h"
  80#include "page_reporting.h"
  81
  82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  83typedef int __bitwise fpi_t;
  84
  85/* No special request */
  86#define FPI_NONE		((__force fpi_t)0)
  87
  88/*
  89 * Skip free page reporting notification for the (possibly merged) page.
  90 * This does not hinder free page reporting from grabbing the page,
  91 * reporting it and marking it "reported" -  it only skips notifying
  92 * the free page reporting infrastructure about a newly freed page. For
  93 * example, used when temporarily pulling a page from a freelist and
  94 * putting it back unmodified.
  95 */
  96#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
  97
  98/*
  99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 100 * page shuffling (relevant code - e.g., memory onlining - is expected to
 101 * shuffle the whole zone).
 102 *
 103 * Note: No code should rely on this flag for correctness - it's purely
 104 *       to allow for optimizations when handing back either fresh pages
 105 *       (memory onlining) or untouched pages (page isolation, free page
 106 *       reporting).
 107 */
 108#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
 109
 110/*
 111 * Don't poison memory with KASAN (only for the tag-based modes).
 112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
 113 * Poisoning all that memory lengthens boot time, especially on systems with
 114 * large amount of RAM. This flag is used to skip that poisoning.
 115 * This is only done for the tag-based KASAN modes, as those are able to
 116 * detect memory corruptions with the memory tags assigned by default.
 117 * All memory allocated normally after boot gets poisoned as usual.
 118 */
 119#define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
 120
 121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 122static DEFINE_MUTEX(pcp_batch_high_lock);
 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
 124
 125struct pagesets {
 126	local_lock_t lock;
 127};
 128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
 129	.lock = INIT_LOCAL_LOCK(lock),
 130};
 131
 132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 133DEFINE_PER_CPU(int, numa_node);
 134EXPORT_PER_CPU_SYMBOL(numa_node);
 135#endif
 136
 137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 138
 139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 140/*
 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 144 * defined in <linux/topology.h>.
 145 */
 146DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 148#endif
 149
 150/* work_structs for global per-cpu drains */
 151struct pcpu_drain {
 152	struct zone *zone;
 153	struct work_struct work;
 154};
 155static DEFINE_MUTEX(pcpu_drain_mutex);
 156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 157
 158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 159volatile unsigned long latent_entropy __latent_entropy;
 160EXPORT_SYMBOL(latent_entropy);
 161#endif
 162
 163/*
 164 * Array of node states.
 165 */
 166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 167	[N_POSSIBLE] = NODE_MASK_ALL,
 168	[N_ONLINE] = { { [0] = 1UL } },
 169#ifndef CONFIG_NUMA
 170	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 171#ifdef CONFIG_HIGHMEM
 172	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 173#endif
 174	[N_MEMORY] = { { [0] = 1UL } },
 175	[N_CPU] = { { [0] = 1UL } },
 176#endif	/* NUMA */
 177};
 178EXPORT_SYMBOL(node_states);
 179
 180atomic_long_t _totalram_pages __read_mostly;
 181EXPORT_SYMBOL(_totalram_pages);
 182unsigned long totalreserve_pages __read_mostly;
 183unsigned long totalcma_pages __read_mostly;
 184
 185int percpu_pagelist_high_fraction;
 186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
 188EXPORT_SYMBOL(init_on_alloc);
 189
 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
 191EXPORT_SYMBOL(init_on_free);
 192
 193static bool _init_on_alloc_enabled_early __read_mostly
 194				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
 195static int __init early_init_on_alloc(char *buf)
 196{
 197
 198	return kstrtobool(buf, &_init_on_alloc_enabled_early);
 199}
 200early_param("init_on_alloc", early_init_on_alloc);
 201
 202static bool _init_on_free_enabled_early __read_mostly
 203				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
 204static int __init early_init_on_free(char *buf)
 205{
 206	return kstrtobool(buf, &_init_on_free_enabled_early);
 207}
 208early_param("init_on_free", early_init_on_free);
 209
 210/*
 211 * A cached value of the page's pageblock's migratetype, used when the page is
 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 214 * Also the migratetype set in the page does not necessarily match the pcplist
 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 216 * other index - this ensures that it will be put on the correct CMA freelist.
 217 */
 218static inline int get_pcppage_migratetype(struct page *page)
 219{
 220	return page->index;
 221}
 222
 223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 224{
 225	page->index = migratetype;
 226}
 227
 228#ifdef CONFIG_PM_SLEEP
 229/*
 230 * The following functions are used by the suspend/hibernate code to temporarily
 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 232 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 233 * they should always be called with system_transition_mutex held
 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 236 * with that modification).
 237 */
 238
 239static gfp_t saved_gfp_mask;
 240
 241void pm_restore_gfp_mask(void)
 242{
 243	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 244	if (saved_gfp_mask) {
 245		gfp_allowed_mask = saved_gfp_mask;
 246		saved_gfp_mask = 0;
 247	}
 248}
 249
 250void pm_restrict_gfp_mask(void)
 251{
 252	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 253	WARN_ON(saved_gfp_mask);
 254	saved_gfp_mask = gfp_allowed_mask;
 255	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 256}
 257
 258bool pm_suspended_storage(void)
 259{
 260	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 261		return false;
 262	return true;
 263}
 264#endif /* CONFIG_PM_SLEEP */
 265
 266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 267unsigned int pageblock_order __read_mostly;
 268#endif
 269
 270static void __free_pages_ok(struct page *page, unsigned int order,
 271			    fpi_t fpi_flags);
 272
 273/*
 274 * results with 256, 32 in the lowmem_reserve sysctl:
 275 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 276 *	1G machine -> (16M dma, 784M normal, 224M high)
 277 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 278 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 279 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 280 *
 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 282 * don't need any ZONE_NORMAL reservation
 283 */
 284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 285#ifdef CONFIG_ZONE_DMA
 286	[ZONE_DMA] = 256,
 287#endif
 288#ifdef CONFIG_ZONE_DMA32
 289	[ZONE_DMA32] = 256,
 290#endif
 291	[ZONE_NORMAL] = 32,
 292#ifdef CONFIG_HIGHMEM
 293	[ZONE_HIGHMEM] = 0,
 294#endif
 295	[ZONE_MOVABLE] = 0,
 296};
 297
 
 
 298static char * const zone_names[MAX_NR_ZONES] = {
 299#ifdef CONFIG_ZONE_DMA
 300	 "DMA",
 301#endif
 302#ifdef CONFIG_ZONE_DMA32
 303	 "DMA32",
 304#endif
 305	 "Normal",
 306#ifdef CONFIG_HIGHMEM
 307	 "HighMem",
 308#endif
 309	 "Movable",
 310#ifdef CONFIG_ZONE_DEVICE
 311	 "Device",
 312#endif
 313};
 314
 315const char * const migratetype_names[MIGRATE_TYPES] = {
 316	"Unmovable",
 317	"Movable",
 318	"Reclaimable",
 319	"HighAtomic",
 320#ifdef CONFIG_CMA
 321	"CMA",
 322#endif
 323#ifdef CONFIG_MEMORY_ISOLATION
 324	"Isolate",
 325#endif
 326};
 327
 328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
 329	[NULL_COMPOUND_DTOR] = NULL,
 330	[COMPOUND_PAGE_DTOR] = free_compound_page,
 331#ifdef CONFIG_HUGETLB_PAGE
 332	[HUGETLB_PAGE_DTOR] = free_huge_page,
 333#endif
 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 335	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
 336#endif
 337};
 338
 339int min_free_kbytes = 1024;
 340int user_min_free_kbytes = -1;
 341int watermark_boost_factor __read_mostly = 15000;
 342int watermark_scale_factor = 10;
 343
 344static unsigned long nr_kernel_pages __initdata;
 345static unsigned long nr_all_pages __initdata;
 346static unsigned long dma_reserve __initdata;
 347
 348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 350static unsigned long required_kernelcore __initdata;
 351static unsigned long required_kernelcore_percent __initdata;
 352static unsigned long required_movablecore __initdata;
 353static unsigned long required_movablecore_percent __initdata;
 354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 355static bool mirrored_kernelcore __meminitdata;
 356
 357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 358int movable_zone;
 359EXPORT_SYMBOL(movable_zone);
 
 
 
 
 
 360
 361#if MAX_NUMNODES > 1
 362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 363unsigned int nr_online_nodes __read_mostly = 1;
 364EXPORT_SYMBOL(nr_node_ids);
 365EXPORT_SYMBOL(nr_online_nodes);
 366#endif
 367
 368int page_group_by_mobility_disabled __read_mostly;
 369
 370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 371/*
 372 * During boot we initialize deferred pages on-demand, as needed, but once
 373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 374 * and we can permanently disable that path.
 375 */
 376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 377
 378/*
 379 * Calling kasan_poison_pages() only after deferred memory initialization
 380 * has completed. Poisoning pages during deferred memory init will greatly
 381 * lengthen the process and cause problem in large memory systems as the
 382 * deferred pages initialization is done with interrupt disabled.
 383 *
 384 * Assuming that there will be no reference to those newly initialized
 385 * pages before they are ever allocated, this should have no effect on
 386 * KASAN memory tracking as the poison will be properly inserted at page
 387 * allocation time. The only corner case is when pages are allocated by
 388 * on-demand allocation and then freed again before the deferred pages
 389 * initialization is done, but this is not likely to happen.
 390 */
 391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
 392{
 393	return static_branch_unlikely(&deferred_pages) ||
 394	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 395		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
 396	       PageSkipKASanPoison(page);
 397}
 398
 399/* Returns true if the struct page for the pfn is uninitialised */
 400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 401{
 402	int nid = early_pfn_to_nid(pfn);
 403
 404	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 405		return true;
 406
 407	return false;
 408}
 409
 410/*
 411 * Returns true when the remaining initialisation should be deferred until
 412 * later in the boot cycle when it can be parallelised.
 413 */
 414static bool __meminit
 415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 416{
 417	static unsigned long prev_end_pfn, nr_initialised;
 418
 419	/*
 420	 * prev_end_pfn static that contains the end of previous zone
 421	 * No need to protect because called very early in boot before smp_init.
 422	 */
 423	if (prev_end_pfn != end_pfn) {
 424		prev_end_pfn = end_pfn;
 425		nr_initialised = 0;
 426	}
 427
 428	/* Always populate low zones for address-constrained allocations */
 429	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 430		return false;
 431
 432	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
 433		return true;
 434	/*
 435	 * We start only with one section of pages, more pages are added as
 436	 * needed until the rest of deferred pages are initialized.
 437	 */
 438	nr_initialised++;
 439	if ((nr_initialised > PAGES_PER_SECTION) &&
 440	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 441		NODE_DATA(nid)->first_deferred_pfn = pfn;
 442		return true;
 443	}
 444	return false;
 445}
 446#else
 447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
 448{
 449	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 450		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
 451	       PageSkipKASanPoison(page);
 452}
 453
 454static inline bool early_page_uninitialised(unsigned long pfn)
 455{
 456	return false;
 457}
 458
 459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 460{
 461	return false;
 462}
 463#endif
 464
 465/* Return a pointer to the bitmap storing bits affecting a block of pages */
 466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 467							unsigned long pfn)
 468{
 469#ifdef CONFIG_SPARSEMEM
 470	return section_to_usemap(__pfn_to_section(pfn));
 471#else
 472	return page_zone(page)->pageblock_flags;
 473#endif /* CONFIG_SPARSEMEM */
 474}
 475
 476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 477{
 478#ifdef CONFIG_SPARSEMEM
 479	pfn &= (PAGES_PER_SECTION-1);
 480#else
 481	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 482#endif /* CONFIG_SPARSEMEM */
 483	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 484}
 485
 486static __always_inline
 487unsigned long __get_pfnblock_flags_mask(const struct page *page,
 488					unsigned long pfn,
 489					unsigned long mask)
 490{
 491	unsigned long *bitmap;
 492	unsigned long bitidx, word_bitidx;
 493	unsigned long word;
 494
 495	bitmap = get_pageblock_bitmap(page, pfn);
 496	bitidx = pfn_to_bitidx(page, pfn);
 497	word_bitidx = bitidx / BITS_PER_LONG;
 498	bitidx &= (BITS_PER_LONG-1);
 499
 500	word = bitmap[word_bitidx];
 501	return (word >> bitidx) & mask;
 502}
 503
 504/**
 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 506 * @page: The page within the block of interest
 507 * @pfn: The target page frame number
 508 * @mask: mask of bits that the caller is interested in
 509 *
 510 * Return: pageblock_bits flags
 511 */
 512unsigned long get_pfnblock_flags_mask(const struct page *page,
 513					unsigned long pfn, unsigned long mask)
 514{
 515	return __get_pfnblock_flags_mask(page, pfn, mask);
 516}
 517
 518static __always_inline int get_pfnblock_migratetype(const struct page *page,
 519					unsigned long pfn)
 520{
 521	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 522}
 523
 524/**
 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 526 * @page: The page within the block of interest
 527 * @flags: The flags to set
 528 * @pfn: The target page frame number
 529 * @mask: mask of bits that the caller is interested in
 530 */
 531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 532					unsigned long pfn,
 533					unsigned long mask)
 534{
 535	unsigned long *bitmap;
 536	unsigned long bitidx, word_bitidx;
 537	unsigned long old_word, word;
 538
 539	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 540	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 541
 542	bitmap = get_pageblock_bitmap(page, pfn);
 543	bitidx = pfn_to_bitidx(page, pfn);
 544	word_bitidx = bitidx / BITS_PER_LONG;
 545	bitidx &= (BITS_PER_LONG-1);
 546
 547	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 548
 549	mask <<= bitidx;
 550	flags <<= bitidx;
 551
 552	word = READ_ONCE(bitmap[word_bitidx]);
 553	for (;;) {
 554		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 555		if (word == old_word)
 556			break;
 557		word = old_word;
 558	}
 559}
 560
 561void set_pageblock_migratetype(struct page *page, int migratetype)
 562{
 563	if (unlikely(page_group_by_mobility_disabled &&
 564		     migratetype < MIGRATE_PCPTYPES))
 565		migratetype = MIGRATE_UNMOVABLE;
 566
 567	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 568				page_to_pfn(page), MIGRATETYPE_MASK);
 569}
 570
 571#ifdef CONFIG_DEBUG_VM
 572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 573{
 574	int ret = 0;
 575	unsigned seq;
 576	unsigned long pfn = page_to_pfn(page);
 577	unsigned long sp, start_pfn;
 578
 579	do {
 580		seq = zone_span_seqbegin(zone);
 581		start_pfn = zone->zone_start_pfn;
 582		sp = zone->spanned_pages;
 583		if (!zone_spans_pfn(zone, pfn))
 584			ret = 1;
 585	} while (zone_span_seqretry(zone, seq));
 586
 587	if (ret)
 588		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 589			pfn, zone_to_nid(zone), zone->name,
 590			start_pfn, start_pfn + sp);
 591
 592	return ret;
 593}
 594
 595static int page_is_consistent(struct zone *zone, struct page *page)
 596{
 597	if (!pfn_valid_within(page_to_pfn(page)))
 598		return 0;
 599	if (zone != page_zone(page))
 600		return 0;
 601
 602	return 1;
 603}
 604/*
 605 * Temporary debugging check for pages not lying within a given zone.
 606 */
 607static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 608{
 609	if (page_outside_zone_boundaries(zone, page))
 610		return 1;
 611	if (!page_is_consistent(zone, page))
 612		return 1;
 613
 614	return 0;
 615}
 616#else
 617static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 618{
 619	return 0;
 620}
 621#endif
 622
 623static void bad_page(struct page *page, const char *reason)
 624{
 625	static unsigned long resume;
 626	static unsigned long nr_shown;
 627	static unsigned long nr_unshown;
 628
 
 
 
 
 
 
 629	/*
 630	 * Allow a burst of 60 reports, then keep quiet for that minute;
 631	 * or allow a steady drip of one report per second.
 632	 */
 633	if (nr_shown == 60) {
 634		if (time_before(jiffies, resume)) {
 635			nr_unshown++;
 636			goto out;
 637		}
 638		if (nr_unshown) {
 639			pr_alert(
 640			      "BUG: Bad page state: %lu messages suppressed\n",
 641				nr_unshown);
 642			nr_unshown = 0;
 643		}
 644		nr_shown = 0;
 645	}
 646	if (nr_shown++ == 0)
 647		resume = jiffies + 60 * HZ;
 648
 649	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 650		current->comm, page_to_pfn(page));
 651	dump_page(page, reason);
 652
 653	print_modules();
 654	dump_stack();
 655out:
 656	/* Leave bad fields for debug, except PageBuddy could make trouble */
 657	page_mapcount_reset(page); /* remove PageBuddy */
 658	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 659}
 660
 661static inline unsigned int order_to_pindex(int migratetype, int order)
 662{
 663	int base = order;
 664
 665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 666	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 667		VM_BUG_ON(order != pageblock_order);
 668		base = PAGE_ALLOC_COSTLY_ORDER + 1;
 669	}
 670#else
 671	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 672#endif
 673
 674	return (MIGRATE_PCPTYPES * base) + migratetype;
 675}
 676
 677static inline int pindex_to_order(unsigned int pindex)
 678{
 679	int order = pindex / MIGRATE_PCPTYPES;
 680
 681#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 682	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 683		order = pageblock_order;
 684		VM_BUG_ON(order != pageblock_order);
 685	}
 686#else
 687	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 688#endif
 689
 690	return order;
 691}
 692
 693static inline bool pcp_allowed_order(unsigned int order)
 694{
 695	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 696		return true;
 697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 698	if (order == pageblock_order)
 699		return true;
 700#endif
 701	return false;
 702}
 703
 704static inline void free_the_page(struct page *page, unsigned int order)
 705{
 706	if (pcp_allowed_order(order))		/* Via pcp? */
 707		free_unref_page(page, order);
 708	else
 709		__free_pages_ok(page, order, FPI_NONE);
 710}
 711
 712/*
 713 * Higher-order pages are called "compound pages".  They are structured thusly:
 714 *
 715 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 716 *
 717 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 718 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 719 *
 720 * The first tail page's ->compound_dtor holds the offset in array of compound
 721 * page destructors. See compound_page_dtors.
 722 *
 723 * The first tail page's ->compound_order holds the order of allocation.
 
 724 * This usage means that zero-order pages may not be compound.
 725 */
 726
 727void free_compound_page(struct page *page)
 728{
 729	mem_cgroup_uncharge(page);
 730	free_the_page(page, compound_order(page));
 731}
 732
 733void prep_compound_page(struct page *page, unsigned int order)
 734{
 735	int i;
 736	int nr_pages = 1 << order;
 737
 
 
 738	__SetPageHead(page);
 739	for (i = 1; i < nr_pages; i++) {
 740		struct page *p = page + i;
 741		p->mapping = TAIL_MAPPING;
 742		set_compound_head(p, page);
 
 743	}
 744
 745	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 746	set_compound_order(page, order);
 747	atomic_set(compound_mapcount_ptr(page), -1);
 748	if (hpage_pincount_available(page))
 749		atomic_set(compound_pincount_ptr(page), 0);
 750}
 751
 752#ifdef CONFIG_DEBUG_PAGEALLOC
 753unsigned int _debug_guardpage_minorder;
 
 
 
 
 754
 755bool _debug_pagealloc_enabled_early __read_mostly
 756			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 757EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
 758DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 759EXPORT_SYMBOL(_debug_pagealloc_enabled);
 760
 761DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 762
 763static int __init early_debug_pagealloc(char *buf)
 764{
 765	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
 
 
 
 
 
 
 
 
 766}
 767early_param("debug_pagealloc", early_debug_pagealloc);
 768
 769static int __init debug_guardpage_minorder_setup(char *buf)
 770{
 771	unsigned long res;
 772
 773	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 774		pr_err("Bad debug_guardpage_minorder value\n");
 775		return 0;
 776	}
 777	_debug_guardpage_minorder = res;
 778	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 779	return 0;
 780}
 781early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 782
 783static inline bool set_page_guard(struct zone *zone, struct page *page,
 784				unsigned int order, int migratetype)
 785{
 786	if (!debug_guardpage_enabled())
 787		return false;
 788
 789	if (order >= debug_guardpage_minorder())
 790		return false;
 791
 792	__SetPageGuard(page);
 793	INIT_LIST_HEAD(&page->lru);
 794	set_page_private(page, order);
 795	/* Guard pages are not available for any usage */
 796	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 797
 798	return true;
 799}
 800
 801static inline void clear_page_guard(struct zone *zone, struct page *page,
 802				unsigned int order, int migratetype)
 803{
 804	if (!debug_guardpage_enabled())
 805		return;
 806
 807	__ClearPageGuard(page);
 808
 809	set_page_private(page, 0);
 810	if (!is_migrate_isolate(migratetype))
 811		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 812}
 813#else
 814static inline bool set_page_guard(struct zone *zone, struct page *page,
 815			unsigned int order, int migratetype) { return false; }
 816static inline void clear_page_guard(struct zone *zone, struct page *page,
 817				unsigned int order, int migratetype) {}
 818#endif
 819
 820/*
 821 * Enable static keys related to various memory debugging and hardening options.
 822 * Some override others, and depend on early params that are evaluated in the
 823 * order of appearance. So we need to first gather the full picture of what was
 824 * enabled, and then make decisions.
 
 
 
 
 
 
 
 
 
 
 
 825 */
 826void init_mem_debugging_and_hardening(void)
 827{
 828	bool page_poisoning_requested = false;
 829
 830#ifdef CONFIG_PAGE_POISONING
 831	/*
 832	 * Page poisoning is debug page alloc for some arches. If
 833	 * either of those options are enabled, enable poisoning.
 834	 */
 835	if (page_poisoning_enabled() ||
 836	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
 837	      debug_pagealloc_enabled())) {
 838		static_branch_enable(&_page_poisoning_enabled);
 839		page_poisoning_requested = true;
 840	}
 841#endif
 842
 843	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
 844	    page_poisoning_requested) {
 845		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
 846			"will take precedence over init_on_alloc and init_on_free\n");
 847		_init_on_alloc_enabled_early = false;
 848		_init_on_free_enabled_early = false;
 849	}
 850
 851	if (_init_on_alloc_enabled_early)
 852		static_branch_enable(&init_on_alloc);
 853	else
 854		static_branch_disable(&init_on_alloc);
 855
 856	if (_init_on_free_enabled_early)
 857		static_branch_enable(&init_on_free);
 858	else
 859		static_branch_disable(&init_on_free);
 860
 861#ifdef CONFIG_DEBUG_PAGEALLOC
 862	if (!debug_pagealloc_enabled())
 863		return;
 864
 865	static_branch_enable(&_debug_pagealloc_enabled);
 866
 867	if (!debug_guardpage_minorder())
 868		return;
 869
 870	static_branch_enable(&_debug_guardpage_enabled);
 871#endif
 872}
 873
 874static inline void set_buddy_order(struct page *page, unsigned int order)
 875{
 876	set_page_private(page, order);
 877	__SetPageBuddy(page);
 878}
 879
 880/*
 881 * This function checks whether a page is free && is the buddy
 882 * we can coalesce a page and its buddy if
 883 * (a) the buddy is not in a hole (check before calling!) &&
 884 * (b) the buddy is in the buddy system &&
 885 * (c) a page and its buddy have the same order &&
 886 * (d) a page and its buddy are in the same zone.
 887 *
 888 * For recording whether a page is in the buddy system, we set PageBuddy.
 889 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 890 *
 891 * For recording page's order, we use page_private(page).
 892 */
 893static inline bool page_is_buddy(struct page *page, struct page *buddy,
 894							unsigned int order)
 895{
 896	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 897		return false;
 898
 899	if (buddy_order(buddy) != order)
 900		return false;
 901
 902	/*
 903	 * zone check is done late to avoid uselessly calculating
 904	 * zone/node ids for pages that could never merge.
 905	 */
 906	if (page_zone_id(page) != page_zone_id(buddy))
 907		return false;
 908
 909	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 910
 911	return true;
 912}
 913
 914#ifdef CONFIG_COMPACTION
 915static inline struct capture_control *task_capc(struct zone *zone)
 916{
 917	struct capture_control *capc = current->capture_control;
 918
 919	return unlikely(capc) &&
 920		!(current->flags & PF_KTHREAD) &&
 921		!capc->page &&
 922		capc->cc->zone == zone ? capc : NULL;
 923}
 924
 925static inline bool
 926compaction_capture(struct capture_control *capc, struct page *page,
 927		   int order, int migratetype)
 928{
 929	if (!capc || order != capc->cc->order)
 930		return false;
 931
 932	/* Do not accidentally pollute CMA or isolated regions*/
 933	if (is_migrate_cma(migratetype) ||
 934	    is_migrate_isolate(migratetype))
 935		return false;
 936
 937	/*
 938	 * Do not let lower order allocations pollute a movable pageblock.
 939	 * This might let an unmovable request use a reclaimable pageblock
 940	 * and vice-versa but no more than normal fallback logic which can
 941	 * have trouble finding a high-order free page.
 942	 */
 943	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 944		return false;
 945
 946	capc->page = page;
 947	return true;
 948}
 949
 950#else
 951static inline struct capture_control *task_capc(struct zone *zone)
 952{
 953	return NULL;
 954}
 955
 956static inline bool
 957compaction_capture(struct capture_control *capc, struct page *page,
 958		   int order, int migratetype)
 959{
 960	return false;
 961}
 962#endif /* CONFIG_COMPACTION */
 963
 964/* Used for pages not on another list */
 965static inline void add_to_free_list(struct page *page, struct zone *zone,
 966				    unsigned int order, int migratetype)
 967{
 968	struct free_area *area = &zone->free_area[order];
 969
 970	list_add(&page->lru, &area->free_list[migratetype]);
 971	area->nr_free++;
 972}
 973
 974/* Used for pages not on another list */
 975static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 976					 unsigned int order, int migratetype)
 977{
 978	struct free_area *area = &zone->free_area[order];
 979
 980	list_add_tail(&page->lru, &area->free_list[migratetype]);
 981	area->nr_free++;
 982}
 983
 984/*
 985 * Used for pages which are on another list. Move the pages to the tail
 986 * of the list - so the moved pages won't immediately be considered for
 987 * allocation again (e.g., optimization for memory onlining).
 988 */
 989static inline void move_to_free_list(struct page *page, struct zone *zone,
 990				     unsigned int order, int migratetype)
 991{
 992	struct free_area *area = &zone->free_area[order];
 993
 994	list_move_tail(&page->lru, &area->free_list[migratetype]);
 995}
 996
 997static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 998					   unsigned int order)
 999{
1000	/* clear reported state and update reported page count */
1001	if (page_reported(page))
1002		__ClearPageReported(page);
1003
1004	list_del(&page->lru);
1005	__ClearPageBuddy(page);
1006	set_page_private(page, 0);
1007	zone->free_area[order].nr_free--;
1008}
1009
1010/*
1011 * If this is not the largest possible page, check if the buddy
1012 * of the next-highest order is free. If it is, it's possible
1013 * that pages are being freed that will coalesce soon. In case,
1014 * that is happening, add the free page to the tail of the list
1015 * so it's less likely to be used soon and more likely to be merged
1016 * as a higher order page
1017 */
1018static inline bool
1019buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1020		   struct page *page, unsigned int order)
1021{
1022	struct page *higher_page, *higher_buddy;
1023	unsigned long combined_pfn;
1024
1025	if (order >= MAX_ORDER - 2)
1026		return false;
1027
1028	if (!pfn_valid_within(buddy_pfn))
1029		return false;
1030
1031	combined_pfn = buddy_pfn & pfn;
1032	higher_page = page + (combined_pfn - pfn);
1033	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1034	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1035
1036	return pfn_valid_within(buddy_pfn) &&
1037	       page_is_buddy(higher_page, higher_buddy, order + 1);
1038}
1039
1040/*
1041 * Freeing function for a buddy system allocator.
1042 *
1043 * The concept of a buddy system is to maintain direct-mapped table
1044 * (containing bit values) for memory blocks of various "orders".
1045 * The bottom level table contains the map for the smallest allocatable
1046 * units of memory (here, pages), and each level above it describes
1047 * pairs of units from the levels below, hence, "buddies".
1048 * At a high level, all that happens here is marking the table entry
1049 * at the bottom level available, and propagating the changes upward
1050 * as necessary, plus some accounting needed to play nicely with other
1051 * parts of the VM system.
1052 * At each level, we keep a list of pages, which are heads of continuous
1053 * free pages of length of (1 << order) and marked with PageBuddy.
1054 * Page's order is recorded in page_private(page) field.
1055 * So when we are allocating or freeing one, we can derive the state of the
1056 * other.  That is, if we allocate a small block, and both were
1057 * free, the remainder of the region must be split into blocks.
1058 * If a block is freed, and its buddy is also free, then this
1059 * triggers coalescing into a block of larger size.
1060 *
1061 * -- nyc
1062 */
1063
1064static inline void __free_one_page(struct page *page,
1065		unsigned long pfn,
1066		struct zone *zone, unsigned int order,
1067		int migratetype, fpi_t fpi_flags)
1068{
1069	struct capture_control *capc = task_capc(zone);
1070	unsigned long buddy_pfn;
1071	unsigned long combined_pfn;
1072	unsigned int max_order;
1073	struct page *buddy;
1074	bool to_tail;
1075
1076	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1077
1078	VM_BUG_ON(!zone_is_initialized(zone));
1079	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1080
1081	VM_BUG_ON(migratetype == -1);
1082	if (likely(!is_migrate_isolate(migratetype)))
1083		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1084
1085	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1086	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1087
1088continue_merging:
1089	while (order < max_order) {
1090		if (compaction_capture(capc, page, order, migratetype)) {
1091			__mod_zone_freepage_state(zone, -(1 << order),
1092								migratetype);
1093			return;
1094		}
1095		buddy_pfn = __find_buddy_pfn(pfn, order);
1096		buddy = page + (buddy_pfn - pfn);
1097
1098		if (!pfn_valid_within(buddy_pfn))
1099			goto done_merging;
 
1100		if (!page_is_buddy(page, buddy, order))
1101			goto done_merging;
1102		/*
1103		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1104		 * merge with it and move up one order.
1105		 */
1106		if (page_is_guard(buddy))
1107			clear_page_guard(zone, buddy, order, migratetype);
1108		else
1109			del_page_from_free_list(buddy, zone, order);
1110		combined_pfn = buddy_pfn & pfn;
1111		page = page + (combined_pfn - pfn);
1112		pfn = combined_pfn;
1113		order++;
1114	}
1115	if (order < MAX_ORDER - 1) {
1116		/* If we are here, it means order is >= pageblock_order.
1117		 * We want to prevent merge between freepages on isolate
1118		 * pageblock and normal pageblock. Without this, pageblock
1119		 * isolation could cause incorrect freepage or CMA accounting.
1120		 *
1121		 * We don't want to hit this code for the more frequent
1122		 * low-order merging.
1123		 */
1124		if (unlikely(has_isolate_pageblock(zone))) {
1125			int buddy_mt;
1126
1127			buddy_pfn = __find_buddy_pfn(pfn, order);
1128			buddy = page + (buddy_pfn - pfn);
1129			buddy_mt = get_pageblock_migratetype(buddy);
1130
1131			if (migratetype != buddy_mt
1132					&& (is_migrate_isolate(migratetype) ||
1133						is_migrate_isolate(buddy_mt)))
1134				goto done_merging;
1135		}
1136		max_order = order + 1;
1137		goto continue_merging;
1138	}
1139
1140done_merging:
1141	set_buddy_order(page, order);
1142
1143	if (fpi_flags & FPI_TO_TAIL)
1144		to_tail = true;
1145	else if (is_shuffle_order(order))
1146		to_tail = shuffle_pick_tail();
1147	else
1148		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1149
1150	if (to_tail)
1151		add_to_free_list_tail(page, zone, order, migratetype);
1152	else
1153		add_to_free_list(page, zone, order, migratetype);
1154
1155	/* Notify page reporting subsystem of freed page */
1156	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1157		page_reporting_notify_free(order);
1158}
1159
1160/*
1161 * A bad page could be due to a number of fields. Instead of multiple branches,
1162 * try and check multiple fields with one check. The caller must do a detailed
1163 * check if necessary.
1164 */
1165static inline bool page_expected_state(struct page *page,
1166					unsigned long check_flags)
1167{
1168	if (unlikely(atomic_read(&page->_mapcount) != -1))
1169		return false;
1170
1171	if (unlikely((unsigned long)page->mapping |
1172			page_ref_count(page) |
1173#ifdef CONFIG_MEMCG
1174			page->memcg_data |
1175#endif
1176			(page->flags & check_flags)))
1177		return false;
1178
1179	return true;
1180}
1181
1182static const char *page_bad_reason(struct page *page, unsigned long flags)
1183{
1184	const char *bad_reason = NULL;
1185
1186	if (unlikely(atomic_read(&page->_mapcount) != -1))
1187		bad_reason = "nonzero mapcount";
1188	if (unlikely(page->mapping != NULL))
1189		bad_reason = "non-NULL mapping";
1190	if (unlikely(page_ref_count(page) != 0))
1191		bad_reason = "nonzero _refcount";
1192	if (unlikely(page->flags & flags)) {
1193		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1194			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1195		else
1196			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1197	}
1198#ifdef CONFIG_MEMCG
1199	if (unlikely(page->memcg_data))
1200		bad_reason = "page still charged to cgroup";
1201#endif
1202	return bad_reason;
1203}
1204
1205static void check_free_page_bad(struct page *page)
1206{
1207	bad_page(page,
1208		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1209}
1210
1211static inline int check_free_page(struct page *page)
1212{
1213	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1214		return 0;
1215
1216	/* Something has gone sideways, find it */
1217	check_free_page_bad(page);
1218	return 1;
1219}
1220
1221static int free_tail_pages_check(struct page *head_page, struct page *page)
1222{
1223	int ret = 1;
1224
1225	/*
1226	 * We rely page->lru.next never has bit 0 set, unless the page
1227	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1228	 */
1229	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1230
1231	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1232		ret = 0;
1233		goto out;
1234	}
1235	switch (page - head_page) {
1236	case 1:
1237		/* the first tail page: ->mapping may be compound_mapcount() */
1238		if (unlikely(compound_mapcount(page))) {
1239			bad_page(page, "nonzero compound_mapcount");
1240			goto out;
1241		}
1242		break;
1243	case 2:
1244		/*
1245		 * the second tail page: ->mapping is
1246		 * deferred_list.next -- ignore value.
1247		 */
1248		break;
1249	default:
1250		if (page->mapping != TAIL_MAPPING) {
1251			bad_page(page, "corrupted mapping in tail page");
1252			goto out;
1253		}
1254		break;
1255	}
1256	if (unlikely(!PageTail(page))) {
1257		bad_page(page, "PageTail not set");
1258		goto out;
1259	}
1260	if (unlikely(compound_head(page) != head_page)) {
1261		bad_page(page, "compound_head not consistent");
1262		goto out;
1263	}
1264	ret = 0;
1265out:
1266	page->mapping = NULL;
1267	clear_compound_head(page);
1268	return ret;
1269}
1270
1271static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1272{
1273	int i;
1274
1275	if (zero_tags) {
1276		for (i = 0; i < numpages; i++)
1277			tag_clear_highpage(page + i);
1278		return;
1279	}
1280
1281	/* s390's use of memset() could override KASAN redzones. */
1282	kasan_disable_current();
1283	for (i = 0; i < numpages; i++) {
1284		u8 tag = page_kasan_tag(page + i);
1285		page_kasan_tag_reset(page + i);
1286		clear_highpage(page + i);
1287		page_kasan_tag_set(page + i, tag);
1288	}
1289	kasan_enable_current();
1290}
1291
1292static __always_inline bool free_pages_prepare(struct page *page,
1293			unsigned int order, bool check_free, fpi_t fpi_flags)
1294{
1295	int bad = 0;
1296	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1297
1298	VM_BUG_ON_PAGE(PageTail(page), page);
1299
1300	trace_mm_page_free(page, order);
1301
1302	if (unlikely(PageHWPoison(page)) && !order) {
1303		/*
1304		 * Do not let hwpoison pages hit pcplists/buddy
1305		 * Untie memcg state and reset page's owner
1306		 */
1307		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1308			__memcg_kmem_uncharge_page(page, order);
1309		reset_page_owner(page, order);
1310		return false;
1311	}
1312
1313	/*
1314	 * Check tail pages before head page information is cleared to
1315	 * avoid checking PageCompound for order-0 pages.
1316	 */
1317	if (unlikely(order)) {
1318		bool compound = PageCompound(page);
1319		int i;
1320
1321		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1322
1323		if (compound)
1324			ClearPageDoubleMap(page);
1325		for (i = 1; i < (1 << order); i++) {
1326			if (compound)
1327				bad += free_tail_pages_check(page, page + i);
1328			if (unlikely(check_free_page(page + i))) {
1329				bad++;
1330				continue;
1331			}
1332			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1333		}
1334	}
1335	if (PageMappingFlags(page))
1336		page->mapping = NULL;
1337	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1338		__memcg_kmem_uncharge_page(page, order);
1339	if (check_free)
1340		bad += check_free_page(page);
1341	if (bad)
1342		return false;
1343
1344	page_cpupid_reset_last(page);
1345	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1346	reset_page_owner(page, order);
1347
1348	if (!PageHighMem(page)) {
1349		debug_check_no_locks_freed(page_address(page),
1350					   PAGE_SIZE << order);
1351		debug_check_no_obj_freed(page_address(page),
1352					   PAGE_SIZE << order);
1353	}
1354
1355	kernel_poison_pages(page, 1 << order);
1356
1357	/*
1358	 * As memory initialization might be integrated into KASAN,
1359	 * kasan_free_pages and kernel_init_free_pages must be
1360	 * kept together to avoid discrepancies in behavior.
1361	 *
1362	 * With hardware tag-based KASAN, memory tags must be set before the
1363	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1364	 */
1365	if (kasan_has_integrated_init()) {
1366		if (!skip_kasan_poison)
1367			kasan_free_pages(page, order);
1368	} else {
1369		bool init = want_init_on_free();
1370
1371		if (init)
1372			kernel_init_free_pages(page, 1 << order, false);
1373		if (!skip_kasan_poison)
1374			kasan_poison_pages(page, order, init);
1375	}
1376
1377	/*
1378	 * arch_free_page() can make the page's contents inaccessible.  s390
1379	 * does this.  So nothing which can access the page's contents should
1380	 * happen after this.
1381	 */
1382	arch_free_page(page, order);
1383
1384	debug_pagealloc_unmap_pages(page, 1 << order);
1385
1386	return true;
1387}
1388
1389#ifdef CONFIG_DEBUG_VM
1390/*
1391 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1392 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1393 * moved from pcp lists to free lists.
1394 */
1395static bool free_pcp_prepare(struct page *page, unsigned int order)
1396{
1397	return free_pages_prepare(page, order, true, FPI_NONE);
 
