Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
  1/*
  2 *  linux/mm/oom_kill.c
  3 * 
  4 *  Copyright (C)  1998,2000  Rik van Riel
  5 *	Thanks go out to Claus Fischer for some serious inspiration and
  6 *	for goading me into coding this file...
  7 *  Copyright (C)  2010  Google, Inc.
  8 *	Rewritten by David Rientjes
  9 *
 10 *  The routines in this file are used to kill a process when
 11 *  we're seriously out of memory. This gets called from __alloc_pages()
 12 *  in mm/page_alloc.c when we really run out of memory.
 13 *
 14 *  Since we won't call these routines often (on a well-configured
 15 *  machine) this file will double as a 'coding guide' and a signpost
 16 *  for newbie kernel hackers. It features several pointers to major
 17 *  kernel subsystems and hints as to where to find out what things do.
 18 */
 19
 20#include <linux/oom.h>
 21#include <linux/mm.h>
 22#include <linux/err.h>
 23#include <linux/gfp.h>
 24#include <linux/sched.h>
 25#include <linux/swap.h>
 26#include <linux/timex.h>
 27#include <linux/jiffies.h>
 28#include <linux/cpuset.h>
 29#include <linux/module.h>
 30#include <linux/notifier.h>
 31#include <linux/memcontrol.h>
 32#include <linux/mempolicy.h>
 33#include <linux/security.h>
 34#include <linux/ptrace.h>
 
 
 
 
 
 
 35
 36int sysctl_panic_on_oom;
 37int sysctl_oom_kill_allocating_task;
 38int sysctl_oom_dump_tasks = 1;
 39static DEFINE_SPINLOCK(zone_scan_lock);
 40
 41/**
 42 * test_set_oom_score_adj() - set current's oom_score_adj and return old value
 43 * @new_val: new oom_score_adj value
 44 *
 45 * Sets the oom_score_adj value for current to @new_val with proper
 46 * synchronization and returns the old value.  Usually used to temporarily
 47 * set a value, save the old value in the caller, and then reinstate it later.
 48 */
 49int test_set_oom_score_adj(int new_val)
 50{
 51	struct sighand_struct *sighand = current->sighand;
 52	int old_val;
 53
 54	spin_lock_irq(&sighand->siglock);
 55	old_val = current->signal->oom_score_adj;
 56	if (new_val != old_val) {
 57		if (new_val == OOM_SCORE_ADJ_MIN)
 58			atomic_inc(&current->mm->oom_disable_count);
 59		else if (old_val == OOM_SCORE_ADJ_MIN)
 60			atomic_dec(&current->mm->oom_disable_count);
 61		current->signal->oom_score_adj = new_val;
 62	}
 63	spin_unlock_irq(&sighand->siglock);
 64
 65	return old_val;
 66}
 67
 68#ifdef CONFIG_NUMA
 69/**
 70 * has_intersects_mems_allowed() - check task eligiblity for kill
 71 * @tsk: task struct of which task to consider
 72 * @mask: nodemask passed to page allocator for mempolicy ooms
 73 *
 74 * Task eligibility is determined by whether or not a candidate task, @tsk,
 75 * shares the same mempolicy nodes as current if it is bound by such a policy
 76 * and whether or not it has the same set of allowed cpuset nodes.
 77 */
 78static bool has_intersects_mems_allowed(struct task_struct *tsk,
 79					const nodemask_t *mask)
 80{
 81	struct task_struct *start = tsk;
 
 82
 83	do {
 
 84		if (mask) {
 85			/*
 86			 * If this is a mempolicy constrained oom, tsk's
 87			 * cpuset is irrelevant.  Only return true if its
 88			 * mempolicy intersects current, otherwise it may be
 89			 * needlessly killed.
 90			 */
 91			if (mempolicy_nodemask_intersects(tsk, mask))
 92				return true;
 93		} else {
 94			/*
 95			 * This is not a mempolicy constrained oom, so only
 96			 * check the mems of tsk's cpuset.
 97			 */
 98			if (cpuset_mems_allowed_intersects(current, tsk))
 99				return true;
100		}
101	} while_each_thread(start, tsk);
 
 
 
102
103	return false;
104}
105#else
106static bool has_intersects_mems_allowed(struct task_struct *tsk,
107					const nodemask_t *mask)
108{
109	return true;
110}
111#endif /* CONFIG_NUMA */
112
113/*
114 * The process p may have detached its own ->mm while exiting or through
115 * use_mm(), but one or more of its subthreads may still have a valid
116 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
117 * task_lock() held.
118 */
119struct task_struct *find_lock_task_mm(struct task_struct *p)
120{
121	struct task_struct *t = p;
 
 
122
123	do {
124		task_lock(t);
125		if (likely(t->mm))
126			return t;
127		task_unlock(t);
128	} while_each_thread(p, t);
 
 
 
129
130	return NULL;
131}
132
133/* return true if the task is not adequate as candidate victim task. */
134static bool oom_unkillable_task(struct task_struct *p,
135		const struct mem_cgroup *mem, const nodemask_t *nodemask)
136{
137	if (is_global_init(p))
138		return true;
139	if (p->flags & PF_KTHREAD)
140		return true;
141
142	/* When mem_cgroup_out_of_memory() and p is not member of the group */
143	if (mem && !task_in_mem_cgroup(p, mem))
144		return true;
145
146	/* p may not have freeable memory in nodemask */
147	if (!has_intersects_mems_allowed(p, nodemask))
148		return true;
149
150	return false;
151}
152
153/**
154 * oom_badness - heuristic function to determine which candidate task to kill
155 * @p: task struct of which task we should calculate
156 * @totalpages: total present RAM allowed for page allocation
157 *
158 * The heuristic for determining which task to kill is made to be as simple and
159 * predictable as possible.  The goal is to return the highest value for the
160 * task consuming the most memory to avoid subsequent oom failures.
161 */
162unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
163		      const nodemask_t *nodemask, unsigned long totalpages)
164{
165	int points;
 
