Loading...
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20#include <linux/oom.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/gfp.h>
24#include <linux/sched.h>
25#include <linux/swap.h>
26#include <linux/timex.h>
27#include <linux/jiffies.h>
28#include <linux/cpuset.h>
29#include <linux/module.h>
30#include <linux/notifier.h>
31#include <linux/memcontrol.h>
32#include <linux/mempolicy.h>
33#include <linux/security.h>
34#include <linux/ptrace.h>
35
36int sysctl_panic_on_oom;
37int sysctl_oom_kill_allocating_task;
38int sysctl_oom_dump_tasks = 1;
39static DEFINE_SPINLOCK(zone_scan_lock);
40
41/**
42 * test_set_oom_score_adj() - set current's oom_score_adj and return old value
43 * @new_val: new oom_score_adj value
44 *
45 * Sets the oom_score_adj value for current to @new_val with proper
46 * synchronization and returns the old value. Usually used to temporarily
47 * set a value, save the old value in the caller, and then reinstate it later.
48 */
49int test_set_oom_score_adj(int new_val)
50{
51 struct sighand_struct *sighand = current->sighand;
52 int old_val;
53
54 spin_lock_irq(&sighand->siglock);
55 old_val = current->signal->oom_score_adj;
56 if (new_val != old_val) {
57 if (new_val == OOM_SCORE_ADJ_MIN)
58 atomic_inc(¤t->mm->oom_disable_count);
59 else if (old_val == OOM_SCORE_ADJ_MIN)
60 atomic_dec(¤t->mm->oom_disable_count);
61 current->signal->oom_score_adj = new_val;
62 }
63 spin_unlock_irq(&sighand->siglock);
64
65 return old_val;
66}
67
68#ifdef CONFIG_NUMA
69/**
70 * has_intersects_mems_allowed() - check task eligiblity for kill
71 * @tsk: task struct of which task to consider
72 * @mask: nodemask passed to page allocator for mempolicy ooms
73 *
74 * Task eligibility is determined by whether or not a candidate task, @tsk,
75 * shares the same mempolicy nodes as current if it is bound by such a policy
76 * and whether or not it has the same set of allowed cpuset nodes.
77 */
78static bool has_intersects_mems_allowed(struct task_struct *tsk,
79 const nodemask_t *mask)
80{
81 struct task_struct *start = tsk;
82
83 do {
84 if (mask) {
85 /*
86 * If this is a mempolicy constrained oom, tsk's
87 * cpuset is irrelevant. Only return true if its
88 * mempolicy intersects current, otherwise it may be
89 * needlessly killed.
90 */
91 if (mempolicy_nodemask_intersects(tsk, mask))
92 return true;
93 } else {
94 /*
95 * This is not a mempolicy constrained oom, so only
96 * check the mems of tsk's cpuset.
97 */
98 if (cpuset_mems_allowed_intersects(current, tsk))
99 return true;
100 }
101 } while_each_thread(start, tsk);
102
103 return false;
104}
105#else
106static bool has_intersects_mems_allowed(struct task_struct *tsk,
107 const nodemask_t *mask)
108{
109 return true;
110}
111#endif /* CONFIG_NUMA */
112
113/*
114 * The process p may have detached its own ->mm while exiting or through
115 * use_mm(), but one or more of its subthreads may still have a valid
116 * pointer. Return p, or any of its subthreads with a valid ->mm, with
117 * task_lock() held.
118 */
119struct task_struct *find_lock_task_mm(struct task_struct *p)
120{
121 struct task_struct *t = p;
122
123 do {
124 task_lock(t);
125 if (likely(t->mm))
126 return t;
127 task_unlock(t);
128 } while_each_thread(p, t);
129
130 return NULL;
131}
132
133/* return true if the task is not adequate as candidate victim task. */
134static bool oom_unkillable_task(struct task_struct *p,
135 const struct mem_cgroup *mem, const nodemask_t *nodemask)
136{
137 if (is_global_init(p))
138 return true;
139 if (p->flags & PF_KTHREAD)
140 return true;
141
142 /* When mem_cgroup_out_of_memory() and p is not member of the group */
143 if (mem && !task_in_mem_cgroup(p, mem))
144 return true;
145
146 /* p may not have freeable memory in nodemask */
147 if (!has_intersects_mems_allowed(p, nodemask))
148 return true;
149
150 return false;
151}
152
153/**
154 * oom_badness - heuristic function to determine which candidate task to kill
155 * @p: task struct of which task we should calculate
156 * @totalpages: total present RAM allowed for page allocation
157 *
158 * The heuristic for determining which task to kill is made to be as simple and
159 * predictable as possible. The goal is to return the highest value for the
160 * task consuming the most memory to avoid subsequent oom failures.
161 */
162unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
163 const nodemask_t *nodemask, unsigned long totalpages)
164{
165 int points;
166
167 if (oom_unkillable_task(p, mem, nodemask))
168 return 0;
169
170 p = find_lock_task_mm(p);
171 if (!p)
172 return 0;
173
174 /*
175 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
176 * so the entire heuristic doesn't need to be executed for something
177 * that cannot be killed.
178 */
179 if (atomic_read(&p->mm->oom_disable_count)) {
180 task_unlock(p);
181 return 0;
182 }
183
184 /*
185 * The memory controller may have a limit of 0 bytes, so avoid a divide
186 * by zero, if necessary.
187 */
188 if (!totalpages)
189 totalpages = 1;
190
191 /*
192 * The baseline for the badness score is the proportion of RAM that each
193 * task's rss, pagetable and swap space use.
194 */
195 points = get_mm_rss(p->mm) + p->mm->nr_ptes;
196 points += get_mm_counter(p->mm, MM_SWAPENTS);
197
198 points *= 1000;
199 points /= totalpages;
200 task_unlock(p);
201
202 /*
203 * Root processes get 3% bonus, just like the __vm_enough_memory()
204 * implementation used by LSMs.
205 */
206 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
207 points -= 30;
208
209 /*
210 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
211 * either completely disable oom killing or always prefer a certain
212 * task.
213 */
214 points += p->signal->oom_score_adj;
215
216 /*
217 * Never return 0 for an eligible task that may be killed since it's
218 * possible that no single user task uses more than 0.1% of memory and
219 * no single admin tasks uses more than 3.0%.
220 */
221 if (points <= 0)
222 return 1;
223 return (points < 1000) ? points : 1000;
224}
225
226/*
227 * Determine the type of allocation constraint.
228 */
229#ifdef CONFIG_NUMA
230static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
231 gfp_t gfp_mask, nodemask_t *nodemask,
232 unsigned long *totalpages)
233{
234 struct zone *zone;
235 struct zoneref *z;
236 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
237 bool cpuset_limited = false;
238 int nid;
239
240 /* Default to all available memory */
241 *totalpages = totalram_pages + total_swap_pages;
242
243 if (!zonelist)
244 return CONSTRAINT_NONE;
245 /*
246 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
247 * to kill current.We have to random task kill in this case.
