Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/slab.h>
  3#include <linux/lockdep.h>
  4#include <linux/sysfs.h>
  5#include <linux/kobject.h>
  6#include <linux/memory.h>
  7#include <linux/memory-tiers.h>
  8#include <linux/notifier.h>
  9
 10#include "internal.h"
 11
 12struct memory_tier {
 13	/* hierarchy of memory tiers */
 14	struct list_head list;
 15	/* list of all memory types part of this tier */
 16	struct list_head memory_types;
 17	/*
 18	 * start value of abstract distance. memory tier maps
 19	 * an abstract distance  range,
 20	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
 21	 */
 22	int adistance_start;
 23	struct device dev;
 24	/* All the nodes that are part of all the lower memory tiers. */
 25	nodemask_t lower_tier_mask;
 26};
 27
 28struct demotion_nodes {
 29	nodemask_t preferred;
 30};
 31
 32struct node_memory_type_map {
 33	struct memory_dev_type *memtype;
 34	int map_count;
 35};
 36
 37static DEFINE_MUTEX(memory_tier_lock);
 38static LIST_HEAD(memory_tiers);
 39static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
 40struct memory_dev_type *default_dram_type;
 41
 42static struct bus_type memory_tier_subsys = {
 43	.name = "memory_tiering",
 44	.dev_name = "memory_tier",
 45};
 46
 47#ifdef CONFIG_MIGRATION
 48static int top_tier_adistance;
 49/*
 50 * node_demotion[] examples:
 51 *
 52 * Example 1:
 53 *
 54 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
 55 *
 56 * node distances:
 57 * node   0    1    2    3
 58 *    0  10   20   30   40
 59 *    1  20   10   40   30
 60 *    2  30   40   10   40
 61 *    3  40   30   40   10
 62 *
 63 * memory_tiers0 = 0-1
 64 * memory_tiers1 = 2-3
 65 *
 66 * node_demotion[0].preferred = 2
 67 * node_demotion[1].preferred = 3
 68 * node_demotion[2].preferred = <empty>
 69 * node_demotion[3].preferred = <empty>
 70 *
 71 * Example 2:
 72 *
 73 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
 74 *
 75 * node distances:
 76 * node   0    1    2
 77 *    0  10   20   30
 78 *    1  20   10   30
 79 *    2  30   30   10
 80 *
 81 * memory_tiers0 = 0-2
 82 *
 83 * node_demotion[0].preferred = <empty>
 84 * node_demotion[1].preferred = <empty>
 85 * node_demotion[2].preferred = <empty>
 86 *
 87 * Example 3:
 88 *
 89 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
 90 *
 91 * node distances:
 92 * node   0    1    2
 93 *    0  10   20   30
 94 *    1  20   10   40
 95 *    2  30   40   10
 96 *
 97 * memory_tiers0 = 1
 98 * memory_tiers1 = 0
 99 * memory_tiers2 = 2
100 *
101 * node_demotion[0].preferred = 2
102 * node_demotion[1].preferred = 0
103 * node_demotion[2].preferred = <empty>
104 *
105 */
106static struct demotion_nodes *node_demotion __read_mostly;
107#endif /* CONFIG_MIGRATION */
108
109static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
110
111static bool default_dram_perf_error;
112static struct access_coordinate default_dram_perf;
113static int default_dram_perf_ref_nid = NUMA_NO_NODE;
114static const char *default_dram_perf_ref_source;
115
116static inline struct memory_tier *to_memory_tier(struct device *device)
117{
118	return container_of(device, struct memory_tier, dev);
119}
120
121static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
122{
123	nodemask_t nodes = NODE_MASK_NONE;
124	struct memory_dev_type *memtype;
125
126	list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
127		nodes_or(nodes, nodes, memtype->nodes);
128
129	return nodes;
130}
131
132static void memory_tier_device_release(struct device *dev)
133{
134	struct memory_tier *tier = to_memory_tier(dev);
135	/*
136	 * synchronize_rcu in clear_node_memory_tier makes sure
137	 * we don't have rcu access to this memory tier.