166
167	if (oom_unkillable_task(p, mem, nodemask))
168		return 0;
169
170	p = find_lock_task_mm(p);
171	if (!p)
172		return 0;
173
174	/*
175	 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
176	 * so the entire heuristic doesn't need to be executed for something
177	 * that cannot be killed.
178	 */
179	if (atomic_read(&p->mm->oom_disable_count)) {
180		task_unlock(p);
181		return 0;
182	}
183
184	/*
185	 * The memory controller may have a limit of 0 bytes, so avoid a divide
186	 * by zero, if necessary.
187	 */
188	if (!totalpages)
189		totalpages = 1;
190
191	/*
192	 * The baseline for the badness score is the proportion of RAM that each
193	 * task's rss, pagetable and swap space use.
194	 */
195	points = get_mm_rss(p->mm) + p->mm->nr_ptes;
196	points += get_mm_counter(p->mm, MM_SWAPENTS);
197
198	points *= 1000;
199	points /= totalpages;
200	task_unlock(p);
201
202	/*
203	 * Root processes get 3% bonus, just like the __vm_enough_memory()
204	 * implementation used by LSMs.
205	 */
206	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
207		points -= 30;
208
209	/*
210	 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
211	 * either completely disable oom killing or always prefer a certain
212	 * task.
213	 */
214	points += p->signal->oom_score_adj;
215
216	/*
217	 * Never return 0 for an eligible task that may be killed since it's
218	 * possible that no single user task uses more than 0.1% of memory and
219	 * no single admin tasks uses more than 3.0%.
220	 */
221	if (points <= 0)
222		return 1;
223	return (points < 1000) ? points : 1000;
224}
225
226/*
227 * Determine the type of allocation constraint.
228 */
229#ifdef CONFIG_NUMA
230static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
231				gfp_t gfp_mask, nodemask_t *nodemask,
232				unsigned long *totalpages)
233{
234	struct zone *zone;
235	struct zoneref *z;
236	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
237	bool cpuset_limited = false;
238	int nid;
239
240	/* Default to all available memory */
241	*totalpages = totalram_pages + total_swap_pages;
242
243	if (!zonelist)
244		return CONSTRAINT_NONE;
245	/*
246	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
247	 * to kill current.We have to random task kill in this case.
248	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
249	 */
250	if (gfp_mask & __GFP_THISNODE)
251		return CONSTRAINT_NONE;
252
253	/*
254	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
255	 * the page allocator means a mempolicy is in effect.  Cpuset policy
256	 * is enforced in get_page_from_freelist().
257	 */
258	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
259		*totalpages = total_swap_pages;
260		for_each_node_mask(nid, *nodemask)
261			*totalpages += node_spanned_pages(nid);
262		return CONSTRAINT_MEMORY_POLICY;
263	}
264
265	/* Check this allocation failure is caused by cpuset's wall function */
266	for_each_zone_zonelist_nodemask(zone, z, zonelist,
267			high_zoneidx, nodemask)
268		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
269			cpuset_limited = true;
270
271	if (cpuset_limited) {
272		*totalpages = total_swap_pages;
273		for_each_node_mask(nid, cpuset_current_mems_allowed)
274			*totalpages += node_spanned_pages(nid);
275		return CONSTRAINT_CPUSET;
276	}
277	return CONSTRAINT_NONE;
278}
279#else
280static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
281				gfp_t gfp_mask, nodemask_t *nodemask,
282				unsigned long *totalpages)
283{
284	*totalpages = totalram_pages + total_swap_pages;
285	return CONSTRAINT_NONE;
286}
287#endif
288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289/*
290 * Simple selection loop. We chose the process with the highest
291 * number of 'points'. We expect the caller will lock the tasklist.
292 *
293 * (not docbooked, we don't want this one cluttering up the manual)
294 */
295static struct task_struct *select_bad_process(unsigned int *ppoints,
296		unsigned long totalpages, struct mem_cgroup *mem,
297		const nodemask_t *nodemask)
298{
299	struct task_struct *g, *p;
300	struct task_struct *chosen = NULL;
301	*ppoints = 0;
302
303	do_each_thread(g, p) {
 
304		unsigned int points;
305
306		if (p->exit_state)
 
 
 
 
 
 
307			continue;
308		if (oom_unkillable_task(p, mem, nodemask))
 
 
 
 
 
 
 
309			continue;
310
311		/*
312		 * This task already has access to memory reserves and is
313		 * being killed. Don't allow any other task access to the
314		 * memory reserve.
315		 *
316		 * Note: this may have a chance of deadlock if it gets
317		 * blocked waiting for another task which itself is waiting
318		 * for memory. Is there a better alternative?
319		 */
320		if (test_tsk_thread_flag(p, TIF_MEMDIE))
321			return ERR_PTR(-1UL);
322		if (!p->mm)
323			continue;
324
325		if (p->flags & PF_EXITING) {
326			/*
327			 * If p is the current task and is in the process of
328			 * releasing memory, we allow the "kill" to set
329			 * TIF_MEMDIE, which will allow it to gain access to
330			 * memory reserves.  Otherwise, it may stall forever.
331			 *
332			 * The loop isn't broken here, however, in case other
333			 * threads are found to have already been oom killed.
334			 */
335			if (p == current) {
336				chosen = p;
337				*ppoints = 1000;
338			} else {
339				/*
340				 * If this task is not being ptraced on exit,
341				 * then wait for it to finish before killing
342				 * some other task unnecessarily.
343				 */
344				if (!(p->group_leader->ptrace & PT_TRACE_EXIT))
345					return ERR_PTR(-1UL);
346			}
347		}
348
349		points = oom_badness(p, mem, nodemask, totalpages);
350		if (points > *ppoints) {
351			chosen = p;
352			*ppoints = points;
353		}
354	} while_each_thread(g, p);
355
 