248 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
249 */
250 if (gfp_mask & __GFP_THISNODE)
251 return CONSTRAINT_NONE;
252
253 /*
254 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
255 * the page allocator means a mempolicy is in effect. Cpuset policy
256 * is enforced in get_page_from_freelist().
257 */
258 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
259 *totalpages = total_swap_pages;
260 for_each_node_mask(nid, *nodemask)
261 *totalpages += node_spanned_pages(nid);
262 return CONSTRAINT_MEMORY_POLICY;
263 }
264
265 /* Check this allocation failure is caused by cpuset's wall function */
266 for_each_zone_zonelist_nodemask(zone, z, zonelist,
267 high_zoneidx, nodemask)
268 if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
269 cpuset_limited = true;
270
271 if (cpuset_limited) {
272 *totalpages = total_swap_pages;
273 for_each_node_mask(nid, cpuset_current_mems_allowed)
274 *totalpages += node_spanned_pages(nid);
275 return CONSTRAINT_CPUSET;
276 }
277 return CONSTRAINT_NONE;
278}
279#else
280static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
281 gfp_t gfp_mask, nodemask_t *nodemask,
282 unsigned long *totalpages)
283{
284 *totalpages = totalram_pages + total_swap_pages;
285 return CONSTRAINT_NONE;
286}
287#endif
288
289/*
290 * Simple selection loop. We chose the process with the highest
291 * number of 'points'. We expect the caller will lock the tasklist.
292 *
293 * (not docbooked, we don't want this one cluttering up the manual)
294 */
295static struct task_struct *select_bad_process(unsigned int *ppoints,
296 unsigned long totalpages, struct mem_cgroup *mem,
297 const nodemask_t *nodemask)
298{
299 struct task_struct *g, *p;
300 struct task_struct *chosen = NULL;
301 *ppoints = 0;
302
303 do_each_thread(g, p) {
304 unsigned int points;
305
306 if (p->exit_state)
307 continue;
308 if (oom_unkillable_task(p, mem, nodemask))
309 continue;
310
311 /*
312 * This task already has access to memory reserves and is
313 * being killed. Don't allow any other task access to the
314 * memory reserve.
315 *
316 * Note: this may have a chance of deadlock if it gets
317 * blocked waiting for another task which itself is waiting
318 * for memory. Is there a better alternative?
319 */
320 if (test_tsk_thread_flag(p, TIF_MEMDIE))
321 return ERR_PTR(-1UL);
322 if (!p->mm)
323 continue;
324
325 if (p->flags & PF_EXITING) {
326 /*
327 * If p is the current task and is in the process of
328 * releasing memory, we allow the "kill" to set
329 * TIF_MEMDIE, which will allow it to gain access to
330 * memory reserves. Otherwise, it may stall forever.
331 *
332 * The loop isn't broken here, however, in case other
333 * threads are found to have already been oom killed.
334 */
335 if (p == current) {
336 chosen = p;
337 *ppoints = 1000;
338 } else {
339 /*
340 * If this task is not being ptraced on exit,
341 * then wait for it to finish before killing
342 * some other task unnecessarily.
343 */
344 if (!(p->group_leader->ptrace & PT_TRACE_EXIT))
345 return ERR_PTR(-1UL);
346 }
347 }
348
349 points = oom_badness(p, mem, nodemask, totalpages);
350 if (points > *ppoints) {
351 chosen = p;
352 *ppoints = points;
353 }
354 } while_each_thread(g, p);
355
356 return chosen;
357}
358
359/**
360 * dump_tasks - dump current memory state of all system tasks
361 * @mem: current's memory controller, if constrained
362 * @nodemask: nodemask passed to page allocator for mempolicy ooms
363 *
364 * Dumps the current memory state of all eligible tasks. Tasks not in the same
365 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
366 * are not shown.
367 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
368 * value, oom_score_adj value, and name.
369 *
370 * Call with tasklist_lock read-locked.
371 */
372static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
373{
374 struct task_struct *p;
375 struct task_struct *task;
376
377 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n");
378 for_each_process(p) {
379 if (oom_unkillable_task(p, mem, nodemask))
380 continue;
381
382 task = find_lock_task_mm(p);
383 if (!task) {
384 /*
385 * This is a kthread or all of p's threads have already
386 * detached their mm's. There's no need to report
387 * them; they can't be oom killed anyway.
388 */
389 continue;
390 }
391
392 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n",
393 task->pid, task_uid(task), task->tgid,
394 task->mm->total_vm, get_mm_rss(task->mm),
395 task_cpu(task), task->signal->oom_adj,
396 task->signal->oom_score_adj, task->comm);
397 task_unlock(task);
398 }
399}
400
401static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
402 struct mem_cgroup *mem, const nodemask_t *nodemask)
403{
404 task_lock(current);
405 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
406 "oom_adj=%d, oom_score_adj=%d\n",
407 current->comm, gfp_mask, order, current->signal->oom_adj,
408 current->signal->oom_score_adj);
409 cpuset_print_task_mems_allowed(current);
410 task_unlock(current);
411 dump_stack();
412 mem_cgroup_print_oom_info(mem, p);
413 show_mem(SHOW_MEM_FILTER_NODES);
414 if (sysctl_oom_dump_tasks)
415 dump_tasks(mem, nodemask);
416}
417
418#define K(x) ((x) << (PAGE_SHIFT-10))
419static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
420{
421 struct task_struct *q;
422 struct mm_struct *mm;
423
424 p = find_lock_task_mm(p);
425 if (!p)
426 return 1;
427
428 /* mm cannot be safely dereferenced after task_unlock(p) */
429 mm = p->mm;
430
431 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
432 task_pid_nr(p), p->comm, K(p->mm->total_vm),
433 K(get_mm_counter(p->mm, MM_ANONPAGES)),
434 K(get_mm_counter(p->mm, MM_FILEPAGES)));
435 task_unlock(p);
436
437 /*
438 * Kill all processes sharing p->mm in other thread groups, if any.
439 * They don't get access to memory reserves or a higher scheduler
440 * priority, though, to avoid depletion of all memory or task
441 * starvation. This prevents mm->mmap_sem livelock when an oom killed
442 * task cannot exit because it requires the semaphore and its contended
443 * by another thread trying to allocate memory itself. That thread will
444 * now get access to memory reserves since it has a pending fatal
445 * signal.
446 */
447 for_each_process(q)
448 if (q->mm == mm && !same_thread_group(q, p)) {
449 task_lock(q); /* Protect ->comm from prctl() */
450 pr_err("Kill process %d (%s) sharing same memory\n",
451 task_pid_nr(q), q->comm);
452 task_unlock(q);
453 force_sig(SIGKILL, q);
454 }
455
456 set_tsk_thread_flag(p, TIF_MEMDIE);
457 force_sig(SIGKILL, p);
458
459 return 0;
460}
461#undef K
462
463static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
464 unsigned int points, unsigned long totalpages,
465 struct mem_cgroup *mem, nodemask_t *nodemask,
466 const char *message)
467{
468 struct task_struct *victim = p;
469 struct task_struct *child;
470 struct task_struct *t = p;
471 unsigned int victim_points = 0;
472
473 if (printk_ratelimit())
474 dump_header(p, gfp_mask, order, mem, nodemask);
475
476 /*
477 * If the task is already exiting, don't alarm the sysadmin or kill
478 * its children or threads, just set TIF_MEMDIE so it can die quickly
479 */
480 if (p->flags & PF_EXITING) {
481 set_tsk_thread_flag(p, TIF_MEMDIE);
482 return 0;
483 }
484
485 task_lock(p);
486 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
487 message, task_pid_nr(p), p->comm, points);
488 task_unlock(p);
489
490 /*
491 * If any of p's children has a different mm and is eligible for kill,
492 * the one with the highest oom_badness() score is sacrificed for its
493 * parent. This attempts to lose the minimal amount of work done while
494 * still freeing memory.