1398}
1399
1400static bool bulkfree_pcp_prepare(struct page *page)
1401{
1402	if (debug_pagealloc_enabled_static())
1403		return check_free_page(page);
1404	else
1405		return false;
1406}
1407#else
1408/*
1409 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1410 * moving from pcp lists to free list in order to reduce overhead. With
1411 * debug_pagealloc enabled, they are checked also immediately when being freed
1412 * to the pcp lists.
1413 */
1414static bool free_pcp_prepare(struct page *page, unsigned int order)
1415{
1416	if (debug_pagealloc_enabled_static())
1417		return free_pages_prepare(page, order, true, FPI_NONE);
1418	else
1419		return free_pages_prepare(page, order, false, FPI_NONE);
1420}
1421
1422static bool bulkfree_pcp_prepare(struct page *page)
1423{
1424	return check_free_page(page);
1425}
1426#endif /* CONFIG_DEBUG_VM */
1427
1428static inline void prefetch_buddy(struct page *page)
1429{
1430	unsigned long pfn = page_to_pfn(page);
1431	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1432	struct page *buddy = page + (buddy_pfn - pfn);
1433
1434	prefetch(buddy);
1435}
1436
1437/*
1438 * Frees a number of pages from the PCP lists
1439 * Assumes all pages on list are in same zone, and of same order.
1440 * count is the number of pages to free.
1441 *
1442 * If the zone was previously in an "all pages pinned" state then look to
1443 * see if this freeing clears that state.
1444 *
1445 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1446 * pinned" detection logic.
1447 */
1448static void free_pcppages_bulk(struct zone *zone, int count,
1449					struct per_cpu_pages *pcp)
1450{
1451	int pindex = 0;
1452	int batch_free = 0;
1453	int nr_freed = 0;
1454	unsigned int order;
1455	int prefetch_nr = READ_ONCE(pcp->batch);
1456	bool isolated_pageblocks;
1457	struct page *page, *tmp;
1458	LIST_HEAD(head);
1459
1460	/*
1461	 * Ensure proper count is passed which otherwise would stuck in the
1462	 * below while (list_empty(list)) loop.
1463	 */
1464	count = min(pcp->count, count);
1465	while (count > 0) {
1466		struct list_head *list;
1467
1468		/*
1469		 * Remove pages from lists in a round-robin fashion. A
1470		 * batch_free count is maintained that is incremented when an
1471		 * empty list is encountered.  This is so more pages are freed
1472		 * off fuller lists instead of spinning excessively around empty
1473		 * lists
1474		 */
1475		do {
1476			batch_free++;
1477			if (++pindex == NR_PCP_LISTS)
1478				pindex = 0;
1479			list = &pcp->lists[pindex];
1480		} while (list_empty(list));
1481
1482		/* This is the only non-empty list. Free them all. */
1483		if (batch_free == NR_PCP_LISTS)
1484			batch_free = count;
1485
1486		order = pindex_to_order(pindex);
1487		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1488		do {
1489			page = list_last_entry(list, struct page, lru);
1490			/* must delete to avoid corrupting pcp list */
1491			list_del(&page->lru);
1492			nr_freed += 1 << order;
1493			count -= 1 << order;
1494
1495			if (bulkfree_pcp_prepare(page))
1496				continue;
1497
1498			/* Encode order with the migratetype */
1499			page->index <<= NR_PCP_ORDER_WIDTH;
1500			page->index |= order;
1501
1502			list_add_tail(&page->lru, &head);
1503
1504			/*
1505			 * We are going to put the page back to the global
1506			 * pool, prefetch its buddy to speed up later access
1507			 * under zone->lock. It is believed the overhead of
1508			 * an additional test and calculating buddy_pfn here
1509			 * can be offset by reduced memory latency later. To
1510			 * avoid excessive prefetching due to large count, only
1511			 * prefetch buddy for the first pcp->batch nr of pages.
1512			 */
1513			if (prefetch_nr) {
1514				prefetch_buddy(page);
1515				prefetch_nr--;
1516			}
1517		} while (count > 0 && --batch_free && !list_empty(list));
1518	}
1519	pcp->count -= nr_freed;
1520
1521	/*
1522	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1523	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1524	 */
1525	spin_lock(&zone->lock);
1526	isolated_pageblocks = has_isolate_pageblock(zone);
1527
1528	/*
1529	 * Use safe version since after __free_one_page(),
1530	 * page->lru.next will not point to original list.
1531	 */
1532	list_for_each_entry_safe(page, tmp, &head, lru) {
1533		int mt = get_pcppage_migratetype(page);
1534
1535		/* mt has been encoded with the order (see above) */
1536		order = mt & NR_PCP_ORDER_MASK;
1537		mt >>= NR_PCP_ORDER_WIDTH;
1538
1539		/* MIGRATE_ISOLATE page should not go to pcplists */
1540		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1541		/* Pageblock could have been isolated meanwhile */
1542		if (unlikely(isolated_pageblocks))
1543			mt = get_pageblock_migratetype(page);
1544
1545		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1546		trace_mm_page_pcpu_drain(page, order, mt);
1547	}
 
1548	spin_unlock(&zone->lock);
1549}
1550
1551static void free_one_page(struct zone *zone,
1552				struct page *page, unsigned long pfn,
1553				unsigned int order,
1554				int migratetype, fpi_t fpi_flags)
1555{
1556	unsigned long flags;
 
 
1557
1558	spin_lock_irqsave(&zone->lock, flags);
1559	if (unlikely(has_isolate_pageblock(zone) ||
1560		is_migrate_isolate(migratetype))) {
1561		migratetype = get_pfnblock_migratetype(page, pfn);
1562	}
1563	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1564	spin_unlock_irqrestore(&zone->lock, flags);
1565}
1566
1567static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1568				unsigned long zone, int nid)
1569{
1570	mm_zero_struct_page(page);
1571	set_page_links(page, zone, nid, pfn);
1572	init_page_count(page);
1573	page_mapcount_reset(page);
1574	page_cpupid_reset_last(page);
1575	page_kasan_tag_reset(page);
1576
1577	INIT_LIST_HEAD(&page->lru);
1578#ifdef WANT_PAGE_VIRTUAL
1579	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1580	if (!is_highmem_idx(zone))
1581		set_page_address(page, __va(pfn << PAGE_SHIFT));
1582#endif
1583}
1584
1585#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1586static void __meminit init_reserved_page(unsigned long pfn)
1587{
1588	pg_data_t *pgdat;
1589	int nid, zid;
 
1590
1591	if (!early_page_uninitialised(pfn))
1592		return;
1593
1594	nid = early_pfn_to_nid(pfn);
1595	pgdat = NODE_DATA(nid);
1596
1597	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1598		struct zone *zone = &pgdat->node_zones[zid];
1599
1600		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1601			break;
1602	}
1603	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1604}
1605#else
1606static inline void init_reserved_page(unsigned long pfn)
1607{
1608}
1609#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1610
1611/*
1612 * Initialised pages do not have PageReserved set. This function is
1613 * called for each range allocated by the bootmem allocator and
1614 * marks the pages PageReserved. The remaining valid pages are later
1615 * sent to the buddy page allocator.
1616 */
1617void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1618{
1619	unsigned long start_pfn = PFN_DOWN(start);
1620	unsigned long end_pfn = PFN_UP(end);
1621
1622	for (; start_pfn < end_pfn; start_pfn++) {
1623		if (pfn_valid(start_pfn)) {
1624			struct page *page = pfn_to_page(start_pfn);
1625
1626			init_reserved_page(start_pfn);
1627
1628			/* Avoid false-positive PageTail() */
1629			INIT_LIST_HEAD(&page->lru);
1630
1631			/*
1632			 * no need for atomic set_bit because the struct
1633			 * page is not visible yet so nobody should
1634			 * access it yet.
1635			 */
1636			__SetPageReserved(page);
1637		}
1638	}
1639}
1640
1641static void __free_pages_ok(struct page *page, unsigned int order,
1642			    fpi_t fpi_flags)
1643{
1644	unsigned long flags;
1645	int migratetype;
1646	unsigned long pfn = page_to_pfn(page);
1647	struct zone *zone = page_zone(page);
1648
1649	if (!free_pages_prepare(page, order, true, fpi_flags))
1650		return;
1651
1652	migratetype = get_pfnblock_migratetype(page, pfn);
1653
1654	spin_lock_irqsave(&zone->lock, flags);
1655	if (unlikely(has_isolate_pageblock(zone) ||
1656		is_migrate_isolate(migratetype))) {
1657		migratetype = get_pfnblock_migratetype(page, pfn);
1658	}
1659	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1660	spin_unlock_irqrestore(&zone->lock, flags);
1661
1662	__count_vm_events(PGFREE, 1 << order);
 
 
 
1663}
1664
1665void __free_pages_core(struct page *page, unsigned int order)
1666{
1667	unsigned int nr_pages = 1 << order;
1668	struct page *p = page;
1669	unsigned int loop;
1670
1671	/*
1672	 * When initializing the memmap, __init_single_page() sets the refcount
1673	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1674	 * refcount of all involved pages to 0.
1675	 */
1676	prefetchw(p);
1677	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1678		prefetchw(p + 1);
1679		__ClearPageReserved(p);
1680		set_page_count(p, 0);
1681	}
1682	__ClearPageReserved(p);
1683	set_page_count(p, 0);
1684
1685	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1686
1687	/*
1688	 * Bypass PCP and place fresh pages right to the tail, primarily
1689	 * relevant for memory onlining.
1690	 */
1691	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1692}
1693
1694#ifdef CONFIG_NUMA
1695
1696/*
1697 * During memory init memblocks map pfns to nids. The search is expensive and
1698 * this caches recent lookups. The implementation of __early_pfn_to_nid
1699 * treats start/end as pfns.
1700 */
1701struct mminit_pfnnid_cache {
1702	unsigned long last_start;
1703	unsigned long last_end;
1704	int last_nid;
1705};
1706
1707static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1708
1709/*
1710 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1711 */
1712static int __meminit __early_pfn_to_nid(unsigned long pfn,
1713					struct mminit_pfnnid_cache *state)
1714{
1715	unsigned long start_pfn, end_pfn;
1716	int nid;
1717
1718	if (state->last_start <= pfn && pfn < state->last_end)
1719		return state->last_nid;
1720
1721	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1722	if (nid != NUMA_NO_NODE) {
1723		state->last_start = start_pfn;
1724		state->last_end = end_pfn;
1725		state->last_nid = nid;
1726	}
1727
1728	return nid;
1729}
1730
1731int __meminit early_pfn_to_nid(unsigned long pfn)
1732{
1733	static DEFINE_SPINLOCK(early_pfn_lock);
1734	int nid;
1735
1736	spin_lock(&early_pfn_lock);
1737	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1738	if (nid < 0)
1739		nid = first_online_node;
1740	spin_unlock(&early_pfn_lock);
1741
1742	return nid;
1743}
1744#endif /* CONFIG_NUMA */
1745
1746void __init memblock_free_pages(struct page *page, unsigned long pfn,
1747							unsigned int order)
1748{
1749	if (early_page_uninitialised(pfn))
1750		return;
1751	__free_pages_core(page, order);
1752}
1753
1754/*
1755 * Check that the whole (or subset of) a pageblock given by the interval of
1756 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1757 * with the migration of free compaction scanner. The scanners then need to
1758 * use only pfn_valid_within() check for arches that allow holes within
1759 * pageblocks.
1760 *
1761 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1762 *
1763 * It's possible on some configurations to have a setup like node0 node1 node0
1764 * i.e. it's possible that all pages within a zones range of pages do not
1765 * belong to a single zone. We assume that a border between node0 and node1
1766 * can occur within a single pageblock, but not a node0 node1 node0
1767 * interleaving within a single pageblock. It is therefore sufficient to check
1768 * the first and last page of a pageblock and avoid checking each individual
1769 * page in a pageblock.
1770 */
1771struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1772				     unsigned long end_pfn, struct zone *zone)
1773{
1774	struct page *start_page;
1775	struct page *end_page;
1776
1777	/* end_pfn is one past the range we are checking */
1778	end_pfn--;
1779
1780	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1781		return NULL;
1782
1783	start_page = pfn_to_online_page(start_pfn);
1784	if (!start_page)
1785		return NULL;
1786
1787	if (page_zone(start_page) != zone)
1788		return NULL;
1789
1790	end_page = pfn_to_page(end_pfn);
1791
1792	/* This gives a shorter code than deriving page_zone(end_page) */
1793	if (page_zone_id(start_page) != page_zone_id(end_page))
1794		return NULL;
1795
1796	return start_page;
1797}
1798
1799void set_zone_contiguous(struct zone *zone)
1800{
1801	unsigned long block_start_pfn = zone->zone_start_pfn;
1802	unsigned long block_end_pfn;
1803
1804	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1805	for (; block_start_pfn < zone_end_pfn(zone);
1806			block_start_pfn = block_end_pfn,
1807			 block_end_pfn += pageblock_nr_pages) {
1808
1809		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1810
1811		if (!__pageblock_pfn_to_page(block_start_pfn,
1812					     block_end_pfn, zone))
1813			return;
1814		cond_resched();
1815	}
1816
1817	/* We confirm that there is no hole */
1818	zone->contiguous = true;
1819}
1820
1821void clear_zone_contiguous(struct zone *zone)
1822{
1823	zone->contiguous = false;
1824}
1825
1826#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1827static void __init deferred_free_range(unsigned long pfn,
1828				       unsigned long nr_pages)
1829{
1830	struct page *page;
1831	unsigned long i;
1832
1833	if (!nr_pages)
1834		return;
1835
1836	page = pfn_to_page(pfn);
1837
1838	/* Free a large naturally-aligned chunk if possible */
1839	if (nr_pages == pageblock_nr_pages &&
1840	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1841		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1842		__free_pages_core(page, pageblock_order);
1843		return;
1844	}
1845
1846	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1847		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1848			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1849		__free_pages_core(page, 0);
1850	}
1851}
1852
1853/* Completion tracking for deferred_init_memmap() threads */
1854static atomic_t pgdat_init_n_undone __initdata;
1855static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1856
1857static inline void __init pgdat_init_report_one_done(void)
1858{
1859	if (atomic_dec_and_test(&pgdat_init_n_undone))
1860		complete(&pgdat_init_all_done_comp);
1861}
1862
1863/*
1864 * Returns true if page needs to be initialized or freed to buddy allocator.
1865 *
1866 * First we check if pfn is valid on architectures where it is possible to have
1867 * holes within pageblock_nr_pages. On systems where it is not possible, this
1868 * function is optimized out.
1869 *
1870 * Then, we check if a current large page is valid by only checking the validity
1871 * of the head pfn.
1872 */
1873static inline bool __init deferred_pfn_valid(unsigned long pfn)
1874{
1875	if (!pfn_valid_within(pfn))
1876		return false;
1877	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1878		return false;
1879	return true;
1880}
1881
1882/*
1883 * Free pages to buddy allocator. Try to free aligned pages in
1884 * pageblock_nr_pages sizes.
1885 */
1886static void __init deferred_free_pages(unsigned long pfn,
1887				       unsigned long end_pfn)
1888{
1889	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1890	unsigned long nr_free = 0;
1891
1892	for (; pfn < end_pfn; pfn++) {
1893		if (!deferred_pfn_valid(pfn)) {
1894			deferred_free_range(pfn - nr_free, nr_free);
1895			nr_free = 0;
1896		} else if (!(pfn & nr_pgmask)) {
1897			deferred_free_range(pfn - nr_free, nr_free);
1898			nr_free = 1;
1899		} else {
1900			nr_free++;
1901		}
1902	}
1903	/* Free the last block of pages to allocator */
1904	deferred_free_range(pfn - nr_free, nr_free);
1905}
1906
1907/*
1908 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1909 * by performing it only once every pageblock_nr_pages.
1910 * Return number of pages initialized.
1911 */
1912static unsigned long  __init deferred_init_pages(struct zone *zone,
1913						 unsigned long pfn,
1914						 unsigned long end_pfn)
1915{
1916	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1917	int nid = zone_to_nid(zone);
1918	unsigned long nr_pages = 0;
1919	int zid = zone_idx(zone);
1920	struct page *page = NULL;
1921
1922	for (; pfn < end_pfn; pfn++) {
1923		if (!deferred_pfn_valid(pfn)) {
1924			page = NULL;
1925			continue;
1926		} else if (!page || !(pfn & nr_pgmask)) {
1927			page = pfn_to_page(pfn);
1928		} else {
1929			page++;
1930		}
1931		__init_single_page(page, pfn, zid, nid);
1932		nr_pages++;
1933	}
1934	return (nr_pages);
1935}
1936
1937/*
1938 * This function is meant to pre-load the iterator for the zone init.
1939 * Specifically it walks through the ranges until we are caught up to the
1940 * first_init_pfn value and exits there. If we never encounter the value we
1941 * return false indicating there are no valid ranges left.
1942 */
1943static bool __init
1944deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1945				    unsigned long *spfn, unsigned long *epfn,
1946				    unsigned long first_init_pfn)
1947{
1948	u64 j;
1949
1950	/*
1951	 * Start out by walking through the ranges in this zone that have
1952	 * already been initialized. We don't need to do anything with them
1953	 * so we just need to flush them out of the system.
1954	 */
1955	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1956		if (*epfn <= first_init_pfn)
1957			continue;
1958		if (*spfn < first_init_pfn)
1959			*spfn = first_init_pfn;
1960		*i = j;
1961		return true;
1962	}
1963
1964	return false;
1965}
1966
1967/*
1968 * Initialize and free pages. We do it in two loops: first we initialize
1969 * struct page, then free to buddy allocator, because while we are
1970 * freeing pages we can access pages that are ahead (computing buddy
1971 * page in __free_one_page()).
1972 *
1973 * In order to try and keep some memory in the cache we have the loop
1974 * broken along max page order boundaries. This way we will not cause
1975 * any issues with the buddy page computation.
1976 */
1977static unsigned long __init
1978deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1979		       unsigned long *end_pfn)
1980{
1981	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1982	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1983	unsigned long nr_pages = 0;
1984	u64 j = *i;
1985
1986	/* First we loop through and initialize the page values */
1987	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1988		unsigned long t;
1989
1990		if (mo_pfn <= *start_pfn)
1991			break;
1992
1993		t = min(mo_pfn, *end_pfn);
1994		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1995
1996		if (mo_pfn < *end_pfn) {
1997			*start_pfn = mo_pfn;
1998			break;
1999		}
2000	}
2001
2002	/* Reset values and now loop through freeing pages as needed */
2003	swap(j, *i);
2004
2005	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2006		unsigned long t;
2007
2008		if (mo_pfn <= spfn)
2009			break;
2010
2011		t = min(mo_pfn, epfn);
2012		deferred_free_pages(spfn, t);
2013
2014		if (mo_pfn <= epfn)
2015			break;
2016	}
2017
2018	return nr_pages;
2019}
2020
2021static void __init
2022deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2023			   void *arg)
2024{
2025	unsigned long spfn, epfn;
2026	struct zone *zone = arg;
2027	u64 i;
2028
2029	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2030
2031	/*
2032	 * Initialize and free pages in MAX_ORDER sized increments so that we
2033	 * can avoid introducing any issues with the buddy allocator.
2034	 */
2035	while (spfn < end_pfn) {
2036		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2037		cond_resched();
2038	}
2039}
2040
2041/* An arch may override for more concurrency. */
2042__weak int __init
2043deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2044{
2045	return 1;
2046}
2047
2048/* Initialise remaining memory on a node */
2049static int __init deferred_init_memmap(void *data)
2050{
2051	pg_data_t *pgdat = data;
2052	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053	unsigned long spfn = 0, epfn = 0;
2054	unsigned long first_init_pfn, flags;
2055	unsigned long start = jiffies;
2056	struct zone *zone;
2057	int zid, max_threads;
2058	u64 i;
2059
2060	/* Bind memory initialisation thread to a local node if possible */
2061	if (!cpumask_empty(cpumask))
2062		set_cpus_allowed_ptr(current, cpumask);
2063
2064	pgdat_resize_lock(pgdat, &flags);
2065	first_init_pfn = pgdat->first_deferred_pfn;
2066	if (first_init_pfn == ULONG_MAX) {
2067		pgdat_resize_unlock(pgdat, &flags);
2068		pgdat_init_report_one_done();
2069		return 0;
2070	}
2071
2072	/* Sanity check boundaries */
2073	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2074	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2075	pgdat->first_deferred_pfn = ULONG_MAX;
2076
2077	/*
2078	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2079	 * interrupt thread must allocate this early in boot, zone must be
2080	 * pre-grown prior to start of deferred page initialization.
2081	 */
2082	pgdat_resize_unlock(pgdat, &flags);
2083
2084	/* Only the highest zone is deferred so find it */
2085	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2086		zone = pgdat->node_zones + zid;
2087		if (first_init_pfn < zone_end_pfn(zone))
2088			break;
2089	}
2090
2091	/* If the zone is empty somebody else may have cleared out the zone */
2092	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2093						 first_init_pfn))
2094		goto zone_empty;
2095
2096	max_threads = deferred_page_init_max_threads(cpumask);
2097
2098	while (spfn < epfn) {
2099		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2100		struct padata_mt_job job = {
2101			.thread_fn   = deferred_init_memmap_chunk,
2102			.fn_arg      = zone,
2103			.start       = spfn,
2104			.size        = epfn_align - spfn,
2105			.align       = PAGES_PER_SECTION,
2106			.min_chunk   = PAGES_PER_SECTION,
2107			.max_threads = max_threads,
2108		};
2109
2110		padata_do_multithreaded(&job);
2111		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2112						    epfn_align);
2113	}
2114zone_empty:
2115	/* Sanity check that the next zone really is unpopulated */
2116	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2117
2118	pr_info("node %d deferred pages initialised in %ums\n",
2119		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2120
2121	pgdat_init_report_one_done();
2122	return 0;
2123}
2124
2125/*
2126 * If this zone has deferred pages, try to grow it by initializing enough
2127 * deferred pages to satisfy the allocation specified by order, rounded up to
2128 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2129 * of SECTION_SIZE bytes by initializing struct pages in increments of
2130 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2131 *
2132 * Return true when zone was grown, otherwise return false. We return true even
2133 * when we grow less than requested, to let the caller decide if there are
2134 * enough pages to satisfy the allocation.
2135 *
2136 * Note: We use noinline because this function is needed only during boot, and
2137 * it is called from a __ref function _deferred_grow_zone. This way we are
2138 * making sure that it is not inlined into permanent text section.
2139 */
2140static noinline bool __init
2141deferred_grow_zone(struct zone *zone, unsigned int order)
2142{
2143	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2144	pg_data_t *pgdat = zone->zone_pgdat;
2145	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2146	unsigned long spfn, epfn, flags;
2147	unsigned long nr_pages = 0;
2148	u64 i;
2149
2150	/* Only the last zone may have deferred pages */
2151	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2152		return false;
2153
2154	pgdat_resize_lock(pgdat, &flags);
2155
2156	/*
2157	 * If someone grew this zone while we were waiting for spinlock, return
2158	 * true, as there might be enough pages already.
2159	 */
2160	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2161		pgdat_resize_unlock(pgdat, &flags);
2162		return true;
2163	}
2164
2165	/* If the zone is empty somebody else may have cleared out the zone */
2166	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2167						 first_deferred_pfn)) {
2168		pgdat->first_deferred_pfn = ULONG_MAX;
2169		pgdat_resize_unlock(pgdat, &flags);
2170		/* Retry only once. */
2171		return first_deferred_pfn != ULONG_MAX;
2172	}
2173
2174	/*
2175	 * Initialize and free pages in MAX_ORDER sized increments so
2176	 * that we can avoid introducing any issues with the buddy
2177	 * allocator.
2178	 */
2179	while (spfn < epfn) {
2180		/* update our first deferred PFN for this section */
2181		first_deferred_pfn = spfn;
2182
2183		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2184		touch_nmi_watchdog();
2185
2186		/* We should only stop along section boundaries */
2187		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2188			continue;
2189
2190		/* If our quota has been met we can stop here */
2191		if (nr_pages >= nr_pages_needed)
2192			break;
2193	}
2194
2195	pgdat->first_deferred_pfn = spfn;
2196	pgdat_resize_unlock(pgdat, &flags);
2197
2198	return nr_pages > 0;
2199}
2200
2201/*
2202 * deferred_grow_zone() is __init, but it is called from
2203 * get_page_from_freelist() during early boot until deferred_pages permanently
2204 * disables this call. This is why we have refdata wrapper to avoid warning,
2205 * and to ensure that the function body gets unloaded.
2206 */
2207static bool __ref
2208_deferred_grow_zone(struct zone *zone, unsigned int order)
2209{
2210	return deferred_grow_zone(zone, order);
2211}
2212
2213#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2214
2215void __init page_alloc_init_late(void)
2216{
2217	struct zone *zone;
2218	int nid;
2219
2220#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2221
2222	/* There will be num_node_state(N_MEMORY) threads */
2223	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2224	for_each_node_state(nid, N_MEMORY) {
2225		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2226	}
2227
2228	/* Block until all are initialised */
2229	wait_for_completion(&pgdat_init_all_done_comp);
2230
2231	/*
2232	 * We initialized the rest of the deferred pages.  Permanently disable
2233	 * on-demand struct page initialization.
2234	 */
2235	static_branch_disable(&deferred_pages);
2236
2237	/* Reinit limits that are based on free pages after the kernel is up */
2238	files_maxfiles_init();
2239#endif
2240
2241	buffer_init();
2242
2243	/* Discard memblock private memory */
2244	memblock_discard();
2245
2246	for_each_node_state(nid, N_MEMORY)
2247		shuffle_free_memory(NODE_DATA(nid));
2248
2249	for_each_populated_zone(zone)
2250		set_zone_contiguous(zone);
2251}
2252
2253#ifdef CONFIG_CMA
2254/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2255void __init init_cma_reserved_pageblock(struct page *page)
2256{
2257	unsigned i = pageblock_nr_pages;
2258	struct page *p = page;
2259
2260	do {
2261		__ClearPageReserved(p);
2262		set_page_count(p, 0);
2263	} while (++p, --i);
2264
2265	set_pageblock_migratetype(page, MIGRATE_CMA);
2266
2267	if (pageblock_order >= MAX_ORDER) {
2268		i = pageblock_nr_pages;
2269		p = page;
2270		do {
2271			set_page_refcounted(p);
2272			__free_pages(p, MAX_ORDER - 1);
2273			p += MAX_ORDER_NR_PAGES;
2274		} while (i -= MAX_ORDER_NR_PAGES);
2275	} else {
2276		set_page_refcounted(page);
2277		__free_pages(page, pageblock_order);
2278	}
2279
2280	adjust_managed_page_count(page, pageblock_nr_pages);
2281	page_zone(page)->cma_pages += pageblock_nr_pages;
2282}
2283#endif
2284
2285/*
2286 * The order of subdivision here is critical for the IO subsystem.
2287 * Please do not alter this order without good reasons and regression
2288 * testing. Specifically, as large blocks of memory are subdivided,
2289 * the order in which smaller blocks are delivered depends on the order
2290 * they're subdivided in this function. This is the primary factor
2291 * influencing the order in which pages are delivered to the IO
2292 * subsystem according to empirical testing, and this is also justified
2293 * by considering the behavior of a buddy system containing a single
2294 * large block of memory acted on by a series of small allocations.
2295 * This behavior is a critical factor in sglist merging's success.
2296 *
2297 * -- nyc
2298 */
2299static inline void expand(struct zone *zone, struct page *page,
2300	int low, int high, int migratetype)
 
2301{
2302	unsigned long size = 1 << high;
2303
2304	while (high > low) {
 
2305		high--;
2306		size >>= 1;
2307		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2308
2309		/*
2310		 * Mark as guard pages (or page), that will allow to
2311		 * merge back to allocator when buddy will be freed.
2312		 * Corresponding page table entries will not be touched,
2313		 * pages will stay not present in virtual address space
2314		 */
2315		if (set_page_guard(zone, &page[size], high, migratetype))
2316			continue;
2317
2318		add_to_free_list(&page[size], zone, high, migratetype);
2319		set_buddy_order(&page[size], high);
2320	}
2321}
2322
2323static void check_new_page_bad(struct page *page)
2324{
2325	if (unlikely(page->flags & __PG_HWPOISON)) {
2326		/* Don't complain about hwpoisoned pages */
2327		page_mapcount_reset(page); /* remove PageBuddy */
2328		return;
2329	}
2330
2331	bad_page(page,
2332		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2333}
2334
2335/*
2336 * This page is about to be returned from the page allocator
2337 */
2338static inline int check_new_page(struct page *page)
2339{
2340	if (likely(page_expected_state(page,
2341				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2342		return 0;
2343
2344	check_new_page_bad(page);
2345	return 1;
2346}
2347
2348#ifdef CONFIG_DEBUG_VM
2349/*
2350 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2351 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2352 * also checked when pcp lists are refilled from the free lists.
2353 */
2354static inline bool check_pcp_refill(struct page *page)
2355{
2356	if (debug_pagealloc_enabled_static())
2357		return check_new_page(page);
2358	else
2359		return false;
2360}
2361
2362static inline bool check_new_pcp(struct page *page)
2363{
2364	return check_new_page(page);
2365}
2366#else
2367/*
2368 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2369 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2370 * enabled, they are also checked when being allocated from the pcp lists.
2371 */
2372static inline bool check_pcp_refill(struct page *page)
2373{
2374	return check_new_page(page);
2375}
2376static inline bool check_new_pcp(struct page *page)
2377{
2378	if (debug_pagealloc_enabled_static())
2379		return check_new_page(page);
2380	else
2381		return false;
2382}
2383#endif /* CONFIG_DEBUG_VM */
2384
2385static bool check_new_pages(struct page *page, unsigned int order)
2386{
2387	int i;
2388	for (i = 0; i < (1 << order); i++) {
2389		struct page *p = page + i;
2390
2391		if (unlikely(check_new_page(p)))
2392			return true;
2393	}
2394
2395	return false;
2396}
2397
2398inline void post_alloc_hook(struct page *page, unsigned int order,
2399				gfp_t gfp_flags)
2400{
2401	set_page_private(page, 0);
2402	set_page_refcounted(page);
2403
2404	arch_alloc_page(page, order);
2405	debug_pagealloc_map_pages(page, 1 << order);
2406
2407	/*
2408	 * Page unpoisoning must happen before memory initialization.
2409	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2410	 * allocations and the page unpoisoning code will complain.
2411	 */
2412	kernel_unpoison_pages(page, 1 << order);
2413
2414	/*
2415	 * As memory initialization might be integrated into KASAN,
2416	 * kasan_alloc_pages and kernel_init_free_pages must be
2417	 * kept together to avoid discrepancies in behavior.
2418	 */
2419	if (kasan_has_integrated_init()) {
2420		kasan_alloc_pages(page, order, gfp_flags);
2421	} else {
2422		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2423
2424		kasan_unpoison_pages(page, order, init);
2425		if (init)
2426			kernel_init_free_pages(page, 1 << order,
2427					       gfp_flags & __GFP_ZEROTAGS);
2428	}
2429
2430	set_page_owner(page, order, gfp_flags);
2431}
2432
2433static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2434							unsigned int alloc_flags)
2435{
2436	post_alloc_hook(page, order, gfp_flags);
2437
2438	if (order && (gfp_flags & __GFP_COMP))
2439		prep_compound_page(page, order);
2440
2441	/*
2442	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2443	 * allocate the page. The expectation is that the caller is taking
2444	 * steps that will free more memory. The caller should avoid the page
2445	 * being used for !PFMEMALLOC purposes.
2446	 */
2447	if (alloc_flags & ALLOC_NO_WATERMARKS)
2448		set_page_pfmemalloc(page);
2449	else
2450		clear_page_pfmemalloc(page);
2451}
2452
2453/*
2454 * Go through the free lists for the given migratetype and remove
2455 * the smallest available page from the freelists
2456 */
2457static __always_inline
2458struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2459						int migratetype)
2460{
2461	unsigned int current_order;
2462	struct free_area *area;
2463	struct page *page;
2464
2465	/* Find a page of the appropriate size in the preferred list */
2466	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2467		area = &(zone->free_area[current_order]);
2468		page = get_page_from_free_area(area, migratetype);
2469		if (!page)
2470			continue;
2471		del_page_from_free_list(page, zone, current_order);
2472		expand(zone, page, order, current_order, migratetype);
2473		set_pcppage_migratetype(page, migratetype);
 
 
 