356	return chosen;
357}
358
359/**
360 * dump_tasks - dump current memory state of all system tasks
361 * @mem: current's memory controller, if constrained
362 * @nodemask: nodemask passed to page allocator for mempolicy ooms
363 *
364 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
365 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
366 * are not shown.
367 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
368 * value, oom_score_adj value, and name.
369 *
370 * Call with tasklist_lock read-locked.
371 */
372static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
373{
374	struct task_struct *p;
375	struct task_struct *task;
376
377	pr_info("[ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name\n");
 
378	for_each_process(p) {
379		if (oom_unkillable_task(p, mem, nodemask))
380			continue;
381
382		task = find_lock_task_mm(p);
383		if (!task) {
384			/*
385			 * This is a kthread or all of p's threads have already
386			 * detached their mm's.  There's no need to report
387			 * them; they can't be oom killed anyway.
388			 */
389			continue;
390		}
391
392		pr_info("[%5d] %5d %5d %8lu %8lu %3u     %3d         %5d %s\n",
393			task->pid, task_uid(task), task->tgid,
394			task->mm->total_vm, get_mm_rss(task->mm),
395			task_cpu(task), task->signal->oom_adj,
 
396			task->signal->oom_score_adj, task->comm);
397		task_unlock(task);
398	}
 
399}
400
401static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
402			struct mem_cgroup *mem, const nodemask_t *nodemask)
403{
404	task_lock(current);
405	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
406		"oom_adj=%d, oom_score_adj=%d\n",
407		current->comm, gfp_mask, order, current->signal->oom_adj,
408		current->signal->oom_score_adj);
409	cpuset_print_task_mems_allowed(current);
410	task_unlock(current);
411	dump_stack();
412	mem_cgroup_print_oom_info(mem, p);
413	show_mem(SHOW_MEM_FILTER_NODES);
 
 
414	if (sysctl_oom_dump_tasks)
415		dump_tasks(mem, nodemask);
416}
417
418#define K(x) ((x) << (PAGE_SHIFT-10))
419static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
420{
421	struct task_struct *q;
422	struct mm_struct *mm;
423
424	p = find_lock_task_mm(p);
425	if (!p)
426		return 1;
427
428	/* mm cannot be safely dereferenced after task_unlock(p) */
429	mm = p->mm;
430
431	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
432		task_pid_nr(p), p->comm, K(p->mm->total_vm),
433		K(get_mm_counter(p->mm, MM_ANONPAGES)),
434		K(get_mm_counter(p->mm, MM_FILEPAGES)));
435	task_unlock(p);
436
437	/*
438	 * Kill all processes sharing p->mm in other thread groups, if any.
439	 * They don't get access to memory reserves or a higher scheduler
440	 * priority, though, to avoid depletion of all memory or task
441	 * starvation.  This prevents mm->mmap_sem livelock when an oom killed
442	 * task cannot exit because it requires the semaphore and its contended
443	 * by another thread trying to allocate memory itself.  That thread will
444	 * now get access to memory reserves since it has a pending fatal
445	 * signal.
446	 */
447	for_each_process(q)
448		if (q->mm == mm && !same_thread_group(q, p)) {
449			task_lock(q);	/* Protect ->comm from prctl() */
450			pr_err("Kill process %d (%s) sharing same memory\n",
451				task_pid_nr(q), q->comm);
452			task_unlock(q);
453			force_sig(SIGKILL, q);
454		}
455
456	set_tsk_thread_flag(p, TIF_MEMDIE);
457	force_sig(SIGKILL, p);
458
459	return 0;
460}
461#undef K
462
463static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
464			    unsigned int points, unsigned long totalpages,
465			    struct mem_cgroup *mem, nodemask_t *nodemask,
466			    const char *message)
467{
468	struct task_struct *victim = p;
469	struct task_struct *child;
470	struct task_struct *t = p;
 
471	unsigned int victim_points = 0;
472
473	if (printk_ratelimit())
474		dump_header(p, gfp_mask, order, mem, nodemask);
475
476	/*
477	 * If the task is already exiting, don't alarm the sysadmin or kill
478	 * its children or threads, just set TIF_MEMDIE so it can die quickly
479	 */
480	if (p->flags & PF_EXITING) {
481		set_tsk_thread_flag(p, TIF_MEMDIE);
482		return 0;
 
483	}
484
 
 
 
485	task_lock(p);
486	pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
487		message, task_pid_nr(p), p->comm, points);
488	task_unlock(p);
489
490	/*
491	 * If any of p's children has a different mm and is eligible for kill,
492	 * the one with the highest oom_badness() score is sacrificed for its
493	 * parent.  This attempts to lose the minimal amount of work done while
494	 * still freeing memory.
495	 */
496	do {
 
497		list_for_each_entry(child, &t->children, sibling) {
498			unsigned int child_points;
499
500			if (child->mm == p->mm)
501				continue;
502			/*
503			 * oom_badness() returns 0 if the thread is unkillable
504			 */
505			child_points = oom_badness(child, mem, nodemask,
506								totalpages);
507			if (child_points > victim_points) {
 
508				victim = child;
509				victim_points = child_points;
 
510			}
511		}
512	} while_each_thread(p, t);
 
 
 
 
 
 
 
 
 
 
 
513
514	return oom_kill_task(victim, mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515}
 
