Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/slab.h>
  3#include <linux/lockdep.h>
  4#include <linux/sysfs.h>
  5#include <linux/kobject.h>
  6#include <linux/memory.h>
  7#include <linux/memory-tiers.h>
  8#include <linux/notifier.h>
  9#include <linux/sched/sysctl.h>
 10
 11#include "internal.h"
 12
 13struct memory_tier {
 14	/* hierarchy of memory tiers */
 15	struct list_head list;
 16	/* list of all memory types part of this tier */
 17	struct list_head memory_types;
 18	/*
 19	 * start value of abstract distance. memory tier maps
 20	 * an abstract distance  range,
 21	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
 22	 */
 23	int adistance_start;
 24	struct device dev;
 25	/* All the nodes that are part of all the lower memory tiers. */
 26	nodemask_t lower_tier_mask;
 27};
 28
 29struct demotion_nodes {
 30	nodemask_t preferred;
 31};
 32
 33struct node_memory_type_map {
 34	struct memory_dev_type *memtype;
 35	int map_count;
 36};
 37
 38static DEFINE_MUTEX(memory_tier_lock);
 39static LIST_HEAD(memory_tiers);
 40/*
 41 * The list is used to store all memory types that are not created
 42 * by a device driver.
 43 */
 44static LIST_HEAD(default_memory_types);
 45static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
 46struct memory_dev_type *default_dram_type;
 47nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
 48
 49static const struct bus_type memory_tier_subsys = {
 50	.name = "memory_tiering",
 51	.dev_name = "memory_tier",
 52};
 53
 54#ifdef CONFIG_NUMA_BALANCING
 55/**
 56 * folio_use_access_time - check if a folio reuses cpupid for page access time
 57 * @folio: folio to check
 58 *
 59 * folio's _last_cpupid field is repurposed by memory tiering. In memory
 60 * tiering mode, cpupid of slow memory folio (not toptier memory) is used to
 61 * record page access time.
 62 *
 63 * Return: the folio _last_cpupid is used to record page access time
 64 */
 65bool folio_use_access_time(struct folio *folio)
 66{
 67	return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
 68	       !node_is_toptier(folio_nid(folio));
 69}
 70#endif
 71
 72#ifdef CONFIG_MIGRATION
 73static int top_tier_adistance;
 74/*
 75 * node_demotion[] examples:
 76 *
 77 * Example 1:
 78 *
 79 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
 80 *
 81 * node distances:
 82 * node   0    1    2    3
 83 *    0  10   20   30   40
 84 *    1  20   10   40   30
 85 *    2  30   40   10   40
 86 *    3  40   30   40   10
 87 *
 88 * memory_tiers0 = 0-1
 89 * memory_tiers1 = 2-3
 90 *
 91 * node_demotion[0].preferred = 2
 92 * node_demotion[1].preferred = 3
 93 * node_demotion[2].preferred = <empty>
 94 * node_demotion[3].preferred = <empty>
 95 *
 96 * Example 2:
 97 *
 98 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
 99 *
100 * node distances:
101 * node   0    1    2
102 *    0  10   20   30
103 *    1  20   10   30
104 *    2  30   30   10
105 *
106 * memory_tiers0 = 0-2
107 *
108 * node_demotion[0].preferred = <empty>
109 * node_demotion[1].preferred = <empty>
110 * node_demotion[2].preferred = <empty>
111 *
112 * Example 3:
113 *
114 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
115 *
116 * node distances:
117 * node   0    1    2
118 *    0  10   20   30
119 *    1  20   10   40
120 *    2  30   40   10
121 *
122 * memory_tiers0 = 1
123 * memory_tiers1 = 0
124 * memory_tiers2 = 2
125 *
126 * node_demotion[0].preferred = 2
127 * node_demotion[1].preferred = 0
128 * node_demotion[2].preferred = <empty>
129 *
130 */
131static struct demotion_nodes *node_demotion __read_mostly;
132#endif /* CONFIG_MIGRATION */
133
134static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
135
136/* The lock is used to protect `default_dram_perf*` info and nid. */
137static DEFINE_MUTEX(default_dram_perf_lock);
138static bool default_dram_perf_error;
139static struct access_coordinate default_dram_perf;
140static int default_dram_perf_ref_nid = NUMA_NO_NODE;
141static const char *default_dram_perf_ref_source;
142
143static inline struct memory_tier *to_memory_tier(struct device *device)
144{
145	return container_of(device, struct memory_tier, dev);
146}
147
148static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
149{
150	nodemask_t nodes = NODE_MASK_NONE;
151	struct memory_dev_type *memtype;
152
153	list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
154		nodes_or(nodes, nodes, memtype->nodes);
155
156	return nodes;
157}
158
159static void memory_tier_device_release(struct device *dev)
160{
161	struct memory_tier *tier = to_memory_tier(dev);
162	/*
163	 * synchronize_rcu in clear_node_memory_tier makes sure
164	 * we don't have rcu access to this memory tier.