 
2474		return page;
2475	}
2476
2477	return NULL;
2478}
2479
2480
2481/*
2482 * This array describes the order lists are fallen back to when
2483 * the free lists for the desirable migrate type are depleted
2484 */
2485static int fallbacks[MIGRATE_TYPES][3] = {
2486	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2487	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2488	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2489#ifdef CONFIG_CMA
2490	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2491#endif
2492#ifdef CONFIG_MEMORY_ISOLATION
2493	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2494#endif
2495};
2496
2497#ifdef CONFIG_CMA
2498static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2499					unsigned int order)
2500{
2501	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2502}
2503#else
2504static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2505					unsigned int order) { return NULL; }
2506#endif
2507
2508/*
2509 * Move the free pages in a range to the freelist tail of the requested type.
2510 * Note that start_page and end_pages are not aligned on a pageblock
2511 * boundary. If alignment is required, use move_freepages_block()
2512 */
2513static int move_freepages(struct zone *zone,
2514			  unsigned long start_pfn, unsigned long end_pfn,
2515			  int migratetype, int *num_movable)
2516{
2517	struct page *page;
2518	unsigned long pfn;
2519	unsigned int order;
2520	int pages_moved = 0;
2521
2522	for (pfn = start_pfn; pfn <= end_pfn;) {
2523		if (!pfn_valid_within(pfn)) {
2524			pfn++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525			continue;
2526		}
2527
2528		page = pfn_to_page(pfn);
2529		if (!PageBuddy(page)) {
2530			/*
2531			 * We assume that pages that could be isolated for
2532			 * migration are movable. But we don't actually try
2533			 * isolating, as that would be expensive.
2534			 */
2535			if (num_movable &&
2536					(PageLRU(page) || __PageMovable(page)))
2537				(*num_movable)++;
2538			pfn++;
2539			continue;
2540		}
2541
2542		/* Make sure we are not inadvertently changing nodes */
2543		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2544		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2545
2546		order = buddy_order(page);
2547		move_to_free_list(page, zone, order, migratetype);
2548		pfn += 1 << order;
2549		pages_moved += 1 << order;
2550	}
2551
2552	return pages_moved;
2553}
2554
2555int move_freepages_block(struct zone *zone, struct page *page,
2556				int migratetype, int *num_movable)
2557{
2558	unsigned long start_pfn, end_pfn, pfn;
2559
2560	if (num_movable)
2561		*num_movable = 0;
2562
2563	pfn = page_to_pfn(page);
2564	start_pfn = pfn & ~(pageblock_nr_pages - 1);
 
 
2565	end_pfn = start_pfn + pageblock_nr_pages - 1;
2566
2567	/* Do not cross zone boundaries */
2568	if (!zone_spans_pfn(zone, start_pfn))
2569		start_pfn = pfn;
2570	if (!zone_spans_pfn(zone, end_pfn))
2571		return 0;
2572
2573	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2574								num_movable);
2575}
2576
2577static void change_pageblock_range(struct page *pageblock_page,
2578					int start_order, int migratetype)
2579{
2580	int nr_pageblocks = 1 << (start_order - pageblock_order);
2581
2582	while (nr_pageblocks--) {
2583		set_pageblock_migratetype(pageblock_page, migratetype);
2584		pageblock_page += pageblock_nr_pages;
2585	}
2586}
2587
2588/*
2589 * When we are falling back to another migratetype during allocation, try to
2590 * steal extra free pages from the same pageblocks to satisfy further
2591 * allocations, instead of polluting multiple pageblocks.
2592 *
2593 * If we are stealing a relatively large buddy page, it is likely there will
2594 * be more free pages in the pageblock, so try to steal them all. For
2595 * reclaimable and unmovable allocations, we steal regardless of page size,
2596 * as fragmentation caused by those allocations polluting movable pageblocks
2597 * is worse than movable allocations stealing from unmovable and reclaimable
2598 * pageblocks.
2599 */
2600static bool can_steal_fallback(unsigned int order, int start_mt)
2601{
2602	/*
2603	 * Leaving this order check is intended, although there is
2604	 * relaxed order check in next check. The reason is that
2605	 * we can actually steal whole pageblock if this condition met,
2606	 * but, below check doesn't guarantee it and that is just heuristic
2607	 * so could be changed anytime.
2608	 */
2609	if (order >= pageblock_order)
2610		return true;
2611
2612	if (order >= pageblock_order / 2 ||
2613		start_mt == MIGRATE_RECLAIMABLE ||
2614		start_mt == MIGRATE_UNMOVABLE ||
2615		page_group_by_mobility_disabled)
2616		return true;
2617
2618	return false;
2619}
2620
2621static inline bool boost_watermark(struct zone *zone)
2622{
2623	unsigned long max_boost;
2624
2625	if (!watermark_boost_factor)
2626		return false;
2627	/*
2628	 * Don't bother in zones that are unlikely to produce results.
2629	 * On small machines, including kdump capture kernels running
2630	 * in a small area, boosting the watermark can cause an out of
2631	 * memory situation immediately.
2632	 */
2633	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2634		return false;
2635
2636	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2637			watermark_boost_factor, 10000);
2638
2639	/*
2640	 * high watermark may be uninitialised if fragmentation occurs
2641	 * very early in boot so do not boost. We do not fall
2642	 * through and boost by pageblock_nr_pages as failing
2643	 * allocations that early means that reclaim is not going
2644	 * to help and it may even be impossible to reclaim the
2645	 * boosted watermark resulting in a hang.
2646	 */
2647	if (!max_boost)
2648		return false;
2649
2650	max_boost = max(pageblock_nr_pages, max_boost);
2651
2652	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2653		max_boost);
2654
2655	return true;
2656}
2657
2658/*
2659 * This function implements actual steal behaviour. If order is large enough,
2660 * we can steal whole pageblock. If not, we first move freepages in this
2661 * pageblock to our migratetype and determine how many already-allocated pages
2662 * are there in the pageblock with a compatible migratetype. If at least half
2663 * of pages are free or compatible, we can change migratetype of the pageblock
2664 * itself, so pages freed in the future will be put on the correct free list.
2665 */
2666static void steal_suitable_fallback(struct zone *zone, struct page *page,
2667		unsigned int alloc_flags, int start_type, bool whole_block)
2668{
2669	unsigned int current_order = buddy_order(page);
2670	int free_pages, movable_pages, alike_pages;
2671	int old_block_type;
2672
2673	old_block_type = get_pageblock_migratetype(page);
2674
2675	/*
2676	 * This can happen due to races and we want to prevent broken
2677	 * highatomic accounting.
2678	 */
2679	if (is_migrate_highatomic(old_block_type))
2680		goto single_page;
2681
2682	/* Take ownership for orders >= pageblock_order */
2683	if (current_order >= pageblock_order) {
2684		change_pageblock_range(page, current_order, start_type);
2685		goto single_page;
2686	}
2687
2688	/*
2689	 * Boost watermarks to increase reclaim pressure to reduce the
2690	 * likelihood of future fallbacks. Wake kswapd now as the node
2691	 * may be balanced overall and kswapd will not wake naturally.
2692	 */
2693	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2694		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2695
2696	/* We are not allowed to try stealing from the whole block */
2697	if (!whole_block)
2698		goto single_page;
2699
2700	free_pages = move_freepages_block(zone, page, start_type,
2701						&movable_pages);
2702	/*
2703	 * Determine how many pages are compatible with our allocation.
2704	 * For movable allocation, it's the number of movable pages which
2705	 * we just obtained. For other types it's a bit more tricky.
2706	 */
2707	if (start_type == MIGRATE_MOVABLE) {
2708		alike_pages = movable_pages;
2709	} else {
2710		/*
2711		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2712		 * to MOVABLE pageblock, consider all non-movable pages as
2713		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2714		 * vice versa, be conservative since we can't distinguish the
2715		 * exact migratetype of non-movable pages.
2716		 */
2717		if (old_block_type == MIGRATE_MOVABLE)
2718			alike_pages = pageblock_nr_pages
2719						- (free_pages + movable_pages);
2720		else
2721			alike_pages = 0;
2722	}
2723
2724	/* moving whole block can fail due to zone boundary conditions */
2725	if (!free_pages)
2726		goto single_page;
2727
2728	/*
2729	 * If a sufficient number of pages in the block are either free or of
2730	 * comparable migratability as our allocation, claim the whole block.
2731	 */
2732	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2733			page_group_by_mobility_disabled)
2734		set_pageblock_migratetype(page, start_type);
2735
2736	return;
2737
2738single_page:
2739	move_to_free_list(page, zone, current_order, start_type);
2740}
2741
2742/*
2743 * Check whether there is a suitable fallback freepage with requested order.
2744 * If only_stealable is true, this function returns fallback_mt only if
2745 * we can steal other freepages all together. This would help to reduce
2746 * fragmentation due to mixed migratetype pages in one pageblock.
2747 */
2748int find_suitable_fallback(struct free_area *area, unsigned int order,
2749			int migratetype, bool only_stealable, bool *can_steal)
2750{
2751	int i;
2752	int fallback_mt;
2753
2754	if (area->nr_free == 0)
2755		return -1;
2756
2757	*can_steal = false;
2758	for (i = 0;; i++) {
2759		fallback_mt = fallbacks[migratetype][i];
2760		if (fallback_mt == MIGRATE_TYPES)
2761			break;
2762
2763		if (free_area_empty(area, fallback_mt))
2764			continue;
2765
2766		if (can_steal_fallback(order, migratetype))
2767			*can_steal = true;
2768
2769		if (!only_stealable)
2770			return fallback_mt;
2771
2772		if (*can_steal)
2773			return fallback_mt;
2774	}
2775
2776	return -1;
2777}
2778
2779/*
2780 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2781 * there are no empty page blocks that contain a page with a suitable order
2782 */
2783static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2784				unsigned int alloc_order)
2785{
2786	int mt;
2787	unsigned long max_managed, flags;
2788
2789	/*
2790	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2791	 * Check is race-prone but harmless.
2792	 */
2793	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2794	if (zone->nr_reserved_highatomic >= max_managed)
2795		return;
2796
2797	spin_lock_irqsave(&zone->lock, flags);
2798
2799	/* Recheck the nr_reserved_highatomic limit under the lock */
2800	if (zone->nr_reserved_highatomic >= max_managed)
2801		goto out_unlock;
2802
2803	/* Yoink! */
2804	mt = get_pageblock_migratetype(page);
2805	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2806	    && !is_migrate_cma(mt)) {
2807		zone->nr_reserved_highatomic += pageblock_nr_pages;
2808		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2809		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2810	}
2811
2812out_unlock:
2813	spin_unlock_irqrestore(&zone->lock, flags);
2814}
2815
2816/*
2817 * Used when an allocation is about to fail under memory pressure. This
2818 * potentially hurts the reliability of high-order allocations when under
2819 * intense memory pressure but failed atomic allocations should be easier
2820 * to recover from than an OOM.
2821 *
2822 * If @force is true, try to unreserve a pageblock even though highatomic
2823 * pageblock is exhausted.
2824 */
2825static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2826						bool force)
2827{
2828	struct zonelist *zonelist = ac->zonelist;
2829	unsigned long flags;
2830	struct zoneref *z;
2831	struct zone *zone;
2832	struct page *page;
2833	int order;
2834	bool ret;
2835
2836	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2837								ac->nodemask) {
2838		/*
2839		 * Preserve at least one pageblock unless memory pressure
2840		 * is really high.
2841		 */
2842		if (!force && zone->nr_reserved_highatomic <=
2843					pageblock_nr_pages)
2844			continue;
2845
2846		spin_lock_irqsave(&zone->lock, flags);
2847		for (order = 0; order < MAX_ORDER; order++) {
2848			struct free_area *area = &(zone->free_area[order]);
2849
2850			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2851			if (!page)
2852				continue;
2853
 
 
 
 
2854			/*
2855			 * In page freeing path, migratetype change is racy so
2856			 * we can counter several free pages in a pageblock
2857			 * in this loop although we changed the pageblock type
2858			 * from highatomic to ac->migratetype. So we should
2859			 * adjust the count once.
2860			 */
2861			if (is_migrate_highatomic_page(page)) {
2862				/*
2863				 * It should never happen but changes to
2864				 * locking could inadvertently allow a per-cpu
2865				 * drain to add pages to MIGRATE_HIGHATOMIC
2866				 * while unreserving so be safe and watch for
2867				 * underflows.
2868				 */
2869				zone->nr_reserved_highatomic -= min(
2870						pageblock_nr_pages,
2871						zone->nr_reserved_highatomic);
2872			}
2873
2874			/*
2875			 * Convert to ac->migratetype and avoid the normal
2876			 * pageblock stealing heuristics. Minimally, the caller
2877			 * is doing the work and needs the pages. More
2878			 * importantly, if the block was always converted to
2879			 * MIGRATE_UNMOVABLE or another type then the number
2880			 * of pageblocks that cannot be completely freed
2881			 * may increase.
2882			 */
2883			set_pageblock_migratetype(page, ac->migratetype);
2884			ret = move_freepages_block(zone, page, ac->migratetype,
2885									NULL);
2886			if (ret) {
2887				spin_unlock_irqrestore(&zone->lock, flags);
2888				return ret;
2889			}
2890		}
2891		spin_unlock_irqrestore(&zone->lock, flags);
2892	}
2893
2894	return false;
2895}
2896
2897/*
2898 * Try finding a free buddy page on the fallback list and put it on the free
2899 * list of requested migratetype, possibly along with other pages from the same
2900 * block, depending on fragmentation avoidance heuristics. Returns true if
2901 * fallback was found so that __rmqueue_smallest() can grab it.
2902 *
2903 * The use of signed ints for order and current_order is a deliberate
2904 * deviation from the rest of this file, to make the for loop
2905 * condition simpler.
2906 */
2907static __always_inline bool
2908__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2909						unsigned int alloc_flags)
2910{
2911	struct free_area *area;
2912	int current_order;
2913	int min_order = order;
2914	struct page *page;
2915	int fallback_mt;
2916	bool can_steal;
2917
2918	/*
2919	 * Do not steal pages from freelists belonging to other pageblocks
2920	 * i.e. orders < pageblock_order. If there are no local zones free,
2921	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2922	 */
2923	if (alloc_flags & ALLOC_NOFRAGMENT)
2924		min_order = pageblock_order;
2925
2926	/*
2927	 * Find the largest available free page in the other list. This roughly
2928	 * approximates finding the pageblock with the most free pages, which
2929	 * would be too costly to do exactly.
2930	 */
2931	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2932				--current_order) {
2933		area = &(zone->free_area[current_order]);
2934		fallback_mt = find_suitable_fallback(area, current_order,
2935				start_migratetype, false, &can_steal);
2936		if (fallback_mt == -1)
2937			continue;
2938
2939		/*
2940		 * We cannot steal all free pages from the pageblock and the
2941		 * requested migratetype is movable. In that case it's better to
2942		 * steal and split the smallest available page instead of the
2943		 * largest available page, because even if the next movable
2944		 * allocation falls back into a different pageblock than this
2945		 * one, it won't cause permanent fragmentation.
2946		 */
2947		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2948					&& current_order > order)
2949			goto find_smallest;
2950
2951		goto do_steal;
2952	}
2953
2954	return false;
 
2955
2956find_smallest:
2957	for (current_order = order; current_order < MAX_ORDER;
2958							current_order++) {
2959		area = &(zone->free_area[current_order]);
2960		fallback_mt = find_suitable_fallback(area, current_order,
2961				start_migratetype, false, &can_steal);
2962		if (fallback_mt != -1)
2963			break;
2964	}
2965
2966	/*
2967	 * This should not happen - we already found a suitable fallback
2968	 * when looking for the largest page.
2969	 */
2970	VM_BUG_ON(current_order == MAX_ORDER);
2971
2972do_steal:
2973	page = get_page_from_free_area(area, fallback_mt);
2974
2975	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2976								can_steal);
2977
2978	trace_mm_page_alloc_extfrag(page, order, current_order,
2979		start_migratetype, fallback_mt);
2980
2981	return true;
2982
2983}
2984
2985/*
2986 * Do the hard work of removing an element from the buddy allocator.
2987 * Call me with the zone->lock already held.
2988 */
2989static __always_inline struct page *
2990__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2991						unsigned int alloc_flags)
2992{
2993	struct page *page;
2994
2995	if (IS_ENABLED(CONFIG_CMA)) {
 
 
 
 
 
2996		/*
2997		 * Balance movable allocations between regular and CMA areas by
2998		 * allocating from CMA when over half of the zone's free memory
2999		 * is in the CMA area.
3000		 */
3001		if (alloc_flags & ALLOC_CMA &&
3002		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3003		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3004			page = __rmqueue_cma_fallback(zone, order);
3005			if (page)
3006				goto out;
3007		}
3008	}
3009retry:
3010	page = __rmqueue_smallest(zone, order, migratetype);
3011	if (unlikely(!page)) {
3012		if (alloc_flags & ALLOC_CMA)
3013			page = __rmqueue_cma_fallback(zone, order);
3014
3015		if (!page && __rmqueue_fallback(zone, order, migratetype,
3016								alloc_flags))
3017			goto retry;
3018	}
3019out:
3020	if (page)
3021		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3022	return page;
3023}
3024
3025/*
3026 * Obtain a specified number of elements from the buddy allocator, all under
3027 * a single hold of the lock, for efficiency.  Add them to the supplied list.
3028 * Returns the number of new pages which were placed at *list.
3029 */
3030static int rmqueue_bulk(struct zone *zone, unsigned int order,
3031			unsigned long count, struct list_head *list,
3032			int migratetype, unsigned int alloc_flags)
3033{
3034	int i, allocated = 0;
3035
3036	/*
3037	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3038	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3039	 */
3040	spin_lock(&zone->lock);
3041	for (i = 0; i < count; ++i) {
3042		struct page *page = __rmqueue(zone, order, migratetype,
3043								alloc_flags);
3044		if (unlikely(page == NULL))
3045			break;
3046
3047		if (unlikely(check_pcp_refill(page)))
3048			continue;
3049
3050		/*
3051		 * Split buddy pages returned by expand() are received here in
3052		 * physical page order. The page is added to the tail of
3053		 * caller's list. From the callers perspective, the linked list
3054		 * is ordered by page number under some conditions. This is
3055		 * useful for IO devices that can forward direction from the
3056		 * head, thus also in the physical page order. This is useful
3057		 * for IO devices that can merge IO requests if the physical
3058		 * pages are ordered properly.
3059		 */
3060		list_add_tail(&page->lru, list);
3061		allocated++;
3062		if (is_migrate_cma(get_pcppage_migratetype(page)))
3063			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3064					      -(1 << order));
 
3065	}
3066
3067	/*
3068	 * i pages were removed from the buddy list even if some leak due
3069	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3070	 * on i. Do not confuse with 'allocated' which is the number of
3071	 * pages added to the pcp list.
3072	 */
3073	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3074	spin_unlock(&zone->lock);
3075	return allocated;
3076}
3077
3078#ifdef CONFIG_NUMA
3079/*
3080 * Called from the vmstat counter updater to drain pagesets of this
3081 * currently executing processor on remote nodes after they have
3082 * expired.
3083 *
3084 * Note that this function must be called with the thread pinned to
3085 * a single processor.
3086 */
3087void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3088{
3089	unsigned long flags;
3090	int to_drain, batch;
3091
3092	local_lock_irqsave(&pagesets.lock, flags);
3093	batch = READ_ONCE(pcp->batch);
3094	to_drain = min(pcp->count, batch);
3095	if (to_drain > 0)
3096		free_pcppages_bulk(zone, to_drain, pcp);
3097	local_unlock_irqrestore(&pagesets.lock, flags);
 
 
3098}
3099#endif
3100
3101/*
3102 * Drain pcplists of the indicated processor and zone.
3103 *
3104 * The processor must either be the current processor and the
3105 * thread pinned to the current processor or a processor that
3106 * is not online.
3107 */
3108static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3109{
3110	unsigned long flags;
3111	struct per_cpu_pages *pcp;
3112
3113	local_lock_irqsave(&pagesets.lock, flags);
 
 
3114
3115	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3116	if (pcp->count)
3117		free_pcppages_bulk(zone, pcp->count, pcp);
3118
3119	local_unlock_irqrestore(&pagesets.lock, flags);
3120}
3121
3122/*
3123 * Drain pcplists of all zones on the indicated processor.
3124 *
3125 * The processor must either be the current processor and the
3126 * thread pinned to the current processor or a processor that
3127 * is not online.
3128 */
3129static void drain_pages(unsigned int cpu)
3130{
3131	struct zone *zone;
3132
3133	for_each_populated_zone(zone) {
3134		drain_pages_zone(cpu, zone);
3135	}
3136}
3137
3138/*
3139 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3140 *
3141 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3142 * the single zone's pages.
3143 */
3144void drain_local_pages(struct zone *zone)
3145{
3146	int cpu = smp_processor_id();
3147
3148	if (zone)
3149		drain_pages_zone(cpu, zone);
3150	else
3151		drain_pages(cpu);
3152}
3153
3154static void drain_local_pages_wq(struct work_struct *work)
3155{
3156	struct pcpu_drain *drain;
3157
3158	drain = container_of(work, struct pcpu_drain, work);
3159
3160	/*
3161	 * drain_all_pages doesn't use proper cpu hotplug protection so
3162	 * we can race with cpu offline when the WQ can move this from
3163	 * a cpu pinned worker to an unbound one. We can operate on a different
3164	 * cpu which is alright but we also have to make sure to not move to
3165	 * a different one.
3166	 */
3167	preempt_disable();
3168	drain_local_pages(drain->zone);
3169	preempt_enable();
3170}
3171
3172/*
3173 * The implementation of drain_all_pages(), exposing an extra parameter to
3174 * drain on all cpus.
3175 *
3176 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3177 * not empty. The check for non-emptiness can however race with a free to
3178 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3179 * that need the guarantee that every CPU has drained can disable the
3180 * optimizing racy check.
3181 */
3182static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3183{
3184	int cpu;
3185
3186	/*
3187	 * Allocate in the BSS so we won't require allocation in
3188	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3189	 */
3190	static cpumask_t cpus_with_pcps;
3191
3192	/*
3193	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3194	 * initialized.
3195	 */
3196	if (WARN_ON_ONCE(!mm_percpu_wq))
3197		return;
3198
3199	/*
3200	 * Do not drain if one is already in progress unless it's specific to
3201	 * a zone. Such callers are primarily CMA and memory hotplug and need
3202	 * the drain to be complete when the call returns.
3203	 */
3204	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3205		if (!zone)
3206			return;
3207		mutex_lock(&pcpu_drain_mutex);
3208	}
3209
3210	/*
3211	 * We don't care about racing with CPU hotplug event
3212	 * as offline notification will cause the notified
3213	 * cpu to drain that CPU pcps and on_each_cpu_mask
3214	 * disables preemption as part of its processing
3215	 */
3216	for_each_online_cpu(cpu) {
3217		struct per_cpu_pages *pcp;
3218		struct zone *z;
3219		bool has_pcps = false;
3220
3221		if (force_all_cpus) {
3222			/*
3223			 * The pcp.count check is racy, some callers need a
3224			 * guarantee that no cpu is missed.
3225			 */
3226			has_pcps = true;
3227		} else if (zone) {
3228			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3229			if (pcp->count)
3230				has_pcps = true;
3231		} else {
3232			for_each_populated_zone(z) {
3233				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3234				if (pcp->count) {
3235					has_pcps = true;
3236					break;
3237				}
3238			}
3239		}
3240
3241		if (has_pcps)
3242			cpumask_set_cpu(cpu, &cpus_with_pcps);
3243		else
3244			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3245	}
3246
3247	for_each_cpu(cpu, &cpus_with_pcps) {
3248		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3249
3250		drain->zone = zone;
3251		INIT_WORK(&drain->work, drain_local_pages_wq);
3252		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3253	}
3254	for_each_cpu(cpu, &cpus_with_pcps)
3255		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3256
3257	mutex_unlock(&pcpu_drain_mutex);
3258}
3259
3260/*
3261 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3262 *
3263 * When zone parameter is non-NULL, spill just the single zone's pages.
3264 *
3265 * Note that this can be extremely slow as the draining happens in a workqueue.
3266 */
3267void drain_all_pages(struct zone *zone)
3268{
3269	__drain_all_pages(zone, false);
3270}
3271
3272#ifdef CONFIG_HIBERNATION
3273
3274/*
3275 * Touch the watchdog for every WD_PAGE_COUNT pages.
3276 */
3277#define WD_PAGE_COUNT	(128*1024)
3278
3279void mark_free_pages(struct zone *zone)
3280{
3281	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3282	unsigned long flags;
3283	unsigned int order, t;
3284	struct page *page;
3285
3286	if (zone_is_empty(zone))
3287		return;
3288
3289	spin_lock_irqsave(&zone->lock, flags);
3290
3291	max_zone_pfn = zone_end_pfn(zone);
3292	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3293		if (pfn_valid(pfn)) {
3294			page = pfn_to_page(pfn);
3295
3296			if (!--page_count) {
3297				touch_nmi_watchdog();
3298				page_count = WD_PAGE_COUNT;
3299			}
3300
3301			if (page_zone(page) != zone)
3302				continue;
3303
3304			if (!swsusp_page_is_forbidden(page))
3305				swsusp_unset_page_free(page);
3306		}
3307
3308	for_each_migratetype_order(order, t) {
3309		list_for_each_entry(page,
3310				&zone->free_area[order].free_list[t], lru) {
3311			unsigned long i;
3312
3313			pfn = page_to_pfn(page);
3314			for (i = 0; i < (1UL << order); i++) {
3315				if (!--page_count) {
3316					touch_nmi_watchdog();
3317					page_count = WD_PAGE_COUNT;
3318				}
3319				swsusp_set_page_free(pfn_to_page(pfn + i));
3320			}
3321		}
3322	}
3323	spin_unlock_irqrestore(&zone->lock, flags);
3324}
3325#endif /* CONFIG_PM */
3326
3327static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3328							unsigned int order)
3329{
3330	int migratetype;
3331
3332	if (!free_pcp_prepare(page, order))
3333		return false;
3334
3335	migratetype = get_pfnblock_migratetype(page, pfn);
3336	set_pcppage_migratetype(page, migratetype);
3337	return true;
3338}
3339
3340static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3341{
3342	int min_nr_free, max_nr_free;
3343
3344	/* Check for PCP disabled or boot pageset */
3345	if (unlikely(high < batch))
3346		return 1;
3347
3348	/* Leave at least pcp->batch pages on the list */
3349	min_nr_free = batch;
3350	max_nr_free = high - batch;
3351
3352	/*
3353	 * Double the number of pages freed each time there is subsequent
3354	 * freeing of pages without any allocation.
3355	 */
3356	batch <<= pcp->free_factor;
3357	if (batch < max_nr_free)
3358		pcp->free_factor++;
3359	batch = clamp(batch, min_nr_free, max_nr_free);
3360
3361	return batch;
3362}
3363
3364static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3365{
3366	int high = READ_ONCE(pcp->high);
3367
3368	if (unlikely(!high))
3369		return 0;
3370
3371	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3372		return high;
3373
3374	/*
3375	 * If reclaim is active, limit the number of pages that can be
3376	 * stored on pcp lists
3377	 */
3378	return min(READ_ONCE(pcp->batch) << 2, high);
3379}
3380
3381static void free_unref_page_commit(struct page *page, unsigned long pfn,
3382				   int migratetype, unsigned int order)
3383{
3384	struct zone *zone = page_zone(page);
3385	struct per_cpu_pages *pcp;
3386	int high;
3387	int pindex;
3388
3389	__count_vm_event(PGFREE);
3390	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3391	pindex = order_to_pindex(migratetype, order);
3392	list_add(&page->lru, &pcp->lists[pindex]);
3393	pcp->count += 1 << order;
3394	high = nr_pcp_high(pcp, zone);
3395	if (pcp->count >= high) {
3396		int batch = READ_ONCE(pcp->batch);
3397
3398		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3399	}
3400}
3401
3402/*
3403 * Free a pcp page
3404 */
3405void free_unref_page(struct page *page, unsigned int order)
3406{
3407	unsigned long flags;
3408	unsigned long pfn = page_to_pfn(page);
3409	int migratetype;
 
3410
3411	if (!free_unref_page_prepare(page, pfn, order))
3412		return;
3413
 
 
 
 
 
 
 
3414	/*
3415	 * We only track unmovable, reclaimable and movable on pcp lists.
3416	 * Place ISOLATE pages on the isolated list because they are being
3417	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3418	 * areas back if necessary. Otherwise, we may have to free
3419	 * excessively into the page allocator
3420	 */
3421	migratetype = get_pcppage_migratetype(page);
3422	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3423		if (unlikely(is_migrate_isolate(migratetype))) {
3424			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3425			return;
3426		}
3427		migratetype = MIGRATE_MOVABLE;
3428	}
3429
3430	local_lock_irqsave(&pagesets.lock, flags);
3431	free_unref_page_commit(page, pfn, migratetype, order);
3432	local_unlock_irqrestore(&pagesets.lock, flags);
3433}
3434
3435/*
3436 * Free a list of 0-order pages
3437 */
3438void free_unref_page_list(struct list_head *list)
3439{
3440	struct page *page, *next;
3441	unsigned long flags, pfn;
3442	int batch_count = 0;
3443	int migratetype;
3444
3445	/* Prepare pages for freeing */
3446	list_for_each_entry_safe(page, next, list, lru) {
3447		pfn = page_to_pfn(page);
3448		if (!free_unref_page_prepare(page, pfn, 0)) {
3449			list_del(&page->lru);
3450			continue;
3451		}
3452
3453		/*
3454		 * Free isolated pages directly to the allocator, see
3455		 * comment in free_unref_page.
3456		 */
3457		migratetype = get_pcppage_migratetype(page);
3458		if (unlikely(is_migrate_isolate(migratetype))) {
3459			list_del(&page->lru);
3460			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3461			continue;
3462		}
3463
3464		set_page_private(page, pfn);
3465	}
3466
3467	local_lock_irqsave(&pagesets.lock, flags);
3468	list_for_each_entry_safe(page, next, list, lru) {
3469		pfn = page_private(page);
3470		set_page_private(page, 0);
3471
3472		/*
3473		 * Non-isolated types over MIGRATE_PCPTYPES get added
3474		 * to the MIGRATE_MOVABLE pcp list.
3475		 */
3476		migratetype = get_pcppage_migratetype(page);
3477		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3478			migratetype = MIGRATE_MOVABLE;
3479
3480		trace_mm_page_free_batched(page);
3481		free_unref_page_commit(page, pfn, migratetype, 0);
3482
3483		/*
3484		 * Guard against excessive IRQ disabled times when we get
3485		 * a large list of pages to free.
3486		 */
3487		if (++batch_count == SWAP_CLUSTER_MAX) {
3488			local_unlock_irqrestore(&pagesets.lock, flags);
3489			batch_count = 0;
3490			local_lock_irqsave(&pagesets.lock, flags);
3491		}
3492	}
3493	local_unlock_irqrestore(&pagesets.lock, flags);
3494}
3495
3496/*
3497 * split_page takes a non-compound higher-order page, and splits it into
3498 * n (1<<order) sub-pages: page[0..n]
3499 * Each sub-page must be freed individually.
3500 *
3501 * Note: this is probably too low level an operation for use in drivers.
3502 * Please consult with lkml before using this in your driver.
3503 */
3504void split_page(struct page *page, unsigned int order)
3505{
3506	int i;
3507
3508	VM_BUG_ON_PAGE(PageCompound(page), page);
3509	VM_BUG_ON_PAGE(!page_count(page), page);
 
 
 
 
 
 
 
 
 
3510
3511	for (i = 1; i < (1 << order); i++)
3512		set_page_refcounted(page + i);
3513	split_page_owner(page, 1 << order);
3514	split_page_memcg(page, 1 << order);
3515}
3516EXPORT_SYMBOL_GPL(split_page);
3517
3518int __isolate_free_page(struct page *page, unsigned int order)
 
 
 
 
 
 
 
 
 
 
3519{
 
3520	unsigned long watermark;
3521	struct zone *zone;
3522	int mt;
3523
3524	BUG_ON(!PageBuddy(page));
3525
3526	zone = page_zone(page);
3527	mt = get_pageblock_migratetype(page);
3528
3529	if (!is_migrate_isolate(mt)) {
3530		/*
3531		 * Obey watermarks as if the page was being allocated. We can
3532		 * emulate a high-order watermark check with a raised order-0
3533		 * watermark, because we already know our high-order page
3534		 * exists.
3535		 */
3536		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3537		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3538			return 0;
3539
3540		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3541	}
3542
3543	/* Remove page from free list */
 
 
 
 
3544
3545	del_page_from_free_list(page, zone, order);
 
 
3546
3547	/*
3548	 * Set the pageblock if the isolated page is at least half of a
3549	 * pageblock
3550	 */
3551	if (order >= pageblock_order - 1) {
3552		struct page *endpage = page + (1 << order) - 1;
3553		for (; page < endpage; page += pageblock_nr_pages) {
3554			int mt = get_pageblock_migratetype(page);
3555			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3556			    && !is_migrate_highatomic(mt))
3557				set_pageblock_migratetype(page,
3558							  MIGRATE_MOVABLE);
3559		}
3560	}
3561
3562
3563	return 1UL << order;
3564}
3565
3566/**
3567 * __putback_isolated_page - Return a now-isolated page back where we got it
3568 * @page: Page that was isolated
3569 * @order: Order of the isolated page
3570 * @mt: The page's pageblock's migratetype
3571 *
3572 * This function is meant to return a page pulled from the free lists via
3573 * __isolate_free_page back to the free lists they were pulled from.
3574 */
3575void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3576{
3577	struct zone *zone = page_zone(page);
3578
3579	/* zone lock should be held when this function is called */
3580	lockdep_assert_held(&zone->lock);
3581
3582	/* Return isolated page to tail of freelist. */
3583	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3584			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3585}
3586
3587/*
3588 * Update NUMA hit/miss statistics
3589 *
3590 * Must be called with interrupts disabled.
3591 */
3592static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3593				   long nr_account)
3594{
3595#ifdef CONFIG_NUMA
3596	enum numa_stat_item local_stat = NUMA_LOCAL;
3597
3598	/* skip numa counters update if numa stats is disabled */
3599	if (!static_branch_likely(&vm_numa_stat_key))
3600		return;
3601
3602	if (zone_to_nid(z) != numa_node_id())
3603		local_stat = NUMA_OTHER;
3604
3605	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3606		__count_numa_events(z, NUMA_HIT, nr_account);
3607	else {
3608		__count_numa_events(z, NUMA_MISS, nr_account);
3609		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3610	}
3611	__count_numa_events(z, local_stat, nr_account);
3612#endif
3613}
3614
3615/* Remove page from the per-cpu list, caller must protect the list */
3616static inline
3617struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3618			int migratetype,
3619			unsigned int alloc_flags,
3620			struct per_cpu_pages *pcp,
3621			struct list_head *list)
3622{
3623	struct page *page;
3624
3625	do {
3626		if (list_empty(list)) {
3627			int batch = READ_ONCE(pcp->batch);
3628			int alloced;
3629
3630			/*
3631			 * Scale batch relative to order if batch implies
3632			 * free pages can be stored on the PCP. Batch can
3633			 * be 1 for small zones or for boot pagesets which
3634			 * should never store free pages as the pages may
3635			 * belong to arbitrary zones.
3636			 */
3637			if (batch > 1)
3638				batch = max(batch >> order, 2);
3639			alloced = rmqueue_bulk(zone, order,
3640					batch, list,
3641					migratetype, alloc_flags);
3642
3643			pcp->count += alloced << order;
3644			if (unlikely(list_empty(list)))
3645				return NULL;
3646		}
3647
3648		page = list_first_entry(list, struct page, lru);
3649		list_del(&page->lru);
3650		pcp->count -= 1 << order;
3651	} while (check_new_pcp(page));
3652
3653	return page;
3654}
3655
3656/* Lock and remove page from the per-cpu list */
3657static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3658			struct zone *zone, unsigned int order,
3659			gfp_t gfp_flags, int migratetype,
3660			unsigned int alloc_flags)
3661{
3662	struct per_cpu_pages *pcp;
3663	struct list_head *list;
3664	struct page *page;
3665	unsigned long flags;
3666
3667	local_lock_irqsave(&pagesets.lock, flags);
3668
3669	/*
3670	 * On allocation, reduce the number of pages that are batch freed.
3671	 * See nr_pcp_free() where free_factor is increased for subsequent
3672	 * frees.
3673	 */
3674	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3675	pcp->free_factor >>= 1;
3676	list = &pcp->lists[order_to_pindex(migratetype, order)];
3677	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3678	local_unlock_irqrestore(&pagesets.lock, flags);
3679	if (page) {
3680		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3681		zone_statistics(preferred_zone, zone, 1);
3682	}
3683	return page;
3684}
3685
3686/*
3687 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
 