516
517/*
518 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
519 */
520static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
521				int order, const nodemask_t *nodemask)
522{
523	if (likely(!sysctl_panic_on_oom))
524		return;
525	if (sysctl_panic_on_oom != 2) {
526		/*
527		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
528		 * does not panic for cpuset, mempolicy, or memcg allocation
529		 * failures.
530		 */
531		if (constraint != CONSTRAINT_NONE)
532			return;
533	}
534	read_lock(&tasklist_lock);
535	dump_header(NULL, gfp_mask, order, NULL, nodemask);
536	read_unlock(&tasklist_lock);
537	panic("Out of memory: %s panic_on_oom is enabled\n",
538		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
539}
540
541#ifdef CONFIG_CGROUP_MEM_RES_CTLR
542void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
543{
544	unsigned long limit;
545	unsigned int points = 0;
546	struct task_struct *p;
547
548	/*
549	 * If current has a pending SIGKILL, then automatically select it.  The
550	 * goal is to allow it to allocate so that it may quickly exit and free
551	 * its memory.
552	 */
553	if (fatal_signal_pending(current)) {
554		set_thread_flag(TIF_MEMDIE);
555		return;
556	}
557
558	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
559	limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
560	read_lock(&tasklist_lock);
561retry:
562	p = select_bad_process(&points, limit, mem, NULL);
563	if (!p || PTR_ERR(p) == -1UL)
564		goto out;
565
566	if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
567				"Memory cgroup out of memory"))
568		goto retry;
569out:
570	read_unlock(&tasklist_lock);
571}
572#endif
573
574static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
575
576int register_oom_notifier(struct notifier_block *nb)
577{
578	return blocking_notifier_chain_register(&oom_notify_list, nb);
579}
580EXPORT_SYMBOL_GPL(register_oom_notifier);
581
582int unregister_oom_notifier(struct notifier_block *nb)
583{
584	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
585}
586EXPORT_SYMBOL_GPL(unregister_oom_notifier);
587
588/*
589 * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
590 * if a parallel OOM killing is already taking place that includes a zone in
591 * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
592 */
593int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
594{
595	struct zoneref *z;
596	struct zone *zone;
597	int ret = 1;
598
599	spin_lock(&zone_scan_lock);
600	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
601		if (zone_is_oom_locked(zone)) {
602			ret = 0;
603			goto out;
604		}
605	}
606
607	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
608		/*
609		 * Lock each zone in the zonelist under zone_scan_lock so a
610		 * parallel invocation of try_set_zonelist_oom() doesn't succeed
611		 * when it shouldn't.
612		 */
613		zone_set_flag(zone, ZONE_OOM_LOCKED);
614	}
615
616out:
617	spin_unlock(&zone_scan_lock);
618	return ret;
619}
620
621/*
622 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
623 * allocation attempts with zonelists containing them may now recall the OOM
624 * killer, if necessary.
625 */
626void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
627{
628	struct zoneref *z;
629	struct zone *zone;
630
631	spin_lock(&zone_scan_lock);
632	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
633		zone_clear_flag(zone, ZONE_OOM_LOCKED);
634	}
635	spin_unlock(&zone_scan_lock);
636}
637
638/*
639 * Try to acquire the oom killer lock for all system zones.  Returns zero if a
640 * parallel oom killing is taking place, otherwise locks all zones and returns
641 * non-zero.
642 */
643static int try_set_system_oom(void)
644{
645	struct zone *zone;
646	int ret = 1;
647
648	spin_lock(&zone_scan_lock);
649	for_each_populated_zone(zone)
650		if (zone_is_oom_locked(zone)) {
651			ret = 0;
652			goto out;
653		}
654	for_each_populated_zone(zone)
655		zone_set_flag(zone, ZONE_OOM_LOCKED);
656out:
657	spin_unlock(&zone_scan_lock);
658	return ret;
659}
660
661/*
662 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
663 * attempts or page faults may now recall the oom killer, if necessary.
664 */
665static void clear_system_oom(void)
666{
667	struct zone *zone;
668
669	spin_lock(&zone_scan_lock);
670	for_each_populated_zone(zone)
671		zone_clear_flag(zone, ZONE_OOM_LOCKED);
672	spin_unlock(&zone_scan_lock);
673}
674
675/**
676 * out_of_memory - kill the "best" process when we run out of memory
677 * @zonelist: zonelist pointer
678 * @gfp_mask: memory allocation flags
679 * @order: amount of memory being requested as a power of 2
680 * @nodemask: nodemask passed to page allocator
 
681 *
682 * If we run out of memory, we have the choice between either
683 * killing a random task (bad), letting the system crash (worse)
684 * OR try to be smart about which process to kill. Note that we
685 * don't have to be perfect here, we just have to be good.
686 */
687void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
688		int order, nodemask_t *nodemask)
689{
690	const nodemask_t *mpol_mask;
691	struct task_struct *p;
692	unsigned long totalpages;
693	unsigned long freed = 0;
694	unsigned int points;
695	enum oom_constraint constraint = CONSTRAINT_NONE;
696	int killed = 0;
697
698	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
699	if (freed > 0)
700		/* Got some memory back in the last second. */
701		return;
702
703	/*
704	 * If current has a pending SIGKILL, then automatically select it.  The
705	 * goal is to allow it to allocate so that it may quickly exit and free
706	 * its memory.
707	 */
708	if (fatal_signal_pending(current)) {
709		set_thread_flag(TIF_MEMDIE);
710		return;
711	}
712
713	/*
714	 * Check if there were limitations on the allocation (only relevant for
715	 * NUMA) that may require different handling.
716	 */
717	constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
718						&totalpages);
719	mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
720	check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
721
722	read_lock(&tasklist_lock);
723	if (sysctl_oom_kill_allocating_task &&
724	    !oom_unkillable_task(current, NULL, nodemask) &&
725	    current->mm && !atomic_read(&current->mm->oom_disable_count)) {
726		/*
727		 * oom_kill_process() needs tasklist_lock held.  If it returns
728		 * non-zero, current could not be killed so we must fallback to
729		 * the tasklist scan.
730		 */
731		if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
732				NULL, nodemask,
733				"Out of memory (oom_kill_allocating_task)"))
734			goto out;
735	}
736
737retry:
738	p = select_bad_process(&points, totalpages, NULL, mpol_mask);
739	if (PTR_ERR(p) == -1UL)
740		goto out;
 