495 */
496 do {
497 list_for_each_entry(child, &t->children, sibling) {
498 unsigned int child_points;
499
500 if (child->mm == p->mm)
501 continue;
502 /*
503 * oom_badness() returns 0 if the thread is unkillable
504 */
505 child_points = oom_badness(child, mem, nodemask,
506 totalpages);
507 if (child_points > victim_points) {
508 victim = child;
509 victim_points = child_points;
510 }
511 }
512 } while_each_thread(p, t);
513
514 return oom_kill_task(victim, mem);
515}
516
517/*
518 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
519 */
520static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
521 int order, const nodemask_t *nodemask)
522{
523 if (likely(!sysctl_panic_on_oom))
524 return;
525 if (sysctl_panic_on_oom != 2) {
526 /*
527 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
528 * does not panic for cpuset, mempolicy, or memcg allocation
529 * failures.
530 */
531 if (constraint != CONSTRAINT_NONE)
532 return;
533 }
534 read_lock(&tasklist_lock);
535 dump_header(NULL, gfp_mask, order, NULL, nodemask);
536 read_unlock(&tasklist_lock);
537 panic("Out of memory: %s panic_on_oom is enabled\n",
538 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
539}
540
541#ifdef CONFIG_CGROUP_MEM_RES_CTLR
542void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
543{
544 unsigned long limit;
545 unsigned int points = 0;
546 struct task_struct *p;
547
548 /*
549 * If current has a pending SIGKILL, then automatically select it. The
550 * goal is to allow it to allocate so that it may quickly exit and free
551 * its memory.
552 */
553 if (fatal_signal_pending(current)) {
554 set_thread_flag(TIF_MEMDIE);
555 return;
556 }
557
558 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
559 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
560 read_lock(&tasklist_lock);
561retry:
562 p = select_bad_process(&points, limit, mem, NULL);
563 if (!p || PTR_ERR(p) == -1UL)
564 goto out;
565
566 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
567 "Memory cgroup out of memory"))
568 goto retry;
569out:
570 read_unlock(&tasklist_lock);
571}
572#endif
573
574static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
575
576int register_oom_notifier(struct notifier_block *nb)
577{
578 return blocking_notifier_chain_register(&oom_notify_list, nb);
579}
580EXPORT_SYMBOL_GPL(register_oom_notifier);
581
582int unregister_oom_notifier(struct notifier_block *nb)
583{
584 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
585}
586EXPORT_SYMBOL_GPL(unregister_oom_notifier);
587
588/*
589 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
590 * if a parallel OOM killing is already taking place that includes a zone in
591 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
592 */
593int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
594{
595 struct zoneref *z;
596 struct zone *zone;
597 int ret = 1;
598
599 spin_lock(&zone_scan_lock);
600 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
601 if (zone_is_oom_locked(zone)) {
602 ret = 0;
603 goto out;
604 }
605 }
606
607 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
608 /*
609 * Lock each zone in the zonelist under zone_scan_lock so a
610 * parallel invocation of try_set_zonelist_oom() doesn't succeed
611 * when it shouldn't.
612 */
613 zone_set_flag(zone, ZONE_OOM_LOCKED);
614 }
615
616out:
617 spin_unlock(&zone_scan_lock);
618 return ret;
619}
620
621/*
622 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
623 * allocation attempts with zonelists containing them may now recall the OOM
624 * killer, if necessary.
625 */
626void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
627{
628 struct zoneref *z;
629 struct zone *zone;
630
631 spin_lock(&zone_scan_lock);
632 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
633 zone_clear_flag(zone, ZONE_OOM_LOCKED);
634 }
635 spin_unlock(&zone_scan_lock);
636}
637
638/*
639 * Try to acquire the oom killer lock for all system zones. Returns zero if a
640 * parallel oom killing is taking place, otherwise locks all zones and returns
641 * non-zero.
642 */
643static int try_set_system_oom(void)
644{
645 struct zone *zone;
646 int ret = 1;
647
648 spin_lock(&zone_scan_lock);
649 for_each_populated_zone(zone)
650 if (zone_is_oom_locked(zone)) {
651 ret = 0;
652 goto out;
653 }
654 for_each_populated_zone(zone)
655 zone_set_flag(zone, ZONE_OOM_LOCKED);
656out:
657 spin_unlock(&zone_scan_lock);
658 return ret;
659}
660
661/*
662 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
663 * attempts or page faults may now recall the oom killer, if necessary.
664 */
665static void clear_system_oom(void)
666{
667 struct zone *zone;
668
669 spin_lock(&zone_scan_lock);
670 for_each_populated_zone(zone)
671 zone_clear_flag(zone, ZONE_OOM_LOCKED);
672 spin_unlock(&zone_scan_lock);
673}
674
675/**
676 * out_of_memory - kill the "best" process when we run out of memory
677 * @zonelist: zonelist pointer
678 * @gfp_mask: memory allocation flags
679 * @order: amount of memory being requested as a power of 2
680 * @nodemask: nodemask passed to page allocator
681 *
682 * If we run out of memory, we have the choice between either
683 * killing a random task (bad), letting the system crash (worse)
684 * OR try to be smart about which process to kill. Note that we
685 * don't have to be perfect here, we just have to be good.
686 */
687void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
688 int order, nodemask_t *nodemask)
689{
690 const nodemask_t *mpol_mask;
691 struct task_struct *p;
692 unsigned long totalpages;
693 unsigned long freed = 0;
694 unsigned int points;
695 enum oom_constraint constraint = CONSTRAINT_NONE;
696 int killed = 0;
697
698 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
699 if (freed > 0)
700 /* Got some memory back in the last second. */
701 return;
702
703 /*
704 * If current has a pending SIGKILL, then automatically select it. The
705 * goal is to allow it to allocate so that it may quickly exit and free
706 * its memory.
707 */
708 if (fatal_signal_pending(current)) {
709 set_thread_flag(TIF_MEMDIE);
710 return;
711 }
712
713 /*
714 * Check if there were limitations on the allocation (only relevant for
715 * NUMA) that may require different handling.
716 */
717 constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
718 &totalpages);
719 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
720 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
721
722 read_lock(&tasklist_lock);
723 if (sysctl_oom_kill_allocating_task &&
724 !oom_unkillable_task(current, NULL, nodemask) &&
725 current->mm && !atomic_read(¤t->mm->oom_disable_count)) {
726 /*
727 * oom_kill_process() needs tasklist_lock held. If it returns
728 * non-zero, current could not be killed so we must fallback to
729 * the tasklist scan.