 
3688 */
3689static inline
3690struct page *rmqueue(struct zone *preferred_zone,
3691			struct zone *zone, unsigned int order,
3692			gfp_t gfp_flags, unsigned int alloc_flags,
3693			int migratetype)
3694{
3695	unsigned long flags;
3696	struct page *page;
 
 
 
 
 
 
3697
3698	if (likely(pcp_allowed_order(order))) {
3699		/*
3700		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3701		 * we need to skip it when CMA area isn't allowed.
3702		 */
3703		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3704				migratetype != MIGRATE_MOVABLE) {
3705			page = rmqueue_pcplist(preferred_zone, zone, order,
3706					gfp_flags, migratetype, alloc_flags);
3707			goto out;
3708		}
3709	}
3710
3711	/*
3712	 * We most definitely don't want callers attempting to
3713	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3714	 */
3715	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3716	spin_lock_irqsave(&zone->lock, flags);
3717
3718	do {
3719		page = NULL;
3720		/*
3721		 * order-0 request can reach here when the pcplist is skipped
3722		 * due to non-CMA allocation context. HIGHATOMIC area is
3723		 * reserved for high-order atomic allocation, so order-0
3724		 * request should skip it.
3725		 */
3726		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3727			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3728			if (page)
3729				trace_mm_page_alloc_zone_locked(page, order, migratetype);
 
 
 
3730		}
 
 
 
3731		if (!page)
3732			page = __rmqueue(zone, order, migratetype, alloc_flags);
3733	} while (page && check_new_pages(page, order));
3734	if (!page)
3735		goto failed;
3736
3737	__mod_zone_freepage_state(zone, -(1 << order),
3738				  get_pcppage_migratetype(page));
3739	spin_unlock_irqrestore(&zone->lock, flags);
3740
3741	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3742	zone_statistics(preferred_zone, zone, 1);
3743
3744out:
3745	/* Separate test+clear to avoid unnecessary atomics */
3746	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3747		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3748		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3749	}
3750
3751	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
 
 
3752	return page;
3753
3754failed:
3755	spin_unlock_irqrestore(&zone->lock, flags);
3756	return NULL;
3757}
3758
 
 
 
 
 
 
 
 
 
 
 
 
 
3759#ifdef CONFIG_FAIL_PAGE_ALLOC
3760
3761static struct {
3762	struct fault_attr attr;
3763
3764	bool ignore_gfp_highmem;
3765	bool ignore_gfp_reclaim;
3766	u32 min_order;
3767} fail_page_alloc = {
3768	.attr = FAULT_ATTR_INITIALIZER,
3769	.ignore_gfp_reclaim = true,
3770	.ignore_gfp_highmem = true,
3771	.min_order = 1,
3772};
3773
3774static int __init setup_fail_page_alloc(char *str)
3775{
3776	return setup_fault_attr(&fail_page_alloc.attr, str);
3777}
3778__setup("fail_page_alloc=", setup_fail_page_alloc);
3779
3780static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3781{
3782	if (order < fail_page_alloc.min_order)
3783		return false;
3784	if (gfp_mask & __GFP_NOFAIL)
3785		return false;
3786	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3787		return false;
3788	if (fail_page_alloc.ignore_gfp_reclaim &&
3789			(gfp_mask & __GFP_DIRECT_RECLAIM))
3790		return false;
3791
3792	return should_fail(&fail_page_alloc.attr, 1 << order);
3793}
3794
3795#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3796
3797static int __init fail_page_alloc_debugfs(void)
3798{
3799	umode_t mode = S_IFREG | 0600;
3800	struct dentry *dir;
3801
3802	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3803					&fail_page_alloc.attr);
 
 
3804
3805	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3806			    &fail_page_alloc.ignore_gfp_reclaim);
3807	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3808			    &fail_page_alloc.ignore_gfp_highmem);
3809	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
 
 
 
 
3810
3811	return 0;
 
 
 
 
3812}
3813
3814late_initcall(fail_page_alloc_debugfs);
3815
3816#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3817
3818#else /* CONFIG_FAIL_PAGE_ALLOC */
3819
3820static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3821{
3822	return false;
3823}
3824
3825#endif /* CONFIG_FAIL_PAGE_ALLOC */
3826
3827noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3828{
3829	return __should_fail_alloc_page(gfp_mask, order);
3830}
3831ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3832
3833static inline long __zone_watermark_unusable_free(struct zone *z,
3834				unsigned int order, unsigned int alloc_flags)
3835{
3836	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3837	long unusable_free = (1 << order) - 1;
3838
3839	/*
3840	 * If the caller does not have rights to ALLOC_HARDER then subtract
3841	 * the high-atomic reserves. This will over-estimate the size of the
3842	 * atomic reserve but it avoids a search.
3843	 */
3844	if (likely(!alloc_harder))
3845		unusable_free += z->nr_reserved_highatomic;
3846
3847#ifdef CONFIG_CMA
3848	/* If allocation can't use CMA areas don't use free CMA pages */
3849	if (!(alloc_flags & ALLOC_CMA))
3850		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3851#endif
3852
3853	return unusable_free;
3854}
3855
3856/*
3857 * Return true if free base pages are above 'mark'. For high-order checks it
3858 * will return true of the order-0 watermark is reached and there is at least
3859 * one free page of a suitable size. Checking now avoids taking the zone lock
3860 * to check in the allocation paths if no pages are free.
3861 */
3862bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3863			 int highest_zoneidx, unsigned int alloc_flags,
3864			 long free_pages)
3865{
 
3866	long min = mark;
3867	int o;
3868	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3869
3870	/* free_pages may go negative - that's OK */
3871	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3872
 
3873	if (alloc_flags & ALLOC_HIGH)
3874		min -= min / 2;
 
 
3875
3876	if (unlikely(alloc_harder)) {
3877		/*
3878		 * OOM victims can try even harder than normal ALLOC_HARDER
3879		 * users on the grounds that it's definitely going to be in
3880		 * the exit path shortly and free memory. Any allocation it
3881		 * makes during the free path will be small and short-lived.
3882		 */
3883		if (alloc_flags & ALLOC_OOM)
3884			min -= min / 2;
3885		else
3886			min -= min / 4;
3887	}
3888
3889	/*
3890	 * Check watermarks for an order-0 allocation request. If these
3891	 * are not met, then a high-order request also cannot go ahead
3892	 * even if a suitable page happened to be free.
3893	 */
3894	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3895		return false;
 
 
 
3896
3897	/* If this is an order-0 request then the watermark is fine */
3898	if (!order)
3899		return true;
3900
3901	/* For a high-order request, check at least one suitable page is free */
3902	for (o = order; o < MAX_ORDER; o++) {
3903		struct free_area *area = &z->free_area[o];
3904		int mt;
3905
3906		if (!area->nr_free)
3907			continue;
3908
3909		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3910			if (!free_area_empty(area, mt))
3911				return true;
3912		}
3913
3914#ifdef CONFIG_CMA
3915		if ((alloc_flags & ALLOC_CMA) &&
3916		    !free_area_empty(area, MIGRATE_CMA)) {
3917			return true;
3918		}
3919#endif
3920		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3921			return true;
3922	}
3923	return false;
3924}
3925
3926bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3927		      int highest_zoneidx, unsigned int alloc_flags)
3928{
3929	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3930					zone_page_state(z, NR_FREE_PAGES));
3931}
3932
3933static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3934				unsigned long mark, int highest_zoneidx,
3935				unsigned int alloc_flags, gfp_t gfp_mask)
3936{
3937	long free_pages;
3938
3939	free_pages = zone_page_state(z, NR_FREE_PAGES);
 
3940
3941	/*
3942	 * Fast check for order-0 only. If this fails then the reserves
3943	 * need to be calculated.
3944	 */
3945	if (!order) {
3946		long fast_free;
3947
3948		fast_free = free_pages;
3949		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3950		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3951			return true;
3952	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3953
3954	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3955					free_pages))
3956		return true;
3957	/*
3958	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3959	 * when checking the min watermark. The min watermark is the
3960	 * point where boosting is ignored so that kswapd is woken up
3961	 * when below the low watermark.
3962	 */
3963	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3964		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3965		mark = z->_watermark[WMARK_MIN];
3966		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3967					alloc_flags, free_pages);
3968	}
3969
3970	return false;
 
 
 
 
 
 
 
 
3971}
3972
3973bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3974			unsigned long mark, int highest_zoneidx)
3975{
3976	long free_pages = zone_page_state(z, NR_FREE_PAGES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3977
3978	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3979		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3980
3981	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3982								free_pages);
3983}
3984
3985#ifdef CONFIG_NUMA
3986static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 
 
 
 
3987{
3988	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3989				node_reclaim_distance;
 
 
 
 
 
 
 
 
3990}
3991#else	/* CONFIG_NUMA */
3992static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3993{
3994	return true;
3995}
3996#endif	/* CONFIG_NUMA */
3997
3998/*
3999 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4000 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4001 * premature use of a lower zone may cause lowmem pressure problems that
4002 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4003 * probably too small. It only makes sense to spread allocations to avoid
4004 * fragmentation between the Normal and DMA32 zones.
4005 */
4006static inline unsigned int
4007alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4008{
4009	unsigned int alloc_flags;
4010
4011	/*
4012	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4013	 * to save a branch.
4014	 */
4015	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
 
4016
4017#ifdef CONFIG_ZONE_DMA32
4018	if (!zone)
4019		return alloc_flags;
4020
4021	if (zone_idx(zone) != ZONE_NORMAL)
4022		return alloc_flags;
 
 
4023
4024	/*
4025	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4026	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4027	 * on UMA that if Normal is populated then so is DMA32.
4028	 */
4029	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4030	if (nr_online_nodes > 1 && !populated_zone(--zone))
4031		return alloc_flags;
4032
4033	alloc_flags |= ALLOC_NOFRAGMENT;
4034#endif /* CONFIG_ZONE_DMA32 */
4035	return alloc_flags;
4036}
4037
4038/* Must be called after current_gfp_context() which can change gfp_mask */
4039static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4040						  unsigned int alloc_flags)
4041{
4042#ifdef CONFIG_CMA
4043	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4044		alloc_flags |= ALLOC_CMA;
4045#endif
4046	return alloc_flags;
4047}
 
4048
4049/*
4050 * get_page_from_freelist goes through the zonelist trying to allocate
4051 * a page.
4052 */
4053static struct page *
4054get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4055						const struct alloc_context *ac)
 
4056{
4057	struct zoneref *z;
 
 
4058	struct zone *zone;
4059	struct pglist_data *last_pgdat_dirty_limit = NULL;
4060	bool no_fallback;
 
4061
4062retry:
 
4063	/*
4064	 * Scan zonelist, looking for a zone with enough free.
4065	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4066	 */
4067	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4068	z = ac->preferred_zoneref;
4069	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4070					ac->nodemask) {
4071		struct page *page;
4072		unsigned long mark;
4073
4074		if (cpusets_enabled() &&
4075			(alloc_flags & ALLOC_CPUSET) &&
4076			!__cpuset_zone_allowed(zone, gfp_mask))
4077				continue;
4078		/*
4079		 * When allocating a page cache page for writing, we
4080		 * want to get it from a node that is within its dirty
4081		 * limit, such that no single node holds more than its
4082		 * proportional share of globally allowed dirty pages.
4083		 * The dirty limits take into account the node's
4084		 * lowmem reserves and high watermark so that kswapd
4085		 * should be able to balance it without having to
4086		 * write pages from its LRU list.
4087		 *
4088		 * XXX: For now, allow allocations to potentially
4089		 * exceed the per-node dirty limit in the slowpath
4090		 * (spread_dirty_pages unset) before going into reclaim,
4091		 * which is important when on a NUMA setup the allowed
4092		 * nodes are together not big enough to reach the
4093		 * global limit.  The proper fix for these situations
4094		 * will require awareness of nodes in the
4095		 * dirty-throttling and the flusher threads.
4096		 */
4097		if (ac->spread_dirty_pages) {
4098			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4099				continue;
4100
4101			if (!node_dirty_ok(zone->zone_pgdat)) {
4102				last_pgdat_dirty_limit = zone->zone_pgdat;
4103				continue;
4104			}
4105		}
4106
4107		if (no_fallback && nr_online_nodes > 1 &&
4108		    zone != ac->preferred_zoneref->zone) {
4109			int local_nid;
 
4110
4111			/*
4112			 * If moving to a remote node, retry but allow
4113			 * fragmenting fallbacks. Locality is more important
4114			 * than fragmentation avoidance.
4115			 */
4116			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4117			if (zone_to_nid(zone) != local_nid) {
4118				alloc_flags &= ~ALLOC_NOFRAGMENT;
4119				goto retry;
4120			}
4121		}
4122
4123		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4124		if (!zone_watermark_fast(zone, order, mark,
4125				       ac->highest_zoneidx, alloc_flags,
4126				       gfp_mask)) {
4127			int ret;
4128
4129#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4130			/*
4131			 * Watermark failed for this zone, but see if we can
4132			 * grow this zone if it contains deferred pages.
4133			 */
4134			if (static_branch_unlikely(&deferred_pages)) {
4135				if (_deferred_grow_zone(zone, order))
4136					goto try_this_zone;
4137			}
4138#endif
4139			/* Checked here to keep the fast path fast */
4140			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4141			if (alloc_flags & ALLOC_NO_WATERMARKS)
4142				goto try_this_zone;
4143
4144			if (!node_reclaim_enabled() ||
4145			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4146				continue;
4147
4148			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4149			switch (ret) {
4150			case NODE_RECLAIM_NOSCAN:
4151				/* did not scan */
4152				continue;
4153			case NODE_RECLAIM_FULL:
4154				/* scanned but unreclaimable */
4155				continue;
4156			default:
4157				/* did we reclaim enough */
4158				if (zone_watermark_ok(zone, order, mark,
4159					ac->highest_zoneidx, alloc_flags))
4160					goto try_this_zone;
4161
4162				continue;
4163			}
4164		}
4165
4166try_this_zone:
4167		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4168				gfp_mask, alloc_flags, ac->migratetype);
4169		if (page) {
4170			prep_new_page(page, order, gfp_mask, alloc_flags);
 
 
 
 
4171
4172			/*
4173			 * If this is a high-order atomic allocation then check
4174			 * if the pageblock should be reserved for the future
4175			 */
4176			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4177				reserve_highatomic_pageblock(page, zone, order);
4178
4179			return page;
4180		} else {
4181#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4182			/* Try again if zone has deferred pages */
4183			if (static_branch_unlikely(&deferred_pages)) {
4184				if (_deferred_grow_zone(zone, order))
4185					goto try_this_zone;
4186			}
4187#endif
4188		}
4189	}
 
 
4190
4191	/*
4192	 * It's possible on a UMA machine to get through all zones that are
4193	 * fragmented. If avoiding fragmentation, reset and try again.
4194	 */
4195	if (no_fallback) {
4196		alloc_flags &= ~ALLOC_NOFRAGMENT;
4197		goto retry;
4198	}
4199
4200	return NULL;
 
 
 
4201}
4202
4203static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
 
 
 
 
4204{
 
4205	unsigned int filter = SHOW_MEM_FILTER_NODES;
4206
 
 
 
4207	/*
4208	 * This documents exceptions given to allocations in certain
4209	 * contexts that are allowed to allocate outside current's set
4210	 * of allowed nodes.
4211	 */
4212	if (!(gfp_mask & __GFP_NOMEMALLOC))
4213		if (tsk_is_oom_victim(current) ||
4214		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4215			filter &= ~SHOW_MEM_FILTER_NODES;
4216	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4217		filter &= ~SHOW_MEM_FILTER_NODES;
4218
4219	show_mem(filter, nodemask);
4220}
 
 
 
 
4221
4222void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4223{
4224	struct va_format vaf;
4225	va_list args;
4226	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4227
4228	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4229		return;
4230
4231	va_start(args, fmt);
4232	vaf.fmt = fmt;
4233	vaf.va = &args;
4234	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4235			current->comm, &vaf, gfp_mask, &gfp_mask,
4236			nodemask_pr_args(nodemask));
4237	va_end(args);
4238
4239	cpuset_print_current_mems_allowed();
4240	pr_cont("\n");
4241	dump_stack();
4242	warn_alloc_show_mem(gfp_mask, nodemask);
 
4243}
4244
4245static inline struct page *
4246__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4247			      unsigned int alloc_flags,
4248			      const struct alloc_context *ac)
4249{
4250	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4251
4252	page = get_page_from_freelist(gfp_mask, order,
4253			alloc_flags|ALLOC_CPUSET, ac);
4254	/*
4255	 * fallback to ignore cpuset restriction if our nodes
4256	 * are depleted
4257	 */
4258	if (!page)
4259		page = get_page_from_freelist(gfp_mask, order,
4260				alloc_flags, ac);
4261
4262	return page;
4263}
4264
4265static inline struct page *
4266__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4267	const struct alloc_context *ac, unsigned long *did_some_progress)
 
 
4268{
4269	struct oom_control oc = {
4270		.zonelist = ac->zonelist,
4271		.nodemask = ac->nodemask,
4272		.memcg = NULL,
4273		.gfp_mask = gfp_mask,
4274		.order = order,
4275	};
4276	struct page *page;
4277
4278	*did_some_progress = 0;
4279
4280	/*
4281	 * Acquire the oom lock.  If that fails, somebody else is
4282	 * making progress for us.
4283	 */
4284	if (!mutex_trylock(&oom_lock)) {
4285		*did_some_progress = 1;
4286		schedule_timeout_uninterruptible(1);
4287		return NULL;
4288	}
4289
4290	/*
4291	 * Go through the zonelist yet one more time, keep very high watermark
4292	 * here, this is only to catch a parallel oom killing, we must fail if
4293	 * we're still under heavy pressure. But make sure that this reclaim
4294	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4295	 * allocation which will never fail due to oom_lock already held.
4296	 */
4297	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4298				      ~__GFP_DIRECT_RECLAIM, order,
4299				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4300	if (page)
4301		goto out;
4302
4303	/* Coredumps can quickly deplete all memory reserves */
4304	if (current->flags & PF_DUMPCORE)
4305		goto out;
4306	/* The OOM killer will not help higher order allocs */
4307	if (order > PAGE_ALLOC_COSTLY_ORDER)
4308		goto out;
4309	/*
4310	 * We have already exhausted all our reclaim opportunities without any
4311	 * success so it is time to admit defeat. We will skip the OOM killer
4312	 * because it is very likely that the caller has a more reasonable
4313	 * fallback than shooting a random task.
4314	 *
4315	 * The OOM killer may not free memory on a specific node.
4316	 */
4317	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4318		goto out;
4319	/* The OOM killer does not needlessly kill tasks for lowmem */
4320	if (ac->highest_zoneidx < ZONE_NORMAL)
4321		goto out;
4322	if (pm_suspended_storage())
4323		goto out;
4324	/*
4325	 * XXX: GFP_NOFS allocations should rather fail than rely on
4326	 * other request to make a forward progress.
4327	 * We are in an unfortunate situation where out_of_memory cannot
4328	 * do much for this context but let's try it to at least get
4329	 * access to memory reserved if the current task is killed (see
4330	 * out_of_memory). Once filesystems are ready to handle allocation
4331	 * failures more gracefully we should just bail out here.
4332	 */
4333
4334	/* Exhausted what can be done so it's blame time */
4335	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4336		*did_some_progress = 1;
4337
4338		/*
4339		 * Help non-failing allocations by giving them access to memory
4340		 * reserves
 
 
 
4341		 */
4342		if (gfp_mask & __GFP_NOFAIL)
4343			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4344					ALLOC_NO_WATERMARKS, ac);
4345	}
 
 
 
4346out:
4347	mutex_unlock(&oom_lock);
4348	return page;
4349}
4350
4351/*
4352 * Maximum number of compaction retries with a progress before OOM
4353 * killer is consider as the only way to move forward.
4354 */
4355#define MAX_COMPACT_RETRIES 16
4356
4357#ifdef CONFIG_COMPACTION
4358/* Try memory compaction for high-order allocations before reclaim */
4359static struct page *
4360__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4361		unsigned int alloc_flags, const struct alloc_context *ac,
4362		enum compact_priority prio, enum compact_result *compact_result)
 
 
4363{
4364	struct page *page = NULL;
4365	unsigned long pflags;
4366	unsigned int noreclaim_flag;
4367
4368	if (!order)
4369		return NULL;
4370
4371	psi_memstall_enter(&pflags);
4372	noreclaim_flag = memalloc_noreclaim_save();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4373
4374	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4375								prio, &page);
 
 
 
 
 
4376
4377	memalloc_noreclaim_restore(noreclaim_flag);
4378	psi_memstall_leave(&pflags);
4379
4380	if (*compact_result == COMPACT_SKIPPED)
4381		return NULL;
4382	/*
4383	 * At least in one zone compaction wasn't deferred or skipped, so let's
4384	 * count a compaction stall
4385	 */
4386	count_vm_event(COMPACTSTALL);
4387
4388	/* Prep a captured page if available */
4389	if (page)
4390		prep_new_page(page, order, gfp_mask, alloc_flags);
4391
4392	/* Try get a page from the freelist if available */
4393	if (!page)
4394		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4395
4396	if (page) {
4397		struct zone *zone = page_zone(page);
4398
4399		zone->compact_blockskip_flush = false;
4400		compaction_defer_reset(zone, order, true);
4401		count_vm_event(COMPACTSUCCESS);
4402		return page;
4403	}
4404
4405	/*
4406	 * It's bad if compaction run occurs and fails. The most likely reason
4407	 * is that pages exist, but not enough to satisfy watermarks.
4408	 */
4409	count_vm_event(COMPACTFAIL);
4410
4411	cond_resched();
4412
4413	return NULL;
4414}
4415
4416static inline bool
4417should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4418		     enum compact_result compact_result,
4419		     enum compact_priority *compact_priority,
4420		     int *compaction_retries)
4421{
4422	int max_retries = MAX_COMPACT_RETRIES;
4423	int min_priority;
4424	bool ret = false;
4425	int retries = *compaction_retries;
4426	enum compact_priority priority = *compact_priority;
4427
4428	if (!order)
4429		return false;
4430
4431	if (fatal_signal_pending(current))
4432		return false;
4433
4434	if (compaction_made_progress(compact_result))
4435		(*compaction_retries)++;
4436
4437	/*
4438	 * compaction considers all the zone as desperately out of memory
4439	 * so it doesn't really make much sense to retry except when the
4440	 * failure could be caused by insufficient priority
4441	 */
4442	if (compaction_failed(compact_result))
4443		goto check_priority;
4444
4445	/*
4446	 * compaction was skipped because there are not enough order-0 pages
4447	 * to work with, so we retry only if it looks like reclaim can help.
4448	 */
4449	if (compaction_needs_reclaim(compact_result)) {
4450		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4451		goto out;
4452	}
4453
4454	/*
4455	 * make sure the compaction wasn't deferred or didn't bail out early
4456	 * due to locks contention before we declare that we should give up.
4457	 * But the next retry should use a higher priority if allowed, so
4458	 * we don't just keep bailing out endlessly.
4459	 */
4460	if (compaction_withdrawn(compact_result)) {
4461		goto check_priority;
4462	}
4463
4464	/*
4465	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4466	 * costly ones because they are de facto nofail and invoke OOM
4467	 * killer to move on while costly can fail and users are ready
4468	 * to cope with that. 1/4 retries is rather arbitrary but we
4469	 * would need much more detailed feedback from compaction to
4470	 * make a better decision.
4471	 */
4472	if (order > PAGE_ALLOC_COSTLY_ORDER)
4473		max_retries /= 4;
4474	if (*compaction_retries <= max_retries) {
4475		ret = true;
4476		goto out;
4477	}
4478
4479	/*
4480	 * Make sure there are attempts at the highest priority if we exhausted
4481	 * all retries or failed at the lower priorities.
4482	 */
4483check_priority:
4484	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4485			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4486
4487	if (*compact_priority > min_priority) {
4488		(*compact_priority)--;
4489		*compaction_retries = 0;
4490		ret = true;
4491	}
4492out:
4493	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4494	return ret;
4495}
4496#else
4497static inline struct page *
4498__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4499		unsigned int alloc_flags, const struct alloc_context *ac,
4500		enum compact_priority prio, enum compact_result *compact_result)
 
 
4501{
4502	*compact_result = COMPACT_SKIPPED;
4503	return NULL;
4504}
4505
4506static inline bool
4507should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4508		     enum compact_result compact_result,
4509		     enum compact_priority *compact_priority,
4510		     int *compaction_retries)
4511{
4512	struct zone *zone;
4513	struct zoneref *z;
4514
4515	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4516		return false;
4517
4518	/*
4519	 * There are setups with compaction disabled which would prefer to loop
4520	 * inside the allocator rather than hit the oom killer prematurely.
4521	 * Let's give them a good hope and keep retrying while the order-0
4522	 * watermarks are OK.
4523	 */
4524	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4525				ac->highest_zoneidx, ac->nodemask) {
4526		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4527					ac->highest_zoneidx, alloc_flags))
4528			return true;
4529	}
4530	return false;
4531}
4532#endif /* CONFIG_COMPACTION */
4533
4534#ifdef CONFIG_LOCKDEP
4535static struct lockdep_map __fs_reclaim_map =
4536	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4537
4538static bool __need_reclaim(gfp_t gfp_mask)
 
4539{
4540	/* no reclaim without waiting on it */
4541	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4542		return false;
4543
4544	/* this guy won't enter reclaim */
4545	if (current->flags & PF_MEMALLOC)
4546		return false;
4547
4548	if (gfp_mask & __GFP_NOLOCKDEP)
4549		return false;
4550
4551	return true;
4552}
4553
4554void __fs_reclaim_acquire(void)
4555{
4556	lock_map_acquire(&__fs_reclaim_map);
4557}
4558
4559void __fs_reclaim_release(void)
4560{
4561	lock_map_release(&__fs_reclaim_map);
4562}
4563
4564void fs_reclaim_acquire(gfp_t gfp_mask)
4565{
4566	gfp_mask = current_gfp_context(gfp_mask);
4567
4568	if (__need_reclaim(gfp_mask)) {
4569		if (gfp_mask & __GFP_FS)
4570			__fs_reclaim_acquire();
4571
4572#ifdef CONFIG_MMU_NOTIFIER
4573		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4574		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4575#endif
4576
4577	}
4578}
4579EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4580
4581void fs_reclaim_release(gfp_t gfp_mask)
4582{
4583	gfp_mask = current_gfp_context(gfp_mask);
4584
4585	if (__need_reclaim(gfp_mask)) {
4586		if (gfp_mask & __GFP_FS)
4587			__fs_reclaim_release();
4588	}
4589}
4590EXPORT_SYMBOL_GPL(fs_reclaim_release);
4591#endif
4592
4593/* Perform direct synchronous page reclaim */
4594static unsigned long
4595__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4596					const struct alloc_context *ac)
4597{
4598	unsigned int noreclaim_flag;
4599	unsigned long pflags, progress;
4600
4601	cond_resched();
4602
4603	/* We now go into synchronous reclaim */
4604	cpuset_memory_pressure_bump();
4605	psi_memstall_enter(&pflags);
4606	fs_reclaim_acquire(gfp_mask);
4607	noreclaim_flag = memalloc_noreclaim_save();
4608
4609	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4610								ac->nodemask);
4611
4612	memalloc_noreclaim_restore(noreclaim_flag);
4613	fs_reclaim_release(gfp_mask);
4614	psi_memstall_leave(&pflags);
4615
4616	cond_resched();
4617
4618	return progress;
4619}
4620
4621/* The really slow allocator path where we enter direct reclaim */
4622static inline struct page *
4623__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4624		unsigned int alloc_flags, const struct alloc_context *ac,
4625		unsigned long *did_some_progress)
4626{
4627	struct page *page = NULL;
4628	bool drained = false;
4629
4630	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4631	if (unlikely(!(*did_some_progress)))
4632		return NULL;
4633
 
 
 
 
4634retry:
4635	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
4636
4637	/*
4638	 * If an allocation failed after direct reclaim, it could be because
4639	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4640	 * Shrink them and try again
4641	 */
4642	if (!page && !drained) {
4643		unreserve_highatomic_pageblock(ac, false);
4644		drain_all_pages(NULL);
4645		drained = true;
4646		goto retry;
4647	}
4648
4649	return page;
4650}
4651
4652static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4653			     const struct alloc_context *ac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654{
4655	struct zoneref *z;
4656	struct zone *zone;
4657	pg_data_t *last_pgdat = NULL;
4658	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4659
4660	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4661					ac->nodemask) {
4662		if (last_pgdat != zone->zone_pgdat)
4663			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4664		last_pgdat = zone->zone_pgdat;
4665	}
4666}
4667
4668static inline unsigned int
4669gfp_to_alloc_flags(gfp_t gfp_mask)
4670{
4671	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
 
4672
4673	/*
4674	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4675	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4676	 * to save two branches.
4677	 */
4678	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4679	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4680
4681	/*
4682	 * The caller may dip into page reserves a bit more if the caller
4683	 * cannot run direct reclaim, or if the caller has realtime scheduling
4684	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4685	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4686	 */
4687	alloc_flags |= (__force int)
4688		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4689
4690	if (gfp_mask & __GFP_ATOMIC) {
4691		/*
4692		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4693		 * if it can't schedule.
4694		 */
4695		if (!(gfp_mask & __GFP_NOMEMALLOC))
4696			alloc_flags |= ALLOC_HARDER;
4697		/*
4698		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4699		 * comment for __cpuset_node_allowed().
4700		 */
4701		alloc_flags &= ~ALLOC_CPUSET;
4702	} else if (unlikely(rt_task(current)) && !in_interrupt())
4703		alloc_flags |= ALLOC_HARDER;
4704
4705	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
 
 
 
 
 
4706
4707	return alloc_flags;
4708}
4709
4710static bool oom_reserves_allowed(struct task_struct *tsk)
 
 
 
 
4711{
4712	if (!tsk_is_oom_victim(tsk))
4713		return false;
 
 
 
 
4714
4715	/*
4716	 * !MMU doesn't have oom reaper so give access to memory reserves
4717	 * only to the thread with TIF_MEMDIE set
 
 
4718	 */
4719	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4720		return false;
4721
4722	return true;
4723}
4724
4725/*
4726 * Distinguish requests which really need access to full memory
4727 * reserves from oom victims which can live with a portion of it
4728 */
4729static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4730{
4731	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4732		return 0;
4733	if (gfp_mask & __GFP_MEMALLOC)
4734		return ALLOC_NO_WATERMARKS;
4735	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4736		return ALLOC_NO_WATERMARKS;
4737	if (!in_interrupt()) {
4738		if (current->flags & PF_MEMALLOC)
4739			return ALLOC_NO_WATERMARKS;
4740		else if (oom_reserves_allowed(current))
4741			return ALLOC_OOM;
4742	}
4743
4744	return 0;
4745}
4746
4747bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4748{
4749	return !!__gfp_pfmemalloc_flags(gfp_mask);
4750}
4751
4752/*
4753 * Checks whether it makes sense to retry the reclaim to make a forward progress
4754 * for the given allocation request.
4755 *
4756 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4757 * without success, or when we couldn't even meet the watermark if we
4758 * reclaimed all remaining pages on the LRU lists.
4759 *
4760 * Returns true if a retry is viable or false to enter the oom path.
4761 */
4762static inline bool
4763should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4764		     struct alloc_context *ac, int alloc_flags,
4765		     bool did_some_progress, int *no_progress_loops)
4766{
4767	struct zone *zone;
4768	struct zoneref *z;
4769	bool ret = false;
4770
4771	/*
4772	 * Costly allocations might have made a progress but this doesn't mean
4773	 * their order will become available due to high fragmentation so
4774	 * always increment the no progress counter for them
 
 
 
4775	 */
4776	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4777		*no_progress_loops = 0;
4778	else
4779		(*no_progress_loops)++;
4780
4781	/*
4782	 * Make sure we converge to OOM if we cannot make any progress
4783	 * several times in the row.
4784	 */
4785	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4786		/* Before OOM, exhaust highatomic_reserve */
4787		return unreserve_highatomic_pageblock(ac, true);
4788	}
4789
4790	/*
4791	 * Keep reclaiming pages while there is a chance this will lead
4792	 * somewhere.  If none of the target zones can satisfy our allocation
4793	 * request even if all reclaimable pages are considered then we are
4794	 * screwed and have to go OOM.
4795	 */
4796	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4797				ac->highest_zoneidx, ac->nodemask) {
4798		unsigned long available;
4799		unsigned long reclaimable;
4800		unsigned long min_wmark = min_wmark_pages(zone);
4801		bool wmark;
4802
4803		available = reclaimable = zone_reclaimable_pages(zone);
4804		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4805
4806		/*
4807		 * Would the allocation succeed if we reclaimed all
4808		 * reclaimable pages?
4809		 */
4810		wmark = __zone_watermark_ok(zone, order, min_wmark,
4811				ac->highest_zoneidx, alloc_flags, available);
4812		trace_reclaim_retry_zone(z, order, reclaimable,
4813				available, min_wmark, *no_progress_loops, wmark);
4814		if (wmark) {
4815			/*
4816			 * If we didn't make any progress and have a lot of
4817			 * dirty + writeback pages then we should wait for
4818			 * an IO to complete to slow down the reclaim and
4819			 * prevent from pre mature OOM
4820			 */
4821			if (!did_some_progress) {
4822				unsigned long write_pending;
4823
4824				write_pending = zone_page_state_snapshot(zone,
4825							NR_ZONE_WRITE_PENDING);
4826
4827				if (2 * write_pending > reclaimable) {
4828					congestion_wait(BLK_RW_ASYNC, HZ/10);
4829					return true;
4830				}
4831			}
4832
4833			ret = true;
4834			goto out;
4835		}
4836	}
4837
4838out:
4839	/*
4840	 * Memory allocation/reclaim might be called from a WQ context and the
4841	 * current implementation of the WQ concurrency control doesn't
4842	 * recognize that a particular WQ is congested if the worker thread is
4843	 * looping without ever sleeping. Therefore we have to do a short sleep
4844	 * here rather than calling cond_resched().
4845	 */
4846	if (current->flags & PF_WQ_WORKER)
4847		schedule_timeout_uninterruptible(1);
4848	else
4849		cond_resched();
4850	return ret;
4851}
4852
4853static inline bool
4854check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4855{
4856	/*
4857	 * It's possible that cpuset's mems_allowed and the nodemask from
4858	 * mempolicy don't intersect. This should be normally dealt with by
4859	 * policy_nodemask(), but it's possible to race with cpuset update in
4860	 * such a way the check therein was true, and then it became false
4861	 * before we got our cpuset_mems_cookie here.
4862	 * This assumes that for all allocations, ac->nodemask can come only
4863	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4864	 * when it does not intersect with the cpuset restrictions) or the
4865	 * caller can deal with a violated nodemask.
4866	 */
4867	if (cpusets_enabled() && ac->nodemask &&
4868			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4869		ac->nodemask = NULL;
4870		return true;
4871	}
4872
4873	/*
4874	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4875	 * possible to race with parallel threads in such a way that our
4876	 * allocation can fail while the mask is being updated. If we are about
4877	 * to fail, check if the cpuset changed during allocation and if so,
4878	 * retry.
4879	 */
4880	if (read_mems_allowed_retry(cpuset_mems_cookie))
4881		return true;
4882
4883	return false;
4884}
4885
4886static inline struct page *
4887__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4888						struct alloc_context *ac)
4889{
4890	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4891	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4892	struct page *page = NULL;
4893	unsigned int alloc_flags;
4894	unsigned long did_some_progress;
4895	enum compact_priority compact_priority;
4896	enum compact_result compact_result;
4897	int compaction_retries;
4898	int no_progress_loops;
4899	unsigned int cpuset_mems_cookie;
4900	int reserve_flags;
4901
4902	/*
4903	 * We also sanity check to catch abuse of atomic reserves being used by
4904	 * callers that are not in atomic context.
4905	 */
4906	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4907				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4908		gfp_mask &= ~__GFP_ATOMIC;
4909
4910retry_cpuset:
4911	compaction_retries = 0;
4912	no_progress_loops = 0;
4913	compact_priority = DEF_COMPACT_PRIORITY;
4914	cpuset_mems_cookie = read_mems_allowed_begin();
4915
4916	/*
4917	 * The fast path uses conservative alloc_flags to succeed only until
4918	 * kswapd needs to be woken up, and to avoid the cost of setting up
4919	 * alloc_flags precisely. So we do that now.
4920	 */
4921	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4922
4923	/*
4924	 * We need to recalculate the starting point for the zonelist iterator
4925	 * because we might have used different nodemask in the fast path, or
4926	 * there was a cpuset modification and we are retrying - otherwise we
4927	 * could end up iterating over non-eligible zones endlessly.
4928	 */
4929	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4930					ac->highest_zoneidx, ac->nodemask);
4931	if (!ac->preferred_zoneref->zone)
4932		goto nopage;
4933
4934	if (alloc_flags & ALLOC_KSWAPD)
4935		wake_all_kswapds(order, gfp_mask, ac);
4936
4937	/*
4938	 * The adjusted alloc_flags might result in immediate success, so try
4939	 * that first
4940	 */
4941	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
 