741
 
742	/* Found nothing?!?! Either we hang forever, or we panic. */
743	if (!p) {
744		dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
745		read_unlock(&tasklist_lock);
746		panic("Out of memory and no killable processes...\n");
747	}
748
749	if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
750				nodemask, "Out of memory"))
751		goto retry;
752	killed = 1;
753out:
754	read_unlock(&tasklist_lock);
755
756	/*
757	 * Give "p" a good chance of killing itself before we
758	 * retry to allocate memory unless "p" is current
759	 */
760	if (killed && !test_thread_flag(TIF_MEMDIE))
761		schedule_timeout_uninterruptible(1);
762}
763
764/*
765 * The pagefault handler calls here because it is out of memory, so kill a
766 * memory-hogging task.  If a populated zone has ZONE_OOM_LOCKED set, a parallel
767 * oom killing is already in progress so do nothing.  If a task is found with
768 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
769 */
770void pagefault_out_of_memory(void)
771{
772	if (try_set_system_oom()) {
773		out_of_memory(NULL, 0, 0, NULL);
774		clear_system_oom();
 
 
 
 
 
 
775	}
776	if (!test_thread_flag(TIF_MEMDIE))
777		schedule_timeout_uninterruptible(1);
778}
v3.15
  1/*
  2 *  linux/mm/oom_kill.c
  3 * 
  4 *  Copyright (C)  1998,2000  Rik van Riel
  5 *	Thanks go out to Claus Fischer for some serious inspiration and
  6 *	for goading me into coding this file...
  7 *  Copyright (C)  2010  Google, Inc.
  8 *	Rewritten by David Rientjes
  9 *
 10 *  The routines in this file are used to kill a process when
 11 *  we're seriously out of memory. This gets called from __alloc_pages()
 12 *  in mm/page_alloc.c when we really run out of memory.
 13 *
 14 *  Since we won't call these routines often (on a well-configured
 15 *  machine) this file will double as a 'coding guide' and a signpost
 16 *  for newbie kernel hackers. It features several pointers to major
 17 *  kernel subsystems and hints as to where to find out what things do.
 18 */
 19
 20#include <linux/oom.h>
 21#include <linux/mm.h>
 22#include <linux/err.h>
 23#include <linux/gfp.h>
 24#include <linux/sched.h>
 25#include <linux/swap.h>
 26#include <linux/timex.h>
 27#include <linux/jiffies.h>
 28#include <linux/cpuset.h>
 29#include <linux/export.h>
 30#include <linux/notifier.h>
 31#include <linux/memcontrol.h>
 32#include <linux/mempolicy.h>
 33#include <linux/security.h>
 34#include <linux/ptrace.h>
 35#include <linux/freezer.h>
 36#include <linux/ftrace.h>
 37#include <linux/ratelimit.h>
 38
 39#define CREATE_TRACE_POINTS
 40#include <trace/events/oom.h>
 41
 42int sysctl_panic_on_oom;
 43int sysctl_oom_kill_allocating_task;
 44int sysctl_oom_dump_tasks = 1;
 45static DEFINE_SPINLOCK(zone_scan_lock);
 46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47#ifdef CONFIG_NUMA
 48/**
 49 * has_intersects_mems_allowed() - check task eligiblity for kill
 50 * @start: task struct of which task to consider
 51 * @mask: nodemask passed to page allocator for mempolicy ooms
 52 *
 53 * Task eligibility is determined by whether or not a candidate task, @tsk,
 54 * shares the same mempolicy nodes as current if it is bound by such a policy
 55 * and whether or not it has the same set of allowed cpuset nodes.
 56 */
 57static bool has_intersects_mems_allowed(struct task_struct *start,
 58					const nodemask_t *mask)
 59{
 60	struct task_struct *tsk;
 61	bool ret = false;
 62
 63	rcu_read_lock();
 64	for_each_thread(start, tsk) {
 65		if (mask) {
 66			/*
 67			 * If this is a mempolicy constrained oom, tsk's
 68			 * cpuset is irrelevant.  Only return true if its
 69			 * mempolicy intersects current, otherwise it may be
 70			 * needlessly killed.
 71			 */
 72			ret = mempolicy_nodemask_intersects(tsk, mask);
 
 73		} else {
 74			/*
 75			 * This is not a mempolicy constrained oom, so only
 76			 * check the mems of tsk's cpuset.
 77			 */
 78			ret = cpuset_mems_allowed_intersects(current, tsk);
 
 79		}
 80		if (ret)
 81			break;
 82	}
 83	rcu_read_unlock();
 84
 85	return ret;
 86}
 87#else
 88static bool has_intersects_mems_allowed(struct task_struct *tsk,
 89					const nodemask_t *mask)
 90{
 91	return true;
 92}
 93#endif /* CONFIG_NUMA */
 94
 95/*
 96 * The process p may have detached its own ->mm while exiting or through
 97 * use_mm(), but one or more of its subthreads may still have a valid
 98 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 99 * task_lock() held.
100 */
101struct task_struct *find_lock_task_mm(struct task_struct *p)
102{
103	struct task_struct *t;
104
105	rcu_read_lock();
106
107	for_each_thread(p, t) {
108		task_lock(t);
109		if (likely(t->mm))
110			goto found;
111		task_unlock(t);
112	}
113	t = NULL;
114found:
115	rcu_read_unlock();
116
117	return t;
118}
119
120/* return true if the task is not adequate as candidate victim task. */
121static bool oom_unkillable_task(struct task_struct *p,
122		const struct mem_cgroup *memcg, const nodemask_t *nodemask)
123{
124	if (is_global_init(p))
125		return true;
126	if (p->flags & PF_KTHREAD)
127		return true;
128
129	/* When mem_cgroup_out_of_memory() and p is not member of the group */
130	if (memcg && !task_in_mem_cgroup(p, memcg))
131		return true;
132
133	/* p may not have freeable memory in nodemask */
134	if (!has_intersects_mems_allowed(p, nodemask))
135		return true;
136
137	return false;
138}
139
140/**
141 * oom_badness - heuristic function to determine which candidate task to kill
142 * @p: task struct of which task we should calculate
143 * @totalpages: total present RAM allowed for page allocation
144 *
145 * The heuristic for determining which task to kill is made to be as simple and
146 * predictable as possible.  The goal is to return the highest value for the
147 * task consuming the most memory to avoid subsequent oom failures.
148 */
149unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
150			  const nodemask_t *nodemask, unsigned long totalpages)
151{
152	long points;
153	long adj;
154
155	if (oom_unkillable_task(p, memcg, nodemask))
156		return 0;
157
158	p = find_lock_task_mm(p);
159	if (!p)
160		return 0;
161
162	adj = (long)p->signal->oom_score_adj;
163	if (adj == OOM_SCORE_ADJ_MIN) {
 