730 */
731 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
732 NULL, nodemask,
733 "Out of memory (oom_kill_allocating_task)"))
734 goto out;
735 }
736
737retry:
738 p = select_bad_process(&points, totalpages, NULL, mpol_mask);
739 if (PTR_ERR(p) == -1UL)
740 goto out;
741
742 /* Found nothing?!?! Either we hang forever, or we panic. */
743 if (!p) {
744 dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
745 read_unlock(&tasklist_lock);
746 panic("Out of memory and no killable processes...\n");
747 }
748
749 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
750 nodemask, "Out of memory"))
751 goto retry;
752 killed = 1;
753out:
754 read_unlock(&tasklist_lock);
755
756 /*
757 * Give "p" a good chance of killing itself before we
758 * retry to allocate memory unless "p" is current
759 */
760 if (killed && !test_thread_flag(TIF_MEMDIE))
761 schedule_timeout_uninterruptible(1);
762}
763
764/*
765 * The pagefault handler calls here because it is out of memory, so kill a
766 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel
767 * oom killing is already in progress so do nothing. If a task is found with
768 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
769 */
770void pagefault_out_of_memory(void)
771{
772 if (try_set_system_oom()) {
773 out_of_memory(NULL, 0, 0, NULL);
774 clear_system_oom();
775 }
776 if (!test_thread_flag(TIF_MEMDIE))
777 schedule_timeout_uninterruptible(1);
778}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21#include <linux/oom.h>
22#include <linux/mm.h>
23#include <linux/err.h>
24#include <linux/gfp.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/task.h>
28#include <linux/sched/debug.h>
29#include <linux/swap.h>
30#include <linux/syscalls.h>
31#include <linux/timex.h>
32#include <linux/jiffies.h>
33#include <linux/cpuset.h>
34#include <linux/export.h>
35#include <linux/notifier.h>
36#include <linux/memcontrol.h>
37#include <linux/mempolicy.h>
38#include <linux/security.h>
39#include <linux/ptrace.h>
40#include <linux/freezer.h>
41#include <linux/ftrace.h>
42#include <linux/ratelimit.h>
43#include <linux/kthread.h>
44#include <linux/init.h>
45#include <linux/mmu_notifier.h>
46#include <linux/cred.h>
47#include <linux/nmi.h>
48
49#include <asm/tlb.h>
50#include "internal.h"
51#include "slab.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/oom.h>
55
56static int sysctl_panic_on_oom;
57static int sysctl_oom_kill_allocating_task;
58static int sysctl_oom_dump_tasks = 1;
59
60/*
61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
63 * from different domains).
64 *
65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66 * and mark_oom_victim
67 */
68DEFINE_MUTEX(oom_lock);
69/* Serializes oom_score_adj and oom_score_adj_min updates */
70DEFINE_MUTEX(oom_adj_mutex);
71
72static inline bool is_memcg_oom(struct oom_control *oc)
73{
74 return oc->memcg != NULL;
75}
76
77#ifdef CONFIG_NUMA
78/**
79 * oom_cpuset_eligible() - check task eligibility for kill
80 * @start: task struct of which task to consider
81 * @oc: pointer to struct oom_control
82 *
83 * Task eligibility is determined by whether or not a candidate task, @tsk,
84 * shares the same mempolicy nodes as current if it is bound by such a policy
85 * and whether or not it has the same set of allowed cpuset nodes.
86 *
87 * This function is assuming oom-killer context and 'current' has triggered
88 * the oom-killer.
89 */
90static bool oom_cpuset_eligible(struct task_struct *start,
91 struct oom_control *oc)
92{
93 struct task_struct *tsk;
94 bool ret = false;
95 const nodemask_t *mask = oc->nodemask;
96
97 rcu_read_lock();
98 for_each_thread(start, tsk) {
99 if (mask) {
100 /*
101 * If this is a mempolicy constrained oom, tsk's
102 * cpuset is irrelevant. Only return true if its
103 * mempolicy intersects current, otherwise it may be
104 * needlessly killed.
105 */
106 ret = mempolicy_in_oom_domain(tsk, mask);
107 } else {
108 /*
109 * This is not a mempolicy constrained oom, so only
110 * check the mems of tsk's cpuset.
111 */
112 ret = cpuset_mems_allowed_intersects(current, tsk);
113 }
114 if (ret)
115 break;
116 }
117 rcu_read_unlock();
118
119 return ret;
120}
121#else
122static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123{
124 return true;
125}
126#endif /* CONFIG_NUMA */
127
128/*
129 * The process p may have detached its own ->mm while exiting or through
130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
131 * pointer. Return p, or any of its subthreads with a valid ->mm, with
132 * task_lock() held.
133 */
134struct task_struct *find_lock_task_mm(struct task_struct *p)
135{
136 struct task_struct *t;
137
138 rcu_read_lock();
139
140 for_each_thread(p, t) {
141 task_lock(t);
142 if (likely(t->mm))
143 goto found;
144 task_unlock(t);
145 }
146 t = NULL;
147found:
148 rcu_read_unlock();
149
150 return t;
151}
152
153/*
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
156 */
157static inline bool is_sysrq_oom(struct oom_control *oc)
158{
159 return oc->order == -1;
160}
161
162/* return true if the task is not adequate as candidate victim task. */
163static bool oom_unkillable_task(struct task_struct *p)
164{
165 if (is_global_init(p))
166 return true;
167 if (p->flags & PF_KTHREAD)
168 return true;
169 return false;
170}
171
172/*
173 * Check whether unreclaimable slab amount is greater than
174 * all user memory(LRU pages).
175 * dump_unreclaimable_slab() could help in the case that
176 * oom due to too much unreclaimable slab used by kernel.
177*/
178static bool should_dump_unreclaim_slab(void)
179{
180 unsigned long nr_lru;
181
182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 global_node_page_state(NR_INACTIVE_ANON) +
184 global_node_page_state(NR_ACTIVE_FILE) +
185 global_node_page_state(NR_INACTIVE_FILE) +
186 global_node_page_state(NR_ISOLATED_ANON) +
187 global_node_page_state(NR_ISOLATED_FILE) +
188 global_node_page_state(NR_UNEVICTABLE);
189
190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191}
192
193/**
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
197 *
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible. The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
201 */
202long oom_badness(struct task_struct *p, unsigned long totalpages)
203{
204 long points;
205 long adj;
206
207 if (oom_unkillable_task(p))
208 return LONG_MIN;
209
210 p = find_lock_task_mm(p);
211 if (!p)
212 return LONG_MIN;
213
214 /*
215 * Do not even consider tasks which are explicitly marked oom
216 * unkillable or have been already oom reaped or the are in
217 * the middle of vfork
218 */
219 adj = (long)p->signal->oom_score_adj;
220 if (adj == OOM_SCORE_ADJ_MIN ||
221 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222 in_vfork(p)) {
223 task_unlock(p);
224 return LONG_MIN;
225 }
226
227 /*
228 * The baseline for the badness score is the proportion of RAM that each
229 * task's rss, pagetable and swap space use.