 
4942	if (page)
4943		goto got_pg;
4944
4945	/*
4946	 * For costly allocations, try direct compaction first, as it's likely
4947	 * that we have enough base pages and don't need to reclaim. For non-
4948	 * movable high-order allocations, do that as well, as compaction will
4949	 * try prevent permanent fragmentation by migrating from blocks of the
4950	 * same migratetype.
4951	 * Don't try this for allocations that are allowed to ignore
4952	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4953	 */
4954	if (can_direct_reclaim &&
4955			(costly_order ||
4956			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4957			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4958		page = __alloc_pages_direct_compact(gfp_mask, order,
4959						alloc_flags, ac,
4960						INIT_COMPACT_PRIORITY,
4961						&compact_result);
4962		if (page)
4963			goto got_pg;
4964
4965		/*
4966		 * Checks for costly allocations with __GFP_NORETRY, which
4967		 * includes some THP page fault allocations
4968		 */
4969		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4970			/*
4971			 * If allocating entire pageblock(s) and compaction
4972			 * failed because all zones are below low watermarks
4973			 * or is prohibited because it recently failed at this
4974			 * order, fail immediately unless the allocator has
4975			 * requested compaction and reclaim retry.
4976			 *
4977			 * Reclaim is
4978			 *  - potentially very expensive because zones are far
4979			 *    below their low watermarks or this is part of very
4980			 *    bursty high order allocations,
4981			 *  - not guaranteed to help because isolate_freepages()
4982			 *    may not iterate over freed pages as part of its
4983			 *    linear scan, and
4984			 *  - unlikely to make entire pageblocks free on its
4985			 *    own.
4986			 */
4987			if (compact_result == COMPACT_SKIPPED ||
4988			    compact_result == COMPACT_DEFERRED)
4989				goto nopage;
4990
4991			/*
4992			 * Looks like reclaim/compaction is worth trying, but
4993			 * sync compaction could be very expensive, so keep
4994			 * using async compaction.
4995			 */
4996			compact_priority = INIT_COMPACT_PRIORITY;
4997		}
4998	}
4999
5000retry:
5001	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5002	if (alloc_flags & ALLOC_KSWAPD)
5003		wake_all_kswapds(order, gfp_mask, ac);
5004
5005	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5006	if (reserve_flags)
5007		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5008
5009	/*
5010	 * Reset the nodemask and zonelist iterators if memory policies can be
5011	 * ignored. These allocations are high priority and system rather than
5012	 * user oriented.
5013	 */
5014	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5015		ac->nodemask = NULL;
5016		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5017					ac->highest_zoneidx, ac->nodemask);
5018	}
5019
5020	/* Attempt with potentially adjusted zonelist and alloc_flags */
5021	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5022	if (page)
5023		goto got_pg;
5024
5025	/* Caller is not willing to reclaim, we can't balance anything */
5026	if (!can_direct_reclaim)
5027		goto nopage;
5028
5029	/* Avoid recursion of direct reclaim */
5030	if (current->flags & PF_MEMALLOC)
5031		goto nopage;
5032
5033	/* Try direct reclaim and then allocating */
5034	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5035							&did_some_progress);
5036	if (page)
5037		goto got_pg;
5038
5039	/* Try direct compaction and then allocating */
5040	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5041					compact_priority, &compact_result);
5042	if (page)
5043		goto got_pg;
5044
5045	/* Do not loop if specifically requested */
5046	if (gfp_mask & __GFP_NORETRY)
5047		goto nopage;
5048
5049	/*
5050	 * Do not retry costly high order allocations unless they are
5051	 * __GFP_RETRY_MAYFAIL
5052	 */
5053	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5054		goto nopage;
 
 
 
 
 
 
 
5055
5056	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5057				 did_some_progress > 0, &no_progress_loops))
5058		goto retry;
5059
5060	/*
5061	 * It doesn't make any sense to retry for the compaction if the order-0
5062	 * reclaim is not able to make any progress because the current
5063	 * implementation of the compaction depends on the sufficient amount
5064	 * of free memory (see __compaction_suitable)
5065	 */
5066	if (did_some_progress > 0 &&
5067			should_compact_retry(ac, order, alloc_flags,
5068				compact_result, &compact_priority,
5069				&compaction_retries))
5070		goto retry;
5071
5072
5073	/* Deal with possible cpuset update races before we start OOM killing */
5074	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5075		goto retry_cpuset;
5076
5077	/* Reclaim has failed us, start killing things */
5078	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5079	if (page)
5080		goto got_pg;
5081
5082	/* Avoid allocations with no watermarks from looping endlessly */
5083	if (tsk_is_oom_victim(current) &&
5084	    (alloc_flags & ALLOC_OOM ||
5085	     (gfp_mask & __GFP_NOMEMALLOC)))
5086		goto nopage;
5087
5088	/* Retry as long as the OOM killer is making progress */
5089	if (did_some_progress) {
5090		no_progress_loops = 0;
5091		goto retry;
5092	}
5093
5094nopage:
5095	/* Deal with possible cpuset update races before we fail */
5096	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5097		goto retry_cpuset;
5098
5099	/*
5100	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5101	 * we always retry
5102	 */
5103	if (gfp_mask & __GFP_NOFAIL) {
5104		/*
5105		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5106		 * of any new users that actually require GFP_NOWAIT
5107		 */
5108		if (WARN_ON_ONCE(!can_direct_reclaim))
5109			goto fail;
 
 
 
5110
5111		/*
5112		 * PF_MEMALLOC request from this context is rather bizarre
5113		 * because we cannot reclaim anything and only can loop waiting
5114		 * for somebody to do a work for us
5115		 */
5116		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
 
 
 
 
 
 
 
 
 
 
 
5117
5118		/*
5119		 * non failing costly orders are a hard requirement which we
5120		 * are not prepared for much so let's warn about these users
5121		 * so that we can identify them and convert them to something
5122		 * else.
5123		 */
5124		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5125
 
 
 
 
 
 
 
5126		/*
5127		 * Help non-failing allocations by giving them access to memory
5128		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5129		 * could deplete whole memory reserves which would just make
5130		 * the situation worse
5131		 */
5132		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
 
 
 
 
 
5133		if (page)
5134			goto got_pg;
 
5135
5136		cond_resched();
5137		goto retry;
5138	}
5139fail:
5140	warn_alloc(gfp_mask, ac->nodemask,
5141			"page allocation failure: order:%u", order);
5142got_pg:
 
 
5143	return page;
5144}
5145
5146static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5147		int preferred_nid, nodemask_t *nodemask,
5148		struct alloc_context *ac, gfp_t *alloc_gfp,
5149		unsigned int *alloc_flags)
5150{
5151	ac->highest_zoneidx = gfp_zone(gfp_mask);
5152	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5153	ac->nodemask = nodemask;
5154	ac->migratetype = gfp_migratetype(gfp_mask);
5155
5156	if (cpusets_enabled()) {
5157		*alloc_gfp |= __GFP_HARDWALL;
5158		/*
5159		 * When we are in the interrupt context, it is irrelevant
5160		 * to the current task context. It means that any node ok.
5161		 */
5162		if (!in_interrupt() && !ac->nodemask)
5163			ac->nodemask = &cpuset_current_mems_allowed;
5164		else
5165			*alloc_flags |= ALLOC_CPUSET;
5166	}
5167
5168	fs_reclaim_acquire(gfp_mask);
5169	fs_reclaim_release(gfp_mask);
5170
5171	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5172
5173	if (should_fail_alloc_page(gfp_mask, order))
5174		return false;
5175
5176	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5177
5178	/* Dirty zone balancing only done in the fast path */
5179	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5180
5181	/*
5182	 * The preferred zone is used for statistics but crucially it is
5183	 * also used as the starting point for the zonelist iterator. It
5184	 * may get reset for allocations that ignore memory policies.
5185	 */
5186	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5187					ac->highest_zoneidx, ac->nodemask);
5188
5189	return true;
5190}
5191
5192/*
5193 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5194 * @gfp: GFP flags for the allocation
5195 * @preferred_nid: The preferred NUMA node ID to allocate from
5196 * @nodemask: Set of nodes to allocate from, may be NULL
5197 * @nr_pages: The number of pages desired on the list or array
5198 * @page_list: Optional list to store the allocated pages
5199 * @page_array: Optional array to store the pages
5200 *
5201 * This is a batched version of the page allocator that attempts to
5202 * allocate nr_pages quickly. Pages are added to page_list if page_list
5203 * is not NULL, otherwise it is assumed that the page_array is valid.
5204 *
5205 * For lists, nr_pages is the number of pages that should be allocated.
5206 *
5207 * For arrays, only NULL elements are populated with pages and nr_pages
5208 * is the maximum number of pages that will be stored in the array.
5209 *
5210 * Returns the number of pages on the list or array.
5211 */
5212unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5213			nodemask_t *nodemask, int nr_pages,
5214			struct list_head *page_list,
5215			struct page **page_array)
5216{
 
 
5217	struct page *page;
5218	unsigned long flags;
5219	struct zone *zone;
5220	struct zoneref *z;
5221	struct per_cpu_pages *pcp;
5222	struct list_head *pcp_list;
5223	struct alloc_context ac;
5224	gfp_t alloc_gfp;
5225	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5226	int nr_populated = 0, nr_account = 0;
5227
5228	/*
5229	 * Skip populated array elements to determine if any pages need
5230	 * to be allocated before disabling IRQs.
5231	 */
5232	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5233		nr_populated++;
5234
5235	/* No pages requested? */
5236	if (unlikely(nr_pages <= 0))
5237		goto out;
5238
5239	/* Already populated array? */
5240	if (unlikely(page_array && nr_pages - nr_populated == 0))
5241		goto out;
5242
5243	/* Use the single page allocator for one page. */
5244	if (nr_pages - nr_populated == 1)
5245		goto failed;
5246
5247#ifdef CONFIG_PAGE_OWNER
5248	/*
5249	 * PAGE_OWNER may recurse into the allocator to allocate space to
5250	 * save the stack with pagesets.lock held. Releasing/reacquiring
5251	 * removes much of the performance benefit of bulk allocation so
5252	 * force the caller to allocate one page at a time as it'll have
5253	 * similar performance to added complexity to the bulk allocator.
5254	 */
5255	if (static_branch_unlikely(&page_owner_inited))
5256		goto failed;
5257#endif
5258
5259	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5260	gfp &= gfp_allowed_mask;
5261	alloc_gfp = gfp;
5262	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5263		goto out;
5264	gfp = alloc_gfp;
5265
5266	/* Find an allowed local zone that meets the low watermark. */
5267	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5268		unsigned long mark;
5269
5270		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5271		    !__cpuset_zone_allowed(zone, gfp)) {
5272			continue;
5273		}
5274
5275		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5276		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5277			goto failed;
5278		}
5279
5280		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5281		if (zone_watermark_fast(zone, 0,  mark,
5282				zonelist_zone_idx(ac.preferred_zoneref),
5283				alloc_flags, gfp)) {
5284			break;
5285		}
5286	}
5287
5288	/*
5289	 * If there are no allowed local zones that meets the watermarks then
5290	 * try to allocate a single page and reclaim if necessary.
 
5291	 */
5292	if (unlikely(!zone))
5293		goto failed;
5294
5295	/* Attempt the batch allocation */
5296	local_lock_irqsave(&pagesets.lock, flags);
5297	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5298	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5299
5300	while (nr_populated < nr_pages) {
5301
5302		/* Skip existing pages */
5303		if (page_array && page_array[nr_populated]) {
5304			nr_populated++;
5305			continue;
5306		}
5307
5308		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5309								pcp, pcp_list);
5310		if (unlikely(!page)) {
5311			/* Try and get at least one page */
5312			if (!nr_populated)
5313				goto failed_irq;
5314			break;
5315		}
5316		nr_account++;
5317
5318		prep_new_page(page, 0, gfp, 0);
5319		if (page_list)
5320			list_add(&page->lru, page_list);
5321		else
5322			page_array[nr_populated] = page;
5323		nr_populated++;
5324	}
5325
5326	local_unlock_irqrestore(&pagesets.lock, flags);
5327
5328	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5329	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5330
5331out:
5332	return nr_populated;
5333
5334failed_irq:
5335	local_unlock_irqrestore(&pagesets.lock, flags);
5336
5337failed:
5338	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5339	if (page) {
5340		if (page_list)
5341			list_add(&page->lru, page_list);
5342		else
5343			page_array[nr_populated] = page;
5344		nr_populated++;
5345	}
5346
5347	goto out;
5348}
5349EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5350
5351/*
5352 * This is the 'heart' of the zoned buddy allocator.
5353 */
5354struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5355							nodemask_t *nodemask)
5356{
5357	struct page *page;
5358	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5359	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5360	struct alloc_context ac = { };
5361
5362	/*
5363	 * There are several places where we assume that the order value is sane
5364	 * so bail out early if the request is out of bound.
5365	 */
5366	if (unlikely(order >= MAX_ORDER)) {
5367		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5368		return NULL;
5369	}
5370
5371	gfp &= gfp_allowed_mask;
5372	/*
5373	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5374	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5375	 * from a particular context which has been marked by
5376	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5377	 * movable zones are not used during allocation.
5378	 */
5379	gfp = current_gfp_context(gfp);
5380	alloc_gfp = gfp;
5381	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5382			&alloc_gfp, &alloc_flags))
5383		return NULL;
5384
5385	/*
5386	 * Forbid the first pass from falling back to types that fragment
5387	 * memory until all local zones are considered.
5388	 */
5389	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5390
5391	/* First allocation attempt */
5392	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5393	if (likely(page))
5394		goto out;
5395
5396	alloc_gfp = gfp;
5397	ac.spread_dirty_pages = false;
5398
5399	/*
5400	 * Restore the original nodemask if it was potentially replaced with
5401	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5402	 */
5403	ac.nodemask = nodemask;
5404
5405	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5406
5407out:
5408	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5409	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5410		__free_pages(page, order);
5411		page = NULL;
5412	}
5413
5414	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5415
 
5416	return page;
5417}
5418EXPORT_SYMBOL(__alloc_pages);
5419
5420/*
5421 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5422 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5423 * you need to access high mem.
5424 */
5425unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5426{
5427	struct page *page;
5428
5429	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
 
 
 
 
 
 
5430	if (!page)
5431		return 0;
5432	return (unsigned long) page_address(page);
5433}
5434EXPORT_SYMBOL(__get_free_pages);
5435
5436unsigned long get_zeroed_page(gfp_t gfp_mask)
5437{
5438	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5439}
5440EXPORT_SYMBOL(get_zeroed_page);
5441
5442/**
5443 * __free_pages - Free pages allocated with alloc_pages().
5444 * @page: The page pointer returned from alloc_pages().
5445 * @order: The order of the allocation.
5446 *
5447 * This function can free multi-page allocations that are not compound
5448 * pages.  It does not check that the @order passed in matches that of
5449 * the allocation, so it is easy to leak memory.  Freeing more memory
5450 * than was allocated will probably emit a warning.
5451 *
5452 * If the last reference to this page is speculative, it will be released
5453 * by put_page() which only frees the first page of a non-compound
5454 * allocation.  To prevent the remaining pages from being leaked, we free
5455 * the subsequent pages here.  If you want to use the page's reference
5456 * count to decide when to free the allocation, you should allocate a
5457 * compound page, and use put_page() instead of __free_pages().
5458 *
5459 * Context: May be called in interrupt context or while holding a normal
5460 * spinlock, but not in NMI context or while holding a raw spinlock.
5461 */
5462void __free_pages(struct page *page, unsigned int order)
5463{
5464	if (put_page_testzero(page))
5465		free_the_page(page, order);
5466	else if (!PageHead(page))
5467		while (order-- > 0)
5468			free_the_page(page + (1 << order), order);
 
5469}
 
5470EXPORT_SYMBOL(__free_pages);
5471
5472void free_pages(unsigned long addr, unsigned int order)
5473{
5474	if (addr != 0) {
5475		VM_BUG_ON(!virt_addr_valid((void *)addr));
5476		__free_pages(virt_to_page((void *)addr), order);
5477	}
5478}
5479
5480EXPORT_SYMBOL(free_pages);
5481
5482/*
5483 * Page Fragment:
5484 *  An arbitrary-length arbitrary-offset area of memory which resides
5485 *  within a 0 or higher order page.  Multiple fragments within that page
5486 *  are individually refcounted, in the page's reference counter.
5487 *
5488 * The page_frag functions below provide a simple allocation framework for
5489 * page fragments.  This is used by the network stack and network device
5490 * drivers to provide a backing region of memory for use as either an
5491 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5492 */
5493static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5494					     gfp_t gfp_mask)
5495{
5496	struct page *page = NULL;
5497	gfp_t gfp = gfp_mask;
5498
5499#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5500	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5501		    __GFP_NOMEMALLOC;
5502	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5503				PAGE_FRAG_CACHE_MAX_ORDER);
5504	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5505#endif
5506	if (unlikely(!page))
5507		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5508
5509	nc->va = page ? page_address(page) : NULL;
5510
5511	return page;
5512}
5513
5514void __page_frag_cache_drain(struct page *page, unsigned int count)
5515{
5516	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5517
5518	if (page_ref_sub_and_test(page, count))
5519		free_the_page(page, compound_order(page));
5520}
5521EXPORT_SYMBOL(__page_frag_cache_drain);
5522
5523void *page_frag_alloc_align(struct page_frag_cache *nc,
5524		      unsigned int fragsz, gfp_t gfp_mask,
5525		      unsigned int align_mask)
5526{
5527	unsigned int size = PAGE_SIZE;
5528	struct page *page;
5529	int offset;
5530
5531	if (unlikely(!nc->va)) {
5532refill:
5533		page = __page_frag_cache_refill(nc, gfp_mask);
5534		if (!page)
5535			return NULL;
5536
5537#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5538		/* if size can vary use size else just use PAGE_SIZE */
5539		size = nc->size;
5540#endif
5541		/* Even if we own the page, we do not use atomic_set().
5542		 * This would break get_page_unless_zero() users.
5543		 */
5544		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5545
5546		/* reset page count bias and offset to start of new frag */
5547		nc->pfmemalloc = page_is_pfmemalloc(page);
5548		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5549		nc->offset = size;
5550	}
5551
5552	offset = nc->offset - fragsz;
5553	if (unlikely(offset < 0)) {
5554		page = virt_to_page(nc->va);
5555
5556		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5557			goto refill;
5558
5559		if (unlikely(nc->pfmemalloc)) {
5560			free_the_page(page, compound_order(page));
5561			goto refill;
5562		}
5563
5564#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5565		/* if size can vary use size else just use PAGE_SIZE */
5566		size = nc->size;
5567#endif
5568		/* OK, page count is 0, we can safely set it */
5569		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5570
5571		/* reset page count bias and offset to start of new frag */
5572		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5573		offset = size - fragsz;
5574	}
5575
5576	nc->pagecnt_bias--;
5577	offset &= align_mask;
5578	nc->offset = offset;
5579
5580	return nc->va + offset;
5581}
5582EXPORT_SYMBOL(page_frag_alloc_align);
5583
5584/*
5585 * Frees a page fragment allocated out of either a compound or order 0 page.
5586 */
5587void page_frag_free(void *addr)
5588{
5589	struct page *page = virt_to_head_page(addr);
5590
5591	if (unlikely(put_page_testzero(page)))
5592		free_the_page(page, compound_order(page));
5593}
5594EXPORT_SYMBOL(page_frag_free);
5595
5596static void *make_alloc_exact(unsigned long addr, unsigned int order,
5597		size_t size)
5598{
5599	if (addr) {
5600		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5601		unsigned long used = addr + PAGE_ALIGN(size);
5602
5603		split_page(virt_to_page((void *)addr), order);
5604		while (used < alloc_end) {
5605			free_page(used);
5606			used += PAGE_SIZE;
5607		}
5608	}
5609	return (void *)addr;
5610}
5611
5612/**
5613 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5614 * @size: the number of bytes to allocate
5615 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5616 *
5617 * This function is similar to alloc_pages(), except that it allocates the
5618 * minimum number of pages to satisfy the request.  alloc_pages() can only
5619 * allocate memory in power-of-two pages.
5620 *
5621 * This function is also limited by MAX_ORDER.
5622 *
5623 * Memory allocated by this function must be released by free_pages_exact().
5624 *
5625 * Return: pointer to the allocated area or %NULL in case of error.
5626 */
5627void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5628{
5629	unsigned int order = get_order(size);
5630	unsigned long addr;
5631
5632	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5633		gfp_mask &= ~__GFP_COMP;
5634
5635	addr = __get_free_pages(gfp_mask, order);
5636	return make_alloc_exact(addr, order, size);
5637}
5638EXPORT_SYMBOL(alloc_pages_exact);
5639
5640/**
5641 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5642 *			   pages on a node.
5643 * @nid: the preferred node ID where memory should be allocated
5644 * @size: the number of bytes to allocate
5645 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5646 *
5647 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5648 * back.
5649 *
5650 * Return: pointer to the allocated area or %NULL in case of error.
5651 */
5652void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5653{
5654	unsigned int order = get_order(size);
5655	struct page *p;
5656
5657	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5658		gfp_mask &= ~__GFP_COMP;
5659
5660	p = alloc_pages_node(nid, gfp_mask, order);
5661	if (!p)
5662		return NULL;
5663	return make_alloc_exact((unsigned long)page_address(p), order, size);
5664}
 
5665
5666/**
5667 * free_pages_exact - release memory allocated via alloc_pages_exact()
5668 * @virt: the value returned by alloc_pages_exact.
5669 * @size: size of allocation, same value as passed to alloc_pages_exact().
5670 *
5671 * Release the memory allocated by a previous call to alloc_pages_exact.
5672 */
5673void free_pages_exact(void *virt, size_t size)
5674{
5675	unsigned long addr = (unsigned long)virt;
5676	unsigned long end = addr + PAGE_ALIGN(size);
5677
5678	while (addr < end) {
5679		free_page(addr);
5680		addr += PAGE_SIZE;
5681	}
5682}
5683EXPORT_SYMBOL(free_pages_exact);
5684
5685/**
5686 * nr_free_zone_pages - count number of pages beyond high watermark
5687 * @offset: The zone index of the highest zone
5688 *
5689 * nr_free_zone_pages() counts the number of pages which are beyond the
5690 * high watermark within all zones at or below a given zone index.  For each
5691 * zone, the number of pages is calculated as:
5692 *
5693 *     nr_free_zone_pages = managed_pages - high_pages
5694 *
5695 * Return: number of pages beyond high watermark.
5696 */
5697static unsigned long nr_free_zone_pages(int offset)
5698{
5699	struct zoneref *z;
5700	struct zone *zone;
5701
5702	/* Just pick one node, since fallback list is circular */
5703	unsigned long sum = 0;
5704
5705	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5706
5707	for_each_zone_zonelist(zone, z, zonelist, offset) {
5708		unsigned long size = zone_managed_pages(zone);
5709		unsigned long high = high_wmark_pages(zone);
5710		if (size > high)
5711			sum += size - high;
5712	}
5713
5714	return sum;
5715}
5716
5717/**
5718 * nr_free_buffer_pages - count number of pages beyond high watermark
5719 *
5720 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5721 * watermark within ZONE_DMA and ZONE_NORMAL.
5722 *
5723 * Return: number of pages beyond high watermark within ZONE_DMA and
5724 * ZONE_NORMAL.
5725 */
5726unsigned long nr_free_buffer_pages(void)
5727{
5728	return nr_free_zone_pages(gfp_zone(GFP_USER));
5729}
5730EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5731
5732static inline void show_node(struct zone *zone)
 
 
 
5733{
5734	if (IS_ENABLED(CONFIG_NUMA))
5735		printk("Node %d ", zone_to_nid(zone));
5736}
5737
5738long si_mem_available(void)
5739{
5740	long available;
5741	unsigned long pagecache;
5742	unsigned long wmark_low = 0;
5743	unsigned long pages[NR_LRU_LISTS];
5744	unsigned long reclaimable;
5745	struct zone *zone;
5746	int lru;
5747
5748	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5749		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5750
5751	for_each_zone(zone)
5752		wmark_low += low_wmark_pages(zone);
5753
5754	/*
5755	 * Estimate the amount of memory available for userspace allocations,
5756	 * without causing swapping.
5757	 */
5758	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5759
5760	/*
5761	 * Not all the page cache can be freed, otherwise the system will
5762	 * start swapping. Assume at least half of the page cache, or the
5763	 * low watermark worth of cache, needs to stay.
5764	 */
5765	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5766	pagecache -= min(pagecache / 2, wmark_low);
5767	available += pagecache;
5768
5769	/*
5770	 * Part of the reclaimable slab and other kernel memory consists of
5771	 * items that are in use, and cannot be freed. Cap this estimate at the
5772	 * low watermark.
5773	 */
5774	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5775		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5776	available += reclaimable - min(reclaimable / 2, wmark_low);
5777
5778	if (available < 0)
5779		available = 0;
5780	return available;
5781}
5782EXPORT_SYMBOL_GPL(si_mem_available);
5783
5784void si_meminfo(struct sysinfo *val)
5785{
5786	val->totalram = totalram_pages();
5787	val->sharedram = global_node_page_state(NR_SHMEM);
5788	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5789	val->bufferram = nr_blockdev_pages();
5790	val->totalhigh = totalhigh_pages();
5791	val->freehigh = nr_free_highpages();
5792	val->mem_unit = PAGE_SIZE;
5793}
5794
5795EXPORT_SYMBOL(si_meminfo);
5796
5797#ifdef CONFIG_NUMA
5798void si_meminfo_node(struct sysinfo *val, int nid)
5799{
5800	int zone_type;		/* needs to be signed */
5801	unsigned long managed_pages = 0;
5802	unsigned long managed_highpages = 0;
5803	unsigned long free_highpages = 0;
5804	pg_data_t *pgdat = NODE_DATA(nid);
5805
5806	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5807		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5808	val->totalram = managed_pages;
5809	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5810	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5811#ifdef CONFIG_HIGHMEM
5812	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5813		struct zone *zone = &pgdat->node_zones[zone_type];
5814
5815		if (is_highmem(zone)) {
5816			managed_highpages += zone_managed_pages(zone);
5817			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5818		}
5819	}
5820	val->totalhigh = managed_highpages;
5821	val->freehigh = free_highpages;
5822#else
5823	val->totalhigh = managed_highpages;
5824	val->freehigh = free_highpages;
5825#endif
5826	val->mem_unit = PAGE_SIZE;
5827}
5828#endif
5829
5830/*
5831 * Determine whether the node should be displayed or not, depending on whether
5832 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5833 */
5834static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5835{
 
 
5836	if (!(flags & SHOW_MEM_FILTER_NODES))
5837		return false;
5838
5839	/*
5840	 * no node mask - aka implicit memory numa policy. Do not bother with
5841	 * the synchronization - read_mems_allowed_begin - because we do not
5842	 * have to be precise here.
5843	 */
5844	if (!nodemask)
5845		nodemask = &cpuset_current_mems_allowed;
5846
5847	return !node_isset(nid, *nodemask);
5848}
5849
5850#define K(x) ((x) << (PAGE_SHIFT-10))
5851
5852static void show_migration_types(unsigned char type)
5853{
5854	static const char types[MIGRATE_TYPES] = {
5855		[MIGRATE_UNMOVABLE]	= 'U',
5856		[MIGRATE_MOVABLE]	= 'M',
5857		[MIGRATE_RECLAIMABLE]	= 'E',
5858		[MIGRATE_HIGHATOMIC]	= 'H',
5859#ifdef CONFIG_CMA
5860		[MIGRATE_CMA]		= 'C',
5861#endif
5862#ifdef CONFIG_MEMORY_ISOLATION
5863		[MIGRATE_ISOLATE]	= 'I',
5864#endif
5865	};
5866	char tmp[MIGRATE_TYPES + 1];
5867	char *p = tmp;
5868	int i;
5869
5870	for (i = 0; i < MIGRATE_TYPES; i++) {
5871		if (type & (1 << i))
5872			*p++ = types[i];
5873	}
5874
5875	*p = '\0';
5876	printk(KERN_CONT "(%s) ", tmp);
5877}
5878
5879/*
5880 * Show free area list (used inside shift_scroll-lock stuff)
5881 * We also calculate the percentage fragmentation. We do this by counting the
5882 * memory on each free list with the exception of the first item on the list.
5883 *
5884 * Bits in @filter:
5885 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5886 *   cpuset.
5887 */
5888void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5889{
5890	unsigned long free_pcp = 0;
5891	int cpu;
5892	struct zone *zone;
5893	pg_data_t *pgdat;
5894
5895	for_each_populated_zone(zone) {
5896		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5897			continue;
 
 
 
 
 
5898
5899		for_each_online_cpu(cpu)
5900			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
 
 
 
 
5901	}
5902
5903	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5904		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5905		" unevictable:%lu dirty:%lu writeback:%lu\n"
5906		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5907		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5908		" free:%lu free_pcp:%lu free_cma:%lu\n",
5909		global_node_page_state(NR_ACTIVE_ANON),
5910		global_node_page_state(NR_INACTIVE_ANON),
5911		global_node_page_state(NR_ISOLATED_ANON),
5912		global_node_page_state(NR_ACTIVE_FILE),
5913		global_node_page_state(NR_INACTIVE_FILE),
5914		global_node_page_state(NR_ISOLATED_FILE),
5915		global_node_page_state(NR_UNEVICTABLE),
5916		global_node_page_state(NR_FILE_DIRTY),
5917		global_node_page_state(NR_WRITEBACK),
5918		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5919		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5920		global_node_page_state(NR_FILE_MAPPED),
5921		global_node_page_state(NR_SHMEM),
5922		global_node_page_state(NR_PAGETABLE),
5923		global_zone_page_state(NR_BOUNCE),
5924		global_zone_page_state(NR_FREE_PAGES),
5925		free_pcp,
5926		global_zone_page_state(NR_FREE_CMA_PAGES));
5927
5928	for_each_online_pgdat(pgdat) {
5929		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5930			continue;
5931
5932		printk("Node %d"
5933			" active_anon:%lukB"
5934			" inactive_anon:%lukB"
5935			" active_file:%lukB"
5936			" inactive_file:%lukB"
5937			" unevictable:%lukB"
5938			" isolated(anon):%lukB"
5939			" isolated(file):%lukB"
5940			" mapped:%lukB"
5941			" dirty:%lukB"
5942			" writeback:%lukB"
5943			" shmem:%lukB"
5944#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5945			" shmem_thp: %lukB"
5946			" shmem_pmdmapped: %lukB"
5947			" anon_thp: %lukB"
5948#endif
5949			" writeback_tmp:%lukB"
5950			" kernel_stack:%lukB"
5951#ifdef CONFIG_SHADOW_CALL_STACK
5952			" shadow_call_stack:%lukB"
5953#endif
5954			" pagetables:%lukB"
5955			" all_unreclaimable? %s"
5956			"\n",
5957			pgdat->node_id,
5958			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5959			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5960			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5961			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5962			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5963			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5964			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5965			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5966			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5967			K(node_page_state(pgdat, NR_WRITEBACK)),
5968			K(node_page_state(pgdat, NR_SHMEM)),
5969#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5970			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5971			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5972			K(node_page_state(pgdat, NR_ANON_THPS)),
5973#endif
5974			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5975			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5976#ifdef CONFIG_SHADOW_CALL_STACK
5977			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5978#endif
5979			K(node_page_state(pgdat, NR_PAGETABLE)),
5980			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5981				"yes" : "no");
5982	}
5983
5984	for_each_populated_zone(zone) {
5985		int i;
5986
5987		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5988			continue;
5989
5990		free_pcp = 0;
5991		for_each_online_cpu(cpu)
5992			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5993
5994		show_node(zone);
5995		printk(KERN_CONT
5996			"%s"
5997			" free:%lukB"
5998			" min:%lukB"
5999			" low:%lukB"
6000			" high:%lukB"
6001			" reserved_highatomic:%luKB"
6002			" active_anon:%lukB"
6003			" inactive_anon:%lukB"
6004			" active_file:%lukB"
6005			" inactive_file:%lukB"
6006			" unevictable:%lukB"
6007			" writepending:%lukB"
 
6008			" present:%lukB"
6009			" managed:%lukB"
6010			" mlocked:%lukB"
 
 
 
 
 
 
 
 
 
6011			" bounce:%lukB"
6012			" free_pcp:%lukB"
6013			" local_pcp:%ukB"
6014			" free_cma:%lukB"
6015			"\n",
6016			zone->name,
6017			K(zone_page_state(zone, NR_FREE_PAGES)),
6018			K(min_wmark_pages(zone)),
6019			K(low_wmark_pages(zone)),
6020			K(high_wmark_pages(zone)),
6021			K(zone->nr_reserved_highatomic),
6022			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6023			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6024			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6025			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6026			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6027			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6028			K(zone->present_pages),
6029			K(zone_managed_pages(zone)),
6030			K(zone_page_state(zone, NR_MLOCK)),
 
 
 
 
 
 
 
 
 
 
6031			K(zone_page_state(zone, NR_BOUNCE)),
6032			K(free_pcp),
6033			K(this_cpu_read(zone->per_cpu_pageset->count)),
6034			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
 