165	 */
166	kfree(tier);
167}
168
169static ssize_t nodelist_show(struct device *dev,
170			     struct device_attribute *attr, char *buf)
171{
172	int ret;
173	nodemask_t nmask;
174
175	mutex_lock(&memory_tier_lock);
176	nmask = get_memtier_nodemask(to_memory_tier(dev));
177	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
178	mutex_unlock(&memory_tier_lock);
179	return ret;
180}
181static DEVICE_ATTR_RO(nodelist);
182
183static struct attribute *memtier_dev_attrs[] = {
184	&dev_attr_nodelist.attr,
185	NULL
186};
187
188static const struct attribute_group memtier_dev_group = {
189	.attrs = memtier_dev_attrs,
190};
191
192static const struct attribute_group *memtier_dev_groups[] = {
193	&memtier_dev_group,
194	NULL
195};
196
197static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
198{
199	int ret;
200	bool found_slot = false;
201	struct memory_tier *memtier, *new_memtier;
202	int adistance = memtype->adistance;
203	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
204
205	lockdep_assert_held_once(&memory_tier_lock);
206
207	adistance = round_down(adistance, memtier_adistance_chunk_size);
208	/*
209	 * If the memtype is already part of a memory tier,
210	 * just return that.
211	 */
212	if (!list_empty(&memtype->tier_sibling)) {
213		list_for_each_entry(memtier, &memory_tiers, list) {
214			if (adistance == memtier->adistance_start)
215				return memtier;
216		}
217		WARN_ON(1);
218		return ERR_PTR(-EINVAL);
219	}
220
221	list_for_each_entry(memtier, &memory_tiers, list) {
222		if (adistance == memtier->adistance_start) {
223			goto link_memtype;
224		} else if (adistance < memtier->adistance_start) {
225			found_slot = true;
226			break;
227		}
228	}
229
230	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
231	if (!new_memtier)
232		return ERR_PTR(-ENOMEM);
233
234	new_memtier->adistance_start = adistance;
235	INIT_LIST_HEAD(&new_memtier->list);
236	INIT_LIST_HEAD(&new_memtier->memory_types);
237	if (found_slot)
238		list_add_tail(&new_memtier->list, &memtier->list);
239	else
240		list_add_tail(&new_memtier->list, &memory_tiers);
241
242	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
243	new_memtier->dev.bus = &memory_tier_subsys;
244	new_memtier->dev.release = memory_tier_device_release;
245	new_memtier->dev.groups = memtier_dev_groups;
246
247	ret = device_register(&new_memtier->dev);
248	if (ret) {
249		list_del(&new_memtier->list);
250		put_device(&new_memtier->dev);
251		return ERR_PTR(ret);
252	}
253	memtier = new_memtier;
254
255link_memtype:
256	list_add(&memtype->tier_sibling, &memtier->memory_types);
257	return memtier;
258}
259
260static struct memory_tier *__node_get_memory_tier(int node)
261{
262	pg_data_t *pgdat;
263
264	pgdat = NODE_DATA(node);
265	if (!pgdat)
266		return NULL;
267	/*
268	 * Since we hold memory_tier_lock, we can avoid
269	 * RCU read locks when accessing the details. No
270	 * parallel updates are possible here.