230 */
231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 task_unlock(p);
234
235 /* Normalize to oom_score_adj units */
236 adj *= totalpages / 1000;
237 points += adj;
238
239 return points;
240}
241
242static const char * const oom_constraint_text[] = {
243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247};
248
249/*
250 * Determine the type of allocation constraint.
251 */
252static enum oom_constraint constrained_alloc(struct oom_control *oc)
253{
254 struct zone *zone;
255 struct zoneref *z;
256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 bool cpuset_limited = false;
258 int nid;
259
260 if (is_memcg_oom(oc)) {
261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 return CONSTRAINT_MEMCG;
263 }
264
265 /* Default to all available memory */
266 oc->totalpages = totalram_pages() + total_swap_pages;
267
268 if (!IS_ENABLED(CONFIG_NUMA))
269 return CONSTRAINT_NONE;
270
271 if (!oc->zonelist)
272 return CONSTRAINT_NONE;
273 /*
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 */
278 if (oc->gfp_mask & __GFP_THISNODE)
279 return CONSTRAINT_NONE;
280
281 /*
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
285 */
286 if (oc->nodemask &&
287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 oc->totalpages = total_swap_pages;
289 for_each_node_mask(nid, *oc->nodemask)
290 oc->totalpages += node_present_pages(nid);
291 return CONSTRAINT_MEMORY_POLICY;
292 }
293
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 highest_zoneidx, oc->nodemask)
297 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 cpuset_limited = true;
299
300 if (cpuset_limited) {
301 oc->totalpages = total_swap_pages;
302 for_each_node_mask(nid, cpuset_current_mems_allowed)
303 oc->totalpages += node_present_pages(nid);
304 return CONSTRAINT_CPUSET;
305 }
306 return CONSTRAINT_NONE;
307}
308
309static int oom_evaluate_task(struct task_struct *task, void *arg)
310{
311 struct oom_control *oc = arg;
312 long points;
313
314 if (oom_unkillable_task(task))
315 goto next;
316
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 goto next;
320
321 /*
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
326 */
327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 goto next;
330 goto abort;
331 }
332
333 /*
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
336 */
337 if (oom_task_origin(task)) {
338 points = LONG_MAX;
339 goto select;
340 }
341
342 points = oom_badness(task, oc->totalpages);
343 if (points == LONG_MIN || points < oc->chosen_points)
344 goto next;
345
346select:
347 if (oc->chosen)
348 put_task_struct(oc->chosen);
349 get_task_struct(task);
350 oc->chosen = task;
351 oc->chosen_points = points;
352next:
353 return 0;
354abort:
355 if (oc->chosen)
356 put_task_struct(oc->chosen);
357 oc->chosen = (void *)-1UL;
358 return 1;
359}
360
361/*
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
364 */
365static void select_bad_process(struct oom_control *oc)
366{
367 oc->chosen_points = LONG_MIN;
368
369 if (is_memcg_oom(oc))
370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 else {
372 struct task_struct *p;
373
374 rcu_read_lock();
375 for_each_process(p)
376 if (oom_evaluate_task(p, oc))
377 break;
378 rcu_read_unlock();
379 }
380}
381
382static int dump_task(struct task_struct *p, void *arg)
383{
384 struct oom_control *oc = arg;
385 struct task_struct *task;
386
387 if (oom_unkillable_task(p))
388 return 0;
389
390 /* p may not have freeable memory in nodemask */
391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 return 0;
393
394 task = find_lock_task_mm(p);
395 if (!task) {
396 /*
397 * All of p's threads have already detached their mm's. There's
398 * no need to report them; they can't be oom killed anyway.
399 */
400 return 0;
401 }
402
403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
404 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408 get_mm_counter(task->mm, MM_SWAPENTS),
409 task->signal->oom_score_adj, task->comm);
410 task_unlock(task);
411
412 return 0;
413}
414
415/**
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
418 *
419 * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * are not shown.
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 */
425static void dump_tasks(struct oom_control *oc)
426{
427 pr_info("Tasks state (memory values in pages):\n");
428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429
430 if (is_memcg_oom(oc))
431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 else {
433 struct task_struct *p;
434 int i = 0;
435
436 rcu_read_lock();
437 for_each_process(p) {
438 /* Avoid potential softlockup warning */
439 if ((++i & 1023) == 0)
440 touch_softlockup_watchdog();
441 dump_task(p, oc);
442 }
443 rcu_read_unlock();
444 }
445}
446
447static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
448{
449 /* one line summary of the oom killer context. */
450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 oom_constraint_text[oc->constraint],
452 nodemask_pr_args(oc->nodemask));
453 cpuset_print_current_mems_allowed();
454 mem_cgroup_print_oom_context(oc->memcg, victim);
455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 from_kuid(&init_user_ns, task_uid(victim)));
457}
458
459static void dump_header(struct oom_control *oc)
460{
461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 current->signal->oom_score_adj);
464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 pr_warn("COMPACTION is disabled!!!\n");
466
467 dump_stack();
468 if (is_memcg_oom(oc))
469 mem_cgroup_print_oom_meminfo(oc->memcg);
470 else {
471 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
472 if (should_dump_unreclaim_slab())
473 dump_unreclaimable_slab();
474 }
475 if (sysctl_oom_dump_tasks)
476 dump_tasks(oc);
477}
478
479/*
480 * Number of OOM victims in flight
481 */
482static atomic_t oom_victims = ATOMIC_INIT(0);
483static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
484
485static bool oom_killer_disabled __read_mostly;
486
487/*
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
491 * using it.
492 */
493bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494{
495 struct task_struct *t;
496
497 for_each_thread(p, t) {
498 struct mm_struct *t_mm = READ_ONCE(t->mm);
499 if (t_mm)
500 return t_mm == mm;
501 }
502 return false;
503}
504
505#ifdef CONFIG_MMU
506/*
507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508 * victim (if that is possible) to help the OOM killer to move on.
509 */
510static struct task_struct *oom_reaper_th;
511static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512static struct task_struct *oom_reaper_list;
513static DEFINE_SPINLOCK(oom_reaper_lock);
514
515static bool __oom_reap_task_mm(struct mm_struct *mm)
516{
517 struct vm_area_struct *vma;
518 bool ret = true;
519 VMA_ITERATOR(vmi, mm, 0);
520
521 /*
522 * Tell all users of get_user/copy_from_user etc... that the content
523 * is no longer stable. No barriers really needed because unmapping
524 * should imply barriers already and the reader would hit a page fault
525 * if it stumbled over a reaped memory.
526 */
527 set_bit(MMF_UNSTABLE, &mm->flags);
528
529 for_each_vma(vmi, vma) {
530 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
531 continue;
532
533 /*
534 * Only anonymous pages have a good chance to be dropped
535 * without additional steps which we cannot afford as we
536 * are OOM already.
537 *
538 * We do not even care about fs backed pages because all
539 * which are reclaimable have already been reclaimed and
540 * we do not want to block exit_mmap by keeping mm ref
541 * count elevated without a good reason.