138	 */
139	kfree(tier);
140}
141
142static ssize_t nodelist_show(struct device *dev,
143			     struct device_attribute *attr, char *buf)
144{
145	int ret;
146	nodemask_t nmask;
147
148	mutex_lock(&memory_tier_lock);
149	nmask = get_memtier_nodemask(to_memory_tier(dev));
150	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
151	mutex_unlock(&memory_tier_lock);
152	return ret;
153}
154static DEVICE_ATTR_RO(nodelist);
155
156static struct attribute *memtier_dev_attrs[] = {
157	&dev_attr_nodelist.attr,
158	NULL
159};
160
161static const struct attribute_group memtier_dev_group = {
162	.attrs = memtier_dev_attrs,
163};
164
165static const struct attribute_group *memtier_dev_groups[] = {
166	&memtier_dev_group,
167	NULL
168};
169
170static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
171{
172	int ret;
173	bool found_slot = false;
174	struct memory_tier *memtier, *new_memtier;
175	int adistance = memtype->adistance;
176	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
177
178	lockdep_assert_held_once(&memory_tier_lock);
179
180	adistance = round_down(adistance, memtier_adistance_chunk_size);
181	/*
182	 * If the memtype is already part of a memory tier,
183	 * just return that.
184	 */
185	if (!list_empty(&memtype->tier_sibling)) {
186		list_for_each_entry(memtier, &memory_tiers, list) {
187			if (adistance == memtier->adistance_start)
188				return memtier;
189		}
190		WARN_ON(1);
191		return ERR_PTR(-EINVAL);
192	}
193
194	list_for_each_entry(memtier, &memory_tiers, list) {
195		if (adistance == memtier->adistance_start) {
196			goto link_memtype;
197		} else if (adistance < memtier->adistance_start) {
198			found_slot = true;
199			break;
200		}
201	}
202
203	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
204	if (!new_memtier)
205		return ERR_PTR(-ENOMEM);
206
207	new_memtier->adistance_start = adistance;
208	INIT_LIST_HEAD(&new_memtier->list);
209	INIT_LIST_HEAD(&new_memtier->memory_types);
210	if (found_slot)
211		list_add_tail(&new_memtier->list, &memtier->list);
212	else
213		list_add_tail(&new_memtier->list, &memory_tiers);
214
215	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
216	new_memtier->dev.bus = &memory_tier_subsys;
217	new_memtier->dev.release = memory_tier_device_release;
218	new_memtier->dev.groups = memtier_dev_groups;
219
220	ret = device_register(&new_memtier->dev);
221	if (ret) {
222		list_del(&new_memtier->list);
223		put_device(&new_memtier->dev);
224		return ERR_PTR(ret);
225	}
226	memtier = new_memtier;
227
228link_memtype:
229	list_add(&memtype->tier_sibling, &memtier->memory_types);
230	return memtier;
231}
232
233static struct memory_tier *__node_get_memory_tier(int node)
234{
235	pg_data_t *pgdat;
236
237	pgdat = NODE_DATA(node);
238	if (!pgdat)
239		return NULL;
240	/*
241	 * Since we hold memory_tier_lock, we can avoid
242	 * RCU read locks when accessing the details. No
243	 * parallel updates are possible here.