 
 
 
164		task_unlock(p);
165		return 0;
166	}
167
168	/*
 
 
 
 
 
 
 
169	 * The baseline for the badness score is the proportion of RAM that each
170	 * task's rss, pagetable and swap space use.
171	 */
172	points = get_mm_rss(p->mm) + atomic_long_read(&p->mm->nr_ptes) +
173		 get_mm_counter(p->mm, MM_SWAPENTS);
 
 
 
174	task_unlock(p);
175
176	/*
177	 * Root processes get 3% bonus, just like the __vm_enough_memory()
178	 * implementation used by LSMs.
179	 */
180	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
181		points -= (points * 3) / 100;
182
183	/* Normalize to oom_score_adj units */
184	adj *= totalpages / 1000;
185	points += adj;
 
 
 
186
187	/*
188	 * Never return 0 for an eligible task regardless of the root bonus and
189	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 
190	 */
191	return points > 0 ? points : 1;
 
 
192}
193
194/*
195 * Determine the type of allocation constraint.
196 */
197#ifdef CONFIG_NUMA
198static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
199				gfp_t gfp_mask, nodemask_t *nodemask,
200				unsigned long *totalpages)
201{
202	struct zone *zone;
203	struct zoneref *z;
204	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
205	bool cpuset_limited = false;
206	int nid;
207
208	/* Default to all available memory */
209	*totalpages = totalram_pages + total_swap_pages;
210
211	if (!zonelist)
212		return CONSTRAINT_NONE;
213	/*
214	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
215	 * to kill current.We have to random task kill in this case.
216	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
217	 */
218	if (gfp_mask & __GFP_THISNODE)
219		return CONSTRAINT_NONE;
220
221	/*
222	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
223	 * the page allocator means a mempolicy is in effect.  Cpuset policy
224	 * is enforced in get_page_from_freelist().
225	 */
226	if (nodemask && !nodes_subset(node_states[N_MEMORY], *nodemask)) {
227		*totalpages = total_swap_pages;
228		for_each_node_mask(nid, *nodemask)
229			*totalpages += node_spanned_pages(nid);
230		return CONSTRAINT_MEMORY_POLICY;
231	}
232
233	/* Check this allocation failure is caused by cpuset's wall function */
234	for_each_zone_zonelist_nodemask(zone, z, zonelist,
235			high_zoneidx, nodemask)
236		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
237			cpuset_limited = true;
238
239	if (cpuset_limited) {
240		*totalpages = total_swap_pages;
241		for_each_node_mask(nid, cpuset_current_mems_allowed)
242			*totalpages += node_spanned_pages(nid);
243		return CONSTRAINT_CPUSET;
244	}
245	return CONSTRAINT_NONE;
246}
247#else
248static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
249				gfp_t gfp_mask, nodemask_t *nodemask,
250				unsigned long *totalpages)
251{
252	*totalpages = totalram_pages + total_swap_pages;
253	return CONSTRAINT_NONE;
254}
255#endif
256
257enum oom_scan_t oom_scan_process_thread(struct task_struct *task,
258		unsigned long totalpages, const nodemask_t *nodemask,
259		bool force_kill)
260{
261	if (task->exit_state)
262		return OOM_SCAN_CONTINUE;
263	if (oom_unkillable_task(task, NULL, nodemask))
264		return OOM_SCAN_CONTINUE;
265
266	/*
267	 * This task already has access to memory reserves and is being killed.
268	 * Don't allow any other task to have access to the reserves.
269	 */
270	if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
271		if (unlikely(frozen(task)))
272			__thaw_task(task);
273		if (!force_kill)
274			return OOM_SCAN_ABORT;
275	}
276	if (!task->mm)
277		return OOM_SCAN_CONTINUE;
278
279	/*
280	 * If task is allocating a lot of memory and has been marked to be
281	 * killed first if it triggers an oom, then select it.
282	 */
283	if (oom_task_origin(task))
284		return OOM_SCAN_SELECT;
285
286	if (task->flags & PF_EXITING && !force_kill) {
287		/*
288		 * If this task is not being ptraced on exit, then wait for it
289		 * to finish before killing some other task unnecessarily.
290		 */
291		if (!(task->group_leader->ptrace & PT_TRACE_EXIT))
292			return OOM_SCAN_ABORT;
293	}
294	return OOM_SCAN_OK;
295}
296
297/*
298 * Simple selection loop. We chose the process with the highest
299 * number of 'points'.  Returns -1 on scan abort.
300 *
301 * (not docbooked, we don't want this one cluttering up the manual)
302 */
303static struct task_struct *select_bad_process(unsigned int *ppoints,
304		unsigned long totalpages, const nodemask_t *nodemask,
305		bool force_kill)
306{
307	struct task_struct *g, *p;
308	struct task_struct *chosen = NULL;
309	unsigned long chosen_points = 0;
310
311	rcu_read_lock();
312	for_each_process_thread(g, p) {
313		unsigned int points;
314
315		switch (oom_scan_process_thread(p, totalpages, nodemask,
316						force_kill)) {
317		case OOM_SCAN_SELECT:
318			chosen = p;
319			chosen_points = ULONG_MAX;
320			/* fall through */
321		case OOM_SCAN_CONTINUE:
322			continue;
323		case OOM_SCAN_ABORT:
324			rcu_read_unlock();
325			return (struct task_struct *)(-1UL);
326		case OOM_SCAN_OK:
327			break;
328		};
329		points = oom_badness(p, NULL, nodemask, totalpages);
330		if (!points || points < chosen_points)
331			continue;
332		/* Prefer thread group leaders for display purposes */
333		if (points == chosen_points && thread_group_leader(chosen))
 