271	 */
272	return rcu_dereference_check(pgdat->memtier,
273				     lockdep_is_held(&memory_tier_lock));
274}
275
276#ifdef CONFIG_MIGRATION
277bool node_is_toptier(int node)
278{
279	bool toptier;
280	pg_data_t *pgdat;
281	struct memory_tier *memtier;
282
283	pgdat = NODE_DATA(node);
284	if (!pgdat)
285		return false;
286
287	rcu_read_lock();
288	memtier = rcu_dereference(pgdat->memtier);
289	if (!memtier) {
290		toptier = true;
291		goto out;
292	}
293	if (memtier->adistance_start <= top_tier_adistance)
294		toptier = true;
295	else
296		toptier = false;
297out:
298	rcu_read_unlock();
299	return toptier;
300}
301
302void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
303{
304	struct memory_tier *memtier;
305
306	/*
307	 * pg_data_t.memtier updates includes a synchronize_rcu()
308	 * which ensures that we either find NULL or a valid memtier
309	 * in NODE_DATA. protect the access via rcu_read_lock();
310	 */
311	rcu_read_lock();
312	memtier = rcu_dereference(pgdat->memtier);
313	if (memtier)
314		*targets = memtier->lower_tier_mask;
315	else
316		*targets = NODE_MASK_NONE;
317	rcu_read_unlock();
318}
319
320/**
321 * next_demotion_node() - Get the next node in the demotion path
322 * @node: The starting node to lookup the next node
323 *
324 * Return: node id for next memory node in the demotion path hierarchy
325 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
326 * @node online or guarantee that it *continues* to be the next demotion
327 * target.
328 */
329int next_demotion_node(int node)
330{
331	struct demotion_nodes *nd;
332	int target;
333
334	if (!node_demotion)
335		return NUMA_NO_NODE;
336
337	nd = &node_demotion[node];
338
339	/*
340	 * node_demotion[] is updated without excluding this
341	 * function from running.
342	 *
343	 * Make sure to use RCU over entire code blocks if
344	 * node_demotion[] reads need to be consistent.
345	 */
346	rcu_read_lock();
347	/*
348	 * If there are multiple target nodes, just select one
349	 * target node randomly.
350	 *
351	 * In addition, we can also use round-robin to select
352	 * target node, but we should introduce another variable
353	 * for node_demotion[] to record last selected target node,
354	 * that may cause cache ping-pong due to the changing of
355	 * last target node. Or introducing per-cpu data to avoid
356	 * caching issue, which seems more complicated. So selecting
357	 * target node randomly seems better until now.
358	 */
359	target = node_random(&nd->preferred);
360	rcu_read_unlock();
361
362	return target;
363}
364
365static void disable_all_demotion_targets(void)
366{
367	struct memory_tier *memtier;
368	int node;
369
370	for_each_node_state(node, N_MEMORY) {
371		node_demotion[node].preferred = NODE_MASK_NONE;
372		/*
373		 * We are holding memory_tier_lock, it is safe
374		 * to access pgda->memtier.
375		 */
376		memtier = __node_get_memory_tier(node);
377		if (memtier)
378			memtier->lower_tier_mask = NODE_MASK_NONE;
379	}
380	/*
381	 * Ensure that the "disable" is visible across the system.
382	 * Readers will see either a combination of before+disable
383	 * state or disable+after.  They will never see before and
384	 * after state together.
385	 */
386	synchronize_rcu();
387}
388
389static void dump_demotion_targets(void)
390{
391	int node;
392
393	for_each_node_state(node, N_MEMORY) {
394		struct memory_tier *memtier = __node_get_memory_tier(node);
395		nodemask_t preferred = node_demotion[node].preferred;
396
397		if (!memtier)
398			continue;
399
400		if (nodes_empty(preferred))
401			pr_info("Demotion targets for Node %d: null\n", node);
402		else
403			pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
404				node, nodemask_pr_args(&preferred),
405				nodemask_pr_args(&memtier->lower_tier_mask));
406	}
407}
408
409/*
410 * Find an automatic demotion target for all memory
411 * nodes. Failing here is OK.  It might just indicate
412 * being at the end of a chain.
413 */
414static void establish_demotion_targets(void)
415{
416	struct memory_tier *memtier;
417	struct demotion_nodes *nd;
418	int target = NUMA_NO_NODE, node;
419	int distance, best_distance;
420	nodemask_t tier_nodes, lower_tier;
421
422	lockdep_assert_held_once(&memory_tier_lock);
423
424	if (!node_demotion)
425		return;
426
427	disable_all_demotion_targets();
428
429	for_each_node_state(node, N_MEMORY) {
430		best_distance = -1;
431		nd = &node_demotion[node];
432
433		memtier = __node_get_memory_tier(node);
434		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
435			continue;
436		/*
437		 * Get the lower memtier to find the  demotion node list.
438		 */
439		memtier = list_next_entry(memtier, list);
440		tier_nodes = get_memtier_nodemask(memtier);
441		/*
442		 * find_next_best_node, use 'used' nodemask as a skip list.