244	 */
245	return rcu_dereference_check(pgdat->memtier,
246				     lockdep_is_held(&memory_tier_lock));
247}
248
249#ifdef CONFIG_MIGRATION
250bool node_is_toptier(int node)
251{
252	bool toptier;
253	pg_data_t *pgdat;
254	struct memory_tier *memtier;
255
256	pgdat = NODE_DATA(node);
257	if (!pgdat)
258		return false;
259
260	rcu_read_lock();
261	memtier = rcu_dereference(pgdat->memtier);
262	if (!memtier) {
263		toptier = true;
264		goto out;
265	}
266	if (memtier->adistance_start <= top_tier_adistance)
267		toptier = true;
268	else
269		toptier = false;
270out:
271	rcu_read_unlock();
272	return toptier;
273}
274
275void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
276{
277	struct memory_tier *memtier;
278
279	/*
280	 * pg_data_t.memtier updates includes a synchronize_rcu()
281	 * which ensures that we either find NULL or a valid memtier
282	 * in NODE_DATA. protect the access via rcu_read_lock();
283	 */
284	rcu_read_lock();
285	memtier = rcu_dereference(pgdat->memtier);
286	if (memtier)
287		*targets = memtier->lower_tier_mask;
288	else
289		*targets = NODE_MASK_NONE;
290	rcu_read_unlock();
291}
292
293/**
294 * next_demotion_node() - Get the next node in the demotion path
295 * @node: The starting node to lookup the next node
296 *
297 * Return: node id for next memory node in the demotion path hierarchy
298 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
299 * @node online or guarantee that it *continues* to be the next demotion
300 * target.
301 */
302int next_demotion_node(int node)
303{
304	struct demotion_nodes *nd;
305	int target;
306
307	if (!node_demotion)
308		return NUMA_NO_NODE;
309
310	nd = &node_demotion[node];
311
312	/*
313	 * node_demotion[] is updated without excluding this
314	 * function from running.
315	 *
316	 * Make sure to use RCU over entire code blocks if
317	 * node_demotion[] reads need to be consistent.
318	 */
319	rcu_read_lock();
320	/*
321	 * If there are multiple target nodes, just select one
322	 * target node randomly.
323	 *
324	 * In addition, we can also use round-robin to select
325	 * target node, but we should introduce another variable
326	 * for node_demotion[] to record last selected target node,
327	 * that may cause cache ping-pong due to the changing of
328	 * last target node. Or introducing per-cpu data to avoid
329	 * caching issue, which seems more complicated. So selecting
330	 * target node randomly seems better until now.
331	 */
332	target = node_random(&nd->preferred);
333	rcu_read_unlock();
334
335	return target;
336}
337
338static void disable_all_demotion_targets(void)
339{
340	struct memory_tier *memtier;
341	int node;
342
343	for_each_node_state(node, N_MEMORY) {
344		node_demotion[node].preferred = NODE_MASK_NONE;
345		/*
346		 * We are holding memory_tier_lock, it is safe
347		 * to access pgda->memtier.
348		 */
349		memtier = __node_get_memory_tier(node);
350		if (memtier)
351			memtier->lower_tier_mask = NODE_MASK_NONE;
352	}
353	/*
354	 * Ensure that the "disable" is visible across the system.
355	 * Readers will see either a combination of before+disable
356	 * state or disable+after.  They will never see before and
357	 * after state together.
358	 */
359	synchronize_rcu();
360}
361
362/*
363 * Find an automatic demotion target for all memory
364 * nodes. Failing here is OK.  It might just indicate
365 * being at the end of a chain.
366 */
367static void establish_demotion_targets(void)
368{
369	struct memory_tier *memtier;
370	struct demotion_nodes *nd;
371	int target = NUMA_NO_NODE, node;
372	int distance, best_distance;
373	nodemask_t tier_nodes, lower_tier;
374
375	lockdep_assert_held_once(&memory_tier_lock);
376
377	if (!node_demotion)
378		return;
379
380	disable_all_demotion_targets();
381
382	for_each_node_state(node, N_MEMORY) {
383		best_distance = -1;
384		nd = &node_demotion[node];
385
386		memtier = __node_get_memory_tier(node);
387		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
388			continue;
389		/*
390		 * Get the lower memtier to find the  demotion node list.
391		 */
392		memtier = list_next_entry(memtier, list);
393		tier_nodes = get_memtier_nodemask(memtier);
394		/*
395		 * find_next_best_node, use 'used' nodemask as a skip list.