542 */
543 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
544 struct mmu_notifier_range range;
545 struct mmu_gather tlb;
546
547 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
548 mm, vma->vm_start,
549 vma->vm_end);
550 tlb_gather_mmu(&tlb, mm);
551 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
552 tlb_finish_mmu(&tlb);
553 ret = false;
554 continue;
555 }
556 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
557 mmu_notifier_invalidate_range_end(&range);
558 tlb_finish_mmu(&tlb);
559 }
560 }
561
562 return ret;
563}
564
565/*
566 * Reaps the address space of the give task.
567 *
568 * Returns true on success and false if none or part of the address space
569 * has been reclaimed and the caller should retry later.
570 */
571static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
572{
573 bool ret = true;
574
575 if (!mmap_read_trylock(mm)) {
576 trace_skip_task_reaping(tsk->pid);
577 return false;
578 }
579
580 /*
581 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
582 * work on the mm anymore. The check for MMF_OOM_SKIP must run
583 * under mmap_lock for reading because it serializes against the
584 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
585 */
586 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
587 trace_skip_task_reaping(tsk->pid);
588 goto out_unlock;
589 }
590
591 trace_start_task_reaping(tsk->pid);
592
593 /* failed to reap part of the address space. Try again later */
594 ret = __oom_reap_task_mm(mm);
595 if (!ret)
596 goto out_finish;
597
598 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
599 task_pid_nr(tsk), tsk->comm,
600 K(get_mm_counter(mm, MM_ANONPAGES)),
601 K(get_mm_counter(mm, MM_FILEPAGES)),
602 K(get_mm_counter(mm, MM_SHMEMPAGES)));
603out_finish:
604 trace_finish_task_reaping(tsk->pid);
605out_unlock:
606 mmap_read_unlock(mm);
607
608 return ret;
609}
610
611#define MAX_OOM_REAP_RETRIES 10
612static void oom_reap_task(struct task_struct *tsk)
613{
614 int attempts = 0;
615 struct mm_struct *mm = tsk->signal->oom_mm;
616
617 /* Retry the mmap_read_trylock(mm) a few times */
618 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
619 schedule_timeout_idle(HZ/10);
620
621 if (attempts <= MAX_OOM_REAP_RETRIES ||
622 test_bit(MMF_OOM_SKIP, &mm->flags))
623 goto done;
624
625 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
626 task_pid_nr(tsk), tsk->comm);
627 sched_show_task(tsk);
628 debug_show_all_locks();
629
630done:
631 tsk->oom_reaper_list = NULL;
632
633 /*
634 * Hide this mm from OOM killer because it has been either reaped or
635 * somebody can't call mmap_write_unlock(mm).
636 */
637 set_bit(MMF_OOM_SKIP, &mm->flags);
638
639 /* Drop a reference taken by queue_oom_reaper */
640 put_task_struct(tsk);
641}
642
643static int oom_reaper(void *unused)
644{
645 set_freezable();
646
647 while (true) {
648 struct task_struct *tsk = NULL;
649
650 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
651 spin_lock_irq(&oom_reaper_lock);
652 if (oom_reaper_list != NULL) {
653 tsk = oom_reaper_list;
654 oom_reaper_list = tsk->oom_reaper_list;
655 }
656 spin_unlock_irq(&oom_reaper_lock);
657
658 if (tsk)
659 oom_reap_task(tsk);
660 }
661
662 return 0;
663}
664
665static void wake_oom_reaper(struct timer_list *timer)
666{
667 struct task_struct *tsk = container_of(timer, struct task_struct,
668 oom_reaper_timer);
669 struct mm_struct *mm = tsk->signal->oom_mm;
670 unsigned long flags;
671
672 /* The victim managed to terminate on its own - see exit_mmap */
673 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
674 put_task_struct(tsk);
675 return;
676 }
677
678 spin_lock_irqsave(&oom_reaper_lock, flags);
679 tsk->oom_reaper_list = oom_reaper_list;
680 oom_reaper_list = tsk;
681 spin_unlock_irqrestore(&oom_reaper_lock, flags);
682 trace_wake_reaper(tsk->pid);
683 wake_up(&oom_reaper_wait);
684}
685
686/*
687 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
688 * The timers timeout is arbitrary... the longer it is, the longer the worst
689 * case scenario for the OOM can take. If it is too small, the oom_reaper can
690 * get in the way and release resources needed by the process exit path.
691 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
692 * before the exit path is able to wake the futex waiters.
693 */
694#define OOM_REAPER_DELAY (2*HZ)
695static void queue_oom_reaper(struct task_struct *tsk)
696{
697 /* mm is already queued? */
698 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
699 return;
700
701 get_task_struct(tsk);
702 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
703 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
704 add_timer(&tsk->oom_reaper_timer);
705}
706
707#ifdef CONFIG_SYSCTL
708static struct ctl_table vm_oom_kill_table[] = {
709 {
710 .procname = "panic_on_oom",
711 .data = &sysctl_panic_on_oom,
712 .maxlen = sizeof(sysctl_panic_on_oom),
713 .mode = 0644,
714 .proc_handler = proc_dointvec_minmax,
715 .extra1 = SYSCTL_ZERO,
716 .extra2 = SYSCTL_TWO,
717 },
718 {
719 .procname = "oom_kill_allocating_task",
720 .data = &sysctl_oom_kill_allocating_task,
721 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
722 .mode = 0644,
723 .proc_handler = proc_dointvec,
724 },
725 {
726 .procname = "oom_dump_tasks",
727 .data = &sysctl_oom_dump_tasks,
728 .maxlen = sizeof(sysctl_oom_dump_tasks),
729 .mode = 0644,
730 .proc_handler = proc_dointvec,
731 },
732};
733#endif
734
735static int __init oom_init(void)
736{
737 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
738#ifdef CONFIG_SYSCTL
739 register_sysctl_init("vm", vm_oom_kill_table);
740#endif
741 return 0;
742}
743subsys_initcall(oom_init)
744#else
745static inline void queue_oom_reaper(struct task_struct *tsk)
746{
747}
748#endif /* CONFIG_MMU */
749
750/**
751 * mark_oom_victim - mark the given task as OOM victim
752 * @tsk: task to mark
753 *
754 * Has to be called with oom_lock held and never after
755 * oom has been disabled already.
756 *
757 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
758 * under task_lock or operate on the current).
759 */
760static void mark_oom_victim(struct task_struct *tsk)
761{
762 const struct cred *cred;
763 struct mm_struct *mm = tsk->mm;
764
765 WARN_ON(oom_killer_disabled);
766 /* OOM killer might race with memcg OOM */
767 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
768 return;
769
770 /* oom_mm is bound to the signal struct life time. */
771 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
772 mmgrab(tsk->signal->oom_mm);
773
774 /*
775 * Make sure that the task is woken up from uninterruptible sleep
776 * if it is frozen because OOM killer wouldn't be able to free
777 * any memory and livelock. freezing_slow_path will tell the freezer
778 * that TIF_MEMDIE tasks should be ignored.