6035		printk("lowmem_reserve[]:");
6036		for (i = 0; i < MAX_NR_ZONES; i++)
6037			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6038		printk(KERN_CONT "\n");
6039	}
6040
6041	for_each_populated_zone(zone) {
6042		unsigned int order;
6043		unsigned long nr[MAX_ORDER], flags, total = 0;
6044		unsigned char types[MAX_ORDER];
6045
6046		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6047			continue;
6048		show_node(zone);
6049		printk(KERN_CONT "%s: ", zone->name);
6050
6051		spin_lock_irqsave(&zone->lock, flags);
6052		for (order = 0; order < MAX_ORDER; order++) {
6053			struct free_area *area = &zone->free_area[order];
6054			int type;
6055
6056			nr[order] = area->nr_free;
6057			total += nr[order] << order;
6058
6059			types[order] = 0;
6060			for (type = 0; type < MIGRATE_TYPES; type++) {
6061				if (!free_area_empty(area, type))
6062					types[order] |= 1 << type;
6063			}
6064		}
6065		spin_unlock_irqrestore(&zone->lock, flags);
6066		for (order = 0; order < MAX_ORDER; order++) {
6067			printk(KERN_CONT "%lu*%lukB ",
6068			       nr[order], K(1UL) << order);
6069			if (nr[order])
6070				show_migration_types(types[order]);
6071		}
6072		printk(KERN_CONT "= %lukB\n", K(total));
6073	}
6074
6075	hugetlb_show_meminfo();
6076
6077	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6078
6079	show_swap_cache_info();
6080}
6081
6082static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6083{
6084	zoneref->zone = zone;
6085	zoneref->zone_idx = zone_idx(zone);
6086}
6087
6088/*
6089 * Builds allocation fallback zone lists.
6090 *
6091 * Add all populated zones of a node to the zonelist.
6092 */
6093static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
 
6094{
6095	struct zone *zone;
6096	enum zone_type zone_type = MAX_NR_ZONES;
6097	int nr_zones = 0;
 
6098
6099	do {
6100		zone_type--;
6101		zone = pgdat->node_zones + zone_type;
6102		if (managed_zone(zone)) {
6103			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
 
6104			check_highest_zone(zone_type);
6105		}
 
6106	} while (zone_type);
6107
6108	return nr_zones;
6109}
6110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6111#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
6112
6113static int __parse_numa_zonelist_order(char *s)
6114{
6115	/*
6116	 * We used to support different zonelists modes but they turned
6117	 * out to be just not useful. Let's keep the warning in place
6118	 * if somebody still use the cmd line parameter so that we do
6119	 * not fail it silently
6120	 */
6121	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6122		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
 
 
6123		return -EINVAL;
6124	}
6125	return 0;
6126}
6127
6128char numa_zonelist_order[] = "Node";
 
 
 
 
 
 
 
 
 
 
 
 
 
6129
6130/*
6131 * sysctl handler for numa_zonelist_order
6132 */
6133int numa_zonelist_order_handler(struct ctl_table *table, int write,
6134		void *buffer, size_t *length, loff_t *ppos)
 
6135{
 
 
 
 
 
6136	if (write)
6137		return __parse_numa_zonelist_order(buffer);
6138	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6139}
6140
6141
6142#define MAX_NODE_LOAD (nr_online_nodes)
6143static int node_load[MAX_NUMNODES];
6144
6145/**
6146 * find_next_best_node - find the next node that should appear in a given node's fallback list
6147 * @node: node whose fallback list we're appending
6148 * @used_node_mask: nodemask_t of already used nodes
6149 *
6150 * We use a number of factors to determine which is the next node that should
6151 * appear on a given node's fallback list.  The node should not have appeared
6152 * already in @node's fallback list, and it should be the next closest node
6153 * according to the distance array (which contains arbitrary distance values
6154 * from each node to each node in the system), and should also prefer nodes
6155 * with no CPUs, since presumably they'll have very little allocation pressure
6156 * on them otherwise.
6157 *
6158 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6159 */
6160static int find_next_best_node(int node, nodemask_t *used_node_mask)
6161{
6162	int n, val;
6163	int min_val = INT_MAX;
6164	int best_node = NUMA_NO_NODE;
 
6165
6166	/* Use the local node if we haven't already */
6167	if (!node_isset(node, *used_node_mask)) {
6168		node_set(node, *used_node_mask);
6169		return node;
6170	}
6171
6172	for_each_node_state(n, N_MEMORY) {
6173
6174		/* Don't want a node to appear more than once */
6175		if (node_isset(n, *used_node_mask))
6176			continue;
6177
6178		/* Use the distance array to find the distance */
6179		val = node_distance(node, n);
6180
6181		/* Penalize nodes under us ("prefer the next node") */
6182		val += (n < node);
6183
6184		/* Give preference to headless and unused nodes */
6185		if (!cpumask_empty(cpumask_of_node(n)))
 
6186			val += PENALTY_FOR_NODE_WITH_CPUS;
6187
6188		/* Slight preference for less loaded node */
6189		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6190		val += node_load[n];
6191
6192		if (val < min_val) {
6193			min_val = val;
6194			best_node = n;
6195		}
6196	}
6197
6198	if (best_node >= 0)
6199		node_set(best_node, *used_node_mask);
6200
6201	return best_node;
6202}
6203
6204
6205/*
6206 * Build zonelists ordered by node and zones within node.
6207 * This results in maximum locality--normal zone overflows into local
6208 * DMA zone, if any--but risks exhausting DMA zone.
6209 */
6210static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6211		unsigned nr_nodes)
6212{
6213	struct zoneref *zonerefs;
6214	int i;
6215
6216	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6217
6218	for (i = 0; i < nr_nodes; i++) {
6219		int nr_zones;
6220
6221		pg_data_t *node = NODE_DATA(node_order[i]);
6222
6223		nr_zones = build_zonerefs_node(node, zonerefs);
6224		zonerefs += nr_zones;
6225	}
6226	zonerefs->zone = NULL;
6227	zonerefs->zone_idx = 0;
6228}
6229
6230/*
6231 * Build gfp_thisnode zonelists
6232 */
6233static void build_thisnode_zonelists(pg_data_t *pgdat)
6234{
6235	struct zoneref *zonerefs;
6236	int nr_zones;
6237
6238	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6239	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6240	zonerefs += nr_zones;
6241	zonerefs->zone = NULL;
6242	zonerefs->zone_idx = 0;
6243}
6244
6245/*
6246 * Build zonelists ordered by zone and nodes within zones.
6247 * This results in conserving DMA zone[s] until all Normal memory is
6248 * exhausted, but results in overflowing to remote node while memory
6249 * may still exist in local DMA zone.
6250 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6251
6252static void build_zonelists(pg_data_t *pgdat)
6253{
6254	static int node_order[MAX_NUMNODES];
6255	int node, load, nr_nodes = 0;
6256	nodemask_t used_mask = NODE_MASK_NONE;
6257	int local_node, prev_node;
 
 
 
 
 
 
 
 
 
6258
6259	/* NUMA-aware ordering of nodes */
6260	local_node = pgdat->node_id;
6261	load = nr_online_nodes;
6262	prev_node = local_node;
 
6263
6264	memset(node_order, 0, sizeof(node_order));
 
 
6265	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
 
 
 
 
 
 
 
 
 
6266		/*
6267		 * We don't want to pressure a particular node.
6268		 * So adding penalty to the first node in same
6269		 * distance group to make it round-robin.
6270		 */
6271		if (node_distance(local_node, node) !=
6272		    node_distance(local_node, prev_node))
6273			node_load[node] = load;
6274
6275		node_order[nr_nodes++] = node;
6276		prev_node = node;
6277		load--;
 
 
 
 
 
 
 
 
 
6278	}
6279
6280	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6281	build_thisnode_zonelists(pgdat);
6282}
6283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6284#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6285/*
6286 * Return node id of node used for "local" allocations.
6287 * I.e., first node id of first zone in arg node's generic zonelist.
6288 * Used for initializing percpu 'numa_mem', which is used primarily
6289 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6290 */
6291int local_memory_node(int node)
6292{
6293	struct zoneref *z;
6294
6295	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6296				   gfp_zone(GFP_KERNEL),
6297				   NULL);
6298	return zone_to_nid(z->zone);
 
6299}
6300#endif
6301
6302static void setup_min_unmapped_ratio(void);
6303static void setup_min_slab_ratio(void);
6304#else	/* CONFIG_NUMA */
6305
 
 
 
 
 
6306static void build_zonelists(pg_data_t *pgdat)
6307{
6308	int node, local_node;
6309	struct zoneref *zonerefs;
6310	int nr_zones;
6311
6312	local_node = pgdat->node_id;
6313
6314	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6315	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6316	zonerefs += nr_zones;
6317
6318	/*
6319	 * Now we build the zonelist so that it contains the zones
6320	 * of all the other nodes.
6321	 * We don't want to pressure a particular node, so when
6322	 * building the zones for node N, we make sure that the
6323	 * zones coming right after the local ones are those from
6324	 * node N+1 (modulo N)
6325	 */
6326	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6327		if (!node_online(node))
6328			continue;
6329		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6330		zonerefs += nr_zones;
6331	}
6332	for (node = 0; node < local_node; node++) {
6333		if (!node_online(node))
6334			continue;
6335		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6336		zonerefs += nr_zones;
6337	}
6338
6339	zonerefs->zone = NULL;
6340	zonerefs->zone_idx = 0;
 
 
 
 
 
 
6341}
6342
6343#endif	/* CONFIG_NUMA */
6344
6345/*
6346 * Boot pageset table. One per cpu which is going to be used for all
6347 * zones and all nodes. The parameters will be set in such a way
6348 * that an item put on a list will immediately be handed over to
6349 * the buddy list. This is safe since pageset manipulation is done
6350 * with interrupts disabled.
6351 *
6352 * The boot_pagesets must be kept even after bootup is complete for
6353 * unused processors and/or zones. They do play a role for bootstrapping
6354 * hotplugged processors.
6355 *
6356 * zoneinfo_show() and maybe other functions do
6357 * not check if the processor is online before following the pageset pointer.
6358 * Other parts of the kernel may not check if the zone is available.
6359 */
6360static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6361/* These effectively disable the pcplists in the boot pageset completely */
6362#define BOOT_PAGESET_HIGH	0
6363#define BOOT_PAGESET_BATCH	1
6364static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6365static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6366static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6367
6368static void __build_all_zonelists(void *data)
 
 
 
 
 
 
 
6369{
6370	int nid;
6371	int __maybe_unused cpu;
6372	pg_data_t *self = data;
6373	static DEFINE_SPINLOCK(lock);
6374
6375	spin_lock(&lock);
6376
6377#ifdef CONFIG_NUMA
6378	memset(node_load, 0, sizeof(node_load));
6379#endif
 
 
 
 
 
 
6380
6381	/*
6382	 * This node is hotadded and no memory is yet present.   So just
6383	 * building zonelists is fine - no need to touch other nodes.
 
 
 
 
 
 
 
 
 
6384	 */
6385	if (self && !node_online(self->node_id)) {
6386		build_zonelists(self);
6387	} else {
6388		for_each_online_node(nid) {
6389			pg_data_t *pgdat = NODE_DATA(nid);
6390
6391			build_zonelists(pgdat);
6392		}
6393
6394#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6395		/*
6396		 * We now know the "local memory node" for each node--
6397		 * i.e., the node of the first zone in the generic zonelist.
6398		 * Set up numa_mem percpu variable for on-line cpus.  During
6399		 * boot, only the boot cpu should be on-line;  we'll init the
6400		 * secondary cpus' numa_mem as they come on-line.  During
6401		 * node/memory hotplug, we'll fixup all on-line cpus.
6402		 */
6403		for_each_online_cpu(cpu)
6404			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6405#endif
6406	}
6407
6408	spin_unlock(&lock);
6409}
6410
6411static noinline void __init
6412build_all_zonelists_init(void)
6413{
6414	int cpu;
6415
6416	__build_all_zonelists(NULL);
6417
6418	/*
6419	 * Initialize the boot_pagesets that are going to be used
6420	 * for bootstrapping processors. The real pagesets for
6421	 * each zone will be allocated later when the per cpu
6422	 * allocator is available.
6423	 *
6424	 * boot_pagesets are used also for bootstrapping offline
6425	 * cpus if the system is already booted because the pagesets
6426	 * are needed to initialize allocators on a specific cpu too.
6427	 * F.e. the percpu allocator needs the page allocator which
6428	 * needs the percpu allocator in order to allocate its pagesets
6429	 * (a chicken-egg dilemma).
6430	 */
6431	for_each_possible_cpu(cpu)
6432		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6433
6434	mminit_verify_zonelist();
6435	cpuset_init_current_mems_allowed();
6436}
6437
6438/*
 
6439 * unless system_state == SYSTEM_BOOTING.
6440 *
6441 * __ref due to call of __init annotated helper build_all_zonelists_init
6442 * [protected by SYSTEM_BOOTING].
6443 */
6444void __ref build_all_zonelists(pg_data_t *pgdat)
6445{
6446	unsigned long vm_total_pages;
6447
6448	if (system_state == SYSTEM_BOOTING) {
6449		build_all_zonelists_init();
 
 
6450	} else {
6451		__build_all_zonelists(pgdat);
 
 
 
 
 
 
6452		/* cpuset refresh routine should be here */
6453	}
6454	/* Get the number of free pages beyond high watermark in all zones. */
6455	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6456	/*
6457	 * Disable grouping by mobility if the number of pages in the
6458	 * system is too low to allow the mechanism to work. It would be
6459	 * more accurate, but expensive to check per-zone. This check is
6460	 * made on memory-hotadd so a system can start with mobility
6461	 * disabled and enable it later
6462	 */
6463	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6464		page_group_by_mobility_disabled = 1;
6465	else
6466		page_group_by_mobility_disabled = 0;
6467
6468	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6469		nr_online_nodes,
6470		page_group_by_mobility_disabled ? "off" : "on",
6471		vm_total_pages);
 
 
6472#ifdef CONFIG_NUMA
6473	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6474#endif
 
 
 
 
 
 
 
 
 
6475}
6476
6477/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6478static bool __meminit
6479overlap_memmap_init(unsigned long zone, unsigned long *pfn)
 
 
 
6480{
6481	static struct memblock_region *r;
6482
6483	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6484		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6485			for_each_mem_region(r) {
6486				if (*pfn < memblock_region_memory_end_pfn(r))
6487					break;
6488			}
6489		}
6490		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6491		    memblock_is_mirror(r)) {
6492			*pfn = memblock_region_memory_end_pfn(r);
6493			return true;
6494		}
6495	}
6496	return false;
6497}
6498
6499/*
6500 * Initially all pages are reserved - free ones are freed
6501 * up by memblock_free_all() once the early boot process is
6502 * done. Non-atomic initialization, single-pass.
6503 *
6504 * All aligned pageblocks are initialized to the specified migratetype
6505 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6506 * zone stats (e.g., nr_isolate_pageblock) are touched.
6507 */
6508void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6509		unsigned long start_pfn, unsigned long zone_end_pfn,
6510		enum meminit_context context,
6511		struct vmem_altmap *altmap, int migratetype)
6512{
6513	unsigned long pfn, end_pfn = start_pfn + size;
6514	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6515
6516	if (highest_memmap_pfn < end_pfn - 1)
6517		highest_memmap_pfn = end_pfn - 1;
 
6518
6519#ifdef CONFIG_ZONE_DEVICE
6520	/*
6521	 * Honor reservation requested by the driver for this ZONE_DEVICE
6522	 * memory. We limit the total number of pages to initialize to just
6523	 * those that might contain the memory mapping. We will defer the
6524	 * ZONE_DEVICE page initialization until after we have released
6525	 * the hotplug lock.
6526	 */
6527	if (zone == ZONE_DEVICE) {
6528		if (!altmap)
6529			return;
6530
6531		if (start_pfn == altmap->base_pfn)
6532			start_pfn += altmap->reserve;
6533		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6534	}
6535#endif
6536
6537	for (pfn = start_pfn; pfn < end_pfn; ) {
6538		/*
6539		 * There can be holes in boot-time mem_map[]s handed to this
6540		 * function.  They do not exist on hotplugged memory.
6541		 */
6542		if (context == MEMINIT_EARLY) {
6543			if (overlap_memmap_init(zone, &pfn))
6544				continue;
6545			if (defer_init(nid, pfn, zone_end_pfn))
6546				break;
6547		}
6548
6549		page = pfn_to_page(pfn);
6550		__init_single_page(page, pfn, zone, nid);
6551		if (context == MEMINIT_HOTPLUG)
6552			__SetPageReserved(page);
 
 
 
6553
6554		/*
6555		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6556		 * such that unmovable allocations won't be scattered all
6557		 * over the place during system boot.
6558		 */
6559		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6560			set_pageblock_migratetype(page, migratetype);
6561			cond_resched();
6562		}
6563		pfn++;
6564	}
6565}
6566
6567#ifdef CONFIG_ZONE_DEVICE
6568void __ref memmap_init_zone_device(struct zone *zone,
6569				   unsigned long start_pfn,
6570				   unsigned long nr_pages,
6571				   struct dev_pagemap *pgmap)
 
 
6572{
6573	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6574	struct pglist_data *pgdat = zone->zone_pgdat;
6575	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6576	unsigned long zone_idx = zone_idx(zone);
6577	unsigned long start = jiffies;
6578	int nid = pgdat->node_id;
6579
6580	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6581		return;
6582
6583	/*
6584	 * The call to memmap_init should have already taken care
6585	 * of the pages reserved for the memmap, so we can just jump to
6586	 * the end of that region and start processing the device pages.
6587	 */
6588	if (altmap) {
6589		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6590		nr_pages = end_pfn - start_pfn;
6591	}
6592
 
6593	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6594		struct page *page = pfn_to_page(pfn);
6595
6596		__init_single_page(page, pfn, zone_idx, nid);
6597
6598		/*
6599		 * Mark page reserved as it will need to wait for onlining
6600		 * phase for it to be fully associated with a zone.
6601		 *
6602		 * We can use the non-atomic __set_bit operation for setting
6603		 * the flag as we are still initializing the pages.
6604		 */
6605		__SetPageReserved(page);
6606
6607		/*
6608		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6609		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6610		 * ever freed or placed on a driver-private list.
6611		 */
6612		page->pgmap = pgmap;
6613		page->zone_device_data = NULL;
6614
 
 
6615		/*
6616		 * Mark the block movable so that blocks are reserved for
6617		 * movable at startup. This will force kernel allocations
6618		 * to reserve their blocks rather than leaking throughout
6619		 * the address space during boot when many long-lived
6620		 * kernel allocations are made.
 
 
6621		 *
6622		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6623		 * because this is done early in section_activate()
6624		 */
6625		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
 
 
 
 
6626			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6627			cond_resched();
6628		}
 
 
 
 
 
6629	}
6630
6631	pr_info("%s initialised %lu pages in %ums\n", __func__,
6632		nr_pages, jiffies_to_msecs(jiffies - start));
6633}
6634
6635#endif
6636static void __meminit zone_init_free_lists(struct zone *zone)
6637{
6638	unsigned int order, t;
6639	for_each_migratetype_order(order, t) {
6640		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6641		zone->free_area[order].nr_free = 0;
6642	}
6643}
6644
6645#if !defined(CONFIG_FLATMEM)
6646/*
6647 * Only struct pages that correspond to ranges defined by memblock.memory
6648 * are zeroed and initialized by going through __init_single_page() during
6649 * memmap_init_zone_range().
6650 *
6651 * But, there could be struct pages that correspond to holes in
6652 * memblock.memory. This can happen because of the following reasons:
6653 * - physical memory bank size is not necessarily the exact multiple of the
6654 *   arbitrary section size
6655 * - early reserved memory may not be listed in memblock.memory
6656 * - memory layouts defined with memmap= kernel parameter may not align
6657 *   nicely with memmap sections
6658 *
6659 * Explicitly initialize those struct pages so that:
6660 * - PG_Reserved is set
6661 * - zone and node links point to zone and node that span the page if the
6662 *   hole is in the middle of a zone
6663 * - zone and node links point to adjacent zone/node if the hole falls on
6664 *   the zone boundary; the pages in such holes will be prepended to the
6665 *   zone/node above the hole except for the trailing pages in the last
6666 *   section that will be appended to the zone/node below.
6667 */
6668static void __init init_unavailable_range(unsigned long spfn,
6669					  unsigned long epfn,
6670					  int zone, int node)
6671{
6672	unsigned long pfn;
6673	u64 pgcnt = 0;
6674
6675	for (pfn = spfn; pfn < epfn; pfn++) {
6676		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6677			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6678				+ pageblock_nr_pages - 1;
6679			continue;
6680		}
6681		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6682		__SetPageReserved(pfn_to_page(pfn));
6683		pgcnt++;
6684	}
6685
6686	if (pgcnt)
6687		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6688			node, zone_names[zone], pgcnt);
6689}
6690#else
6691static inline void init_unavailable_range(unsigned long spfn,
6692					  unsigned long epfn,
6693					  int zone, int node)
6694{
6695}
6696#endif
6697
6698static void __init memmap_init_zone_range(struct zone *zone,
6699					  unsigned long start_pfn,
6700					  unsigned long end_pfn,
6701					  unsigned long *hole_pfn)
6702{
6703	unsigned long zone_start_pfn = zone->zone_start_pfn;
6704	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6705	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6706
6707	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6708	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6709
6710	if (start_pfn >= end_pfn)
6711		return;
6712
6713	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6714			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6715
6716	if (*hole_pfn < start_pfn)
6717		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6718
6719	*hole_pfn = end_pfn;
6720}
6721
6722static void __init memmap_init(void)
6723{
6724	unsigned long start_pfn, end_pfn;
6725	unsigned long hole_pfn = 0;
6726	int i, j, zone_id, nid;
6727
6728	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6729		struct pglist_data *node = NODE_DATA(nid);
6730
6731		for (j = 0; j < MAX_NR_ZONES; j++) {
6732			struct zone *zone = node->node_zones + j;
6733
6734			if (!populated_zone(zone))
6735				continue;
6736
6737			memmap_init_zone_range(zone, start_pfn, end_pfn,
6738					       &hole_pfn);
6739			zone_id = j;
6740		}
6741	}
6742
6743#ifdef CONFIG_SPARSEMEM
6744	/*
6745	 * Initialize the memory map for hole in the range [memory_end,
6746	 * section_end].
6747	 * Append the pages in this hole to the highest zone in the last
6748	 * node.
6749	 * The call to init_unavailable_range() is outside the ifdef to
6750	 * silence the compiler warining about zone_id set but not used;
6751	 * for FLATMEM it is a nop anyway
6752	 */
6753	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6754	if (hole_pfn < end_pfn)
6755#endif
6756		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6757}
6758
6759static int zone_batchsize(struct zone *zone)
6760{
6761#ifdef CONFIG_MMU
6762	int batch;
6763
6764	/*
6765	 * The number of pages to batch allocate is either ~0.1%
6766	 * of the zone or 1MB, whichever is smaller. The batch
6767	 * size is striking a balance between allocation latency
6768	 * and zone lock contention.
6769	 */
6770	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
 
 
6771	batch /= 4;		/* We effectively *= 4 below */
6772	if (batch < 1)
6773		batch = 1;
6774
6775	/*
6776	 * Clamp the batch to a 2^n - 1 value. Having a power
6777	 * of 2 value was found to be more likely to have
6778	 * suboptimal cache aliasing properties in some cases.
6779	 *
6780	 * For example if 2 tasks are alternately allocating
6781	 * batches of pages, one task can end up with a lot
6782	 * of pages of one half of the possible page colors
6783	 * and the other with pages of the other colors.
6784	 */
6785	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6786
6787	return batch;
6788
6789#else
6790	/* The deferral and batching of frees should be suppressed under NOMMU
6791	 * conditions.
6792	 *
6793	 * The problem is that NOMMU needs to be able to allocate large chunks
6794	 * of contiguous memory as there's no hardware page translation to
6795	 * assemble apparent contiguous memory from discontiguous pages.
6796	 *
6797	 * Queueing large contiguous runs of pages for batching, however,
6798	 * causes the pages to actually be freed in smaller chunks.  As there
6799	 * can be a significant delay between the individual batches being
6800	 * recycled, this leads to the once large chunks of space being
6801	 * fragmented and becoming unavailable for high-order allocations.
6802	 */
6803	return 0;
6804#endif
6805}
6806
6807static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6808{
6809#ifdef CONFIG_MMU
6810	int high;
6811	int nr_split_cpus;
6812	unsigned long total_pages;
6813
6814	if (!percpu_pagelist_high_fraction) {
6815		/*
6816		 * By default, the high value of the pcp is based on the zone
6817		 * low watermark so that if they are full then background
6818		 * reclaim will not be started prematurely.
6819		 */
6820		total_pages = low_wmark_pages(zone);
6821	} else {
6822		/*
6823		 * If percpu_pagelist_high_fraction is configured, the high
6824		 * value is based on a fraction of the managed pages in the
6825		 * zone.
6826		 */
6827		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6828	}
6829
6830	/*
6831	 * Split the high value across all online CPUs local to the zone. Note
6832	 * that early in boot that CPUs may not be online yet and that during
6833	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6834	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6835	 * all online CPUs to mitigate the risk that reclaim is triggered
6836	 * prematurely due to pages stored on pcp lists.
6837	 */
6838	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6839	if (!nr_split_cpus)
6840		nr_split_cpus = num_online_cpus();
6841	high = total_pages / nr_split_cpus;
6842
6843	/*
6844	 * Ensure high is at least batch*4. The multiple is based on the
6845	 * historical relationship between high and batch.
6846	 */
6847	high = max(high, batch << 2);
6848
6849	return high;
6850#else
6851	return 0;
6852#endif
6853}
6854
6855/*
6856 * pcp->high and pcp->batch values are related and generally batch is lower
6857 * than high. They are also related to pcp->count such that count is lower
6858 * than high, and as soon as it reaches high, the pcplist is flushed.
6859 *
6860 * However, guaranteeing these relations at all times would require e.g. write
6861 * barriers here but also careful usage of read barriers at the read side, and
6862 * thus be prone to error and bad for performance. Thus the update only prevents
6863 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6864 * can cope with those fields changing asynchronously, and fully trust only the
6865 * pcp->count field on the local CPU with interrupts disabled.
6866 *
6867 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6868 * outside of boot time (or some other assurance that no concurrent updaters
6869 * exist).
6870 */
6871static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6872		unsigned long batch)
6873{
6874	WRITE_ONCE(pcp->batch, batch);
6875	WRITE_ONCE(pcp->high, high);
6876}
6877
6878static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
 
6879{
6880	int pindex;
6881
6882	memset(pcp, 0, sizeof(*pcp));
6883	memset(pzstats, 0, sizeof(*pzstats));
6884
6885	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6886		INIT_LIST_HEAD(&pcp->lists[pindex]);
6887
6888	/*
6889	 * Set batch and high values safe for a boot pageset. A true percpu
6890	 * pageset's initialization will update them subsequently. Here we don't
6891	 * need to be as careful as pageset_update() as nobody can access the
6892	 * pageset yet.
6893	 */
6894	pcp->high = BOOT_PAGESET_HIGH;
6895	pcp->batch = BOOT_PAGESET_BATCH;
6896	pcp->free_factor = 0;
6897}
6898
6899static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6900		unsigned long batch)
6901{
6902	struct per_cpu_pages *pcp;
6903	int cpu;
6904
 
 
6905	for_each_possible_cpu(cpu) {
6906		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6907		pageset_update(pcp, high, batch);
 
 
 
 
 
 
6908	}
6909}
6910
6911/*
6912 * Calculate and set new high and batch values for all per-cpu pagesets of a
6913 * zone based on the zone's size.
6914 */
6915static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6916{
6917	int new_high, new_batch;
6918
6919	new_batch = max(1, zone_batchsize(zone));
6920	new_high = zone_highsize(zone, new_batch, cpu_online);
 
 
 
 
 
 
 
 
6921
6922	if (zone->pageset_high == new_high &&
6923	    zone->pageset_batch == new_batch)
6924		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6925
6926	zone->pageset_high = new_high;
6927	zone->pageset_batch = new_batch;
6928
6929	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6930}
6931
6932void __meminit setup_zone_pageset(struct zone *zone)
6933{
 
6934	int cpu;
 
6935
6936	/* Size may be 0 on !SMP && !NUMA */
6937	if (sizeof(struct per_cpu_zonestat) > 0)
6938		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6939
6940	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6941	for_each_possible_cpu(cpu) {
 
6942		struct per_cpu_pages *pcp;
6943		struct per_cpu_zonestat *pzstats;
6944
6945		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6946		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6947		per_cpu_pages_init(pcp, pzstats);
 
 
 
 
6948	}
6949
6950	zone_set_pageset_high_and_batch(zone, 0);
6951}
6952
6953/*
6954 * Allocate per cpu pagesets and initialize them.
6955 * Before this call only boot pagesets were available.
6956 */
6957void __init setup_per_cpu_pageset(void)
6958{
6959	struct pglist_data *pgdat;
6960	struct zone *zone;
6961	int __maybe_unused cpu;
6962
6963	for_each_populated_zone(zone)
6964		setup_zone_pageset(zone);
6965
6966#ifdef CONFIG_NUMA
6967	/*
6968	 * Unpopulated zones continue using the boot pagesets.
6969	 * The numa stats for these pagesets need to be reset.
6970	 * Otherwise, they will end up skewing the stats of
6971	 * the nodes these zones are associated with.
6972	 */
6973	for_each_possible_cpu(cpu) {
6974		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6975		memset(pzstats->vm_numa_event, 0,
6976		       sizeof(pzstats->vm_numa_event));
6977	}
6978#endif
6979
6980	for_each_online_pgdat(pgdat)
6981		pgdat->per_cpu_nodestats =
6982			alloc_percpu(struct per_cpu_nodestat);
6983}
6984
6985static __meminit void zone_pcp_init(struct zone *zone)
6986{
6987	/*
6988	 * per cpu subsystem is not up at this point. The following code
6989	 * relies on the ability of the linker to provide the
6990	 * offset of a (static) per cpu variable into the per cpu area.
6991	 */
6992	zone->per_cpu_pageset = &boot_pageset;
6993	zone->per_cpu_zonestats = &boot_zonestats;
6994	zone->pageset_high = BOOT_PAGESET_HIGH;
6995	zone->pageset_batch = BOOT_PAGESET_BATCH;
6996
6997	if (populated_zone(zone))
6998		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6999			 zone->present_pages, zone_batchsize(zone));
 
7000}
7001
7002void __meminit init_currently_empty_zone(struct zone *zone,
7003					unsigned long zone_start_pfn,
7004					unsigned long size)
 
7005{
7006	struct pglist_data *pgdat = zone->zone_pgdat;
7007	int zone_idx = zone_idx(zone) + 1;
7008
7009	if (zone_idx > pgdat->nr_zones)
7010		pgdat->nr_zones = zone_idx;
 
7011
7012	zone->zone_start_pfn = zone_start_pfn;
7013
7014	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7015			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7016			pgdat->node_id,
7017			(unsigned long)zone_idx(zone),
7018			zone_start_pfn, (zone_start_pfn + size));
7019
7020	zone_init_free_lists(zone);
7021	zone->initialized = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7022}
7023
7024/**
7025 * get_pfn_range_for_nid - Return the start and end page frames for a node
7026 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7027 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7028 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7029 *
7030 * It returns the start and end page frame of a node based on information
7031 * provided by memblock_set_node(). If called for a node
7032 * with no available memory, a warning is printed and the start and end
7033 * PFNs will be 0.
7034 */
7035void __init get_pfn_range_for_nid(unsigned int nid,
7036			unsigned long *start_pfn, unsigned long *end_pfn)
7037{
7038	unsigned long this_start_pfn, this_end_pfn;
7039	int i;
7040
7041	*start_pfn = -1UL;
7042	*end_pfn = 0;
7043
7044	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7045		*start_pfn = min(*start_pfn, this_start_pfn);
7046		*end_pfn = max(*end_pfn, this_end_pfn);
7047	}
7048
7049	if (*start_pfn == -1UL)
7050		*start_pfn = 0;
7051}
7052
7053/*
7054 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7055 * assumption is made that zones within a node are ordered in monotonic
7056 * increasing memory addresses so that the "highest" populated zone is used
7057 */
7058static void __init find_usable_zone_for_movable(void)
7059{
7060	int zone_index;
7061	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7062		if (zone_index == ZONE_MOVABLE)
7063			continue;
7064
7065		if (arch_zone_highest_possible_pfn[zone_index] >
7066				arch_zone_lowest_possible_pfn[zone_index])
7067			break;
7068	}
7069
7070	VM_BUG_ON(zone_index == -1);
7071	movable_zone = zone_index;
7072}
7073
7074/*
7075 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7076 * because it is sized independent of architecture. Unlike the other zones,
7077 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7078 * in each node depending on the size of each node and how evenly kernelcore
7079 * is distributed. This helper function adjusts the zone ranges
7080 * provided by the architecture for a given node by using the end of the
7081 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7082 * zones within a node are in order of monotonic increases memory addresses
7083 */
7084static void __init adjust_zone_range_for_zone_movable(int nid,
7085					unsigned long zone_type,
7086					unsigned long node_start_pfn,
7087					unsigned long node_end_pfn,
7088					unsigned long *zone_start_pfn,
7089					unsigned long *zone_end_pfn)
7090{
7091	/* Only adjust if ZONE_MOVABLE is on this node */
7092	if (zone_movable_pfn[nid]) {
7093		/* Size ZONE_MOVABLE */
7094		if (zone_type == ZONE_MOVABLE) {
7095			*zone_start_pfn = zone_movable_pfn[nid];
7096			*zone_end_pfn = min(node_end_pfn,
7097				arch_zone_highest_possible_pfn[movable_zone]);
7098
7099		/* Adjust for ZONE_MOVABLE starting within this range */
7100		} else if (!mirrored_kernelcore &&
7101			*zone_start_pfn < zone_movable_pfn[nid] &&
7102			*zone_end_pfn > zone_movable_pfn[nid]) {
7103			*zone_end_pfn = zone_movable_pfn[nid];
7104
7105		/* Check if this whole range is within ZONE_MOVABLE */
7106		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7107			*zone_start_pfn = *zone_end_pfn;
7108	}
7109}
7110
7111/*
7112 * Return the number of pages a zone spans in a node, including holes
7113 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7114 */
7115static unsigned long __init zone_spanned_pages_in_node(int nid,
7116					unsigned long zone_type,
7117					unsigned long node_start_pfn,
7118					unsigned long node_end_pfn,
7119					unsigned long *zone_start_pfn,
7120					unsigned long *zone_end_pfn)
7121{
7122	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7123	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7124	/* When hotadd a new node from cpu_up(), the node should be empty */
7125	if (!node_start_pfn && !node_end_pfn)
7126		return 0;
7127
7128	/* Get the start and end of the zone */
7129	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7130	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
 
7131	adjust_zone_range_for_zone_movable(nid, zone_type,
7132				node_start_pfn, node_end_pfn,
7133				zone_start_pfn, zone_end_pfn);
7134
7135	/* Check that this node has pages within the zone's required range */
7136	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7137		return 0;
7138
7139	/* Move the zone boundaries inside the node if necessary */
7140	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7141	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7142
7143	/* Return the spanned pages */
7144	return *zone_end_pfn - *zone_start_pfn;
7145}
7146
7147/*
7148 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7149 * then all holes in the requested range will be accounted for.
7150 */
7151unsigned long __init __absent_pages_in_range(int nid,
7152				unsigned long range_start_pfn,
7153				unsigned long range_end_pfn)
7154{
7155	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7156	unsigned long start_pfn, end_pfn;
7157	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7158
7159	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7160		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7161		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7162		nr_absent -= end_pfn - start_pfn;
 
 
7163	}
7164	return nr_absent;
 
 
 
 
 