396		 * Add all memory nodes except the selected memory tier
397		 * nodelist to skip list so that we find the best node from the
398		 * memtier nodelist.
399		 */
400		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
401
402		/*
403		 * Find all the nodes in the memory tier node list of same best distance.
404		 * add them to the preferred mask. We randomly select between nodes
405		 * in the preferred mask when allocating pages during demotion.
406		 */
407		do {
408			target = find_next_best_node(node, &tier_nodes);
409			if (target == NUMA_NO_NODE)
410				break;
411
412			distance = node_distance(node, target);
413			if (distance == best_distance || best_distance == -1) {
414				best_distance = distance;
415				node_set(target, nd->preferred);
416			} else {
417				break;
418			}
419		} while (1);
420	}
421	/*
422	 * Promotion is allowed from a memory tier to higher
423	 * memory tier only if the memory tier doesn't include
424	 * compute. We want to skip promotion from a memory tier,
425	 * if any node that is part of the memory tier have CPUs.
426	 * Once we detect such a memory tier, we consider that tier
427	 * as top tiper from which promotion is not allowed.
428	 */
429	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
430		tier_nodes = get_memtier_nodemask(memtier);
431		nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
432		if (!nodes_empty(tier_nodes)) {
433			/*
434			 * abstract distance below the max value of this memtier
435			 * is considered toptier.
436			 */
437			top_tier_adistance = memtier->adistance_start +
438						MEMTIER_CHUNK_SIZE - 1;
439			break;
440		}
441	}
442	/*
443	 * Now build the lower_tier mask for each node collecting node mask from
444	 * all memory tier below it. This allows us to fallback demotion page
445	 * allocation to a set of nodes that is closer the above selected
446	 * perferred node.
447	 */
448	lower_tier = node_states[N_MEMORY];
449	list_for_each_entry(memtier, &memory_tiers, list) {
450		/*
451		 * Keep removing current tier from lower_tier nodes,
452		 * This will remove all nodes in current and above
453		 * memory tier from the lower_tier mask.
454		 */
455		tier_nodes = get_memtier_nodemask(memtier);
456		nodes_andnot(lower_tier, lower_tier, tier_nodes);
457		memtier->lower_tier_mask = lower_tier;
458	}
459}
460
461#else
462static inline void establish_demotion_targets(void) {}
463#endif /* CONFIG_MIGRATION */
464
465static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
466{
467	if (!node_memory_types[node].memtype)
468		node_memory_types[node].memtype = memtype;
469	/*
470	 * for each device getting added in the same NUMA node
471	 * with this specific memtype, bump the map count. We
472	 * Only take memtype device reference once, so that
473	 * changing a node memtype can be done by droping the
474	 * only reference count taken here.
475	 */
476
477	if (node_memory_types[node].memtype == memtype) {
478		if (!node_memory_types[node].map_count++)
479			kref_get(&memtype->kref);
480	}
481}
482
483static struct memory_tier *set_node_memory_tier(int node)
484{
485	struct memory_tier *memtier;
486	struct memory_dev_type *memtype;
487	pg_data_t *pgdat = NODE_DATA(node);
488
489
490	lockdep_assert_held_once(&memory_tier_lock);
491
492	if (!node_state(node, N_MEMORY))
493		return ERR_PTR(-EINVAL);
494
495	__init_node_memory_type(node, default_dram_type);
496
497	memtype = node_memory_types[node].memtype;
498	node_set(node, memtype->nodes);
499	memtier = find_create_memory_tier(memtype);
500	if (!IS_ERR(memtier))
501		rcu_assign_pointer(pgdat->memtier, memtier);
502	return memtier;
503}
504
505static void destroy_memory_tier(struct memory_tier *memtier)
506{
507	list_del(&memtier->list);
508	device_unregister(&memtier->dev);
509}
510
511static bool clear_node_memory_tier(int node)
512{
513	bool cleared = false;
514	pg_data_t *pgdat;
515	struct memory_tier *memtier;
516
517	pgdat = NODE_DATA(node);
518	if (!pgdat)
519		return false;
520
521	/*
522	 * Make sure that anybody looking at NODE_DATA who finds
523	 * a valid memtier finds memory_dev_types with nodes still
524	 * linked to the memtier. We achieve this by waiting for
525	 * rcu read section to finish using synchronize_rcu.