 
 
 
 
 
 
 
 
 
 
334			continue;
335
336		chosen = p;
337		chosen_points = points;
338	}
339	if (chosen)
340		get_task_struct(chosen);
341	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
343	*ppoints = chosen_points * 1000 / totalpages;
344	return chosen;
345}
346
347/**
348 * dump_tasks - dump current memory state of all system tasks
349 * @memcg: current's memory controller, if constrained
350 * @nodemask: nodemask passed to page allocator for mempolicy ooms
351 *
352 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
353 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
354 * are not shown.
355 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
356 * swapents, oom_score_adj value, and name.
 
 
357 */
358static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemask)
359{
360	struct task_struct *p;
361	struct task_struct *task;
362
363	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes swapents oom_score_adj name\n");
364	rcu_read_lock();
365	for_each_process(p) {
366		if (oom_unkillable_task(p, memcg, nodemask))
367			continue;
368
369		task = find_lock_task_mm(p);
370		if (!task) {
371			/*
372			 * This is a kthread or all of p's threads have already
373			 * detached their mm's.  There's no need to report
374			 * them; they can't be oom killed anyway.
375			 */
376			continue;
377		}
378
379		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %8lu         %5hd %s\n",
380			task->pid, from_kuid(&init_user_ns, task_uid(task)),
381			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
382			atomic_long_read(&task->mm->nr_ptes),
383			get_mm_counter(task->mm, MM_SWAPENTS),
384			task->signal->oom_score_adj, task->comm);
385		task_unlock(task);
386	}
387	rcu_read_unlock();
388}
389
390static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
391			struct mem_cgroup *memcg, const nodemask_t *nodemask)
392{
393	task_lock(current);
394	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
395		"oom_score_adj=%hd\n",
396		current->comm, gfp_mask, order,
397		current->signal->oom_score_adj);
398	cpuset_print_task_mems_allowed(current);
399	task_unlock(current);
400	dump_stack();
401	if (memcg)
402		mem_cgroup_print_oom_info(memcg, p);
403	else
404		show_mem(SHOW_MEM_FILTER_NODES);
405	if (sysctl_oom_dump_tasks)
406		dump_tasks(memcg, nodemask);
407}
408
409#define K(x) ((x) << (PAGE_SHIFT-10))
410/*
411 * Must be called while holding a reference to p, which will be released upon
412 * returning.
413 */
414void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
415		      unsigned int points, unsigned long totalpages,
416		      struct mem_cgroup *memcg, nodemask_t *nodemask,
417		      const char *message)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418{
419	struct task_struct *victim = p;
420	struct task_struct *child;
421	struct task_struct *t;
422	struct mm_struct *mm;
423	unsigned int victim_points = 0;
424	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
425					      DEFAULT_RATELIMIT_BURST);
 
426
427	/*
428	 * If the task is already exiting, don't alarm the sysadmin or kill
429	 * its children or threads, just set TIF_MEMDIE so it can die quickly
430	 */
431	if (p->flags & PF_EXITING) {
432		set_tsk_thread_flag(p, TIF_MEMDIE);
433		put_task_struct(p);
434		return;
435	}
436
437	if (__ratelimit(&oom_rs))
438		dump_header(p, gfp_mask, order, memcg, nodemask);
439
440	task_lock(p);
441	pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
442		message, task_pid_nr(p), p->comm, points);
443	task_unlock(p);
444
445	/*
446	 * If any of p's children has a different mm and is eligible for kill,
447	 * the one with the highest oom_badness() score is sacrificed for its
448	 * parent.  This attempts to lose the minimal amount of work done while
449	 * still freeing memory.
450	 */
451	read_lock(&tasklist_lock);
452	for_each_thread(p, t) {
453		list_for_each_entry(child, &t->children, sibling) {
454			unsigned int child_points;
455
456			if (child->mm == p->mm)
457				continue;
458			/*
459			 * oom_badness() returns 0 if the thread is unkillable
460			 */
461			child_points = oom_badness(child, memcg, nodemask,
462								totalpages);
463			if (child_points > victim_points) {
464				put_task_struct(victim);
465				victim = child;
466				victim_points = child_points;
467				get_task_struct(victim);
468			}
469		}
470	}
471	read_unlock(&tasklist_lock);
472
473	p = find_lock_task_mm(victim);
474	if (!p) {
475		put_task_struct(victim);
476		return;
477	} else if (victim != p) {
478		get_task_struct(p);
479		put_task_struct(victim);
480		victim = p;
481	}
482
483	/* mm cannot safely be dereferenced after task_unlock(victim) */
484	mm = victim->mm;
485	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
486		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
487		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
488		K(get_mm_counter(victim->mm, MM_FILEPAGES)));
489	task_unlock(victim);
490
491	/*
492	 * Kill all user processes sharing victim->mm in other thread groups, if
493	 * any.  They don't get access to memory reserves, though, to avoid
494	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
495	 * oom killed thread cannot exit because it requires the semaphore and
496	 * its contended by another thread trying to allocate memory itself.
497	 * That thread will now get access to memory reserves since it has a
498	 * pending fatal signal.
499	 */
500	rcu_read_lock();
501	for_each_process(p)
502		if (p->mm == mm && !same_thread_group(p, victim) &&
503		    !(p->flags & PF_KTHREAD)) {
504			if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
505				continue;
506
507			task_lock(p);	/* Protect ->comm from prctl() */
508			pr_err("Kill process %d (%s) sharing same memory\n",
509				task_pid_nr(p), p->comm);
510			task_unlock(p);
511			do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
512		}
513	rcu_read_unlock();
514
515	set_tsk_thread_flag(victim, TIF_MEMDIE);
516	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
517	put_task_struct(victim);
518}
519#undef K
520
521/*
522 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
523 */
524void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
525			int order, const nodemask_t *nodemask)
526{
527	if (likely(!sysctl_panic_on_oom))
528		return;
529	if (sysctl_panic_on_oom != 2) {
530		/*
531		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
532		 * does not panic for cpuset, mempolicy, or memcg allocation
533		 * failures.
534		 */
535		if (constraint != CONSTRAINT_NONE)
536			return;
537	}
 