443		 * Add all memory nodes except the selected memory tier
444		 * nodelist to skip list so that we find the best node from the
445		 * memtier nodelist.
446		 */
447		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
448
449		/*
450		 * Find all the nodes in the memory tier node list of same best distance.
451		 * add them to the preferred mask. We randomly select between nodes
452		 * in the preferred mask when allocating pages during demotion.
453		 */
454		do {
455			target = find_next_best_node(node, &tier_nodes);
456			if (target == NUMA_NO_NODE)
457				break;
458
459			distance = node_distance(node, target);
460			if (distance == best_distance || best_distance == -1) {
461				best_distance = distance;
462				node_set(target, nd->preferred);
463			} else {
464				break;
465			}
466		} while (1);
467	}
468	/*
469	 * Promotion is allowed from a memory tier to higher
470	 * memory tier only if the memory tier doesn't include
471	 * compute. We want to skip promotion from a memory tier,
472	 * if any node that is part of the memory tier have CPUs.
473	 * Once we detect such a memory tier, we consider that tier
474	 * as top tiper from which promotion is not allowed.
475	 */
476	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
477		tier_nodes = get_memtier_nodemask(memtier);
478		nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
479		if (!nodes_empty(tier_nodes)) {
480			/*
481			 * abstract distance below the max value of this memtier
482			 * is considered toptier.
483			 */
484			top_tier_adistance = memtier->adistance_start +
485						MEMTIER_CHUNK_SIZE - 1;
486			break;
487		}
488	}
489	/*
490	 * Now build the lower_tier mask for each node collecting node mask from
491	 * all memory tier below it. This allows us to fallback demotion page
492	 * allocation to a set of nodes that is closer the above selected
493	 * preferred node.
494	 */
495	lower_tier = node_states[N_MEMORY];
496	list_for_each_entry(memtier, &memory_tiers, list) {
497		/*
498		 * Keep removing current tier from lower_tier nodes,
499		 * This will remove all nodes in current and above
500		 * memory tier from the lower_tier mask.
501		 */
502		tier_nodes = get_memtier_nodemask(memtier);
503		nodes_andnot(lower_tier, lower_tier, tier_nodes);
504		memtier->lower_tier_mask = lower_tier;
505	}
506
507	dump_demotion_targets();
508}
509
510#else
511static inline void establish_demotion_targets(void) {}
512#endif /* CONFIG_MIGRATION */
513
514static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
515{
516	if (!node_memory_types[node].memtype)
517		node_memory_types[node].memtype = memtype;
518	/*
519	 * for each device getting added in the same NUMA node
520	 * with this specific memtype, bump the map count. We
521	 * Only take memtype device reference once, so that
522	 * changing a node memtype can be done by droping the
523	 * only reference count taken here.
524	 */
525
526	if (node_memory_types[node].memtype == memtype) {
527		if (!node_memory_types[node].map_count++)
528			kref_get(&memtype->kref);
529	}
530}
531
532static struct memory_tier *set_node_memory_tier(int node)
533{
534	struct memory_tier *memtier;
535	struct memory_dev_type *memtype = default_dram_type;
536	int adist = MEMTIER_ADISTANCE_DRAM;
537	pg_data_t *pgdat = NODE_DATA(node);
538
539
540	lockdep_assert_held_once(&memory_tier_lock);
541
542	if (!node_state(node, N_MEMORY))
543		return ERR_PTR(-EINVAL);
544
545	mt_calc_adistance(node, &adist);
546	if (!node_memory_types[node].memtype) {
547		memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
548		if (IS_ERR(memtype)) {
549			memtype = default_dram_type;
550			pr_info("Failed to allocate a memory type. Fall back.\n");
551		}
552	}
553
554	__init_node_memory_type(node, memtype);
555
556	memtype = node_memory_types[node].memtype;
557	node_set(node, memtype->nodes);
558	memtier = find_create_memory_tier(memtype);
559	if (!IS_ERR(memtier))
560		rcu_assign_pointer(pgdat->memtier, memtier);
561	return memtier;
562}
563
564static void destroy_memory_tier(struct memory_tier *memtier)
565{
566	list_del(&memtier->list);
567	device_unregister(&memtier->dev);
568}
569
570static bool clear_node_memory_tier(int node)
571{
572	bool cleared = false;
573	pg_data_t *pgdat;
574	struct memory_tier *memtier;
575
576	pgdat = NODE_DATA(node);
577	if (!pgdat)
578		return false;
579
580	/*
581	 * Make sure that anybody looking at NODE_DATA who finds
582	 * a valid memtier finds memory_dev_types with nodes still
583	 * linked to the memtier. We achieve this by waiting for
584	 * rcu read section to finish using synchronize_rcu.