526	 * This also enables us to free the destroyed memory tier
527	 * with kfree instead of kfree_rcu
528	 */
529	memtier = __node_get_memory_tier(node);
530	if (memtier) {
531		struct memory_dev_type *memtype;
532
533		rcu_assign_pointer(pgdat->memtier, NULL);
534		synchronize_rcu();
535		memtype = node_memory_types[node].memtype;
536		node_clear(node, memtype->nodes);
537		if (nodes_empty(memtype->nodes)) {
538			list_del_init(&memtype->tier_sibling);
539			if (list_empty(&memtier->memory_types))
540				destroy_memory_tier(memtier);
541		}
542		cleared = true;
543	}
544	return cleared;
545}
546
547static void release_memtype(struct kref *kref)
548{
549	struct memory_dev_type *memtype;
550
551	memtype = container_of(kref, struct memory_dev_type, kref);
552	kfree(memtype);
553}
554
555struct memory_dev_type *alloc_memory_type(int adistance)
556{
557	struct memory_dev_type *memtype;
558
559	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
560	if (!memtype)
561		return ERR_PTR(-ENOMEM);
562
563	memtype->adistance = adistance;
564	INIT_LIST_HEAD(&memtype->tier_sibling);
565	memtype->nodes  = NODE_MASK_NONE;
566	kref_init(&memtype->kref);
567	return memtype;
568}
569EXPORT_SYMBOL_GPL(alloc_memory_type);
570
571void put_memory_type(struct memory_dev_type *memtype)
572{
573	kref_put(&memtype->kref, release_memtype);
574}
575EXPORT_SYMBOL_GPL(put_memory_type);
576
577void init_node_memory_type(int node, struct memory_dev_type *memtype)
578{
579
580	mutex_lock(&memory_tier_lock);
581	__init_node_memory_type(node, memtype);
582	mutex_unlock(&memory_tier_lock);
583}
584EXPORT_SYMBOL_GPL(init_node_memory_type);
585
586void clear_node_memory_type(int node, struct memory_dev_type *memtype)
587{
588	mutex_lock(&memory_tier_lock);
589	if (node_memory_types[node].memtype == memtype || !memtype)
590		node_memory_types[node].map_count--;
591	/*
592	 * If we umapped all the attached devices to this node,
593	 * clear the node memory type.
594	 */
595	if (!node_memory_types[node].map_count) {
596		memtype = node_memory_types[node].memtype;
597		node_memory_types[node].memtype = NULL;
598		put_memory_type(memtype);
599	}
600	mutex_unlock(&memory_tier_lock);
601}
602EXPORT_SYMBOL_GPL(clear_node_memory_type);
603
604static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
605{
606	pr_info(
607"%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
608		prefix, coord->read_latency, coord->write_latency,
609		coord->read_bandwidth, coord->write_bandwidth);
610}
611
612int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
613			     const char *source)
614{
615	int rc = 0;
616
617	mutex_lock(&memory_tier_lock);
618	if (default_dram_perf_error) {
619		rc = -EIO;
620		goto out;
621	}
622
623	if (perf->read_latency + perf->write_latency == 0 ||
624	    perf->read_bandwidth + perf->write_bandwidth == 0) {
625		rc = -EINVAL;
626		goto out;
627	}
628
629	if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
630		default_dram_perf = *perf;
631		default_dram_perf_ref_nid = nid;
632		default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
633		goto out;
634	}
635
636	/*
637	 * The performance of all default DRAM nodes is expected to be
638	 * same (that is, the variation is less than 10%).  And it
639	 * will be used as base to calculate the abstract distance of
640	 * other memory nodes.