538	dump_header(NULL, gfp_mask, order, NULL, nodemask);
 
539	panic("Out of memory: %s panic_on_oom is enabled\n",
540		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
541}
542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
544
545int register_oom_notifier(struct notifier_block *nb)
546{
547	return blocking_notifier_chain_register(&oom_notify_list, nb);
548}
549EXPORT_SYMBOL_GPL(register_oom_notifier);
550
551int unregister_oom_notifier(struct notifier_block *nb)
552{
553	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
554}
555EXPORT_SYMBOL_GPL(unregister_oom_notifier);
556
557/*
558 * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
559 * if a parallel OOM killing is already taking place that includes a zone in
560 * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
561 */
562int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
563{
564	struct zoneref *z;
565	struct zone *zone;
566	int ret = 1;
567
568	spin_lock(&zone_scan_lock);
569	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
570		if (zone_is_oom_locked(zone)) {
571			ret = 0;
572			goto out;
573		}
574	}
575
576	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
577		/*
578		 * Lock each zone in the zonelist under zone_scan_lock so a
579		 * parallel invocation of try_set_zonelist_oom() doesn't succeed
580		 * when it shouldn't.
581		 */
582		zone_set_flag(zone, ZONE_OOM_LOCKED);
583	}
584
585out:
586	spin_unlock(&zone_scan_lock);
587	return ret;
588}
589
590/*
591 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
592 * allocation attempts with zonelists containing them may now recall the OOM
593 * killer, if necessary.
594 */
595void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
596{
597	struct zoneref *z;
598	struct zone *zone;
599
600	spin_lock(&zone_scan_lock);
601	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
602		zone_clear_flag(zone, ZONE_OOM_LOCKED);
603	}
604	spin_unlock(&zone_scan_lock);
605}
606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607/**
608 * out_of_memory - kill the "best" process when we run out of memory
609 * @zonelist: zonelist pointer
610 * @gfp_mask: memory allocation flags
611 * @order: amount of memory being requested as a power of 2
612 * @nodemask: nodemask passed to page allocator
613 * @force_kill: true if a task must be killed, even if others are exiting
614 *
615 * If we run out of memory, we have the choice between either
616 * killing a random task (bad), letting the system crash (worse)
617 * OR try to be smart about which process to kill. Note that we
618 * don't have to be perfect here, we just have to be good.
619 */
620void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
621		int order, nodemask_t *nodemask, bool force_kill)
622{
623	const nodemask_t *mpol_mask;
624	struct task_struct *p;
625	unsigned long totalpages;
626	unsigned long freed = 0;
627	unsigned int uninitialized_var(points);
628	enum oom_constraint constraint = CONSTRAINT_NONE;
629	int killed = 0;
630
631	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
632	if (freed > 0)
633		/* Got some memory back in the last second. */
634		return;
635
636	/*
637	 * If current has a pending SIGKILL or is exiting, then automatically
638	 * select it.  The goal is to allow it to allocate so that it may
639	 * quickly exit and free its memory.
640	 */
641	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
642		set_thread_flag(TIF_MEMDIE);
643		return;
644	}
645
646	/*
647	 * Check if there were limitations on the allocation (only relevant for
648	 * NUMA) that may require different handling.
649	 */
650	constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
651						&totalpages);
652	mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
653	check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
654
655	if (sysctl_oom_kill_allocating_task && current->mm &&
 
656	    !oom_unkillable_task(current, NULL, nodemask) &&
657	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
658		get_task_struct(current);
659		oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL,
660				 nodemask,
661				 "Out of memory (oom_kill_allocating_task)");
 
 
 
 
 
 
 
 
 
 
662		goto out;
663	}
664
665	p = select_bad_process(&points, totalpages, mpol_mask, force_kill);
666	/* Found nothing?!?! Either we hang forever, or we panic. */
667	if (!p) {
668		dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
 
669		panic("Out of memory and no killable processes...\n");
670	}
671	if (p != (void *)-1UL) {
672		oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
673				 nodemask, "Out of memory");
674		killed = 1;
675	}
676out:
 
 
677	/*
678	 * Give the killed threads a good chance of exiting before trying to
679	 * allocate memory again.
680	 */
681	if (killed)
682		schedule_timeout_killable(1);
683}
684
685/*
686 * The pagefault handler calls here because it is out of memory, so kill a
687 * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a
688 * parallel oom killing is already in progress so do nothing.
 
689 */
690void pagefault_out_of_memory(void)
691{
692	struct zonelist *zonelist;
693
694	if (mem_cgroup_oom_synchronize(true))
695		return;
696
697	zonelist = node_zonelist(first_online_node, GFP_KERNEL);
698	if (try_set_zonelist_oom(zonelist, GFP_KERNEL)) {
699		out_of_memory(NULL, 0, 0, NULL, false);
700		clear_zonelist_oom(zonelist, GFP_KERNEL);
701	}
 
 
702}