585	 * This also enables us to free the destroyed memory tier
586	 * with kfree instead of kfree_rcu
587	 */
588	memtier = __node_get_memory_tier(node);
589	if (memtier) {
590		struct memory_dev_type *memtype;
591
592		rcu_assign_pointer(pgdat->memtier, NULL);
593		synchronize_rcu();
594		memtype = node_memory_types[node].memtype;
595		node_clear(node, memtype->nodes);
596		if (nodes_empty(memtype->nodes)) {
597			list_del_init(&memtype->tier_sibling);
598			if (list_empty(&memtier->memory_types))
599				destroy_memory_tier(memtier);
600		}
601		cleared = true;
602	}
603	return cleared;
604}
605
606static void release_memtype(struct kref *kref)
607{
608	struct memory_dev_type *memtype;
609
610	memtype = container_of(kref, struct memory_dev_type, kref);
611	kfree(memtype);
612}
613
614struct memory_dev_type *alloc_memory_type(int adistance)
615{
616	struct memory_dev_type *memtype;
617
618	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
619	if (!memtype)
620		return ERR_PTR(-ENOMEM);
621
622	memtype->adistance = adistance;
623	INIT_LIST_HEAD(&memtype->tier_sibling);
624	memtype->nodes  = NODE_MASK_NONE;
625	kref_init(&memtype->kref);
626	return memtype;
627}
628EXPORT_SYMBOL_GPL(alloc_memory_type);
629
630void put_memory_type(struct memory_dev_type *memtype)
631{
632	kref_put(&memtype->kref, release_memtype);
633}
634EXPORT_SYMBOL_GPL(put_memory_type);
635
636void init_node_memory_type(int node, struct memory_dev_type *memtype)
637{
638
639	mutex_lock(&memory_tier_lock);
640	__init_node_memory_type(node, memtype);
641	mutex_unlock(&memory_tier_lock);
642}
643EXPORT_SYMBOL_GPL(init_node_memory_type);
644
645void clear_node_memory_type(int node, struct memory_dev_type *memtype)
646{
647	mutex_lock(&memory_tier_lock);
648	if (node_memory_types[node].memtype == memtype || !memtype)
649		node_memory_types[node].map_count--;
650	/*
651	 * If we umapped all the attached devices to this node,
652	 * clear the node memory type.
653	 */
654	if (!node_memory_types[node].map_count) {
655		memtype = node_memory_types[node].memtype;
656		node_memory_types[node].memtype = NULL;
657		put_memory_type(memtype);
658	}
659	mutex_unlock(&memory_tier_lock);
660}
661EXPORT_SYMBOL_GPL(clear_node_memory_type);
662
663struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
664{
665	struct memory_dev_type *mtype;
666
667	list_for_each_entry(mtype, memory_types, list)
668		if (mtype->adistance == adist)
669			return mtype;
670
671	mtype = alloc_memory_type(adist);
672	if (IS_ERR(mtype))
673		return mtype;
674
675	list_add(&mtype->list, memory_types);
676
677	return mtype;
678}
679EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
680
681void mt_put_memory_types(struct list_head *memory_types)
682{
683	struct memory_dev_type *mtype, *mtn;
684
685	list_for_each_entry_safe(mtype, mtn, memory_types, list) {
686		list_del(&mtype->list);
687		put_memory_type(mtype);
688	}
689}
690EXPORT_SYMBOL_GPL(mt_put_memory_types);
691
692/*
693 * This is invoked via `late_initcall()` to initialize memory tiers for
694 * memory nodes, both with and without CPUs. After the initialization of
695 * firmware and devices, adistance algorithms are expected to be provided.
696 */
697static int __init memory_tier_late_init(void)
698{
699	int nid;
700	struct memory_tier *memtier;
701
702	get_online_mems();
703	guard(mutex)(&memory_tier_lock);
704
705	/* Assign each uninitialized N_MEMORY node to a memory tier. */
706	for_each_node_state(nid, N_MEMORY) {
707		/*
708		 * Some device drivers may have initialized
709		 * memory tiers, potentially bringing memory nodes
710		 * online and configuring memory tiers.