 
7165}
7166
7167/**
7168 * absent_pages_in_range - Return number of page frames in holes within a range
7169 * @start_pfn: The start PFN to start searching for holes
7170 * @end_pfn: The end PFN to stop searching for holes
7171 *
7172 * Return: the number of pages frames in memory holes within a range.
7173 */
7174unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7175							unsigned long end_pfn)
7176{
7177	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7178}
7179
7180/* Return the number of page frames in holes in a zone on a node */
7181static unsigned long __init zone_absent_pages_in_node(int nid,
7182					unsigned long zone_type,
7183					unsigned long node_start_pfn,
7184					unsigned long node_end_pfn)
7185{
7186	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7187	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7188	unsigned long zone_start_pfn, zone_end_pfn;
7189	unsigned long nr_absent;
7190
7191	/* When hotadd a new node from cpu_up(), the node should be empty */
7192	if (!node_start_pfn && !node_end_pfn)
7193		return 0;
7194
7195	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7196	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7197
7198	adjust_zone_range_for_zone_movable(nid, zone_type,
7199			node_start_pfn, node_end_pfn,
7200			&zone_start_pfn, &zone_end_pfn);
7201	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
 
7202
7203	/*
7204	 * ZONE_MOVABLE handling.
7205	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7206	 * and vice versa.
7207	 */
7208	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7209		unsigned long start_pfn, end_pfn;
7210		struct memblock_region *r;
7211
7212		for_each_mem_region(r) {
7213			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7214					  zone_start_pfn, zone_end_pfn);
7215			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7216					zone_start_pfn, zone_end_pfn);
 
7217
7218			if (zone_type == ZONE_MOVABLE &&
7219			    memblock_is_mirror(r))
7220				nr_absent += end_pfn - start_pfn;
7221
7222			if (zone_type == ZONE_NORMAL &&
7223			    !memblock_is_mirror(r))
7224				nr_absent += end_pfn - start_pfn;
7225		}
7226	}
7227
7228	return nr_absent;
7229}
7230
7231static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7232						unsigned long node_start_pfn,
7233						unsigned long node_end_pfn)
7234{
7235	unsigned long realtotalpages = 0, totalpages = 0;
7236	enum zone_type i;
7237
7238	for (i = 0; i < MAX_NR_ZONES; i++) {
7239		struct zone *zone = pgdat->node_zones + i;
7240		unsigned long zone_start_pfn, zone_end_pfn;
7241		unsigned long spanned, absent;
7242		unsigned long size, real_size;
7243
7244		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7245						     node_start_pfn,
7246						     node_end_pfn,
7247						     &zone_start_pfn,
7248						     &zone_end_pfn);
7249		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7250						   node_start_pfn,
7251						   node_end_pfn);
7252
7253		size = spanned;
7254		real_size = size - absent;
7255
7256		if (size)
7257			zone->zone_start_pfn = zone_start_pfn;
7258		else
7259			zone->zone_start_pfn = 0;
7260		zone->spanned_pages = size;
7261		zone->present_pages = real_size;
7262
7263		totalpages += size;
7264		realtotalpages += real_size;
7265	}
7266
7267	pgdat->node_spanned_pages = totalpages;
7268	pgdat->node_present_pages = realtotalpages;
7269	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
 
7270}
7271
7272#ifndef CONFIG_SPARSEMEM
7273/*
7274 * Calculate the size of the zone->blockflags rounded to an unsigned long
7275 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7276 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7277 * round what is now in bits to nearest long in bits, then return it in
7278 * bytes.
7279 */
7280static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7281{
7282	unsigned long usemapsize;
7283
7284	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7285	usemapsize = roundup(zonesize, pageblock_nr_pages);
7286	usemapsize = usemapsize >> pageblock_order;
7287	usemapsize *= NR_PAGEBLOCK_BITS;
7288	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7289
7290	return usemapsize / 8;
7291}
7292
7293static void __ref setup_usemap(struct zone *zone)
 
7294{
7295	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7296					       zone->spanned_pages);
7297	zone->pageblock_flags = NULL;
7298	if (usemapsize) {
7299		zone->pageblock_flags =
7300			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7301					    zone_to_nid(zone));
7302		if (!zone->pageblock_flags)
7303			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7304			      usemapsize, zone->name, zone_to_nid(zone));
7305	}
7306}
7307#else
7308static inline void setup_usemap(struct zone *zone) {}
 
7309#endif /* CONFIG_SPARSEMEM */
7310
7311#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7312
 
 
 
 
 
 
 
 
 
7313/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7314void __init set_pageblock_order(void)
7315{
7316	unsigned int order;
7317
7318	/* Check that pageblock_nr_pages has not already been setup */
7319	if (pageblock_order)
7320		return;
7321
7322	if (HPAGE_SHIFT > PAGE_SHIFT)
7323		order = HUGETLB_PAGE_ORDER;
7324	else
7325		order = MAX_ORDER - 1;
7326
7327	/*
7328	 * Assume the largest contiguous order of interest is a huge page.
7329	 * This value may be variable depending on boot parameters on IA64 and
7330	 * powerpc.
7331	 */
7332	pageblock_order = order;
7333}
7334#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7335
7336/*
7337 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7338 * is unused as pageblock_order is set at compile-time. See
7339 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7340 * the kernel config
7341 */
7342void __init set_pageblock_order(void)
7343{
 
7344}
 
7345
7346#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7347
7348static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7349						unsigned long present_pages)
7350{
7351	unsigned long pages = spanned_pages;
7352
7353	/*
7354	 * Provide a more accurate estimation if there are holes within
7355	 * the zone and SPARSEMEM is in use. If there are holes within the
7356	 * zone, each populated memory region may cost us one or two extra
7357	 * memmap pages due to alignment because memmap pages for each
7358	 * populated regions may not be naturally aligned on page boundary.
7359	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7360	 */
7361	if (spanned_pages > present_pages + (present_pages >> 4) &&
7362	    IS_ENABLED(CONFIG_SPARSEMEM))
7363		pages = present_pages;
7364
7365	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7366}
7367
7368#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7369static void pgdat_init_split_queue(struct pglist_data *pgdat)
7370{
7371	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7372
7373	spin_lock_init(&ds_queue->split_queue_lock);
7374	INIT_LIST_HEAD(&ds_queue->split_queue);
7375	ds_queue->split_queue_len = 0;
7376}
7377#else
7378static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7379#endif
7380
7381#ifdef CONFIG_COMPACTION
7382static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7383{
7384	init_waitqueue_head(&pgdat->kcompactd_wait);
7385}
7386#else
7387static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7388#endif
7389
7390static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7391{
7392	pgdat_resize_init(pgdat);
7393
7394	pgdat_init_split_queue(pgdat);
7395	pgdat_init_kcompactd(pgdat);
7396
7397	init_waitqueue_head(&pgdat->kswapd_wait);
7398	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7399
7400	pgdat_page_ext_init(pgdat);
7401	lruvec_init(&pgdat->__lruvec);
7402}
7403
7404static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7405							unsigned long remaining_pages)
7406{
7407	atomic_long_set(&zone->managed_pages, remaining_pages);
7408	zone_set_nid(zone, nid);
7409	zone->name = zone_names[idx];
7410	zone->zone_pgdat = NODE_DATA(nid);
7411	spin_lock_init(&zone->lock);
7412	zone_seqlock_init(zone);
7413	zone_pcp_init(zone);
7414}
7415
7416/*
7417 * Set up the zone data structures
7418 * - init pgdat internals
7419 * - init all zones belonging to this node
7420 *
7421 * NOTE: this function is only called during memory hotplug
7422 */
7423#ifdef CONFIG_MEMORY_HOTPLUG
7424void __ref free_area_init_core_hotplug(int nid)
7425{
7426	enum zone_type z;
7427	pg_data_t *pgdat = NODE_DATA(nid);
7428
7429	pgdat_init_internals(pgdat);
7430	for (z = 0; z < MAX_NR_ZONES; z++)
7431		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7432}
7433#endif
7434
7435/*
7436 * Set up the zone data structures:
7437 *   - mark all pages reserved
7438 *   - mark all memory queues empty
7439 *   - clear the memory bitmaps
7440 *
7441 * NOTE: pgdat should get zeroed by caller.
7442 * NOTE: this function is only called during early init.
7443 */
7444static void __init free_area_init_core(struct pglist_data *pgdat)
 
7445{
7446	enum zone_type j;
7447	int nid = pgdat->node_id;
 
 
7448
7449	pgdat_init_internals(pgdat);
7450	pgdat->per_cpu_nodestats = &boot_nodestats;
7451
 
 
 
7452	for (j = 0; j < MAX_NR_ZONES; j++) {
7453		struct zone *zone = pgdat->node_zones + j;
7454		unsigned long size, freesize, memmap_pages;
 
7455
7456		size = zone->spanned_pages;
7457		freesize = zone->present_pages;
 
7458
7459		/*
7460		 * Adjust freesize so that it accounts for how much memory
7461		 * is used by this zone for memmap. This affects the watermark
7462		 * and per-cpu initialisations
7463		 */
7464		memmap_pages = calc_memmap_size(size, freesize);
7465		if (!is_highmem_idx(j)) {
7466			if (freesize >= memmap_pages) {
7467				freesize -= memmap_pages;
7468				if (memmap_pages)
7469					pr_debug("  %s zone: %lu pages used for memmap\n",
7470						 zone_names[j], memmap_pages);
7471			} else
7472				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7473					zone_names[j], memmap_pages, freesize);
7474		}
 
7475
7476		/* Account for reserved pages */
7477		if (j == 0 && freesize > dma_reserve) {
7478			freesize -= dma_reserve;
7479			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
 
7480		}
7481
7482		if (!is_highmem_idx(j))
7483			nr_kernel_pages += freesize;
7484		/* Charge for highmem memmap if there are enough kernel pages */
7485		else if (nr_kernel_pages > memmap_pages * 2)
7486			nr_kernel_pages -= memmap_pages;
7487		nr_all_pages += freesize;
7488
7489		/*
7490		 * Set an approximate value for lowmem here, it will be adjusted
7491		 * when the bootmem allocator frees pages into the buddy system.
7492		 * And all highmem pages will be managed by the buddy system.
7493		 */
7494		zone_init_internals(zone, j, nid, freesize);
7495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7496		if (!size)
7497			continue;
7498
7499		set_pageblock_order();
7500		setup_usemap(zone);
7501		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
 
 
 
 
7502	}
7503}
7504
7505#ifdef CONFIG_FLATMEM
7506static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7507{
7508	unsigned long __maybe_unused start = 0;
7509	unsigned long __maybe_unused offset = 0;
7510
7511	/* Skip empty nodes */
7512	if (!pgdat->node_spanned_pages)
7513		return;
7514
7515	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7516	offset = pgdat->node_start_pfn - start;
7517	/* ia64 gets its own node_mem_map, before this, without bootmem */
7518	if (!pgdat->node_mem_map) {
7519		unsigned long size, end;
7520		struct page *map;
7521
7522		/*
7523		 * The zone's endpoints aren't required to be MAX_ORDER
7524		 * aligned but the node_mem_map endpoints must be in order
7525		 * for the buddy allocator to function correctly.
7526		 */
7527		end = pgdat_end_pfn(pgdat);
 
7528		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7529		size =  (end - start) * sizeof(struct page);
7530		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7531					  pgdat->node_id);
7532		if (!map)
7533			panic("Failed to allocate %ld bytes for node %d memory map\n",
7534			      size, pgdat->node_id);
7535		pgdat->node_mem_map = map + offset;
7536	}
7537	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7538				__func__, pgdat->node_id, (unsigned long)pgdat,
7539				(unsigned long)pgdat->node_mem_map);
7540#ifndef CONFIG_NUMA
7541	/*
7542	 * With no DISCONTIG, the global mem_map is just set as node 0's
7543	 */
7544	if (pgdat == NODE_DATA(0)) {
7545		mem_map = NODE_DATA(0)->node_mem_map;
 
7546		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7547			mem_map -= offset;
 
7548	}
7549#endif
 
7550}
7551#else
7552static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7553#endif /* CONFIG_FLATMEM */
7554
7555#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7556static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7557{
7558	pgdat->first_deferred_pfn = ULONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7559}
7560#else
7561static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
 
 
7562#endif
7563
7564static void __init free_area_init_node(int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
7565{
7566	pg_data_t *pgdat = NODE_DATA(nid);
7567	unsigned long start_pfn = 0;
7568	unsigned long end_pfn = 0;
 
 
 
 
 
 
 
 
 
 
 
7569
7570	/* pg_data_t should be reset to zero when it's allocated */
7571	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
 
 
7572
7573	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 
 
 
 
 
7574
7575	pgdat->node_id = nid;
7576	pgdat->node_start_pfn = start_pfn;
7577	pgdat->per_cpu_nodestats = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7578
7579	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7580		(u64)start_pfn << PAGE_SHIFT,
7581		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7582	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7583
7584	alloc_node_mem_map(pgdat);
7585	pgdat_set_deferred_range(pgdat);
7586
7587	free_area_init_core(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
7588}
7589
7590void __init free_area_init_memoryless_node(int nid)
 
 
 
 
 
 
 
7591{
7592	free_area_init_node(nid);
 
7593}
7594
7595#if MAX_NUMNODES > 1
7596/*
7597 * Figure out the number of possible node ids.
7598 */
7599void __init setup_nr_node_ids(void)
7600{
7601	unsigned int highest;
 
 
 
 
 
 
 
7602
7603	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7604	nr_node_ids = highest + 1;
 
 
 
 
 
 
 
7605}
7606#endif
7607
7608/**
7609 * node_map_pfn_alignment - determine the maximum internode alignment
7610 *
7611 * This function should be called after node map is populated and sorted.
7612 * It calculates the maximum power of two alignment which can distinguish
7613 * all the nodes.
7614 *
7615 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7616 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7617 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7618 * shifted, 1GiB is enough and this function will indicate so.
7619 *
7620 * This is used to test whether pfn -> nid mapping of the chosen memory
7621 * model has fine enough granularity to avoid incorrect mapping for the
7622 * populated node map.
7623 *
7624 * Return: the determined alignment in pfn's.  0 if there is no alignment
7625 * requirement (single node).
7626 */
7627unsigned long __init node_map_pfn_alignment(void)
7628{
7629	unsigned long accl_mask = 0, last_end = 0;
7630	unsigned long start, end, mask;
7631	int last_nid = NUMA_NO_NODE;
7632	int i, nid;
 
 
 
 
 
7633
7634	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7635		if (!start || last_nid < 0 || last_nid == nid) {
7636			last_nid = nid;
7637			last_end = end;
7638			continue;
7639		}
7640
7641		/*
7642		 * Start with a mask granular enough to pin-point to the
7643		 * start pfn and tick off bits one-by-one until it becomes
7644		 * too coarse to separate the current node from the last.
7645		 */
7646		mask = ~((1 << __ffs(start)) - 1);
7647		while (mask && last_end <= (start & (mask << 1)))
7648			mask <<= 1;
7649
7650		/* accumulate all internode masks */
7651		accl_mask |= mask;
7652	}
7653
7654	/* convert mask to number of pages */
7655	return ~accl_mask + 1;
7656}
7657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7658/**
7659 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7660 *
7661 * Return: the minimum PFN based on information provided via
7662 * memblock_set_node().
7663 */
7664unsigned long __init find_min_pfn_with_active_regions(void)
7665{
7666	return PHYS_PFN(memblock_start_of_DRAM());
7667}
7668
7669/*
7670 * early_calculate_totalpages()
7671 * Sum pages in active regions for movable zone.
7672 * Populate N_MEMORY for calculating usable_nodes.
7673 */
7674static unsigned long __init early_calculate_totalpages(void)
7675{
 
7676	unsigned long totalpages = 0;
7677	unsigned long start_pfn, end_pfn;
7678	int i, nid;
7679
7680	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7681		unsigned long pages = end_pfn - start_pfn;
7682
 
 
 
7683		totalpages += pages;
7684		if (pages)
7685			node_set_state(nid, N_MEMORY);
7686	}
7687	return totalpages;
7688}
7689
7690/*
7691 * Find the PFN the Movable zone begins in each node. Kernel memory
7692 * is spread evenly between nodes as long as the nodes have enough
7693 * memory. When they don't, some nodes will have more kernelcore than
7694 * others
7695 */
7696static void __init find_zone_movable_pfns_for_nodes(void)
7697{
7698	int i, nid;
7699	unsigned long usable_startpfn;
7700	unsigned long kernelcore_node, kernelcore_remaining;
7701	/* save the state before borrow the nodemask */
7702	nodemask_t saved_node_state = node_states[N_MEMORY];
7703	unsigned long totalpages = early_calculate_totalpages();
7704	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7705	struct memblock_region *r;
7706
7707	/* Need to find movable_zone earlier when movable_node is specified. */
7708	find_usable_zone_for_movable();
7709
7710	/*
7711	 * If movable_node is specified, ignore kernelcore and movablecore
7712	 * options.
7713	 */
7714	if (movable_node_is_enabled()) {
7715		for_each_mem_region(r) {
7716			if (!memblock_is_hotpluggable(r))
7717				continue;
7718
7719			nid = memblock_get_region_node(r);
7720
7721			usable_startpfn = PFN_DOWN(r->base);
7722			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7723				min(usable_startpfn, zone_movable_pfn[nid]) :
7724				usable_startpfn;
7725		}
7726
7727		goto out2;
7728	}
7729
7730	/*
7731	 * If kernelcore=mirror is specified, ignore movablecore option
7732	 */
7733	if (mirrored_kernelcore) {
7734		bool mem_below_4gb_not_mirrored = false;
7735
7736		for_each_mem_region(r) {
7737			if (memblock_is_mirror(r))
7738				continue;
7739
7740			nid = memblock_get_region_node(r);
7741
7742			usable_startpfn = memblock_region_memory_base_pfn(r);
7743
7744			if (usable_startpfn < 0x100000) {
7745				mem_below_4gb_not_mirrored = true;
7746				continue;
7747			}
7748
7749			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7750				min(usable_startpfn, zone_movable_pfn[nid]) :
7751				usable_startpfn;
7752		}
7753
7754		if (mem_below_4gb_not_mirrored)
7755			pr_warn("This configuration results in unmirrored kernel memory.\n");
7756
7757		goto out2;
7758	}
7759
7760	/*
7761	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7762	 * amount of necessary memory.
7763	 */
7764	if (required_kernelcore_percent)
7765		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7766				       10000UL;
7767	if (required_movablecore_percent)
7768		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7769					10000UL;
7770
7771	/*
7772	 * If movablecore= was specified, calculate what size of
7773	 * kernelcore that corresponds so that memory usable for
7774	 * any allocation type is evenly spread. If both kernelcore
7775	 * and movablecore are specified, then the value of kernelcore
7776	 * will be used for required_kernelcore if it's greater than
7777	 * what movablecore would have allowed.
7778	 */
7779	if (required_movablecore) {
7780		unsigned long corepages;
7781
7782		/*
7783		 * Round-up so that ZONE_MOVABLE is at least as large as what
7784		 * was requested by the user
7785		 */
7786		required_movablecore =
7787			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7788		required_movablecore = min(totalpages, required_movablecore);
7789		corepages = totalpages - required_movablecore;
7790
7791		required_kernelcore = max(required_kernelcore, corepages);
7792	}
7793
7794	/*
7795	 * If kernelcore was not specified or kernelcore size is larger
7796	 * than totalpages, there is no ZONE_MOVABLE.
7797	 */
7798	if (!required_kernelcore || required_kernelcore >= totalpages)
7799		goto out;
7800
7801	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
 
7802	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7803
7804restart:
7805	/* Spread kernelcore memory as evenly as possible throughout nodes */
7806	kernelcore_node = required_kernelcore / usable_nodes;
7807	for_each_node_state(nid, N_MEMORY) {
7808		unsigned long start_pfn, end_pfn;
7809
7810		/*
7811		 * Recalculate kernelcore_node if the division per node
7812		 * now exceeds what is necessary to satisfy the requested
7813		 * amount of memory for the kernel
7814		 */
7815		if (required_kernelcore < kernelcore_node)
7816			kernelcore_node = required_kernelcore / usable_nodes;
7817
7818		/*
7819		 * As the map is walked, we track how much memory is usable
7820		 * by the kernel using kernelcore_remaining. When it is
7821		 * 0, the rest of the node is usable by ZONE_MOVABLE
7822		 */
7823		kernelcore_remaining = kernelcore_node;
7824
7825		/* Go through each range of PFNs within this node */
7826		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 
7827			unsigned long size_pages;
7828
7829			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
 
 
7830			if (start_pfn >= end_pfn)
7831				continue;
7832
7833			/* Account for what is only usable for kernelcore */
7834			if (start_pfn < usable_startpfn) {
7835				unsigned long kernel_pages;
7836				kernel_pages = min(end_pfn, usable_startpfn)
7837								- start_pfn;
7838
7839				kernelcore_remaining -= min(kernel_pages,
7840							kernelcore_remaining);
7841				required_kernelcore -= min(kernel_pages,
7842							required_kernelcore);
7843
7844				/* Continue if range is now fully accounted */
7845				if (end_pfn <= usable_startpfn) {
7846
7847					/*
7848					 * Push zone_movable_pfn to the end so
7849					 * that if we have to rebalance
7850					 * kernelcore across nodes, we will
7851					 * not double account here
7852					 */
7853					zone_movable_pfn[nid] = end_pfn;
7854					continue;
7855				}
7856				start_pfn = usable_startpfn;
7857			}
7858
7859			/*
7860			 * The usable PFN range for ZONE_MOVABLE is from
7861			 * start_pfn->end_pfn. Calculate size_pages as the
7862			 * number of pages used as kernelcore
7863			 */
7864			size_pages = end_pfn - start_pfn;
7865			if (size_pages > kernelcore_remaining)
7866				size_pages = kernelcore_remaining;
7867			zone_movable_pfn[nid] = start_pfn + size_pages;
7868
7869			/*
7870			 * Some kernelcore has been met, update counts and
7871			 * break if the kernelcore for this node has been
7872			 * satisfied
7873			 */
7874			required_kernelcore -= min(required_kernelcore,
7875								size_pages);
7876			kernelcore_remaining -= size_pages;
7877			if (!kernelcore_remaining)
7878				break;
7879		}
7880	}
7881
7882	/*
7883	 * If there is still required_kernelcore, we do another pass with one
7884	 * less node in the count. This will push zone_movable_pfn[nid] further
7885	 * along on the nodes that still have memory until kernelcore is
7886	 * satisfied
7887	 */
7888	usable_nodes--;
7889	if (usable_nodes && required_kernelcore > usable_nodes)
7890		goto restart;
7891
7892out2:
7893	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7894	for (nid = 0; nid < MAX_NUMNODES; nid++)
7895		zone_movable_pfn[nid] =
7896			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7897
7898out:
7899	/* restore the node_state */
7900	node_states[N_MEMORY] = saved_node_state;
7901}
7902
7903/* Any regular or high memory on that node ? */
7904static void check_for_memory(pg_data_t *pgdat, int nid)
7905{
 
7906	enum zone_type zone_type;
7907
7908	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7909		struct zone *zone = &pgdat->node_zones[zone_type];
7910		if (populated_zone(zone)) {
7911			if (IS_ENABLED(CONFIG_HIGHMEM))
7912				node_set_state(nid, N_HIGH_MEMORY);
7913			if (zone_type <= ZONE_NORMAL)
7914				node_set_state(nid, N_NORMAL_MEMORY);
7915			break;
7916		}
7917	}
7918}
7919
7920/*
7921 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7922 * such cases we allow max_zone_pfn sorted in the descending order
7923 */
7924bool __weak arch_has_descending_max_zone_pfns(void)
7925{
7926	return false;
7927}
7928
7929/**
7930 * free_area_init - Initialise all pg_data_t and zone data
7931 * @max_zone_pfn: an array of max PFNs for each zone
7932 *
7933 * This will call free_area_init_node() for each active node in the system.
7934 * Using the page ranges provided by memblock_set_node(), the size of each
7935 * zone in each node and their holes is calculated. If the maximum PFN
7936 * between two adjacent zones match, it is assumed that the zone is empty.
7937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7939 * starts where the previous one ended. For example, ZONE_DMA32 starts
7940 * at arch_max_dma_pfn.
7941 */
7942void __init free_area_init(unsigned long *max_zone_pfn)
7943{
7944	unsigned long start_pfn, end_pfn;
7945	int i, nid, zone;
7946	bool descending;
 
 
7947
7948	/* Record where the zone boundaries are */
7949	memset(arch_zone_lowest_possible_pfn, 0,
7950				sizeof(arch_zone_lowest_possible_pfn));
7951	memset(arch_zone_highest_possible_pfn, 0,
7952				sizeof(arch_zone_highest_possible_pfn));
7953
7954	start_pfn = find_min_pfn_with_active_regions();
7955	descending = arch_has_descending_max_zone_pfns();
7956
7957	for (i = 0; i < MAX_NR_ZONES; i++) {
7958		if (descending)
7959			zone = MAX_NR_ZONES - i - 1;
7960		else
7961			zone = i;
7962
7963		if (zone == ZONE_MOVABLE)
7964			continue;
7965
7966		end_pfn = max(max_zone_pfn[zone], start_pfn);
7967		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7968		arch_zone_highest_possible_pfn[zone] = end_pfn;
7969
7970		start_pfn = end_pfn;
7971	}
 
 
7972
7973	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7974	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7975	find_zone_movable_pfns_for_nodes();
7976
7977	/* Print out the zone ranges */
7978	pr_info("Zone ranges:\n");
7979	for (i = 0; i < MAX_NR_ZONES; i++) {
7980		if (i == ZONE_MOVABLE)
7981			continue;
7982		pr_info("  %-8s ", zone_names[i]);
7983		if (arch_zone_lowest_possible_pfn[i] ==
7984				arch_zone_highest_possible_pfn[i])
7985			pr_cont("empty\n");
7986		else
7987			pr_cont("[mem %#018Lx-%#018Lx]\n",
7988				(u64)arch_zone_lowest_possible_pfn[i]
7989					<< PAGE_SHIFT,
7990				((u64)arch_zone_highest_possible_pfn[i]
7991					<< PAGE_SHIFT) - 1);
7992	}
7993
7994	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7995	pr_info("Movable zone start for each node\n");
7996	for (i = 0; i < MAX_NUMNODES; i++) {
7997		if (zone_movable_pfn[i])
7998			pr_info("  Node %d: %#018Lx\n", i,
7999			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8000	}
8001
8002	/*
8003	 * Print out the early node map, and initialize the
8004	 * subsection-map relative to active online memory ranges to
8005	 * enable future "sub-section" extensions of the memory map.
8006	 */
8007	pr_info("Early memory node ranges\n");
8008	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8009		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8010			(u64)start_pfn << PAGE_SHIFT,
8011			((u64)end_pfn << PAGE_SHIFT) - 1);
8012		subsection_map_init(start_pfn, end_pfn - start_pfn);
8013	}
8014
8015	/* Initialise every node */
8016	mminit_verify_pageflags_layout();
8017	setup_nr_node_ids();
8018	for_each_online_node(nid) {
8019		pg_data_t *pgdat = NODE_DATA(nid);
8020		free_area_init_node(nid);
 
8021
8022		/* Any memory on that node */
8023		if (pgdat->node_present_pages)
8024			node_set_state(nid, N_MEMORY);
8025		check_for_memory(pgdat, nid);
8026	}
8027
8028	memmap_init();
8029}
8030
8031static int __init cmdline_parse_core(char *p, unsigned long *core,
8032				     unsigned long *percent)
8033{
8034	unsigned long long coremem;
8035	char *endptr;
8036
8037	if (!p)
8038		return -EINVAL;
8039
8040	/* Value may be a percentage of total memory, otherwise bytes */
8041	coremem = simple_strtoull(p, &endptr, 0);
8042	if (*endptr == '%') {
8043		/* Paranoid check for percent values greater than 100 */
8044		WARN_ON(coremem > 100);
8045
8046		*percent = coremem;
8047	} else {
8048		coremem = memparse(p, &p);
8049		/* Paranoid check that UL is enough for the coremem value */
8050		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8051
8052		*core = coremem >> PAGE_SHIFT;
8053		*percent = 0UL;
8054	}
8055	return 0;
8056}
8057
8058/*
8059 * kernelcore=size sets the amount of memory for use for allocations that
8060 * cannot be reclaimed or migrated.
8061 */
8062static int __init cmdline_parse_kernelcore(char *p)
8063{
8064	/* parse kernelcore=mirror */
8065	if (parse_option_str(p, "mirror")) {
8066		mirrored_kernelcore = true;
8067		return 0;
8068	}
8069
8070	return cmdline_parse_core(p, &required_kernelcore,
8071				  &required_kernelcore_percent);
8072}
8073
8074/*
8075 * movablecore=size sets the amount of memory for use for allocations that
8076 * can be reclaimed or migrated.
8077 */
8078static int __init cmdline_parse_movablecore(char *p)
8079{
8080	return cmdline_parse_core(p, &required_movablecore,
8081				  &required_movablecore_percent);
8082}
8083
8084early_param("kernelcore", cmdline_parse_kernelcore);
8085early_param("movablecore", cmdline_parse_movablecore);
8086
8087void adjust_managed_page_count(struct page *page, long count)
8088{
8089	atomic_long_add(count, &page_zone(page)->managed_pages);
8090	totalram_pages_add(count);
8091#ifdef CONFIG_HIGHMEM
8092	if (PageHighMem(page))
8093		totalhigh_pages_add(count);
8094#endif
8095}
8096EXPORT_SYMBOL(adjust_managed_page_count);
8097
8098unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8099{
8100	void *pos;
8101	unsigned long pages = 0;
8102
8103	start = (void *)PAGE_ALIGN((unsigned long)start);
8104	end = (void *)((unsigned long)end & PAGE_MASK);
8105	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8106		struct page *page = virt_to_page(pos);
8107		void *direct_map_addr;
8108
8109		/*
8110		 * 'direct_map_addr' might be different from 'pos'
8111		 * because some architectures' virt_to_page()
8112		 * work with aliases.  Getting the direct map
8113		 * address ensures that we get a _writeable_
8114		 * alias for the memset().
8115		 */
8116		direct_map_addr = page_address(page);
8117		/*
8118		 * Perform a kasan-unchecked memset() since this memory
8119		 * has not been initialized.
8120		 */
8121		direct_map_addr = kasan_reset_tag(direct_map_addr);
8122		if ((unsigned int)poison <= 0xFF)
8123			memset(direct_map_addr, poison, PAGE_SIZE);
8124
8125		free_reserved_page(page);
8126	}
8127
8128	if (pages && s)
8129		pr_info("Freeing %s memory: %ldK\n",
8130			s, pages << (PAGE_SHIFT - 10));
8131
8132	return pages;
8133}
8134
8135void __init mem_init_print_info(void)
8136{
8137	unsigned long physpages, codesize, datasize, rosize, bss_size;
8138	unsigned long init_code_size, init_data_size;
8139
8140	physpages = get_num_physpages();
8141	codesize = _etext - _stext;
8142	datasize = _edata - _sdata;
8143	rosize = __end_rodata - __start_rodata;
8144	bss_size = __bss_stop - __bss_start;
8145	init_data_size = __init_end - __init_begin;
8146	init_code_size = _einittext - _sinittext;
8147
8148	/*
8149	 * Detect special cases and adjust section sizes accordingly:
8150	 * 1) .init.* may be embedded into .data sections
8151	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8152	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8153	 * 3) .rodata.* may be embedded into .text or .data sections.
8154	 */
8155#define adj_init_size(start, end, size, pos, adj) \
8156	do { \
8157		if (start <= pos && pos < end && size > adj) \
8158			size -= adj; \
8159	} while (0)
8160
8161	adj_init_size(__init_begin, __init_end, init_data_size,
8162		     _sinittext, init_code_size);
8163	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8164	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8165	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8166	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8167
8168#undef	adj_init_size
8169
8170	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8171#ifdef	CONFIG_HIGHMEM
8172		", %luK highmem"
8173#endif
8174		")\n",
8175		nr_free_pages() << (PAGE_SHIFT - 10),
8176		physpages << (PAGE_SHIFT - 10),
8177		codesize >> 10, datasize >> 10, rosize >> 10,
8178		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8179		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8180		totalcma_pages << (PAGE_SHIFT - 10)
8181#ifdef	CONFIG_HIGHMEM
8182		, totalhigh_pages() << (PAGE_SHIFT - 10)
8183#endif
8184		);
8185}
8186
8187/**
8188 * set_dma_reserve - set the specified number of pages reserved in the first zone
8189 * @new_dma_reserve: The number of pages to mark reserved
8190 *
8191 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8192 * In the DMA zone, a significant percentage may be consumed by kernel image
8193 * and other unfreeable allocations which can skew the watermarks badly. This
8194 * function may optionally be used to account for unfreeable pages in the
8195 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8196 * smaller per-cpu batchsize.
8197 */
8198void __init set_dma_reserve(unsigned long new_dma_reserve)
8199{
8200	dma_reserve = new_dma_reserve;
8201}
8202
8203static int page_alloc_cpu_dead(unsigned int cpu)
8204{
8205	struct zone *zone;
8206
8207	lru_add_drain_cpu(cpu);
8208	drain_pages(cpu);
8209
8210	/*
8211	 * Spill the event counters of the dead processor
8212	 * into the current processors event counters.
8213	 * This artificially elevates the count of the current
8214	 * processor.
8215	 */
8216	vm_events_fold_cpu(cpu);
8217
8218	/*
8219	 * Zero the differential counters of the dead processor
8220	 * so that the vm statistics are consistent.
8221	 *
8222	 * This is only okay since the processor is dead and cannot
8223	 * race with what we are doing.
8224	 */
8225	cpu_vm_stats_fold(cpu);
8226
8227	for_each_populated_zone(zone)
8228		zone_pcp_update(zone, 0);
8229
8230	return 0;
8231}
8232
8233static int page_alloc_cpu_online(unsigned int cpu)
 
8234{
8235	struct zone *zone;
8236
8237	for_each_populated_zone(zone)
8238		zone_pcp_update(zone, 1);
8239	return 0;
8240}
8241
8242#ifdef CONFIG_NUMA
8243int hashdist = HASHDIST_DEFAULT;
 
 
 
 
 
8244
8245static int __init set_hashdist(char *str)
8246{
8247	if (!str)
8248		return 0;
8249	hashdist = simple_strtoul(str, &str, 0);
8250	return 1;
 
 
 
 
8251}
8252__setup("hashdist=", set_hashdist);
8253#endif
8254
8255void __init page_alloc_init(void)
8256{
8257	int ret;
8258
8259#ifdef CONFIG_NUMA
8260	if (num_node_state(N_MEMORY) == 1)
8261		hashdist = 0;
8262#endif
8263
8264	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8265					"mm/page_alloc:pcp",
8266					page_alloc_cpu_online,
8267					page_alloc_cpu_dead);
8268	WARN_ON(ret < 0);
8269}
8270
8271/*
8272 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8273 *	or min_free_kbytes changes.
8274 */
8275static void calculate_totalreserve_pages(void)
8276{
8277	struct pglist_data *pgdat;
8278	unsigned long reserve_pages = 0;
8279	enum zone_type i, j;
8280
8281	for_each_online_pgdat(pgdat) {
8282
8283		pgdat->totalreserve_pages = 0;
8284
8285		for (i = 0; i < MAX_NR_ZONES; i++) {
8286			struct zone *zone = pgdat->node_zones + i;
8287			long max = 0;
8288			unsigned long managed_pages = zone_managed_pages(zone);
8289
8290			/* Find valid and maximum lowmem_reserve in the zone */
8291			for (j = i; j < MAX_NR_ZONES; j++) {
8292				if (zone->lowmem_reserve[j] > max)
8293					max = zone->lowmem_reserve[j];
8294			}
8295
8296			/* we treat the high watermark as reserved pages. */
8297			max += high_wmark_pages(zone);
8298
8299			if (max > managed_pages)
8300				max = managed_pages;
8301
8302			pgdat->totalreserve_pages += max;
8303
8304			reserve_pages += max;
8305		}
8306	}
8307	totalreserve_pages = reserve_pages;
8308}
8309
8310/*
8311 * setup_per_zone_lowmem_reserve - called whenever
8312 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8313 *	has a correct pages reserved value, so an adequate number of
8314 *	pages are left in the zone after a successful __alloc_pages().
8315 */
8316static void setup_per_zone_lowmem_reserve(void)
8317{
8318	struct pglist_data *pgdat;
8319	enum zone_type i, j;
8320
8321	for_each_online_pgdat(pgdat) {
8322		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8323			struct zone *zone = &pgdat->node_zones[i];
8324			int ratio = sysctl_lowmem_reserve_ratio[i];
8325			bool clear = !ratio || !zone_managed_pages(zone);
8326			unsigned long managed_pages = 0;
8327
8328			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8329				struct zone *upper_zone = &pgdat->node_zones[j];
8330
8331				managed_pages += zone_managed_pages(upper_zone);
8332
8333				if (clear)
8334					zone->lowmem_reserve[j] = 0;
8335				else
8336					zone->lowmem_reserve[j] = managed_pages / ratio;
 