779 */
780 __thaw_task(tsk);
781 atomic_inc(&oom_victims);
782 cred = get_task_cred(tsk);
783 trace_mark_victim(tsk, cred->uid.val);
784 put_cred(cred);
785}
786
787/**
788 * exit_oom_victim - note the exit of an OOM victim
789 */
790void exit_oom_victim(void)
791{
792 clear_thread_flag(TIF_MEMDIE);
793
794 if (!atomic_dec_return(&oom_victims))
795 wake_up_all(&oom_victims_wait);
796}
797
798/**
799 * oom_killer_enable - enable OOM killer
800 */
801void oom_killer_enable(void)
802{
803 oom_killer_disabled = false;
804 pr_info("OOM killer enabled.\n");
805}
806
807/**
808 * oom_killer_disable - disable OOM killer
809 * @timeout: maximum timeout to wait for oom victims in jiffies
810 *
811 * Forces all page allocations to fail rather than trigger OOM killer.
812 * Will block and wait until all OOM victims are killed or the given
813 * timeout expires.
814 *
815 * The function cannot be called when there are runnable user tasks because
816 * the userspace would see unexpected allocation failures as a result. Any
817 * new usage of this function should be consulted with MM people.
818 *
819 * Returns true if successful and false if the OOM killer cannot be
820 * disabled.
821 */
822bool oom_killer_disable(signed long timeout)
823{
824 signed long ret;
825
826 /*
827 * Make sure to not race with an ongoing OOM killer. Check that the
828 * current is not killed (possibly due to sharing the victim's memory).
829 */
830 if (mutex_lock_killable(&oom_lock))
831 return false;
832 oom_killer_disabled = true;
833 mutex_unlock(&oom_lock);
834
835 ret = wait_event_interruptible_timeout(oom_victims_wait,
836 !atomic_read(&oom_victims), timeout);
837 if (ret <= 0) {
838 oom_killer_enable();
839 return false;
840 }
841 pr_info("OOM killer disabled.\n");
842
843 return true;
844}
845
846static inline bool __task_will_free_mem(struct task_struct *task)
847{
848 struct signal_struct *sig = task->signal;
849
850 /*
851 * A coredumping process may sleep for an extended period in
852 * coredump_task_exit(), so the oom killer cannot assume that
853 * the process will promptly exit and release memory.
854 */
855 if (sig->core_state)
856 return false;
857
858 if (sig->flags & SIGNAL_GROUP_EXIT)
859 return true;
860
861 if (thread_group_empty(task) && (task->flags & PF_EXITING))
862 return true;
863
864 return false;
865}
866
867/*
868 * Checks whether the given task is dying or exiting and likely to
869 * release its address space. This means that all threads and processes
870 * sharing the same mm have to be killed or exiting.
871 * Caller has to make sure that task->mm is stable (hold task_lock or
872 * it operates on the current).
873 */
874static bool task_will_free_mem(struct task_struct *task)
875{
876 struct mm_struct *mm = task->mm;
877 struct task_struct *p;
878 bool ret = true;
879
880 /*
881 * Skip tasks without mm because it might have passed its exit_mm and
882 * exit_oom_victim. oom_reaper could have rescued that but do not rely
883 * on that for now. We can consider find_lock_task_mm in future.
884 */
885 if (!mm)
886 return false;
887
888 if (!__task_will_free_mem(task))
889 return false;
890
891 /*
892 * This task has already been drained by the oom reaper so there are
893 * only small chances it will free some more
894 */
895 if (test_bit(MMF_OOM_SKIP, &mm->flags))
896 return false;
897
898 if (atomic_read(&mm->mm_users) <= 1)
899 return true;
900
901 /*
902 * Make sure that all tasks which share the mm with the given tasks
903 * are dying as well to make sure that a) nobody pins its mm and
904 * b) the task is also reapable by the oom reaper.
905 */
906 rcu_read_lock();
907 for_each_process(p) {
908 if (!process_shares_mm(p, mm))
909 continue;
910 if (same_thread_group(task, p))
911 continue;
912 ret = __task_will_free_mem(p);
913 if (!ret)
914 break;
915 }
916 rcu_read_unlock();
917
918 return ret;
919}
920
921static void __oom_kill_process(struct task_struct *victim, const char *message)
922{
923 struct task_struct *p;
924 struct mm_struct *mm;
925 bool can_oom_reap = true;
926
927 p = find_lock_task_mm(victim);
928 if (!p) {
929 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
930 message, task_pid_nr(victim), victim->comm);
931 put_task_struct(victim);
932 return;
933 } else if (victim != p) {
934 get_task_struct(p);
935 put_task_struct(victim);
936 victim = p;
937 }
938
939 /* Get a reference to safely compare mm after task_unlock(victim) */
940 mm = victim->mm;
941 mmgrab(mm);
942
943 /* Raise event before sending signal: task reaper must see this */
944 count_vm_event(OOM_KILL);
945 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
946
947 /*
948 * We should send SIGKILL before granting access to memory reserves
949 * in order to prevent the OOM victim from depleting the memory
950 * reserves from the user space under its control.
951 */
952 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
953 mark_oom_victim(victim);
954 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
955 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
956 K(get_mm_counter(mm, MM_ANONPAGES)),
957 K(get_mm_counter(mm, MM_FILEPAGES)),
958 K(get_mm_counter(mm, MM_SHMEMPAGES)),
959 from_kuid(&init_user_ns, task_uid(victim)),
960 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
961 task_unlock(victim);
962
963 /*
964 * Kill all user processes sharing victim->mm in other thread groups, if
965 * any. They don't get access to memory reserves, though, to avoid
966 * depletion of all memory. This prevents mm->mmap_lock livelock when an
967 * oom killed thread cannot exit because it requires the semaphore and
968 * its contended by another thread trying to allocate memory itself.
969 * That thread will now get access to memory reserves since it has a
970 * pending fatal signal.
971 */
972 rcu_read_lock();
973 for_each_process(p) {
974 if (!process_shares_mm(p, mm))
975 continue;
976 if (same_thread_group(p, victim))
977 continue;
978 if (is_global_init(p)) {
979 can_oom_reap = false;
980 set_bit(MMF_OOM_SKIP, &mm->flags);
981 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
982 task_pid_nr(victim), victim->comm,
983 task_pid_nr(p), p->comm);
984 continue;
985 }
986 /*
987 * No kthread_use_mm() user needs to read from the userspace so
988 * we are ok to reap it.
989 */
990 if (unlikely(p->flags & PF_KTHREAD))
991 continue;
992 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
993 }
994 rcu_read_unlock();
995
996 if (can_oom_reap)
997 queue_oom_reaper(victim);
998
999 mmdrop(mm);
1000 put_task_struct(victim);
1001}
1002
1003/*
1004 * Kill provided task unless it's secured by setting
1005 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1006 */
1007static int oom_kill_memcg_member(struct task_struct *task, void *message)
1008{
1009 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1010 !is_global_init(task)) {
1011 get_task_struct(task);
1012 __oom_kill_process(task, message);
1013 }
1014 return 0;
1015}
1016
1017static void oom_kill_process(struct oom_control *oc, const char *message)
1018{
1019 struct task_struct *victim = oc->chosen;
1020 struct mem_cgroup *oom_group;
1021 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1022 DEFAULT_RATELIMIT_BURST);
1023
1024 /*
1025 * If the task is already exiting, don't alarm the sysadmin or kill
1026 * its children or threads, just give it access to memory reserves
1027 * so it can die quickly
1028 */
1029 task_lock(victim);
1030 if (task_will_free_mem(victim)) {
1031 mark_oom_victim(victim);
1032 queue_oom_reaper(victim);
1033 task_unlock(victim);
1034 put_task_struct(victim);
1035 return;
1036 }
1037 task_unlock(victim);
1038
1039 if (__ratelimit(&oom_rs)) {
1040 dump_header(oc);
1041 dump_oom_victim(oc, victim);
1042 }
1043
1044 /*
1045 * Do we need to kill the entire memory cgroup?