711		 * Exclude them here.
712		 */
713		if (node_memory_types[nid].memtype)
714			continue;
715
716		memtier = set_node_memory_tier(nid);
717		if (IS_ERR(memtier))
718			continue;
719	}
720
721	establish_demotion_targets();
722	put_online_mems();
723
724	return 0;
725}
726late_initcall(memory_tier_late_init);
727
728static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
729{
730	pr_info(
731"%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
732		prefix, coord->read_latency, coord->write_latency,
733		coord->read_bandwidth, coord->write_bandwidth);
734}
735
736int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
737			     const char *source)
738{
739	guard(mutex)(&default_dram_perf_lock);
740	if (default_dram_perf_error)
741		return -EIO;
742
743	if (perf->read_latency + perf->write_latency == 0 ||
744	    perf->read_bandwidth + perf->write_bandwidth == 0)
745		return -EINVAL;
746
747	if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
748		default_dram_perf = *perf;
749		default_dram_perf_ref_nid = nid;
750		default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
751		return 0;
752	}
753
754	/*
755	 * The performance of all default DRAM nodes is expected to be
756	 * same (that is, the variation is less than 10%).  And it
757	 * will be used as base to calculate the abstract distance of
758	 * other memory nodes.
759	 */
760	if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
761	    default_dram_perf.read_latency ||
762	    abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
763	    default_dram_perf.write_latency ||
764	    abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
765	    default_dram_perf.read_bandwidth ||
766	    abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
767	    default_dram_perf.write_bandwidth) {
768		pr_info(
769"memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
770"DRAM node %d.\n", nid, default_dram_perf_ref_nid);
771		pr_info("  performance of reference DRAM node %d from %s:\n",
772			default_dram_perf_ref_nid, default_dram_perf_ref_source);
773		dump_hmem_attrs(&default_dram_perf, "    ");
774		pr_info("  performance of DRAM node %d from %s:\n", nid, source);
775		dump_hmem_attrs(perf, "    ");
776		pr_info(
777"  disable default DRAM node performance based abstract distance algorithm.\n");
778		default_dram_perf_error = true;
779		return -EINVAL;
780	}
781
782	return 0;
783}
784
785int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
786{
787	guard(mutex)(&default_dram_perf_lock);
788	if (default_dram_perf_error)
789		return -EIO;
790
791	if (perf->read_latency + perf->write_latency == 0 ||
792	    perf->read_bandwidth + perf->write_bandwidth == 0)
793		return -EINVAL;
794
795	if (default_dram_perf_ref_nid == NUMA_NO_NODE)
796		return -ENOENT;
797
798	/*
799	 * The abstract distance of a memory node is in direct proportion to
800	 * its memory latency (read + write) and inversely proportional to its
801	 * memory bandwidth (read + write).  The abstract distance, memory
802	 * latency, and memory bandwidth of the default DRAM nodes are used as
803	 * the base.
804	 */
805	*adist = MEMTIER_ADISTANCE_DRAM *
806		(perf->read_latency + perf->write_latency) /
807		(default_dram_perf.read_latency + default_dram_perf.write_latency) *
808		(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
809		(perf->read_bandwidth + perf->write_bandwidth);
810
811	return 0;
812}
813EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
814
815/**
816 * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
817 * @nb: The notifier block which describe the algorithm
818 *
819 * Return: 0 on success, errno on error.
820 *
821 * Every memory tiering abstract distance algorithm provider needs to
822 * register the algorithm with register_mt_adistance_algorithm().  To
823 * calculate the abstract distance for a specified memory node, the
824 * notifier function will be called unless some high priority
825 * algorithm has provided result.  The prototype of the notifier
826 * function is as follows,
827 *
828 *   int (*algorithm_notifier)(struct notifier_block *nb,
829 *                             unsigned long nid, void *data);
830 *
831 * Where "nid" specifies the memory node, "data" is the pointer to the
832 * returned abstract distance (that is, "int *adist").  If the
833 * algorithm provides the result, NOTIFY_STOP should be returned.
834 * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
835 * algorithm in the chain to provide the result.
836 */
837int register_mt_adistance_algorithm(struct notifier_block *nb)
838{
839	return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
840}
841EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
842
843/**
844 * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
845 * @nb: the notifier block which describe the algorithm
846 *
847 * Return: 0 on success, errno on error.