641	 */
642	if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
643	    default_dram_perf.read_latency ||
644	    abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
645	    default_dram_perf.write_latency ||
646	    abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
647	    default_dram_perf.read_bandwidth ||
648	    abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
649	    default_dram_perf.write_bandwidth) {
650		pr_info(
651"memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
652"DRAM node %d.\n", nid, default_dram_perf_ref_nid);
653		pr_info("  performance of reference DRAM node %d:\n",
654			default_dram_perf_ref_nid);
655		dump_hmem_attrs(&default_dram_perf, "    ");
656		pr_info("  performance of DRAM node %d:\n", nid);
657		dump_hmem_attrs(perf, "    ");
658		pr_info(
659"  disable default DRAM node performance based abstract distance algorithm.\n");
660		default_dram_perf_error = true;
661		rc = -EINVAL;
662	}
663
664out:
665	mutex_unlock(&memory_tier_lock);
666	return rc;
667}
668
669int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
670{
671	if (default_dram_perf_error)
672		return -EIO;
673
674	if (default_dram_perf_ref_nid == NUMA_NO_NODE)
675		return -ENOENT;
676
677	if (perf->read_latency + perf->write_latency == 0 ||
678	    perf->read_bandwidth + perf->write_bandwidth == 0)
679		return -EINVAL;
680
681	mutex_lock(&memory_tier_lock);
682	/*
683	 * The abstract distance of a memory node is in direct proportion to
684	 * its memory latency (read + write) and inversely proportional to its
685	 * memory bandwidth (read + write).  The abstract distance, memory
686	 * latency, and memory bandwidth of the default DRAM nodes are used as
687	 * the base.
688	 */
689	*adist = MEMTIER_ADISTANCE_DRAM *
690		(perf->read_latency + perf->write_latency) /
691		(default_dram_perf.read_latency + default_dram_perf.write_latency) *
692		(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
693		(perf->read_bandwidth + perf->write_bandwidth);
694	mutex_unlock(&memory_tier_lock);
695
696	return 0;
697}
698EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
699
700/**
701 * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
702 * @nb: The notifier block which describe the algorithm
703 *
704 * Return: 0 on success, errno on error.
705 *
706 * Every memory tiering abstract distance algorithm provider needs to
707 * register the algorithm with register_mt_adistance_algorithm().  To
708 * calculate the abstract distance for a specified memory node, the
709 * notifier function will be called unless some high priority
710 * algorithm has provided result.  The prototype of the notifier
711 * function is as follows,
712 *
713 *   int (*algorithm_notifier)(struct notifier_block *nb,
714 *                             unsigned long nid, void *data);
715 *
716 * Where "nid" specifies the memory node, "data" is the pointer to the
717 * returned abstract distance (that is, "int *adist").  If the
718 * algorithm provides the result, NOTIFY_STOP should be returned.
719 * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
720 * algorithm in the chain to provide the result.
721 */
722int register_mt_adistance_algorithm(struct notifier_block *nb)
723{
724	return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
725}
726EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
727
728/**
729 * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
730 * @nb: the notifier block which describe the algorithm
731 *
732 * Return: 0 on success, errno on error.
733 */
734int unregister_mt_adistance_algorithm(struct notifier_block *nb)
735{
736	return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
737}
738EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
739
740/**
741 * mt_calc_adistance() - Calculate abstract distance with registered algorithms
742 * @node: the node to calculate abstract distance for
743 * @adist: the returned abstract distance
744 *
745 * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
746 * abstract distance algorithm provides the result, and return it via
747 * @adist.  Otherwise, no algorithm can provide the result and @adist
748 * will be kept as it is.
749 */
750int mt_calc_adistance(int node, int *adist)
751{
752	return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
753}
754EXPORT_SYMBOL_GPL(mt_calc_adistance);
755
756static int __meminit memtier_hotplug_callback(struct notifier_block *self,
757					      unsigned long action, void *_arg)
758{
759	struct memory_tier *memtier;
760	struct memory_notify *arg = _arg;
761
762	/*
763	 * Only update the node migration order when a node is
764	 * changing status, like online->offline.