 
 
 
8337			}
8338		}
8339	}
8340
8341	/* update totalreserve_pages */
8342	calculate_totalreserve_pages();
8343}
8344
8345static void __setup_per_zone_wmarks(void)
 
 
 
 
 
 
 
8346{
8347	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8348	unsigned long lowmem_pages = 0;
8349	struct zone *zone;
8350	unsigned long flags;
8351
8352	/* Calculate total number of !ZONE_HIGHMEM pages */
8353	for_each_zone(zone) {
8354		if (!is_highmem(zone))
8355			lowmem_pages += zone_managed_pages(zone);
8356	}
8357
8358	for_each_zone(zone) {
8359		u64 tmp;
8360
8361		spin_lock_irqsave(&zone->lock, flags);
8362		tmp = (u64)pages_min * zone_managed_pages(zone);
8363		do_div(tmp, lowmem_pages);
8364		if (is_highmem(zone)) {
8365			/*
8366			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8367			 * need highmem pages, so cap pages_min to a small
8368			 * value here.
8369			 *
8370			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8371			 * deltas control async page reclaim, and so should
8372			 * not be capped for highmem.
8373			 */
8374			unsigned long min_pages;
8375
8376			min_pages = zone_managed_pages(zone) / 1024;
8377			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8378			zone->_watermark[WMARK_MIN] = min_pages;
 
 
 
8379		} else {
8380			/*
8381			 * If it's a lowmem zone, reserve a number of pages
8382			 * proportionate to the zone's size.
8383			 */
8384			zone->_watermark[WMARK_MIN] = tmp;
8385		}
8386
8387		/*
8388		 * Set the kswapd watermarks distance according to the
8389		 * scale factor in proportion to available memory, but
8390		 * ensure a minimum size on small systems.
8391		 */
8392		tmp = max_t(u64, tmp >> 2,
8393			    mult_frac(zone_managed_pages(zone),
8394				      watermark_scale_factor, 10000));
8395
8396		zone->watermark_boost = 0;
8397		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8398		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8399
8400		spin_unlock_irqrestore(&zone->lock, flags);
8401	}
8402
8403	/* update totalreserve_pages */
8404	calculate_totalreserve_pages();
8405}
8406
8407/**
8408 * setup_per_zone_wmarks - called when min_free_kbytes changes
8409 * or when memory is hot-{added|removed}
8410 *
8411 * Ensures that the watermark[min,low,high] values for each zone are set
8412 * correctly with respect to min_free_kbytes.
8413 */
8414void setup_per_zone_wmarks(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8415{
8416	struct zone *zone;
8417	static DEFINE_SPINLOCK(lock);
8418
8419	spin_lock(&lock);
8420	__setup_per_zone_wmarks();
8421	spin_unlock(&lock);
8422
8423	/*
8424	 * The watermark size have changed so update the pcpu batch
8425	 * and high limits or the limits may be inappropriate.
8426	 */
8427	for_each_zone(zone)
8428		zone_pcp_update(zone, 0);
8429}
8430
8431/*
8432 * Initialise min_free_kbytes.
8433 *
8434 * For small machines we want it small (128k min).  For large machines
8435 * we want it large (256MB max).  But it is not linear, because network
8436 * bandwidth does not increase linearly with machine size.  We use
8437 *
8438 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8439 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8440 *
8441 * which yields
8442 *
8443 * 16MB:	512k
8444 * 32MB:	724k
8445 * 64MB:	1024k
8446 * 128MB:	1448k
8447 * 256MB:	2048k
8448 * 512MB:	2896k
8449 * 1024MB:	4096k
8450 * 2048MB:	5792k
8451 * 4096MB:	8192k
8452 * 8192MB:	11584k
8453 * 16384MB:	16384k
8454 */
8455int __meminit init_per_zone_wmark_min(void)
8456{
8457	unsigned long lowmem_kbytes;
8458	int new_min_free_kbytes;
8459
8460	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8461	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8462
8463	if (new_min_free_kbytes > user_min_free_kbytes) {
8464		min_free_kbytes = new_min_free_kbytes;
8465		if (min_free_kbytes < 128)
8466			min_free_kbytes = 128;
8467		if (min_free_kbytes > 262144)
8468			min_free_kbytes = 262144;
8469	} else {
8470		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8471				new_min_free_kbytes, user_min_free_kbytes);
8472	}
8473	setup_per_zone_wmarks();
8474	refresh_zone_stat_thresholds();
8475	setup_per_zone_lowmem_reserve();
8476
8477#ifdef CONFIG_NUMA
8478	setup_min_unmapped_ratio();
8479	setup_min_slab_ratio();
8480#endif
8481
8482	khugepaged_min_free_kbytes_update();
8483
8484	return 0;
8485}
8486postcore_initcall(init_per_zone_wmark_min)
8487
8488/*
8489 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8490 *	that we can call two helper functions whenever min_free_kbytes
8491 *	changes.
8492 */
8493int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8494		void *buffer, size_t *length, loff_t *ppos)
8495{
8496	int rc;
8497
8498	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8499	if (rc)
8500		return rc;
8501
8502	if (write) {
8503		user_min_free_kbytes = min_free_kbytes;
8504		setup_per_zone_wmarks();
8505	}
8506	return 0;
8507}
8508
8509int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8510		void *buffer, size_t *length, loff_t *ppos)
8511{
8512	int rc;
8513
8514	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8515	if (rc)
8516		return rc;
8517
8518	if (write)
8519		setup_per_zone_wmarks();
8520
8521	return 0;
8522}
8523
8524#ifdef CONFIG_NUMA
8525static void setup_min_unmapped_ratio(void)
 
8526{
8527	pg_data_t *pgdat;
8528	struct zone *zone;
8529
8530	for_each_online_pgdat(pgdat)
8531		pgdat->min_unmapped_pages = 0;
8532
8533	for_each_zone(zone)
8534		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8535						         sysctl_min_unmapped_ratio) / 100;
8536}
8537
8538
8539int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8540		void *buffer, size_t *length, loff_t *ppos)
8541{
8542	int rc;
8543
8544	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8545	if (rc)
8546		return rc;
8547
8548	setup_min_unmapped_ratio();
8549
 
8550	return 0;
8551}
8552
8553static void setup_min_slab_ratio(void)
 
8554{
8555	pg_data_t *pgdat;
8556	struct zone *zone;
8557
8558	for_each_online_pgdat(pgdat)
8559		pgdat->min_slab_pages = 0;
8560
8561	for_each_zone(zone)
8562		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8563						     sysctl_min_slab_ratio) / 100;
8564}
8565
8566int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8567		void *buffer, size_t *length, loff_t *ppos)
8568{
8569	int rc;
8570
8571	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8572	if (rc)
8573		return rc;
8574
8575	setup_min_slab_ratio();
8576
 
8577	return 0;
8578}
8579#endif
8580
8581/*
8582 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8583 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8584 *	whenever sysctl_lowmem_reserve_ratio changes.
8585 *
8586 * The reserve ratio obviously has absolutely no relation with the
8587 * minimum watermarks. The lowmem reserve ratio can only make sense
8588 * if in function of the boot time zone sizes.
8589 */
8590int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8591		void *buffer, size_t *length, loff_t *ppos)
8592{
8593	int i;
8594
8595	proc_dointvec_minmax(table, write, buffer, length, ppos);
8596
8597	for (i = 0; i < MAX_NR_ZONES; i++) {
8598		if (sysctl_lowmem_reserve_ratio[i] < 1)
8599			sysctl_lowmem_reserve_ratio[i] = 0;
8600	}
8601
8602	setup_per_zone_lowmem_reserve();
8603	return 0;
8604}
8605
8606/*
8607 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8608 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8609 * pagelist can have before it gets flushed back to buddy allocator.
8610 */
8611int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8612		int write, void *buffer, size_t *length, loff_t *ppos)
 
8613{
8614	struct zone *zone;
8615	int old_percpu_pagelist_high_fraction;
8616	int ret;
8617
8618	mutex_lock(&pcp_batch_high_lock);
8619	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8620
8621	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8622	if (!write || ret < 0)
8623		goto out;
8624
8625	/* Sanity checking to avoid pcp imbalance */
8626	if (percpu_pagelist_high_fraction &&
8627	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8628		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8629		ret = -EINVAL;
8630		goto out;
8631	}
 
 
8632
8633	/* No change? */
8634	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8635		goto out;
8636
8637	for_each_populated_zone(zone)
8638		zone_set_pageset_high_and_batch(zone, 0);
8639out:
8640	mutex_unlock(&pcp_batch_high_lock);
8641	return ret;
8642}
8643
8644#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8645/*
8646 * Returns the number of pages that arch has reserved but
8647 * is not known to alloc_large_system_hash().
8648 */
8649static unsigned long __init arch_reserved_kernel_pages(void)
8650{
8651	return 0;
 
 
 
8652}
8653#endif
8654
8655/*
8656 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8657 * machines. As memory size is increased the scale is also increased but at
8658 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8659 * quadruples the scale is increased by one, which means the size of hash table
8660 * only doubles, instead of quadrupling as well.
8661 * Because 32-bit systems cannot have large physical memory, where this scaling
8662 * makes sense, it is disabled on such platforms.
8663 */
8664#if __BITS_PER_LONG > 32
8665#define ADAPT_SCALE_BASE	(64ul << 30)
8666#define ADAPT_SCALE_SHIFT	2
8667#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8668#endif
8669
8670/*
8671 * allocate a large system hash table from bootmem
8672 * - it is assumed that the hash table must contain an exact power-of-2
8673 *   quantity of entries
8674 * - limit is the number of hash buckets, not the total allocation size
8675 */
8676void *__init alloc_large_system_hash(const char *tablename,
8677				     unsigned long bucketsize,
8678				     unsigned long numentries,
8679				     int scale,
8680				     int flags,
8681				     unsigned int *_hash_shift,
8682				     unsigned int *_hash_mask,
8683				     unsigned long low_limit,
8684				     unsigned long high_limit)
8685{
8686	unsigned long long max = high_limit;
8687	unsigned long log2qty, size;
8688	void *table = NULL;
8689	gfp_t gfp_flags;
8690	bool virt;
8691	bool huge;
8692
8693	/* allow the kernel cmdline to have a say */
8694	if (!numentries) {
8695		/* round applicable memory size up to nearest megabyte */
8696		numentries = nr_kernel_pages;
8697		numentries -= arch_reserved_kernel_pages();
8698
8699		/* It isn't necessary when PAGE_SIZE >= 1MB */
8700		if (PAGE_SHIFT < 20)
8701			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8702
8703#if __BITS_PER_LONG > 32
8704		if (!high_limit) {
8705			unsigned long adapt;
8706
8707			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8708			     adapt <<= ADAPT_SCALE_SHIFT)
8709				scale++;
8710		}
8711#endif
8712
8713		/* limit to 1 bucket per 2^scale bytes of low memory */
8714		if (scale > PAGE_SHIFT)
8715			numentries >>= (scale - PAGE_SHIFT);
8716		else
8717			numentries <<= (PAGE_SHIFT - scale);
8718
8719		/* Make sure we've got at least a 0-order allocation.. */
8720		if (unlikely(flags & HASH_SMALL)) {
8721			/* Makes no sense without HASH_EARLY */
8722			WARN_ON(!(flags & HASH_EARLY));
8723			if (!(numentries >> *_hash_shift)) {
8724				numentries = 1UL << *_hash_shift;
8725				BUG_ON(!numentries);
8726			}
8727		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8728			numentries = PAGE_SIZE / bucketsize;
8729	}
8730	numentries = roundup_pow_of_two(numentries);
8731
8732	/* limit allocation size to 1/16 total memory by default */
8733	if (max == 0) {
8734		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8735		do_div(max, bucketsize);
8736	}
8737	max = min(max, 0x80000000ULL);
8738
8739	if (numentries < low_limit)
8740		numentries = low_limit;
8741	if (numentries > max)
8742		numentries = max;
8743
8744	log2qty = ilog2(numentries);
8745
8746	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8747	do {
8748		virt = false;
8749		size = bucketsize << log2qty;
8750		if (flags & HASH_EARLY) {
8751			if (flags & HASH_ZERO)
8752				table = memblock_alloc(size, SMP_CACHE_BYTES);
8753			else
8754				table = memblock_alloc_raw(size,
8755							   SMP_CACHE_BYTES);
8756		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8757			table = __vmalloc(size, gfp_flags);
8758			virt = true;
8759			huge = is_vm_area_hugepages(table);
8760		} else {
8761			/*
8762			 * If bucketsize is not a power-of-two, we may free
8763			 * some pages at the end of hash table which
8764			 * alloc_pages_exact() automatically does
8765			 */
8766			table = alloc_pages_exact(size, gfp_flags);
8767			kmemleak_alloc(table, size, 1, gfp_flags);
 
 
8768		}
8769	} while (!table && size > PAGE_SIZE && --log2qty);
8770
8771	if (!table)
8772		panic("Failed to allocate %s hash table\n", tablename);
8773
8774	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8775		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8776		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
 
 
8777
8778	if (_hash_shift)
8779		*_hash_shift = log2qty;
8780	if (_hash_mask)
8781		*_hash_mask = (1 << log2qty) - 1;
8782
8783	return table;
8784}
8785
8786/*
8787 * This function checks whether pageblock includes unmovable pages or not.
8788 *
8789 * PageLRU check without isolation or lru_lock could race so that
8790 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8791 * check without lock_page also may miss some movable non-lru pages at
8792 * race condition. So you can't expect this function should be exact.
8793 *
8794 * Returns a page without holding a reference. If the caller wants to
8795 * dereference that page (e.g., dumping), it has to make sure that it
8796 * cannot get removed (e.g., via memory unplug) concurrently.
8797 *
8798 */
8799struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8800				 int migratetype, int flags)
8801{
8802	unsigned long iter = 0;
8803	unsigned long pfn = page_to_pfn(page);
8804	unsigned long offset = pfn % pageblock_nr_pages;
8805
8806	if (is_migrate_cma_page(page)) {
8807		/*
8808		 * CMA allocations (alloc_contig_range) really need to mark
8809		 * isolate CMA pageblocks even when they are not movable in fact
8810		 * so consider them movable here.
8811		 */
8812		if (is_migrate_cma(migratetype))
8813			return NULL;
8814
8815		return page;
8816	}
8817
8818	for (; iter < pageblock_nr_pages - offset; iter++) {
8819		if (!pfn_valid_within(pfn + iter))
8820			continue;
8821
8822		page = pfn_to_page(pfn + iter);
8823
8824		/*
8825		 * Both, bootmem allocations and memory holes are marked
8826		 * PG_reserved and are unmovable. We can even have unmovable
8827		 * allocations inside ZONE_MOVABLE, for example when
8828		 * specifying "movablecore".
8829		 */
8830		if (PageReserved(page))
8831			return page;
8832
8833		/*
8834		 * If the zone is movable and we have ruled out all reserved
8835		 * pages then it should be reasonably safe to assume the rest
8836		 * is movable.
8837		 */
8838		if (zone_idx(zone) == ZONE_MOVABLE)
8839			continue;
8840
8841		/*
8842		 * Hugepages are not in LRU lists, but they're movable.
8843		 * THPs are on the LRU, but need to be counted as #small pages.
8844		 * We need not scan over tail pages because we don't
8845		 * handle each tail page individually in migration.
8846		 */
8847		if (PageHuge(page) || PageTransCompound(page)) {
8848			struct page *head = compound_head(page);
8849			unsigned int skip_pages;
8850
8851			if (PageHuge(page)) {
8852				if (!hugepage_migration_supported(page_hstate(head)))
8853					return page;
8854			} else if (!PageLRU(head) && !__PageMovable(head)) {
8855				return page;
8856			}
8857
8858			skip_pages = compound_nr(head) - (page - head);
8859			iter += skip_pages - 1;
8860			continue;
8861		}
8862
8863		/*
8864		 * We can't use page_count without pin a page
8865		 * because another CPU can free compound page.
8866		 * This check already skips compound tails of THP
8867		 * because their page->_refcount is zero at all time.
8868		 */
8869		if (!page_ref_count(page)) {
8870			if (PageBuddy(page))
8871				iter += (1 << buddy_order(page)) - 1;
8872			continue;
8873		}
8874
8875		/*
8876		 * The HWPoisoned page may be not in buddy system, and
8877		 * page_count() is not 0.
8878		 */
8879		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8880			continue;
8881
8882		/*
8883		 * We treat all PageOffline() pages as movable when offlining
8884		 * to give drivers a chance to decrement their reference count
8885		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8886		 * can be offlined as there are no direct references anymore.
8887		 * For actually unmovable PageOffline() where the driver does
8888		 * not support this, we will fail later when trying to actually
8889		 * move these pages that still have a reference count > 0.
8890		 * (false negatives in this function only)
8891		 */
8892		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8893			continue;
8894
8895		if (__PageMovable(page) || PageLRU(page))
8896			continue;
8897
8898		/*
8899		 * If there are RECLAIMABLE pages, we need to check
8900		 * it.  But now, memory offline itself doesn't call
8901		 * shrink_node_slabs() and it still to be fixed.
8902		 */
8903		return page;
8904	}
8905	return NULL;
8906}
8907
8908#ifdef CONFIG_CONTIG_ALLOC
8909static unsigned long pfn_max_align_down(unsigned long pfn)
8910{
8911	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8912			     pageblock_nr_pages) - 1);
 
 
 
 
 
8913}
8914
8915static unsigned long pfn_max_align_up(unsigned long pfn)
 
 
 
 
 
 
 
 
8916{
8917	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8918				pageblock_nr_pages));
8919}
 
 
8920
8921#if defined(CONFIG_DYNAMIC_DEBUG) || \
8922	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8923/* Usage: See admin-guide/dynamic-debug-howto.rst */
8924static void alloc_contig_dump_pages(struct list_head *page_list)
8925{
8926	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8927
8928	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8929		struct page *page;
 
8930
8931		dump_stack();
8932		list_for_each_entry(page, page_list, lru)
8933			dump_page(page, "migration failure");
8934	}
8935}
8936#else
8937static inline void alloc_contig_dump_pages(struct list_head *page_list)
8938{
8939}
8940#endif
8941
8942/* [start, end) must belong to a single zone. */
8943static int __alloc_contig_migrate_range(struct compact_control *cc,
8944					unsigned long start, unsigned long end)
 
 
 
 
 
 
8945{
8946	/* This function is based on compact_zone() from compaction.c. */
8947	unsigned int nr_reclaimed;
8948	unsigned long pfn = start;
8949	unsigned int tries = 0;
8950	int ret = 0;
8951	struct migration_target_control mtc = {
8952		.nid = zone_to_nid(cc->zone),
8953		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8954	};
8955
8956	lru_cache_disable();
8957
8958	while (pfn < end || !list_empty(&cc->migratepages)) {
8959		if (fatal_signal_pending(current)) {
8960			ret = -EINTR;
8961			break;
8962		}
8963
8964		if (list_empty(&cc->migratepages)) {
8965			cc->nr_migratepages = 0;
8966			ret = isolate_migratepages_range(cc, pfn, end);
8967			if (ret && ret != -EAGAIN)
8968				break;
8969			pfn = cc->migrate_pfn;
8970			tries = 0;
8971		} else if (++tries == 5) {
8972			ret = -EBUSY;
8973			break;
8974		}
8975
8976		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8977							&cc->migratepages);
8978		cc->nr_migratepages -= nr_reclaimed;
8979
8980		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8981				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8982
8983		/*
8984		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8985		 * to retry again over this error, so do the same here.
8986		 */
8987		if (ret == -ENOMEM)
8988			break;
8989	}
8990
8991	lru_cache_enable();
8992	if (ret < 0) {
8993		if (ret == -EBUSY)
8994			alloc_contig_dump_pages(&cc->migratepages);
8995		putback_movable_pages(&cc->migratepages);
8996		return ret;
8997	}
8998	return 0;
8999}
9000
9001/**
9002 * alloc_contig_range() -- tries to allocate given range of pages
9003 * @start:	start PFN to allocate
9004 * @end:	one-past-the-last PFN to allocate
9005 * @migratetype:	migratetype of the underlying pageblocks (either
9006 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9007 *			in range must have the same migratetype and it must
9008 *			be either of the two.
9009 * @gfp_mask:	GFP mask to use during compaction
9010 *
9011 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9012 * aligned.  The PFN range must belong to a single zone.
9013 *
9014 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9015 * pageblocks in the range.  Once isolated, the pageblocks should not
9016 * be modified by others.
9017 *
9018 * Return: zero on success or negative error code.  On success all
9019 * pages which PFN is in [start, end) are allocated for the caller and
9020 * need to be freed with free_contig_range().
9021 */
9022int alloc_contig_range(unsigned long start, unsigned long end,
9023		       unsigned migratetype, gfp_t gfp_mask)
 
9024{
9025	unsigned long outer_start, outer_end;
9026	unsigned int order;
9027	int ret = 0;
9028
9029	struct compact_control cc = {
9030		.nr_migratepages = 0,
9031		.order = -1,
9032		.zone = page_zone(pfn_to_page(start)),
9033		.mode = MIGRATE_SYNC,
9034		.ignore_skip_hint = true,
9035		.no_set_skip_hint = true,
9036		.gfp_mask = current_gfp_context(gfp_mask),
9037		.alloc_contig = true,
9038	};
9039	INIT_LIST_HEAD(&cc.migratepages);
9040
9041	/*
9042	 * What we do here is we mark all pageblocks in range as
9043	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9044	 * have different sizes, and due to the way page allocator
9045	 * work, we align the range to biggest of the two pages so
9046	 * that page allocator won't try to merge buddies from
9047	 * different pageblocks and change MIGRATE_ISOLATE to some
9048	 * other migration type.
9049	 *
9050	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9051	 * migrate the pages from an unaligned range (ie. pages that
9052	 * we are interested in).  This will put all the pages in
9053	 * range back to page allocator as MIGRATE_ISOLATE.
9054	 *
9055	 * When this is done, we take the pages in range from page
9056	 * allocator removing them from the buddy system.  This way
9057	 * page allocator will never consider using them.
9058	 *
9059	 * This lets us mark the pageblocks back as
9060	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9061	 * aligned range but not in the unaligned, original range are
9062	 * put back to page allocator so that buddy can use them.
9063	 */
 
 
9064
9065	ret = start_isolate_page_range(pfn_max_align_down(start),
9066				       pfn_max_align_up(end), migratetype, 0);
9067	if (ret)
9068		return ret;
9069
9070	drain_all_pages(cc.zone);
 
 
9071
9072	/*
9073	 * In case of -EBUSY, we'd like to know which page causes problem.
9074	 * So, just fall through. test_pages_isolated() has a tracepoint
9075	 * which will report the busy page.
9076	 *
9077	 * It is possible that busy pages could become available before
9078	 * the call to test_pages_isolated, and the range will actually be
9079	 * allocated.  So, if we fall through be sure to clear ret so that
9080	 * -EBUSY is not accidentally used or returned to caller.
9081	 */
9082	ret = __alloc_contig_migrate_range(&cc, start, end);
9083	if (ret && ret != -EBUSY)
9084		goto done;
9085	ret = 0;
9086
9087	/*
9088	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9089	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9090	 * more, all pages in [start, end) are free in page allocator.
9091	 * What we are going to do is to allocate all pages from
9092	 * [start, end) (that is remove them from page allocator).
9093	 *
9094	 * The only problem is that pages at the beginning and at the
9095	 * end of interesting range may be not aligned with pages that
9096	 * page allocator holds, ie. they can be part of higher order
9097	 * pages.  Because of this, we reserve the bigger range and
9098	 * once this is done free the pages we are not interested in.
9099	 *
9100	 * We don't have to hold zone->lock here because the pages are
9101	 * isolated thus they won't get removed from buddy.
9102	 */
9103
9104	order = 0;
9105	outer_start = start;
9106	while (!PageBuddy(pfn_to_page(outer_start))) {
9107		if (++order >= MAX_ORDER) {
9108			outer_start = start;
9109			break;
9110		}
9111		outer_start &= ~0UL << order;
9112	}
9113
9114	if (outer_start != start) {
9115		order = buddy_order(pfn_to_page(outer_start));
9116
9117		/*
9118		 * outer_start page could be small order buddy page and
9119		 * it doesn't include start page. Adjust outer_start
9120		 * in this case to report failed page properly
9121		 * on tracepoint in test_pages_isolated()
9122		 */
9123		if (outer_start + (1UL << order) <= start)
9124			outer_start = start;
9125	}
9126
9127	/* Make sure the range is really isolated. */
9128	if (test_pages_isolated(outer_start, end, 0)) {
9129		ret = -EBUSY;
9130		goto done;
9131	}
9132
9133	/* Grab isolated pages from freelists. */
9134	outer_end = isolate_freepages_range(&cc, outer_start, end);
9135	if (!outer_end) {
9136		ret = -EBUSY;
9137		goto done;
9138	}
9139
9140	/* Free head and tail (if any) */
9141	if (start != outer_start)
9142		free_contig_range(outer_start, start - outer_start);
9143	if (end != outer_end)
9144		free_contig_range(end, outer_end - end);
9145
9146done:
9147	undo_isolate_page_range(pfn_max_align_down(start),
9148				pfn_max_align_up(end), migratetype);
9149	return ret;
9150}
9151EXPORT_SYMBOL(alloc_contig_range);
9152
9153static int __alloc_contig_pages(unsigned long start_pfn,
9154				unsigned long nr_pages, gfp_t gfp_mask)
9155{
9156	unsigned long end_pfn = start_pfn + nr_pages;
9157
9158	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9159				  gfp_mask);
9160}
9161
9162static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9163				   unsigned long nr_pages)
9164{
9165	unsigned long i, end_pfn = start_pfn + nr_pages;
9166	struct page *page;
9167
9168	for (i = start_pfn; i < end_pfn; i++) {
9169		page = pfn_to_online_page(i);
9170		if (!page)
9171			return false;
9172
9173		if (page_zone(page) != z)
9174			return false;
9175
9176		if (PageReserved(page))
9177			return false;
9178	}
9179	return true;
9180}
9181
9182static bool zone_spans_last_pfn(const struct zone *zone,
9183				unsigned long start_pfn, unsigned long nr_pages)
9184{
9185	unsigned long last_pfn = start_pfn + nr_pages - 1;
9186
9187	return zone_spans_pfn(zone, last_pfn);
9188}
9189
9190/**
9191 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9192 * @nr_pages:	Number of contiguous pages to allocate
9193 * @gfp_mask:	GFP mask to limit search and used during compaction
9194 * @nid:	Target node
9195 * @nodemask:	Mask for other possible nodes
9196 *
9197 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9198 * on an applicable zonelist to find a contiguous pfn range which can then be
9199 * tried for allocation with alloc_contig_range(). This routine is intended
9200 * for allocation requests which can not be fulfilled with the buddy allocator.
9201 *
9202 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9203 * power of two then the alignment is guaranteed to be to the given nr_pages
9204 * (e.g. 1GB request would be aligned to 1GB).
9205 *
9206 * Allocated pages can be freed with free_contig_range() or by manually calling
9207 * __free_page() on each allocated page.
9208 *
9209 * Return: pointer to contiguous pages on success, or NULL if not successful.
9210 */
9211struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9212				int nid, nodemask_t *nodemask)
9213{
9214	unsigned long ret, pfn, flags;
9215	struct zonelist *zonelist;
9216	struct zone *zone;
9217	struct zoneref *z;
 
 
 
9218
9219	zonelist = node_zonelist(nid, gfp_mask);
9220	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9221					gfp_zone(gfp_mask), nodemask) {
9222		spin_lock_irqsave(&zone->lock, flags);
9223
9224		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9225		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9226			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9227				/*
9228				 * We release the zone lock here because
9229				 * alloc_contig_range() will also lock the zone
9230				 * at some point. If there's an allocation
9231				 * spinning on this lock, it may win the race
9232				 * and cause alloc_contig_range() to fail...
9233				 */
9234				spin_unlock_irqrestore(&zone->lock, flags);
9235				ret = __alloc_contig_pages(pfn, nr_pages,
9236							gfp_mask);
9237				if (!ret)
9238					return pfn_to_page(pfn);
9239				spin_lock_irqsave(&zone->lock, flags);
9240			}
9241			pfn += nr_pages;
9242		}
9243		spin_unlock_irqrestore(&zone->lock, flags);
9244	}
9245	return NULL;
9246}
9247#endif /* CONFIG_CONTIG_ALLOC */
9248
9249void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9250{
9251	unsigned long count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9252
9253	for (; nr_pages--; pfn++) {
9254		struct page *page = pfn_to_page(pfn);
 
 
9255
9256		count += page_count(page) != 1;
9257		__free_page(page);
 
 
9258	}
9259	WARN(count != 0, "%lu pages are still in use!\n", count);
9260}
9261EXPORT_SYMBOL(free_contig_range);
9262
9263/*
9264 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9265 * page high values need to be recalculated.
9266 */
9267void zone_pcp_update(struct zone *zone, int cpu_online)
9268{
9269	mutex_lock(&pcp_batch_high_lock);
9270	zone_set_pageset_high_and_batch(zone, cpu_online);
9271	mutex_unlock(&pcp_batch_high_lock);
9272}
9273
9274/*
9275 * Effectively disable pcplists for the zone by setting the high limit to 0
9276 * and draining all cpus. A concurrent page freeing on another CPU that's about
9277 * to put the page on pcplist will either finish before the drain and the page
9278 * will be drained, or observe the new high limit and skip the pcplist.
9279 *
9280 * Must be paired with a call to zone_pcp_enable().
9281 */
9282void zone_pcp_disable(struct zone *zone)
9283{
9284	mutex_lock(&pcp_batch_high_lock);
9285	__zone_set_pageset_high_and_batch(zone, 0, 1);
9286	__drain_all_pages(zone, true);
9287}
9288
9289void zone_pcp_enable(struct zone *zone)
9290{
9291	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9292	mutex_unlock(&pcp_batch_high_lock);
9293}
9294
9295void zone_pcp_reset(struct zone *zone)
9296{
9297	int cpu;
9298	struct per_cpu_zonestat *pzstats;
9299
9300	if (zone->per_cpu_pageset != &boot_pageset) {
9301		for_each_online_cpu(cpu) {
9302			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9303			drain_zonestat(zone, pzstats);
9304		}
9305		free_percpu(zone->per_cpu_pageset);
9306		free_percpu(zone->per_cpu_zonestats);
9307		zone->per_cpu_pageset = &boot_pageset;
9308		zone->per_cpu_zonestats = &boot_zonestats;
9309	}
9310}
9311
9312#ifdef CONFIG_MEMORY_HOTREMOVE
9313/*
9314 * All pages in the range must be in a single zone, must not contain holes,
9315 * must span full sections, and must be isolated before calling this function.
9316 */
9317void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 
9318{
9319	unsigned long pfn = start_pfn;
9320	struct page *page;
9321	struct zone *zone;
9322	unsigned int order;
 
9323	unsigned long flags;
9324
9325	offline_mem_sections(pfn, end_pfn);
 
 
 
 
9326	zone = page_zone(pfn_to_page(pfn));
9327	spin_lock_irqsave(&zone->lock, flags);
 
9328	while (pfn < end_pfn) {
9329		page = pfn_to_page(pfn);
9330		/*
9331		 * The HWPoisoned page may be not in buddy system, and
9332		 * page_count() is not 0.
9333		 */
9334		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9335			pfn++;
9336			continue;
9337		}
9338		/*
9339		 * At this point all remaining PageOffline() pages have a
9340		 * reference count of 0 and can simply be skipped.
9341		 */
9342		if (PageOffline(page)) {
9343			BUG_ON(page_count(page));
9344			BUG_ON(PageBuddy(page));
9345			pfn++;
9346			continue;
9347		}
9348
9349		BUG_ON(page_count(page));
9350		BUG_ON(!PageBuddy(page));
9351		order = buddy_order(page);
9352		del_page_from_free_list(page, zone, order);
 
 
 
 
 
 
 
 
 
 
9353		pfn += (1 << order);
9354	}
9355	spin_unlock_irqrestore(&zone->lock, flags);
9356}
9357#endif
9358
 
9359bool is_free_buddy_page(struct page *page)
9360{
9361	struct zone *zone = page_zone(page);
9362	unsigned long pfn = page_to_pfn(page);
9363	unsigned long flags;
9364	unsigned int order;
9365
9366	spin_lock_irqsave(&zone->lock, flags);
9367	for (order = 0; order < MAX_ORDER; order++) {
9368		struct page *page_head = page - (pfn & ((1 << order) - 1));
9369
9370		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9371			break;
9372	}
9373	spin_unlock_irqrestore(&zone->lock, flags);
9374
9375	return order < MAX_ORDER;
9376}
 
9377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9378#ifdef CONFIG_MEMORY_FAILURE
9379/*
9380 * Break down a higher-order page in sub-pages, and keep our target out of
9381 * buddy allocator.
9382 */
9383static void break_down_buddy_pages(struct zone *zone, struct page *page,
9384				   struct page *target, int low, int high,
9385				   int migratetype)
9386{
9387	unsigned long size = 1 << high;
9388	struct page *current_buddy, *next_page;
 
 
 
9389
9390	while (high > low) {
9391		high--;
9392		size >>= 1;
9393
9394		if (target >= &page[size]) {
9395			next_page = page + size;
9396			current_buddy = page;
9397		} else {
9398			next_page = page;
9399			current_buddy = page + size;
9400		}
9401
9402		if (set_page_guard(zone, current_buddy, high, migratetype))
 
9403			continue;
9404
9405		if (current_buddy != target) {
9406			add_to_free_list(current_buddy, zone, high, migratetype);
9407			set_buddy_order(current_buddy, high);
9408			page = next_page;
9409		}
9410	}
 
 
 
 
 
 
9411}
9412
9413/*
9414 * Take a page that will be marked as poisoned off the buddy allocator.
9415 */
9416bool take_page_off_buddy(struct page *page)
9417{
9418	struct zone *zone = page_zone(page);
9419	unsigned long pfn = page_to_pfn(page);
9420	unsigned long flags;
9421	unsigned int order;
9422	bool ret = false;
9423
9424	spin_lock_irqsave(&zone->lock, flags);
9425	for (order = 0; order < MAX_ORDER; order++) {
9426		struct page *page_head = page - (pfn & ((1 << order) - 1));
9427		int page_order = buddy_order(page_head);
9428
9429		if (PageBuddy(page_head) && page_order >= order) {
9430			unsigned long pfn_head = page_to_pfn(page_head);
9431			int migratetype = get_pfnblock_migratetype(page_head,
9432								   pfn_head);
9433
9434			del_page_from_free_list(page_head, zone, page_order);
9435			break_down_buddy_pages(zone, page_head, page, 0,
9436						page_order, migratetype);
9437			if (!is_migrate_isolate(migratetype))
9438				__mod_zone_freepage_state(zone, -1, migratetype);
9439			ret = true;
9440			break;
9441		}
9442		if (page_count(page_head) > 0)
9443			break;
9444	}
9445	spin_unlock_irqrestore(&zone->lock, flags);
9446	return ret;
9447}
9448#endif