848 */
849int unregister_mt_adistance_algorithm(struct notifier_block *nb)
850{
851	return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
852}
853EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
854
855/**
856 * mt_calc_adistance() - Calculate abstract distance with registered algorithms
857 * @node: the node to calculate abstract distance for
858 * @adist: the returned abstract distance
859 *
860 * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
861 * abstract distance algorithm provides the result, and return it via
862 * @adist.  Otherwise, no algorithm can provide the result and @adist
863 * will be kept as it is.
864 */
865int mt_calc_adistance(int node, int *adist)
866{
867	return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
868}
869EXPORT_SYMBOL_GPL(mt_calc_adistance);
870
871static int __meminit memtier_hotplug_callback(struct notifier_block *self,
872					      unsigned long action, void *_arg)
873{
874	struct memory_tier *memtier;
875	struct memory_notify *arg = _arg;
876
877	/*
878	 * Only update the node migration order when a node is
879	 * changing status, like online->offline.
880	 */
881	if (arg->status_change_nid < 0)
882		return notifier_from_errno(0);
883
884	switch (action) {
885	case MEM_OFFLINE:
886		mutex_lock(&memory_tier_lock);
887		if (clear_node_memory_tier(arg->status_change_nid))
888			establish_demotion_targets();
889		mutex_unlock(&memory_tier_lock);
890		break;
891	case MEM_ONLINE:
892		mutex_lock(&memory_tier_lock);
893		memtier = set_node_memory_tier(arg->status_change_nid);
894		if (!IS_ERR(memtier))
895			establish_demotion_targets();
896		mutex_unlock(&memory_tier_lock);
897		break;
898	}
899
900	return notifier_from_errno(0);
901}
902
903static int __init memory_tier_init(void)
904{
905	int ret;
906
907	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
908	if (ret)
909		panic("%s() failed to register memory tier subsystem\n", __func__);
910
911#ifdef CONFIG_MIGRATION
912	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
913				GFP_KERNEL);
914	WARN_ON(!node_demotion);
915#endif
916
917	mutex_lock(&memory_tier_lock);
918	/*
919	 * For now we can have 4 faster memory tiers with smaller adistance
920	 * than default DRAM tier.
921	 */
922	default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
923						      &default_memory_types);
924	mutex_unlock(&memory_tier_lock);
925	if (IS_ERR(default_dram_type))
926		panic("%s() failed to allocate default DRAM tier\n", __func__);
927
928	/* Record nodes with memory and CPU to set default DRAM performance. */
929	nodes_and(default_dram_nodes, node_states[N_MEMORY],
930		  node_states[N_CPU]);
931
932	hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
933	return 0;
934}
935subsys_initcall(memory_tier_init);
936
937bool numa_demotion_enabled = false;
938
939#ifdef CONFIG_MIGRATION
940#ifdef CONFIG_SYSFS
941static ssize_t demotion_enabled_show(struct kobject *kobj,
942				     struct kobj_attribute *attr, char *buf)
943{
944	return sysfs_emit(buf, "%s\n", str_true_false(numa_demotion_enabled));
945}
946
947static ssize_t demotion_enabled_store(struct kobject *kobj,
948				      struct kobj_attribute *attr,
949				      const char *buf, size_t count)
950{
951	ssize_t ret;
952
953	ret = kstrtobool(buf, &numa_demotion_enabled);
954	if (ret)
955		return ret;
956
957	return count;
958}
959
960static struct kobj_attribute numa_demotion_enabled_attr =
961	__ATTR_RW(demotion_enabled);
962
963static struct attribute *numa_attrs[] = {
964	&numa_demotion_enabled_attr.attr,
965	NULL,
966};
967
968static const struct attribute_group numa_attr_group = {
969	.attrs = numa_attrs,
970};
971
972static int __init numa_init_sysfs(void)
973{
974	int err;
975	struct kobject *numa_kobj;
976
977	numa_kobj = kobject_create_and_add("numa", mm_kobj);
978	if (!numa_kobj) {
979		pr_err("failed to create numa kobject\n");
980		return -ENOMEM;
981	}
982	err = sysfs_create_group(numa_kobj, &numa_attr_group);
983	if (err) {
984		pr_err("failed to register numa group\n");
985		goto delete_obj;
986	}
987	return 0;
988
989delete_obj:
990	kobject_put(numa_kobj);
991	return err;
992}
993subsys_initcall(numa_init_sysfs);
994#endif /* CONFIG_SYSFS */
995#endif