765	 */
766	if (arg->status_change_nid < 0)
767		return notifier_from_errno(0);
768
769	switch (action) {
770	case MEM_OFFLINE:
771		mutex_lock(&memory_tier_lock);
772		if (clear_node_memory_tier(arg->status_change_nid))
773			establish_demotion_targets();
774		mutex_unlock(&memory_tier_lock);
775		break;
776	case MEM_ONLINE:
777		mutex_lock(&memory_tier_lock);
778		memtier = set_node_memory_tier(arg->status_change_nid);
779		if (!IS_ERR(memtier))
780			establish_demotion_targets();
781		mutex_unlock(&memory_tier_lock);
782		break;
783	}
784
785	return notifier_from_errno(0);
786}
787
788static int __init memory_tier_init(void)
789{
790	int ret, node;
791	struct memory_tier *memtier;
792
793	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
794	if (ret)
795		panic("%s() failed to register memory tier subsystem\n", __func__);
796
797#ifdef CONFIG_MIGRATION
798	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
799				GFP_KERNEL);
800	WARN_ON(!node_demotion);
801#endif
802	mutex_lock(&memory_tier_lock);
803	/*
804	 * For now we can have 4 faster memory tiers with smaller adistance
805	 * than default DRAM tier.
806	 */
807	default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM);
808	if (IS_ERR(default_dram_type))
809		panic("%s() failed to allocate default DRAM tier\n", __func__);
810
811	/*
812	 * Look at all the existing N_MEMORY nodes and add them to
813	 * default memory tier or to a tier if we already have memory
814	 * types assigned.
815	 */
816	for_each_node_state(node, N_MEMORY) {
817		memtier = set_node_memory_tier(node);
818		if (IS_ERR(memtier))
819			/*
820			 * Continue with memtiers we are able to setup
821			 */
822			break;
823	}
824	establish_demotion_targets();
825	mutex_unlock(&memory_tier_lock);
826
827	hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
828	return 0;
829}
830subsys_initcall(memory_tier_init);
831
832bool numa_demotion_enabled = false;
833
834#ifdef CONFIG_MIGRATION
835#ifdef CONFIG_SYSFS
836static ssize_t demotion_enabled_show(struct kobject *kobj,
837				     struct kobj_attribute *attr, char *buf)
838{
839	return sysfs_emit(buf, "%s\n",
840			  numa_demotion_enabled ? "true" : "false");
841}
842
843static ssize_t demotion_enabled_store(struct kobject *kobj,
844				      struct kobj_attribute *attr,
845				      const char *buf, size_t count)
846{
847	ssize_t ret;
848
849	ret = kstrtobool(buf, &numa_demotion_enabled);
850	if (ret)
851		return ret;
852
853	return count;
854}
855
856static struct kobj_attribute numa_demotion_enabled_attr =
857	__ATTR_RW(demotion_enabled);
858
859static struct attribute *numa_attrs[] = {
860	&numa_demotion_enabled_attr.attr,
861	NULL,
862};
863
864static const struct attribute_group numa_attr_group = {
865	.attrs = numa_attrs,
866};
867
868static int __init numa_init_sysfs(void)
869{
870	int err;
871	struct kobject *numa_kobj;
872
873	numa_kobj = kobject_create_and_add("numa", mm_kobj);
874	if (!numa_kobj) {
875		pr_err("failed to create numa kobject\n");
876		return -ENOMEM;
877	}
878	err = sysfs_create_group(numa_kobj, &numa_attr_group);
879	if (err) {
880		pr_err("failed to register numa group\n");
881		goto delete_obj;
882	}
883	return 0;
884
885delete_obj:
886	kobject_put(numa_kobj);
887	return err;
888}
889subsys_initcall(numa_init_sysfs);
890#endif /* CONFIG_SYSFS */
891#endif