1046 * Or even one of the ancestor memory cgroups?
1047 * Check this out before killing the victim task.
1048 */
1049 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1050
1051 __oom_kill_process(victim, message);
1052
1053 /*
1054 * If necessary, kill all tasks in the selected memory cgroup.
1055 */
1056 if (oom_group) {
1057 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1058 mem_cgroup_print_oom_group(oom_group);
1059 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1060 (void *)message);
1061 mem_cgroup_put(oom_group);
1062 }
1063}
1064
1065/*
1066 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1067 */
1068static void check_panic_on_oom(struct oom_control *oc)
1069{
1070 if (likely(!sysctl_panic_on_oom))
1071 return;
1072 if (sysctl_panic_on_oom != 2) {
1073 /*
1074 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1075 * does not panic for cpuset, mempolicy, or memcg allocation
1076 * failures.
1077 */
1078 if (oc->constraint != CONSTRAINT_NONE)
1079 return;
1080 }
1081 /* Do not panic for oom kills triggered by sysrq */
1082 if (is_sysrq_oom(oc))
1083 return;
1084 dump_header(oc);
1085 panic("Out of memory: %s panic_on_oom is enabled\n",
1086 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1087}
1088
1089static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1090
1091int register_oom_notifier(struct notifier_block *nb)
1092{
1093 return blocking_notifier_chain_register(&oom_notify_list, nb);
1094}
1095EXPORT_SYMBOL_GPL(register_oom_notifier);
1096
1097int unregister_oom_notifier(struct notifier_block *nb)
1098{
1099 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1100}
1101EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1102
1103/**
1104 * out_of_memory - kill the "best" process when we run out of memory
1105 * @oc: pointer to struct oom_control
1106 *
1107 * If we run out of memory, we have the choice between either
1108 * killing a random task (bad), letting the system crash (worse)
1109 * OR try to be smart about which process to kill. Note that we
1110 * don't have to be perfect here, we just have to be good.
1111 */
1112bool out_of_memory(struct oom_control *oc)
1113{
1114 unsigned long freed = 0;
1115
1116 if (oom_killer_disabled)
1117 return false;
1118
1119 if (!is_memcg_oom(oc)) {
1120 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1121 if (freed > 0 && !is_sysrq_oom(oc))
1122 /* Got some memory back in the last second. */
1123 return true;
1124 }
1125
1126 /*
1127 * If current has a pending SIGKILL or is exiting, then automatically
1128 * select it. The goal is to allow it to allocate so that it may
1129 * quickly exit and free its memory.
1130 */
1131 if (task_will_free_mem(current)) {
1132 mark_oom_victim(current);
1133 queue_oom_reaper(current);
1134 return true;
1135 }
1136
1137 /*
1138 * The OOM killer does not compensate for IO-less reclaim.
1139 * But mem_cgroup_oom() has to invoke the OOM killer even
1140 * if it is a GFP_NOFS allocation.
1141 */
1142 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1143 return true;
1144
1145 /*
1146 * Check if there were limitations on the allocation (only relevant for
1147 * NUMA and memcg) that may require different handling.
1148 */
1149 oc->constraint = constrained_alloc(oc);
1150 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1151 oc->nodemask = NULL;
1152 check_panic_on_oom(oc);
1153
1154 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1155 current->mm && !oom_unkillable_task(current) &&
1156 oom_cpuset_eligible(current, oc) &&
1157 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1158 get_task_struct(current);
1159 oc->chosen = current;
1160 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1161 return true;
1162 }
1163
1164 select_bad_process(oc);
1165 /* Found nothing?!?! */
1166 if (!oc->chosen) {
1167 dump_header(oc);
1168 pr_warn("Out of memory and no killable processes...\n");
1169 /*
1170 * If we got here due to an actual allocation at the
1171 * system level, we cannot survive this and will enter
1172 * an endless loop in the allocator. Bail out now.
1173 */
1174 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1175 panic("System is deadlocked on memory\n");
1176 }
1177 if (oc->chosen && oc->chosen != (void *)-1UL)
1178 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1179 "Memory cgroup out of memory");
1180 return !!oc->chosen;
1181}
1182
1183/*
1184 * The pagefault handler calls here because some allocation has failed. We have
1185 * to take care of the memcg OOM here because this is the only safe context without
1186 * any locks held but let the oom killer triggered from the allocation context care
1187 * about the global OOM.
1188 */
1189void pagefault_out_of_memory(void)
1190{
1191 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1192 DEFAULT_RATELIMIT_BURST);
1193
1194 if (mem_cgroup_oom_synchronize(true))
1195 return;
1196
1197 if (fatal_signal_pending(current))
1198 return;
1199
1200 if (__ratelimit(&pfoom_rs))
1201 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1202}
1203
1204SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1205{
1206#ifdef CONFIG_MMU
1207 struct mm_struct *mm = NULL;
1208 struct task_struct *task;
1209 struct task_struct *p;
1210 unsigned int f_flags;
1211 bool reap = false;
1212 long ret = 0;
1213
1214 if (flags)
1215 return -EINVAL;
1216
1217 task = pidfd_get_task(pidfd, &f_flags);
1218 if (IS_ERR(task))
1219 return PTR_ERR(task);
1220
1221 /*
1222 * Make sure to choose a thread which still has a reference to mm
1223 * during the group exit
1224 */
1225 p = find_lock_task_mm(task);
1226 if (!p) {
1227 ret = -ESRCH;
1228 goto put_task;
1229 }
1230
1231 mm = p->mm;
1232 mmgrab(mm);
1233
1234 if (task_will_free_mem(p))
1235 reap = true;
1236 else {
1237 /* Error only if the work has not been done already */
1238 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1239 ret = -EINVAL;
1240 }
1241 task_unlock(p);
1242
1243 if (!reap)
1244 goto drop_mm;
1245
1246 if (mmap_read_lock_killable(mm)) {
1247 ret = -EINTR;
1248 goto drop_mm;
1249 }
1250 /*
1251 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1252 * possible change in exit_mmap is seen
1253 */
1254 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1255 ret = -EAGAIN;
1256 mmap_read_unlock(mm);
1257
1258drop_mm:
1259 mmdrop(mm);
1260put_task:
1261 put_task_struct(task);
1262 return ret;
1263#else
1264 return -ENOSYS;
1265#endif /* CONFIG_MMU */
1266}